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Introduction

The increase in wireless communications services
is forcing more and more channels into less fre-
quency spectrum. To avoid interference, very strin-
gent filtering requirements are being placed on all
systems. These systems usually employ coupled
resonator filters to handle the power levels and
provide the needed isolation. The difficulty of tun-
ing these filters quickly and accurately often limits
manufacturers from increasing their production
volumes and reducing manufacturing cost.

In a coupled-resonator cavity-tuned filter, the cen-
ter frequency of each resonator must be precisely
tuned. The couplings between resonators must also
be precisely set to achieve the proper passband
response, low return loss (reflection), and small
passband ripple. Setting coupling coefficients and
tuning the resonators are as much art as science;
often a trial-and-error adjustment process. Until
now, there has been no alternative.

This application note describes a method of tuning
a filter using the time-domain response of its
return loss, which makes filter tuning vastly easier.
It is possible to tune each resonator individually,
since time-domain measurements can distinguish
the individual responses of each resonator and
coupling aperture. Such clear identification of
responses is extremely difficult in the frequency
domain. Coupling coefficients may be precisely set
to provide a desired filter response, and any inter-
action caused by adjustment of the coupling struc-
tures and resonators can be immediately deter-
mined and accounted for.

Perhaps the most important advantage of the time-
domain tuning method is that it allows inexperi-
enced filter tuners to successfully tune multiple-
pole filters after only brief instruction. Such rapid
proficiency is impossible with previous tuning
methods. This technique also lends itself well to
the automated production environment, which has
always been a challenge.

Difficulties of filter tuning

The interactive nature of coupled-resonator filters
makes it difficult to determine which resonator or
coupling element needs to be tuned. Although some
tuning methods can achieve an approximately cor-
rect filter response, final tuning often requires the
seemingly random adjustment of each element
until the final desired filter shape is obtained.
Experienced tuners can develop a feel for the
proper adjustments, but months are often required
before a novice can be proficient at tuning complex
filters. The time and associated cost of tuning, and
the difficulty and cost in training new personnel
can limit a company’s growth and responsiveness
to changing customer needs.

Some companies have attempted to automate the
tuning process, using robotics to engage and turn
the tuning screws, and an algorithmic process to
accomplish the tuning. The tuning algorithms are a
particular problem, especially when a filter is nearly
tuned, at which point the interaction between
stages can be so great that final tuning cannot be
achieved. New filter designs may require entirely
new algorithms, making it even more difficult for
test designers to keep up with changing require-
ments. Manufacturing changes that affect the filter
components, such as tool wear or changing vendors,
may also cause algorithms and processes to
become less effective.

In some cases, tuned filters go through tempera-
ture cycling or other environmental stress as part
of the manufacturing process, and their character-
istics may change as a result. It can be very diffi-
cult to identify which resonators or coupling aper-
tures need to be retuned using conventional filter
tuning methods.



Ideal tuning method

The solution to these difficulties would be a tuning
method that is simple, flexible, and deterministic.
That is, one in which the individual adjustment
goals for each tuning element, resonator, and cou-
pling aperture would not depend upon the other
elements in the filter. The response to each tuning
screw would be easily identified, and any interactive
effect would be immediately seen and accounted for.
Ideally, each screw would only need to be adjusted
once. Finally, the tuning method would not depend
on filter type or shape, or number of filter poles.

This application note presents a technique that
clearly identifies the resonator or coupling aperture
that needs to be tuned, and enables the operator to
see and correct for interactions. Filters can be tuned
to match any filter shape within their tuning ranges.
Although this technique does not meet the ideal goal
of requiring only a single adjustment of each screw,
it greatly simplifies and speeds up the filter-tuning
process.



Basic characteristics of bandpass filters

First, let’s review some basic information and char-
acteristics about bandpass filters.

Bandpass filters are commonly designed by trans-
forming a low-pass filter response to one that is
centered about some new frequency. Coupled res-
onators, which may be lumped LC resonators,
coaxial line resonators, cavity resonators, or
microwave waveguide resonators, are used to cre-
ate the upward shift in frequency. The terms res-
onator, cavity resonator, and cavity will be used
interchangeably in this application note. More
details on bandpass filter design can be found in
Appendix A.

The center frequency of the filter is determined by
setting the resonators. In most designs, all res-
onators are set exactly to the center frequency,
with the effects of adjacent coupling included in
the calculation of the resonant frequency.

The filter shape, bandwidth, ripple, and return loss
are all set by the coupling factors between the res-
onators. When properly tuned, the resonators have
almost no effect on the filter shape. The only
exception is that the input and output resonators
set the nominal impedance of the filter. Usually an
input or output transformer is used to match to a
desired impedance. Of course, when the resonators
are not properly tuned, the return loss and inser-
tion loss will not be at the optimal levels.

Because the resonators are coupled to each other,
tuning one resonator will have the most effect on
the adjacent resonators, but it will also have some
smaller effect on the remaining resonators. The
extent of the effect depends on the coupling factor.

With this information in mind, we are ready to
explore the new time-domain tuning technique.



