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Correlation, Signal Averaging,
and Probability Analysis

Correlation is a measure of the similarity between two waveforms. It is useful in nearly
every kind of research and engineering— electrical, mechanical, acoustical,
medical, nuclear, and others. Two other statistical methods of waveform analysis
—signal averaging and probability analysis — are also widely useful.

By Richard L. Rex and Gordon T. Roberts

SOME THINGS, LIKE TWO PEAS IN A POD, ARE SIMILAR;
others, like chalk and cheese, are not. Throughout sci-
ence, however, we find instances where the situation is
not as clear as this, and where it is desirable to establish
a measure of the similarity between two quantities. Cor-
relation is such a measure.

As it applies to waveforms, correlation is a method of
time-domain analysis that is particularly useful for de-
tecting periodic signals buried in noise, for establishing
coherence between random signals, and for establishing
the sources of signals and their transmission times. Its
applications range from engineering to radar and radio
astronomy to medical, nuclear, and acoustical research,
and include such practical things as detecting leaks in
pipelines and measuring the speed of a hot sheet of steel
in a rolling mill.

Mathematically, correlation is well covered in the
existing literature,’ and the use of correlation for research
purposes has been established for more than a decade.
Until recently, however, correlation in practice has been
a complex and time-consuming operation involving, in
most cases, two separate processes — data recording and
computer analysis. For this reason, correlation tech-
niques could hardly be considered for routine use. Today,
correlation in real time is entirely practicable, and there
seems little doubt that the techniques will soon take their
place in all fields of engineering and scientific research.

In this article we present the basic principles of corre-
lation theory. Also included are brief discussions of the
concepts of signal averaging and probability density func-
tions. The article on page 9 describes a new HP instru-
ment which applies these ideas in real time, and the article
on page 17 deals with applications of this instrument.
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Fig. 1. Correlation is a measure
of the similarity between two
waveforms. It is computed by
multiplying the waveforms ordi-
nate by ordinate and finding the
average product. Here wave-
forms a(t) and b(t) are identical,
so the correlation between them
is large. Waveforms c(t) and d(t)
are identical in shape, but there
is a time shift between them, so
the correlation between them is
smaller than that between a(t)
and b(t). Hence correlation is a
function of the time shift be-
tween two waveforms,
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The Basic Propositions

How can we correlate — that is, test for similarity —
two waveforms such as a(t) and b(t) of Fig. 1? Of the
easily mechanizable processes, the most effective is mul-
tiplication of the waveforms, ordinate by ordinate, and
addition of the products over the duration of the wave-
forms. To assess the similarity between a(t) and b(t) we
multiply ordinate a, by ordinate b,, a. by b, a, by b..
and so on, finally adding these products to obtain a sin-
gle number which is a measure of the similarity. In this
example a(t) and b(t) are identical, with the result that
every ordinate—positive or negative—yields a positive
product. The final sum is therefore large. If, however,
the waveforms were dissimilar, some products would be
positive and some would be negative. There would be
a tendency for the products to cancel, so the final sum
would be smaller.

Now consider waveform c(t) of Fig. 1 and the same
waveform shifted in time, d(t). If the time shift (usually
denoted by the symbol ) were zero then we would have
the same conditions as before, that is, the waveforms
would be in phase and the final sum of the products
would be large. If the time shift - is made large, the wave-
forms appear dissimilar (for example. ordinates r and s
have no apparent connection) and the final sum is small.

Going one step farther, we can find the average prod-
uct for each time shift by dividing each final sum by the
number of products contributing to it. If now we plot the
average product as a function of time shift, the resulting
curve will show a positive maximum at - — 0, and will
diminish to zero as - increases. The peak at - =0 is
equal to the mean square value of the waveform. This
curve is called the autocorrelation function of the wave-
form. The autocorrelation function R(7) of a waveform

Cover: Model 3721A Correlator displays the
crosscorrelation between wideband noise com-
ing from a loudspeaker and the output of a mi-
crophone several feet from the speaker, both
in the studio of FM station KTAQO, Los Gatos,
California. Each peak corresponds to a differ-
ent speaker-to-microphone sound path, the
first peak to the direct path and the others to
various bounce paths. Acoustic absorption co-
efficients of the studio walls and furnishings
could be found by analyzing the peak heights.

In this Issue:
Correlation, Signal Averaging, and Probability

ORI . oo g oo, vassmony e page 2
A Calibrated Real-Time Correlator / Averager /
Probability Analyzer. ................ page 9
Correlation in Action. . ............. page 17

3

Fig. 2. The autocorrelation function is a measure of the
similarity between a waveform and a shifted version of
itself. Here is a pseudo-random binary sequence and its
autocorrelation function. The autocorrelation function of a
periodic waveform has the same period as the waveform.

is a graph of the similarity between the waveform and a
time-shifted version of itself, as a function of the time
shift. An autocorrelation function has:

® symmetry about » = 0, i.e., R(z) = R( — 7)

® 3 positive maximum at - — 0 equal to the mean square

value (x*) of the signal from which it is derived, i.e.,

R(0) = x*, and R(0) >R(>) for all 7.

Also note the special case of the periodic waveform —
the autocorrelation function of any periodic waveform is
periodic, and has the same period as the waveform itself.
An example of this is the pseudo-random binary se-
quence, Fig. 2, the autocorrelation function of which is a
series of triangular functions.*?

The random noise-like signal shown in Fig. 3 is quite
different from the periodic waveform. When compared
with a time shifted version of itself, only a small time
shift is required to destroy the similarity, and the similar-
ity never recurs. The autocorrelation function is therefore
a sharp impulse which decays from the central maximum
to low values at large time shifts. Intuitively, the width of
the ‘impulse’ can be seen to depend on the mean zero-
crossing rate of the noise waveform, that is, on the band-
width of the noise. The higher the zero-crossing rate, the
smaller the time shift required to destroy similarity.

Two samples of noise of the same bandwidth might
have quite different waveforms, but their autocorrelation
functions could be identical. The autocorrelation function
of any signal, random or periodic, depends not on the
actual waveform, but on its frequency content.
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Fig. 3. The autocorrefation function of a wideband non-
periodic waveform is non-periodic and narrowly peaked.
The wider the bandwidth, the narrower the peak,

