
HEWLETT-PACKARD JOURNAL 

JUNE 1970 
© Copr. 1949-1998 Hewlett-Packard Co.



Digital Fourier Analysis 
Some o f  t he  t heo re t i ca l  and  p rac t i ca l  aspec t s  o f  measu re  
ments  invo lv ing Four ier  ana lys is  by  d ig i ta l  ins t rumentat ion.  

By Peter R. Roth 

WHEN THE CHARACTERISTICS OF A SIGNAL OR SYSTEM 
ARE MEASURED, the measurements most often made are 
the spectrum of the signal and the transfer function of 
the system. For example, if the transfer function of the 
landing gear and wing structure of an aircraft is known, 
and if the spectrum of the vibrations from typical run 
ways can be determined, then the roughness of a land 
ing can be evaluated. Or if the spectrum of the vibrations 
caused by typical roads can be determined, an automobile 
suspension system may be designed and tested to maxi 
mize ride comfort. 

It is the questions of how to measure spectra and 
transfer functions, especially when signals more complex 
than simple sine waves are involved, that we will examine 
in this article. 

The techniques to be described are based upon com 
putation of the Fourier integral 

SJ1) = f ' h Â°Â° x(t)exp{-i2^t}dt. (1) 
J  - c o  

While in principle the methods that will be examined are 
not new and have been partially implemented using an 
alog instruments, their full development has waited on 
the availability of digital processors with sufficient speed 
and flexibility. * 

How does computation of the Fourier integral help 
us make meaningful measurements? Consider the Fourier 
transform written in its sine-cosine form: 

r+o 
- 7 - c o  

1 x(t) (cos 2-ft â€”i sin 2-!rft}dt. (2) 

This equation states that the transform averages a time 
function input x(t) with a set of sines and cosines to de 
termine the content of x(t) at some frequency f . Thus the 
transform resolves the time function into a set of com 
ponents at various frequencies much as a set of analog 
filters would. However, it not only yields the amplitude 
at each frequency, but also resolves the in-phase (real, 
cosine) component and the quadrature (imaginary, sine) 
component, thereby giving magnitude and phase infor 
mation which is difficult to obtain in any other way. 

*  The ins t ruments .  HP Model  5450A Four ier  Ana lyzer  is  one o f  these d ig i ta l  ins t ruments .  
See  a r t i c l e ,  page  10 .  
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The Fourier transform is also valuable when it is ap 
plied to measurements on systems. The result of the op 
eration of a linear system on any input signal in the time 
domain may be determined from the convolution of the 
system impulse response h(t) with the input signal x(t) 
to give the output y(t): 

y(t) 
f  + 0 0  

J  â € ”  0 0  
h(r)  X(t  â€” r)dr.  (3) 

Visualizing the result of this operation is all but impos 
sible for anything other than a simple case. But if the 
Fourier transform is applied to this convolution integral, 
a simple, easily understood relationship results. The out 
put spectrum Sy is the product of the input spectrum Sx 
and the transfer function H: 

= SJf) ' H(f). (4)  

The simplest implementation of a measurement tech 
nique based on this relation is the use of a sine-wave 
input for x(t). Since the sine wave contains but one fre 
quency component it provides a simple way of measuring 
the transfer function using voltmeters and phasemeters. 
However, not all systems may be measured using sine 
waves, either because there is no way of inserting such 
a signal into the system, or because the sine wave is not 
a realistic signal form. 

A more general measurement method is to measure 
the input and output time series, in whatever form they 
may be, and to calculate H using Sx, Sv, and the Fourier 
transform. This method has several advantages, as I will 
show. But first, because the most powerful computa 
tional techniques available today are digital, it's necessary 
to say something about the nature of the Fourier trans 
form when it is implemented on a digital processor. 

Digital  Fourier Transforms 

Digital techniques make us realize very clearly that 
all measurements are discrete (i.e., have finite resolution) 
and of finite duration. All digital memories are obviously 
discrete and finite in size. Therefore, the equation for the 
Fourier transform must be changed to a finite sum for 
digital processing. This means, first of all, that the time 
function to be transformed must be sampled at discrete 
intervals, say At. It also means that only a finite number, 
say N, of such samples may be taken and stored. The 
record length T is then 

The effect of finite At is well known; it limits the maxi 
mum frequency that may be sampled without 'aliasing' 
error to 

Jmax â€” 
1 

(6, 

Any components above this Nyquist frequency or its 
multiples are folded back onto frequencies below fmai. 
In practical measurement situations this aliasing presents 
little or no difficulty, since fmax can be chosen to include 
all significant components of the input signal, or a filter 
may be used before the sampler to eliminate any strong 
components above fmai. 

The effect of finite record length T is also important. 
When a Fourier integral is taken over a finite record 
length T the result is a Fourier series, and the spectrum 
has discrete lines and finite resolution. A Discrete Finite 
Transform (DFT), which must be used whenever a Four 
ier transform is computed digitally, is more like a Fourier 
series than a transform, since it assumes that the input is 
periodic in the interval T and has a spectral resolution of 

The DFT is written as 

e x p { - l ~ m n } .  
*Â» 

(7)  

(8)  

T = Nat. (5) 

It yields in the frequency domain _ real (cosine) com- 
2 

ponents and â€” imaginary (sine) components from a 

sampled time record of N points. I will refer to this re 
sult as the linear spectrum to keep it sorted out from 
certain other spectrum forms. 

While this raw form of spectrum has certain uses, it 
it of limited value because of its dependence on the time 
position of the input record. A waveform of constant 
shape will always have the same energy at any one fre 
quency, but how this energy is distributed between the 
sine and cosine terms depends on the phase shift or time 
position of the waveform. Fig. 1 gives an example of 
this. Fig. la is the real part of the linear spectrum of a 
square pulse. It has the expected sin x/x form. However, 
the real part of the linear spectrum of the same pulse de 
layed a small amount, Fig. Ib, does not have this form. 
The linear phase shift given the spectrum by delaying the 
waveform has changed the distribution of the spectrum 
between its real and imaginary parts. On the other hand, 
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F i g .  1 .  T h e  r e a l  p a r t s  o l  t h e  F o u r i e r  t r a n s f o r m s  o f  t w o  
r e c t a n g u l a r  p u l s e s  w h i c h  a r e  i d e n t i c a l  e x c e p t  f o r  a  
t i m e  s h i f t  a r e  s h o w n  i n  ( a )  a n d  ( b ) .  ( c )  i s  t h e  m a g n i t u d e  
o f  t h e  F o u r i e r  t r a n s f o r m s  o f  b o t h  p u l s e s .  B e c a u s e  i t  i s  
i n d e p e n d e n t  o f  t i m e  p o s i t i o n ,  t h e  m a g n i t u d e - a n d - p h a s e  
f o r m  o f  t h e  t r a n s f o r m  i s  m o r e  u s e f u l  t h a n  t h e  r e a l - a n d -  
i m a g i n a r y  f o r m .  H o w e v e r ,  t h e  s q u a r e  o f  t h e  m a g n i t u d e ,  
o r  t h e  p o w e r  s p e c t r u m ,  i s  e v e n  m o r e  w i d e l y  u s e d .  

if we examine the magnitude of either the undelayed pulse 
spectrum or the delayed pulse spectrum, we see that it 
is constant (Fig. Ic) and that the energy in any line is 
the same no matter what the time position of the input 
waveform is. 

It is clear, then, that to obtain a constant linear spec 
trum independent of time position it is at least necessary 
to convert the real and imaginary components of the 
spectrum into magnitude and phase. While the linear 
magnitude spectrum is a valid and perfectly acceptable 
way to achieve a useful spectrum it is cumbersome from 
a computational standpoint. A closely related function, 
the 'auto' spectrum or 'power' spectrum, gives the same 
basic information, is faster to compute, and can be ap 
plied to measurements which the linear magnitude spec 
trum cannot. 

Power or  Auto Spectrum 
The auto spectrum, Gxx(f), is formed by multiplying 

the value of the linear spectrum, Sx(f), by its own com 
plex conjugate. 