Time-domain response of simulated filters

To introduce this tuning method, we will use simu-
lations to examine what happens to the time-
domain response of a bandpass filter when it is
tuned. We will start with a relatively simple filter:
a five-pole coupled resonator filter with four cou-
pling structures, designed for a Chebyshev
response with 0.25 dB of passband ripple. In this
example, a filter response will be simulated by
Agilent Technologies’ Advanced Design System
(ADS) microwave design software, so that the
exact values of constituent components are known.
The frequency sweeps will be performed in the
simulator, and the results will be downloaded to
the vector network analyzer (VNA), where the
instrument’s time-domain transform application
can show the effects of filter tuning. The schematic
for the filter is shown in Figure 1.

To set up the measurement for time-domain tuning,
the frequency sweep MUST be centered at the
desired center frequency of the bandpass filter.
This is critical, since the tuning method will tune
the filter to exactly that center frequency. Next, the
span should be set to approximately two to five
times the expected bandwidth.

Figure 2 shows the frequency response and time
response of the filter. Notice the distinctive dips in
the time-domain S;; response of the filter. These
are characteristic nulls that occur if the resonators
are exactly tuned. The peaks between the nulls
relate to the coupling factors of the filter, as we will
see later. Markers 1 through 5 have been placed to
show the characteristic dips corresponding to res-
onators 1 through 5 in the filter. Although there are
some dips to the left of marker 1, those are not part
of the filter response. Generally the peaks corre-
sponding to the filter response will be much higher
in magnitude than the ones in the t<0 region, which
are not meaningful, and usually the dip correspon-
ding to the first resonator will occur near t=0.
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Figure 2. The frequency and time-domain response of a bandpass filter



Effect of tuning resonators

The example filter starts out with the ideal design
values, which yields the desired response since it
is properly “tuned” by definition. To understand
the time-domain response to tuning the resonators,
we will monitor the time-domain response while
changing (mistuning) the resonator components in
the simulation. Figure 3 shows the time-domain
traces for three conditions (with the ideal response
in the lighter trace). The upper plots show the fil-
ter with the second resonator mistuned 2% low in
frequency. Note that the first dip has not changed,
but the second dip is no longer minimized, and nei-
ther are the following dips. If a resonator is sub-
stantially mistuned (more than 1%), it will signifi-
cantly mask the dips of following resonators.
Therefore, to identify the mistuned resonator, look
for the first dip that is no longer at a minimum. In
this case, we see that mistuning resonator 2 causes
the second null to move away from its minimum
value.
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The lower plots show one response with only the
third resonator mistuned 2% high and another one
with only the fourth resonator mistuned 2% low.
Again, it is easy to identify which resonator is mis-
tuned by looking for the first dip that is no longer
minimized. Additional simulations have shown that
the characteristic dips are minimized only when
the corresponding resonators are set to their cor-
rect values. Changing the tuning in either direction
causes the dips to rise from the minimum values.

The key to this tuning technique is to adjust the
resonators until each null is as low as possible. The
adjustment will be mostly independent, although if
all the resonators are far from the final value the
first time through, adjusting a succeeding resonator
may cause the null of the previous resonator to rise
from its minimum. If this occurs, the null for the
previous resonator should be optimized again. Once
the succeeding resonator has been tuned and the
previous one optimized, additional smaller adjust-
ment to the second resonator will have very little
effect on the dip corresponding to the first resonator.
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Figure 3. The response of a bandpass filter to tuning the resonators 7



Those who are familiar with the resolution limits
of time-domain measurements will know that time-
domain resolution is inversely proportional to the
frequency span being measured, and they may
wonder how it is possible to resolve individual res-
onators in a filter when the frequency span is only
two to five times the filter’s bandwidth. Appendix B
explains how the time-domain transform relates to
bandpass filter measurements in more detail.

One more thing to note from Figure 3 is that the
S11 frequency response when resonator 2 is mis-
tuned looks almost identical to S;; response when
resonator 4 is mistuned. This illustrates why it can
be difficult to determine which resonator requires
tuning when viewing only the frequency-domain
measurements.

Effect of tuning coupling apertures

Although simple filters may only allow adjustments
of the resonators, many filters also have adjustable
couplings. To understand the effects of adjusting
the coupling , we will go back to our original
“tuned” simulated filter. First, we will examine
what happens when we increase the first coupling
factor by 10%. Figure 4 shows the S;; response in
both frequency and time domains, both before and
after changing the coupling factor. In the frequency
domain, we see that the filter bandwidth is slightly
wider and the return loss has changed. This makes
intuitive sense, because increasing the coupling
means more energy should pass through the filter,
resulting in a wider bandwidth.
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In the time-domain, there is no change in the first
peak, but the second peak is smaller. While it
might seem that the first peak would be associated
with the first coupling factor, remember that the
first coupling factor comes after the first resonator
in the filter, and we have already seen that the first
dip after the first peak is related to the first res-
onator. It turns out that the first peak can be asso-
ciated with the input coupling, which has not been
adjusted in this filter.

The reduction in height of the second peak when
coupling is increased makes sense, because
increasing the coupling means more energy is cou-
pled to the next resonator. Thus less energy is
reflected, so the peak corresponding to reflected
energy from that coupling should decrease. Note
that the following peaks are higher than before.
More energy has been coupled through the first
coupling aperture, so there is more energy to
reflect off the remaining coupling apertures.

