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Chapter 1 – Introduction

The basic pulse spectrum

The spectrum analyzer was originally designed to look at the  

output of radar transmitters. A pulse radar signal is a train of RF 

pulses with a constant repetition rate, constant pulse width and 

shape, and constant amplitude. By looking at the characteristic 

spectra, all-important properties of the pulsed signal such as 

pulse width, occupied bandwidth, duty cycle, peak and average 

power, etc., can be measured easily and with high accuracy. 

Perhaps an even more important application of the spectrum 

analyzer is the detection of transmitter misfiring and frequency 

pulling effects. This application note is intended as an aid for the 

operation of the spectrum analyzer and the interpretation of the 

displayed pulse spectra.

The formation of a square wave from a fundamental sine wave and 

its odd harmonics is a good way to start an explanation of the 

spectral display for nonsinusoidal waveforms. You will recall perhaps 

at one time plotting a sine wave and its odd harmonics on a 

sheet of graph paper, then adding up all the instantaneous values. 

If there were enough harmonics plotted at their correct amplitudes   

and phases, the resultant waveform began to approach a square 

wave. The fundamental frequency determined the square wave 

rate, and the amplitudes of the harmonics varied inversely to their 

number.

A rectangular pulse is merely an extension of this principle, and by 

changing the relative amplitudes and phases of harmonics, both odd 

and even, we can plot an infinite number of wave shapes. The 

spectrum analyzer effectively separates waveforms and presents 

the fundamental and each harmonic contained in the waveform.

Consider a perfect rectangular pulse train as shown in Figure 1a, 

perfect in the respect that rise time is zero and there is no overshoot 

or other aberrations. This pulse is shown in the time domain and 

we wish to examine its spectrum so it must be broken down into 

its individual frequency components. Figure lb superimposes the 

fundamental and its second harmonic plus a constant voltage  

to show how the pulse begins to take shape as more harmonics 

are plotted. If an infinite number of harmonies were plotted, the 

resulting pulse would be perfectly rectangular. A spectral plot of 

this would be as shown in Figure 2.

Figure 1a. Periodic rectangular pulse train Figure 1b. Addition of a fundamental cosine wave and its  

harmonics to form rectangular pulses
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The envelope of this plot follows a funtion of the basic form: 

 y =
 sin x

          x

There is one major point that must be made clear before going 

into the spectrum analyzer display further. We have been talking 

about a square wave and a pulse without any relation to a carrier 

or modulation. With this background we now apply the pulse 

waveform as amplitude modulation to an RF carrier. This produces 

sums and differences of the carrier and all of the harmonic 

components contained in the modulating pulse.

We know from single tone AM how the sidebands are produced 

above and below the carrier frequency. The idea is the same for  

a pulse, except that the pulse is made up of many tones, thereby 

producing multiple sidebands that are commonly referred to as 

spectral lines on the spectrum analyzer display. In fact, there 

will be twice as many sidebands or spectral lines as there are 

harmonics contained in the modulating pulse.

Figure 3 shows the spectral plot resulting from rectangular  

amplitude pulse modulation of a carrier. The individual lines  

represent the modulation product of the carrier and the modulating 

pulse repetition frequency with its harmonics. Thus, the lines will 

be spaced in frequency by whatever the pulse repetition frequency 

might happen to be. The spectral line frequencies may be 

expressed as:

 FL = Fc  ± n x PRF

where Fc = Carrier frequency

 PRF = Pulse repetition frequency 

 n = 0, 1, 2, 3 . . . . . .

The “mainlobe” in the center and the “sidelobes” are shown as 

groups of spectral lines extending above and below the baseline. 

For perfectly rectangular pulses and other functions whose  

derivatives are discontinuous at some point, the number of   

sidelobes is infinite.

The mainlobe contains the carrier frequency represented by the 

longest spectral line in the center. Amplitude of the spectral lines 

forming the lobes varies as a function of frequency according to the 

expression  sin ω τ   for a perfectly rectangular pulse.

                          2

                   ω  τ 
                       2

Figure 2. Spectrum of a perfectly rectangular pulse. Amplitudes and 

phases of an infinite number of harmonics are plotted, resulting in 

smooth envelope as shown.

Figure 3. Resultant spectrum of a carrier amplitude modulated with a 

rectangular pulse 
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Thus, for a given carrier frequency the points where these lines 

go through zero amplitude are determined by the modulating 

pulse width only. As pulse width becomes shorter, minima of the 

envelope become further removed in frequency from the carrier, and 

the lobes become wider. The sidelobe widths in frequency are 

related to the modulating pulse width by the expression  f = 1/τ 

Since the mainlobe contains the origin of the spectrum (the carri-

er frequency), the upper and lower sidebands extending from this 

point form a main lobe  2/τ  wide. Remember, however, that the 

total number of sidelobes remains constant so long as the pulse 

quality, or shape, is unchanged and only its repetition rate is varied. 

Figure 4 compares the spectral plots for two pulse lengths, each 

at two repetition rates with carrier frequency held constant.

Notice in the drawings how the spectral lines extend below the 

baseline as well as above. This corresponds to the harmonics in 

the modulating pulse, having a phase relationship of 180 ° with 

respect to the fundamental of the modulating waveform. Since 

the spectrum analyzer can only detect amplitudes and not phase, 

it will invert the negative-going lines and display all amplitudes 

above the baseline.

4a. Narrow pulse width causes wide spectrum lobes, 

high PRF results in low spectral line density.

Figure 4c. PRF lower than 4a results in higher spectral 

density. Lobe width is same as 4a since pulse widths  

are identical.

Figure 4b. Wider pulse than 4a causes narrower lobes, but 

line density remains constant since PRF is unchanged.

Figure 4d. Spectral density and PRF unchanged from 4c, 

but lobe widths are reduced by wider pulse.
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Because a pulsed RF signal has unique properties we have to be 

careful to interpret the display on a spectrum analyzer correctly. 