The Mathematics of Autocorrelation

The autocorrelation function of a waveform x(t) is de-

fined as:
LT x(t) x(t — =) dt

that is, the waveform x(t) is multiplied by a delayed ver-
sion of itself. x(t — 7). and the product is averaged over
T seconds. Another way we can write this is R, (r) =
x(t) x(t — 7). The continuous averaging process implied
by this expression for R,.(r) can be accomplished by
analog methods, but in a digital system, it is more con-
venient to approximate this average by sampling the sig-
nal every At seconds, and then summing a finite number,
N, of the sample products.
1 k=N
R.fr)=— 3 x(kat) x(kat—)
Nr=1
This would be computed for several values of . The
range of » over which R,.(7) is of interest depends on the
bandwidth of the signal x(t). For example, the autocor-
relation function of a 1 MHz signal could be computed
for values of  ranging from zero to, say. 10 ;s with 100
ns resolution in -. Likewise, a 100 Hz signal would per-
haps be analyzed with - going from zero to 100 ms with
1 ms resolution.
It might be implied from equation 2 that for a good

lim 1

Ror) — 4
o(7) TowT

(1

2

4

approximation the interval between pairs of samples, At,
should be of the same order as the chosen resolution or
increment in r. This is not true. The sampling interval At
can be very large in relation to the resolution in r. The
point to note here is that we are computing signal statis-
tics. In other words, we are looking for a measure of aver-
age behavior— we don't need to reconstruct the actual
waveshape. Hence, the requirements of Shannon’s sam-
pling theorem (sampling rate greater than twice the high-
est signal frequency) need not necessarily be met. Provided
the signal statistics do not change with time (i.e. provided
the signal statistics are stationary), it does not matter how
infrequently the pairs of samples are taken. They need
not even be taken at regular intervals — sampling at ran-
dom intervals is quite acceptable (the HP Model 3406 A
Random Sampling Voltmeter works on this principle).
The important factor is the absolute number, N, of
samples taken. and not the rate at which they are taken.
The statistical error decreases as N increases.

Relationship of Autocorrelation Function and
Power Density Spectrum

We saw in Fig. 3 that wideband signals are associated
with narrow autocorrelation functions, and vice versa.
There is in fact a specific relationship between a signal’s
power density spectrum and its autocorrelation function.
They are a Fourier transform pair.

Rofr) = /0* G..Af) cos 2=f+df 3)

G,,m:z/'“

—o0

R, .(7) cos 2=fd~ 4)
where G,.(f) is the measurable power density spectrum
existing for positive frequencies only. that is, G..(f) is
what we could measure with a wave analyzer having a
true square-law meter.

Crosscorrelation

If autocorrelation is concerned with the similarity be-
tween a waveform and a time shifted version of itself,
then it is reasonable to suppose that the same technique
could be used to measure the similarity between two non-
identical waveforms, x(t) and y(t).

The crosscorrelation function is defined as

R..(7) = x(t—) y(1).

Like the autocorrelation function, the crosscorrelation
function can be approximated by the sampling method:
Rolr) = — Z x(kat—=) y(kat)

Nek=1
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Again the choice of At is not critical. At can be large
compared with the chosen resolution in -, and need not
necessarily be constant throughout the process. Fig. 4
illustrates the process of crosscorrelation. Relationships
similar to equations 3 and 4 exist for crosscorrelation
functions and functions called cross power spectral densi-
ties.?

Uses of Correlation

Before discussing any more theory., we will pause now
and talk about some of the things correlation is good for.
We will be fairly general here: more specific applications
will be covered in the article beginning on page 17.

Detection of Signals Hidden in Noise

The first practical example we consider represents the
basic problem of all communications and echo ranging
systems. A signal of known waveform is transmitted into
a medium and is received again. unchanged in form but
buried in noise. What is the best way of detecting the
signal? The receiver output consists of two parts: the de-
sired signal, and the unwanted noise. If we crosscorrelate
the transmitted signal with the receiver output then the
result will also have two components; one part is the
autocorrelation function of the desired signal (which is

FROD
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Fig. 4. Crosscorrelation function shows the similarity be-
tween two non-identical waveforms as a function of the
time shift between them. Here the peak in the crosscorre-
lation function of x(t) and y(t) shows that at a time shift =,
there is a marked similarity between the waveforms. The
similarity is clearly visible in this example, but crosscor-
relation is a very sensitive means of signal analysis which
can reveal similarities undetectable by other methods.
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common to both of the waveforms being crosscorrelated),
and the other part results from the crosscorrelation of the
desired signal with unwanted noise. Now in general there
is no correlation between signal and noise, so the second
part will tend to zero, leaving only the signal — in the
form of its autocorrelation function. Crosscorrelation has
thus rejected the noise in the received signal, with the
result that the signal-to-noise ratio is dramatically in-
creased. A simulation of typical transmitted and received
signals is recorded in Fig. 5. Fig. 5(a) shows a swept-
frequency ‘transmitted’ signal. To simulate the received
signal this swept signal was delayed, then added to wide-
band noise as shown in Fig. 5(b). The signal-to-noise
ratio was about —10 dB. The result of crosscorrelating
the transmitted and received signals is shown at 5(c). The
signal appears clearly — in the form of its autocorrela-
tion function — while the noise has been completely re-
jected. Note that the autocorrelation function is displaced
from the time-shift origin at the left side of the correlo-
gram; this is because of the delay between transmission
and reception.

The crosscorrelation method of signal detection is not
confined to swept-frequency waveforms. For example,
the method (under the name of phase-sensitive, or co-
herent detection) has been used for many years in com-
munications systems to recover sinusoidal signals from
noise.

Crosscorrelation requires a reference signal which in
most cases will be similar to the signal to be recovered.
Hence the method is clearly unusable for the detection of
unknown signals. However, for detecting unknown peri-
odic signals, autocorrelation is uniquely successful. Auto-
correlation reveals periodic components in a noisy signal
without the need for a reference signal. Why don’t we
always use autocorrelation? Simply for the reason that
an autocorrelation function contains no phase, or relative
timing, information. Autocorrelation could not show, for
example, the delay between the transmitted and received
signals in Fig. 5. What it can show, however, is unsus-
pected periodicities. A striking application of autocorre-
lation is the detection of periodic signals from outer space
— for example, emissions from pulsars.

Signal Averaging or Signal Recovery

Before leaving the subject of periodic signal detection,
we shall consider a way in which crosscorrelation can
recover actual waveshape. This can be done by crosscor-
relating the noisy signal not with a replica of the hidden
periodic waveform, but with a constant-amplitude pulse
synchronized with the repetitions of the waveform. In a
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digital system this would be accomplished by taking a
series of samples of the noisy signal, then multiplying
each sample by the pulse amplitude. Corresponding
products (that is, samples) from each series are then
averaged. The periodic waveform is reinforced at each
repetition, but any noise present in the signal — since it
contributes random positive and negative amounts to the
samples — averages to zero. This technique of wave-
shape recovery — known as signal averaging or signal
recovery — finds wide application in spectroscopy. bio-
logical sciences and vibration analysis.*

Finding Relationships between Random Signals

Suppose we have two random signals, neither of which
in itself contains meaningful information, yet we know

(a)

(c)

Fig. 5. Simulation of the ability of crosscorrelation to de-
tect a known signal buried in noise.
(a) ‘Transmitted’ signal, a swept-frequency sine wave.
(b) ‘Received’ signal, the swept sine wave plus noise.
S/N = —10 dB.
(c) Result of crosscorrelating the transmitted and re-
ceived signals. Distance from left edge to peak
represents transmission delay.
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that the two signals are related and that there is informa-
tion contained in the relationship. Examples would be a
transmitted signal and a received signal, or the apparently
random waveforms appearing at the input and output of
an element in a complex system. Crosscorrelation pro-
vides a method of extracting information about the rela-
tionships between such signals.

