Programming Guide
Agilent Technologies
Series 66IxxA
MPS Power Modules

4o Agilent Technologies

Agilent Part No. 5959-3362
Microfiche Part No. 5959-3363

Printed in USA: September 1997

Update April 2000

Safety Guidelines

The beginning of the Users Guide for GPIB Power Modules Series 66IxxA has a Safety Summary page. Be sureyou are
familiar with the information on that page before programming the power module for operation from a controller.

Printing History

The current edition of thisguide isindicated below. Reprints of this guide containing minor corrections and updates may
have the same printing date. New editions are identified by a new printing date and, in some cases, by a new part number.
A new edition incorporates all new or corrected material since the previous edition. Changes to the guide occurring

between editions are covered by change sheets shipped with the guide.

Edition 1......... October, 1991

Edition 2......... February, 1992
Update............. August, 1992
Update............. February, 1993
Edition 3.......... September, 1997
Update.......... April, 2000

© Copyright 1991,1992, 1997 Agilent Technologies, Inc.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this document
may be photocopied, reproduced, or translated into another language without the prior consent of Agilent Technologies.
The information contained in this document is subject to change without notice.

1.

2.

3.

Contents

Introduction
ADOUL tNIS GUITE ...t b et b b e bt e bt ne et b et es 7
DOCUMENLEEION SUMIMIYe.veeveeieeiesiestestesieeseseeaestessestessessesseessessesesseseessesssasesseessessessensessssmsesnsensessessensenes 7
EXEEINEl REFEIENCES. ..ottt n e 7
V X1Plugé& Play Power Products INStrUMENt DITVELS..........ccvieeiieieieeeeieseeeeie s esae e seesie e see e snesnessesnesneneas 8
Introduction to Programming

GPIB Capabilities Of the POWEr MOAUIEccooiiiiieiiceeereee e 9
MOTUIE GPIB AGIESS ..ottt sttt b et e e b ekt b e b s b e e bt s se bt b eae b et enennenes 9
INEFOTUCTION 1O SCTPL ...ttt sttt b e e bbb b e bt e e e e b e e e bt b e s e b e e es e ens 9
(@00 01Y7= o1 o] £ OSSPSR SO TSP UPTSRURO 9
TYPES Of SCPI MESSAgESeitiuietereeieiteeete sttt sttt et e ettt b et b et b e e ae bt b e s b bt bt et £esesbe e ebe e enennene 10
TYPES Of SCPI COMIMEAINGSveueevireeieiteieete sttt sttt et b et b e bt se b st s b e e ebe st £ ebe e ebe s nenrns 10
SUrUCLUIE Of 8 SCPI IMESSAGE......cutieuirieiistiiet ettt b bbbt b bt st b et b e s nnene 10
THE MESSAGE UNIL.....ceieiitiieteieet ettt b et b et b et b e se bt b et b e seesenbe e ebeseenenne e 10
CombiNiNG MESSAZE UNITS........cuiitiieiiiiieiiee ettt sttt st b e st sb e b e e 10
PartS Of @ SCPI IMESSA0Eeveuiitieetiriet sttt sttt b et b bbb e b b et be bt b e e b e b e st nnenes 11
HEAOENS. ..ottt e st bbb h b bR AR e a Shene R e e Rt bt b e e ne b 11
(@11 VA oo [Tor= (o PP TP PP 12
MESSAJE UNIT SEPAIALON ... c.eeveeeierteeetereete sttt bbbt e b e bt b e s nnene 12
ROOE SPECITIEN ...ttt bbb e bbb e e b e bt b 12
MESSAGE TEININGLONc.veueetireeieeteteie sttt ettt b b e st bbb st b e b e e st e b e e b et eb e s st sbe e enenn s 12
Traversing the ComMMAaNG TIEE........cii ettt bbb b e b n e b 13
ACHVEHEBAE! PaN........cooiiiieic s e 13
The Effect of Optional HEAES.........coiiiiireerieeete ettt b e ebe e 13
MOVING AMONG SUDSYSLEIMIS.cueiuirieiiriieeterieert ettt b et b e bbb 14
Including ComMON COMMBINGS.......cueuertieriireeeereeesteseee ettt b et b e bbb e b et b e e e ebesrenees 14
SCPI DA FOIMMELS. ...ttt e r e et r b r e bt bt r bt es £ aneeresresreerenresneeres 14
INUMEITCEI DAEAL. ... ettt ettt b b et b e bbbt s bt e e e b et eaeeb e b ene b ene s e nnens 14
BOOIEAN D@Lttt ettt bbbt b ke b e bR R R bt s She R e b b ne et n e ens 15
SUNG DALAL. ...ttt b ekt b b s bbb st b e bR ae s £e e R e R ne b e b et b 15
CRAIBCTEN D@LA. ... cveeeteeeiertee ettt bbbt b e st b et b bbb e bt b e bt £ bt be st e b et b e bt b e 15
SYSLEM CONSIAEIALTIONS ...ttt bt e et b et bt e st b et bt e st s e e bt es e st ee e ebenb e e b s st nnenes 16
ASSIgNING the AdOreSS iN PrOGIaMS......c.cceiieuirieietereeieriee sttt sr ettt sb e st se e sb e e b seese s seesesneseebe e 16
DIOS DIIVEIS. ...ttt ettt ettt e ettt b e bt e s e bt eb b e st b e e eb e se e R e e b e e eb e R e a e Rt s eb e s 2heebeae e bt b en e b ene b e s ens 16
TYPES OF DITVEIS ...ttt b e bbbt e bt b et b se bt s b e e £ebeseebesbe e ebeseenesneneas 16
AGIHENE B2335A DIFTVES ...ttt ettt b et bt e bbbt s bt b e e e bt s s e st s e bt ssenenb e s enennenes 16
National INStrUMENES GPIB DITVES ..ottt e 16
ErTOr HanGIiNG.coveeeieieee et bbb e bbb 17
AQIlent BASIC fOr SEIES 300c.eiuiieiereeieiieeeie sttt sttt st b e e st b e eb e e b sbeseesesne e erenea 17
Translation AMONG LANGQUATES.cceuerieuerieietereeie sttt sttt sttt s se st se b et sbe e ebe s s esesbe e sbe s sbeseebenseneerens 17
General Setup Information FOr GWBASIC ... e 17
Using the Agilent 82335A/82990A/16062B GPIB Command Libraryccccveeviininncnncnenene 17
Using the National Instruments GPIB INTEIfacte ..o 18
General Setup Information fOr MICrOSOft Ccccoeiieiiieiireree e 18
Using the Agilent 82335A/82990A/16062B GPIB Command Libraryccccveovicninninncnieene 18
Using the National Instruments GPIB INLErface ..o 18
Sending Commands to and Receiving Data from the Module............ccoooiininincincne e 19

Language Dictionary
g1 (0o [0 T (o) IR 23
s = 1 (< £ PRSP 23

REIGLEA COMMEANTS.......eiiiiitii ettt e e e st e e et e e e s s e e e s esabe e s seabeeessabeeesassbessssssasssaesssbesesansaesssarenanan 23