GtJi) = SJf) â€¢ S*(j) = [A(f) + 

Gnff) = A*(f) + B 

(9) 

(10) 

Each spectral line of GM(f) is proportional to the voltage 
squared at frequency f, or more exactly to the variance 
of the input waveform at frequency f . The auto spectrum 
is useful because it is the magnitude squared of the linear 
spectrum. For this reason, and because it has no imagi 
nary part, it is independent of the time position of the 
input waveform. It is the square-law auto spectrum that 
is usually implied when the term 'spectral analysis' is 
used. 
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Analyzing Random Signals 
The auto spectrum, because of its independence of 

time and phase, is a useful tool for analyzing signals that 
are deterministic, that is, for signals that do not change 
in spectral form from sample record to sample record, 
or only change in a predictable way. However, the auto 
spectrum is an even more useful tool for the analysis of 
signals that are stationary and random, that is, signals 
whose spectra will vary from sample record to sample 
record but will have a measurable mean or average value. 
Many processes generate signals whose spectra cannot 
be predicted for any single sample record, but whose 
spectra are stable on the average. Examples of such 
processes are 1/f noise in an amplifier, or the sea state 
noise in a sonar system. On the other hand, the process 
being measured may be a combination of deterministic 
and random spectra. For example, consider the fine-line 
components of the noise due to the rotating members of 
a turbojet hidden by the random noise of the combus 
tion, or the tonal components of an acoustic signal hidden 
in the random noise of the ocean. 

What is more important about a random spectrum is 
that for a single sample record of length T (i.e., of spec 
tral resolution Af = 1/T) the spectral lines are just as 
random as the time series that generated the spectrum 
no matter how long T is. In basic engineering and mathe 
matical texts on the Fourier transform, the transition 
from periodic functions whose spectra are described by 
Fourier series to totally aperiodic functions whose spec 
tra are described by the Fourier transform is made by 
making the record length T go to infinity in the limit. 
That this procedure does not work for the ultimate in 
aperiodic functions, random signals, can be intuitively 
demonstrated in two ways. 

First consider a wave analyzer with a bandwidth Af 
and a meter with very small damping. The response time 
of this analyzer is about 1 /Af or T seconds. If a random 
signal is applied to this wave analyzer an independent 
reading can be made about every T seconds. Now, if the 
bandwidth of the wave analyzer is cut to Af/2, the re 
sponse time of the filter and hence the time between in 
dependent readings becomes 2T. While the meter will 
move half as fast in this case, the randomness of the 
reading as expressed by the variance of the independent 
readings will be unchanged, since independent readings 
are twice as far apart. Thus no matter how long a record 
(i.e., how narrow a bandwidth) is used, no improvement 
in statistical certainty can be made. The only way to im 
prove the reading is to put an integrating circuit on the 
meter that is much slower than the response time due to 

the reciprocal of the bandwidth 1/Af. Then the final 
reading will be the result of averaging many independent 
readings. 

To show this effect for a DFT consider a spectrum com 
puted from N equally spaced time samples over a sam- 

N  N  
ple record of length T, yielding â€” real and -y imaginary 

frequency components. From N time points, exactly N 
values are obtained in the spectrum, and since no new 
information about the signal is added by the DFT, each 
spectral line will have no more statistical certainty than 
a sample point in the time function from which the spec 
trum was computed. In fact, for a spectrum of Gaussian 
noise of any spectrum shape, the variance of a spectral 
line for one sample record is equal to the expected value 
for the measurement. Such a measurement is so uncer 
tain that it is no measurement at all. 

However, if a number of independent samples of the 
spectrum are averaged, the variance of the resulting es 
timate of the spectrum will be reduced in a fashion anal 
ogous to integrating readings from the wave analyzer 
meter. Such a case is demonstrated in Fig. 2. Fig. 2a is 
a spectrum computed from a single sample record of a 
signal consisting of a sine wave plus random noise. Be 
cause the variance of one sample is equal to the expected 
value for each line it is impossible to tell which of the 
spikes is the spectrum of the sine wave and which is due 
to the variability of the estimate. Fig. 2b shows a spec 
trum computed from an average of 100 samples. Here 
the variability of the estimate is reduced to the point 
where it is perfectly clear where the single tone lies. It 
is also clear what the spectral shape of the Gaussian 
noise of In fact, a statistical certainty for the estimate of 
the random spectrum is easily computed from the rela 
tionship that one standard deviation a is 

1 (11) 
where K is the number of sample spectra averaged. 

For the case of 100 spectral averages 3(7 is 1.1 dB. 
Thus one would expect that only one estimate in a thou 
sand would fall farther away than 1 . 1 dB from the mea 
sured value in Fig. 2b. To achieve this degree of statis 
tical stability using an analog wave analyzer with a 1 Hz 
bandwidth would require a 100-second integration. 

Two Input  Waveforms 
So far we have considered measurements on one time 

series only. However, we often have to take measure 
ments from two signals simultaneously so the relationship 
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F i g .  2 .  T h e  p o w e r  s p e c t r u m  ( a )  c o m p u t e d  f r o m  a  s i n g l e  
s a m p l e  r e c o r d  o f  a  r a n d o m  s i g n a l  i s  a s  r a n d o m  a s  t h e  
s i g n a l  i t s e l f .  B u t  w h e n  1 0 0  s u c h  s p e c t r a  a r e  a v e r a g e d ,  
t h e  r e s u l t  ( b )  s h o w s  n o t  o n l y  t h e  s p e c t r a l  s h a p e  o f  t h e  
r a n d o m  s i g n a l ,  b u t  a l s o  t h a t  t h e r e  w a s  a  s i n u s o i d  h i d d e n  
in  the  s igna l .  

between two points in some process may be determined. 
For example, in the situation shown in Fig. 3 the rela 
tionship between input x(t) and output z(t) might be of 
interest. There are two distinct quantities that can be 
measured in such a situation. The first is the degree to 
which the output depends on the input. That is, is z(t) 
caused by x(t) or is z(t) due in part to some unrelated 
signal such as n(t)? Second, if z(t) is caused at least partly 
by x(t), what is the form of this relationship? 

It is important to be aware that, although neither cau 
sality nor relationship can exist without the other, each 
contains different information about the process. It is also 
important to note that no single measurement of the cor 
relation between two signals, either in the time domain 

I    I  

Time: y( t ) -J  h(T)  â€¢ x( t -T)  d 

requency: S,(f)=H(f) â€¢ Sx(f) 

F i g .  3 .  I s  t h e  o u t p u t  z ( t )  c a u s e d  e n t i r e l y  b y  x ( t )  o r  i s  
t h e r e  a l s o  u n r e l a t e d  n o i s e  n ( t ) ?  W h a t  i s  t h e  f o r m  o f  t h e  
r e l a t i o n s h i p  b e t w e e n  x ( t )  a n d  y ( t ) ?  T h e  t r a n s f e r  f u n c t i o n  
H ( f )  p r o v i d e s  a n  a n s w e r  t o  t h e  s e c o n d  q u e s t i o n .  A  q u a n  
t i t y  c a l l e d  t h e  c o h e r e n c e  f u n c t i o n  a n s w e r s  t h e  f i r s t .  

or the frequency domain, is capable of separating these 
two quantities. 

Cross Spectrum or Cross Power Spectrum 
The cross spectrum, also known as the cross power 

spectrum, illustrates these points. The cross spectrum 
GjX(f) between two signals y(t) and x(t) in a process or 
system is formed by multiplying the linear spectrum of 
y(t) by the complex conjugate of the linear spectrum of 
x(t) measured at the same time. 

GVI = SÂ¿St* = (A, + iBv) (At - iBt) (12) 

Gyi = (AyAz + BVBZ) -  BXAV) (13) 

These relationships show that the cross spectrum is not 
a positive real quantity like the auto spectrum, but in 
general is both complex and bipolar. A physical interpre 
tation of this function is quite straightforward. If there 
are components at a given frequency in both x(t) and y(t), 
the cross spectrum will have a magnitude equal to the 
product of the magnitudes of the components and a phase 
equal to the phase difference between the components. 

While this interpretation is exactly true when x(t) and 
y(t) are uncontaminated by noise, an additional dimen 
sion must be added when unrelated signals are added to 
the process. Any single sample of the cross spectrum Gzx 
between the output z(t) of the linear system of Fig. 3 
and the input x(t) will show the combined effects of 
x(t) and n(t) merged into z(t). However, if n(t) is unre 
lated to x(t) (i.e., random and uncorrelated), its contribu 
tion to the magnitude of Gzx will not have a constant 
phase from sample record to sample record as will that of 
x(t). If many sample records are averaged, the random 

6 
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phase of the contribution of n(t) will ultimately cause it 
to have a negligible contribution to the cross spectrum. 