The simplest relationship is pure delay, which would
be revealed as a displacement of the correlation function’s
peak from the time-shift origin (see Fig. 5). In real situa-
tions, however, more things happen than just delays.
Distortion, smoothing, and other frequency-dependent
changes also occur. The shape of the crosscorrelation
function can reveal the nature of these changes. An im-
portant example is the use of crosscorrelation in system
identification.

System Identification without Disturbing the System

By the system identification problem, we mean that
any system, from a power station to a simple RLC net-
work, is treated as an unknown black box, and we wish
to identify the black box. that is, to find sufficient infor-
mation about it to predict its response to any input. Note
that we do not wish to know the precise nature of each
individual component of the system. Normally we are
not interested in such detail. If we can tell in advance the
system’s output in, say, megawatts in response to an
arbitrary input, perhaps kilograms of uranium, then we
are satisfied.

A complete description of a system may be given in
either the frequency or the time domain. The frequency-
domain type of description will already be familiar to
many readers. If we are given the amplitude-vs-frequency
and phase-vs-frequency characteristics of the system,
then we can obtain a complete description of the system'’s
output by multiplying the input amplitude spectrum by
the system’s amplitude characteristic and adding the in-
put phase spectrum to the system’s phase characteristic.

The equivalent description in the time domain is the
impulse response: a unit impulse applied to a system pro-
duces an output signal called the impulse response of the
system. If we know a linear system’s impulse response,
we can calculate its response to any input by convolu-
tion: the impulse response convolved with the input gives
the output.®

How can we determine the impulse response of the
system? The obvious method is to inject an impulse and
observe the result; this method, however, has the disad-
vantage that the response can be very difficult to detect
(perhaps buried in background noise) unless a large-
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amplitude pulse is applied — with, of course, a disturb-
ing effect on the system’s normal functioning. We are
looking for a general method, workable with all systems
from passive networks right through to process control
installations which can never be taken off-line for evalua-
tion purposes.

How Crosscorrelation Helps

An approximation to the impulse response of a linear
system can be determined by applying a suitable noise
signal to the system input, then crosscorrelating the noise
signal with the system output signal. The equipment setup
is illustrated on page 17 and the mathematical theory is
given in the appendix, page 8.

The noise test signal can be applied at a very low level,
resulting in almost no system disturbance and very small
perturbations at the output. Crosscorrelation, which is
essentially a process of accumulation, builds up the result
over a long period of time. Hence, although the perturba-
tions may be very small, a measurable result can be ob-
tained provided that the averaging time is sufficiently
long. Background noise in the system will be uncorrelated
with the random test signal, and will therefore be effec-
tively reduced by the correlation process.

A suitable noise signal for this technique is one whose
bandwidth is very much greater than the bandwidth of
the system, so the system impulse response is a relatively
slowly changing function of its argument compared to
the autocorrelation function of the noise. In other words,
to the system the autocorrelation function of the noise
should look like an impulse, or something very close to
one. ‘White’ noise is one possibility. Another is binary
pseudo-random noise, which has an autocorrelation func-
tion that is very close to an impulse. Pseudo-random
noise has the advantage that the averaging time T for the
correlation system only needs to be as long as one period
of the pseudo-random waveform, i.e., as long as one com-
plete pseudo-random sequence. Unlike random noise,
pseudo-random noise introduces no statistical variance
into the results, as long as the averaging time T is exactly
one sequence length, or an integral number of sequence
lengths.®

Probability Density Functions

We have discussed two ways of describing a signal —
the autocorrelation function and its equivalent in the
frequency domain, the power spectrum. Neither of these,
however, gives any indication of the waveshape or ampli-
tude-vs-time behavior of the signal (except in the case of
a repetitive signal for which a synchronized pulse train is
available).

74

A means of characterizing a random signal’s amplitude
behavior is to determine the proportion of time spent by
the signal at all possible amplitudes during a finite period
of time. In practical terms, this means totalizing the time
spent by the signal in a selection of narrow (8§x) amplitude
windows, and then dividing the total for each window by
the measurement time (T). The curve obtained by plot-
ting the window totals against amplitude is known as the
probability density function (pdf) of the signal (see Fig.
6).! The area under the pdf between any two amplitudes
x, and X. is equal to the proportion of time that the signal
spends between x, and x.. This area is also equal to the
probability that the signal's amplitude at any arbitrary
time will be between x, and x.. A pdf is always normal-
ized so the total area under it is exactly one.

The most commonly encountered pdf for naturally
occurring signals is the Gaussian or normal distribution,
Fig. 7. The amplitude (horizontal) scale of the pdf is
calibrated in terms of o, a symbol used in statistics to
denote standard deviation, a measure of the spread of a
set of values about their mean. In general « is equal to the
rms amplitude of the ac component of the signal.

The probability density function can yield important
information about nonlinearities in a system. If, for ex-
ample, a Gaussian-type signal were applied to an ampli-
fier having an insufficient dynamic range. the distorted
output would have a pdf with ‘ears’ indicating that clip-
ping had occurred.

Cumulative Probability Function

The integral of the pdf of a signal is the cumulative
probability distribution function (cdf). The cdf represents
the probability that a signal will be at or below a certain
amplitude. The final value of any cdf is one, for the
reason that a signal must spend all the time at or below
its maximum level. Fig. 8 shows the cdf of a Gaussian
signal.

The cdf is sometimes a more convenient function than
the pdf for a clear description of a signal’s amplitude
properties. A square wave, for example, has a step cdf
which can present evidence of distortion more clearly
than the corresponding pdf, which is just a pair of im-

pulses. &
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Fig. 6. The probability density function tells what propor-
tion of time is spent by a signal at various amplitudes.
Each point on the density function represents the propor-
tion of the total measurement time T that the signal is in
a particular window d8x wide, or the probability that the
signal will lie in that window. The area under the curve
between any two amplitudes x, and x: is equal to the pro-
portion of time that the signal's amplitude is between
x, and X..

Fig. 7. Gaussian probability density function is charac-
teristic of many natural disturbances.

Fig. 8. Cumulative probability distribution function gives
the proportion of time or probability that the signal lies
below any given amplitude. It is the integral of the prob-
ability density function. P{ — =) is always zero; P(x) is
always one. This is the Gaussian distribution function.
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Appendix
Net ination of Impulse Resy by C ot
x(t) t
— y(t)
B |
] o)
_ Um 1 T =
RAwi7) = e :_T_/ 0 xft—7) y(t) dt

_ o bum 1 T / +a -
= s T_/O x(t -J. Lo h{u) x(t-u) du gt.
Interchange order of integration

Ruyf7)= [ YO b (L X(t=r) x{t-u) dt { du.

T-w T.J 0
The second integral is seen to be the autocorrelation of x{t) with
argument (t-u)

Bnfr) = [ t?: hiu) Ruft-u) du.