Order Of PrESENEAIIONcoiiieiiiteieeieete ettt sttt b et b et b et b e b e bt b e e bne b e s b e st b ne st b e 23
COMIMON COMMENAS........cvieeiiitirteiestert ettt ettt s bbb e st b e e st s b e s ebe s b e s e bt s b e s e st eb e b e st s basenenbe s e st nbe e e 23
SUDSYSIEM COMMEBNGS........cvieeiiitiieiert ettt et b et b e et s n et b e 23
Description of COmMMON COMMEBNGScveteriiieririeietere ettt se st s st e e ese e e s b essessese s ssenes 24
SO S TSSOSO 24
Bl =S OSSOSO 25
Bl S5 TSSOSO 25
FIDIN 2 ettt ettt h b bt bRt h R ek E e R R £k R e R R R R R £ R £ R e R AR £ e R R R e Rt R ene bR n e b nnenes 26
SO OO 26
FOPEC? .ottt ettt ettt h bt h e h etk R ek E e R R £k R e e R £ R R R e R e £ R £ R e R R e R £ R R R R e Rt e e Rt bR s e b nenes 26
SO TSP 27
el S OSSPSR 27
FIRCL .ttt ettt ettt b b et h e bR e bR E b £ R £ R R E R R E R R £ e R R R e Rt s e Rt bt n e e nenes 28
a5] LSOO 28
F AV Lttt b b e bR bR Eeh R £ e eh R oA e R £ RS e R £ R E SR e R e R R e e R e R e R e Rt R e Rt bt ene b nnenes 29
B O RE etttk h b b e b e R R £ eh AR e R £ R E R R £ R £ R et R R e e R R e R e Rt R e Rt Rt ne R nenes 29
B S LI = TSSOSO 30
Sl 1 C TSSOSO 31
Sl S LTSSV SE PR TTOTRPTPPPON 31
FMVAL ettt b e b et bR e bR £ bR E R R AR R R AR R e R R R e e R e R R e Rt R en e b s ne b nnenes 31
Description of SUDSYSEEM COMIMANGS.........ceiiriiiitirieiete et b s b st snesnenes 31
ABOR..... ettt bt b e bR e bR e bR e R R E R R E R R e e R R R e Rt R Re R R n e b nenes 31
CaliDration SUDSYSIEM......cueiitiieeiite ettt sttt ettt st b e s s e b e bt b et et sb e et b e st b e 32
CALIAUTO . ettt et b et b e et b e et b e se e st e bt s e e s e e bt s e e he bt seeseaseb e sb e e ebesbe e ebesnenea 32
CALICURR ...ttt ettt bt b e s et h e e st b e s e e st e bt s e e R e e bt sEehe bt s e e s et eb e sb e e eb e se e e ebenne e 33
CALICURRILEY ..ttt ettt et b e et b e st b e et b e e et bt e e bt s b e e b e nrenea 33
CALIPASS ...t b bbb e b e R R Rt et eb e et eb e e e b e 33
CALISAV Lt b b e R R R e R R AR R R R R e b et bt e et bt e e b e nrenea 34
LY I YN LSO PPT U RS PRTPRSPRPRIN 34
CAL IV OLT ettt ettt et b e et b e et e bt s e e s e e bt seeh e e bt se e s e e b e s e e bt e bt s e e s et ekt se e e ebesr e e ebenrenea 34
CALIVOLTILEV ettt b e et b e et b e et b b e bt e e b sre e 34
CAL IV OLTIPROT ...ttt ettt sttt eb et eb etk e e e bt s e e e eb e s e e e eb e se et eb e se e e eber e e ebesr e e ebesreneas 35
CUIMENT SUDSYSEEIM. ...ttt ettt ettt a bbb e e bt b e se bt b e ne e bt sese b e e e st b e st b e 35
CURR ...ttt bt b e a bt e e h e bt s e e Rt e Rt s 2o h e e R e Ae e A e e bt 1A e R e e Rt AR e R e eR e nEeb e nR e e bt ne e e bt nr e e b e nrenea 35
CURRIMODEottt ettt b et b e et b e s e et bt s e et b e se et ebeb e se e e ebesr e e ebesneneas 35
CURRIPROT ST AT .ttt sttt et bbbt b s bt b e bt eb e s b e e e bt e b e e eb e ebeseeb e s b e neeb e seneebesbe e ebesrenea 36
CURRITRIGttt ettt b st b et b e et b e e et b e st et b e se e et et e se et eb e sr e e ebeneeneas 36
Dl P ST AT ettt ettt b e et b e et b e e Rt bR a Rt e Rt R R Rt R R Rt R e Rt R e Rt R e ne b n s 36
L\ L TP SO T SO PSRV P SR PTSUPPRO 36
INTTICONT Lttt ettt e b e et b e et b e e he b se e Rt eb e se e Rt e b e s e e Rt e b e se s e st ebese e st e b e neenenbe e 36
LSt SUDSYSEEM......eeeeeeteeeeeet ettt b et bbb bbbt bbbt b et b et b e 37
LISTICOUN ...ttt ettt b e st b e et b e et b e he b s e e bt b e s e e he b e e e e Rt e b e neee e st ebene e st sbeneenenbe e 37
LISTICURR ...ttt ettt et b e et b e et e b e e h e b s e e Rt b et be e b e e er e st b e ne e st b e e enenbe e 37
LISTICURRIPOINT ...ttt sttt sttt sttt sttt b et bbbt b e bbbt ee et b e st b e 38
LISTIDWEL ...ttt ettt et e b et b e se et b e bRt b e e bt b e er e st b e e st b e e st b e 38
LISTIDWELIPOIN?. ...ttt sttt b et b bbbt e et b et b 38
LISTISTEP ...ttt bbb e a e e b s e bt b s e e Rt b e e bt b e s e at b e Rt b e ne b e 38
LEST IV OL T ettt ettt b e e b e et b e e h e b s e h e b s e e Rt b e e e Rt e b e ne e e st b e e e st b e n e b e 39
LISTIVOLTIPOINT .ttt ettt bt bbbt bt e et b et b 39
MEASICURRT?......ceeetetee ettt sttt b e s et bbbt et b e s b et b e s b et b nb e st et ebene e st b e e enenbe e 39
IMEA SV OLT 2 ettt ettt st b e et b e et b e s et b e s bRt b e b et b e s b et et ebene e st b e enenbe e 39
OULPUL SUBSYSIEM. ...ttt et b et b e st b e bt ekt b e st e bt b ee b e sb e e ebesee e ebennenea 39
OUTP et bt b et a bt e bt b e se b e Rt s 2o b e b e se e b e e bt Aeeb e e b e s e eh e e bt seebeseene ek e seeneebese et ebenneneas 39

OUTP:DFLLINK ettt s e et r b er b e neeer e resrenrenre e 40

OUTRPIDFIISOUR ...ttt sttt bbb st b e et s b et b e s e bt e b seesesbe e ebe e enenrns 40
OUTPIPROTICLE ..ottt ettt ettt b et eb bt bt £esenbe e b e ene b 40
OUTP:PROTIDEL ...ttt ettt st et bt eb e et bt £enenbe e b s s b 41
OUTPEREL ...ttt et et b e b s et bt b e s bR et b s 2heeb et ebesn e st nbe st ebe e 41
OUTPIREL:IPOL ...ttt ettt b e e eb e bt b e se bt bes £ e bt bt sbe e enenn e 41
OUT P TTLT ettt et b e e b e b b e et b et b e s e e Rt e b et b e se e bt e b s £ ebe e ebesn st sbe e ebenn e 42
OUTPETTLTILINK Lttt et bt b e et b et b £ene b et b s s b 12
OUTPETTLTISOUR ...ttt ettt bbbt et h et b e bbbt es 2aesbe e b e s ene b 12
SEALUS SUDSYSIEIM.....c ettt bbbt bbbt bt eb e be e b e e bt st e e b e 42
STATIOPERT?. ..ottt ettt b et b et b st b e Rt b ne bt s b e Rt e b e se e bt s b e st b en £ ebe e ebese st sbe e ebe e 43
STATIOPERICOND? ...ttt sttt sttt sttt st b et b et b e e b e bt b e e e bt sb et £ ebe e eb e s st b 43
STATIOPERIENAB ...ttt ettt bt b e e bbbt es sae bt b e e st b 43
STATIOPERINTR ..ottt et e b et b e e b e et s b et b e e bt b et £enenbe e ebe s s b a4
STATIOPERIPTR ..ottt bbb st b e et b et b e e bt b seesesbe e b e e s nnns a4
STATIPRES ...t b et b et b et b e s e bt bt b e se e bt b e ebe e ebesn Rt e be e b e 44
STATIQUES? ...ttt bbb bbb e b e s bt b e se bt s b et e b e e she e ebenbe st sbe e ene e 45
STATIQUESICOND? ...ttt sttt sttt st st b et b et b e e b s bt b et b e bt £ ebe e ebe b ene b 45
STATIQUESIENAB ...ttt ettt st b e bt bbb ea e bt b e s ene b 45
STATIQUESINTR L.ttt ettt et et b e e bbb et b e s bbb e e £enenbe e ebe e ene b 45
STATIQUESIPTR ..ottt b et b e st b e et b et b e s e bt bt seebesbe e sbe e enennns 45
SY STIERR? <.ttt e b et b et b e e h e b e b e R R R e R b ket eb et b e b e 46
SY STIVERS? ...ttt et et b e e b e h et b et b e s et b s e bt E Rt b s £ ket bt ne et bt ren e 46
THIQUEN SUDBSYSIEIM. ...ttt ettt b e st b et b e bbbt b e bt bt £ ebe e bt n et et e b e 46
TRIG <ttt b b e h b e bt e R R e R R R R e Rt R eR e s £ eEeae R et b e nRe Rt b et erenrenea 46
TRIGEIDEL ...ttt bt b e e et h et b e e b e s b et b e se bt b neebeseebenR e e b e e enenrenea 47
TRIGILINK .ottt bbbt b e e b e s b et b e st eb e se e st eb e £ebeseebenb e e ebeseenenneneas 47
TRIGISOUR ...ttt ettt b et b et b e e bt bt bt se bt s b et e b e seeb e s b e st eb e s sheseebesbe e ebeseenenreneas 47
VOItA0E SUDSYSIEIM ...ttt ettt e bbb se b s et b e se b £ ese st ebeneebesnenenre e 48
W OLT etttk h bbbt h e b h bRk E e R R R R e SRR R R e e R s £t bt R eae Rt R bt e e bt ens 48
WOLTIMODE ...ttt b et b e bbbt e e b s b e e bt b bt e et s £asebesbenenb e s enennenes 48
W OLTIPROT ..ttt ettt ettt b et b et b e bbbt e b et b s e b s b e e e bt s bt b e e Sheabebenbenenbensenennenes 48
VOLTISENSISOUR?......ctiiitiriettiteiet ettt sttt b et b e bt se s e b e eb e b st b e s e bt nbeses £abeaseneneenenneaes 49
WOLTITRIG ..ttt bbb bttt b e b e bbb bt e s £ b e s eb e nbesenbensenennenes 49
LNK ParamELer LiSt......ccecueieeeiiteeeterteetst ettt b st ns et es e e e bt n e b e s st nnenes 50
Power Module Programming Par@MeterS...........cocoviieirieiriieeeseesi et 50

Status Reporting

POWEr MOUUIE SEALUS SETUCLUIEveteieieriei ettt sttt sttt sttt sae st e see e sbenenbe e 51
Status Register Bit CONfiQUIALiON.........ccueiveeeieieeeeiereeeste e see e et sreste e sresresne e enesresresneenenns 51
OPEration SEAIUS GIOUDeveverveieestesiestestesessessesseesessesseeseeseeeessessessessessessessessessessessessessess stessessessessessensenns 51
[o 11 =g o o 1 51
REGISLEr COMMANGS.......cueeeeieeeieieeieseestes e stestesteseeste e ssestesaeareatessessessesseeseesesseeseessensens seessessessensesssssenses 51
QUESELIONADIE SEAEUS GIOUPveveeveeeeeueetieeeeetesteste e seestes e saestesteseestestessestessessestessessessessessessasessessessensensenns 52
[o 11 = g Tox o 1 S 52
REGISLEr COMMANGS.......cueiueeieeeieeeieseestes e seeste e seestestesrestesaessestesseesessesseeseesesseeseessensens seessessessentessessenses 52
Standard EVENE SEAEUS GIOUP......civeveriereerierieseestesesteseseestestessessessessessessessessessssssssessessessssssess sessessessessessenses 53
[o 11 =g o o 1 53
REGISLEr COMMANGS.......cueieeieeeieieeieseestesesees e steseestestesrestesaesseatesseesessesseaseesesseeseeseensens seessessessensesssssenses 53
S (UYL (Y =0 K (= 54
QLI (0 S = 1 PR 54
LY 55 = PSRN 54
Determining the Cause Of & SErviCe INEEITUPL.ccoieiere e e e ne s 54

OULPUL QUEUE ...ttt sttt ettt st sae e sttt sa e s bt e e b e s st e s aee e sb e e e be e sab e e sabe e be e e beeeabe e beesbbeebeesabeennreennee s 54

