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APPLICATION NOTE 140-0

Fourier Analyzer
Training Manual

Summary of this Manual
This manual first describes some typical applications of the Fourier Analyzer, such as
analysis of: ship sounds, vibrations in engines and Wing structures, brain waves, echoes from
underground test explosions in oil research, etc. Then it shows how data is processed by
pressing keys on a keyboard, and how individual mathematical operations can be linked to-
gether from the keyboard, to form programs. A power spectrum program is described, for
detecting signals buried in noise. The transfer function and coherence function used in sys-
tems analysis are explained. The last section of the manual is an extensive discussion of the

mathematical background of the Fourier Analyzer.
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SECTION |

What is a Fourier Analyzer?

Typical Applications
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AMPLITUDE

WHAT IS THE FOURIER ANALYZER?

An instrument that can break down any input that varies with time, and
show its component frequencies. R does this digitally, which means it is
more accurate and more flexible than analog machines such as the spec-
trum analyzer and wave analyzer. It is faster than wave analyzers and
faster than most spectrum analyzers. Main feature is a Keyboard on which
the user can punch keys for a variety of mathematical functions to be per-
formed on the frequency data. No knowledge of programming is required.

.,

Signal Analysis — Civen the Input,
to Find the Frequency Components.



WHAT ARE SOME TYPICAL APPLICATIONS?

Sonar

Submarine listens to sounds in water, uses Fourier Analyzer to calculate
power spectrum of sounds, showing their component frequencies and am-
plitudes. Then compares this measured spectrum to a set of standards or
ideals for particular objects, determines if object heard is surface vessel,
school of fish, whale, or other submarine.

Underwater Acoustics — Analyze Under-
water Sound, Determine if Object is Sub,
Whale, etc. If Sub, whether Friend or
Enemy.
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Vibration Analysis — Determine Condi-
tion of Engine by Looking at Frequency
Components. Power Spectrum Is Used
Here.

Systems Analysis
POWER SPECTRUM

Put transducer on automobile engine, use power spectrum to determine
frequencies present; compare against known healthy pattern of frequen-
cies. The power spectrum can be measured in orders of engine RPM for
a spectrum that is stable even if the speed changes.

TRANSFER FUNCTION

Or put transducers at two points in a system (typically input and output)
and determine the transfer function between the two points. That is, deter-
mine how output is related to input. For example, test model of airplane
wing using shake table vibrations as input, wing vibrations at certain point
as output,

FREQUENCY COMPONENTS
OF VIBRATION

{IN TERMS OF
ENGINE RPM)

TACHOMETER

HEALTHY PATTERN

@



COHERENCE FUNCTION

To test validity of transfer function over the frequency range, calculate
coherence function. This function gives relative indication of causality
between output and input. Low value at any frequency indicates transfer
function may not be accurate at that frequency.

OTHER APPLICATIONS

Other typical system analysis applications: determining transfer function
between front wheels and steering wheel of car; determining filter re-
sponse; determining transfer function of body organs, and many others.

Vibration Analysis — Obtain Transfer
Function of Model of Airplane Wing
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Oil Research

Fire small explosion on surface of the earth, have shock-sensitive trans-
ducers in ring around the explosion, record resulting vibrations in trans-
ducers, analyze in Fourier Analyzer to determine kind of echoes present.
Certain echoes indicate oil.

/—TRANSDUCER

et s 50



Educational

Use instrument to demonstrate math functions such as Fourier transform,
power spectrum, cross power spectrum, correlation, convolution, trans-
fer function, coherence function, characteristic function, various weighting
functions such as Hanning. All math operations available at Keyboard;
easy to go from one to the other, show effect of changing variables, etc.




WHAT HP INSTRUMENTS IS THE FOURIER ANALYZER SIMILAR TO?

Wave Analyzer and Spectrum Analyzer

In a wave analyzer, we take a time input, then manually sweep a filter
across it to determine the frequencies present.

large amount of energy present at that frequency.)

In a spectrum analyzer, the frequencies for a given scanwidth are dis-
played simultaneously on a scope screen.

tronically across the input.

Both these instruments are analog devices.

What is the difference between the Fourier Analyzer and these?

It is digital, not analog. This means that it is much faster than a wave
analyzer or spectrum analyzer over its frequency range of dc to 25 kHz.

AMPLITUDE IS
READ HERE
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FREQUENCY

HP’s 310A Wave Analyzer — Tune
Across a Frequency Band, Note the
Amplitude at Each Frequency.

beed

FINE
J/

Ve

TUNE FREQUENCY HERE

HP’s 8552/8553 Spectrum Analyzer —
Frequency Components for Entire
Scanwidth Are Displayed Simultaneously.

FREQUENCY
(-

AMPLITUDE IS
READ HERE

CENTER FREQUENCY

SCANWIDTH
Y, \{

v

TUNE FREQUENCY HERE

(Large amplitude equals

Here, the filter is swept elec-
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Analog devices are slow at these lowfrequencies due to the physical char-
acteristics of filters. When we get into math operations like averaging,
correlation, convolution, power spectrum, etc., the analog instruments
either can't do them, or if they can, they require cumbersome attachments,
or a separate box for each function. On the Fourier Analyzer, the func-
tions are available simply by pressing keys. Thus, the Fourier Analyzer
is much more flexible than analog or special purpose systems, No special
add-on's are needed for a wide variety of functions.

Finally, a selection of inputs and outputs are available which are not all
possible with analog devices:

e Input analog, paper tape, digital mag tape,
manual entry of data via Keyboard,
entry from remote computer

e Output scope display, paper tape, digital
mag tape, decimal number printout,
external plotter, external scope, re-
mote computer

SPECTRUM MATH
FUNCTION DISPLAY
HERE

PUNCH UP SPECTRUMS,
MATH FUNCTIONS HERE ——

PHOTOREADER FOR
PUNCHED TAPE INPUT-

/

CALIBRATION FOR
SCOPE DISPLAY

DECIMAL PRINTOUT
OF RESULTS

1-9
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SECTION 11

How the Fourier Analyzer Works

A Guided Tour of Some Basic Operations
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HOW FOURIER ANALYZER SYSTEM WORKS

As shown in Figure 2-2, data can be entered into the Fourier Analyzer:

through the Analog-to-Digital Converter (ADC)
as punched paper tape through the Photoreader
from digital mag tape

from digital mag disc

manually by pressing keys on the Keyboard

directly from a remote computer

Once the data is entered, it is stored in a data block in the Computer as
shown in Figure 2-1. 1t is then ready for processing operations—Fourier
transform, power spectrum, manipulations with data in other blocks,
automatic routines, etc.—as called for from the Keyboard. The results of
these operations are always displayed on the scope. In addition as shownin

Figure 2-2 they can be:

Fig. 2-1 Concept of Analyzer Memory —

Each Point on the Screen Is

Determined by One Data Word.

N Data Words = One Data

Block. N Can Be 64, 128, 256. ..

printed out in decimal numbers on the Teleprinter
put on digital mag tape

stored on mag disc

sent back to a remote computer

punched out on an optional paper tape punch

plotted on an optional plotter

displayed on an optional external scope
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MANUAL DATA INPUT
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REMOTE COMPUTER
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PAPER TAPE READER

Storage and Processing

DIGITAL
MAG TAPE

in the Fourier Analyzer.

