Introduction

Agilent SystemVue is a new system-
level design environment that enables
a top-down, model-based design
methodology for both communication
physical layer (PHY) systems and
aerospace/defense systems.

This application note examines the
link from SystemVue directly into a
RF hardware design flow that allows
mutual system-RF co-verification.

At a practical level, this is achieved
by adding special 1/0 blocks that
connect dataflow simulators in both
SystemVue 2010.01 and Agilent
Advanced Design System (ADS)
2009 Update 1. This connection
allows a complex-valued, sampled
I/Q datastream from SystemVue to
flow to ADS where it can be pro-
cessed with the Circuit Envelope or
Transient/Convolution circuit simula-
tor and then return to SystemVue
for coded receiver and demodulation
(Figure 1).
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Figure 1. SystemVue can drive ADS in a live co-simulation to achieve higher system-level
accuracy and enable more predictive collaboration.

Benefits for both baseband/DSP and RF designers

This completed round trip allows system-level architects and baseband algo-
rithm developers to benefit from the increased accuracy for analog-domain
components and RF “work-in-progress.” Typically, these users of math, C++,
and HDL language modelling do not have access to high-accuracy, envelope-
domain physical models. Instead, they do their development in isolation with
inferior RF equivalents.

RF circuit designers also derive a benefit from the completed round trip. Their
early RF designs can be seen operating in a working system with early baseband
DSP processing wrapped around them, using realistic waveforms. While ADS
users are accustomed to co-verifying baseband designs with their RF circuits, in
most situations, the baseband DSP has already been completed. Consequently,
there is no real opportunity to change the DSP, only to verify the RF. RF design
groups can now access earlier baseband investigations (in the math or C++
stages), before they are committed to implementation and while there is still
time to re-partition the system design between either the baseband or RF
paths—the best place to solve a problem, if one should occur.

In essence, SystemVue allows cross-domain debugging (down to the math or

C++ algorithms) in order to track and solve architectural issues that were
previously difficult to do across toolsets.
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Indirect alternatives to live co-simulation

In this application note we will look
at a live co-simulation between
SystemVue and ADS. However, there
are indirect alternatives to this con-
figuration that have other advantages.
They are briefly discussed here, for a
more complete perspective.

SystemVue can export active base-
band models and file-based 1/Q wave-
forms to ADS, for use natively within
the ADS environment. Similarly, ADS
can export X-parameters™ and static
1/Q waveforms back to SystemVue.
These exported objects are easier to
use, run orders of magnitude faster in
the target environment (with control-
lable accuracy trade-offs), and allow
separate simulations to be done
offline across different computers,
organizations, license pools, and
intellectual property domains

(Figure 2).
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Figure 2. SystemVue and ADS can both export models to each other’s environments,
allowing faster, offline simulations tailored to that environment.

Live co-simulation, the subject of this application note, allows both baseband
and RF design to be used directly in their native environments, with no addi-
tional translation or model extraction steps. While the resulting simulations

are often slower, they enable the full functionality, libraries and accuracy of the
original environments to be used. For example, the ADS Circuit Envelope simula-
tor supports memory and dynamic biasing effects that are not typically included
in behavioral models, and can also include the full 3D EM accuracy of the
physical amplifier design. Another benefit is that the live simulation connection
makes it convenient to cross-check and debug partially-completed designs (that
is, use them “as-is”), saving considerable troubleshooting and verification effort
at later stages of integration.

SystemVue-ADS co-simulation: two cases

Two application cases are shown
below. The first case shows a direct
link between the SystemVue dataflow
simulator, and the dataflow simulator
in ADS (“ADS Ptolemy”), shown in
Figure 3. This link allows for re-use
of signal processing schematics

and behavioral models that an ADS
user may already have created.
Additionally, it enables ADS users

to take advantage of newer libraries
and capabilities of the SystemVue
platform.
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Figure 3. Shown here is the SystemVue to ADS Ptolemy co-simulation link.




The second application case goes
one step further (Figure 4). It shows
the same link from SystemVue to
ADS Ptolemy, but here ADS Ptolemy
also performs its own system-circuit
co-simulation inside ADS, linking

to either the Circuit Envelope or
Transient/Convolution simulation
engines. By connecting SystemVue
to a real physical simulation,
system-level designers can improve
the accuracy of the RF PHY for their
algorithmic studies (e.g., for digital
pre-distortion). ADS users can take
advantage of higher SystemVue
capabilities, such as closed-loop
LTE “throughput” measurements, by
embedding their RF in active HARQ
feedback channels.

Configuration

The ADS-SystemVue co-simulation
link discussed here requires files and
examples that are not included with
the commercial releases of either
SystemVue 2010.01 or ADS 2009
Update 1. To download and install
these files, supported customers are
invited to visit the Agilent EEsof EDA
Knowledge Center technical support
website at (http://edocs.soco.
agilent.com/x/YoFvBg).