How many independent samples of the cross spectrum 
it takes to achieve a result of a given accuracy cannot be 
determined without some further information beyond the 
cross spectrum itself. Also required is information about 
the relative contributions of the various signals to the 
measurement. This makes an important point: a simple 

cross spectrum measurement does not differentiate be 

tween causality and relationship. Without more informa 
tion than is contained in the simple cross spectrum it 
cannot be determined if a high value in a cross spectrum 
is due to a strong gain of the measured system at that 
frequency, or to a large input x(t), or to a strong contami 
nating signal n(t). In the time domain, the crosscorrela- 
tion function also suffers from this same inability to 
discriminate between causality and relationship in a 
measurement. 

Transfer Functions 
While the cross spectrum does not give a definite mea 

surement it leads to two measurements which not only 
separate relationship and causality but also give quanti 
tative results. The first of these functions measures the 
relationship between x(t) and z(t). It is a familiar func 
tion, the transfer function H(f) of the system (Fig. 3). 

The transfer function is the ratio of the output linear 
spectrum for zero noise to the input linear spectrum. 

H(f) = SJtt) 
(14) 

Multiplying the numerator and denominator of this ratio 
by Sx shows that the transfer function can also be ex 
pressed as the ratio of the cross spectrum to the input auto 
spectrum. 

H = 
SAJ Gyz 

Gzz 
(15) 

There are two important points with regard to transfer 
functions measured in this way. The first is that this tech 
nique measures phase as well as magnitude since the cross 
spectrum contains phase information. Second, this mea 
surement procedure is not limited to any particular input, 
such as sinusoids. In fact, the input signal may be random 
noise, or whatever signals are normally processed by the 
system being measured. For example, a telephone trans 
mission system might be tested while in use with the nor 
mal traffic providing the test signal. 

Coherence Funct ions 
The major error in transfer function measurements de 

velops when the output z(t) is not totally caused by the 
input x(t) but is contaminated by internal system noise 
n(t). Consider the input-output cross spectrum when 
there is uncorrelated noise with spectrum Sn added to the 
output. 

:z = (S, + SJSZ* = Gvz + Gnz (16) 

If the noise n(t) is truly uncorrelated with x(t), and if 
enough averages of G2X are taken,_the contribution of Gnx 
to Gzx will approach zero, and_GZI will approach Gyi. 
How rapidly the average of Gzx will approach Gyx de 
pends upon how much noise there is in the output spec 
trum, that is, to what degree z(t) is caused by x(t). 

To measure this coherence between x(t) and z(t) it is 
necessary to compute a new quantity, the coherence func 

tion, defined as1 

_  
ZZ Gz 

\ G j  

fzl: Gzz 
(17) 

The horizontal bars denote ensemble averages. 
After a number of records are averaged the numerator 

of the coherence function will reduce to Gyy Gxx. The de 
nominator of the coherence function will be the auto 
spectrum of the normal output plus the noise, times the 
input auto spectrum. The output-plus-noise auto spec 
trum is 

Gzz = (Su + Sn)(Su + Sn) = Gyy + Gvn + Gnu + Gnn. 

(18) 

After averaging, the cross terms in equation 1 8 disappear 
because they are uncorrelated with Sy, leaving 

Gnn (19) 

for the output auto spectrum. The coherence function 
then has an averaged value of 

G X I  G  y y  _  

( G y y  +  G n n ) G t z  G y  G n n  

Equation 20 shows that the coherence function y- has 
a value between 0 and 1, depending on the degree to 
which the output of the system is causally related to the 
input. This number not only defines the degree of causal 
ity, a useful quantity in itself, but it also defines the 
number of averages of the cross spectrum and input auto 
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spectrum that are required to define the transfer function 
to a given degree of accuracy. 

An Example  
Fig. 4 is an example of the separation of causality and 

relationship in a measurement. The system under test had 
a second-order highly damped transfer function. The in 
put signal was Gaussian noise band-limited to the Nyquist 
folding frequency (10 kHz in this case). 

y2 for this measurement was about 0.8 out to the point 
where the transmission attenuation was about 20 dB. Be 
yond this frequency the data had too small a value to 
compute y- with any accuracy and it fell off to zero. The 
midband value of 0.8 for y- indicates that there was un- 
correlated noise added to the system at some point other 
than the input. This could have been due either to real 
noise or to nonlinearities. 

The transfer function, on the other hand, is a smooth 
well-defined function whose 3 dB and 90Â° phase points 
are at the same frequency. This indicates a good measure 
ment of the relationship between input and output in 
spite of a fairly high uncorrelated noise environment. 

Fig. 5 points up even more clearly the difference be 
tween a simple cross spectrum measurement and a trans 
fer function measurement. Here the magnitude of the 
cross spectrum Gzx and the transfer function H are pic 
tured on the same dB scale. Twenty-five sample records 
were averaged to determine system response, using a 
white noise input. One standard deviation on the input 
spectrum for this measurement is 20%, and since the 
cross spectrum does not employ information about the 
input its statistical certainty is poor. However, calculating 
the transfer function using the input power spectrum 
measured simultaneously with the cross spectrum reduces 
the statistical variation and gives a result with a few 
tenths of a dB of variation rather than 3 or 4 dB. In spite 
of the fact that a flat noise source is used, measurement 
of the transfer characteristics using a cross relationship 
alone is both inefficient and inaccurate. 

Figs. 4 and 5 also illuminate a number of advantages 
of calculating the transfer function from the input spec 
trum and the cross spectrum. Clearly a good measure 
ment can be made in spite of system noise. Also a 
measurement can be made using realistic test signals such 
as band-limited random noise. The phase measurement 
is unaffected by harmonic distortion and can be accu 
rately made over wide dynamic ranges between input and 
output. The measurement can be made even more rapidly 
when there is no contaminating noise present. Thus, digi 
tal techniques of Fourier analysis offer powerful methods 

F ig .  4 .  T rans fe r  func t i on  o f  a  second-o rde r  h igh l y  damped  
s y s t e m  m e a s u r e d  b y  d i g i t a l  a n a l y z e r .  C o h e r e n c e  f u n c  
t i o n  y !  =  0 . 8  i n d i c a t e s  t h e  p r e s e n c e  o f  u n c o r r e l a t e d  
n o i s e  i n  t h e  s y s t e m  ( 1 . 0  w o u l d  i n d i c a t e  n o  n o i s e ) ,  b u t  
t r ans fe r  f unc t i on  i s  smoo th  and  we l l  de f i ned ,  i nd i ca t i ng  a  
good  measurement  in  sp i te  o f  the  no ise .  

F i g .  5 .  T r a n s f e r  f u n c t i o n  o f  s e c o n d - o r d e r  h i g h l y  d a m p e d  
s y s t e m  a n d  c r o s s  p o w e r  s p e c t r u m  o f  i n p u t  a n d  o u t p u t  
m e a s u r e d  b y  d i g i t a l  a n a l y z e r .  S p e c t r a  o f  t w e n t y - f i v e  
s a m p l e  r e c o r d s  w e r e  a v e r a g e d .  N o t  o n l y  d o  t h e  m a g n i  
t u d e s  o f  H _  a n d  G l ,  d i f f e r ,  b u t  a l s o  t h e  s t a t i s t i c a l  u n c e r  
t a i n t y  i n  G l ,  i s  m u c h  g r e a t e r .  T h i s  i s  b e c a u s e  t h e  c o m p u  
t a t i o n  f o r  H  t a k e s  i n t o  a c c o u n t  t h e  i n p u t  p o w e r  s p e c t r u m  
GÂ«,  whereas the computat ion for  G, ,  does not .  

for transfer-function determination that are unavailable 
with analog instruments. 

Correlat ion Functions 
So far I have described measurements that produce 

functions of frequency as their results. There are also 
functions of time which can be used in some of the same 
ways as spectra to clarify the nature of linear processes. 
These are correlation functions. The crosscorrelation 
function for two functions x(t) and y(t) is 

(21) :  j r j Ã §  X ( t ) y ( t  -  r ) d t .  
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The autocorrelation function Rxx is the same function 
with y(t) = x(t). Naturally, when implemented on a digi 
tal processor the integral is replaced by a sum. 

The computation proceeds as follows. First the average 
value of the sample-by-sample product of the two func 
tions is computed over some interval T. Then the func 
tions are displaced relative to each other and the process 
is repeated for the new value of the displacement r. This 
is repeated for all values of T and the results plotted as a 
function of T. 

