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Preface

There are numerous applications
involving mixed analog and digi-
tal signals in the same system.
In order to make measurements
on mixed systems of this sort, it
is helpful to use the z-transform
for the digital part in conjunc-
tion with the Laplace transform
(s-domain) for the analog part.
In this note, the z-transform is
defined and various transfor-
mations between the s and z do-
mains are discussed. The Appen-
dix is devoted to a discussion of
matching the impulse responses
of multiple poles in both the s
and z domains.

The key characteristics of mixed
domain measurements are also
discussed in this note. For exam-
ple, multiple images occur in the
spectrum of a sampled signal. To
measure the higher order
images of the digital transfer
function with a dynamic signal
analyzer, the analog sampling
rate is generally some integer
multiple of the digital rate. To
accurately measure the frequen-
cy response of a mixed system,
these two sampling rates must
be carefully locked together in
both frequency and phase. There
is also the need to handle time
delays, both in the signal path
and in the sampling pulse path.
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Introduction

There are many applications in
which signals are represented in
both analog and digital form at
different nodes in a system. For
instance, control systems in
which some part of the control
loop is implemented in digital
form, such as the loop compensa-
tion, are becoming more com-
mon. Figure 1 shows a simple
block diagram of a mixed
domain system which contains
analog filters, data converters,
and a digital filter. Measure-
ments in mixed systems of this
sort are somewhat more compli-
cated than those for strictly
analog systems since at least one
of the time waveforms is only
available in sampled form.

The frequency response function
of a sampled data system is
periodic along the frequency
axis, with images spaced at
multiples of the sampling rate
(see figure 8 for an example
showing four images). This
implies that poles and zeros in
the original s-domain are also
replicated along the frequency
axis, resulting in an infinity of
new poles and zeros at multiples
of the sampling frequency. The
analog part of a mixed domain
system is generally designed to
suppress frequencies
corresponding to these higher
order images'in the digital
domain. This is the purpose of
the analog anti-aliasing and
output filters in figure 1.

The z-transform is used to char-
acterize the transfer function of
a sampled data system. This
transform will be derived later,
but it is simply a technique for
representing a periodic frequen-
cy response function around a
circle instead of along the linear
frequency axis in the s-plane.
Each frequency image is mapped

Analog-
Digital

Converter

Digital-
Analog
Converter

Digital
Signals

Figure 1.

Block diagram for
a mixed analog/
digital system.

Analog
Output

Half of Sampling
S Frequency (z =-1)

Frequency
Ali poles in Response Along
left half plane Imaginary Axis
s=0(z=1)
{z=-1)
Figure 2:

The s-domain,
showing the
frequency (imagi-
nary) axis.

onto one cycle around the unit
circle. The values of the z-trans-
form around the unit circle cor-
respond to the measured fre-
quency response function (at
least below half of the sampling
frequency), just as the values of
the Laplace transform along the
imaginary axis correspond to the
measured frequency response
function. All poles and zeros in
the left half of the s-plane map
into the interior of the unit circle
in the z-plane, and the entire
right half of the s-plane maps
into the exterior of the unit
circle.

All poles inside
of unit circle

z=0

z=-1 :
> Half of
Sampling

Frequency

Figure 3:

The z-domain,
showing the unit
circle that corre-
sponds to the fre-
quency axis in the
s-plane.

Frequency
Response On
Unit Circle
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A plot of the fre-
quency response
function illustra-
ted in figure 4.

As a brief review and compari-

son, figure 2 shows the conven-

tional s-domain, and figure 3

shows the z-domain with the 4
unit circle drawn. Figure 4

shows a three-dimensional view

of an analog filter in the s-do-

main, with the right half of the

plane removed, showing the

magnitude of a
transfer function
having two poles
and four zeros, with
the right half of the
plane cut away to
show the frequency
response function
along the imaginary
axis.