(o Torz 1o o VL= g1 =10 | 1SRRI 54

Initial CoNditioNS @ POWET O ..ottt ettt b et se e e ebe e sesn e b e 55
SEALUS REGISIEN'S ...ttt bbb bbbt bbbt e bt £ bt b e st b e e bt bt b e 55
TRE PON Bit....c vttt ettt et b e et b et b e bt b et b e e b £ebeebe e e b e neebe b e e b e e 55

EXBIMPIES ..ot bbbt ekt b e bR R R Rt e bRt eR e £eaeeRe st bt e et b e ebenrenea 55
Servicing an OPeration StAEUS EVENT ..ottt e e 55
Adding More Operation BEVENLS...........ciiiiiieeieiseree ettt b e e b ene e 56
Servicing QUESEiONaDIE SEAEUS EVENEScviuiiiiieierieeeieriee ettt e 56
Monitoring Both Phases of @ Status TranSitioNcccieerireineineeeseese e 56

Synchronizing Power Module Output Changes

F gLl [HTex o] o SRS 57
QI e o 1= ST 015 < o T 57
Model of Fixed-Mode Trigger OPEratioN.........c.cceierererereeeeieesteseestesresaeeeeseeseessessessesseesesseessmeessesseses 57
[AIE SEBLE. ...ttt a et b bRt R R et bR Rt ne b e e ne b e e 58
Fa TR 1= o S = (=TSSR 58
D= - Y] 10 = = TSP 58
OULPUL ChanGgE SEALE.......eceeeeiieitistesieeteeieeste s e st et s et e e e eeste st et e saeese e e esseseeseestessesseenstessesneeneensensenteseens 59
Model of List-Mode Trigger OPEratioN.........c.uceeeiererereseeesieeseesseseestessesreseessessessessessessessesmensessesseses 59
OULPUL ChanGgE SEALE.......eceeveiiesiesiesieeteeieeste e st et s et e e e s te st e tesaeese e e essesteseestesaesneenstessesneeneensensensesenns 59
DWEIING SEAEE......eteseecteie ettt e e s st e et e st e s tesbe s ae et e e ae e s e e e e steses e besneereeneenseneeneenseses 59
THhe INIT:CONT FUNCHION. ...cuiiitiitiietisieseete sttt sb et b et s et sesb et en s b et e s s neenes 59
Trigger Status and EVENE SIGNaIS.......ccceoueiiiiieiecteeeceesie st e e sre st e e e e e benne e e eaeneeseenes 59
Lo o L= LTI o I oo = G U | R 60
I ES S0 015 Y= S 61
BasiC StepS Of LiSt SEOUENCING ...e.veiveiverieeeeiereesiesiestestesseeeessesteseesressesseeseessessessessessesssesessssessessensessensenes 61
Programming the List QULPUL LEVEIS.........coiiiiieieceee ettt st st s 61
Programming LiSt INTEIVAIS.......coceie ettt e e st e e et s st ent e ne e eee e e e s 61
Automatically REPEEIING A LISEcvieeieesise st e st e e enae e e e e eesrenrs 62
LI 1= 1107 I = S 62
DWEI-PACEH LISES. .. cviiieieeieieeeeie sttt st sttt st s b e s be st ettt se et st se s nbe e 62
I g0 To L=l = oo T (SRS 62
DFI (Discrete Fault Indicator) SUBSYSIEM ..ottt s e 64
RI (Remote INhibit) SUDSYSIEMc.eieeieicie sttt st s r et sa e e e e e e e eeeesrenrs 64
SCPI Command COMPIELIONccveiieiiesieiteeeseeeeree e se e ste s s e et eseesre e sreere e e esaesaessesbesaesressseensensessensenes 64
Error Messages
Power Module Hardware Error MESSAgES..........cuiiiririeirieiee ettt s e 65
SYSIEM EFTOr IMESSAOEScviviie ittt sttt se e n e n e e e nneerenr e sneerenre s 65
SCPI Conformance INFOrMAtiON ..ot st 67
APPHCALION PrOGIAIMS.oiiiiiiiti ettt et b e et b e et b e et b e et b e e bt b e st b e 69

Introduction

About This Guide

Y ou will find the following information in the rest of this guide:

Chapter 2 Introduction to SCPI messages structure, syntax, and data formats. Examples of SCPI programs.
Chapter 3 Dictionary of SCPI commands. Table of module programming parameters.

Chapter 4 Description of the status registers.

Chapter 5 Description of synchronizing outputs with triggers and lists.

Chapter 6 Error messages.

Appendix A SCPI conformance information.

Appendix B Application programs that illustrate features of the power module.

Note Instructions for the Agilent 60001A MPS Keyboard are in the User’s Guide supplied with each module.

Documentation Summary

The following related documents shipped with the system have information helpful to programming the power module:

. Mainframe User’s Guide. Information on the GPIB address switch, trigger connections, fault (FLT) and
remote inhibit (INH) connections.
. Module User’s Guide Includes specifications and supplemental characteristics, use of the module

configuration switch, device related error messages, calibration procedures and use of the MPS keyboard.

External References

SCPI References
The following documents will assist you with programming in SCPI:

. Beginner’s Guide to SCPI. Part No. H2325-90001. Highly recommended for anyone who has not had previous
experience programming with SCPI.

. Tutorial Description of the GPIB . Part No. 5952-0156. Highly recommended for those not familiar with the
| EEE 488.1 and 488.2 standards.

To obtain a copy of the above documents, contact your local Agilent Technologies Sales and Support Office.

GPIB References

The most important GPIB documents are your controller programming manuals - GW BASIC, GPIB Command Library for
MS DOS, etc. Refer to these for al non-SCPI commands (for example: Local Lockout).

The following are two formal documents concerning the GPIB interface:

. 2 ANSI/IEEE Sd. 488.1-1987 | EEE Standard Digital Interface for Programmable Instrumentation . Defines
the technical details of the GPIB interface. While much of the information is beyond the need of most
programmers, it can serve to clarify terms used in this guide and in related documents.

. 2 ANSI/IEEE Sd. 488.2-1987 |EEE Standard Codes, Formats, Protocols, and Common Commands .
Recommended as areference only if you intend to do fairly sophisticated programming. Helpful for finding
precise definitions of certain types of SCPI message formats, data types, or common commands.

The above two documents are available from the |EEE (Institute of Electrical and Electronics Engineers), 345 East 47th
Street, New York, NY 10017, USA.

Introduction 7

VXIplug&play Power Products Instrument Drivers

VXIplug& play instrument drivers for Microsoft Windows 95 and Windows NT are now available on the Web at
http://www.agilent.com/find/drivers. These instrument drivers provide a high-level programming interface to your Agilent
Technologies electronic load. VXI plug& play instrument drivers are an alternative to programming your instrument with
SCPI command strings. Because the instrument driver’s function calls work together on top of the VISA 1/0O library, a
single instrument driver can be used with multiple application environments.

Supported Applications

Agilent VEE

Microsoft Visual BASIC

Microsoft Visual C/C++

Borland C/C++

National Instruments LabVIEW
National Instruments LabWindows/CV1

System Requirements
The VXlIplugé& play instrument driver complies with the following:

Microsoft Windows 95
Microsoft Windows NT 4.0
HP VISA revision F.01.02
National Instruments VISA 1.1

Downloading and Installing the Driver

NOTE: Beforeinstalling the V XIplug& play instrument driver, make sure that you have one of the supported
applications installed and running on your computer.

Access Agilent Technologies Web site at http://www.agilent.com/find/drivers.
Select the instrument for which you need the driver.

Click on the driver, either Windows 95 or Windows NT, and download the executable file to your PC.

A w0 DN PP

Locate the file that you downloaded from the Web. From the Start menu select Run <path>:\agxxxx.exe - where
<path> isthe directory path where the file is located, and agxxxx is the instrument driver that you downloaded .

5. Follow the directions on the screen to install the software. The default installation selections will work in most
cases. The readme.txt file contains product updates or corrections that are not documented in the on-line help. If
you decide to install thisfile, use any text editor to open and read it.

6. Tousethe VXIplug&play instrument driver, follow the directionsin the V XIplug& play online help for your
specific driver under “Introduction to Programming”.

Accessing Online Help

A comprehensive online programming reference is provided with the driver. It describes how to get started using the
instrument driver with Agilent VEE, LabVIEW, and LabWindows. It includes complete descriptions of all function calls
as well as example programs in C/C++ and Visual BASIC.

® To access the online help when you have chosen the défapitp start folder, click on th&tart button and select
Programs | Vxipnp | Agxxxx Help (32-bit).
- where Agxxxx is the instrument driver.

8 Introduction

Introduction To Programming

GPIB Capabilities Of The Power Module

All power module functions except for setting the GPIB address are programmable over the GPIB. The |EEE 488.1
capabilities of the power module are listed in the User’s Guide.

Module GPIB Address

The power module operates from a primary GPIB address that is set by a switch on the mainframe. The power modul€’s
secondary GPIB address is determined by its slot position within the mainframe. See the mainframelnstallation Guide for
details.

Introduction To SCPI

SCPI (Standard Commands for Programmable Instruments) is a programming language for controlling instrument functions
over the GPIB (IEEE 488) instrument bus. SCPI islayered on top of the hardware-portion of |EEE 488.2. The same SCPI
commands and parameters control the same functionsin different classes of instruments. For example, you would use the
same DISPlay command to control the power module display state and the display state of a SCPI-compatible multimeter.

Conventions
The following conventions are used throughout this chapter:

Angle brackets < > Items within angle brackets are parameter abbreviations. For example, <NR1>
indicates a specific form of numerical data.

Vertical bar | Vertical bars separate one of two or more aternative parameters. For example,
O|OFF indicates that entering either "0" or "OFF" performs the same function.

Square Brackets [] Items within square brackets are optional. The representation [SOURce]:LIST
means that SOURce may be omitted.

Braces {1} Braces indicate parameters that may be repeated zero or more times. It is used
especially for showing arrays. The notation <A>{<,B>} shows that parameter
" A" must be entered, while parameter "B" may be omitted or may be entered one
or more times.

Boldface font Boldface font is used to emphasize syntax in command definitions.
TRIGger:DEL ay <NRf> shows a command definition.

Computer font Computer font is used to show program linesin text. TRIGger: DELay .5 showsa
program line.

Introduction To Programming 9

Types of SCPI Messages

There are two types of SCPI messages, program and response.