It is important to recognize that changing the first
coupling factor will affect the responses of all the
following peaks. This suggests that coupling factors
should be tuned starting with the coupling closest
to the input and moving towards those in the cen-
ter of the filter. Otherwise, improperly tuned cou-
pling near the input can mask the real response of
the inner coupling factors.
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Figure 4. Effect of increasing first coupling factor (darker trace is after adjustment)



Now consider what happens if we take the original
filter and decrease the second coupling coefficient
by 10%. Figure 5 shows that in the frequency
domain, the bandwidth of the filter has been
reduced slightly and the return loss has changed.
Again, this makes sense because decreasing the
coupling means less energy will pass through the
filter, corresponding to a narrower bandwidth.

Examining the time-domain trace, we see no change
in the first 2 peaks, but the third peak is higher,
consistent with more energy being reflected as a
result of the decreased coupling. Since the amount
of energy coupled to the following resonators and
apertures is reduced, the following peaks are all
lower in value. Note how well the time-domain
response separates the effects of changing each
coupling, allowing the couplings to be individually
adjusted. In contrast, the S;; frequency response
trace in Figure 4 is very similar to the one in
Figure 5, so it would be very difficult to know
which coupling changed from looking at the
frequency-domain response.
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Thus, we have seen that the coupling factor can be
related to the height of the time-domain reflection
trace between each of the resonator nulls. The
exact relationship also depends on the ratio of the
filter bandwidth to the frequency sweep used to
compute the time-domain transform. The wider the
frequency sweep (relative to the filter’s band-
width), the more total energy is reflected, so the
higher the peaks.

The magnitudes of the peaks are difficult to com-
pute because changing the coupling of one stage
changes the height of the succeeding peaks. A
detailed explanation of relationship between the
time-domain response and coupling coefficients is
beyond the scope of this application note. Even
though it may not be easy to calculate these peaks
simply from the coupling coefficients, once the
desired values of the peaks are determined, the
apertures may be tuned directly in the time
domain. One method for determining the desired
magnitudes of the peaks is by using a template as
described in the next section.
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Figure 5. Effect of decreasing second coupling factor (darker trace is after adjustment)



Practical examples of tuning filters

Now that we have an understanding of the rela-
tionship between tuning resonators or coupling
apertures and the corresponding results in the
time-domain response, we are ready to to put the
theory into practice.

For multi-pole cavity filters that have fixed aper-
tures, it is only necessary to tune for the character-
istic dips in the time domain in order to achieve
optimal tuning of the filter. To tune a filter with
variable coupling coefficients, it is easiest to tune
the coupling to a target time-domain trace or tem-
plate. This target time-domain response for any fil-
ter type may be determined in several ways. One
method is to use a “golden” standard filter that has
the same structure and is properly tuned for the
desired filter shape. This filter can be measured
and the data placed in the analyzer’s memory.
Each subsequent filter can be tuned to obtain the
same response.

An alternative is to create a filter from a simula-
tion tool, such as Agilent’s Advanced Design
System. The simulated response can be down-
loaded into the network analyzer and used as a
template. This is a very effective approach, as
there is great flexibility in choosing filter types.
The only caution is that each real filter has limits
on the Q of the resonators and the tuning range of
the coupling structures and resonators. It is impor-
tant to make the attributes of the simulation con-
sistent with the limitations of the structures used
in the real filters.

In this section, we will begin with a discussion of
how to set up the network analyzer to tune band-
pass filters in the time domain, and then we will
show three examples to illustrate how to tune both
resonators and coupling apertures in real filters.
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Setting up the network analyzer

It is essential to set the center frequency of the
analyzer’s frequency sweep to be equal to the
desired center frequency of the filter, since tuning
the filter in the time domain will set the filter’s
center to this frequency. Choose a frequency span
that is 2 to 5 times the bandwidth of the filter. A
span that is too narrow will not provide sufficient
resolution to discern the individual sections of the
filter, while too wide a span will cause too much
energy to be reflected, reducing the tuning sensi-
tivity.

The primary parameter to be measured is Si;
(input match). However, for time-domain responses
more than halfway through the filter, the responses
often get more difficult to distinguish. Even in low-
loss filters, there can be significant return loss dif-
ferences between the input and output due to loss
in the filter. In addition, there is a masking effect
that tends to make reflections from couplings and
resonators farther from the input or output appear
smaller, since some of the incident energy has been
lost due to earlier reflections in the device. For
these reasons, the most effective way to tune is to
look at both sides of the filter at once, so a net-
work analyzer with an S-parameter test set is rec-
ommended. To aid in tuning, the instrument’s
dual-channel mode can be used to measure the
reverse return loss (Sy») on a second channel. With
this setup, you will tune the first half of the res-
onators and couplings using the S;; response, and
tune the remaining ones using the Sy, response.
Keep in mind that you need to count resonators
and coupling apertures starting from the port
where the signal is entering the filter for that
measurement. Thus for Si;, the first dip would cor-
respond to the resonator closest to the input port
of the filter. For Syy, the first dip would correspond
to the resonator closest to the output port of the
filter.