Fig. 2-2  Input, Processing, and Output
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HOW THE ANALOG-TO-DIGITAL CONVERTER WORKS

Time Domain

As shown in Figure 2-3, the ADC samples the continuous analog input.
Eachsample becomes a digital word, stored in memory for later processing
(e.g., conversion into the Fourier transform). The sampling parameters,
or in other words, the time domain parameters are:

At — the time between samples, called the "sample interval.”
(A TIME on the ADC panel).

N — the number of samples taken; this is the data block size
(BLOCK SIZE on the Keyboard).

T — the total time of the sample record, also called ""total record
length”. (TOTAL TIME on the ADC panel). From Figure 2-3
it can be seen that:

total record length = no. of samples x sample interval

T = N b4 At

ORIGINAL ANALOG
INPUT

SAMPLED ANALOG
INPUT

e

| IR
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AMPLITUDE ' AMPLITUDE

FOURIER TRANSFORM
OF SAMPLED INPUT:
SINE, OR IMAGINARY, VALUES

FOURIER TRANSFORM
OF SAMPLED INPUT:
COSINE, OR REAL, VALUES

\

N - ) N J
N v

DC + (N/2) FREQUENCY POINTS, Af APART (N/2) — 1 FREQUENCY POINTS, Af APART

Fmax = (N/2)(af)

Fig 2-4 Frequency Domain.

Frequency Domain

Once we perform a Fourier transform, there is a similar set of param-
eters in the frequency domain, as shown in Figure 2-4.

Af—the number of Hz between frequency points, or, as more fa-
miliarly known, the frequency resolution, Origin of display
is 0Af (DC component, on real (cosine) displays only); next
point is 1af (fundamental frequency); next point is 2af (first
harmonic); next 3Af (second harmonic), etc. Frequencies be-
tween the harmonics will not show. To make them show, a
smaller Af must be used (but there are limits to this, as ex-
plained on page 2-6 ). Af on the ADC panel is called AFREQ.

N/2—the number of frequency points: this is half the block size,
or N/2, because the frequency information is broken down into
two displays; real or magnitude (depending on MODE switch
setting), and imaginary or phase (depending on MODE switch
setting).

Fnax—the maximum frequency of the display, or in other words, the
bandwidth. (MAX FREQ on the ADC panel.) From Figure 2-4,
it can be seen that:

X . _ . frequency
maximum frequency = no. of frequency points x resolution

@ Fax = N/2 X af
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#

At

Fig. 2-5 How Time and Frequency
Domains Are Related.

The time and frequency domains are related as shown in Figure 2-5.

sample interval = reciprocal of 2 times the maximum frequency

1

At = p) -

frequency resolution = reciprocal of total record length

1
Af = T

This means that changing one parameter will change the others.
Table 2-1 summarizes the equations above, andis also given in the Fourier
Analyzer operating manual so that the user can obtain the best trade-off on
the parameters he is interested in.
For example, suppose the user must have a 1 Hz frequency resolution
(af) and at the same time wants a 5 kHz maximum frequency (Fpax). He
goes into Table 2-1 at line 3.

af =1

In the last column, he sees that the equation relating frequency resolution
(af) and maximum frequency (Fpax) is:

Fmax = (N/2) Af

So:

5000 = (N/2) x 1
N = 10, 000
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But the largest block size in the 8K Fourier Analyzer is 1, 024, and in the
16K is 4,096. So a block size of 10, 000 is impossible. Something has to
give. Suppose the user is willing to settle for a lower maximum frequency.
Assuming he has an 8Kmachine, he will enter the largest block size avail-
able, 1,024, in the Fp 3% equation, because this will give him the largest
possible Fyygx:

Frax = 1,024/2 x 1

Frax = 512 Hz

If the user wants a 1 Hz resolution on an 8K machine, he must settle for
a 512 Hz maximum frequency. Of course, if he needed the 5 kHz maximum
frequency, he could have obtained it at the expense of some frequency
resolution.

This is thekind of manipulation of ADC parameters which the user must be

able to do. The parameters are set with the SAMPLE MODE and MULTI-
PLIER switches on the ADC, plus the BLOCK SIZE key on the Keyboard.

Table 2-1. Selecting Values for Data Sampling Parameters

Then make either of
Chosen parameter the remaining two
Choose convenient automatically fixes parameters (can't be
round number for the value of parame- both) as close as pos-
parameter shown. ter below, because sible to the desired
of relationship in value by choosing N*
parentheses. in the relationships
shown.
1 T (T = Nat)
1 at F nax (Fmax - TA_{) 1
1 T (T = NAt)
2 F At At = I
i max af (Af -1
= N_At>
at (At S )
1 N
3 Af T (T =A—f> ( N )
= = Af
max\ max 2
at(at= g )
1 N
4, T af (Af - T) N
= E . Af)

*N, the data block size, is always a power of 2,

2-7



A GUIDED TOUR OF SOME KEYBOARD FUNCTIONS

A
The following guided tour explains some of the main concepts involved in ﬁ
using the Fourier Analyzer. It does not cover all keys and switch settings, .
since doing so at this point would obscure the presentation of essential
ideas.

Coordinates

Since every display on the Fourier Analyzer is in one set of coordinates or
another, it is best that we understand these right at the outset.

In Figure 2-6 is a rectangular pulse and its Fourier transform, consisting
of a real, an imaginary, and a complex display. Each of these displays is
actually a different view of the same thing, as shown in Figures 2-6 and 2-7.

The spiral actually curves around the frequency axis, as shown in the com-
plex plot in Figure 2-7, which is an end view.

INPUT PRESS OUTPUT

u‘lh;

REAL/MAGNITUDE y ". N ; ; s ) .
ﬂ\> - f‘.m": i =y e : ‘; Q

C (O -l

Fig. 2-6 Rectangular Pulse and
its Fourier Transform.




Fig. 2-7  Fourier Transform of Rectangular Pulse.

2-9
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Rectangular coordinates, in which the machine normally operates, look at
the real and imaginary planes cut by the spiral. Of course, other Fourier
transforms are not spirals—only those for a rectangular pulse-but the ar-
rangement of planes is always the same. Another view of the situation,
taking one frequency point only, is given in Figure 2-8.

Polar coordinates are obtained by pressing POLAR then ENTER, and they
are illustrated, for the same frequency point, in Figure 2-9. Here we are
looking at the radii of the spiral (the lines). If we flip the MODE switch to
phase, then their angle, or the phase of the frequency point, is shown.

ff@z

IMAGINARY
IMAGINARY
]
I_
VALUE OF
REAL COMPONENT
- ICIA RCLIM ‘.,qﬂ 4 _____ +— / - REAL
| l‘ ‘llm“‘ M VALUE OF 1
; : IMAGINARY I
2 COMPONENT i
e I AN
COMPLEX
VALUE OF
1 POINT

v3y

JANLINDVYIN/TVIY

Fig. 2-8 How a Single Frequency Point
is Shown in the Real and Imaginary
Displays. (Fourier Transform is that
of rectangular pulse in Fig. 2-6.)




The user chooses rectangular or polar coordinates depending on his re-
! quirements for the particular experiment he is running. Needless to say,
both always show the same information.

To get back from polarto rectangular coordinates, the user presses RECT
and ENTER.

With the coordinate sets behind us, we are now in a position to consider
some of the basic keyboard functions.

QA
?.
D
o
Nl
N\
\QQ\
\‘\,
<
2
v
QQ‘
(o]
O
5
fD S
%
(o]
/\%Q
e
¢ N
%
@

Shown in the Magnitude

@ Fig. 2-9 How the same Point is
and Phase Displays.
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INPUT

Fig. 2-10 DC and Sine Wave Inpuis.