The result of all this is a function Rvx which peaks 
when the functions y and x displaced by ^ match each 
other well. The best use of the crosscorrelation function 
is to determine the delay between y(t) and x(t). The auto 
correlation function, on the other hand, is used to deter 
mine periodicities in a single function, since it will peak 
every time the displacement is equal to the period. 

It is interesting to consider several alternatives to a 
direct calculation of correlation functions. First of all, it 
can be shown that the auto spectrum and the autocorre 
lation function are Fourier transforms of each other. The 
same holds true for crosscorrelation and cross spectrum.1 

GIX = F[RXZ] and Rxl = F-*[Gtx] (22) 
Gy t  =  F [Ry l \  and  Ryx  =  F^ [Gyz \  ( 23 )  

Thus it is possible to calculate a correlation function by 
transforming a waveform to find the appropriate spec 
trum, complex conjugate multiplying the spectrum by 
itself or another spectrum, and then taking the inverse 
transform. While this may appear to be the long way 
around, it actually requires fewer multiplications to find 
a correlation function than calculating the average dis 
placed products directly. Certain precautions must be 
observed because the discrete Fourier transform always 
assumes the sampled function is periodic with period T. 
However, it is possible to calculate an exact correlation 
function of Â±N/2 displacements (points) if 2N time 
points are available. 

The lower trace in Fig. 6 shows the results of a cross- 
correlation and impulse-response measurement on a 
damped second-order system with a white random noise 
input.2 The measurement is the average of 25 sample 
records, but it still shows considerable statistical varia 
tion. It is difficult to determine if the ripple in the wave 
form is due to external noise, normal statistical variation, 
or the characteristics of the system being measured. 

The upper waveform in Fig. 6 is the inverse Fourier 
transform of the transfer function computed from Gzx 
and Gxx. This result shows much less statistical variation 
and is a more efficient way to compute the system impulse 
response, although it still does not give information about 

F i g .  6 .  C r o s s c o r r e l a t i o n  b e t w e e n  w h i t e  n o i s e  i n p u t  a n d  
t h e  o u t p u t  o f  a  f o u r t h - o r d e r  l i n e a r  s y s t e m  h a s  t h e  s h a p e  
o f  the  sys tem impu lse  response .  Lower  t race  i s  the  c ross -  
c o r r e l a t i o n  f u n c t i o n  c o m p u t e d  d i r e c t l y .  U p p e r  t r a c e  w a s  
c o m p u t e d  b y  i n v e r s e  t r a n s f o r m i n g  t h e  s y s t e m  t r a n s f e r  
f u n c t i o n ,  w h i c h  w a s  c a l c u l a t e d  b y  d i v i d i n g  t h e  i n p u t - t o -  
o u t p u t  c r o s s  p o w e r  s p e c t r u m  b y  t h e  i n p u t  p o w e r  s p e c  
t r u m .  B o t h  t r a c e s  a r e  t h e  a v e r a g e  o f  2 5  m e a s u r e m e n t s .  
Upper  t race  i s  smoo the r  as  a  resu l t  o f  t ak ing  in to  accoun t  
t h e  a c t u a l  i n p u t  p o w e r  s p e c t r u m .  

the effect of uncorrelated noise. For this we still need the 
coherence function, m 
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A  C a l i b r a t e d  C o m p u t e r - B a s e d  
Fourier Analyzer 

T h i s  p e r  d i g i t a l  m e a s u r i n g  i n s t r u m e n t  p e r  
forms complex analytical operations on input signals or t ime ser 
ies. As a bonus, the user gets a general-purpose digital computer. 

By Agosten Z. Kiss 

ONE HEARTBEAT IN EVERY 3A SECOND â€” 80 heartbeats 
per minute: these are the time-domain and frequency- 
domain descriptions of the same phenomenon. Neither 
contains more information than the other but to different 
people or to the same people in different circumstances 
one description may have more meaning or clarity than 
the other. 

This duality between the time domain and the fre 
quency domain is the basis of many important theorems 
and useful methods in signal and time-series analysis. 
Autocorrelation and crosscor relation, power spectral den 
sity, cross power spectra, impulse response and transfer 
function, coherence, probability distribution and charac 
teristic functions, convolution and filtering â€” these are 
examples of such methods. Since the principal theoretical 
bridge between the time domain and the frequency do 
main is the Fourier transform theorem, the methods of 
signal analysis that are based on the time-frequency 
duality are often called Fourier analysis. 

Digital  Fourier Analysis 
Since 1965, the year of the Cooley-Tukey algorithm1, 

Fourier analysis has been done more and more by digital 
techniques. The Cooley-Tukey algorithm, also called the 
fast Fourier transform, reduces the lengthy and cumber 
some calculation of the Fourier coefficients by digital 
computer to a manageable, relatively rapid procedure. 
Computations that used to take hours can now be done 
in seconds. As a result, Fourier analysis is now becoming 
fashionable in many fields where it has not been used be 
fore because it took too long. 

A version of the Cooley-Tukey algorithm is imple 
mented in the new HP Model 5450A Fourier Analyzer, 
a calibrated, pushbutton-controlled instrument that can 

perform almost any Fourier-transform-based or related 
signal analysis (see Fig. 1). At the push of a button, the 
analyzer becomes a power spectrum analyzer, or a cor 
relator, or an averager, or a digital filter, or any of a 
number of other instruments. No knowledge o j computer 

programming is required to operate it. However, it can 
be converted into a general-purpose digital computer 
simply by moving a front-panel switch. 

Model 5450A Fourier Analyzer combines a small 
general-purpose computer and some peripheral hardware 
into a flexible, user-oriented general-purpose instrument. 
An HP 21 ISA or 21 16B computer with 8K memory is 
interfaced with a keyboard (Fig. 2), a dual-channel 
analog-to-digital converter (Fig. 3), a special display unit 
(Fig. 4), a teleprinter, and a punched-tape photoreader. 
An additional 8K memory can be installed to increase 
both the internal range and the number of peripherals. 
The analyzer has two basic modes of operation, i.e., as a 
Fourier analyzer or as a general-purpose computer. In 
the analyzer mode, it is either under keyboard control or 
under the remote control of another general-purpose 
computer. 

The basic operations the Model 5450A can perform 
in the analyzer mode can be categorized as: 

data input/output 
transform related operations 
arithmetic operations 
data manipulations 
writing and editing of analysis routines. 

Specific mathematical functions under keyboard control 
are: 
â€¢ forward and inverse Fourier transform 
â€¢ power spectrum 
â€¢ cross power spectrum 
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â€¢ auto and crosscorrelation 
â€¢ convolution 
â€¢ histogram 
â€¢ Hanning and other weighting functions 
â€¢ real and complex multiplication and standard arith 

metic operations 
â€¢ integration and differentiation 
â€¢ ensemble averaging 
These can be executed separately or combined into com 
plex routines. 

F i g .  1 .  M o d e l  5 4 5 0  A  F o u r i e r  A n a l y z e r  i s  a  f l e x i b l e ,  p u s h  
b u t t o n - c o n t r o l l e d ,  m o d u l a r ,  d i g i t a l  i n s t r u m e n t ,  u s e f u l  f o r  
a n a l y z i n g  w a v e f o r m s  a n d  t i m e  s e r i e s  i n  a  w i d e  v a r i e t y  
o f  s y s t e m s  a n d  p r o c e s s e s .  I t  u s e s  a  s t a n d a r d  H P  c o m  
p u t e r  f o r  m e m o r y  a n d  c o m p u t a t i o n ,  b u t  r e q u i r e s  n o  
k n o w l e d g e  o f  c o m p u t e r  p r o g r a m m i n g .  W h e n  i t  i s n ' t  d o i n g  
F o u r i e r  a n a l y s i s ,  t h e  c o m p u t e r  c a n  b e  u s e d  s e p a r a t e l y .  

F i g .  2 .  A l l  F o u r i e r  a n a l y z e r  o p e r a t i o n s  a r e  k e y b o a r d  c o n  
t r o l l e d .  T h e  p r i n c i p a l  o p e r a t i o n s  â € ”  F o u r i e r  t r a n s f o r m s ,  
c o n v o l u t i o n ,  c o r r e l a t i o n ,  c o m p l e x  m u l t i p l i c a t i o n ,  c o o r d i  
n a t e  t r a n s f o r m a t i o n s ,  a n d  s o  o n  â € ”  c a n  b e  c a l l e d  f o r  b y  
s i n g l e  k e y s t r o k e s ,  o r  s t r u n g  t o g e t h e r  u s i n g  t h e  p r o g r a m  
m i n g  a n d  e d i t i n g  f e a t u r e s  t o  f o r m  r o u t i n e s  t o  b e  r u n  
a u t o m a t i c a l l y  l a t e r  o n .  T y p i c a l  r o u t i n e s  c a n  c h a n g e  t h e  
a n a l y z e r  i n t o  a  s p e c t r u m  a n a l y z e r ,  a  c o r r e l a t o r ,  a n  a v e r  
a g e r ,  a n d  m a n y  o t h e r  i n s t r u m e n t s .  