For the network analyzer time-domain setup, the
bandpass mode must be used. The start and stop
times need to be set so that the individual res-
onators can be seen. For most filters, the start time
should be set slightly before zero time, and the
stop time should be set somewhat longer than
twice the group delay of the filter. If the desired
bandwidth is known, the correct settings can be
approximated by setting the start time at t=-(2/TBW)
and the stop time at t=(2N+1)/(tBW), where BW is
the filter’s expected bandwidth, and N is the num-
ber of filter sections. This should give a little extra
time-domain response before the start of the filter
and after the end of the filter time response. If you
are tuning using both the S;; and Sy, responses of
the filter, you can set the stop time to a smaller
value, since you will use the S, response to tune
the resonators that are farther out in time (and
closer to the output port).

The format to use for viewing the time-domain
response is log magnitude (dB). It may be helpful
to set the top of the screen at 0 dB.

Example 1: Tuning resonators only

The first example is a simple five-pole cavity filter
with fixed apertures, so only the resonators can be
tuned to adjust the center frequency. This filter
has a center frequency of 2.414 GHz and a 3 dB
bandwidth of 12 MHz. The network analyzer is set
up for this same center frequency and a span of

50 MHz. Dual channel mode is used to display both
S11 and Sys. The time-domain response is set up to
sweep from -50 ns to 250 ns.

Experience has shown that it is best to begin tun-
ing from the input/output sides and move toward
the middle. Figure 6 shows the time-domain
response after the first and fifth resonators have
been tuned to obtain the lowest dips. Note that the
first resonator closest to the input corresponds to
the first dip in S;;, while the fifth resonator, which
is the first one when looking in the reverse direc-
tion, corresponds to the first dip in Sgs. These
responses are good illustrations of masking. Even
though the fifth resonator is correctly tuned, you
cannot see that from looking at the S;; response.
Similarly, you cannot see that the first resonator is
tuned by looking only at the Ss» response.
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Figure 6. Time-domain response of 5-pole filter after tun-
ing resonators 1 and 5



Next, we tune the second resonator, readjusting
the first one as needed to keep its dip minimized.
Then we go back to the output side and tune the
fourth resonator, readjusting the fifth one as need-
ed. Finally, we tune the third resonator in the mid-
dle, readjusting the second and fourth resonators
as needed. It may be necessary to go back and
readjust each of the resonators again to fine-tune
the response. Figure 7 shows the time-domain
response after the filter has been tuned. Figures 8
and 9 show the frequency domain reflection and
transmission responses. Note that the center
frequency has been set precisely to 2.414 GHz
without looking at the frequency domain while
tuning. With frequency domain tuning methods, it
is often possible to tune the filter to have the correct
shape while the center frequency is slightly off.
The time-domain tuning method centers the filter
very accurately.
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Figure 7. Time-domain response of 5-pole filter after tun-
ing all resonators
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Now, what if we want to change the center fre-
quency of the filter, for example to 2.42 GHz? We
simply need to repeat the tuning process with the
analyzer’s center frequency set to the new frequency.
Figure 10 shows the time-domain response (in
bold) that results from measuring the 2.414 GHz
filter after changing the network analyzer’s center
frequency to 2.42 GHz. The original time-domain
response is shown in the lighter trace. It is clear
that the resonator dips are no longer at their
minimums, so the resonators need to be retuned.
Adjusting the resonators to minimize the dips
again will result in a filter tuned to a center
frequency of 2.42 GHz.
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Figure 10. Time-domain response with center frequency
changed

Example 2: Tuning to a “golden” filter

The second example uses a filter that has eight
poles with seven tunable interstage coupling
structures, along with input and output coupling.
In the discussion that follows, we use a “golden”
filter that was tuned by an experienced engineer
to obtain the desired frequency response and
return loss. A second, untuned test filter, shown

in Figure 11, was used as a test example. Figure 12
shows the time-domain and frequency-domain plots
of both filters. A four-parameter display mode is
used to show both the S;; and Sgs (input and out-
put return loss) in both the time and frequency
domains.

Figure 11. Eight-pole, seven-aperture filter used for
Examples 2 and 3
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Figure 12. The response of a “golden” filter (lighter trace)
and an untuned filter of the same type (darker trace)

The test filter was pre-tuned by arranging the cou-
pling screws (the long screws in the picture) to
about the same height as the “golden” filter. Such
pre-tuning is commonly done to get the coupling
apertures closer to the correct value before begin-
ning to tune, but it doesn’t work for situations
where a previously tuned filter is not available.