DC Input

A DC input in the time domain appears as shown in Figure 2-10. If the
user then presses F and ENTER, the Fourier transform of the DC input
will appear. It is a single vertical line on the zero axis of the real (cosine)
frequency display. The transform of the DC input is not shown on the im-
aginary display-that is, the zero axis of the imaginary display is always 0.

Sine Wave Input

If the user has a pure sine wave input, as shown in Figure 2-10, and again
goes for the Fourier transform by pressing ¥ ENTER, he will get O for the
real part display, and a single vertical line, either above or below the
horizontal axis, for the imaginary part. (This assumes that the input sine
wave is "periodic in the sampling window'", a concept explained in Section
3.) ¥ part of the sine wave is cut off, as viewed on the scope, then the user
gets some smaller lines on the side of the main line in the imaginary dis-
play, and possibly some additional lines in the real display. Section 3 has
the story on this.

PRESS OUTPUT

7 7]
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REAL/MAGNITUDE
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All sine (imaginary) lines are 180° out of phase with the original input,
because of the nature of the Fourier transform. This is why the line points
3 down, instead of up, in Figure 2-10.

Cosine Wave Input

A pure cosine wave input, shown in Figure 2-11, gives a single vertical
line for the real part display (in phase with the original input, hence
pointing up in the Figure), and 0 for the imaginary part.

Rectangular Pulse Input

Now let us take a look at the rectangular pulse input we used to explain the
coordinate systems. Figure 2-11 shows the pulse. Press F and ENTER
and we get the familiar attenuated sinusoidal curve (which is actually the
curve: (sinx)/x, = sync x). Switch to imaginary, we see the sine plane
version, Switch to complex, and we see the end view of the spiral, which
we saw back in Figure 2-7.

PRESS OUTPUT
[ fl oo
(" S/ —————— N .
REAL/MAGNITUDE l
e "“".'“"'"W"“‘“f

!

[

Fig. 2-11 Cosine Wave and Rectangular
Pulse Inputs.
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INPUT

Fig. 2-12 Views of Fourier Transform
of Rectangular Pulse.

Press POLAR and ENTER and we see the magnitude display, and, switch-
ing to the phase display, the phase. (Understand that what this phase dis-
play shows is that the first point of the spiral is right on the cosine axis of
Figure 2-7, the second point, (or line, or frequency) is a little below, the
third a little more below, etc. around to -180°, whereupon the next loop
of the spiral begins with the frequency line slightly above the cosine axis,
then curves down and around as did the previous loop, etc.)

Suppose the user wants the vertical axis now to be logarithmic instead of
linear. He presses LOG ENTER and there it is, as shown in Figure 2-13

PRESS OUTPUT

IMAGINARY/ {8
- 2 st

REAL/MAGNITUDE

)

m“““uh,...muu‘




(this converted the magnitude display to logarithmic in the vertical direc-

tion). H the user wants the horizontal axis to be logarithmic too, he sets
a switch on the display panel and gets the display shown.

To get back out of the rectangular log, polar log, or polar linear display,

he presses RECT then ENTER.

INPUT

Fig. 2-13 Further Views of Fourier
g Transform of Rectangular

Pulse.

PRESS OUTPUT

/\ IMAGINARY/ [
fi PHASE

/

LOG

ENTER
——

MAG
"N

REAL/MAGNITUDE

LOG
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Power Spectrum

We come now to an important function for detecting signals in noise, and 6‘
we will consider it at some length. Suppose a signal generator and a noise '
generator are hooked up as shown in Figure 2-14. The user obtains the

Fourier transform of the combined signal and noise input by pressing F

and ENTER, as shown in Figure 2-15. Then he presses MULT* and

ENTER. (MULT* is the conjugate multiplication key, which is explained

in Section 3.) The result is called the power spectrum, and, as can be

seen, it may have a peak at the frequency of the signal, if the amplitude

of the signal is large compared to the amplitude of the noise.

In real life, of course, the signal may be very small, and would not appear
above the noise, This is where the programming abilities of the Keyboard
come into prominence. Repeated samples of the input can be taken and the
power spectrums can be added together over and over again so that even-
tually the signal, which is always at the one frequency, rises above the
noise, which is random for all frequencies.

SIGNAL GENERATOR

NOISE GENERATOR

Fig. 2-14 Set-up for Power Spectrum —
Averaging Will Cause Signal to
Rise Out of Noise.
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Fig, 2-15 Obtaining the Power : /_\
Spectrum. i IMAGINARY/ B8
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N

REAL MAGNITUDE

POWER SPECTRUM

The Power Spectrum Program

The next three pages show the keys the user would press, what happens,
and how this appears in the data memory, in developing a programmed,
averaged power spectrum. In brief, what the program is doing, is this:

1. taking N samples of the data 4. adding the resulting power
(i. e., one record) and storing spectrum to the previous sums
it in a data block. of power spectrums in another

data block.

2. doing a Fourier transform on 5. repeating this 32 times, then

this data. dividing the final power spec-

trum by 32, to get the average.
3. conjugate multiplying the trans- ram by 94, to get the a8

form of this data. 6. displaying the result.

After such a process, even a weak signal will rise above the surrounding
noise, as shown in Figure 2-17, and be detectable.
Before running the program, refer to instructions on page 2-20.

2-17



218

COMMAND MEANING ACTION IN DATA MEMORY

Replace any existing
commands in the
program memory
with the following
program,

Clear block 1 of any
residual data.

This allows the start-
ing point of the pro-
gram to be identified.

Analog input (noise
plus possible signal)
to data block 0, dis-
play data block 1.
Samples of the input
will then be taken at
intervals set by con-
trols on the Analog-
to-Digital Converter

7 Z 7
ANALG (ADC), converted to
l l } I SPACE digital words, and
QP ——— QN sent tothedatamem-

ory (block 0) for

processing per suc-
ceeding commands.
Block 1 will be dis-

played because it is
the block where the
cumulative sum of
previous power spec-
trums will be stored.
User can thus ob-
i serve sum building

up.

.
\|
N——— g
N\

Take the Fourier
transform of blockO.

4 4 4 The result is a set of
n ENTER real (cosine) and a
— set of imaginary

(sine) values in the
frequency domain.




COMMAND

MEANING

ACTION IN DATA MEMORY

7/
I ENTER.

Pushing power spec-
trum * performs the
following:
Conjugatemultiply
block 0 with itself.
Each spectral line is
thus multiplied by its
own complex conju-
gate, making each
spectral line's value
equal to the power at
that frequency.

Power spectrum =

{an *ibp)(ap —ibp)

Add block 0 to block
1. This adds the data
in the current power
spectrum, stored in
block 0, to the sum
of all past power
spectrums, stored in
block 1. The new
sum is stored in
block 0.

Transfer the result
of the addition to
block 1. On the next
pass, this sum will
be added to the new
spectrum in block 0.

COUNT SPACE

N
l \
N\ —

N\
N
l\

|

N

ENTER

N
l'

\

N\
N

N\
.

|

This step directs the
program back to label
1so that another rec-
ord canbetakenfrom
the ADC, the power
spectrum computed
and added to block 1.
This process is re-
peated 32 times.

2-19
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COMMAND MEANING

ACTION IN DATA MEMORY

After the STORE
command, two steps
previous, the data in
block 0 and block 1
arethe same (a char-
acteristic of how the
data is handled).

4

’ The + command di-

: SPACE vides the data in
/T N

block 0 by 32 to yield

Z the average value.
(Data in block 0 and
2 l block 1 are of course
——— "the final cumulative
sum of the power
spectrums. The re-
sult of the division,
i.e., the average
power spectrum, is
displayed on the
scope.)