. A program message consists of one or more properly formatted SCPI commands sent from the controller to
the power module. The message, which may be sent at any time, requests the power module to perform some
action.

. A response message consists of datain a specific SCPI format sent from the power module to the controller.

The power module sends the message only when commanded by a special program message called a"query."
Types of SCPI Commands
SCPI has two types of commands, common and subsystem. Common commands generally are not related to specific
operation but to controlling overall power module functions, such as reset, status, and synchronization. All common
commands consist of a three-letter mnemonic preceded by an asterisk:

*RST *IDN? *SRE 8

Subsystem commands perform specific power module functions. They are organized into an inverted tree structure with the
"root" at the top (see Figure 3-2). Some are single commands while others are grouped within specific subsystems.

Note If you have the optional Agilent 66001A MPS Keyboard, you may want to use it as a quick introduction
to message structure. See "Appendix A".

Structure of a SCPI Message

SCPI messages consist of one or more message units ending in a message terminator. The terminator is not part of the
syntax, but implicit in the way your programming language indicates the end of aline (such as a newline or end-of-line
character).

The Message Unit

The simplest SCPI command is a single message unit consisting of a command header (or keyword) followed by a message
terminator.

ABOR<newline>
VOL T?<newline>

The message unit may include a parameter after the header. The parameter usually is numeric, but it can be a string:

VOLT 20<newline>
VOLT MAX<newline>

Combining Message Units

The following command message is briefly described here, with details in subsequent paragraphs.

10 Introduction To Programming

Data
Message Unit

Headers Query Indicator

Y
VOLT:LEV 8.0; PROT 8.8 ;:CURR? <NL>
A

Header Separator Message Terminator

Message Unit Separators

Root Specifier F162-1.GAL

Figure 2-1. Command Message Structure

The basic parts of the above message are:

Message Component Example

Headers VOLT LEV PROT CURR

Header Separator The colon in VOLT:LEV

Data 8.08.8

Data Separator The spacein VOLT 8. 0 and PROT 8. 8

Message Units VOLT:LEV 8.0 PROT 8.8 CURR?

Message Unit Separator The semicolonsin VOLT: LEV 8. 0; and PROT 8. 8;

Root Specifier The colon in PROT 8. 8; : CURR?

Query Indicator The question mark in CURR?

Message Terminator The <NL> (newline) indicator. Terminators are not part of the SCPI syntax.

Parts of a SCPI Message
Headers

Headers are instructions recognized by the power moduleinterface. Headers (which are sometimes known as "keywords'")
may be either in the long form or the short form.

Long Form The header is completely spelled out, such as VOLTAGE, STATUS, and DELAY.
Short Form The header has only the first three or four letters, such as VOLT, STAT, and DEL.

Short form headers are constructed according to the following rules:

. If the header consists of four or fewer letters, use all the letters. (DFI LIST)

. If the header consists of five or more letters and the fourth letter is not avowel (a,g,i,0,u), use the first four
letters. (CURRent STATus)

. If the header consists of five or more letters and the fourth letter is avowel (ae,i,o,u), usethe first three letters.

(DELay RELay)

Y ou must follow the above rules when entering headers. Creating an arbitrary form, such asPOLAR for POLarity, will result
inan error.

Introduction To Programming 11

The SCPI interfaceis not sensitive to case. It will recognize any case mixture, such as TRIGGER, Trigger, TRIGger, triGgeR.

Note Shortform headers result in faster program execution.

Header Convention. Inthismanual, headers are emphasized with boldface type. The proper short formis shownin
upper-case letters, such as DEL ay.

Header Separator. If acommand has more than one header, you must separate them with a colon (VOLT: PROT
OUTPut:RELay:POLarity).

Optional Headers. The use of some headersis optional. Optional headers are shown in brackets, such as
OUTPut[: STATe] ON. However, if you combine two or more message units into a compound message, you may need to
enter the optional header. Thisis explained under "Traversing the Command Tree."

Note The optional Agilent 66001A MPS Keyboard does not display optional headers.

Query Indicator

Following a header with a question mark turnsit into aquery (VOLT?, VOLT:PROT?). If aquery contains a parameter, place
the query indicator at the end of the last header (VOLT: PROT? MAX).

Message Unit Separator

When two or more message units are combined into a compound message, separate the units with a semicolon
(STATus:OPERation?;QUEStionable?). 'Y ou can combine message units only at the current path of the command tree (see
"Traversing the Command Tree").

Root Specifier

When it precedes the first header of a message unit, the colon becomes the root specifier. It indicates that the parser is at the

root or top node of the command tree. Note the difference between root specifiers and header separatorsin the following
examples:

OUTP:PROT:DEL .1 All colons are header separators.
:OUTP:PROT:DEL .1 Only thefirst colon is aroot specifier.
OUTP: PROT: DEL . 1; :VOLT 12.5 Only the third colon is aroot specifier.

Message Terminator

A terminator informs SCPI that it has reached the end of a message. Three permitted messages terminators are;

. newline (<NL>), which is ASCII decimal 10 or hex OA.
. end or identify (<END>)
. both of the above (<NL><END>).

In the examples of this guide, thereis an assumed message terminator at the end of each message. If the terminator needs to
be shown, it isindicated as <NL> regardless of the actual terminator character.

12 Introduction To Programming

Traversing the Command Tree

Figure 2-2 shows a portion of the subsystem command tree (you can see the complete treein Figure 3-2). Note the location
of the ROOT node at the top of the tree. The SCPI interfaceis at this |ocation when:

. The power module is powered on.
. A device clear (DCL) is sent to the power module.
. The interface encounters a message terminator.
. Theinterface encounters a root specifier.
ROOT
:OUTP [:STAT]
:PROT ——— CLE
:DEL
‘REL ———— [sTAT]
L :POL
:STAT—— OPER ———— [EVvEN]?
L— :COND?

Figure 2-2. Partial Command Tree

Active Header Path

In order to properly traverse the command tree, you must understand the concept of the active header path. When the power
moduleisturned on (or under any of the other conditions listed above), the active path is at the root. That meansthe
interface is ready to accept any command at the root level, such as OUTPUT or STATUS in Figure 2-2. Note that you do not
have to proceed either command with a colon; thereis an implied colon in front of every root-level command.

If you enter OUTPUT, the active header path moves one colon to theright. The interface is now ready to accept :STATE,
:PROTECTION, or :RELAY asthe next header. Note that you must include the colon, becauseit is required between headers.

If you now enter :PROTECTION, the active path again moves one colon to theright. The interface is now ready to accept
either :CLEAR or :DELAY asthe next header.

If you now enter :CLEAR, you have reached the end of the command string. The active header path remains at :CLEAR. If
you wished, you could have entered :CLEAR; DELAY 20 and it would be accepted. The entire message would be
OUTPUT:PROTECTION:CLEAR;DELAY 20. The message terminator after DELAY 20 returns the path to the root.

The Effect of Optional Headers

If acommand includes optional headers, the interface assumes they are there. For example, if you enter OUTPUT OFF, the
interface recognizesit as OUTPUT: STATE OFF (see Figure 2-2). Thisreturns the active path to theroot (:OUTPUT). But if
you enter OUTPUT: STATE OFF, then the active path remains at :STATE. Thisallows you to send OUTPUT: STATE OFF;
PROTECTION: CLEAR in one message. If you tried to send OUTPUT OFF;PROTECTION:CLEAR, the header path would return
to :OUTPUT instead of :PROTECTION.

Introduction To Programming 13

The optional header SOURCE precedes the current, list, and voltage subsystems (see Figure 3-2). This effectively makes
:CURRENT, :LIST, and : VOLTAGE root-level commands.

Note The optional Agilent 66001 Keyboard does not display optional headers.

Moving Among Subsystems

In order to combine commands from different subsystems, you need to be able to restore the active path to the root. You do
this with the root specifier (). For example, you could clear the output protection and check the status of the Operation
Condition register as follows (see Figure 2-2):

OUTPUT:PROTECTION:CLEAR
STATUS:OPERATION:CONDITION?

By using the root specifier, you could do the same thing in one message:

OUTPUT:PROTECTION:CLEAR;:STATUS:OPERATION:CONDITION?

Note The SCPI parser traverses the command tree as described in Appendix A of the | EEE 488.2 standard.
The "Enhanced Tree Walking Implementation” given in that appendix is not implemented in the power
module.

The following message shows how to combine commands from different subsystems as well as within the same subsystem
(see Figure 3-2):

VOLTAGE:LEVEL 7;PROTECTION 8;:CURRENT:LEVEL 3;MODE LIST

Note the use of the optional header LEVEL to maintain the correct path within the voltage and current subsystems and the
use of the root specifier to move between subsystems.

Including Common Commands

Y ou can combine common commands with system commands in the same message. Treat the common command as a
message unit by separating it with the message unit separator. Common commandsdo not affect the active header path;
you may insert them anywhere in the message.

VOLT:TRIG 7.5;INIT;*TRG
OUTP OFF;*RCL 2;0UTP ON

SCPI Data Formats
All data programmed to or returned from the power moduleis ASCII. The data may be numerical or character string.
Numerical Data

Table 2-1 and Table 2-2 summarize the numerical formats.

14 Introduction To Programming

Table 2-1. Numerical Data Formats

Symbol Data Form
Talking Formats
<NR1> Digits with an implied decimal point assumed at the right of the least-significant
digit. Examples; 273 0273
<NR2> Digitswith an explicit decimal point. Example: 273. .0273
<NR3> Digits with an explicit decimal point and an exponent. Example: 2.73E+2 273.0E-2
Listening Formats
<NRf> Extended format that includes <NR1>, <NR2> and <NR3>. Examples; 273 273.
2.73E2
<NRf+> Expanded decimal format that includes <NRf> and MIN MAX. Examples: 273 273.

2.73E2 MAX. MIN and MAX are the minimum and maximum limit values that are
implicit in the range specification for the parameter.

Table 2-2. Suffixes and Multipliers

Class Suffix Unit Unit with Multiplier
Current A Ampere MA (milliampere)
Amplitude \% Volt MV (millivolt)

Time S second MS (millisecond)
Common Multipliers
IE3 K kilo
1E-3 M milli
1E-6 U micro

Boolean Data
Either form 1| 0 or ON | OFF may be sent with commands. Queries always return 1 or 0.