Jpns: .
SR frequency response function
SRR . . . .
SRR along the imaginary axis. Fig-
ure 5 is a plot of this frequency
3 response function. This filter
5 S . . .
S comprises a pair of poles in the
QRGOS ARSI IEIERIS .
T left half plane, along with 4
SSRGS ISR ITRIICIS .
K5 R OSSR ICREELELSIER KL
R R zeros along the frequency axis.
R e
S e S SSSeSRS
e B i i
Q T Figure 6 shows a three-dimen-
e s IS ; i 1 101
R BRR SEEIERRIER sional z-domain view of a digital
R SRR fil ith ch istics simil
R RIS ilter with characteristics similar
R RS
; . A SRS to those of the analog filter.
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‘.0. 0.0.0.0.0‘0‘0’0.0‘0
A three di ional RIS H th tside of th it
ree dimensiona RIS ere, the outside o € uni
_ . 0’0‘0‘0’0 .
s-domain plot of the A circle has been removed to show

the frequency response function
around this circle. Figure 7
shows a plot of this frequency
response function. This filter
comprises a pair of poles inside
of the unit circle forming the
filter pass-band, and three zeros
on the unit circle forming the
stop-band.
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In the next section, the z-trans-
form is derived from the Laplace
transform and various techni-
ques for converting from one
domain to the other are discus-
sed. In the final section, the dif-
ferences between the two do-
mains will be discussed, alon
2
with some of the problems that
are encountered in mixed do-
% 5 5 main measurements.
Figure 6: % ey
A three-dimensional z-do-
main plot of the magni- 589’

q tude of a transfer function
: having two poles and

three zeros, with the ex-

terior of the unit circle cut
away to show the frequen-
cy response characteristic.
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Chapter 1: Derivation of
the z-Transform from
the Laplace Transform

The Laplace transform H(s) of
some system whose impulse
response is h(t) is given by

H(s)=J‘h(t)e‘Sldt (1)
(4]

where s is the Laplace variable.
The impulse response is as-
sumed to be zero for negative
time values.

In a sampled data systern with a
sampling rate of f;, the sample
interval in the time domain is
At = 1/f;. A sampled version of
h(t) can be obtained by multipli-
cation by the “Shah” function
(see reference [1]) defined by

It /At)zAtz s(t-kat) (2)
k=—co

where 8(t-kAt) is the unit im-
pulse or delta function centered
at t = kAt. The area under this
delta function is unity. If this
sampled version of h(t) is
inserted into (1), and the orders
of integration and summation
are interchanged, the resulting
s-domain transfer function for
this sampled system becomes

H(s)=Ach(kA t)e~BsAt (3)
k=0
Make the substitution

z=e sAt

4)

Then the z-transform of the sys-
tem impulse response is

H(s) N\ L
= h(kAt)z
at ; (5)

H,(z)=

The quantity z”* is the Laplace
transform of a delta function
delayed by kAt in the time
domain. The coefficient on the
kth power of 1/z is simply the

kth sample of the impulse re-
sponse. Note that the sampling
interval At has been removed as
an amplitude multiplying factor
from the definition of the
z-transform in (5). This factor
must be restored to evaluate the
frequency response along the
unit circle.

The periodic nature of the trans-
form of sampled time data along
the frequency axis can be seen
from (3), where an exponential
in continuous time has been re-
placed by an exponential invol-
ving multiples of the sampling
interval At. Whenever s is re-
placed by s+i2n n/At, for any
integer n, the value of the trans-
form is unchanged. Figure 8
shows the frequency response for
a simple pole at s = — 0.1 (solid
curve), and the four images ob-
tained by evaluating the z-trans-
form of the impulse response
around the unit circle (dashed
curve).

Equation (4) completely defines
the z-domain in terms of the
s-domain, and it is apparent that
there is no new information
about the transfer function con-
tained in the z-domain repre-
sentation. In fact, the z-domain
form actually contains less infor-
mation than the original s-do-
main form, to the extent that the
original frequency response
bandwidth exceeds half of the
sampling rate. Any higher fre-
guency components have been
replaced by periodic replication
of the lowest order image or,
from another perspective, con-
tinuous time data has been re-
placed by sampled data. The loss
of information is also apparent
from equation (4), where a value
for z is always uniquely deter-
mined for any given value of s,

but the converse is not true.
Thus, the merit of the z-domain
is that it only shows the availa-
ble information about the trans-
fer function, whereas the s-do-
main may show redundant
information.