The response that a spectrum analyzer (or any swept receiver) 

can have to a periodically pulsed RF signal can be of two kinds, 

resulting in displays that are similar but of completely different 

significance. One response is called a "line spectrum" and the 

other is called a "pulse spectrum." We must keep in mind that 

these are both responses to the same periodically pulsed RF 

input signal, and the "line" and "pulse" spectrum refer solely to 

the response or display on the spectrum analyzer.

We will discuss both types of response to a signal with the basic 

appearance as shown in Figure 5 with the aid of pictures, and 

then summarize all formulas and rules for proper operation of 

the analyzer.

Figure 5. Basic RF pulse
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General rules and explanation

A “line” spectrum occurs when the spectrum analyzer's 3 dB 

bandwidth RBW is narrow compared to the frequency spacing of  

the input signal components. Since the individual spectral   

components are spaced at the pulse repetition frequency (PRF)  

of the periodically pulsed RF, we can say: 

   RBW < PRF  (1)

In this case all individual frequency components can be resolved. 

Only one is within the bandwidth at a time as shown in Figure 6.

The display is a frequency domain display of the actual Fourier 

components of the input signal. Each component behaves as a 

CW signal. The display has the normal true frequency domain 

characteristics:

 1. The spacing between lines on the display will NOT change  

  when the analyzer sweep time is changed.

 2. The amplitude of each line will not change when the band 

  RBW is changed as long as RBW remains considerably  

  below the PRF.

We will now look at the display images on page 9 of a pulsed 

RF signal to see how different sweep time, span and resolution 

bandwidth of the spectrum analyzer influence the appearance of 

the signal on the display.

A carrier signal with a CW amplitude of –30 dBm (Figure 7) is  

modulated by a pulse train with a PRF of 1 kHz and an effective 

pulse width τeff of 0.1 ms (Figure 8). In Figure 9 we see the resulting 

pulse spectrum in a linear display. The RBW is 100 Hz, one-tenth 

of the PRF.

The logarithmic display (Figure 10) allows a much better evalua-

tion of the signal spectrum, because the lower amplitudes of the 

higher order sidelobes can now be easily measured.

Each Fourier component is resolved and the line spacing is measured 

as 1 kHz, which is the PRF. We can also see that the spacing of 

the sidelobe minima is 10 kHz, according to the relation 

  1   
=

       1      
= 10 kHz.τeff      0.1 ms

Chapter 2. “Line” Spectrum

Figure 6. IF bandwidths smaller than PRF.

B < 
1
  or B < PRF

       
T



We thus can count ten spectral lines in each sidelobe or twenty 

lines plus the carrier line in the mainlobe, according to the duty 

cycle of the pulsed signal.

 τeff  or τeff x PRF = 0.1
   T

(The fact that the amplitude of the spectral lines on the lobe  

minima reach zero for each integer ratio of τeff  can be used to 

adjust the duty cycle very accurately.)           T

The display in Figure 10 does not change for different scan times, 

unless we select a scan time too short for the given scan width 

and bandwidth.

The new Agilent spectrum analyzer systems have a built-in logic 

with a warning that enables us to avoid any wrong combination 

of these control settings.

For spectrum analyzers without this feature we have to satisfy an 

additional equation to avoid display errors:

      Span [Hz/Div]

 Sweep time [sec/Div]  < (RBW[Hz])2        (2)

(See Appendix B)

In Figure 11 the RBW of the analyzer has been changed to 300 Hz. 

Although the resolution of the spectral lines is reduced (minimal) 

we still have a true Fourier line spectrum display. From this expe-

rience we can derive a rule of thumb for the analyzer's bandwidth 

to obtain a line spectrum:

  RBW < 0.3 PRF (preferably RBW < 0.1 PRF)        (3)

This rule is valid for the shape factors (10:1 to 30:1) of the IF 

filters used in Agilent spectrum analyzers.

In Figure 12 we have changed the span from 100 kHz (10 kHz/Div) 

to 50 kHz (5 kHz/Div). We see that the spectrum envelope and 

the line spacing have changed, but the number of lines in each 

lobe remains constant.

In Figure 13 the pulse width has been altered from τeff = 0.1 ms to 

τeff = 0.05 ms. Comparing with Figure 10 (same control settings 

on the spectrum analyzer), we find three differences:

 1. The side-lobe minima are spaced by 20 kHz.

 2. The number of lines in each side-lobe is 20. (The line   

  spacing is still 1 kHz since we did not change the PRF.)

 3. The amplitude of the spectrum envelope is 6 dB lower.

The last point reveals a very important fact which has not been 

mentioned yet, but can easily be seen in the display of the  

calibrated logarithmic displays on page 7A: The amplitude of the 

carrier component (highest amplitude in the spectrum envelope) 

of a pulse modulated signal is considerably lower than the CW 

amplitude of the unmodulated carrier. This effect is commonly 

called pulse desensitization.

Pulse Desensitization αL

The expression “pulse desensitization” is quite misleading since 

the sensitivity of the spectrum analyzer is not reduced by a pulse 

modulated signal. The apparent reduction in peak amplitude can 

be explained in the following manner: pulsing a CW carrier 

results in its power being distributed over a number of spectral 

components (carrier and sidebands). Each of these spectral com-

ponents then contains only a fraction of the total power.

In Figure 10, where we have a duty cycle  
τeff  of 0.1, we measure 

a display amplitude which has a difference of –20 dB compared 

to the CW amplitude of the carrier. In Figure 13, with a duty cycle 

of 0.05, we measure –26 dB. This leads to the equation for the 

line spectrum pulse desensitization factor αL:

   αL [dB] = 20 log
10 

τeff 

                   
T
 

 

                = 20 log
10 

τeff  x PRF      (4)

                    

This relation is only valid for a true Fourier line spectrum 

(RBW < 0.3 PRF). We can see that α
L
 is only dependent on the 

duty cycle τeff of the pulsed signal.    