Naow, if we choose the bandwidth of the noise to be much greater than
the system passband, then h{u) will be a relatively slowly changing
function in comparison with Ruo(r—u). The term hi{u) will be almost con-
stant over the small range of values of u around u = = for which
Ruf7—u) has significant values. The integral then becomes:

Rulr) = hiz) [ TE Aafr-u) du.
Comparing this with eguation 4, page 4, we see that the integral term
gives us the power spectral density for f = 0, hence
Rufr) = ¥ hi7) Gu(0)
= constant ¥ impulse response.
Gunlf) is the physically realizable, one sided power density spectrum.
Gu(0) Is the value of this function in volts squared per Hertz, at very low
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A Calibrated Real-Time
Correlator/Averager/Probability Analyzer

This digital signal analyzer computes and displays 100-point autocorrelation functions,
crosscorrelation functions, waveshapes of signals buried in noise,
probability density functions, and probability distributions.

By George C. Anderson and Michael A. Perry

EVER SINCE THE THEORY OF CORRELATION WAS DE-
VELOPED and the potential advantages of the technique
brought to light, people have been looking for practical
ways to apply it. Because correlation requires prodigious
computation, a common way of getting correlation func-
tions has been to record data and process them later, off-
line, in a digital computer. The problem with this method
is that it takes too much time. If the data are inadequate
or if procedures or programs need modification, it takes
a long time to find out. In the meantime, a lot of equip-
ment may be tied up.

On-line correlation has the advantage of providing
answers where they are needed, that is, where the meas-
urements are being made. But while it isn’t unknown,
on-line correlation isn’t very common, either, the reason
being that instruments that can correlate in real time
haven’t been very accurate, versatile, or easy to use.

The HP Model 3721A Correlator, Fig. 1, is designed
to be a truly practical way of getting correlation functions
in real time. This new instrument processes analog signals
—on line and in real time — and presents the results on
a calibrated CRT display. It is more than just a corre-
lator; it has two analog inputs and it can compute
® the autocorrelation function of one input signal
® the crosscorrelation between two signals
m the probability density function of an input signal, or

its integral, the probability distribution
m the waveshape of a repetitive signal buried in noise

(by signal recovery or signal averaging).*

* The word ‘averaging’ has two meanings in this article. Signal averaging is 3 tech-
nique of signal analysis; it is useful for recovering repetitive signals from noise (see
reference 1). Averaging is a mathematical process; it is used in all of the modes of
operation of the new correlator: autocorrelation, crosscorrelation, probability display

and signal averaging. To avoid confusion we will often refer to signal averaging as
‘signal recovery.'

9

In general, using the new correlator is similar to using
an oscilloscope, and in some ways, it is easier to use than
an oscilloscope. It has a wide selection of measurement
parameters — sampling rates, averaging times, and so on
—and the vertical scale factor of the display, which is
affected by several of these selectable parameters, is auto-
matically computed and displayed on the front panel.
Like an oscilloscope, and unlike ofl-line computers, the
correlator can follow slowly varying signals, can give a
‘quick-look” analysis to show the need for and the results
of adjustments, and can easily be carried from place to
place (it weighs 45 pounds).

Digital Techniques Used

Model 3721A is primarily a digital instrument, al-
though it does use some analog techniques. Long-term
stable averaging, which is necessary for the very-low-
frequency capability, can only be done digitally; capac-
itive averaging, which is used in some correlators, simply
can't provide long enough time constants with capacitors
of reasonable size. A simple, accurate, and stable digital
multiplier which is fast enough to allow sampling rates up
to 1 MHz is another benefit of digital operation.

Model 3721A displays the computed function on its
CRT using 100 points. Typical correlation displays are
shown in Fig. 2.

100 points are sufficient for many measurements; how-
ever, if more resolution is required, there is an option (for
the correlation mode) which provides additional delay in
batches of 100 points, up to a maximum of 900 points.
Using this pre-computational delay, the time scale can be
compressed and the correlation function examined one
section at a time.
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Fig. 1. Despite its versatility, Model 3721A Correlator is as easy to use as an oscilloscope.

An illuminated panel shows the display sensitivity in V*/cm for correlation and in V/cm for

signal averaging (signal recovery). The correlator has a wide selection of measurement

parameters and modes of operation, including a ‘quick-look’ mode which minimizes delays
in setting up experiments.

(a) {b)

Model 3721A Corre

(a) Autocorrelation ful
Time scale 1 ms/mm.

(b) Crosscorrelation between noise in a machine shop and noise from a nearby ventilating
fan. Double hump ansmission paths from fan

to machine shop, differing in propagation delay by 4 ms.

in center shows there are two principal
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The horizontal axis of the display is scaled ten points
to each centimeter and is calibrated in time per milli-
meter. The time per millimeter is also the period between
successive samples of the analog input. The ‘sweep rate’
can be switched from 1 ps/mm to 10 s/mm. It is con-
trolled by a crystal clock and is accurate within 0.1%.
Lower sweep rates may be provided by inputs from an
external source.

The vertical axis is accurately calibrated.* and an
illuminated display beside the CRT avoids the ‘numbers
trouble” which can easily occur in an instrument which
uses both analog and digital techniques. The vertical scale
factor of the display depends upon the product of four
numbers. These are the settings of the two analog input
amplifiers, a gain control for the averaging algorithm,
and a control which expands the trace in the vertical axis.
The first two variables follow a 1, 2, 4, 10 sequence, the
third follows a 1, 10, 100 sequence, and the fourth fol-
lows a binary progression. The scale factor is also affected
by the function the instrument is performing. Autocorre-
lation requires the square of one analog channel gain set-
ting, whereas crosscorrelation requires the product of
two. Signal recovery and probability display have entirely
different requirements. All of this might leave the user
with some awkward mental arithmetic, were it not for the
illuminated display, which shows the scale factor.

* The accuracy of a statistical amalyzer is difficult to defing, since the accuracy of
the displayed result depends upon the statistics and bandwidth of the input signals and
on the averaging time constant used. Systematic errors in the new correlator — such

things as display nonlinearity and variations in quantizer gain (see appendix) —are
typically less than 1 or 2 per cent at low frequencies.

Being a digital instrument, the correlator is easily in-
terfaced with a computer; there is a plug-in option for this
purpose. There are also rear-panel outputs for an X-Y
recorder.