Unfortunately, if equation (4) is
used to obtain the z-transform
directly from the Laplace trans-
form, a rational fraction in s
(comprising poles and zeros in
the s-domain) becomes a trans-
cendental function in z. For
example, a simple pole in the
s-domain can be written in the
z-domain as

1 _ At
st+a In(z)+aAt

(6)

Any hardware implementation
of a z-domain digital filter com-
prises various combinations of
adders, multipliers, and sample
delays represented by integer
powers of 1/z. Thus, the z-do-
main form of the system transfer
function must comprise finite
order polynomials in z, and
hence can be represented either
as a rational fraction or a partial
fraction in z. The transcendental
form shown in (6) cannot be
easily implemented physically.
This argument implies that any
practical transformation be-
tween the s and z domains must
be only approximate. This raises
the question as to the amount of
error introduced by the approxi-
mation. Some of the more com-
mon transformations between
these two domains will be dis-
cussed next, and some examples
of the associated errors will be
given.
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Figure 8: Frequency
The frequency re-

sponse function of a
simple pole in the
s-domain (solid line),
compared with the
frequency response of

the impulse invariant
form of the z-trans-

form (dashed line).

Note the four images
introduced by the
sampling operation.

Also note the error in
peak amplitude.
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Chapter 2:
Transformations
Between s and z
Domains

There are two generic types of
transforms between the s and

z domains, with numerous varia-
tions on each method. The first
type involves matching time
waveforms, usually either the
system impulse response or the
step response. The second type
involves rational fraction ap-
proximations to equation (4),
such as given by the bilinear
transformation.

None of the above methods are
exact, and the choice between
them depends upon the applica-
tion at hand. The common link
between analog and digital parts
of a mixed system is either the
frequency response function or
the impulse response in the time
domain. Thus, the significance of
any errors introduced by approx-
imations between the s and z do-
mains will ultimately be viewed
along either the frequency or the
time axis. Because of aliasing in
sampled systems, it is often not
possible to match both the fre-
quency response function and
the impulse response simultan-
eously. In general, either the
impulse invariant or the step
invariant methods are best when
the time response is of interest.
The bilinear transform is used
for frequency response match-
ing, but is only accurate for very
low frequencies, relative to the
sampling frequency f,.



2.1: Impulse Invariant
Transformation

The impulse response can be
matched by decomposing the
transfer function in either the

s or the z domain into partial
fractions, then matching the im-
pulse response of each term.
This is easy to do if the multipli-
cities of all poles are unity, but
becomes more complicated for
multiple poles. The multiple pole
case is discussed in the Appen-
dix. A simple pole is represented
in the s-domain by

(7)

H(S)=s+a

and the corresponding impulse
response is
h(t)=e% fort>0 (8)

From (5), the z-transform can be
written as

(9)

(10)

Thus, each partial fraction term
in the s-domain with a pole at
s = —a yields a partial fraction
term in the z-domain, with a
zero at the origin and a pole at
z = exp(—aAt). The samp.ed val-
ues of the impulse response be-
come the coefficients on an infi-
nite series in 1/z, as shown in
equation (9), which can be writ-
ten in closed form (10).

The frequency response corre-
sponding to the z-domain trans-
fer function is obtained by multi-
plying H, by At, for z=exp(i2nfAt).
If At is sufficiently small, then
this becomes

1 11)

H(ionf) = — L
(i2nf) = ont

which is the same as obtained
from the s-domain via (7). How-
ever, when At is not sufficiently
small, the z-domain frequency
response is different from the
s-domain response. This is a
direct result of the aliasing that
occurs in the frequency domain
when images of the frequency
response function are replicated
at multiples of the sampling
frequency.

2.2: Step Invariant
Transformation

In a similar manner, it is pos-
sible to match the response to a
unit step. The s-domain transfer
function is multiplied by 1/s, and
the result is expressed in partial
fraction form. Then, each term is
converted to the z-domain, as in-
dicated above, and multiplied by
(z-1)/z to remove the input step.

If this technique is used to match
the step response for a simple
pole, as given by (7), the result is

- A (12)
H,(z) = 2 — o~ 0Al
where
4 - 1 ¢~ aAt (13)
aAl

Compared to (10), this transfer
function has only a pole at
z = exp(—aAt), and no finite zeros.