                T

 

The average power Pavg of the signal is also dependent on the  

duty cycle:
 

   Pavg = Ppeak x 
τeff or Pavg = Ppeak x τeff x PRF

                       
T

Written as a ratio in dB:

   
Pavg

  [dB] = 10 log
10

τeff  x PRF    (4a)

          
Ppeak

 Figure 14 represents Equations 4 and 4a in a diagram.

8

 T
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Figure 7. CW signal at 1 GHz with an 

Amplitude of –30 dBm, span of 100 kHz, 

RBW of 100 Hz and reference of –20 dBm.

Figure 13. The pulse width is changed to 

0.05 ms, pulse period of 1 ms and span 

of 10 kHz.

Figure 12. Same signal as figure 11 with span 

decreased to 50 kHz and bandwidth decreased 

to 100 Hz.

Figure 11. Same signal as figure 9 with 

bandwidth increased to 300 Hz.

Figure 10. Log display of signal in figure 9.

Figure 9. Line spectrum of the pulsed 1 GHz 

with 100 kHz span and linear amplitude 

display.

Figure 8. Time domain display of the 1 GHz, 

pulse width of 0.1 ms, period of 1.0 ms and a 

5 ms sweep time.

Line Spectra of a Pulsed Modulated 1 GHz Carrier
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Figure 14. Pulse desensitization αL (line spectrum).

Note: Images were captured using an Agilent PXA signal analyzer.
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We read from the diagram that for a duty cycle of 0.1 we will get  

a display desensitization of –20 dB, and for a ratio of 0.05 we get  

–26 dB as shown in Figure 10 and Figure 13. The diagram also 

shows that the desensitization factor αL becomes very large for 

low duty cycles. In this case, the sensitivity of the analyzer and 

the maximum signal level at the broadband front end mixer 

become important factors. We shall describe the necessary   

considerations for these analyzer properties in the next chapter 

about the more important “pulse” spectrum display.

Transition to the "Pulse" Response

If we increase the RBW in our example further to 1 kHz, we get 

the display shown in Figure 15. We notice that the analyzer has 

lost the ability to resolve the spectral lines since RBW = PRF. The 

lines now displayed are generated in the time domain by the single 

pulses of the signal. We also see that the displayed amplitude of 

the spectrum envelope has increased. This is due to the fact that 

the IF filter is now sampling a broader part of the spectrum at a 

time, thus collecting the power of several spectral lines.

A pulse repetition rate equal to the resolution bandwidth is the 

demarcation line between a true Fourier-series spectrum, where 

each line is a response representing the energy contained in that 

harmonic, and a “pulse” or Fourier-transform response.

Figure 15. The bandwidth was changed to equal the pulse 

repetition frequency and the pulse width was changed to 0.1 ms.



11

RBW >
1
  or RBW > PRF

T

General rules and explanation

A “pulse” spectrum occurs when the bandwidth RBW of the 

spectrum analyzer is equal to/or greater than the PRF. The spectrum 

analyzer in this case cannot resolve the actual individual Fourier 

frequency domain components, since several lines are within its 

bandwidth. However, if the bandwidth is narrow compared to the 

spectrum envelope, then the envelope can be resolved (Figure 16). 

The resultant display is not a true frequency domain display, but 

a combination of time and frequency display. It is a time domain 

display of the pulse lines, since each line is displayed when a pulse 

occurs, regardless of the frequency within the pulse spectrum to 

which the analyzer is tuned at that moment. It is a frequency 

domain display of the spectrum envelope. The display has three 

distinguishing characteristics:

1. The spacing between the pulse lines and their number will 

change when the sweep time of the analyzer is changed. The 

lines are spaced in real time by 1/PRF. The shape of the 

spectrum envelope will not change with the scan time.

2. The spacing between the lines will not change when the span 

is changed. The spectrum envelope will change horizontally as 

we would expect.

3. The amplitude of the display envelope will increase linearly as 

the bandwidth RBW is increased. This means an amplitude 

increase of 6 dB for doubling RBW.

This is true as long as RBW does not exceed  0.2 . When the  

                         
τeff

bandwidth equals   1   (or 1/2 of the main-lobe width), the display                

               
τeff

amplitude is practically the peak amplitude of the signal. At this 

point the IF filter covers nearly all significant spectral components. 

But then we have lost the ability to resolve the spectrum 

envelope.

Chapter 3 – “Pulse” Spectrum

Figure 16. If bandwidth greater than PRF.
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We show these characteristics in the following pictures:

In Figure 17 we modulate the –30 dBm CW carrier by a pulse train

with a PRF of 100 Hz and τeff =     1     = 100 μs. The analyzer's

    
10 kHz

IF bandwidth is 1 kHz; i.e., RBW = 
0.1  .

                       
τeff

We can see the spectrum envelope with the mainlobe and side-

lobes and the minima in between. The lines that form the enve-

lope are not spectral lines but pulse lines in the time domain.

We can verify this by changing the scan time (Figure 18). If we 

reduce the scan time further, we lose the information about the 

shape of the spectrum envelope; i.e., the frequency domain infor-

mation. But we now can easily measure the PRF in the time 

domain (Figure 19 and Figure 20).

In Figure 21 we changed the span to 5 kHz/Div. The span is the 

same as in Figure 18. We can see that the spectrum envelope 

changed (frequency domain), but the line spacing remains con-

stant (time domain).

In Figure 22 we use an RBW of 300 Hz. We can measure an 

amplitude decrease of approximately 10 dB compared to Figure 17, 

which shows the linear relationship between RBW and display 

amplitude. We also can see that the minima are better resolved 

than in Figure 17. In Figure 23 the RBW is increased to 3 kHz. 

The display amplitude increase compared to Figure 22 is not 20 dB 

but only 18 dB. We lost the linear relationship between bandwidth 

and display amplitude because RBW is greater than  0.2  in this 

                      
τeff

case. Also the resolution of the sidelobes is lost to a great extent.

If we increase RBW to 10 kHz (which is equal to    
1
   ), we get a  

                                
τeff

display with an amplitude practically equal to the peak amplitude

of the pulsed signal (Figure 24).