OUTPut OFF
CURRent:PROTection 1

String Data

Strings are used for both program (listening) and response (talking) data. String content is limited to the characters required
for the link command parameters (see "Chapter 3 - Language Dictionary").

Note The |EEE 488.2 format for a string parameter requires that the string be enclosed within either single
(" ') or double (" ") quotes. Be certain that your program statements comply with this requirement.

Character Data

Character strings returned by query statements may take either of the following forms, depending on the length of the
returned string:

<CRD> Character Response Data. Permits the return of character strings.

<AARD> Arbitrary ASCII Response Data. Permits the return of undelimited 7-bit ASCII. This data type has an
implied message terminator.

Introduction To Programming 15

System Considerations

The remainder of this chapter addresses some system issues concerning programming. These are power module addressing
and the use of the following types of GPIB system interfaces:

1. HP Vectra PC controller with Agilent 82335A GPIB Interface Command Library
2. IBM PC controller with National Instruments GPIB-PCII Interface/Handler
3. Agilent controller with Agilent BASIC Language System

Note Some specific application programs are given in Appendix B.

Assigning the GPIB Address in Programs

The power module address cannot be set remotely. It is determined by the position of the mainframe address switch and the
position of power module (slot position) within the mainframe. (See the Mainframe Users Guide for details.)

The following examples assume that the GPIB select codeis 7, the mainframe interface address is 6, and that the power
module address will be assigned to the variable PM3 (power module in the third mainframe slot).

1060 ! Power Module installed in Primary Mainframe

1070 PM3=70602 I Agilent 82335A Interface

1070 ASSIGN @PM3TO 70602 I Agilent BASIC Interface
1080 !

1080 ! Power Module installed in Auxiliary Mainframe

1090 PM=70610 I Agilent 82335A Interface

1090 ASSIGN @PM3 TO 70610 ! Agilent BASIC Interface

For systems using the National Instruments DOS driver, the address is specified in the software configuration program
(IBCONFIG.EXE) and assigned a symbolic name. The address then is referenced only by this name within the application
program (see the National Instruments GPIB documentation).

DOS Drivers
Types of Drivers

The Agilent 82335A and National Instruments GPIB are two popular DOS drivers. Each isbriefly described here. Seethe
software documentation supplied with the driver for more details.

Agilent 82335A Driver. For GW-BASIC programming, the GPIB library isimplemented as a series of subroutine calls.
To access these subroutines, your application program must include the header file SETUP.BAS, which is part of the DOS
driver software.

SETUP.BAS starts at program line 5 and can run up to line 999. Y our application programs must begin at line 1000.
SETUP.BAS has built-in error checking routines that provide a method to check for GPIB errors during program execution.
Y ou can use the error-trapping code in these routines or write your own code using the same variables as used by
SETUP.BAS.

National Instruments GPIB Driver. Your program must include the National Instruments header file DECL.BAS. This
contains the initialization code for the interface. Prior to running any applications programs, you must set up the interface
with the configuration program (IBCONF.EXE).

16 Introduction To Programming

Y our application program will not include the power module symbolic name and GPIB address. These must be specified
during configuration (when you run IBCONF.EXE). Note that the primary address range is from 0 to 30 but any secondary
address must be specified in the address range of 96 to 126. The power supply expects a message termination on EOI or
line feed, so set EOI wilast byte of Write. It is also recommended that you set Disable Auto Serial Polling.

All function calls return the status word IBSTA%, which contains abit (ERR) that is set if the call resultsin an error. When
ERR is set, an appropriate code is placed in variable IBERR %. Be sure to check IBSTA %, after every function call. If itis
not equal to zero, branch to an error handler that reads |BERR% to extract the specific error.

Error Handling
If thereis no error-handling code in your program, undetected errors can cause unpredictable results. Thisincludes

"hanging up" the controller and forcing you to reset the system. Both of the above DOS drivers have routines for detecting
program execution errors.

Important Useerror detection after every call to a subroutine.

Agilent BASIC Controllers

The Agilent BASIC Programming Language provides access to GPIB functions at the operating system level. This makesit
unnecessary to have the header files required in front of DOS applications programs. Also, you do not have to be concerned
about controller "hangups' as long as your program includes a timeout statement. Because the power module can be
programmed to generate SRQ on errors, your program can use an SRQ service routine for decoding detected errors. The
detectable errors are listed in "Chapter 5 - Error Messages'.

TRANSLATION AMONG LANGUAGES

This section explains how to trandate between Agilent BASIC and several other popular programming environments. For
explicit information on initializing interface cards or syntax of language, see the documentation that accompanies your
GPIB interface product.

General Setup Information for GWBASIC
Using the Agilent 82335A/82990A/61062B GPIB Command Library

. When CALLs are made to the GPIB Command Library, all parameters are passed as variables.

. The address of amodule is area number, determined in the same manner asin Agilent BASIC. For example,
the address 70501 means 7 is the select code of the GPIB interface, 05 isthe GPIB address of the mainframe, Ol is
the slot number (secondary address) of the module.

. The module expects each command to be terminated by line feed (character 10) and/or EOI. The default
configuration of the GPIB Command Library is carriage return + line feed for end-of-line termination and EOI at
theend of aline. Therefore, the defaults are correct for use with the module.

. The GPIB Command Library supports strings, numeric and array dataformats. However, multiple data types
cannot be sent in asingle command. To send both string and numeric data in one command, convert all numeric
data to strings, concatenate with the string data and send the combined string to the module. To read multiple data
types, read the data into a string, and then manipulate the string by converting each piece into the appropriate data
format.

. Error handling is accomplished by checking the variable PCIB.ERR. If it is nonzero, an error has occurred.
See the command library documentation for trapping and interpreting this error variable.

Introduction To Programming 17

Using the National Instruments GPIB Interface

When CALLs are made to the GPIB driver, al parameters are passed as variables.

The moduleisidentified as adevicein two ways. First, the GPIB.COM driver is modified to include the
module. Use the mainframe address as the primary bus address and the slot address as the secondary address. The
driver requires secondary address O (which isfor slot 0) to be entered as 96, secondary address 1 to be entered as
97, etc.

It is recommended that you disable auto serial poll in the GPIB.COM driver.

The module expects each command to be terminated by aline feed (character 10) and/or EOI. Configure the
GPIB.COM driver to terminate al reads and writes with EOI.

The GPIB driver does all communication viastrings. To send numeric data, number to-string conversion must
be performed before the IBWRT(). To read numeric data, string-to-number conversion must be performed after
each IBRD().

Error handling is accomplished by checking the variable IBSTA%. If it islessthan zero, an error has occurred.
See the GPIB interface documentation for trapping and interpreting this error variable.

General Setup Information for Microsoft C

Using the Agilent 82335A/82990A/61062B GPIB Command Library

The address of amodule is of type long and is determined the same as with Agilent BASIC. For example, the
address 70501L means 7 is the select code of the GPIB interface, 05 isthe GPIB address of the mainframe, Ol is
the slot number (secondary address) of the module.

The module expects each command to be terminated by aline feed (character 10) and/or EOI. The default
configuration of the GPIB Command Library is carriage return+line feed for end-of-line termination and EOI at the
end of aline. Therefore, the defaults are correct for use with the module.

The GPIB Command Library supports strings, numeric and array dataformats. However, multiple data types
cannot be sent in asingle command. To send both string and numeric data in one command, convert all numeric
data to strings, concatenate with the string data and send the combined string to the module. To read multiple data
types, read the data into a string, and then manipulate the string by converting each piece into the appropriate data
format.

Each command library call returnsanint. If the valueis zero, no error has occurred. Error handling is
accomplished by checking the return value. See the command library documentation for interpretation of this error
value.

Using the National Instruments GPIB Interface

18

The moduleisidentified as adevicein two ways. First, the GPIB.COM driver is modified to include the
module. Use the mainframe address as the primary bus address. Use the slot address as the secondary address.
The driver requires that secondary address O (which isfor slot 0) be entered as 96, secondary address 1 be entered
as 97, etc.

It is recommended that you disable the auto serial poll in the GPIB.COM driver.

The module expects each command to be terminated by either aline feed (character 10) and/or EOI.
Configure the GPIB.COM driver to terminate all reads and writes with EQI.

The GPIB driver does all communication viastrings. To send numeric data, number to-string conversion
must be performed before the ibwrt(). To read numeric data, string-to-number conversion must be performed after
each ibrd().

Error handling is accomplished by checking the variable IBSTA%. If bit 15 is set, an error has occurred. See
the GPIB interface documentation for the interpretation of this error variable.

Introduction To Programming

Sending Commands to and Receiving Data from the Module

Sending the Command “VOLT 5"

**AglIer]t BASIC khkkkhkkkhkkkhkhkkkhhkkhhkkkhkkhkhhkkhhhkhkhkkhhkkhhkkdhkkhhkkhhkrkdkxx

2100 OUTPUT 70501;"VOLT 5" ! where 70501 means 7 is the select code of the GPIB interface 05 isthe
2110 ! GPIB address of the mainframe, 01 is the slot number (secondary address)
2120 ! of the module

kkhkkkkhkkkkhkkkkhkkhkkkhkhkkkhhkkkhhkxk GWBASIWg”er\t 82335A/82990A/610628 GPlB Commar]d lerary) khkkkkkkkhkkkhkkhkkkhkhkkkhkkkhhkkkkx

2100 MODULE.ADDRESS=70501

2110 COMMANDS$- "VOLT 5"

2120 L - LENGTH(COMMANDS)

2130 CALL IOOUTPUTS(MODULE.ADDRESS,COMMANDS L)

2140 IF PCIB.ERR&<>0 THEN ERROR PCIB.BASERR’ ! ERROR TRAP

* GWBASIC (National Instruments GPIB Interface) *

2100 COMMANDS$ = "VOLT 5"

2110 CALL IBWRT(MODULE.ADDRESS%, COMMANDS$)

2120 IFIBSTA% &< 0 GOTO 5000 I TRAP ERROR WITH ERROR HANDLER
2130 ! AT LINE 5000

Sending the Command “VOLT 5” in BASIC

wakeskxkek s kxkenes sk Microsoft CAgilent 82335A/82990A/61062B HPIB Command Library) *# %kt koxsaonosdoxse