None of these techniques that
match responses in the time
domain consider the effects of
aliasing caused by undersamp-
ling. Thus, even though the time
response is matched at the
sample values, any waveform
details that may occur between
samples, such as fast level tran-
sitions or narrow pulses, are
lost. This implies that the higher
frequencies in the frequency re-
sponse function may be in error
to some degree. This is a direct
consequence of the potential
overlap between the replicated
frequency images that result
from time domain sampling.

Only partial fraction terms that
involve poles or a constant can
be precisely converted from one
domain to another. Thus, any
higher order polynomial compon-
ents that result from the partial
fraction expansion cannot be
converted. This means that the
order of the numerator of the
rational fraction form must be
no greater than the order of the
denominator for either an im-
pulse invariant or a step invari-
ant conversion to exist. An ex-
ception to this rule can be made
for any powers of z that can be
removed from the rational frac-
tion before conversion, since
these powers of z can be repre-
sented as time advances. This is
also true for powers of 1/z which
can be represented as time
delays.



2.3: Bilinear Transformation

The second type of transforma-
tion between the s and z do-
mains is used when frequency
response function matching is
needed at low frequencies, and
involves some sort of rational
fraction approximation to equa-
tion (4). The most ¢ommon ap-
proximation is called the bilin-
ear transform, which is obtained
from the quotient of two first
order polynomials in s. Equation
(4) can be written as

sAt/2
e

- € (14)
e~ 54172

If only the first two terms in the
Taylor’s series expansion of the
numerator and the denominator
are retained, then z can be
approximated by

_1+sAt/2
1-s54At/2

This can be inverted to obtain

(15)

- z-1 (16)
sE2/at z+1
Equation (16) is called the bilin-
ear transform (the quotient of
two linear expressions), and (15)
is sometimes called the inverse
bilinear transform. This form
has the advantage of limiting
the orders of the z-domain poly-
nomials to the maximum order
of the s-domain polynomials.
Obviously, there are many other
possible polynomial approx-
imations to (4), but this is the
one most often used in practice.

The bilinear form also has the
property of mapping the entire
s-domain frequency axis onto the
unit circle in the z-domain, in
contrast to the exact definition of
z, in which only frequencies up
to half of the sampling rate are

mapped onto the unit circle. Un-
fortunately, this mapping results
in a considerable amount of fre-
quency “warping”, especially for
frequencies near the point z=-1.
This warping is described by

e tan (nfAt) anmn

At

where ' is the frequency after
the bilinear transform has been
imposed, and fis the frequency
around the unit circle in the
z-domain at which f' is mapped.
Note that f' becomes infinite
when f = 1/(2At) = half of the
sampling frequency.

For purposes of comparison, the
expression for s in (16) can be
substituted into (7) to obtain the
bilinear form for a simple s-do-
main pole. The result is

2+ 1

H(s)
H = =B (18)
(z) A1 -
where
B=—1_ 19)
2+aAdt
b = 2—-aAt
24+aAt (20)

Thus, a pole is placed at z=b
and a zero is placed at z = -1, If
the sampling interval At is suffi-
ciently small, z can be replaced
by 1+i2nfAt and b is approxi-
mately 1-aAt, so H(i2nf) be-
comes 1/(a+i2nf), as expected.
However, a comparison of (18)
with (10) shows that these equa-
tions are not equivalent and,
therefore, the frequency re-
sponse and the impulse response
will be different.

These transformation techniques
that involve approximations to
(4) tend to include the effects of
aliasing to some extent, but the

resulting responses in the time
domain may not be very accu-
rate. These approximations are
only good for small values of s,
for which z is near unity.

2.4: Representation of Time
Delays

Any time delay in the s-domain
representation of a system must
be carried as a separate parame-
ter since there is no finite ration-
al fraction representation of this
delay. However, in the z-domain,
integer multiples of the samp-
ling interval At are represented
as powers of 1/z, which are sim-
ply poles at the origin in the
z-plane. Thus, these discrete
time delay values can be repre-
sented as part of a z polynomial.
Unfortunately, this technique
does not work for time delays
that are fractions of the samp-
ling interval, so it is still neces-
sary to carry a time delay pa-
rameter separately. One possible
convention is to always repre-
sent the integer time delay mul-
tiples of At as z-domain poles at
the origin, and to represent only
the fractional part of the delay
as a separate parameter. How-
ever, this is an arbitrary choice,
and other conventions for repre-
senting delay are equally valid.