4 This step identifies
the end of the pro-
gram to the Analyzer.

'Y 'Y Identifies the end of
TERM the programming
mode of operation to

AR

the Analyzer.

Before the Power Spectrum program above is operated, the ADC controls
should be set as required to handle the input signal. The SAMPLE CON-
TROL settings are determined by the signal's frequency content, and the
OVERLOAD VOLTAGE is set so the OVERLOAD VOLTAGE indicator
doesn't light when the Analog Input operation is performed.

To make a quick check of ADC switch settings, connect the signal and
noise to the ADC input, set REPEAT/SINGLE to REPEAT, and press

/ /
ANI‘;‘J-G I ENTER
N\

to begin continuous Analog Input operation. Change the ADC control set-
tings, if required.

Set REPEAT/SINGLE to SINGLE. Press

71 71 Z
' JUMP l- l ENTER
Anmmmm—m——. | . TAnsm— !A~ '

to begin operation of the Power Spectrum program above. The program
will run to completion.
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Fig. 2-17 Power spectrum display.

The program described on the previous pages pro-
duced the above display. The signal can clearly be .
seen above the noise.

The amplitude of the signal is read in accordance
with the digital scale to the right of the scope. In this
case, each vertical division on the scope is:

2x107%% = 2 x 107! - 0. 2 volts squared
(because this is a power spectrum)

Thus, we can see that the amplitude of the signal is
about 0.7 volts squared. The SCALE switch on the
upper right permits expanding or contracting of the
display in the vertical direction: the digital scale
changes with it so that the scope can always be read
accurately.

Note that the digital display also shows we are look-
ing at the FREQuency domain, in RECTangular
coordinates.

The frequency is determined from the SAMPLE CON-
TROL switch settings on the ADC. SAMPLE MODE
switchgivesunits; MULTIPLIER gives values. Units
and values are tied together by color. Thus here,
black "us" and black "100" go together: this says

that the input was sampled at 100 us intervals (At =
100 psec). Likewise, blue "kHz" and blue 5" on
these same switch positions go together, meaning
that the maximum frequency (Fy,,%x) is 5 kHz, i.e.,
the horizontal scale on the scope is 0 to 5 kHz.

Rough frequency approximation -- scope is 10 divi-
sions across, signal is almost on first division means
signal has approximate frequency of 5kHz/10 =500 Hz.

Precise frequency -- use equation from table on page
2-7 (line 3):

Frnax = (N/2) - Af

F
max

Sl (75)]

Here we can see fromthe Keyboard that the N (BLOCK
SIZE) chosen was 128, so

5000 _ 5000 _
Aaf = 198/2 ——6-4——78.0HZ

Now the first spike on the scope display is DC; coun-
ting beginning with the second, we see that the signal
is the sixth spike. Six times 78.0 Hz is 468 Hz, Fre-
quency of the signal is 468 Hz.



How the Correlation Function Works

The Correlation Function presents the same information as the Power
Spectrum; the difference is that Correlation is used in the time domain,
while Power Spectrum is used in the frequency domain.

In the Power Spectrum example above, for instance, the final display (Fig—
ure 2-17). shows the frequency domain presentation of the signal-plus-
noise input, and allows easy calculation of the single frequency of the sig-
nal. Correlation of this same input signal in the time domain would result
in a display that would show a periodicity equal to the period of the signal
(note that the correlation waveform would not necessarily be the same as
the signal's waveform).

The two types of correlation are defined by the number of inputs being cor-
related. In auto-correlation, a single signal is applied to the correlator
input(s) and with itself; any periodicity in the input would be indicated by a
repetitive pattern, having the same period, in the display (see note in pre-
vious paragraph). In cross-correlation (as in cross power spectra), two

separate signals are compared; the correlation function will indicate points
of similarity.

As mentioned above, auto-correlation of a single input can be used to de-
termine whether it contains any periodic components, and what the period
of the signal is; for a single-frequency signal, the frequency can be calcu-
lated as 1/T, where T is the period. Cross correlation can be usedtode-
termine the time delay between two signals (for example, stimulus and
response) in a noisy environment; this technique is being used extensively
to gain insight into the functioning of the brain.
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Power spectrum and correlation functions present the same information in
two different ways:

time domain frequency domain
auto correlation (one input) power spectrum
cross correlation (two inputs) cross power spectrum

There is a correlation key (CORR) that gives the auto or cross correlation
function in one step, rather than going through the power spectrum. We
have gone through the power spectrum by way of helping the understanding.

Transfer Function

The transfer function is the mathematical description of a system, be that
system a filter, an automobile engine, a vibrating airplane wing, an organ
in the human body, or whatever. The transfer function can also be used to
measure the relationship between any two signals. It can be defined as:

Fourier transform of output

Transfer function = Fourier transform of input

or equivalently:

average cross power spectrum of input and output
average power spectrum of input

Transfer function =

Since phase information is important, the first method requires a time
synchronization. For this reason, and because averaging gives a more
reliable transfer function, the second method of calibrating the transfunc-
tion is more commonly used. A program to calculate the transfer function
automatically, using the averaging method, can be entered via the key-
board's POWER SPECtrum and TRANSfer FunCtioN keys. Section 4 has
more details on the mathematics of this function.

In real life, two techniques are used for obtaining the transfer function.
In the first, the input is swept with a wide bandwidth of frequencies (input
and output being plugged into the ADC as shown on page 2-25). This has
the disadvantage of requiring that the system be shut down from its normal
work for the purposes of the test—a distinct disadvantage if it is an aircraft
or missile servo system being checked in flight. The second technique
avoids this: Gaussian white noise of low amplitude is fed into the system
while it is operating normally. (Again, system input and output are con-
nected to the ADC as before.) Now the transfer function can be calculated
or checked without interfering with the operation of the system.
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Coherence Function

This can be used to check the validity of the transfer function. To put it
another way: it can be used to measure the degree of causality between
any two signals. The problem is this: when we compute a transfer func-
tion, we don't know if a) there were any extraneous inputs in the system,
and b) if the system is linear or not. Both of these would place in error
the transfer function computed.

Coherence function values range between "0'" and "1". A "0" value means
no coherence between input and output of the system (indicating that the
system may have extraneous inputs or may not be linear). A coherence
value of "1" means there is complete coherence between input and output
(indicating that there is only one input and the system is linear).

SYSTEM
input — = Output
Extraneous
inputs?
( ANSWER WITH
. THE COHERENCE FUNCTION!
System

non-linear?
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Sampling Window Error
Aliasing
Conjugate Multiplication

Further Details on the N/2
Frequency Domain Points
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SAMPLING WINDOW ERROR

This results from an instrument, such as the Fourier Analyzer, assuming
that whatever sample it takes is in fact the periodic function being studied.
However, the transform will have erroneous amplitudes, plus side lobes
which can conceal low amplitude signals if the sample "window' was not
situated over the actual beginning and end of the periodic function.

FUNCTION PERIODIC FUNCTION NOT PERIODIC
IN SAMPLING WINDOW IN SAMPLING WINDOW
INPUT INPUT

FOURIER TRANSFORM - FOURIER TRANSFORM
(POLAR COORDINATES) {POLAR COORDINATES)

The Fourier Analyzer provides a function, called Hanning, to correct this.
Looking at the polar display (of function not periodic in window), there is
no indication that more than one signal may be present. Yetafter Hanning,
it is suddenly quite clear that an additional signal of lower amplitude is
present, as shown below. Amplitude uncertainty caused by sampling win-
dow error or leakage can also be minimized via Hanning.