Some additional rules of thumb are of importance:

 1. For a sufficient resolution of the spectrum envelope the  

  bandwidth should be less than 5% of the mainlobe width or:

   RBW <  0.1       (5)

                    
τeff

 

  For higher resolution into the lobe minima (20 to 30 dB) we 

  should use:

   RBW <  0.03             (6)

                        
τeff

 

 2. The system must respond to each pulse independently.  

  The effects of one pulse must decay out before the next  

  pulse occurs. The IF amplifier decay time constant is   

  approximately 0.3/RBW. A decay of the pulse effect down  

  to 1% (-40 dB) requires five time constants. This leads  

  to the rule:

   RBW > 1.5 PRF        (7)

  However, we get less than 1 dB error if RBW = PRF, where  

  the baseline is only 20 to 25 dB below the spectrum envelope  

  (see Figure 15). The range between RBW < 0.3 PRF (line  

  spectrum) and RBW > PRF (pulse spectrum) shows properties  

  of both response types and should be avoided.

 3. The number of pulse lines that form the spectrum envelope  

  display is determined by the PRF and the scan time. For a  

  display with useful resolution, i.e., a sufficient number of  

  lines, the scan time should be selected to:

   scan time [s/Div]  ≥      10

      
PRF [Hz]

We then have more than 100 lines forming the spectrum envelope, 

thus assuring that the mainlobe peak is displayed on each scan 

(see Figure 18 and Figure 22).

In the other displays where RBW <    1  we again have to consider  

                 
τeff

a“pulse desensitization” factor since we compare a CW signal

with a pulsed signal. This factor will be extensively discussed later.
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Figure 17. The PRF was set to 100 Hz (pulse 

period of 10 ms) pulse width of 0.1 ms, span of 

100 kHz, sweep time of 10 sec and RBW of 1 

kHz.

Figure 23. The RBW is increased to 3 kHz. Figure 24. The RBW is increased further to 

10 kHz.

Figure 22. Same signal as figure 21 with the 

RBW reduced to 300 Hz, span increased to 

100 kHz, and sweep time increased to 2 seconds.

Figure 21. Same signal as figure 20 with the 

span of 50 kHz, RBW of 1 kHz and sweep time 

of 1 sec.

Figure 20. Same signal as figure 19 with the 

RBW expanded to 300 kHz and sweep time 20 ms.

Figure 19. Same signal as figure 18 with the 

sweep time future reduced to 200 ms.

Figure 18. Same signal as figure 17 with the 

sweep time reduced to 1 sec.

Pulsed RF signal in "pulsed" spectrum display
(All Pictures Show the Same Log Ref of –20 dBm).



14

Why use a “pulse” spectrum display?

In many instances, it is neither possible nor desirable to make 

a fine grain line-by-line analysis of a spectrum. A good example 

of such a case is a train of short RF pulses at a low repetition 

frequency as normally used in radar transmitters. Not only must 

the IF bandwidth become inconveniently narrow, but often the 

frequency modulation on the pulsed carrier is so excessive that 

the resulting display is confusing.

In the "pulse" spectrum mode we can get all information we 

need: the spectrum envelope and amplitude in the frequency 

domain and the PRF in the time domain. We also have two 

advantages over the “line” spectrum display:

1. We can use shorter scan times because of the greater bandwidth.

2. We can increase the display amplitude of the pulsed signal by 

choosing a broader bandwidth. We know that the display ampli-

tude increases linearly with the bandwidth RBW. The noise level 

of the analyzer increases only proportional to √RBW. So we can 

increase the signal-to-noise ratio proportional to √√ RBW. The 

reason that the amplitude of the pulse increases proportional 

to the RBW is that the signals are coherent and add directly. The 

noise is not coherent and the power increases with the √√ RBW.

This is opposite to the CW and “line” case where we have to use 

narrower bandwidths to decrease the noise level, thus increasing 

the signal-to-noise ratio. Figure 25 and Figure 26 show these 

effects clearly.

From the preceding discussion about the “pulse” spectrum 

response we can find another important fact: The spectrum   

analyzer must provide independent controls for bandwidth,   

span, and sweep time to optimize the display according to the 

rules of thumb given for this type of response. Also the variable 

persistence CRT offers a great advantage if we want to have a 

flicker-free display of pulsed signals with low PRF.

Figure 25. A 1 GHz carrier with –50 dBm amplitude, PRF of 400 Hz, 

3 μsec pulse, RBW of 3 kHz, 5 MHz span, and a sweep time of 1 

second is displayed. You will note that only the lower order 

side-lobes can easily be measured.

Figure 26. The same display as figure 25 with the RBW increased 

to 30 kHz. This increased resulted in a 20 dB increase in the 

signal with only a 10 dB increase in noise. The higher order side 

lobes are now more easily measured. 



15

Peak pulse response - pulse desensitization αp

In the "pulse" spectrum just described, the response of the  

spectrum analyzer to each RF input pulse is in essence the pulse 

response of the analyzer's IF amplifier.

The peak pulse response of the Agilent Spectrum Analyzers has 

been established and is relatively independent of pulse shape and 

pulse repetition frequency (for RBW > PRF). The expression relating 

the peak pulse response to a CW signal response is the pulse  

desensitization factor αp.

This factor αp for the "pulse" response depends on different  

physical conditions compared to αL in the "line" spectrum:

   αp = 20 log10 x τeff  x Bimp [dB]

In this equation we find a new expression: the effective impulse 

bandwidth, Bimp. This can be visualized as the bandwidth of an 

ideal, rectangularly shaped filter with a pulse response equivalent 

to the actual filter with the 3 dB bandwidth B (Figure 27). Since 

the impulse bandwidth Bimp of the IF amplifier is not the same as 

its 3 dB bandwidth B, a correction factor K has been introduced. 

This factor K represents an empirical approach defining Bimp  

relative to B:

   K = 
Bimp

          (9)

        
RBW

For 4-pole synchronously tuned filters as used in Agilent ESA 

Series and X-Series 8560 family, and 859x IF sections, the value of 

K is ideally 1.6 with tolerance expectations of about ±10%, or 

±0.8 dB. For the Agilent PSA Series and X-Series, K is 1.479 with 

a tolerance of about ±2% (±0.17 dB).