Installation steps

» Download the archive from the
Agilent EEsof Knowledge Center
and unpack it to a known directory.

» Exit ADS, if it is currently running.
Establish environment variables for
HPEESOF _DIR and ADSPTOLEMY _
MODEL_PATH, per the instructions
in the “SETUP” document. When
you run ADS, you should have a
new DSP schematic palette called
“SystemVue Cosimulation” as
shown in Figure 5.

* Run SystemVue, if it is not currently
running. Use the SystemVue Library
Manager to enable the cosim.dll
file. You should now have a new
library called “Cosim Parts” in the
Parts Selector window (Figure 6).
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Figure 4. System designers who already own ADS Ptolemy can perform cross-domain,

line-by-line debug of their C++ and math algorithms in SystemVue while connected to
active RF, carrier/envelope-level memory effects in ADS. This cannot be done without

the two Agilent platforms, shown above.
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Figure 5. The ADS co-simulation palette
shown here is created after installation.
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To run the examples

Start SystemVue and ADS sessions
on the same machine. Both programs
should be running and have all Running Data Flow
required licenses available.
. Load a pair Of corresponding Initiglizing CoSimBlockEny "WPAN_HRP_T=EVM_ C1'
workspaces into both ADS and [¥] Fast ‘iew Rate
SystemVue that are set up to talk [#]Redraw after
to each other. At eER

Il WPAN_HRP_TxEVM Analysis Simulation Status

* Run the SystemVue example first.
The SystemVue simulation will

“pause” as it tries to find a
corresponding ADS simulation Figure 7. The SystemVue simulation status window shows that that simulation is pending
session (Figure 7). connection to ADS.

* Next, run the ADS Ptolemy
simulation. Once it connects
to the SystemVue session, the
SystemVue simulation status
window will change to an active
status. Both simulations will now
run to completion (Figure 8).
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connection is made.



Application Examples

Example 1

LTE power amplifier (LTE version
8.9, Dec. 2009)

The wide bandwidth, high crest factor
and extreme linearity required for

LTE power amplifiers (PAs) requires
particular attention to the signals
being applied to the system. LTE
measurements are a strong func-

tion of the exact signal being used.
Therefore, format-compliant signals
based on the most-current revision to
the 3GPP LTE standard are needed for
verification. Certain standards-based
measurements are also necessary,
such as throughput, EVM and various
spectral masks. The co-simulation
linkage allows RF circuit-level design-
ers to use higher-level LTE libraries in
SystemVue to verify their RF designs
at the system link level.

Figure 9 illustrates how the
SystemVue to ADS linkage is used
for verifying a PA. Figures 10 and 11
show the LTE PA operating in both
linear and nonlinear regions.
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Figure 9. Verifying a PA, using format-compliant signals based on the latest update to the
3GPP LTE standard (Dec-2009, at this writing).
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Figure 10. An LTE PA is shown working in its linear region, with a residual EVM < 0.1%,
as measured by the independent 89601 VSA measurement software.
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Figure 11. An LTE PA is shown working in its nonlinear region. This particular power

level causes a residual EVM > 5%.



Example 2

Millimeter wave WPAN 60-GHz
design

Similar to LTE, designing a 60-GHz
power amplifier in ADS for one of

the wireless personal area network
(WPAN) standards requires an
authentic signal source and measure-
ments that are found in SystemVue,
not ADS. The ADS-SystemVue
configuration for this application is
shown in Figure 12. Figures 12 and 13
show the 60-GHz WPAN PA
operating in both its linear and non-
linear regions.
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Figure 12. Verifying a 60-GHz PA based on the latest WPAN standard (802.15.3c).
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Figure 13. A 60-GHz WPAN PA is shown working in its linear region, with EVM < 0.8%
across a large number of individual orthogonal frequency-division multiplexing (OFDM)

carriers.
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Example 3

ZigBee transmit PA design

Figure 15 shows a link-level
SystemVue simulation being used to
create a clean 2.45-GHz transmitter
signal that adheres to the ZigBee
standard (802.15.4). The sampled

I/Q samples are passed through the
live co-simulation link to a PA being
simulated in ADS. The distorted
signal returns to SystemVue in the
same simulation and is further passed
to the Agilent 89601 VSA software for
demodulation and analysis. Figures
16 and 17 show the 2.45-GHz PA
operating in both linear and nonlinear
regions.
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Figure 15. Designing a 2.45-GHz ZigBee PA.
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Figure 16. A 2.45-GHz ZigBee transmit PA working in the linear region.
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Figure 17. A 2.45-GHz ZigBee transmit PA working in the nonlinear region.
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