AFTER HANNING
(LOG DISPLAY)
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ALIASING

Aljasing is a problem that develops if you set the ADC's SAMPLE CON-
TROLS for a certain maximum input frequency (MAX FREQ or Fmax),
and thenfeed indata which contains frequencies that are higher than this *
setting. The highier frequencies will "fold back'', appearing as lower
frequencies, within the range of the display -- thus the input will appear to
contain frequencies which, in fact, are not there at all.

Refer to the illustration below and you should be able to see how, witha
MAX FREQ setting of 2 kHz, a frequency of 2.2 kHz will show up at the
1.8 kHz" position in the display.

Aliasing is not a fault of the Fourier Analyzer itself, but is a direct result
of the sampling theorem and is common to all digital signal analyzers.
You can avoid aliasing by making sure that the MAX FREQ you set is high-
er than the highest frequency in the data at the Analyzer's ADC input; if
necessary, or desired, a low pass filter can be connected before the input
to limit the frequencies it receives.

> &
Q9
Z 0O
W o
3z
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2 kHz 4 kHz 6 kHz
(Fmax) (2F prax) {3F max!

ACTUAL INPUT FREQUENCY

THUS 2.2 kHz will be seen as 1.8 kHz
4.0 kHz will be seenas 0 kH:

etc.

ERRONEQUS READINGS! To prevent,
set Fy,q higher than the highest
frequency in the data.
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CONJUGATE MULTIPLICATION (MULT® KEY)

We can describe a frequency point in the Fourier transform as a + ib, "a"
being the amplitude in the real display, "b" the amplitude on the imaginary
display, and "i" being +/-1. In conjugate multiplication, the a + ib of each
frequency point is multiplied by the a - ib of the same point.

The result is a2 +b2. These a2 + b2 values for all frequency points make
up the power spectrum. The conjugate multiply causes the loss of all
phase information (angle € disappears) because the power spectrum is
composed solely of real values (no "i" in a2 +b2). This can be seen by
switching the power spectrum display to imaginary, which should be all 0.

IMAGINARY

<
/

REAL

MULT* (conjugate multiplication):
(a+ib)(a—ib)=a2 +p2

2

A Point in the Power Spectrum

FURTHER DETAILS ON THE N/2 FREQUENCY DOMAIN POINTS

Whendata in a data block represent the values associated with a spectrum
or other function of frequency, they are stored differently than when they
represent a time series. A time series of N independent points results in
a frequency spectrum of N /2 independent frequencies.

In the Fourier Analyzer, N/2 positive frequencies (plus de) are computed,
stored, and displayed, from an N-point real time series. Each frequency
has two independent values -- a "real" (cosine) value, and an "imaginary"
(sine) value; the imaginary values for dec and Frmax are zero, and are not
stored. The actual arithmetic is as follows: There are N/2 positive real
frequency values, plus the value of de -- thus (N/2)+1 real points.

There are (N/2)-1 imaginary frequency values, since there are no imag-

inary values for dc or Fmax. Adding the number of real and imaginary
poiats together, we get:

(N/2)+1 + (N/2)-1 =N

poiats inthe frequency domain from N points in the time domain. We store
frequency domaindata in a N-word data block as follows: the real value of
dc is stored in the first location, the real value of fmax is stored in the
second location, and the remaining locations are assigned in pairs to the
data for the remaining frequencies. The data stored for the remaining fre-
quencies depends on the mode selected; it willbe either real and imaginary

values, real values only (in double-precision arithmetic), or polar magni-
tude and phase values.



SECTION 1V

Fourier Transform Theory:

Mathematical Background
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FOURIER SERIES

We know that time functions are often conveniently interpreted by the an-
alysis of their frequency content. This approach is derived from the work
of French mathematician Jean Baptiste Fourier. Fourier discovered that
periodic time functions canbe brokendown into an infinite sum of properly-
weighted sine and cosine functions of the proper frequencies. The mathe-
matical statement of this discovery is:

o]

x(t) = a + }:1 a_ cos (zn—,l?t) +b_ sin (Z;nt) (4-1)
n=

where T is the period of x(t), that is, x(t) =x(t + T)

When the coefficients aj, and by, are calculated using the equations derived
by Fourier, the amplitude of each sine and cosine wave in the series is
known. Equivalently, when the coefficients a, and by, are known, the mag-
nituce and phase at each frequency in x(t) is determined, where

2 2
va + b
n n

is the amplitude at the frequency f,=(n/T), and tan~1 (b_/ an) is the cor-
responding phase. n

THE FOURIER TRANSFORM

The Fourier Series is a useful tool for determining the frequency content
of a time-varying signal. However, the Fourier Series always requires a
periodic time function. To overcome this shortcoming, Fourier evaluated
his series as he let the period of the waveform approach infinity. The
function which resulted is known as the Fourier Transform. The Fourier
Transform Pair is defined as:

o0
Sx(f) = / x(t) e i2mit dt (Forward Transform) (4-2)
-00
o0
x(t) = / Sx(f) e121rft df (Inverse Transform) (4-3)
-0
+27ft c . .
Where e = cos (27ft) + i sin (27ft), is known as the kernel of the

Fourier Transform.

Sy (f) is called the Fourier Transform of x(t). Sx(f) contains the amplitude
and phase information at every frequency present in x(t) without demanding
that x(t) be periodic.

From the foregoing discussion of Fourier Series and Transform analysis,

one sees that both of these techniques may be viewed as mathematical

filtering operations,
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THE DISCRETE FINITE TRANSFORM

The Fourier Analyzer utilizes a digital computer to calculate Fourier
transforms of time-varying voltage signals. We will examine the results®
of computing the Fourier transform digitally, considering the forward
transform,

s (1) = / x(t) e 127 4 (4-4)

In order to implement the Fourier transform digitally, one must convert
the continuous input signal into a series of discrete data samples. This is
accomplished by sampling (measuring) the input waveform, x(t), at certain
intervals of time. We will assume that the samples are spaced uniformly
in time, separated by an interval At. In order to perform the integral
(4-4), the samples must be separated by an infinitesimal amount of time
(i.e., At -» dt). Due to physical constraints on the analog-to-digital con-
verter, this is not possible. As a result we must calculate

n=+4o0

8.0 = At Z x(nat) ¢ 127 nat (4-5)

n=-c0

Where x(nat) are the measured values of the input function,

Equation (4-5) states that, even though we are dealing with a sampled ver-
sion of x(t), we can still calculate a valid Fourier transform. However,
the Fourier transform as calculated by (4-5) no longer contains accurate
magnitude and phase information at all of the frequencies contained in
Sx(f). Rather, Sy'(f) accurately describes the spectrum of x(t) up to some
maximum frequency (Fiax) which is dependent upon the sample spacing,
at. The determination of Fp,,x is discussed further on page 4-4,

In order to calculate 8,"(f), we must take an infinite number of samples of
the input waveform. As each sample must be separated by a finite amount
of time, one would have to wait forever for the calculation of Sy"(f) to be
completed. Clearly then, we must limit our observation time in order to
calculate a useful Fourier transform. Let us assume that the input signal
is 'observed' (sampled) from some zero time reference to time T seconds.
Then we have

T/at = N (4-6)

Where N is the number of samples, and T is the ""time window'.