The first step in tuning this filter is to assume that
the inter-stage coupling is close to correct, and
adjust the resonators to optimally tune the filter
without adjusting the coupling screws. The setup
for this filter is a center frequency of 1220 MHz
and a span of about 320 MHz. The filter bandwidth
is about 80 MHz, so the time domain is initially

set up from about -8 ns (-2/TBW) to about 70 ns
((2N+1)/mBW). After the first tuning, -20 ns and
80 ns are determined to be a good choice for time
settings.
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Following example 1, each of the eight resonators
are tuned, starting with the two outside resonators
and continuing until the center resonators are
tuned. Each is tuned by minimizing the response
(making the deepest dip). Again we begin by first
tuning the two outside resonators (numbers one
and eight), looking at both S;; and Sss, then retun-
ing them after the next inside resonators (two and
seven) are tuned. After the third set of resonators
are tuned (three and six) the second resonators
(two and seven) are re-tuned. This continues one
more time for the fourth and fifth resonators.
After this initial tuning is complete, the filter
exhibits a very nice frequency response (Figure 13),
but does not match the desired response. Now it is
time to tune the coupling structures.
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Figure 13. The response of a “golden” filter (lighter trace)
and a filter where only the resonators are tuned (darker
trace)



To tune the coupling structures, the scale can be
changed so that it is easy to see the peaks of the
time-domain response. For this example, four-
parameter display capability is used to show the
time domain in full scale with a close-up view of
the peaks. With this display it is easier to adjust
both the peaks and the dips. To tune the coupling,
start by tuning the coupling apertures that are
closest to the input and output of the filter and
work towards the center, to avoid masking effects
from improperly tuned outer couplings. Turn the
screw in to increase the coupling (reduce the
peak). After each coupling screw is adjusted, read-
just the resonators on each side to make the dip as
low as possible, starting from the outside and
working in. Figure 14 shows the result after the
first pass of adjusting the coupling structures and
resonators from the outside in.
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Figure 14. The response of a “golden” filter (lighter trace)
and another filter with both couplings and resonators
tuned (darker trace)

This filter response is nearly identical to the tem-
plate filter. The coupling (and hence return loss) is
not symmetrical for input and output, but it is also
not symmetrical for the “golden” filter used as a
template. If the filters had no loss, the input and
output match would be the same. The loss in the
filter causes the input match to be different from
the output match. It is possible to tune this filter
to have exactly the same input and output match,
but with a lossy filter, one match may be improved
only at the expense of the other.

Also, note that the filter tuned in the time domain
has better return loss than the “golden” filter, and
that from the time-domain trace, we can see that
the first resonator is not optimally tuned according
to the time-domain tuning process, even though the
filter has been tuned by an expert.



Example 3: Using simulated results for a

template

Using a simulated filter response to create a tem-
plate for tuning the filter is the basis for the final
example of tuning. An ideal eight-pole Chebyshev
filter is simulated, and any value can be chosen for
bandwidth or ripple. For this filter, a wider band-
width with larger ripple was chosen. We will
attempt to tune the same filter used in example 2
to yield this new filter shape. Since the example
filter does not have adjustable input and output
coupling, there are limits on the filter shape that
can be achieved. In this case, the bandwidth was
fixed, and a return loss value that yields the same
value for input coupling in the time domain as that
of the example filter was chosen.

The frequency response of the simulation was
downloaded into the network analyzer and used as
a template. In the simulation, loss was added to
the resonator structures to approximate the total
loss of the real filter. This allows the S;; and Soy
from the simulation to better match the actual
time-domain response of the filter. The effects of
loss are discussed in more detail in the next section.
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Each coupling aperture and resonator is tuned to
achieve the same time response as the simulated
template, following the procedure described in
Example 2. The last coupling structure is not tun-
able, but it is close enough to avoid distorting the
overall response.

Figure 15 shows the result with the simulated
trace, and the final tuned filter. The results are
remarkably close, considering that the filter was
tuned only in the time domain, and that the simu-
lation used capacitively-coupled lumped elements,
while the real filter had magnetically coupled dis-
tributed elements. Using this technique, virtually
any filter shape that can be simulated can be used
as a template for a real filter that can be easily and
deterministically tuned, as long as the filter ele-
ments have the tuning flexibility. Even inexperi-
enced tuners can follow this simple tuning tech-
nique because each coupling and resonator struc-
ture can be distinguished in the time domain.
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Figure 15. An example of a simulated filter and a real filter tuned to match the time-domain response.
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Effects of loss in filters

Earlier, there was a caution about considering the
effects of loss when using simulation to generate
the time-domain trace. A lossy filter has peaks in
the time-domain trace that are lower than those of
a lossless filter, and the differences in the peak lev-
els are greater for the apertures that are farther
into the filter. Therefore, tuning a lossy filter to a
template based on the simulation of a lossless filter
will probably result in incorrect settings of the cou-
pling factors.

Trying to set the coupling apertures in the lossy
filter to match the template of a lossless filter
requires increasing the peaks in the time-domain
trace higher than the proper value, so the coupling
must be reduced to get more reflection. Usually it
will not be possible to match all of the peaks, espe-
cially the ones for the apertures that are farther
into the filter, because as we observed earlier in
Figure 5, decreasing one coupling factor will cause
the corresponding peak to increase, but the follow-
ing peaks will all decrease.

In the frequency domain, the result is that you may
be able to achieve a similar return loss, but the fil-
ter will be narrower due to the higher reflection, as
shown in Figure 16.

For many cases, filter loss may be ignored, but for
higher-order filters, it may be necessary to include
the loss of each resonator in the model. Further,
while many simulators allow loss to be applied to
filter shapes, they do not distribute the loss
throughout the filter. Thus, to properly account for
loss, it may be necessary to create a filter structure
using lossy resonators with discrete coupling in
between.