I* Assumes that you have an error handler routine, called ‘error_handler’ that accepts a float. The error handler iadtika flaas
that is returned from each call to the library. */

*include &<stdio.h>
*include &<chpib.h>
*include &<cfunc.h>

*define module_address 70501L

char *cmd,;

cmd ="VOLT 57

error = iooutputs(MODULE_ADDRESS, cmd, strlen(cmd));
error_handler(error);

il Microsoft C (National Instruments GPIB Interface) * il

I* Assumes that you have an error handler routine, called ‘error-handler’. The error handler is then passed the fleatrtret fsom
each call to the library. */

*include &<stdio.h>
*include &<decl.h>

define ERR (1&<&<15) / Error is detected as bit i5 of ibsta */
int module-address; /* Device is configured in the GPIB.COM handler. Use ibfind() to assign a value to module-address. */

char *cmd;
cmd - "VOLT 5”
ibwrt(MODULE_ADDRESS, cmd, strlen(cmd));
if (ibsta & ERR)
error_handler();

Sending the Command "VOLT 5" in C

Introduction To Programming 19

Receiving Data from the Module

The following screens show how to enter data from the module with various interfaces.

khkhkkkhkhkkhkhkhkhhkhhhkhhdhhhhhhhdhhkhhhdhhkhhkhhhddrkhhrdkxsk i khkkhkkkhhkkhkhkhkdhhkkhhkkhkhhkdhhkhhhhhdhkhhhdhhdhkhhhdhdrkhhhdxkx
Agilent BASIC

2100 ENTER 70501; MEASUREMENT ! where 70501 means 7 is the select code of the GPIB interface,

2110 ! 05 isthe GPIB address of the mainframe, 01 is the slot number
2120 ! (secondary address) of the module, MEASUREMENT isarea number
2130 ! sent by the module

Fhkkkkkkkkkkkkkx GWBASIC (Agilent 82335A/82990A/61062B GPIB Command Library) ** % xkxkkokkokdededkdkokokok ok
2100 MODULE.ADDRESS=70501

2110 CALL IOENTER(MODULE.ADDRESSMEASUREMENT)

2120 |IF PCIB.ERR&<>0 THEN ERROR PCIB.BASERR ! ERROR TRAP

khkkhkkhkkhhkhkkkkkkhhhkhkhhhkkkhkhhdk GWBASIC (leonal Instrummts GP'B Interfme) khkhhkhkkkkkhkhhhhdddrkhkhhhhhrhkrhhik

2100 MEASUREMENTS - SPACE$(20) I DRIVER CAN ONLY READ STRINGS, SO RESERVE
2110 ! SPACE IN A STRING

2120 CALL IBRD(MODULE.ADDRESS%, MEASUREMENTS$)

2130 IFIBSTA% &< 0 GOTO 5000 ! TRAP ERROR WITH ERROR HANDLER AT LINE 5000

2140 MEASURED.VALUE=VAL(MEASUREMENTS$)” ! CONVERT THE STRING TO A NUMBER

Receiving Module Data with BASIC

20 Introduction To Programming

saxwekesesneeses Microsoft C (Agilent 82335A/82990A/61062B GPIB Command Library) *# ks koxixsnk

I* Assumes that you have an error handler routine, called ’error_handler’ that accepts afloat. The error handler isthen
passed the float that is returned from each call to the library. */

#include & <stdio.h>
#include k<chpib.h>
#include & <cfunc.h>

#define MODULE_ADDRESS 70501L

char *cmd;

float measurement;

error = ioenter(MODULE_ADDRESS, & & measurement);
error_handler(error);

kkhkkkhkkhhkkkkkkhkkhkkhhhhkhkkkkkhkkhkdhhkx MICI’OSOft C (Nalonal Instruments GPIB Interfme) khkkhkhkkkkkkkhkkhhkhkhkkkkhkkhkkhhhhkkxx*x*%

I* Assumes that you have an error handler routine, called 'error_handler’. The error handler is then passed the float that is
returned from each call to thelibrary. */

#include & <stdio.h>
#include & <stdlib.h>
#include & <decl.h>

#define ERR (1& <& <15) I* Error is detected as bit 15 of ibsta*/
#define STRING_LENGTH 20 /* Length of string to hold measurement */
int module_address; /* Deviceis configured in the GPIB.COM handler. Use

ibfind() to assign avalue to module_address. */
char measurement[STRING_LENGTH];
float measured _value; /* Holds float conversion of measurement */

ibwrt(module_address, measurement, STRING_LENGTH);
if (ibsta& ERR)
error_handler();
measured_value = atof (measurement); * Converts measurement string to float */

Receiving Module Data with C

Introduction To Programming 21

Language Dictionary

Introduction

This section gives the syntax and parameters for all the IEEE 488.2 SCPI commands and the Common commands used by
the Agilent Series 6610xA power modules. It isassumed that you are familiar with the material in "Chapter 2 - Introduction
to Programming”. That chapter explains the terms, symbols, and syntactical structures used here and gives an introduction
to programming.

The programming commands function the sasme way in all Agilent Series 6610xA power modules. Since SCPI syntax
remains the same for all programming languages, the examples are generic.

Syntax definitions use the long form, but only short form headers (or "keywords") appear in the examples. If you have any
concern that the meaning of a header in your program listing will not be obvious at some later time, then use the long form
to help make your program self-documenting.

Parameters

Most commands require a parameter and all queries will return a parameter. The range for a parameter may vary according
to the model of power module. Parametersfor all current models are listed in Table 3-3, at the end of this chapter.

Related Commands

Where appropriate, related commands or queries are included. These are listed either because they are directly related by
function or because reading about them will clarify or enhance your understanding of the original command or query.

Order of Presentation
The dictionary is organized as follows:

. |EEE 488.2 common commands, in al phabetical order.
. Subsystem commands.

COMMON Commands

Common commands begin with an * and consist of three letters (command) or three |etters and a ? (query). Common
commands are defined by the |EEE 488.2 standard to perform some common interface functions. The Agilent Series
6610xA power modules respond to the 13 required common commands that control status reporting, synchronization, and
internal operations. The power modules also respond to five optional common commands controlling triggers, power-on
conditions, and stored operating parameters.

Subsystem Commands
Subsystem commands are specific to power module functions. They can be asingle command or a group of commands.

The groups are comprised of commands that extend one or more levels below the root. The description of subsystem
commands follows the description of the common commands.

Language Dictionary 23

Description Of Common Commands

Figure 3-1 shows the common commands and queries. These commands are listed alphabetically in the dictionary. If a
command has a corresponding query that simply returns the data or status specified by the command, then both command
and query are included under the explanation for the command. If a query does not have a corresponding command or is
functionally different from the command, then the query islisted separately. The description for each common command or
query specifies any status registers affected. In order to make use of this information, you must refer to "Chapter 4 - Status
Reporting"”, which explains how to read specific register bits and use the information that they return.

*CLS
#ESE
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*#OPT?
*PSC
#PSC?
*#RCL
*RST
%SAV
*SRE
%*SRE?
*STB?
*TRG
*TST?
*¥WAI

T

@ <NRf>
EP— <R}
@ { <NRf>
P [<nRe>
P <NRi> |

ol

FIG3-1.GAL

Figure 3-1. Common Commands Syntax Diagram

*CLS

Meaning and Type
Clear Satus Device Status

Description

This command causes the following actions (see "Chapter 4 - Status Reporting” for descriptions of all registers):

. Clears the following registers:
. Standard Event Status
. Operation Status Event
. Questionable Status Event
. Status Byte

. Clears the Error Queue

24 Language Dictionary

. If *CL S immediately follows a program message terminator (<NL>), then the output queue and the MAV bit

are aso cleared.
Command Syntax
Parameters

Query Syntax

*ESE

Meaning and Type
Event Satus Enable Device Status

Description

*CLS
(None)
(None)

This command programs the Standard Event Status Enable register bits. The programming determines which events of the
Standard Event Status Event register (see *ESR?) are allowed to set the ESB (Event Summary Bit) of the Status Byte
register. A "1" in the bit position enables the corresponding event. All of the enabled events of the Standard Event Status
Event register are logically ORed to cause the Event Summary Bit (ESB) of the Status Byte register to be set. See"Chapter
4 - Status Reporting” for descriptions of all three registers.

Bit Configuration of Standard Event Status Enable Register

Bit Position 7 6 5 4 3 2 1 0
Bit Name PON 0 CME EXE DDE QYE 0 OPC
Bit Weight 128 64 32 16 8 4 2 1

complete; PON Power-on; QY E = Query error

CME = Command error; DDE = Device-dependent error; EXE = Execution error; OPC = Operation

Command Syntax
Parameters

Power On Value
Suffix

Example

Query Syntax
Returned Parameters
Related Commands

*ESE <NRf>
0to 255
(See*PSC)
(None)
*ESE 129
*ESE?
<NR1>
*ESR?

(Register value)
*PSC *STB?

If PSC is programmed to 0, then the * ESE command causes a write cycle to nonvolatile memory. The
nonvolatile memory has a finite maximum number of write cycles (see in the power module User’'s

Guide). Programs that repeatedly cause write cycles to nonvolatile memory can eventually
exceed the maximum number of write cycles and may cause the memory to fail.

*ESR?

Meaning and Type

Event Satus Register Device Status

Description

This query reads the Standard Event Status Event register. Reading the register clears it. The bit configuration of this
register is the same as the Standard Event Status Enable re@SE). (See "Chapter 4 - Status Reporting” for a detailed

explanation of this register.
Query Syntax
Parameters
Returned Parameters
Related Commands

*ESR?

(None)

<NR1> (Register binary value)
*CLS *ESE *ESE? *OPC

Language Dictionary 25

*IDN?
I dentification Query

Meaning and Type
Identification System Interface

Description
This query requests the power module to identify itself. It returns a string composed of four fields separated by commas.