We can now write:

   αp [dB] = 20 log10 x τeff x K x B;   K = 1.48 or 1.6 (10)

There are several conditions which must be satisfied if Equation 

10 is to be valid:

 1. The IF bandwidth-pulse width product must be less than  

  two-tenths:

   RBW x τeff < 0.2 or B <
  0.2

                         
τeff

 2. The normalized scan rate (NSR) of the analyzer must be  

  less than one:

   NSR =           Scan Width [Hz/Div]

               Scan Time [s/Div] x (RBW[Hz])2 < 1

 3. The IF bandwidth must be greater than the PRF: RBW > PRF

The conditions in 1 to 3 are automatically accomplished if the 

Equations 5, 6, and 7 are satisfied.

 4. The peak pulse amplitude at the broadband input mixer  

  of  the analyzer must stay below the saturation point   

  (1 dB compression). The typical saturation point for Agilent  

  spectrum analyzers is between –10 dBm and –5 dBm:

   Ppeak ≤ –10 dBm      (11)

E

Bimp

RBW3dB

f

Figure 27. Equivalent Bimp of Gaussian filter.



16

Figure 28 is a diagram showing the pulse desensitization αp in 

relation to IF bandwidth B and pulse width τeff. We see that the 

PRF does not appear, since it is of no significance for the display 

amplitude as long as B > PRF. The shaded area between the

RBW = 0.03 and RBW =  0.1 represents the optimum bandwidth

           
τeff

          

τeff

range for an analysis of a pulsed signal. There are also three

dotted lines that show different noise levels of an analyzer for a 

fast determination of the dynamic range.

We will now take a few examples to show how the diagram  

is used:

 1. We assume a pulsed signal with the following characteristics:  

  Ppeak = –30 dBm, τeff = 1 μs, PRF = 1 kHz. The noise level  

  of the analyzer is N = –100 dBm for 1 kHz bandwidth. We  

  find on the diagram for τeff = 1 μs an optimum bandwidth  

  of 100 kHz (→ RBW > PRF). We then can read a pulse  

  desensitization of αp≈ –16 dB. The displayed amplitude of  

  the spectrum envelope will be ≈ –46 dBm. We also read  

  from the crossing point of the line for N = –100 dBm and  

  the line for B = 100 kHz a resultant noise level of –80 dBm.  

  We thus get a usable display range (S/N ratio) of only 34 dB.  

  Although this range is sufficient in most cases for evaluation  

  of the pulse spectrum, this example shows how important  

  a spectrum analyzer with a low noise level is.

αp [dB]
N [dB]

–110

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0
0.1 1 ns 10 100 1 μs 10 100 1 msτeff

10 GHz 1 GHz 100 MHz 10 MHz 1 MHz 100 kHz 10 kHz

main lobe width

B = 1 kHz3 kHz10 kHz30 kHz100 kHz
 300 kHz 1 M
Hz  3 M

Hz

110 dBm noise level N of analyzer (RBW = 1 kHz)

–100 dBm

–90 dBm
RBW > 1.7 PRF

RBW = 0.03
τeff

RBW = 0.1
τeff

Figure 28. Pulse desensitization αp (pulse spectrum).
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 2. Pulse power measurements: We see on the spectrum analyzer  

  display the spectrum envelope of a pulsed signal with the  

  following characteristics: the display amplitude is –50 dBm,  

  the mainlobe width is 10 MHz. The analyzer's bandwidth is  

  300 kHz. What are the peak and the average powers of  

  the signal?

  The effective pulse duration τeff is calculated from the  

  lobe width or read from the diagram:

   τeff =      
2
      = 0.2 μs or 200 ns

            
10 MHz

  In the diagram, we find a pulse desensitization of –21 dB  

  for τeff = 200 ns and B = 300 kHz. The peak power is 21 dB  

  greater than the displayed amplitude, and we can calculate  

  the peak power to Ppeak = –29 dBm.

  To find the average power, we first have to measure the  

  PRF. This is done by reducing the scan time until we can  

  easily measure the pulse line spacing in time domain.  

  Assume we measured the line spacing to 1 ms which  

  equals a PRF of 1 kHz, we then can calculate the average  

  power Pavg = Ppeak x τeff x PRF.

   τeff  x PRF = 2 x 10–7 s x 103 Hz = 2 x 10–4

  Using the diagram for αL, Figure 14 on page 9, we find a  

  factor  
Pavg

  of –37 dB. Thus, with the peak power Ppeak of 

         
Ppeak

  –29 dBm and the factor of –37 dB, we can calculate the

  average power Pavg = –66 dBm.

 3. We want to calculate the peak power of a signal displayed  

  with an amplitude of –30 dBm and a mainlobe width of  

  100 MHz. The analyzer bandwidth is 300 kHz. The signal  

  has a pulse duration τeff =       
2
       = 20 ns. We find a  

                           
100 MHz

  desensitization factor of –41 dB.

  This would yield a signal peak power of +11 dBm, far beyond  

  the saturation level of –10 dBm. Thus, the calculation is not  

  valid. We have to insert at least 20 dB attenuation before  

  the input mixer.

  To check that the input signal level at the front end mixer is  

  below the saturation point, we have to observe that for a  

  10 dB step of the input attenuator the display amplitude  

  must also change by exactly 10 dB.