Data  Input /Output  
There are 3 K words available for data storage (8K 

words in the 16K version of the analyzer). This storage 
space can be filled up with data records; the shortest rec 
ord is 64 words long and the longest is 1024 words long 
(4096 in the 16K version). Record lengths are push 
button selectable in powers of two between these limits. 
The number of records which can be stored is the size of 
the data storage divided by the record length. Conse 
quently, the 8K version can store 3 records of 1024 points 
each, or 6 records of 512 points each, and so on up to 
48 records of 64 points each. These records are ad 
dressable as data block 0, 1, 2, ... in every keyboard 
command. 

Data Input 
Analog data records can be read in via the analog-to- 

digital converter, which has two input channels with sep 
arate input attenuators. It can be switched to single- 
channel mode when only channel A is operational, or to 
dual-channel mode when channels A and B are both op 
erational. Channels A and B are sampled simultaneously, 
then sequentially converted into digital values â€” channel 
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5 4 6 5 A  A N A L O G  T O  D I G I T A L  C O N V E R T E R  

S A M P L E  C O N T R O L  
S A M P L E  M O D E  M U L T I P L I E R  

MAX FREQ 
M A X  F R E Q  T I M E  

a  T I M E  T O T A L  T I M E  

o 
D I S P L A Y  A  A  

I N P U T  A  ^ O U A L  '  

A  O V E R L O A D  V O L T A G E  B  

T R I G G E R I N G  
â€¢ 

T R I G G E R  S O U R C E  
I N T E R N A L  < A )  

F R E E  ^    L I N E  
RUN Ã­ 

. , 0  | _ M . |  

I  E Â » T  ^  

1    A C -  

T R I G G E R  
S L O P E  L E V E L  

F i g .  3 .  A n a l o g - t o - d i g i t a l  c o n v e r t e r  i s  t h e  p r i n c i p a l  i n p u t  
dev i ce  f o r  ana log  s i gna l s .  I t  can  be  ope ra ted  as  a  s i ng le -  
c h a n n e l  u n i t  o r  a  d u a l - c h a n n e l  u n i t .  T h e  m a x i m u m  
samp le  ra te  f o r  s i ng le -channe l  ope ra t i on  i s  20 / i s  pe r  da ta  
p o i n t ;  t h e  m i n i m u m  r a t e  i s  o n e  s a m p l e  i n  e v e r y  f i v e  s e c  
o n d s .  D a t a  c a n  a l s o  b e  r e a d  i n t o  t h e  a n a l y z e r  v i a  p e  
r iphera l  dev ices ,  such  as  a  tape  reader  o r  a  te lepr in te r .  

A first â€” and stored in separate data blocks. The sample 
rate can be varied from 20 /Â¿s per data point (50 ^s for 
dual-channel input) down to one sample in every five 
seconds. 

There are some obvious but important relations be 
tween sampling time At, record length T, number of 
samples in a record (or data block size) N, frequency 
resolution Af and upper frequency limit fmai: 

j max â€” 

A /  =  

2Af 

(1) 

(2) 

(3) 

Equation 1 says simply that a data record of length T 
seconds has been sampled N times with At seconds be 
tween samples. 

Equation 2 is sometimes called the Shannon or Nyquist 
criterion of sampling, which states that to avoid loss of 
information, the highest frequency in a signal must be 
sampled at least twice per cycle. 

Equation 3 really says that better frequency resolu 
tion requires a longer record. The analog equivalent of 
this statement is the observation that narrower-band fil 
ters take a longer time to reach steady state conditions. 

A-D Converter  
The analog-to-digital converter is a 10-bit ramp-type 

device with a 100 MHz clock. Because of its high differ 
ential linearity (3% as opposed to 25-50% for a typical 
successive-approximation-type A-D converter), the 60 dB 
dynamic range of the 1 0-bit converter will be appreciably 
improved, in some cases to as much as 90 dB, when any 

Fig.  4 .  Bu i l t - in  d isp lay un i t  is  the 
p r i n c i p a l  a n a l y z e r  o u t p u t  d e  
v i c e  w h e n  t h e  r e c i p i e n t  o l  t h e  
d a t a  i s  h u m a n .  T h e  d i g i t a l  d i s  
p l a y  a n d  a n n u n c i a t i o n  i n d i c a t e  
the  ve r t i ca l  sca le  fac to r  and  the  
t y p e  o f  d i s p l a y .  D a t a  i n  t h e  a n a  
l y z e r  a r e  a l w a y s  a b s o l u t e l y  
c a l i b r a t e d .  
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averaging is done. The Fourier transform is a weighted 
average, of course. We have consistently observed dy 
namic ranges of 80 dB or more in computed transforms. 
How differential linearity and averaging affect dynamic 
range is quite a complex subject, and we hope to publish 
a paper on it soon. 

Once the keyboard command is given for analog input, 
the actual record will be started by an internal or external 
sync signal with positive or negative slope, as selected by 
the user. After the last sample of the record has been 
stored, the analyzer calibrates the data, taking the input- 
attenuator setting into account, and establishes a scale 
factor for the record, which will follow it through all 
calculations. This absolutely calibrated input/output is 
one of the most important basic features of the analyzer. 

Data can also be introduced into the analyzer through 
the numeric keys of the keyboard, through the teletype, 
through the photoreader (if they are on a punched paper 
tape), through the double binary I/O channels from an 
other computer, and from digital magnetic tape (16K 
version only). The common feature of all the data input 
modes is that they can be initiated by keyboard control 
and that they establish calibrated data records in the 
analyzer. 

Data Output  
The most often used data output device is the display 

unit. Any stored data record can be displayed on the 
CRT by keyboard command. Also, when the analyzer is 
idle, it automatically reverts to a display mode, generally 
displaying the data record which was the subject of some 
I/O or analytical operation just before the idle period. 

The display unit has many convenient features. It can 
display a time record or a frequency spectrum. When a 
spectrum is being displayed, its real part or imaginary 
part â€” or its amplitude or phase â€” can be displayed as 
a function of frequency, or the imaginary part can be 
displayed as function of the real part (Nyquist plot). Fig. 
5 illustrates the possibilities. In every mode of data dis 
play, the calibration factor is also displayed as a power 
of 10, facilitating the readout of absolute values. Besides 
showing calibration, display lights also show whether the 
record displayed is in the time or frequency domain, 
whether the amplitudes are linear or logarithmic, and 
whether they are calculated in rectangular (real and imag 
inary) or polar (amplitude and phase) coordinates. 

Other features of the display unit are: digital up or 
down scaling in ten steps, linear or logarithmic horizontal 
scale, markers on every 8 or 32 points, point display, 
continuous curve display or bars drawn from display 

points to the zero level horizontal axis. It also has a cali 
bration mode, and a plotter mode in which it can drive 
an X-Y recorder to plot exactly what is being displayed 
on the CRT. 

Data records can also be printed out on the teletype, 
punched out on paper tape either on the punch unit of 
the teletype or on an optional fast punch, transferred on 
the double binary I/O channels to another computer, 
plotted on a digital plotter, or stored on digital magnetic 
tape (the last two features on the 16K version only). 
Common features of all data output modes are that they 
can be initiated by keyboard command and that the data 
are always calibrated. 

A final remark about the calibrated input-output fea 
ture. The analyzer, being a binary device, carries the 
calibration in radix two. In every output operation where 
the recipient is non-human (binary I/O, paper tape, digi 
tal magnetic tape), the calibration remains in radix two 
to retain maximum accuracy. However, in every human- 
related output operation (display, data printout, plotting) 
the calibration is changed to radix 10 for maximum user 
convenience. 

Transform-Related Operat ions 

The most important transform-related operations are, 
of course, the forward and inverse Fourier transforms. 
The definitions of these operations are: 

and 

â€¢â€¢ â€¢ 
.  27T 

(4)  

(5) 

where N is the number of samples (points) in the time 
record x(t) or frequency record Sj(f). 