We see that restricting the observation time to T seconds is equivalent to
truncating equation (4-5). As we no longer have an infinite number of
time points, we cannot expect to calculate magnitude and phase values at
an infinite number of frequencies between zeroHz and Fya%. Equivalently,
the truncated version of equation (4-5) does not produce a continuous spec-
trum. This discrete finite transform (DFT) is given below.

N-1
8, '(maf) = at E x(nat) e
n=0

~-i2mrmafnat 4-7)

Only Pericdic functions have such a 'discrete’ frequency spectra. There-
fore, equation (4-7) requires that our input function be periodic with period
T. Conversely, equation (4-7) assumes that the function observed between
zero and T seconds repeats itself with period T for all time.This assump-
tion is made whether or not x(t) is actually periodic. It is apparent that
the discrete finite transform, as calculated by (4-7), is actually a sampled
Fourier Series.

4-3



Note that there are N points in the time series and that, for our purposes,
the time series always represents a real-valued function. However, to
fully describe a frequency in the spectrum two values must be calculated
(i. e., the magnitude and the phase, or the real and imaginary part at the
given frequency). As a result, N points in the time domain allow us to
define N/2 complex quantities in the frequency domain.

If Fmax is the maximum frequency present in the spectrum, then

F . /(N/2) = of (4-8)

where Af is the separation of frequencies (referred to as resolution) in
the frequency domain.

SHANNON’S SAMPLING THEOREM

Shannon states that it requires slightly more than two samples per period
to uniquely define a sinusoid. In sampling a time function, this implies
that we must sample slightly more than twice per periodof the highest fre-
quency we wishto resolve. Translating Shannon's theorem into an equation:

1
o 4-9
Fnax < 2at (4-9)
For convenience, equation (4-9) will be written:
F =i (4-10)
max  2At

When using equation(4-10)one should remember that the maximum fre-
quency which can be accurately resolved is Fp,5x - Af.

Substituting (4-10)into (4-6) and employing (4-8) gives:

at=F . /(N/2) = (1/24t)/(N/2) = 1/Nat = 1/T

or

af = (4-11)

Hi-=

Equation (4-11), as a direct result of Shannon's Sampling Theorem, is a
physical law.

FREQUENCY AMPLITUDE

Let A, denote the peak amplitude of an input sinusoid of frequency f;,. In
the Fourier Analyzer, the discrete Fourier transform is implemented such
that the amplitude calculated for this fj, is Ap/2. Thus, the frequency am-
plitudes calculated by the Fourier Analyzer must be multiplied by a factor
of 2 in order to display peak amplitudes. Similarly, these amplitudes are
multiplied by V2 in order to display RMS values.
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USEFUL RELATIONS BETWEEN THE TIME AND FREQUENCY DOMAIN

It is appropriate to discuss certain relations between the two domains be-
fore we consider the more complex functions.

Convolution Theorem

given that Sx(f) = / x(t) e-i21rft at
and Sy(f) = / y(t) e-121rft dat

/ x(t) y(W-t) dt

where * denotes convolution, the Convolution Theorem states that

-i2wft

[x(t) * y(t)] e dt = S,(0) - 5,0

f—s

and conversely
o0
/ [Sx(f) x Sy(f)] 2™ 4 _ v(0) - v(o)
—00

Simply stated: convolution in one domain corresponds to multiplication in
the other domain.

Convolution, Digital Filtering

Consider the system:

x(t) I y(t) -

We know that the system output [y(t)]is related to the system input [x(t)]
and the system impulse response[ h(t)] by

y(t) =x(t) * h(t)

from the Convolution Theorem, we know that there is an equivalent
formulation:

Sy(f) = Sx(f) - H(f)

This second relation illustrates the manner in which convolution is imple-
mented on the Fourier Analyzer. H(f) can be a (digital) filter transfer
function, which may be manually entered via the keyboard. This process
of applying a known input to a hypothetical filter and observing the output
is very useful,

4-5



When we try to perform convolution in the Fourier Analyzer (via the DFT),
the Analyzer thinks that both x(t) and h(t) are periodic functions of period
T, as shown below (we will consider only the periodicity of x(t) for
convenience).

' x {t) ! !
P xq (0 xg (1) b xq () I xp (1)
; | :
] ¥ ]
1 t L
-T T 2T t
h(-t)
T t

As we envision the shifting of h(-t) along the t axis, it is obvious that the
value of the convolution integral is affected dramatically by the periodicity
of x(t). Next we examine, in more detail, the nature of the errors intro-
duced by the implied periodicity of x(t). In the Fourier Analyzer, the con-
volution is effectively computed with the limits (0, T), rather than (-, + ).
This is to say that we shift h(-t) by an amount T along the positive t axis.
If, in this shifting process, there are values of Y and { such that h(y-t),
xg(t) and x1(t) 'overlap’ and are all non-zero, error will be introduced into
our calculations. This error is known as WRAP-AROUND ERROR. From
the proceeding, it is clear that the amount of wrap-around error introduced
is dependent upon the record lengths of the waveforms in question. The
worst case, and the most common case, occurs when the non-zero record
lengths of both x(t) and h(t) are equal to T. In this worst case our convolu-
tion is completely distorted by wrap-around errors (see below).

x (1)
\'-—//‘: x_q(t) xg (1) ' xq () ' xp (1)
] t )
1 ) I
-T T 2T

We see that any shift of h(-t), no matter how small, will cause h(-t) to
‘overlap' simultaneously with xg{t) and with x{(t). In order to help rescue
ourselves from this situation, we do the following before we convolve:

1. If we are performing auto-convolution (i.e., the convolution
of a waveform with itself) we must store the waveform in two
locations.

2. We clear out each end of one of the waveforms by an amount
T/4 (in cross-convolution, either record may be cleared in
this manner; in auto-convolution, either of the two blocks
where the waveform is stored is cleared as indicated above).
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This process is illustrated below--where h.(-t) is the cleared function.

/@ x (t)

] ' :

: X_1(t) xg (t) : X 4 (t) I X9 (t)
g ?
’W 1 ‘/\/_/: :
! '
| E :

=T T 2T 1
h{-t)

0 T/4 3T/4 T

Now, as we shift h(-t), we see that the first shift of T/4 provides us with
valid data (no overlap). The next T/2 of shift provides us with invalid con-
volution due to the overlap of he, X, and x3. The final T/4 of shift again
provides us with good convolution data. The resulting convolution is valid
'on the ends', and invalid in the middle due to wrap-around error, as shown
below.

x (t)» hC {t)

‘N
0 T/4 3T/4 T
We see that, by forfeiting one half of one of our waveforms we gain T/2 of
valid convolution data.
This T/2 seconds of valid convolution data may be viewed as N/2 lags,
where each lag is of length At. In practice, the bad data (T/2 worth in the
middle) is usually cleared out so that only valid information is displayed.
The Auto Power Spectrum
The auto-power spectrum of a function x(t) is defined as:
Gyx = Sx(f) - Sy*(f)

All of the frequency components of Gxx are purely real and positive.
If Ap, represents the Peak Amplitude of an input sinusoid of frequency f,,
then the Fourier Analyzer displays Ap2/4.

TIME WINDOW '‘CONTINUOUS’ FOURIER . T

TRANSFORM OF TIME |sinc (xfT)|
1 WINDOW 1
[
%
T t —f % ! +f

1T UTIT
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It is now appropriate to view the frequency domain effects of the implied
periodicity of the DFT. As we are concerned with power spectral quantities,
the magnitude only of the transformed time window will be considered. The
slopes indicate side lobe '"roll-off" if plotted in log vs log format.