How It Correlates

The equation for the crosscorrelation function of two
waveforms a(t) and b(t) which are both functions of

Hmex Ry.() = a(t)b(t—)
where the bar denotes taking an average. There are three
important operations: delaying b(t) by an amount -, mul-
tiplying the delayed b(t) by the current value of a(t), and
taking the average value of these products over some
time interval. The correlation function is a plot of Ry..(+)
versus the delay, . The new correlator computes 100
values of the correlation function for 100 equally spaced
values of r and does them simultaneously, as follows.
Input waveforms a(t) and b(t) are sampled and the
current sample of b(t) is loaded into location 0 of the
delay store (see Fig. 3). Locations 1 through 99 contain
previous values of b(t), all stacked in order. To compute
its estimate of the correlation function, the correlator

calculates Ry, (mAr) = m

for 100 values of m, that is, form =0, 1, 2, ..., 99,
For this operation, switch S1 in Fig. 3 is positioned so
the contents of the delay store rotate until they arrive
back in their original positions. During this rotate opera-
tion, each delayed value of b(t) passes the multiplier,
where it is multiplied with the stored value of a(t) to

|
01 lz -9?198!99

SWITCHING

Fig. 3. Correlator samples in-
puts, converts samples to digital
form, delays one input with re-
spect to the other, then multi-
plies the two and updates the
100 average products in the
main store. Three-bit quantizer
allows fast operation and
doesn’t impair accuracy (see

11
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produce a series of 100 products a(t)b(t-mA+). The prod-
ucts are fed into an averager where they interact with the
contents of the serial main store, which are also under-
going a rotate operation. The contents of the main store
are the 100 previously calculated values of R, (ma7). In
the averager. the new product a(t)b(t) updates R, (0).
the product a(t)b(t—A~) updates R,.(A7), and so on up to
R,.,(9947). The main store. therefore, always contains
the most recent estimate of the correlation function. A
complete sequence of rotation, multiplication, and av-
eraging is known as a process cycle. When it is complete,
the instrument reverts to a data acquisition cycle and new
samples of a(t) and b(t) are taken. The new value of b(t)
is put into location 0 of the delay store. and all others are
shifted down one place. b(t-99A+) ‘rolls off the end’ and
is discarded, since it is of no further value. When pre-
computational delav is needed, it is added by increasing
the length of the delay store.

The time taken up by a process cycle is 135.6 s, the
cycle time of the main store. How then, you may ask, can
the instrument operate with a sampling rate as high as 1
MHz. yet enter a process cycle after each sample has been
taken? The answer lies in the assumption that the input
signals are stationary: this is a way of saying that the
statistics of the signals are constant for all time. When
this is true. we can wait as long as we wish between suc-
cessive data samples without affecting the accuracy of the
measurement. as long as we take enough samples even-
tually.

At high data sampling rates (Ar<333 .s) the cor-
relator operates in an ensemble sampling mode, or batch
mode (see Fig. 4). In the batch mode, instead of entering
one new sample of b(t) into the delay store at the instant
a(t) is sampled, the sampling of a(t) is preceded by taking
99 fresh samples of b(t) and entering those into the delay
store first.* We now have stored information showing the
relationship between a(t) and 100 consecutive samples of
b(t) as before. but now the speed with which data can be
acquired is independent of the time taken for a process
cycle. There is a tradeoff involved in batch sampling. For
statistical accuracy, a large number of samples of a(t)
must be taken. and this makes the measurement less effi-
cient than the normal mode which was described first.
However, batch sampling is only used at high sampling
rates where the extra real time involved is too small to be
significant in many cases.

" For & = 1, 3.33, or 10 as, 99 samples of b(t) are taken, followed by simultancous
sampling of a(t) and b(t). For A+ = 33.3 or 100 us, only 9 samples of b{t) precede the
simultaneous sampling of a{t) and B{t). For Ar = 333 us, a{t) and bit) are always

sampled simultaneously, i.e,, the instrument operates in the normal mode.

12

Signal Recovery

It is the batch mode of operation which allows the
Model 3721 A Correlator to perform signal averaging or
signal recovery. In this case, there is no signal a(t). A
constant value is inserted into the a(t) storage register
and. on receipt of a sync pulse, 100 sampled values of
b(t). the signal being averaged. are entered into the delay
store. A process cycle rotates the delay store and updates
the information in the main store. Since the delay store
has a much faster access time than the main store, this
method of operation allows fast sampling at rates inde-
pendent of the main-store cycle time.

Two Averaging Modes

Two kinds of averaging are available for correlation,
probability measurements, or signal recovery. A front-
panel switch selects one or the other,

One averaging mode is straighforward summation. The
function computed after N samples of the inputs have
been taken at intervals of Ar, startingatt — 0, is

7 N + m-=1
Ry (mAz) = — p alkAr)b(kAr—mA+),
N k=m
wherem = 0. 1, 2, . ... 99, For signal averaging. or sig-

nal recovery, a(ki+) is held constant, while for correla-
tion it varies with the input a(t).

The second averaging mode is a running average which
forgets very old information. If Ay , is the current value
of the running average and a new input I arrives, the
new average would be

Ay = Ay, ‘|———-——!'\- =lhaey s
N
where N is the number of samples that has been taken.
Because it is difficult to divide by an arbitrary integer N
at a reasonable cost in a high-speed system, the new cor-
relator divides by the nearest power of 2, so it can divide

simply by shifting. The algorithm becomes

A.\' p— A,\’-J’ + I‘\' —2-:4-"-1

No error is introduced into the averages by dividing by
2" instead of by N; the averages just take a little longer to
approach within a given percentage of their final values
(assuming these final values aren’t changing).

The running-average algorithm acts like an RC aver-
aging circuit; the output responds exponentially to a step
input with a time constant approximately equal to 2°A~
seconds. A powerful feature of this exponential averaging
algorithm is the effect of the varying value of n during
the measurement. Initially, n is zero. Then, as the meas-
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urement proceeds. N, the number of samples, becomes
equal to the next higher value of 2", and n is incremented.
This has the effect of averaging with a variable capacitor
C whose value is initially small, and becomes larger as
the measurement proceeds. High-frequency noise is aver-
aged out immediately, leaving the lower frequencies for
later and giving a rapid preliminary estimate of the cor-
relation function or average. Once n has reach the ter-
minal value determined by the front-panel time-constant
switch, the system continues to operate with that time
constant. A wide range of control over the value of n
provides the user with a useful and flexible averaging
capability.

Details of Operation

Figs. 3 and 5 together show the correlator’s block
diagram. Analog signals are scaled by two preamplifiers
and fed into a changeover switching network, which
routes signals into the reference or delay channels ac-
cording to the function chosen by a front-panel switch.
Next, the signals are digitized or quantized. The reference
signal is converted into a seven-bit, two's complement
code by a ramp-and-counter-type analog-to-digital con-
verter whose conversion time has a maximum value of
42 us. The signal which is to be delayed with respect to
the reference signal is fed into a fast (<Z1 ;s) three-bit
converter which has a special encoding characteristic
(see Fig. 6). Rigorous computer analysis showed that the
coarseness of the three-bit encoding law would not impair
the accuracy of the correlator.® The choice of a three-bit
* See the appendix, page 15,

Fig. 4. For delay increments Ar(time/mm) of 333 us or
more, the correlator operates in the normal mode, going
through a process cycle — updating the 100 stored aver-
age products — after each sample of the inputs is taken.
For shorter delay increments, the correlator uses the
batch mode, taking 100 samples of input b tor each sam-
ple of input a. Although much slower, the batch mode is
used only at very short delay increments and isn't a
practical limitation.

MAIN STORE
GLASS DELAY LINE

Fig. 5. The arithmetic unit com-
putes averages digitally, so it
doesn't have the stability prob-
lems of capacitive averaging.
Muitiplications and divisions, all
by powers of two, require only
time shifts.
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code for the delay channel made it possible to provide a
fast encoder at relatively low cost, and to keep the ca-
pacity of the delay store to a minimal 300 bits.