Although the time function x(t) is always real, the 
spectrum, S5(f), is generally complex. In a complex spec 
trum, every spectral value (except dc) has to be described 
by two quantities, either amplitude and phase, or real 
(cosine or in-phase) and imaginary (sine or quadrature) 
components. The former is the polar-coordinate repre 
sentation and the latter is the rectangular-coordinate rep 
resentation. In the analyzer, all calculations are carried 
out in rectangular coordinates, but the results can be con 
verted into polar coordinates by keyboard command. 

Since the Fourier transform does not create new infor 
mation, the Fourier spectrum of a time record with N 
independent data points will also contain exactly N inde- 
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M O D E L  5 4 5 0 A  F O U R I E R  A N A L Y Z E R  
D I S P L A Y S  T H E  F O U R I E R  T R A N S F O R M  

O F  A  P U L S E  

In Rectangular Coordinates 

f f j  f requency 

In Polar Coordinates 

raj f requency 

Nyqu is t  P lo t  Bode  P lo t  

real part 

S e m i l o g  P l o t  I n p u t  T i m e  W a v e f o r m  

( S )  f requency 

Fig .  changes to  ana lyzer  has  a  d isp lay  mode to  su i t  every  need,  and i t  changes i rom one to  
a n o t h e r  o n  t h e  t o u c h  o f  a  b u t t o n  o r  t h e  f l i c k  o f  a  s w i t c h .  I n  e v e r y  c a s e  t h e  r e a d o u t s  o n  
t h e  d i s p l a y  u n i t  a n d  t h e  A - D  c o n v e r t e r  i n d i c a t e  s c a l e  f a c t o r s  a n d  t y p e  o f  d i s p l a y .  

pendent data points. But since every frequency point has 
to be described by two independent data values â€” except 
dc, which has no phase, and the highest frequency, which 
by definition has zero phase â€” the Fourier spectrum of 
a time record with N points will contain N/2 frequency- 
value pairs (for counting purposes dc and the highest fre 

quency are counted as one frequency-value pair). 
Equation 4 actually defines a spectrum for negative as 

well as positive frequencies. However, the analyzer is 
restricted to the analysis of physically realizable, and 
therefore real, time functions only. The spectra of real 
time functions are Hermitian (i.e., even real part and odd 
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A Fourier Analyzer Makes Fundamental Measurements 
T h e  m e a s u r e m e n t s  a  F o u r i e r  a n a l y z e r  m a k e s  a r e  u s e f u l  
t o  b e h a v i o r a l  s c i e n t i s t s ,  p s y c h o p h y s i c i s t s ,  b i o m e d i c a l  
r e s e a r c h e r s ,  p r o c e s s  c o n t r o l  s y s t e m  d e s i g n e r s ,  a n a l y t i c a l  
c h e m i s t s ,  a n d  o c e a n o g r a p h e r s ,  a n d  t o  p e o p l e  w o r k i n g  i n  
v i b ra t i on  ana l ys i s ,  s t r uc tu ra l  mechan i cs ,  acous t i cs ,  geophys  
i c s ,  con t r o l  s ys tem des ign  and  ana l ys i s ,  componen t  t es t i ng ,  
s y s t e m  i d e n t i f i c a t i o n ,  s o n a r ,  a n d  m a n y  o t h e r  f i e l d s .  T h e  
r e a s o n  a  F o u r i e r  a n a l y z e r  i s  s o  w i d e l y  u s e f u l  i s  t h a t ,  l i k e  
a  v o l t m e t e r ,  i t  m a k e s  f u n d a m e n t a l  m e a s u r e m e n t s .  F o r  t h e  
same  reason ,  no  f i n i t e  l i s t  o f  app l i ca t i ons  can  convey  a  t r ue  
p i c t u r e  o f  i t s  c a p a b i l i t i e s .  H e r e  a r e  j u s t  a  f e w  e x a m p l e s  o f  
app l i ca t ions .  
A n a l y t i c a l  c h e m i s t s  c a n  u s e  i t  t o  m e a s u r e  n u c l e a r  m a g n e t i c  
r e s o n a n c e  ( N M R )  s p e c t r a ,  a n d  a s  a n  a v e r a g e r  t o  i m p r o v e  
t h e  s e n s i t i v i t y  o f  t h e i r  s p e c t r u m  m e a s u r e m e n t s .  
S t r u c t u r a l  d e s i g n e r s ,  e . g .  o f  a i r f r a m e s ,  c a n  u s e  i t  t o  d e t e r  
m i n e  t h e  t r a n s f e r  f u n c t i o n  a n d  v i b r a t i o n  m o d e s  o f  a  s t r u c  
t u r e ,  t h e  s p e c t r a  o f  v i b r a t i o n s  i n d u c e d  a t  v a r i o u s  p o i n t s  b y  
v a r i o u s  i n p u t s ,  a n d  t h e  d e g r e e  o f  c o h e r e n c e  b e t w e e n  v i b r a  
t i ons  a t  d i f f e ren t  po in ts .  
B e h a v i o r a l  s c i e n t i s t s  c a n  u s e  i t  t o  d e t e r m i n e  t h e  t r a n s f e r  
f u n c t i o n  o f  a  d r i v e r ,  a n d  t h e  d e g r e e  o f  c o h e r e n c e  b e t w e e n  
h i s  r esponses  and  va r i ous  i npu t  s t imu l i .  
B ra in  resea rche rs  can  use  i t  t o  measu re  the  spec t ra  o f  b ra in  

w a v e s ,  a n d  t h e  d e g r e e  o f  c o h e r e n c e  b e t w e e n  w a v e s  a t  d i f  
f e r e n t  p o i n t s  i n  t h e  b r a i n .  
Des igne rs  o f  p rocess  con t ro l  sys tems  and  o the r  sys tems  â€ ”  
power  p l an t s ,  se r vomechan i sms ,  e t c .  â€ ”  can  use  i t  t o  de te r  
m i n e  t r a n s f e r  f u n c t i o n s ,  i m p u l s e  r e s p o n s e s ,  c o h e r e n c e  
b e t w e e n  s i g n a l s ,  p o w e r  s p e c t r a ,  a n d  c r o s s  p o w e r  s p e c t r a .  
I n  a p p l i c a t i o n  a f t e r  a p p l i c a t i o n ,  t h e  m e a s u r e m e n t s  a r e  t h e  
s a m e  â € ”  t r a n s f e r  f u n c t i o n ,  c o h e r e n c e  f u n c t i o n ,  p o w e r  s p e c  
t r u m ,  c r o s s  p o w e r  s p e c t r u m ,  a n d  c o m b i n a t i o n s  o f  t h e s e  
f u n d a m e n t a l  m e a s u r e m e n t s .  E n d  u s e s  o f  t h e  d a t a  d i f f e r ,  o f  
c o u r s e .  T o  t h e  d e s i g n e r  o f  a  s t r u c t u r e  o r  a  c o n t r o l  s y s t e m ,  
i t ' s  a c c u r a t e  i n f o r m a t i o n  t h a t  h e  c o u l d n ' t  h a v e  o b t a i n e d  
w i t h o u t  t h e  a n a l y z e r ,  a n d  h e  u s e s  i t  t o  o p t i m i z e  h i s  d e s i g n ,  
a v o i d  o v e r d e s i g n ,  a n d  o p t i m i z e  p e r f o r m a n c e  a d j u s t m e n t s .  
T h e  p h y s i c i a n  a n a l y z i n g  a n  e l e c t r o m y o g r a m  ( E M G )  i s  l o o k  
i n g  f o r  e v i d e n c e  o f  m u s c l e  d i s e a s e .  W h a t  t h e s e  a n d  o t h e r  
u s e r s  a n d  p o t e n t i a l  u s e r s  o f  F o u r i e r  a n a l y z e r s  h a v e  i n  c o m  
m o n  i s  t h a t  t h e y  a r e  w o r k i n g  w i t h  t i m e  s e r i e s  â € ”  v o l t a g e s ,  
v i b r a t i o n s ,  s o u n d  w a v e f o r m s ,  o r  p e r h a p s  j u s t  a  s e r i e s  o f  
d a t a  p o i n t s  o b t a i n e d  a t  r e g u l a r  i n t e r v a l s  a n d  p u n c h e d  o n  
p a p e r  t a p e .  O n  s u c h  i n p u t s  t h e  F o u r i e r  a n a l y z e r  m a k e s  
m e a s u r e m e n t s  a n d  c o m p u t e s  f u n c t i o n s  t h a t  w o u l d  b e  d i f f i  
c u l t  t o  d o  b y  a n y  o t h e r  m e a n s .  I t  d o e s  t h e s e  t h i n g s  w i t h  t h e  
c o n v e n i e n c e  o f  k e y b o a r d  c o n t r o l ,  r a p i d l y ,  a n d  w i t h  g r e a t  
f lex ib i l i t y .  

imaginary part), so the negative-frequency parts of the 
spectra of real time functions contain no additional in 
formation. Partly to increase the effective transform speed 
of the analyzer and partly to avoid the confusion that the 
mentioning of the existence of negative frequencies gen 
erally creates, we used a version of the fast Fourier al 
gorithm that applies only to time signals that are real. 