In any case, when a z-domain
transfer function is converted
into an s-domain representation,
the resulting time delay is the
sum of the part represented by a
multiple pole at the origin of the
z-domain, and the part repre-
sented as a separate delay
parameter.



2.5: Comparison of Different
Transformation Techniques

The results of each transforma-
tion technique can be compared
by viewing the amplitude and
phase response in the frequency
domain, and/or the impulse re-
sponse in the time domain. Fig-
ure 9 shows the amplitude fre-
quency response of a simple pole
in the s-domain for a = 0.1 (solid
curve), along with curves evalu-
ated from three z-domain ap-
proximations (dashed curves).
The upper dashed curve is for
the impulse invariant transfor-
mation, and the middle dashed
curve is for the step invariant
case. The lower dashed curve is
for the bilinear transform. No-
tice the zero at z = -1 for the
bilinear case. Also note that the
dc value of the response is not
correct for the impulse invariant
case, although when this is nor-
malized away, this curve coin-
cides with the step invariant
curve.

Figure 10 shows the phase re-
sponse for the same four cases
illustrated in figure 9. The solid
line represents the phase for the
s-domain representation of a
simple pole, while the dashed
lines represent the phase for
three different z-domain approx-
imations. It is only necessary to

consider the phase angle for pos-

itive frequencies below half of
the sampling rate (left half of
the figure) since the negative
frequency interval will be sym-
metric. The best phase match to
the solid line is obtained by
means of the bilinear transform
(middle dashed line). This is ex-
pected since the bilinear trans-
form incorporates, to some ex-
tent, the effects of aliasing. The
upper dashed line is for the

impulse invariant case, and the
lower dashed line is for the step
invariant case. The step invari-
ant case incorporates an extra
phase slope that corresponds to
one sample of delay. If this delay
is removed, this case is identical
to the impulse invariant case.

Figure 11 shows the impulse re-
sponses in the time domain for
these same four cases. The solid
line is the continuous time im-
pulse response for a simple pole,
and the labels s, 0, and x show
the sampled versions of this im-
pulse response for the impulse
invariant method (), the step
invariant method (o), and the
bilinear transformation (x). The
impulse invariant method gives
exact sample values. If the step
invariant results were re-scaled
in amplitude, they would also be
correct except for one sample of
delay. The bilinear transform
results need to be scaled in am-
plitude, and the decay time con-
stant is also slightly in error (too
small by 1.348%, for this case).

10
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Figure 9:
The frequency response
function of a simple
pole in the s-domain
(solid line), compared
with the frequency re-
sponses for three dif-
ferent z-domain repre-
sentations. The upper
dashed line is for the
impulse invariant case,
and the middle dashed
line is for the step in-
variant case. The bilin-
ear transform case is
shown by the lower
dashed line. When the
upper line is scaled to
be correct at dc, it mat-
ches the middle line at
other points, as well.
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Figure 10:

The phase response of a
simple pole in the s-do-
main (solid line), com-
pared with the phase
responses of three differ-
ent z-domain representa-
tions. Only the left half of
the plot is useful for this
comparison. The upper
dashed line is for the im-
pulse invariant case, and
the lower dashed line is
for the step invariant case.
The middle line is for the
bilinear transformation.
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Figure 11:

The impulse response of a
simple pole in continuous
time (solid line), and for
sampled times correspond-
ing to the impulse invariant
method (:: symbol), the step
invariant method (o sym-
bol), and the bilinear trans-
form technique (x symbol).
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Chapter 3:
Characteristics of
Mixed Domain
Measurements

When continiuous time and
sampled time systems are con-
nected together as shown in
figure 1, there arises the need to
make frequency response mea-
surements across the interface
between the two domains. When
making measurements in a
mixed analog/digital system, the
key characteristics to be aware
of are:

The occurrence of multiple spec-
tral images of sampled signals

The need to synchronize analog
and digital sampling rates

The possible presence of two
types of time delays

In mixed domain systems, multi-
ple images occur in the spectra
of sampled signals. It is gener-
ally necessary to filter the input
signals to reduce aliasing, and to
filter the output signals to atten-
uate the spectral images. The
bandwidth of the measurements
of analog signals must extend
beyond the frequency of the
highest image of concern.