In the three-bit encoder the signal is coarsely quan-
tized into values of 0, #=1, =2, or =4, The virtue of
this simple law is that to multiply the quantized output
by another binary word involves only shift operations;
this saves hardware in the multiplier.

The current estimate of the correlation function (or
average) is stored serially in 100 24-bit words in the main
store, which is a glass ultrasonic delay line having a ca-
pacity of 102 24-bit words. The two extra words are used
for bookkeeping and control. Information in the main
store recirculates at a bit rate of approximately 18 MHz,
one complete cycle taking about 135.6 ;5. Operation of
the glass delay line is similar to shouting down a long
tunnel, catching the sound at the other end, and feeding
it back to the beginning.

All arithmetic processing is carried out on the output
of the main store using two's complement arithmetic.
Subtraction is done by a ‘two’s complement and add’
algorithm. Multiplications and divisions are all by powers
of two, so they are implemented as time delays and time
advances, respectively.

Display

Output from the memory to the display is via the shift
register called the ‘main store window! For each of the
100 computed points, eight bits from this register are
transferred to a buffer register, converted to analog form,
and used to position the CRT beam vertically. The hori-
zontal position of each dot is determined by a counter.
Which eight of the 24 possible bits are displayed depends
on the display gain setting, which has three values.

Fig. 6. The three-bit quantizer's outputs are powers of
two. Multiplication by them is simply a gating function.

14

Probability Distributions

The measurement of probability density and probabil-
ity distribution functions depends for its operation upon
the constant cycle time of the main store. When the first
word in the chain emerges from the main store, the input
signal is sampled at the input to the seven-bit ramp-and-
counter A-D converter. This time we are not concerned
with converting the sampled voltage into binary code,
but into a time delay. The sampling instant initiates a
ramp which runs down linearly from the value of the
sampled input signal to a reference voltage. When co-
incidence occurs, information is gated into adder Al to
increment the word which is currently in the arithmetic
unit. In the probability density mode, no further words
are incremented: but in the probability distribution mode,
which is the integral of the density. all succeeding words
are also incremented. The averaging algorithms operate
as before. An example of a probability display is shown
in Fig. 7.

Fig. 7. Probability density function of sine wave plus
Gaussian noise. Model 3721A Correlator can also com-
pute the cumulative distribution function, which is the
integral of the probability density function.
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Appendix: Equivalent Gain of a Quantizer

A quantizer or analog-to-digital converter is a nonlinear
device which has a staircase characteristic like the one
shown in Fig. 6, page 14. Quantization has the effect of
adding distortion in the form of ‘corners’ to an input signal
x(t). This distortion, called quantization noise, can be shown
to be uncorrelated with the input signal.® If the quantizer is
assumed to be sufficiently wideband not to distort the signal
in other ways, its output will have a component proportional
to the input signal, Kx(t), plus uncorrelated quantization
noise, n(t). The constant K is called the equivalent gain of
the quantizer.

It has been known for some time that accurate correlation
measurements can be made using very coarse quantization
of data, i.e., very few bits. Correlation involves an averaging
process, so a correlator is only affected by the averaged
response of the quantizer to an input signal. This averaged
response is the equivalent gain K. For accurate correlation
measurements, K should be constant over the specified
range of signal amplitudes. The curve below is the equiv-
alent gain of the three-bit quantizer used in the Model 3721A
Correlator, for a Gaussian input signal. The sharp drop in
gain at low signal levels occurs because the signal barely
climbs over the first step of the quantizer’'s staircase charac-
teristic. This defect is overcome by adding uncorrelated
Gaussian noise to the input signal, thereby keeping the
equivalent gain nearly constant down to zero input. The
falloff in gain at high signal levels can be attributed to
saturation.

The fact that accurate correlation measurements can be
made using only a three-bit quantizer is significant. In the
case of the Model 3721A Correlator, it means reduced com-
plexity and cost, and higher speed.

* D. G. Watts, 'A Study of Amplitude Quantisation with Application to Correlation
Determination,' Ph.D. Thesis, University of London, January 1962,
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SPECIFICATIONS
HP Model 3721A

Correlator

INPUT CHARACTERISTICS
Two separate input channels, A and B, with Identical amplifiers.
BANDWIDTH: The B input signal is sampled at a maximum rate of
1 MHz. According to the sampling thearem, this means that input
signals must be band-limited to 500 kHz or less. A useful rule of
thumb for random signals is to allow at least four samples per cycle
of the upper 3-dB cutofl frequency; thus the maximum 3-dB cutoff
frequency would be 250 kHz. Pure sine-wave inputs would prob-
ably require more samples per cycle to give a recognizable picture
on the CRT; however, for computer processing of the data four
samples per cycle would be entirely adequate, Model 3721A's lower
cutoff frequency is selectable, dc or 1 Hz.
INPUT RANGE: 6 ranges, 0.1 V rms to 4 V rms, in 1, 2, 4, 10 sequence.
ANALOG-TC-DIGITAL CONVERSION: Fine quantizer; 7 bits. Coarse
quantizer (feeds delayed channel): 3 bits. Coarse quantizer linearized
by internally-generated wideband noise (dither).
OVERLOAD: Maximum permissible voltage at Input: de coupled 120 V
peak, ac coupled 400 V = dc + peak ac.
INPUT IMPEDANCE: Nominally 30 pF to ground, shunted by 1 ML,

CORRELATION MODE

Simultaneous computation and display of 100 values of auto or cross-
correlation function. Display sensitivity indicated directly in V¥/cm on
{lluminated panel. Non-destructive readout; computed function can be
displayed for an unlimited period without deterioration. (Non-permanent
storage; data cleared on switchoff.}

TIME SCALE: (Time/mm = delay increment/7) 1 us to | second (total
delay span 100 us to 100 seconds) in 1, 3.33, 10 sequence with
internal clock. Other delay increments with external clock; minimum
Increament 1 us (1 MHz), no upper limit.

DELAY OFFSET: Option series 01 provides delay offset (precomputa-
tion delay) facility. Without offset, first point on display represents
zero delay; with offset, delay represented by first point is selectable
from 100 Ar 10900 Ar in multiples of 100 AT

DISPLAY SENSITIVITY: 5 x 10-#V3/cm to 5 Vi/cm,

Calibration automatically displayed by illuminated panel.

VERTICAL RESOLUTION: Depends on display sensitivity. Minimum
resolution is 25 levels/cm. Interpolation facility connects points on
display.

AVERAGING: Two modes are provided: Summation (true averaging)
and Exponential.

1, SUMMATION MODE
Computation autematically stopped after N process cycles. at
which time each point on the display represents the average of
N products. N is selectable from 128 to 128 x 1024 {27 to 2'7 in
binary steps). Display calibration automatically normalized fer
all values of N, Summation time indicated by illuminated panel.
2. EXPONENTIAL MODE
Digital equivalent of RC averaging, with time constant select-
able from 36 ms to over 107 seconds. Approximate time constant
indicated by illuminated panel. Display correctly calibrated at
all times during the averaging process.