To match a filter’s return loss to a lossless filter
simulation, it may be necessary to tune a lossy fil-
ter primarily from the S;; (input) side. The loss of
the filter will cause the Sy, time-domain response
to differ from the S, of a lossless simulated filter.
Since the forward reflection and transmission (Sy;
and Sp;) are more important in most cases, tuning
from the S;; side will provide better results.

If a template for a lossless filter must be used, you
may need to adjust the coupling apertures so they

don’t completely match the peaks; that is, allow
them to be a little lower to account for the loss in

the filter.
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More complex filters

Cross-coupled filters

Finally, many filters are more complex than the
traditional all-pole filters. Cavity-resonator filters
often have “cross-coupling” that effectively adds
one or more transmission zeros, similar to an elliptic-
filter response. If these zeros, which create very
narrow isolation regions in the transmission
response, are close to the filter passband edges,
they can distort the time-domain filter response so
that it no longer shows a deep null associated with
the resonator near the structure that creates the
zero. In general, the resonators that are not cross-
coupled can still be tuned using the nulling tech-
nique described earlier. But what about the cross-
coupled resonators?

Some filters have transmission zeros that are sym-
metrical as shown in Figure 17; the response from
the zeros can be seen on both sides of the pass-
band. These filters can usually be tuned with the
methods previously described. The symmetry of
the zeros keeps the cross-coupled resonators at
approximately the same frequency as the other res-
onators, so all of the resonators can be tuned close
to their proper values by tuning for deep nulls in
the time-domain response.

Some fine-tuning may be necessary, either by tun-
ing in the frequency domain, or by using the tech-
niques described in the next section.
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Figure 17. Transmission and reflection responses of a fil-
ter with symmetrical transmission zeros
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For filters that have asymmetrical zeros as shown
in Figure 18, the resonators that are cross-coupled
do not have the same frequency as the other res-
onators, so the dips in the time-domain response
that correspond to these resonators will not be
minimized when viewed with the network analyz-
er’s center frequency set to the filter’s center fre-
quency. Tuning the resonators to a template may
not yield the correct response, because there is
more than one setting of the tuning screw that can
yield the same amplitude response. Recall that
when we were discussing the time-domain
response of a simulated filter, we found that tuning
the resonator either too high or too low will both
cause the dip to rise up from the minimum value.
The setting is unique only when you are tuning for
a null. However, we can modify the time-domain
filter tuning technique to account for this.
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Figure 18. Transmission and reflection responses of a fil-
ter with asymmetrical transmission zeros

Recall that the all-pole filters we've been examin-
ing have resonators that are all tuned to the same
frequency, with the effects of coupling included.
We set the network analyzer’s center frequency to
that frequency, and when we look at the reflection
response in the time domain, we get nulls corre-
sponding to each resonator when that resonator is
set to the analyzer’s center frequency. For filters
with asymmetrical responses, if we can determine
the correct frequency of the cross-coupled res-
onators, we should be able to set the analyzer’s
center frequency to that new value, and tune the
dip corresponding to the cross-coupled resonator
to its minimum value to properly tune the res-
onator. Now the challenge is how to determine the
correct frequency of the cross-coupled resonators.



One way is to calculate the correct frequency
mathematically based on the filter design.
Simulation tools can be very useful for doing this.

An alternative method is to derive the information
empirically using a “golden” or template filter. You
can set up the analyzer for a frequency sweep on
one channel and the time-domain response on
another channel. Identify the dip in the time-
domain trace corresponding to the cross-coupled
resonator. Watch the change in this dip as you
slowly vary the center frequency of the analyzer’s
sweep. You should see the dip reach a minimum
when the analyzer’s center frequency is set to the
correct frequency for that resonator. Use this infor-
mation to set up a new instrument state for use in
tuning that particular resonator. All of the res-
onators that are not cross-coupled will probably
still need to be tuned with the analyzer’s center
frequency set to the filter’s center frequency.
However, depending on the coupling, a cross-coupled
resonator may also pull the frequency of its adja-
cent resonators slightly off from the filter’s center
frequency, so you may need to find the correct fre-
quencies for some of the neighboring resonators
using this method as well.

In general, cross-coupling will not have much
impact on tuning the coupling apertures, since the
amount of cross-coupling tends to be light and has
minimal effect on the peaks in the time-domain
response corresponding to the coupling apertures.

For filters with cross-coupled resonators, the rec-
ommended order of tuning is:

1. Start out with the coupling screws pre-tuned (to
match the physical settings of a “golden” filter), as
described in Example 2.

2. Set the analyzer’s center frequency to the filter’s
center frequency and tune all of the resonators to
minimize the dips to get all of the resonators close
to the proper settings, ignoring the error for the
cross-coupled resonators for now.

3. Tune the coupling apertures to match the time-
domain response to the template values.

4. Go back and fine-tune the cross-coupled res-
onators and any other resonators that need to be
tuned to a frequency other than the filter’s center
frequency.

Duplexers

Tuning duplexers using the time domain can be a
problem if the passbands are too close together. If
the passbands are separated by at least one band-
width, and you can set up the analyzer for a span
of at least two times the bandwidth without seeing
the other filter, you should be able to tune the
duplexer using the techniques described in this
application note. If the passbands are closer than
one bandwidth apart, you will get interference
from the response of the other filter, and you may
not be able to clearly distinguish the responses due
to individual resonators in the time domain. In this
case, you may be able to partially tune the filter
using time domain, but you will need some other
method to complete the tuning.

