

Agilent EEsof EDA

Application Note on Tolerance In Surface Mount Varactor Diodes

This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent's line of EEsof electronic design automation (EDA) products and services, please go to:

www.agilent.com/find/eesof

Precision Measurements and Models You Trust

APPLICATION NOTE 023

TOLERANCE IN SURFACE MOUNT VARACTOR DIODES

The ability to specify tolerance in the nominal capacitance has been added to selected models in the Modelithics Non-Linear Diode (NLD) Model Library in order to emulate the variation typically specified in manufacturer data sheets. The feature will be included in additional models in future library releases. This application note briefly reviews this new capability and provides suggestions on how it should be used.

A sample simulation schematic from Agilent's Advanced Design System is shown in Figure 1. Included in the schematic is the VAR_TSH_TG1A_005 model for the Toshiba P/N 1SV280 varactor diode. The model parameter used to specify the capacitance tolerance is **Cap_tolerance** – this parameter should have a nominal value of 1, with the tolerance specified as a percentage (in this case +/- 12%). The **Res_tolerance** parameter can be used in a similar fashion to emulate variation in the series resistance of the device, another parameter that is often specified by diode manufacturers.

Figure 1 - ADS schematic for simulating tolerance in the varactor diode tolerance.

The simulation results for the schematic in Figure 1, at 1 MHz, are shown in Figure 2. Here the effective series capacitance has been calculated from the Y-parameter data as a function of reverse bias.

Figure 2 – Effective capacitance extracted from the Y-parameters of the circuit in Figure 1, at 1 MHz.

A comparison between the results in Figure 2 and the manufacturer specifications is given in Table 1. These results indicate that the +/-12% Gaussian distribution is an appropriate specification in order to accurately emulate the vendor-supplied data.

	Minimum		Maximum	
	Simulated	Vendor specification	Simulated	Vendor specification
Capacitance (-2V) in pF @ 1MHz	3.85	3.8	4.9	4.7
Capacitance (-10V) in pF @ 1MHz	1.48	1.5	1.98	2.0

For completeness, a broadband S-parameter (Monte Carlo) simulation illustrating the effect of the capacitance tolerance on resonant frequency is shown in Figure 3. This simulation was run at -10V reverse bias.

Figure 3 - Monte Carlo S-parameter simulation at -10V bias.

The complete NLD Library features approximately 30 diode models, including Schottky, PIN and varactor types. Contact <u>sales@modelithics.com</u> to request a free trial.

For more information about Modelithics Products and Services, call (813) 866-6335

© 2006 - Modelithics, Inc.

For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas	
Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	0820 87 44 11		
Belgium	32 (0) 2 404 93 40		
Denmark	45 70 13 15 15		
Finland	358 (0) 10 855 2100		
France	0825 010 700*		
	*0.125 €/minute		
Germany	01805 24 6333**		
	**0.14 €/minute		
Ireland	1890 924 204		
Israel	972-3-9288-504/544		
Italy	39 02 92 60 8484		
Netherlands	31 (0) 20 547 2111		
Spain	34 (91) 631 3300		
Sweden	0200-88 22 55		
Switzerland	0800 80 53 53		
United Kingdom	44 (0) 118 9276201		
Other European Countries:			
www.agilent.com/find/contactus			
Revised: March 27, 2008			

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008 Printed in USA, May 25, 2006 5989-9539EN