SIGNAL RECOVERY MODE (Channel B only)

Detects coherence in repeated evenis, when each event is marked by &
synchronizing pulse. After each sync pulse, a series of 100 samples of
channel B input is taken, and corresponding samples from each series
are averaged, The 100 averaged samples are displayed simultanecusly
Display sensitivity Is indicated directly in V/cm on illuminated panel,

SYNCHRONIZATION: An averaging sweep is initiated either by a

trigger pulse from an external scurce (EXT) or, in internally triggered
mode (INT), by a pulse derived from the internal clock. In the INT
mode, the start of sach sweep is marked by an output pulse {stim-
ulus) used to synchronize some external event.

TRIGGER INPUT: Averaging sweep initiated by negative-going step.

STIMULUS OUTPUT: Negative-going pulse at start of averaging sweep.

TIME SCALE: (Time/mm = interval between samples) 1 us to 1 second

(total display width 100 xs to 100 seconds) in 1, 3.33, 10 sequence
with internal clock. Other intervals (hence other display widths) with
external clock; minimum interval 1 us (1 MHz), no upper limit

DISPLAY SENSITIVITY: 50 xV/cm to 1 V/em. Calibration automatically

display by ill d panel.

VERTICAL RESOLUTION: Depends on display sensitivity. Minimum
resolution Is 25 levels/em. Interpolation facility connects points on
display.

SIGNAL ENHANCEMENT: Improvement in signal-to-noise ratio equals
square root of number of averaging sweeps.

NUMBER OF SWEEPS = N in summation mode; N x gain factor of 1,
10 or 100 in exponential mode.

PROBABILITY MODE (Channel A only)

Displays either (1) amplitude probability density function (pdf) or (2)

integral of the pdf of channe! A input. Signal amplitude represented by

horizontal displacement on display, with zero velts at center; vertical
displacement represents amplitude probability.

DISPLAY SENSITIVITY: Horizontal sensitivity 0.05 V/cm to 2 V/cm in
5, 10, 20 sequence.

HORIZONTAL RESOLUTION: 100 discrete levels in 10 em wide display
= 10 levels/em.

VERTICAL RESOLUTION: 256 discrete levels in 8 em high display =
32 levelsfom,

VERTICAL SCALING: Dapends on averaging method used (summation
or exponential).

SAMPLING RATE: 1 Hz to 3@ kHz in 1, 3, 10 seguence with internal
clock, Other sampling rates with external clock; maximum frequency
3 kHz, no lower frequency limit,

INTERFACING

¥-Y RECORDER: Separate analog outputs corresponding to horizontal
and vertical coordinates of the CRT display.

OSCILLOSCOPE: Separate analog outputs corresponding to the hori-
zontal and vertical coordinates of the CRT display.

NOISE GENERATOR MODEL 3722A: Control of the Correlator from the
Model 37222 Noise Generator. The gate signal from the 3722A is
used to set the Correlator into RUN state; on termination of the gate
signal, Correlator will go into HOLD state.

DIGITAL COMPUTER: Optlon 020 provides interface hardware (buffer
card) for reading out displayed data to digital computer.

CLOCK

INTERNAL CLOCK: All timing signals derived from crystal-controlled
osclllator: stability 40 ppm over specified ambient temperature
range.

EXTEANAL CLOCK: Maximum frequency 1 MHz.

PROCESS CLOCK: 135 us wide negative-going pulse. Normally +12 V,
falls to 0 V at start of each process cycle and returns to +12 V after
135 ps.

REMOTE CONTROL & INDICATION

CONTROL: Remote control inputs for RUN, HOLD and RESET functions
are connected to DATA INTERFACE socket on rear panel.

INDICATION: Remote indication of correlator RUN, HOLD or RESET
states is avallable at the DATA INTERFACE socket on rear panel.

GENERAL

AMBIENT TEMPERATURE RANGE: 0° to +50°C.

POWER: 115 or 230 V +10%, 50 to 1000 Hz, 150 W.

DIMENSIONS: 16% in. wide, 10% in. high, 1834 in. deep overall (426 x
273 x 476 mm).

WEIGHT: 45 |b. (20.5 kg) net,

OPTIONS

DELAY OFFSET CPTION SERIES 01
Option 011 Correlator with 100 At offset facility.

Option 013 Correlator with 300 At offset facility.
Option 015 Correlator with 500 At offset facility.
Option 017 Correlator with 700 At offset facllity.

The above options are extendable (factory conversion only) to 900 At
offset, in multiples of 200 At.

Option 018 Correlator with 900 At offset facility.

DATA INTERFACE: Option series 02
Option 020 Correlator with interface for data cutput to computer.

PRICE: Model 3721A, $8350.00

MANUFACTURING DIVISION: HEWLETT-PACKARD LTD.
South Queensferry
West Lothian, Scotiand
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Correlation In Action
Selected Applications of Model 3721A Correlator

System Identification

Throughout engineering and
science there is a requirement
for system identification, or the
determination of the laws which
relate the outputs of a system
to its inputs. The system in
question can be anything from
a simple electronic circuit with
one input and one output to a
large chemical process plant
with many inputs and outputs.
Previously used techniques of
system identification—e.g.,
step, impulse, or sine-wave test-
ing—all have limitations. Using
a random or pseudo-random
noise input and correlation
technigues, the basic limitations |
can be overcome. The advan- |
tages of using correlation iden-
tification techniques are:
® The plant or system need not

be closed down for testing.
m Test signals can be kept

small, and they need not in-
tefere with normal operation.
® Results can be obtained in
the presence of random

noise and parameter drifts.

m |f a random or pseudo-random binary sequence is used as the input signal, it can be reproduced easily by a transducer

(e.g., a solenoid valve cannot reproduce a wideband noise signal, but it can produce an on-off binary sequence).

A suitable noise source is the HP 3722A Noise Generator, which provides random or pseudo-random binary or Gaussian
signals.

The technique is illustrated in the diagram. The noise signal is applied to the system input and the input and output are
crosscorrelated. The result is a plot of the system's impulse response. Optionally, the Model 3721A Correlator can be inter-
faced with a computer for further analysis of the data; for example. computing the Fourier transform of the impulse response
gives the frequency and phase responses of the system.

System identification by correlation can be used to determine the transfer functions of ‘black boxes' so their performance
in control systems can be predicted, or to determine process plant characteristics on line, so control can be optimized. In the
latter case, the state of the art has not advanced very rapidly because no suitable on-line correlator was available. Model
3721A should change this. It is possible that the new correlator could be used as part of an adaptive control loop where, along
with a digital computer, it would continuously determine the system's transfer functions and control the system to optimize its
performance.
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Noise Source Direction Finding

The location of a noise source can be determined by
crosscorrelating the outputs of two closely-spaced detec-
tors. The diagram depicts the technique applied to a
two-dimensional problem, where the noise source lies in the
same horizontal plane as the detectors. Initially the detectors
are placed in positions 1 and 2 to determine the value of
angle ¢, Time delay At between the signal arriving at posi-
tions 1 and 2 will be displayed as a peak on the cross cor-
relogram of the two detector output signals. For small
distance d,

. c—b t
siné = T A
Hence # can be calculated assuming that v is known. By
relocating detector 2 at position 3 and once again cross-
correlating the two detector output signals, the value of ¢
can be calculated from

d

cos ¢ = vl

From the values of # and ¢ thus obtained, the location of

the noise source can be determined. For a three-dimensional

problem where the noise source does not lie in the same

horizontal plane as detector positions 1, 2 and 3, at least one

further measurement must be made with a detector relo-
cated in the plane normal to that of positions 1, 2 and 3.