Like other versions of the fast Fourier algorithm, ours 
is an 'in-place' algorithm. Intermediate and final results 
of computations are stored in the same data block as the 
original data. 

Correlat ion and Convolution 
Auto and crosscorrelation are well known and widely 

used methods in signal analysis. They are used to improve 
signal-to-noise ratio, to find hidden periodicities, and so 
on. Convolution, on the other hand, is in most cases a 
mean trick nature plays on us. When we use any measur 
ing equipment to measure an event, the result is never 
the phenomenon we want to observe but its convolution 
with the impulse response of the equipment used. Some 
times, however, even convolution can be useful. For 
example, smoothing a record by taking a K-point running 
average can be performed in the analyzer by convolving 
the record in question with another record containing K 
unit impulses. 

Correlation and convolution are generally defined on 
the time domain, although they do depend on the fre 
quency content of the functions in question. Since both 
correlation and convolution involve an enormous num 
ber of multiplications and additions â€” N- of them to 
be exact â€” to perform either of them within a reasonable 
time requires special hardware. But according to the con 
volution theorem, convolution (correlation) in one do 
main is multiplication (conjugate complex multiplication) 
in the other domain. Therefore convolution (correlation) 
can be reduced to two Fourier transforms and one point- 
by-point multiplication (conjugate complex multiplica 
tion) of the two records involved. If x(t) and y(t) are two 
time functions and their respective spectra are Sx(f) and 
Sy(f), the analyzer performs the following calculations: 
for crosscorrelation, 

x(t)*y(t) = 

and for convolution, 

x(t)*y(t) = f 

S,*(f)] 

â€¢ Su(f)] 

(6) 

(7)  

Here the superscript * stands for complex conjugate, the 
* between two time functions for convolution, the * for 
crosscorrelation, and F"1 for inverse Fourier transform. 
These operations can be performed step by step on the 
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analyzer, but for convenience the keyboard has a corre 
lation key and a convolution key. 

Manning 
Physically realizable devices can act only on signals 

which are limited in duration and in bandwidth. If infi 
nitely long signals or signals with infinite bandwidth are 
passed through any physical device, they will be time and 
frequency-band limited by the device itself. 

The simplest kind of time-limiting is the application of 
a square time window. If we have a function x(t) and we 
take a T-second long record of it, say from t = 0 to 
t = T, then we have really multiplied x(t) by a square 
pulse T seconds long with unity amplitude (see Fig. 6). 

What happens to the spectrum of this function? The 
convolution theorem says that multiplication in one do 
main is convolution in the other domain. Since we multi 
plied x(t) by the window function H (t/T), the spectrum 
of the time-limited function x(t) â€¢ fl (t/T) will be the con 

volution of the spectrum of the original function and the 
spectrum of the time window. Let us say that the spec 
trum of x(t) is Sx(f). The spectrum of |~1 (t/T) is (Fig. 7) 

sinirTf 

proach zero at the two ends of the record. Its effect on 
the spectrum is that the main lobe of each line is widened 
by an additional 1/T, but the sidelobes decay by an 
additional 12 dB per octave. 

sincTi-Tf = -, and the spectrum of x(t) â€¢ |~~| (t/T) 

is Sx(f)*sinc7rTf. The maximum value of the sine func 
tion is unity at f = 0, it has zero crossings at f = 1 /T, 
2/T, . . . , and the amplitude of the sidelobes decreases 
at 6 dB per octave. If Sx(f) has spectral lines exactly at 
f = 0, 1/T, 2/T, . . . , that is, if x(t) was periodic in the 
time window (~~| (t/T), then convolving Sx(f) with sincirTf 
will simply result in Sx(f). But if x(t) was not periodic in 
the time window, then the spectral lines of Sx(f) and the 
zero crossings of the window spectrum will not coincide 
and the convolution process will smear each spectral line 
of Sx(f) all over the spectrum. Even if Sx(f) contains one 
spectral line only, the result will be a series of spectral 
lines spaced 1 /T apart and having an amplitude decay of 
6 dB per octave. This phenomenon is often referred to 
as the leakage effect. 

Leakage can be avoided only by making sure that the 
function x(t) is periodic in the time window. Obviously, 
this condition can seldom be met. Therefore, in order 
to reduce the effect of leakage, different window shap 
ing ideas have been proposed. The idea of the window 
shaping is to make x(t) somehow 'quasi-periodic' in the 
time window with the least possible loss of information. 
Among these window-shaping methods the Harming win 

dow has proved most popular. It is a -r- Ã­ 1 Â±cos -^- j 

window, where both the window and its derivative ap 

F i g .  6 .  W h e n  a  T - s e c o n d  r e c o r d  i s  t a k e n  o f  a n  a n a l o g  
i n p u t ,  t h e  e f f e c t  i s  t o  m u l t i p l y  t h e  i n p u t  b y  a  s q u a r e  w i n  
d o w  f u n c t i o n .  I t  t h e  i n p u t  i s n ' t  p e r i o d i c  w i t h  p e r i o d  T ,  
t h e  s p e c t r a l  l i n e s  o f  t h e  i n p u t  w i l l  n o t  b e  l i n e s  b u t  w i l l  
h a v e  t h e  s i n  x / x  s h a p e  s h o w n  i n  F i g .  7 .  T o  r e d u c e  t h i s  
e f f e c t ,  M o d e l  5 4 5 0 A  F o u r i e r  A n a l y z e r  h a s  b u i l t - i n  M a n  
n i n g  w i n d o w - s h a p i n g  f u n c t i o n s .  

Two other window-shaping methods are the Cheby- 
shev window and the Parzen window. The Chebyshev 
window achieves a faster sidelobe decay than the Man 
ning window but is much more cumbersome to imple 
ment. The triangular Parzen window is fairly easy to 
implement but not as effective as the Hanning window. 

In Model 5450A two different Hanning windows can 
be applied by pushbutton command. The interval-cen 
tered Hanning window, HI, is used to reduce leakage as 
described above. The origin-centered Hanning window, 
HO, can be used to form a 3-point running average of 
records with J/4 , l/2, IA weighting. 

Integration and Differentiat ion 
There is a keyboard command to integrate any data 

record between any two chosen data points or to differ 
entiate any chosen data record. The defining equations 
for integral and differential are: 

(8)  

(9) 

By definition, D0_i = 0. 
The integral routine is especially useful for calculating 

integral power spectra, cumulative probability distribu- 
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, ,  o  s i n  - T i  0 . 8  s i n e  - T f  =  

F ig .  7 .  Spec t ra l  l i nes  o f  a  samp led  f unc t i on  w i l l  have  t h i s  
s i n  x / x  s h a p e  i f  t h e  f u n c t i o n  i s n ' t  p e r i o d i c  i n  t h e  r e c o r d  
l e n g t h  T .  M a n n i n g  w e i g h t i n g  d o u b l e s  t h e  w i d t h  o f  t h e  
m a i n  p e a k ,  b u t  c a u s e s  l a t e r  p e a k s  t o  f a / I  o f f  a t  1 8 d B  
per  oc tave  ins tead  o f  6dB per  oc tave .  

tion functions or third-octave, half-octave, or full-octave 
filters. The differential routine can be used to calculate 
higher moments of probability density functions by dif 
ferentiating their Fourier transforms (i.e. their character 
istic functions). 

Arithmetic Operat ions 
There are keyboard commands for the addition, sub 

traction, multiplication, and division of data records. 
These operations are performed on a point by point basis. 
Addition is especially useful for ensemble averaging of 
data records either in the time domain or in the frequency 
domain, thereby improving the statistics of the measure 
ment. There are separate commands for complex multi 
plication and conjugate complex multiplication of two 
selected data records. Both multiplications result in real 
multiplication if the records are in the time domain. 