Many duplexers have common elements (one or
more resonators) in the antenna path that will
form part of the response for both the Tx-Ant and
the Ant-Rx paths. To tune these resonators, it may
be necessary to set their frequencies to the center
frequency between the Rx and Tx bands, instead of
tuning them to the center frequency of either pass-
band.

Both cross-coupled resonator filters and duplexers
are more advanced topics that require more
research. Further refinement of time-domain filter
tuning techniques for dealing with such filters is
currently under development.



Conclusion

While various techniques to simplify the process of
filter tuning have been tried, until now, none have
succeeded fully because coupled-resonator filters
are inherently resistant to techniques that cannot
account for characteristics such as coupling inter-
action. The method described in this application
note goes a long way toward solving this problem.
It allows coupling apertures to be tuned to match
any filter shape within their tuning ranges, and
resonators to be adjusted to provide a perfectly
matched filter, with interaction immediately seen
and corrected.

While a better understanding of some types of fil-
ters such as cross-coupled filters is needed, this
technique already shows enough promise in allow-
ing filters to be tuned easily that the current trend
to automate filter tuning on the production line
may not be needed. Alternately, this time-domain
tuning may allow automation to become practical
for the first time. It certainly makes it easier to
train inexperienced filter tuners quickly. These
attributes alone make the technique worthy of
implementation and further study.
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Summary: Hints for time-domain filter tuning

[ Set the center frequency of the network analyzer
equal to the desired center frequency for the filter.

[ Set the frequency span to be 2 to 5 times the
bandwidth of the filter.

[ Use 201 points in the sweep for a good compro-
mise between sweep speed and resolution.

[0 Measure S;; on one channel and Sy, on the other
channel. If desired, 4-parameter display can be
used to view both the frequency- and time-
domain responses at once. Viewing both domains
while tuning may provide better insight for opti-
mizing the filter’s response.

[ Select the bandpass time-domain transform.

[ In the time domain, choose the start limit to be
about one resonator’s delay on the minus side;
approximately t = -(2/tBW). Choose a stop limit
of about 2 to 3 times the full filter’s delay;
approximately t = (2N+1)/(rBW), where N is the
number of filter sections (resonators) and BW is
the filter’s 3 dB bandwidth in Hz.

[ Use log magnitude format (dB), and set the ref-

erence position to 10 (top of the graticule) and
the reference value to 0 dB.
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[ If the filter has tunable apertures, set the cou-
pling screws approximately correct; for example,
by adjusting them to the same physical height as
those on a “golden” filter.

[0 Tune the resonators first, adjusting for deepest
dips in the time-domain trace. Start with the
resonators at the input and output sides and
work towards the middle.

[ Tuning one resonator may cause the previous
resonator to become slightly untuned. In this
case, go back and retune the previous resonator,
then optimize the current resonator again.

[0 Tune the coupling apertures from the input and
output sides first and work towards the middle.
After adjusting each coupling screw, readjust
the resonators on each side to make the dips as
low as possible.

[ If the filter has cross-coupled resonators, fine-
tune the cross-coupled resonators to their cor-
rect frequencies.

[0 Repeat the tuning process at least once to fine-
tune, or as needed to achieve desired response.



Appendix A: Understanding basic bandpass filter design

Many bandpass filters are designed by starting
with a low-pass prototype that has the desired
characteristics, such as passband ripple, input
return loss, or stop-band rejection. The values for
the prototype low-pass filter elements that are nec-
essary to obtain these characteristics may be found
in most filter design books (see References). This
prototype low-pass filter can be transformed into a
bandpass filter by changing the inductors and
capacitors into LC circuits, with the center fre-
quency of each LC circuit at the desired bandpass
filter center frequency. Figure 19 shows an exam-
ple of a prototype 3-element low-pass filter with
the corresponding bandpass filter structure. The
equations for calculating the values of the filter
elements are also found in most filter design
books.
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Figure 19. 3-element prototype low-pass filter and corre-
sponding bandpass filter

This design technique results in filters that approx-
imately retain the desired filter shape. However,
many narrowband (less than 10% bandwidth rela-
tive to the center frequency) bandpass filters
designed with this method end up with LC ele-
ments that cannot be realized. For these narrow-
band filters, an alternative design technique has
been developed that uses coupled resonators as the
main elements. With this technique, each resonator
is tuned to the filter’s center frequency, with the
effects of the adjacent coupling elements included.
The resonator’s center frequency is calculated by
treating the adjacent coupling capacitors as though
they were shorted to ground, so that the capaci-
tances will be in parallel with the capacitance in
the resonator. Figure 20 shows the bandpass filter
from Figure 19 transformed into its equivalent cou-
pled-resonator structure.