Very short RF pulses

We know from the diagram for αp (Figure 28) that the desensitization 

of the analyzer display becomes very high for very short RF puls-

es, even with the widest resolution bandwidth. If we assume that 

we can provide the maximum usable input signal level of –10 dBm 

(which is  normally possible when we measure in the proximity of 

the radar transmitter to be investigated), we are then limited only 

by the sensitivity of the analyzer. For a sufficient evaluation of a 

pulsed RF signal we should have a display range of at least 30 dB 

above the noise level. Figure 29 is a diagram which shows the 

maximum usable display range as a function of pulse width and 

analyzer sensitivity for a maximum input level of –10 dBm and a 

bandwidth of 300 kHz.*

We can easily see that for a pulse width of, for example, 1 ns, an 

analyzer must have a sensitivity of –110 dBm (specified for RBW 

= 300 kHz) or better to yield a usable display. It is not possible to 

improve the signal-to-noise ratio with a low noise preamplifier, 

since we are already limited by the saturation level of the input 

mixer. The new generation of Agilent spectrum analyzers offers 

exceptionally high sensitivities that allow measurements of 

extremely short RF pulses.

*See page 15.

Figure 29. Display range vs. sensitivity
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Type of response "Line" spectrum (Fourier series) "Pulse" spectrum (Fourier transform)

Requirements for each    RBW > 1.7 PRF

Type of spectrum:

 Bandwidth RBW < 0.3 PRF  RBW <  0.1

                 
τeff

 Sweep time Ts >    Fs  Ts > IO/PRF

           
RBW2

 Peak input power Ppeak ≤ –10 dBm Ppeak ≤ –10 dBm
 

Desensitization factor αL=  20 log10 x 
τeff  αp = 20 log10 x τeff x K x RBW

                           
T

Amplitude of spectrum display at ω = ωo A = E’p x 
τeff = E’p x τeff x PRF A = E’p x τeff x K x RBW

                  
T

Type of display used  Fourier or spectral lines Pulse repetition rate lines

for duty cycle 
τeff of >0.05 < 0.05

                 
T

Number of lines/Division Changes with scan width not scan time Changes with scan time not scan width
    

 E’p = response on CRT due to CW signal Ep cos ωot RBW = IF bandwidth (3 dB)

 Ts = sweep time K = constant of IF amplifier (K ≈ 1.479 or 1.617)

 Fs = span τeff  =  width of rectangular pulse of same height and area as pulse

   
applied to analyzer = ∫

t
  

p(t) dt

 PRF =  1 = Pulse repetition frequency in Hz                                      o
     

E’p
               

T
 

Chapter 4

Summary of Pulse Spectra Characteristics

T

t = o

τeff

Ep

p(t) cos ωot

t
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Common pulse spectra

Figure 30 shows some examples of typical spectrum displays for 

pulse signals with different pulse shapes and with the presence 

of AM and FM. An extensive mathematical treatment of different 

pulse forms and their spectra can be found in Appendix A.

The ideal rectangular RF pulse free of FM will produce a symmetri-

cal pulse spectrum as shown in (a). When the pulse is changed 

to a triangular shape, the spectrum remains symmetrical with 

decreased amplitude of the sidelobes (b). The pulse spectrum  

will remain symmetrical even if the pulse shape is distorted or 

unsymmetrical.

PULSE SPECTRUM IN THE PRESENCE OF FM: A symmetrical 

pulse with linear coherent FM will produce a symmetrical spec-

trum with increased sidelobe amplitude and minima not reaching 

zero, (c), (d).

If incidental FM (FM due to amplitude modulation) or coherent 

FM is introduced together with an unsymmetrical pulse, an 

unsymmetrical pulse spectrum with the minima not reaching zero 

will be produced, (e), (f). This is also true for a symmetrical pulse 

with nonlinear coherent FM.

Figure 30. Common pulse spectra
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Spectrum of rectangular pulse without AM

or FM occurring during pulse. Shape is that

            t

of 
sin ω

 2  function.

        ω
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2
        

Same pulse spectrum as (c) with more 

severe FM.

Triangular pulse spectrum without FM  

during pulse. Effective pulse width is  

shorter than (a) causing minimas to occur 

at wider intervals of frequency.

Spectrum of rectangular pulse with linear 

FM resulting in increased sidelobe amplitude 

and minimas not reaching zero.

Effect of linear AM and FM during pulse. 

Note loss in symmetry due to pulse  

amplitude slope.

More severe case of FM and AM occurring 

during pulse.
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Figure 31: This is an example of a barker code radar showing the 

spectrum, IQ, pulse envelope and phase versus time.

Figure 32: This is an example of a linear FM chirp radar showing 

spectrum, pulse envelop, phase versus time and frequency versus time.

Figure 33: This spectrum is a result of AM and FM modulating the pulse. Figure 34: The transmitter is readjusted  to reduce AM and FM.
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Explanation of the table

The time functions and corresponding frequency functions in this 

table are related by the following expressions:

             ∞

 F(ω) = ∫ f(t) e–iwt dt  (Direct transform)

           –∞   
∞

 f (t) =  1   ∫F(ω) e–iwt dω  (Inverse transform)

          
2π –∞

The 1/2 π multiplier in the inverse transform arises merely 

because the integration is written with respect to ω, rather than 

cyclic frequency. Otherwise the expressions are identical except 

for the difference of sign in the exponent. As a result, functions 

and their transforms can be interchanged with only slight modifi-

cation. Thus, if f (ω) is the direct transform of f (t), it is also true

that 2π f (–ω) is the direct transform of f (t). For example, the

spectrum of a sin x pulse is rectangular (pair 6, page 22) while the
          x

spectrum of a rectangular pulse is of the form sin x (pair 7, page 23).
          x

Likewise pair 1S is the counterpart of the well-known fact that

the spectrum of a constant (dc) is a spike at zero frequency.

The frequency functions in the table are in many cases listed  

both as functions of ω and also of p. This is done merely for  

convenience. F(p) in all cases is found by substituting p for iω in 

F(ω). (Not simply p for ω as the notation would ordinarily indicate. 

That is, in the usual mathematical convention one would write

F(ω) = F(
p
) = G(p) where the change in letter indicates the

             i

resulting change in functional form. The notation used above has

grown through usage and causes no confusion, once understood.)

Thus, in the p-notation

           ∞               i ∞

 F(p) = ∫ f(t) e–pt dt           f(t) =  1    ∫ F(p) ept dp

          –∞                                  
2πi  

– i∞ 

The latter integral is conveniently evaluated as a contour integral 

in the p-plane, letting p assume complex values.