INPUT SINUSOLID OF CONTINUOUS FOURIER

FREQUENCY fO TRANSFORM OF INPUT
24, 1— T (An) 8 (F — )
/ N\ g
\/ \/ t f =
s = nAf

Fer simplicity, we will consider a single sine wave input, although this
analysis can be generalized to any input (because Fourier stated that time
functions could be represented by a sum of properly-weighted sinusoids).

When we take a look at a "sine wave" input to the Fourier Analyzer, we
are, in effect, observing a function that is a sine wave which exists for all
time multiplied by the Analyzer's time window of duration T (see curves
above). However, we know that multiplication in the time domain cor-
responds to convolution in the frequency domain (the convolution theorem).
As we are investigating the frequency domain effects of the DFT, it is con-
venient to interpret the effects of the time window multiplication as a con-
volution of the Fourier transform of the time window with the Fourier
transform of the true sine wave. These Fourier transforms are shown
above. It turns out that convolution of any function with a delta function is
a rather trivial operation. Specifically,

F(f) * 6(f-fg) = F(f - p)

In other words, when a function, F(f), is convolved with a delta function
which is non-zero at fp, the resultant of the convolution is the original
furction shifted by an amount fy. Considering the specific case of Sy(f) *
o(f - fs), where 8, is the Fourier transform of the window function, the
resultant is Sy(f - fg). The window transform is now centered about fg.
It is important to note that this convolution effectively takes place simul-
tareously with the multiplication of the time window and the sinusoid.
Even thoughwe cannot observe the results of this convolution until the DF T
takes us into the frequency domain, the convolution took place before the

DFT. When the DFT shows us the frequency domain we can only observe.

the results of this convolution at Af increments. It is as if we are looking
through a piece of paper with fine slits separated by a distance Af.

There are two basic situations to consider:

1. The sine wave has an integral number of periods in the window: That
is, if Ts is the period of the sine wave and n is an integer, then T =
nTg. We know that 1/Tg is fg, the frequency of the sine wave, and
1/T = af. Substituting these values into the expression T = nTg gives
fs = nAf. This means that, if the sinusoid has an integral number of
periods in the time window, its Fourier transform will lie exactly on
one of the lines in the frequency domain which we are capable of ob-
serving. The following illustration indicates the result of the convolu-
tion of |Sy/(f)| with an input sine wave of amplitude 2A;, and frequency
nAf--where n is an integer.



O I
Sy *Apdif—1

e

N A

e o] f

f. = nAf
Af

Now when we try to observe this result by taking the DFT we are only
allowed to view the convolution at Af increments. As a result, we see

/,//‘\i

Due to the location of the nulls of [Sy!, it turns out that the DFT of the
function which is the sine wave modified by the time window is the
same as the Fourier transform of the unmodified sine wave. As the
DFT assumes that what it sees repeats itself for all time, and as we
have demanded that this sine wave be periodic in the window, we
should not be surprised that the DFT and the Continuous Fourier
transform are equivalent for this case.

2. If the input sinusoid does not have an integral number of periods inthe
time window, the equation fg = nAf is still valid, however n is no
longer allowed to be an integer. Let us view the 'continuous convolu-
tion' in this case.

—
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When we take the DFT of this function we see the following

We see that the DFT of an input sinusoid which does not have an inte-
gral number of periods in the time domain will appear at more than
one frequency (although the actual location of fg is uncertain by less
thar: Af. The amplitude of the sine wave will be reduced from its true

value. This all occurs because the DFT thinks it is operating on a
function that looks like this:

x (t)

which is, clearly, not a sine wave.

We canrnot eliminate these problems entirely, however we can reduce many
of the leakage effects, and gain accurate amplitude information at the ex~

pense of less precise frequency resolution. We accomplish this trade-off
by using the Hanning window.

The Hanning window modifies the effective shape of the time window by
multiplying the window by the function 11/2 - 1/2 cos (2#t/T)} . The ef-

fective window then takes on the shape of this Hanning function. The new
window looks like:

\!



Note that this window eliminates discontinuities at the ends of the time

_ record.
{4@ To implement this Hanning window in the Fourier Analyzer, we multiply
- the Hanning window and the gated input wave. This multiplication of two,

time domain functions results in convolution in the frequency domain. The
convolution of the two time domain window functions is illustrated below.

TIME WINDOW WINDOW TRANSFORM
S
1 \O
o
T t —f 4] +f
HANNING WINDOW HANNING WINDOW TRANSFORM
+1/2

The result of the convolution of the two window functions is

—f 4————»!-——' +f

We see that the main lobe of our modified window function is widened and
fiattened, while the side lobes are greatly reduced in amplitude.

4-1



If we now view the convolution of this modified window transform and a
sine wave which is not periodic in the window, we have

e __{_A A, —6.02 VOLTAGE dB
UNCERTAINTY

We see that, while one Hanning attenuates the amplitude by 6.02 dB, the
uncertainty (unknown amplitude error) of the measurement is greatly re-
duced due to the relative flatness of the main lobe of the modified window
function. It is also clear that the price we pay for reducing the amplitude
uncertainty is degradation of frequency resolution (exactly where the fre-
quence fg is located is now less certain).

One can Hann repeatedly. Each time the window is Hanned, the side lobes
of its transform are attenuated by 12 dB/octave (40 dB/decade), while the
main lobe of the transform is widened by 2Af. Each Hanning also has a
corresponding attenuation factor which must be added to the results (or
which the results must be multiplied by, if the dB's are converted to their
equivalent power ratio) in order to display true amplitude. We have seen
that for one Hanning, this factor is 6.02 dB (a multiplication factor of 2).
In the case of two, three, and four Hannings the attenuation factors are
9.52 dB (2.67), 10.10 dB (3.2) and 11.26 (3.66), respectively. (These
are total attenuation factors for Hanning two, three, and four times, not
the incremental attenuation factor for each Hanning. Thus, for example,
after three Hannings, one would add 10, 10 dB to each of the main lobes (or
multiply each lobe by 3.2). The uncertainty then between the resulting
values and the correct amplitude is as shown in Figure 4-1, curve D. As
worst case amplitude error occurs when the sine wave is precisely in the

middle of two channels, it is seen that four Hannings reduce this error to
less than 1/2 dB.

So far we have only taken advantage of the fact that Hanning flattens the
main lobe of the window function. When the spectrum of interest contains
two or more sine waves, the increased side lobe rolls off, which is a result
of Hanning, enhances the Analyzer's ability to separate these frequencies.

Taking the foregoing into.account, Auto-Power Spectral analysis may be
used to determine certain characteristics of a system transfer function.

=T
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FIGURE 4-1. HANNING LINE SHAPES
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Consider the system:

S, (f S (f 61
x (D) [ H) y() 4

8,(0) =S,(@) - H()

Gyy = (SIS H)* = (8, H)(S,* HY) = [HOI? G
or

2
IHOI? = 6 (0/G,,®

We see that Auto Spectral Analysis can provide us with the magnitude
characteristics of the transfer function. No phase information is present.
A discussion of why we might choose this approach is included in the sec-
tion on Ensemble Averaging, beginning page 4-17.