The division of a data record by another selected data 
record is performed as real or complex division in the 
time or frequency domain, respectively. In addition to 
these data block operations, any selected data block can 
be multiplied or divided by any positive or negative con 
stant whose magnitude is less than 32767. 

Data Manipulat ions 
Since there can always be more than one data record 

stored in the analyzer, 'Store! 'Load' and Interchange' 
keyboard commands were established to effect data trans 
fers among them. 

As I have mentioned, all transform-related and arith 
metic operations are performed in rectangular coordi 
nates. However, spectral results are often desired in polar 
coordinates (amplitude and phase). There are keyboard 
commands to change the coordinate system of any chosen 
data record from rectangular to polar or from polar to 

P R O G R A M M I N G  T H E  F O U R I E R  A N A L Y Z E R  
A Power Spectrum Averaging Program 

M e a n i n g  

Ident i f ies start ing point of sequence. 

Take in sample of  analog data.  

T a k e  F o u  ~ .  o f  s a m p l e .  

Complex conjugate mult ip ly Four ier  t ransform, y ie ld ing 
power spectrum. 

power spectrum to sum of previous power spectra. 

re new power spectrum sum. 

Repeat above process (from the label point)  the number of 
t imes desired. 

Div ide f inal  power spectrum sum by number of  spectra 
taken, yielding average. 

End of sequence. 

F i g .  8 .  A n  o f t e n - u s e d  r o u t i n e  i s  t h e  p o w e r  s p e c t r u m  a v e r  
a g i n g  p r o g r a m .  A f t e r  t h e  s t e p s  a r e  e n t e r e d  i n t o  t h e  
a n a l y z e r ' s  m e m o r y ,  t h e  p r o g r a m  c a n  b e  l i s t e d  o n  t h e  
t e l e p r i n t e r .  E r r o r s  c a n  b e  c o r r e c t e d  b y  a d d i n g ,  d e l e t i n g ,  
o r  m o d i f y i n g  s t e p s .  A n o t h e r  k e y s t r o k e  m a k e s  t h e  p r o  
g r a m  e x e c u t e .  M o d e l  5 4 5 0 A  w i l l  c o m p u t e  o n e  1 0 2 4 - p o i n t  
s p e c t r a l  e s t i m a t e  ( t h e  t h r e e  s t e p s  m a r k e d * )  i n  2 . 4  s e c  
onds  o r  l ess .  

rectangular. Further keyboard commands can change 
linear amplitudes to logarithmic or logarithmic ampli 
tudes to linear. The execution of these commands ('Rec 
tangular; 'Polar; 'Logarithmic Amplitude; 'Exponential 
Amplitude') are based on a power-series technique in 
which the coefficients are calculated by Chebyshev ex 
pansion of the function desired. 

Writ ing and Edit ing Routines 
The power of Model 5450A Fourier Analyzer is not 

only in the easy access it offers to the most important 
basic signal analytical operations, but also, and perhaps 
even more so, in its capability of building automatic rou 
tines using these operations. Programming the analyzer 
to carry out a sequence of computations actually trans 
forms it into a different measuring instrument â€” a spec 
trum analyzer, for example, or a signal averager, or a 
correlator. 

Keyboard commands can be assembled into routines 
up to 100 steps long (200 steps in the 16K version). The 
routines can incorporate labels, jump instructions, sub 
routines, and loops, thereby providing an extremely flex 
ible and easily learned high-level instruction set for 
almost any type of signal analysis. The assembled rou- 
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tines reside in the analyzer. They can be listed on the 
teletype, punched out on paper tape, re-edited using 'De 
lete; 'Replace^ and 'Insert' edit commands, and can be 
run under keyboard control. 

Here are some of the most often used routines. 
Power Spectral Analysis. Ensemble averaging to improve 
the signal-to-noise ratios of power spectral estimates can 
be simply performed by: 
1 . reading in a time record 
2. taking its Fourier transform 
3. conjugate complex multiplying the spectrum by itself, 

thereby creating a power spectral estimate 
4. summing the power spectral estimate into a second 

record 
5. repeating operations 1-4 any desired number of times 
6. after summing a given number of power spectral esti 

mates, dividing the result by the number of estimates. 
Fig. 8 illustrates the program, which computes 

H(f) (12) 

GXI(f) = SJf) - S.*(f) (10) 

Cross Power Spectra. The cross power spectrum con 
tains the frequencies common to the individual spectra of 
two signals. It is the Fourier-transform of the crosscor- 
relation function. To create the ensemble average of cross 
power spectral estimates, one can follow the instructions 
for power spectral averaging, except in step 1 take two 
simultaneous records, and in step 3 conjugate complex 
multiply one spectrum by the other. The function com 
puted is 

GZ!,(f) = Sr(f) (11) 

In Equations 1 0 and 1 1 Gxx(f) stands for power spectrum, 
Gsy(f) for cross power spectrum, Sx(f) and Sy(f) are the 
Fourier spectra of functions x(t) and y(t) respectively, 
the superscript * stands for complex conjugate, and the 
upper bar for ensemble averaging. 

Digital Filtering. Let us consider a filter as a black box 
with one input and one output: 

The black box can be characterized by its impulse re 
sponse, h(t) or its transfer function, H(f). They are Fourier- 
transform pairs. The input function is x(t), and the output 
is y(t). Sx(f) and Sv(f) are their respective Fourier spectra. 

The filter equation simply states that the output spec 
trum is the product of the input spectrum and the trans 
fer function of the filter: 

Filtering can be easily performed in the Model 5450A by 
storing the filter transfer function in one of the data rec 
ords and block-multiplying the spectrum of the input 
signal by it. Taking the inverse transform of the product 
results in the output function, y(t). 

Inverse Filtering or Deconvolution. Equation 12 can be 
rewritten in the time domain using the convolution the 
orem (multiplication in one domain equals convolution 
in the other domain): 

y(t) = x(t) h(t) (13) 

that is, the output of the black box is the convolution of 
its impulse response and the input function. Now if this 
black box happens to be some measuring equipment, it 
is x(t) that we are interested in, not y(t). The inverse op 
eration of convolution is pretty difficult to produce, but 
Equation 1 2 can be rewritten as: 

ML (14) 

Since Sy(f) and H(f) are known, the division can be per 
formed point by point. Taking the inverse Fourier trans 
form of the quotient results in x(t). 

Transfer Function and Coherence. A method based on 
Equation 12 can be worked out to measure the transfer 
functions of unknown black boxes and to find causal re 
lationships between inputs and outputs. This extremely 
important and interesting subject is discussed by Peter 
Roth elsewhere in this issue. 

Measurement of Statistical Behavior. Random data can 
be characterized by their statistics: probability density 
functions, distribution functions, and the moments of the 
probability distribution. The analyzer can collect ampli 
tude histograms or, with an optional input box, time- 
interval histograms. The histograms are really frequency 
curves; the independent variable is amplitude or (time 
interval) and the dependent variable is the frequency of 
occurrence. Histograms can be easily normalized to give 
probability density functions and integrated to calculate 
distribution functions. 

The Fourier transforms of distributions are called char 
acteristic functions; they are used mainly in theoretical 
work in statistics. The differentials of the characteristic 
functions can be used to calculate the moments and cen 
tral moments of the distributions.3 
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Possibil i t ies Unlimited 
The analytical operations available in Model 5450A 

Fourier Analyzer can be combined in many, many ways, 
and only the best known were mentioned here. But the 
analyzer will cater to the most esoteric tastes, including, 
for example, cepstrum, saphe cracking, and littering.* 
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Ago  s tud ied  e lec t r i ca l  eng inee r ing  a t  t he  Po ly techn ica l  
Un ive rs i t y  o f  Budapes t ,  and  phys ics  and  math  a t  
the  Un ive rs i t y  o f  Sc iences  in  Budapes t .  He  has  a lso  done  
pos tg radua te  work  a t  the  Un ive rs i t y  o f  P i t t sbu rgh .  He  
ho lds  severa l  B r i t i sh  and  U .S .  pa ten ts  re la ted  to  con t ro l  
c i r cu i t s .  For  re laxa t ion ,  Ago  chooses  the  ou t -o f -doors .  
Sk i ing  and sa i l ing  a re  h is  favor i te  le isure- t ime ac t i v i t ies .  
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