This technique is applicable to underground and under-

water direction finding as well as to other types.

In-Situ Measurements of Acoustic
Absorption Coefficients

When designing special acoustic environments such as
broadcasting studios or concert halls, the acoustics engi-
neer often finds it necessary to determine the sound ab-
sorbing powers or acoustic absorption coefficients of the
materials (e.g., walls, ceilings, furniture, etc.) which make
up the buildings. The conventional measurement technique
requires that the material or item under test be placed in a
special chamber, but this is sometimes an expensive or even
impossible task in the case, say, of a wall! Further, results
obtained by this method are often inconsistent. Correlation
can be used to provide rapid, consistent measurements for
the values of absorption coefficients of materials in their
normal environment. In the in-situ test shown, sound from
the loudspeaker can reach the microphone via many paths
of different lengths, and the sound takes different times to
traverse these paths. If the input to the loudspeaker is cross-
correlated with the microphone output, the first correlation
peak on the 3721A display indicates the shortest sound path
(path 1), the second peak indicates the next shortest path
(path 2}, and so on. For measurement of the acoustic absorp-
tion coefficient of the panel under test, only the relative
amplitudes of the sounds from paths 1 and 2 are of interest.
The amplitudes can be read directly from the first two peaks
of the correlogram and from this information the acoustic
absorption coefficient of the panel can be determined rapidly.
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Crosscorrelation of Electromyograms

The electromyogram (EMG) is a record of muscular elec-
trical activity, which can assist in the diagnosis of nervous
and muscular diseases. When detected by a needle elec-
trode, the EMG consists of a series of pulses representing
the electrical activity of the muscle cells in the vicinity of the
electrode. A useful measure of fatigue or disease in a mus-
cle is the extent to which the cells fire independently of
each other. The crosscorrelogram of the two EMG's from a
muscle will show whether the cells are tending to fire
together or randomly. The diagram contrasts the cross-
correlogram obtained from a healthy subject with that ac-
quired from a patient suffering from the aftereffects of
poliomyelitis. With the healthy subject, the crosscorrelogram
of signals 1 and 2 shows independent firing of the cells
when the muscle is relaxed, with correlation increasing as
the muscle contracts on load. Where the patient is suffering
from the aftereffects of poliomyelitis, this correlation is
prominent even in the relaxed state of the muscle, and it
increases rapidly on load as the muscle becomes tired. The
crosscorrelogram displayed by the Model 3721A is, there-
fore, a useful guide to muscle condition.

Measurement of Torsion in Rotating Shafts

Correlation technigues can be used to measure torsion
in a power transmission shaft under operating conditions,
by accurately detecting a change in phase angle between
the output signals of transducers placed at either end of the
shaft. In the example illustrated, the twist in a long trans-
mission shaft is being measured. Magnetic pickups are
placed adjacent to the universal joints at the ends of the
shaft so that when the shaft rotates each pickup produces a
train of regular pulses with period proportional to the shaft
speed. Crosscorrelation of the pickup output signals yields
a correlogram whose peaks are spaced T (seconds) apart,
T being the pulse repetition period. If a load (torque) change
occurs, the phase angle between the output signals of the
pickups will change resulting in an overall movement = of
the displayed peaks. This change 7 will give a measure of
the shaft twist and hence of the torque it is transmitting.
This technique can be applied to any situation in which large
powers are being transmitted along rotating shafts.

Contactless Velocity Measurement

Measurement of the velocity of steel strip or sheet from a
rolling mill is a difficult problem when the metal is cold,
but when the metal is white hot, the difficulty is increased
greatly. Contactless measurement of the velocity is possible,
however, using a crosscorrelation technique. The technique
is illustrated in the diagram. When metal is rolled, its surface
is not perfectly smooth and any irreqularities will affect the
output of a photocell which is focused on the surface. After
a finite time, each irregularity will pass the focusing point of
a second similar photocell placed downstream from the first
one. Crosscorrelation of the two photocell output signals
using the 3721A Correlator will indicate the time delay T.
directly. If the photocell separation d is known, the velocity
v of the strip or sheet leaving the rollers can be determined
simply from:

1
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Speech Research

Amang many topics of current interest in the audio field

which demand more precise basic knowledge of human
speech are the reduction of speech bandwidth for telecom-

munication purposes, the education of the deaf, and the
provision of man-computer interfaces which speak human
languages rather than machine languages. Although spec-
tral analysis is a well-established tool for characterizing
audio signals, correlation techniques, which present the
same information in the time domain, are often more useful
where speech is concerned. Using the 3721A Correlator,
the autocorrelation of speech signals can be performed very
simply. The two photographs show the autocorrelation func-
tions of two common speech sounds: ‘e’ as in ‘tree,’ and ‘o’
as in ‘mole.’ These functions were obtained within seconds
from direct speech into a microphone connected to the
Model 3721A.

Radio Astronomy

The detection of very weak and very distant radio sources
in space is carried out by high-gain radio telescopes. These
telescopes are extremely sensitive to interference from ran-
dom electrical disturbances, which tend to mask the small
signals of interest. However, in some cases —e.g., pulsars
— the signals of interest are periodic, and by using the
Model 3721A and autocorrelation techniques, the periodic
component of the received signal can be extracted from the
noise. The method is based on the principle that, after an
appreciable delay, the autocorrelation function of the noise
component will have died away to zero, but the periodic
component will have a periodic autocorrelation function
which will persist at all delays. A simple detection system is
illustrated in the diagram. There are no theoretical limits to
the autocorrelation method. Any periodic signal can be de-
tected in the presence of noise. Besides radio astronomy,
this technique can be used in many other branches of re-
search—medical, acoustical, vibration and communications.

Determination of Noise Transmission Paths

Unwanted noise and vibrations often travel to the ear of
the hearer via several different paths. If these paths can be
determined, steps can be taken to minimize or eliminate
their effects. Correlation techniques can be used to determine
noise transmission paths. For example, in the automobile
industry it may be desirable to determine the noise trans-
mission paths from the front axle of a car to the driver. This
can be done by placing a transducer on the axle and a
microphone inside the car in the vicinity of the driver's
head, and crosscorrelating the outputs of the transducer
and the microphone. In the example illustrated, the noise
from the front axle is transmitted primarily through the steer-
ing column (path 1) and via the floor and driver’s seat (path
2). The correlogram displays two peaks with time delays
representative of the individual transmission path delays.
Examination of the amplitude of the peaks will give a meas-
ure of the relative amounts of noise transmitted by each path.
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