The frequency functions have been plotted on linear amplitude 

and frequency scales, and where convenient, also on logarithmic 

scales. The latter scales often bring out characteristics not evi-

dent in the linear plot. Thus, many of the spectra are asymptotic 

to first or second degree hyperbolas on a linear plot. On a log 

plot these asymptotes become straight lines of slope –1 or –2 

(i.e., –6 or –12 dB/octave).

The time functions in the table have all been normalized to con-

venient peak amplitudes, areas or slopes. For any other amplitude, 

multiply both sides by the appropriate factor. Thus, the spectrum

of a rectangular pulse 10 volts in amplitude and 2 seconds long is

(from pair 7, page 23) 20 sin ω  volt-seconds.

                   
ω

Again, upon multiplication by a constant having appropriate 

dimensions, the frequency functions become filter transmissions. 

Thus, if pair 1 is multiplied by α, the frequency function represents 

a simple RC cutoff. A one-coulomb impulse (pair 1S) applied to 

this filter would produce an output (impulse response) with the

spectrum    α     x 1 coulomb, representing the time function

 
p + α

αe –ατ coulombs (which has the dimensions of amperes). Or a

1 volt step function (pair 2S) would produce the output spectrum

   α    x  1 volts, which represents the time function (1 – e–ατ)
p + α

    
p

volts (pair 4S).

The entries 1S through 6S in the table (page 24) are singular functions 

for which the transforms as defined above exist only as a limit. For

example, 1S may be thought of as the limit of pair 7 (multiplied

by 1 ) as τ → 0.

    

τ

Properties of transforms

There are a number of important relations which describe what 

happens to the transforms of functions when the functions  

themselves are added, multiplied, convolved, etc. These relations 

state mathematically many of the operations encountered in  

communications systems: operations such as linear amplification, 

mixing, modulation, filtering, sampling, etc. These relations are all 

readily deducible from the defining equations above; but for ready 

reference some of the more important ones are listed in the  

properties of transforms on the last page of this appendix.

Again, because of the similarity of the direct and inverse transforms, 

a symmetry exists in these properties. Thus, delaying a function 

multiplies its spectrum by a complex exponential; while multiply-

ing the function by a complex exponential delays its spectrum. 

Multiplying any two functions is equivalent to convolving their 

spectra; multiplying their spectra is equivalent to convolving the 

functions; etc.

Many of the pairs listed in the table of transforms can be obtained 

from others by using one or more of the rules of manipulation listed 

in the properties of transforms. For example, the time function in

pair 8, page 23 is 1 times the convolution of that in pair 7 with itself.

                       
τ

The spectrum should therefore be 1 times the product of that in

                                    
τ

pair 7 with itself, as it indeed is. Further, by using these properties,

many pairs not in the table can be obtained from those given. For

example, the spectrum of f(t) = (1 – ατ) e–ατ is (by the addition

property) F(p) =     1     –      α       =      
p
      .

           

p + α
     

(p + α)2       (p + α)2

Appendix A. Table of Important Transforms
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Table of Important Transforms
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Table of Important Transforms



24

Table of Important Transforms
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Properties of Transforms

Significance

Linearity and superposition apply in both domains. The spectrum of a linear sum of  

functions is the some linear sum of their spectra (if spectra are complex, usual rules of  

addition of complex quantities apply). Further, any function may be regarded as a sum of  

component parts and the spectrum is the sum of the component spectra.

Time-bandwidth invariance. Compressing a time function expands its spectrum in  

frequency and reduces it in amplitude by the some factor. The amplitude reduces because  

less energy is spread over a greater bandwidth. For some energy pulse as for k = 1, multiply  

both functions by √√|k|. The case where k = –1 reverses the function in time. This merely  

interchanges positive and negative frequencies; so for real time functions, reverses the  

phase.

Any real function f(t) may be separated into an even part 1 [f(t) + F(–t)] and an odd part

               
2

1 [f(t) – f(–t)]. The transform of the oven part is 1 [F(ω) + F(–ω)] which is purely real and
2               2

involves only even powers of ω. The transform of the odd part is 1 [F(ω) – F(–ω)] which is

           
2

purely imaginary and involves only odd powers of ω. Note: for f(t) real, F(–ω) = F(ω).

Delaying a function by a time to multiplies its spectrum by e–iωto, thus adding a produces

a delay of θ = –ωto to the original phase. Conversely a linear phase filter produces a delay 

of  – dθ = to.

       

dw

 

Multiplying a time function by eiωot “delays” its spectrum, i.e., shifts it to center about 

ωo rather than zero frequency. Ordinary real modulation — by cos, ωot say — produces 

the time function  1 (eiωot + e–iωot) f (t) with the spectrum 1 [F(ω – ωo) + F(ω + ωo)].

             
2               2

The spectrum of the convolution of two time functions is the product of their spectra. In 

convolution one of the two functions to be convolved is reversed left-to-right and displaced. 

The integral of the product is then evaluated and is a new function of the displacement. 

Convolution occurs whenever a signal is obtained which is proportional to the integral of 

the product of two functions as they slide post each other-in other words, in any scanning 

operation such as in optical or magnetic recording or picture scanning in television. 

Transform theory states that such scanning is equivalent to filtering the signal with a filter 

whose transmission is the transform of the scanning function (reversed in time). 

Conversely, the effect of an electrical filter is equivalent to a convolution of the input with 

a time function that is the transform of filter characteristic. This function, the so-called 

"memory curve" of the filter, is identical with the filter impulse response, aside from 

dimensions. (Note: the convolution of a time function with a unit impulse gives the some  

function times the dimensions of the impulse.)