Query Syntax *|DN?
Returned Parameters <AARD>
Field Information
Agilent Technologies Manufacturer
YOOXA 5-digit model number followed by aletter
nnNNA-nNnnNnn 10-character serial number or O
<R>.xx.xx Revision levels of firmware

Example Agilent Technologies,66101A,0,A.00.01
Related Commands (None)

*OPC

Meaning and Type
Operation Complete Device Status

Description

This command causes the interface to set the OPC hit (bit 0) of the Standard Event Status register when the power module
has completed all pending operations. (see *ESE for the bit configuration of the Standard Event Status register.) Pending
operations are complete when:

. All commands sent before* OPC have been executed. Thisincludes overlapped commands. Most commands
are sequential and are completed before the next command is executed. Overlapped commands are executed in
parallel with other commands. Commands that affect output voltage, current or state, relays, and trigger actions are
overlapped with subsequent commands sent to the power module. The* OPC command provides notification that
all overlapped commands have been completed.

. Any change in the output level caused by previous commands has been completed (completion of settling
time, relay bounce, etc.)
. All triggered actions are completed.

*OPC does not prevent processing of subsequent commands but Bit O will not be set until al pending operations are
completed.
Command Syntax *OPC
Parameters (None)
Related Commands *OPC? *WAI

*OPC?

Meaning and Type
Operation Complete Device Status

Description

This query causes the interface to place an ASCII "1" in the Output Queue when all pending operations are completed.
Pending operations are as defined for the * OPC command. Unlike*OPC, *OPC? prevents processing of all subsequent
commands. *OPC? isintended to be used at the end of a command line so that the application program can then monitor
the bus for data until it receivesthe"1" from the power module Output Queue.

26 Language Dictionary

CAUTION Do not follow *OPC? with*TRG or GPIB bustriggers. Such triggers sent after *OPC? will be

prevented from executing and will prevent the power module from accepting further commands. If
this occurs, the only programmable way to restore operation is by sending the power module a GPIB
DCL (Device Clear) command.

Query Syntax *OPC?
Returned Parameters <NR1> ASCII 1is placed in the Output Queue when the
power module has completed operations.
Related Commands *OPC *TRIG *WAI

*OPT?
| dentification Query

Meaning and Type
Identification System Interface

Description
This query requests the power module to identify any optionsthat areinstalled. Options are identified by number, as shown
below. A 0 indicates no options are installed.

Query Syntax *OPT?
Returned Parameters <AARD>
Related Commands (None)

*PSC

Meaning and Type
Power-on Status Clear Device Initidization

Description
This command controls the automatic clearing at power on the following registers (see "Chapter 4 - Status Reporting” for
register details):

. Service Request Enable.

. Standard Event Status Enable.

If the command parameter = 1 (or any non-zero value), then the above registers are cleared at power on. If the command
parameter = 0, then the above registers are not cleared but are programmed to their last state prior to power turn on. Thisis
the most common application for * PSC and enables the power module to generate an SRQ (Service Request interrupt) at
power on.

Command Syntax *PSC <bool>
Parameters 0|1|OFF|ON
Example *PSC 0*PSC 1
Query Syntax *PSC?
Returned Parameters <NR1>0|1

Related Commands *ESE *SRE

CAUTION *PSC causes awrite cycle to nonvolatile memory. If *PSC is programmed to O, then the * ESE and
*SRE commands also cause awrite cycle to nonvolatile memory. The nonvolatile memory has afinite
number of write cycles (see Table 1-2 in the power module User’s Guide). Programs that

repeatedly write to nonvolatile memory can eventually exceed the maximum number of write cycles
and may cause the memory to fail.

Language Dictionary 27

*RCL

Meaning and Type
Recall Device State

WARNING

Recalling a previoudly stored state may place hazardous voltage at the power module outpuit.

Description

This command restores the power module to a state that was previously stored in memory with a* SAV command to the
specified location. The following states are recalled:

CAL:AUTO LIST:COUN OUTP:REL[:STAT] TRIG:LINK

CURR[:LEV][:IMM] LIST:STEP OUTP:REL:POL TRIG:SOUR

CURR:MODE OUTP[:STAT] OUTP:TTLT[:STAT] VOLT[:LEV][IMM]

CURR:PROT:STAT OUTP:DFI[:STAT] OUTP:TTLT:LINK VOLT:MODE

DISP:STAT OUTP:DFI:LINK OUTP:TTLT:SOUR VOLT:PROT[:LEV]

INIT:CONT OUTP:PROT:DEL TRIG:DEL

Sending *RCL also does the following:

. Forces an ABORt command before resetting any parameters (this cancels any uncompleted trigger actions).
. Disables the calibration function by setting CAL:STATeto OFF.

The device state stored in location 0 is automatically recalled at power turn-on when the power module configuration switch

is set for this mode of operation (see the power module User’s Guide).

Note Whenever the power module is powered up, the state stored in location 0 is written to the 5 volatile

locations (5 through 9).

Command Syntax
Parameters
Example

Query Syntax
Related Commands
*RST

Meaning and Type
Reset Device State

Description

*RCL <NRf>

0 through9
*RCL 3
(None)

*PSC *RST

This command resets the power module to a factory-defined state as defined BIdvalso forces alBORt command.

COMMAND STATE COMMAND STATE COMMAND STATE
CAL:AUTO OFF OUTP[:STAT] OFF OUTP.TTLT:LINK OFF
CAL:STAT OFF OUTP:DFI OFF TRIG:DEL 0
CURR[:LEV][:IMM] ! OUTP:DFI:SOUR LINK TRIG:LINK OFF
CURR:PROT:STAT OFF OUTP:DFI:LINK “SUM3” TRIG:SOUR BUS
CURR:MODE FIX OUTP:PROT:DEL ! VOLT[.LEV][:IMM] 0
DISP[:WIND]:STAT ON OUTP:REL[:STAT] OFF VOLT:MODE FIX
INIT:CONT OFF OUTP:REL:POL NORM VOLT:PROT:LEV MAX
LIST:STEP A UTO OUTP:TTLT[STAT] OFF Model-dependent value. See

LIST:COUN ! OUTP:TTLT:SOUR BUS Table 3-2.

28 Language Dictionary

*SAV

Meaning and Type
Save Device State

Description

Command Syntax
Parameters

Query Syntax

Related Commands

*RST

(None)

(None)

*PSC *SAV

This command stores the present state of the power module to a specified location in memory. Up to 10 states can be
stored. Storage locations O through 4 are in nonvolatile memory and locations 5 through 9 are in volatile memory. If a
particular state is desired at power on, it should be stored in location O. It then will be recalled at power on if the power
module configuration switch is set for this mode of operation (see the power module User’s Guide).

The following power module states are stored 84V :

CAL:AUTO
CURR[:LEV][:IMM]
CURR:MODE
CURR:PROT:STAT
DISP:STAT
INIT:CONT

*SRE

Meaning and Type

LIST:COUN
LIST:STEP
OUTP[:STAT]
OUTP:DFI[:STAT]
OUTP:DFI:LINK
OUTP:PROT:DEL

Command Syntax
Parameters

Query Syntax
Related Commands

Service Request Enable Device Interface

Description

OUTP:REL[:STAT] TRIG:LINK
OUTP:REL:POL TRIG:SOUR
OUTP:TTLT[:STAT] VOLT[:LEV][IMM]
OUTP:TTLT:LINK VOLT:MODE
OUTP:TTLT:SOUR VOLT:PROT[:LEV]
TRIG:DEL

*SAV

0to9

(None)

PSC *RCL *RST

This command sets the condition of the Service Request Enable register. This register determines which bits from the
Status Byte register (s&&8TB for its bit configuration) are allowed to set the Master Status Summary (MSS) bit and the
Request for Service (RQS) summary bit1l i any Service Request Enable register bit position enables the corresponding
Status Byte register bit and all such enabled bits then are logically ORed to cause Bit 6 of the Status Byte register to be set
See "Chapter 4 - Status Reporting" for more details concerning this process.

When the controller conducts a serial poll in response to SRQ, the RQS bit is cleared, but the MSS bit is nbE8R®/hen
is cleared (by programming it with 0), the power module cannot generate an SRQ to the controller.

Command Syntax
Parameters

Default Value
Example

Query Syntax
Returned Parameters
Related Commands

*SRE <NRf>

0to 255

(See*PSC)

*SRE 20

*SRE?

<NR1> (Register binary value)
*ESE *ESR *PSC

Language Dictionary 29

CAUTION If *PSC is programmed to 0, then the * SRE command causes a write cycle to nonvolatile memory.

The nonvolatile memory has a finite number of write cycles (see Table 1-2 in the power module
User'sGuide). Programs that repeatedly write to nonvolatile memory can eventually exceed the
maximum number of write cycles and may cause the memory to fail.

*STB?

Meaning and Type
Status Byte Device Status

Description

This query reads the Status Byte register, which contains the status summary bits and the Output Queue MAYV bit. Reading
the Status Byte register does not clear it. Theinput summary bits are cleared when the appropriate event registers are read
(see “Chapter 4 - Status Reporting”) for more information). The MAV bit is cleared at power oh®@k By

A serial poll also returns the value of the Status Byte register, except that bit 6 returns Request for Service (RQ®$) instead o
Master Status Summary (MSS). A serial poll clears RQS, but not MSS. When MSS is set, it indicates that the power
module has one or more reasons for requesting service.

Bit Configuration of Status Byte Register
Bit Position 7 6 5 4 3 2 1 0
Condition OPER MSS ESB MAV QUES 2 2 2
(RQS)
Bit Weight 128 64 32 16 8 4 2 1

ESB = Event status byte summary; M = Message available

MSS = Master status summary; OPER = Operation status summary;

QUES = Questionable status summary; RQS = Request for service

Also represents RQ38These bits are always zero.

Query Syntax *STB?
Returned Parameters <NR1> (Register binary value)
Related Commands (None)

*TRG

Meaning and Type
Trigger Device Trigger

Description
This command generates a trigger to any subsystem thRAUISaselected as its source (for examflRI G:SOUR BUS,
OUTP:TTLT:SOUR BUS). The command has the same affect as the Group Execute THGIET ¥) command.

Command Syntax *TRG
Parameters (None)
Query Syntax (None)
Related Commands ABOR CURR:TRIG INIT TRIG[:IMM] VOLT:TIUG

30 Language Dictionary

*TST?

Meaning and Type
Test Device Test

Description
This query causes the power module to do a self-test and report any errors (see " Selftest Error Messages' in Chapter 3 of the
power module User’s Guide).

Query Syntax *TST?