3-pole Coupled Resonator Filter
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Figure 20. Equivalent 3-pole coupled resonator filter
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A second aspect of the coupled-resonator design
technique is that any changes in filter type and
order affect only the coupling factor between the
resonator structures. Thus the filter shape, band-
width, ripple, and return loss depend only on the
coupling between resonator sections, when the res-
onators have been properly tuned. These filters
retain the shape factors of the prototype low-pass
filter.
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A circuit simulation program has been used to
model the response for the mathematically simple
three-pole Butterworth low-pass filter. Examining
this filter’s response using the time-domain trans-
form shows that the characteristic nulls in the
time-domain transform are indeed a consequence
of the filter design. Repeating this simulation with
a bandpass filter shows that the bandpass filter
has exactly the same time-domain reflection
impulse magnitude response as the low-pass proto-
type. Since the low-pass prototype’s impulse
response has the characteristic dips, and this filter
has optimal circuit element values since it has no
tunable components, we can conclude that the dips
must also be present in a properly tuned bandpass
filter.

The actual values of the elements used in the res-
onator are of little consequence, except that they
affect the input and output impedances, so input
and output coupling often include an impedance

transformer to ensure a 50-ohm match.

These couplings can be capacitive, which is fre-
quently the case in lumped-element filters, or
inductive (sometimes called magnetic or B field
coupling) which is often the case in cavity-tuned
filters. In the latter, the coupling structure is an
opening in the wall between sections that permits
the circulating magnetic fields to couple. These
openings or apertures can be made adjustable by
narrowing the width of the opening, which reduces
coupling, or adding a shorted tuning element, such
as a machine screw, which increases coupling.

24

For many filters, the coupling factor changes only
slowly with frequency, so that the center frequency
of the filter can be changed over a substantial
range without changing the basic shape of the fil-
ter. This is because the center frequency of the fil-
ter is determined only by tuning the center fre-
quency of each resonator.

An intuitive way to think about this is that the cou-
pling of other sections is what slightly pulls the
center frequency of different resonators to move
the poles about the necessary amount to produce
the desired filter response. So, if a tuning tech-
nique can assure that each resonator is properly
tuned, the total filter response will be correct.

In a simple cavity resonator filter, all resonators
have the same center frequency, with the effects of
the resonator coupling included in the calculation
of resonator frequency. This frequency is also the
center frequency of the filter. However, this is not
true for filters with transmission zeroes, where
cross-coupling between resonators will cause the
cross-coupled resonators to be at a different center
frequency than the other resonators. These cross-
coupled resonators may pull the adjacent res-
onators slightly off from the center frequency of
the filter as well. Thus, in tuning these filters, we
need to determine the correct center frequency of
the cross-coupled resonators (and possibly some of
the adjacent resonators), and tune those resonators
for that frequency, while tuning the remaining res-
onators to the filter’s center frequency. A better
understanding of using time-domain filter tuning
for cross-coupled filters is still needed, and more
research is being done on this topic.



Appendix B: Using time-domain in the network analyzer for

filter tuning

To understand how to set up the network analyzer
for time-domain filter-tuning measurements, it is
helpful to review some basics of the time-domain
transforms.

Normal time-domain reflectometers (TDRs) are
inherently broadband and low-pass in nature.

This means they are only useful for measuring DC-
coupled circuits. They cannot be used for measur-
ing bandpass filters, since the filters will appear to
be almost totally reflective. However, a special mode
of the network analyzer time-domain transform
called bandpass mode can be used on band-limited
devices.

In this mode, the center frequency of the frequency
sweep is effectively translated to DC, and the
inverse Fourier transform is applied from minus
one-half of the frequency span to plus one-half of
the span. This is important when looking at a band-
pass filter with a frequency response that is the
same as a low-pass filter response translated up in
frequency to the center of the bandpass filter.

The time-domain transform represents the return
loss as a function of length through the device
under test. For time-domain transforms to be
useful, they must have enough resolution to resolve
the distinguishing characteristics of the network
being measured. In general, the resolution of a
transform is inversely proportional to the frequency
span, although in bandpass mode the resolution

is reduced by half because half the span is for neg-
ative frequencies and half for positive frequencies.

Looking at measurements of bandpass filters with
a broad frequency sweep causes the same problem
as in a low-pass TDR measurement: you see a near-
total reflection at the input, and almost no other
reflections. A normal network analyzer sweep of
the bandpass filter, perhaps over two or three
times the filter’s bandwidth, would be a narrow
sweep and was previously thought to have insuffi-
cient resolution to determine any characteristics of
the filter. However, if the measurement is properly
set up, the resolution limitation does not apply in
measuring filters.

When a filter is examined in the time domain, each
filter section has substantially more delay than its
physical size would suggest. This is because the
delay of a filter is inversely proportional to its
bandwidth. The narrower the bandwidth, the
longer the delay. For multiple-section filters, the
transmission delay is approximately N/TBW, where
BW is the bandwidth in Hz and N is the number of
sections. Each section can be considered to add
about 1/N of the delay. Thus the reflection delay of
each section is about 2/tBW, and the total delay
for reflection is about 2N/TBW (twice as much as
the transmission delay because the signal must go
through the filter and back).

If the frequency bandwidth used to sweep the fil-
ters is at least two times the filter bandwidth,
there will be sufficient resolution to discern the
individual sections of the filter. The frequency
span should not be too wide, or too much of the
energy will be reflected, and tuning sensitivity will
be reduced. Depending upon the filter, a frequency
span of two to five times the filter bandwidth can
be used.
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