There is also a need to synchron-
ize the analog and digital samp-
ling rates to avoid errors due to
leakage. In addition, these
sampling signals must be phase
locked so that transfer functions
between digital and analog parts
of a system can be measured
accurately. If there is any rela-
tive jitter between these two
sampling signals, then addition-
al errors will be introduced.

Two types of time delay appear
in a mixed mode measurement,
in contrast to only one type of
delay in an analog measure-
ment. In either case there can be
a delay in the system impulse



response, but there can be an
additional delay in the sampling
pulses for the digital part of a
system. These two delays affect
the results in different ways.

3.1: Images and Analog
Filtering

The distinguishing feature of
mixed domain measurements is
the occurrence of multiple ima-
ges in the spectrum of a sampled
signal. Generally, a designer is
interested in the effect that an
analog filter circuit has upon the
multiple images introduced by
the digital portion of a system.
An ADC is an example in which
aliasing is introduced into the
primary spectral image if any
input signal components occur at
frequencies above half of the
sampling rate. Attenuating such
unwanted signals is the purpose
of the low-pass anti-aliasing fil-
ter in figure 1. To observe higher
frequency signal comporents,
the bandwidth of a measure-
ment on the analog input to an
ADC must extend beyond the
frequency encompassed by the
highest image of concern in the
sampled signal.

In a similar manner, the analog
filter on the output of the DAC
in figure 1 is designed to attenu-
ate the higher order images com-
ing out of the mixed system.
This filter also serves to convert
the discrete samples of the DAC
output into a continuous analog
signal. To show all of the attenu-
ated images of interest, it is ne-
cessary to make analog mea-
surements at frequencies higher
than the digital sampling rate.

This latter filter must be de-
signed to attenuate all of the
frequency domain images of the
spectrum except the one of

interest. One common filter type
is that obtained by means of a
zero order hold circuit. The im-
pulse response of this filter is a
rectangle having a unit area and
a width equal to the sample in-
terval At. This gives a filter
shape of sin(nfAt)/(nfAt), which
has nulls at the center of each
image except the one centered at
the origin. This filter shape is
shown as a dashed line in fig-
ure 12 and its effect upon the
frequency images (of figure 8) is
shown as a solid line. In addi-
tion, there will be a linear phase
shift versus frequency corres-
ponding to a delay of At/2.

Other filters must generally be
added to further reduce the sizes
of the unwanted images. It is ap-
parent from figure 12 that these
reduced images can still be rela-
tively large. It is possible to use
higher order hold circuits, cor-
responding to triangular or par-
abolic impulse responses, but it
is usually easier to design one of
the standard analog low-pass
filters such as either the
Chebyshev or elliptic types.

Often, mixed mode systems are
designed so that the digital filter
part complements the analog
part to obtain better overall
characteristics than could be ob-
tained with either technique
separately. For example, the
digital filter might be designed
with a narrow pass-band rela-
tive to the sampling frequency,
or the sampling frequency might
be multiplied, so that the subse-
quent analog filter can have a
wider transition band between
the desired image and the re-
maining rejected images. This
oversampling allows use of a
simple analog filter design, hav-
ing well controlled phase and
amplitude characteristics.
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3.2: Synchronization of
Sampling Pulses

The second key characteristic of
mixed domain measurements is
the need for synchronized samp-
ling pulses between the two do-
mains. Not only should the sam-
ple rates be related by simple
integers, but the relative phases
between the two sampling sig-
nals must be known or mea-
sured so that mixed domain
transfer functions can be
determined.

Generally, the analog sampling
rate will be some integer multi-
ple of the digital rate. However,
the digital rate is often deter-
mined by the device under test,
so the analog sampling signal
must be derived from the digital
rate in some manner. To mini-
mize leakage effects when work-
ing with periodic signals, the
analog sampling rate must be a
very accurate multiple of the
digital rate. Thus, the digital
rate must be known or measured
very accurately, and the analog
sampling rate must be very ac-
curate and stable in frequency.