Time operation

Linear addition

 af(t) + bg(t)

Scale change

 f(kt)

Even and odd  

partition

 1 [f(t) ± f(–t)]
 2

Delay

 f(t – to)

Complex modulation

 eiωot f(t)

Convolution

  ∞

 ∫ f(τ)g (t – τ)dτ
  –∞

Frequency operation

 Linear addition

 aF(ω) + bG(ω)

Inverse scale change

   1    
F  ( ω) |k|         k

Even and odd  

partition

 1 [F(ω) ± F(–ω)]
 2

Linear added phase

 e–iωto F(ω)

Shift of spectrum

 F(ω–ωo)

Multiplication

(filtering)

 F(ω)G(ω)
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Properties of Transforms

Significance

The spectrum of the product of two time functions is the convolution of their spectra. 

This is the more general statement of the modulation property. For example, sampling a 

signal is equivalent to multiplying it by a regular train of unit area impulses. The spectrum 

of the sampled signal consists of the original signal spectrum repeated about each  

component of the (line) spectrum of the train of impulses (see pair 6S, page 24). For  

no overlap, highest frequency in signal to be sampled must be less than half sampling  

frequency. If this is true original signal spectrum (hence signal) can be recovered by  

low pass filter (sampling theorem).

The spectrum of the nth derivative of a function is (iω)n times the spectrum of the function.

A “differentiating network” has (over the appropriate frequency range) a transmission

K   P where K is dimensionless or has the dimentions of impedance or admittance.

   
ωo

Thus, the output wave is proportional to the derivative of the input.

The spectrum of the nth integral of a function is (iω)–n times the spectrum of the

function. Thus, the response of any filter to a step function is the integral of its impulse

response. An “integrating network” has (over the appropriate frequency range) a trans-

mission K ωo, where K is dimenions or has the dimenions of impedance or admittance.

  
p

Thus, the output is proportional to the integral of the past of the input.

Time operation

Multiplication

 f(t)g(t)

Differentiation

 dnf(t)

   dtn

Integration

     t          t
  ∫ ––––∫f(τ)(dτ)n 

   –∞       –∞

       n

Frequency operation

Convolution
         ∞

  1    ∫ F(s)G(ω – s)ds
   2π  –∞

Multiplication

  by p

 pnF(p)

Multiplication

 by 1

      P

 1  F(p)
 pn{
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Appendix B.

f

slope =
 Fs  

=
  sweep width

              Ts        sweep time

t

IF Amplifier Response

Mention was made in the test of the phenomenon of decreased 

sensitivity and resolution that results when a CW signal is swept 

by the IF amplifier at a high rate compared to the bandwidth 

squared. Assuming a Gaussian response for the amplifier, the 

resulting transient can be determined as follows:

A sweep frequency signal as illustrated in Figure B-1 can be  

 represented by

 s(t) = e jπ(Fs/Ts)T2
  (B-1)

using pair 10 of Appendix A

 S(ω) = τ√√2π e –1/2(τω)2 

 where τ = √√( j Ts)/2πFs   (B-2)

If we assume a Gaussian response,

 H(ω) = e –1/2(ω/δ)2  (B-3)

the product of S(ω) H(ω) gives

 Y(ω) = S(ω) H(ω) = τ√√2π exp [– 1(τ2 + 1 )ω2]  (B-4)   

                                                               
2
       δ

2

The output transient is the inverse transform of this function, 

again using pair 10

 y(t) =       τ       exp [ – 1 (   
t2

    ) ]  (B-5)

           √τ2 + 1              
2
  τ2

 + 
1

                   δ
2                              δ2

     

 

Substituting back for τ and simplifying

                                            1 – j 
δ2Ts

 y(t) =          1            exp [ –        
2πFs  ] δ

2T 2

 (B-6)

           [ 1 – j
 2πFs  ]

1/2 
              

1 + (Tsδ2

)
2

    
2

                   Tsδ2
                          

2πFs

The envelope of y(t) is then

                                               δ
2t2

 y(t) =            
1
          exp –        

2
 (B-7)

          [1 +( 2πFs )
2]1/4

           1+ (Tsδ2

)
2

                  Tsδ2
                        

2πFs

Note that for low sweep rates

   Ts   
   

  1 (B-8)

 2πFs      δ2

 y(t) = exp [ – 1 ( 2πFs )
2  

t 2 ] 
                     2     

δTs

This, as was stated earlier, is a plot of the frequency response of 

the IF amplifier.

Figure B-1.  A sweep frequency signal
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Distortion

If the condition on (B-8) is not satisfied, the resulting transient 

will be altered in both width (time duration) and amplitude. The 

reduction in amplitude will be 

 α =           1               (B-9)
  

     
 [1 + (2πFs)

2

]
1/4

 

                Tsδ2 

Noting that δ =  (π/√√In(2) B where B is the 3 dB bandwidth,

 α =
               1                (B-10)

        [1 +
 (2In(2))

2 (  Fs )
2

]                   π       Ts B2

A plot of this function in dB versus –Fs/(Ts B2) is included as 

Figure B-2.

If we solve for the 3 dB time duration ∆t from equation (B-8) by 

setting the function to 1/√√2 and solving for the appropriate ∆t,   

we get

 ∆t = 2√√In(2) δT (B-11)

            2πfs

In a like manner, the 3 dB bandwidth of the function (B-7) is

 ∆t’ =
 2√√In(2) 

[1 +(  Tsδ  )
2

]
1/2 

 
   (B-12)

           δπ             2πFs    

The ratio of these times is

 ∆t’ = [ 1 +
 (2πFs )

2

]
1/2

 
   (B-13)

 ∆t              Tsδ2

This is the ratio of the effective resolving bandwidth of a spec-

trum analyzer to the bandwidth of the IF amplifier as a function 

of sweep rate. Rewritten in terms of 3 dB bandwidth B.

 Beff 
=

 [ 1 +
 (2In(2))

2 (   Fs   )
2

]
1/2

 
   (B-14)

  B                  π       Ts∆f 2

This function is plotted in Figure B-2.

 Fs  = Sweep width

 Ts  = Sweep time

 B  = 3 dB IF bandwidth

 Beff = Effective bandwidth

Figure B-2. Sensitivity loss and normalized effective bandwidth vs. normalized sweep rate.
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