Voltage Spectrum

The "voltage spectrum" is defined as |Sy(f)| . The voltage spectrum is
the positive square root of the Auto Power Spectrum. The leakage prob-
lems we have discussed with respect to Auto Spectrum also exist in Volt-
age Spectrum and are dealt with in exactly the same manner as in the auto

spectral case. Q

Auto-Correlation {Auto-Covariance) Functions

Auto-Correlation R, is defined as the inverse Fourier transform of the
Auto Power Spectrum:

o0 o0
~ 2 i2mit i2 it
R () = / Is, ()1 e df = / S () S *(D) e df
-0 -0

Since we are only considering real input functions

Ry t) = f x(y) xy-t) ay

Some authors refer to Ryx(t), defined above, as the Auto-Covariance func-
tion of x(t). They definethe Auto Correlation function as py, = Ryx(t)/Ryx(0). Q

_ The correlation integral is much like the convolution integral, only the

function x(y) is not 'flipped’ before it is shifted past itself as is the casein



convolution. As a result, the auto-correlation of a pulse is displayed as
shown below:

x (1) Ry (1)
2 \ /
1
0 T 0 ——+t -t —— :0

As one would expect, wrap-around error manifests itself in correlation
justas it did in convolution. To overcome the effects of wrap-around error,
we clear T/4 off of the ends of one of the records (as before) and correlate
(by calculating the Auto Spectrum and inverse transforming). Next we
clear out the invalid portion of the correlation, much as we did with con-
volution. The valid correlation data exists in T/4 wide bands at the ends

of the record.

The Cross-Power Spectrum

The cross-power spectrum of two signals is defined as

Gyxl) = Sy(f) * Sy

Note that Gyy in general assumes both positive and negative values. The
relative phase between the signals is preserved in cross-spectral analysis.
The implied periodicity of the DFT gives rise to leakage effects similar to
those we have seen in auto-spectral analysis. The leakage is diminished
and the amplitude information is enhanced by Hanning just as was done in
the auto-spectral case.

A zero value of cross-spectrum indicates that one or both of the individual
spectra are zero at that frequency. A relatively large value for the cross-
spectrum likewise indicates that both of the individual spectra have large

values at that frequency. The cross-spectrum indicates the relationship

between two signals.

If x(t) represents the input to a system, and y(t) represents the system out-
put, cross-spectral analysis can be used to determine the system transfer
function {(as shown below).

Sx(f) 1o Sy(f)

S,(0) = S0 H() = >G_ () = [Sx(f) h(f)] s *(1)
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or

H(f) = Gy (1)/Gy(1)

Thus, using cross-spectral analysis we are able to describe both the mag-
nittde and the phase of the transfer function.

When we are doing cross-spectrum of system outputs and inputs (as is
usually the case), the relationship between input and output is not sufficient
information to determine an accurate transfer function. In addition to
relationship (i. e., relative magnitude and phase of thetwo signals) we must
know whether or not the system output was totally caused by the system
input.

Thet is, noise and/or non-linear distortion can cause large outputs, and
therefore large values for the cross-spectrum, at various frequencies,
and thus introduce errors in calculating the transfer function.

In order to determine 'causality’ we examine the coherence function, v 2

2 A |ny(f)l2 2

0
Gxxm G_ [

¥y

IN

<
IA
b

If the coherence is 1, our system has perfect causality. Low coherence
at given frequencies indicates that our transfer function has inaccuracies
at those frequencies.

The Cross Correlation {Cross-Covariance) Function

Cross-correlation is defined as the inverse Fourier transform of the cross-
power spectrum.
+oo

(t) = / x() y(y-t) dy

-0

R
yx
Again, some authors refer to this as the cross-covariance function. They
define cross-correlation as:

p (t) =L(t)
yx YR O B (0)

Even though the correlation function and the power spectrum theoretically
have equal information content, more samples per period may be required
to effectively interpret the time domain (correlation) function.

-1< pyx(t) <1

Only if Pxy is calculated, can results of independent experiments be
compared.

Wrap-around error is present in cross-correlation measurements. It is
dealt with in the identical manner as auto-correlation.

=z
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Ensemble Averaging

In the real world, signals are somewhat ill-defined due to the presence of
noise. Oftentimes signals of interest are completely obscured by this
phenomenon. Noise, however, is random and independent of the signals of *
interest. If we take repeated time or frequency records of noisy signals,
and average these records, the noise will average to zero (if enough aver-
ages are taken) and the previously hidden signal will become visible. It is
because of the above that the Fourier Analyzer was designed with the
capability of storing averaging-loop programs.

It is instructive to observe some of the behavior of the ""useful functions”
we have been discussing in the presence of noise.

The auto-spectra and transfer function magnitude.

S (f) S_(f)
X H(f) y

Sy(0)
ideally:

= 2
8,0 = 8,(0 - HO) =G () = Gy, (01|

with noise
Sy(f) = Sx(f) H(f) + SN(f)

The result of the presence of noise on ny(f) is:

G

vy = O ° H*+Sy)(S, - H+Sp)*

(Sx * H *+Sy)(Sy* H* +SN%)

]

Goe [H| 2 +5 S+ + 5, 4Hssy +| sy 2

SySN* and 3,*SyN approach zero as the number of averages increase, and
may be neglected. Note that ISNl2 > 0 for each record, and will not aver -
age to zero but will remain as an error term.

]

2
yy ISN|

G__ G

2 2 2
G = |H G + = H =
yy I l XX ISN| > l nI

&

XX

We see that averaging will not eliminate the errors due to noise in calcu-
lating the transfer function magnitude by the auto-spectral method.

Cross-spectra and transfer function calculations:

s_(® S (f
X 1 5D y( )
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ideally:

= *
ny = SyS «

H(E) = Gy, /Gy

with noise:

Gy = (SxH +8y) S;* = HGyy +SyS,*

Note that the SNSX* term becomes very small as the number of averages
increases

S5
=H + G

XX

Gy
Ta® =g

indicates that the effect of SNSX* is even less on the transfer function
(Gxx > 0).

Even though cross-spectral analysis greatly reduces the error due to
noise, error is still present. How much, is indicated by the coherence
function.

Coherence Function

Let's examine the coherence function further, disregarding noise.

By definition:
2
G .
2 _ leX| G

‘y =
G .G
XX yy Gxxny

_(5,5,1)5,5,%
(G, )G, )

G_G
S XYY o
G G =
xx"yy

The coherence function is independent of the transfer function. This func-
tion may be viewed as a mathematical ploy, constructed to detect the
presence of noise (or non-linear distortion). I a two-port system is
linear and noise-free, the input to output coherence must be 1.

Now, let's examine the coherence function for this system in the presence
of noise.

S0
Sx(f) Sy(f)

— > H(f) -

®



&

S, = HS, * Sy
= u|® + ss*+*s*+s|2'
Gyy = MI"G,, + HS,Sy + H*S 8% Isn
*
Gyx = HGyx * SySy

As we average, the cross-terms, (SxSN* and SNSx*) approach zero, as-
suming that signal n and noise N are not related. Then the expression for the
coherence becomes:

— 2

9 JH - Gyxl

LR
xx ( XX iNl )

M

¥t e — 2 <
|H| ® G, + |Syl

The smaller the value of the coherence function, the less the input to out-
put 'causality' in a system. This function is a measure of the noise-error
present in the transfer function at specific frequencies.

In concluding the topic of ensemble averaging, it is relevant to discuss the
relationships between time domain and frequency domain averaging.

As time domain and frequency domain representations of a signal contain
equal information, we expect time domain averaging and frequency domain
averaging to be equivalent processes. Practically, this is not entirely
true. A sync pulse if required to compute a meaningful average of a time
function. This sync (trigger) signal preserves the relative phase of the
samples. A sync is also required to average Fourier transforms, but
power spectrum averaging requires no such trigger.

Thus, phase information can be obtained from the averaged cross-power
spectrum without prior knowledge of the signals being measured.
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