There are two types of errors
that can occur when timing dif-
ferences exist between the ana-
log and digital sampling signals.
The first type of error is due to a
discrepancy in the average ana-
log sampling rate (not exactly an
integer multiple of the digital
rate). In this situation, a peri-
odic digital signal will not re-
main exactly periodic after being
sampled at the analog rate.
When using a control systems
analyzer or dynamic signal ana-
lyzer to make measurements in
this situation, the sampling de-
lays can cause leakage errors in
the frequency spectrum, espe-
cially if the user selects a



rectangular or “uniform” win-
dow. For example, when making
distortion measurements using a
sinusoidal input, a uniform win-
dow is generally used and all
harmonics are expected to be
exactly periodic in the time win-
dow. Any leakage that occurs
will directly affect the accuracy
of measurements of the higher
order harmonics.

The second type of error is due
to jitter on the digital sampling
signal. There are times when
this same jitter should also occur
on the analog sampling signal.
For example, if the transfer
function of a DAC is being mea-
sured, then any jitter on the dig-
ital samples should be exactly
duplicated on the analog sam-
ples so that the measured trans-
fer function is independent of
this jitter. However, if a digital
compensator is embedded in a
control system and there is some
amount of jitter on the internal
digital clock, then the analog
sampling rate should probably
be uniform in time so that the
effects of the digital jitter can be
observed.

Jitter on the digital sampling
signal can also result in leakage
errors, especially if a uniform
time window is used in the mea-
surement. For example, if the
transfer function of a DAC with
zero order hold is being mea-
sured using a uniform window
and there is jitter on the digital
clock, then leakage contritutions
from the higher order images
will occur in the baseband fre-
quency region, even if the analog
sampling rate is much higher
than the digital rate (negligible
aliasing).
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Figure 12:

The equivalent fil-
ter of a zero order
hold is shown as a
dashed line, and
the effect of this
filter on the multi-
ple frequency ima-
ges of figure 8 is
shown as a sohid
line. Note the nulls
in this filter at the
center of each
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Figure 13:

Phase versus fre-
quency due to a
time delay in the
impulse response,
and due to a time
delay in the samp-
ling pulses.
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3.3: Time Delays

The third major characteristic of
mixed measurements that must
be considered is the occurrence
of time delays in the system. In
the analog part of a system, a
time delay results in a linear
phase slope in the frequency re-
sponse function and can be ap-
proximated by a rational frac-
tion in the s-domain. In the
z-domain, there are two types of
time delays that must be treated
separately. There can be time
delays in the signal path, just as
for analog systems, and there
can be time delays in the samp-
ling pulses, without any signal
delay. In addition, both kinds of
delay may occur simultaneously.
Delays in the sampling pulses
can occur if multi-phase clocks
are used to perform several oper-
ations within one clock period,
particularly if the output is
clocked with a different phase
than the input.

If there is a delay in the signal
path, then the result is the same
as for an ordinary analog delay.
A linear phase slope is introdu-
ced into the frequency response
function (see figure 13). A modi-
fied z-transform can be defined
(see reference [2]) that matches
the delayed impulse response,
although the linear phase slope
in the frequency response may
not be correctly represented due
to aliasing. Alternatively, a ra-
tional fraction in z can be used
to approximate the phase slope,
just as in the s-domain.

A delay in the sampling pulses
only affects the phases of the
higher order images of the fre-
quency spectrum, and hence
only affects the errors due to ali-
asing. If the original spectrum is

band limited to half of the samp-
ling frequency, then a delay in
the sampling pulses has no ef-
fect upon the baseband spectral
image (see figure 13). In the
z-domain, the coefficients on the
powers of 1/z are obtained from
delayed samples of the impulse
response, so the actual z-trans-
form is modified by the sample
delay. In addition, there is a fac-
tor of z4, where d is the sample
time delay normalized by the
sample interval At, which ac-
counts for the phase differences
among the frequency images.

When both the sampling pulses
and the impulse response are
delayed, the result is a combina-
tion of the effects discussed
above for each separate delay.
However, if both signals are de-
layed by the same amount, then
the samples of the impulse re-
sponse are the same as for no
delay, and the resulting z-trans-
form only differs by the z¢ factor
defined above.

These time delay effects are best
summarized by re-writing equa-
tion (5) for the z-transform,
where h(t) has been replaced by
h(t-1), to represent a delay of t
in the impulse response, and t
has been replaced by t—t, in the
Shah function (equation (2)) to
indicate a sampling pulse delay
of t,. The resulting z-transform
can be expressed as

H,(z) = Zh(kA t+ty - )z
k=0 (21)
t

d= -2

t
Notice that these two types of
delay enter into the equation in
different ways, so their effects
must be considered separately.
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Chapter 4: Summary

There are numerous applications
involving mixed analog and digi-
tal signals in the same system.
It is helpful to use the z-trans-
form for the digital part, in con-
junction with the Laplace trans-
form (s-domain) for the analog
part when making measure-
ments on these mixed systems.
The z-transform is defined and
the impulse invariant, step in-
variant and bilinear transfor-
mations between the s and

z domains are discussed and
compared. The Appendix discus-
ses the matching of the impulse
responses of multiple poles in
both the s and z domains.

Three key characteristics of
mixed domain measurements
are discussed: images and ana-
log filtering; synchronized samp-
ling; and time delay effects. Most
mixed analog/digital systems
contain analog filters on the in-
put of ADCs to prevent aliasing
and on the output of DACs to at-
tenuate images. When using a
control systems analyzer or dy-
namic signal analyzer to mea-
sure the higher order images in
a mixed transfer function, the
analog sampling rate should be
some integer multiple of the dig-
ital rate. To make accurate fre-
gquency response measurements,
these two sampling rates must
be carefully locked together in
both frequency and phase. There
is also the need to handle time
delays, both in the signal path
and in the sampling pulse path.



Appendix: Multiple Pole
Impulse Invariance

The transfer function of a multi-
ple pole in the s-domain is

— 1 (A1)

H(s) = k+1
(s+a) ¥

The pole is located at s = -a, and
it has a multiplicity of k+1. The
corresponding impulse response
is given by

k
h(t) = ]‘e—! e for t20,

k=0,1,2,... (A2)
The goal is to derive a z-comain
representation that will exactly
reproduce this impulse response
at times sampled at At intervals.
In particular, the sampled
impulse response is giver. by

k
h(nAt) = —————(”21“ e anAl

for n=0,1,2,..

?

(A3)

This sampled impulse response
can be generated from a z-do-
main formulation involving the
sum of poles having all multipli-
cities from unity to k+1. The de-
tailed derivation will not be giv-
en here, but the results for poles
of multiplicity one through four
will be shown. In general, when-
ever a pole of a given multiplici-
ty occurs, all poles of lower order
also occur. Thus, a matrix repre-
sentation of this impulse invari-
ant transformation is useful.

Define a normalized z-domain
variable called x, as follows

—-aAt
£ (A4)

-4

X =

Define a four element vector S
whose elements are the s-do-
main poles for each multiplicity.
Define Z as 4-vector of z-domain
poles of the form 1/(1-x)**! for
each multiplicity. The elements

for each of these vectors are list-
ed in order of decreasing multi-
plicity. Then, the impulse invari-
ant transformation between
these two domains can be writ-
ten in matrix form as

S @RZ (Ab)
where R is the 4x4 matrix
AP0 0 01 -2 7 -y
Ro1 00 0l0 1 %Y,
0 0 At O 0 0 1 -1
0 0 01 0 0 0 1
(AB)

If a row vector A of s-domain co-
efficients on each element of S is
defined as

A=A, A, A

2 1

A (AD

then the final result can be writ-
ten as

AS < ARZ (A8)

In a similar manner, equation
(A5) can be inverted to give

ZoR'S (A9)
where the inverse of R is
1 29 1({at20 0 0
R-1210 1 % 1]l 0at20 0
0 011 0 0At- 10
0 0 01 0 0 0 1
(A10)

If a row vector B of z-domain co-
efficients on each element of Z is
defined as

[B, B, B

3 2

B= B,] (A11)

1

then the result can be written as

BZ < BR''S (A12)
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These row vectors of coefficients
are related by
B=AR (A13)
If the multiplicity of the original
pole is reduced by one, then the
topmost row and the leftmost
column of R (and of R™!) are dis-
carded to form a 3x3 R (and R™)
matrix.

As for the unity multiplicity
case, it is necessary to multiply
the z-domain form of the multi-
ple pole by At before attempting
to calculate the frequency
response function around the
unit circle.
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