Returned Parameters <NR1>
0 Indicates power module passed self-test.
Nonzero Indicates an error code.
Related Commands (None)

*WAI

Meaning and Type
Wait to Continue Device Status

Description

This command instructs the power module not to process any further commands until all pending operations are compl eted.
"Pending operations' are as defined under the *OPC command. *WAI can be aborted only by sending the power module a
GPIB DCL (Device Clear) command.

Command Syntax *WAI
Parameters (None)
Query Syntax (None)

Related Commands *OPC

Description of Subsystem Commands

Figure 3-2 is atree diagram of the subsystem commands. Commands followed by a question mark (?) take only the query
form. Except as noted in the syntax descriptions, all other commands take both the command and query form. The
commands are listed in a phabetical order and the commands within each subsystem are grouped a phabetically under the
subsystem.

ABOR
This command cancels any trigger actions presently in process. Pending trigger levels are reset equal to their corresponding
immediate values. ABOR also cancels any programmed lists that may bein process.

ABOR also resets the WTG bit in the Operation Condition Status register (see "Chapter 4 - Status Reporting"). If
INIT:CONT ON has been programmed, the trigger subsystem initiates itself immediately after ABORt, thereby setting
WTG. ABOR isexecuted at power turn on and upon execution of *RCL, RST, or any implied abort command (see List
Subsystem).

Command Syntax ABORt
Parameters (None)
Examples ABOR
Query Syntax (None)
Related Commands INIT *RST *TRG TRIG

Language Dictionary 31

ROOT ROOT
| |
:ABORI :SYSTem ‘ERRor?
:CALibrat :AUTO :VERSIion?
:CURRent [:DATA}
‘LEVel TRIGger [:STARY) —1—{:IMMediate]
:PASScode — :DELay
"SAVE — :LINK
:STATe L :SOURce
— :VOLTage [:CATA]
LE Vel
-PROTection [[SOURce] ——— :CURRent—— [:LEVel] [:IMMediate] L:AMPLitude]
——— :MODE TRIGgered [AMPLitude]
:DISPlay [WINDow] ———— :STATe | .pROTection STATe
:INITiate [:IMMediate] ST COUNt
—]: :CONTInuous : ’
:MEASure :CURRent [DC)? ——iCURRent —— :pOINts?
_E VOLTage [Dpcl? |— :DWEU ————— :POINts?
QUTPut ——[:STATe] |—:STEP
| .oFt [:STATe] L :VOLTage :POINts?
(LINK
:SOURce
) L :VOLTage [LEVel] [:IMMediate] [AMPLitude]
L :PROTection —: :CLEar -MODE ‘TRIGgered LAMPLitude]
:DELay
:PROTection [:LEVel]
t— [:STATe] |
:POLarity :SENSe? | ALC — :SOURce
L— TTLTrg A—E [STATe]
:SOURce
:STATus :OPERation [:EVENt]?
:CONDitlon?
:ENABIe
:NTRansltion
:PTRansltlon
:PRESet
:QUEStionable [EVENt]?
:CONDiItlon?
:ENABIle Flg4-2.gal
:NTRansition
:PTRansltion
Figure 3-2. Subsystem Tree Diagram
Calibration Subsystem
The commands in this subsystem allow you to do the following:
. Control automatic calibration of the measurement subsystem.
. Enable and disable the calibration mode.
. Change the calibration password.
. Calibrate the overvoltage protection (OVP) circuit.
. Calibrate the current and voltage output levels, and store new calibration constants in nonvolatile memory.
CAL:AUTO

This command controls the autocalibration function and is used to substantially improve the accuracy of the
MEAS.CURR? and MEAS:VOL T? data readback queries. It does this by compensating for temperature drift in the
readback circuitry.

32 Language Dictionary

Whenever CAL:AUTO ONCE is sent, the power module performs an immediate readback temperature compensation.
CAL:AUTO ONCE isasequential command that takes several seconds to complete. When CAL:AUTO ON is sent, the
power module automatically performs areadback temperature compensation before executing every MEAS command. Use
of this command extends the execution time of every MEAS query.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

CAL:CURR

CALibrate:AUTO <bool> | ONCE
0|OFF|1|ON|ONCE

OFF

CAL:AUTO 1 CAL:AUTO ONCE
CALibrate AUTO?

0]1

MEAS.CURR? MEASVOLT?

This command can only be used in the calibration mode. It enters a current value that you obtain by reading an external
meter. You must first select acalibration level (CAL:CURR:LEV) for the value being entered. Two successive values
(one for each end of the calibration range) must be selected and entered. The power module then computes new current
calibration constants. These constants are not stored in nonvolatile memory until saved with the CAL:SAVE command.

Command Syntax
Parameters
Default Suffix
Examples

Query Syntax
Related Commands

CAL:CURR:LEV

CALibrate: CURRent[:DATA] <NRf>

(See Table 3-2)

A

CAL:CURR 3222.3 MA CAL:CURR:DATA 5.000
(None)

CAL:SAVE CAL:STAT

This command can only be used in the calibration mode. It sets the power module to a calibration point that is then entered
with CAL:CURR[:DATA]. During calibration, two points must be entered and the low-end point (M IN) must be selected

and entered first.

Command Syntax
Parameters
Examples

Query Syntax
Related Commands

CAL:PASS

CALibrate CURRent:LEVel <CRD>
MINimum [MAXimum
CAL:CURR:LEV MIN CAL:CURR:LEV MAX
(None)

CAL:CURR[:DATA] CAL:STAT

This command can only be used in the calibration mode. It allows you to change the calibration password. Unlessitis
changed subsequently to shipment, the password is the model number of the power module. A new password is
automatically stored in nonvolatile memory and does not have to be stored with the CAL : SAVE command.

If the password is set to 0, password protection is removed and the ability to enter the calibration mode is unrestricted.

Command Syntax
Parameters
Examples

Query Syntax
Related Commands

CALibrate:PASScode <NRf>
<NRf>

CAL:PASS 66102 CAL:PASS 09.1991
(None)

CAL:STAT

Language Dictionary 33

CAL:SAVE

This command can only be used in the calibration mode. It saves any new calibration constants (after a current or voltage
calibration procedure has been completed) in nonvolatile memory.

Command Syntax:

CALibrate:SAVE

Parameters (None)
Examples CAL:SAVE
Query Syntax (None)

Related Commands

CAL:STAT

CAL:CURR CAL:VOLT CAL:STAT

This command enables and disables the calibration mode. The calibration mode must be enabled before the power module
will accept any other calibration commands except CAL:AUTO.

Thefirst parameter specifies the enabled or disabled state. The second parameter isthe password. Itisrequired if the
calibration mode is being enabled and the existing password is not 0. If the second parameter is not entered or is incorrect,
an error is generated and the calibration mode remains disabled. The query statement returns only the state, not the

password.

Whenever the calibration mode is changed from enabled to disabled, any new calibration constants are lost unless they have

been stored with CAL:SAVE.

Command Syntax:
Parameters

*RST Value
Examples

Query Syntax
Related Commands

CAL:VOLT

CALibrate:STATe <bool> [,<NRf>]
0| OFF | 1| ON[,<NRf>]

OFF

CAL:STAT 1,66102 CAL:STAT OFF
CALibrate:STATe?

Returned Parameters 0] 1

CAL:PASS CAL:SAVE

This command can only be used in the calibration mode. It enters a voltage value that is obtained from an external meter.
You must first select acalibration level (CAL:VOLT:LEV) for the value being entered. Two successive values (one for
each end of the calibration range) must be selected and entered. The power module then computes new voltage calibration
constants. These constants are not stored in nonvolatile memory until saved with the CAL:SAVE command.

Command Syntax
Parameters
Default Suffix
Examples
Query Syntax
Related Commands
CAL:VOLT:LEV

CALibrateVOLTage[:DATA] <NRf>
See Table 3-2

\%

CAL:VOLT 310.0 MV CAL:VOLT 5.000
(None)

CAL:SAVE CAL:STAT

This command can only be used in the calibration mode. It sets the power module to a calibration point that is then entered
with CAL:VOLT[:DATA]. During calibration, two points must be entered and the low-end point (M IN) must be selected

and entered first.

Command Syntax
Parameters
Examples

Query Syntax
Related Commands

34 Language Dictionary

CALibrateVOLTage LEVe <CRD>
MINimum [MAXimum
CAL:VOLT:LEVMIN CAL:VOLT:LEV MAX
(None)

CAL:VOLT[:DATA] CAL:STAT

CAL:VOLT:PROT

This command can only be used in the calibration mode. It calibrates the power module overvoltage protection (OV)
circuit. The power module output must be enabled and operating in the constant voltage (CV) mode. The power module
automatically performs the calibration and stores the new OV constant in nonvolatile memory. CAL:VOLT:PROT isa
sequential command that takes several seconds to compl ete.

Command Syntax: CALibrateVOLTage:PROTection
Parameters (None)
Example CAL:VOLT:PROT
Query Syntax (None)
Related Commands CAL:STAT

Current Subsystem
This subsystem programs the output current of the power module.
CURR

This command directly programs the immediate current level of the power module. Theimmediate level isthe current
applied at the output terminals. This command is aways active, even when the current subsystem isin the list mode (see
CURR:MODE).

Command Syntax [SOURce]:CURRent[:LEVe] [:IMMediate][:AMPLitude] <NRf+>
Parameters See Table 3-2
Default Suffix A
*RST Value See Table 3-2
Examples CURR 500 MA CURR:LEV .5
Query Syntax [SOURCce]:CURRent[:LEVEe] [:IMMediate][: AMPLitude]?
[SOURce]:CURRent[:LEVd] [:IMMediate][: AMPLitude]? MAX
[SOURce]:CURRent[:LEV] [:IMMediate][:AMPLitude]? MIN
Returned Parameters <NR3> CURR? returns the present programmed current level.
CURR? MAX and CURR? MIN return the maximum and minimum
programmable current levels.
Related Commands *SAV *RCL *RST

CURR:MODE

This command enables or disables list subsystem control over the power module output current. When programmed with
FI X, this command prevents the output current from being controlled by the sequencing of points specified by
LIST:CURR. If the LIST parameter is used, then the output current may be changed by the subsequent execution of alist.
However, the list mode does not prevent the output current from being set by CURR and *RCL.

Note CURR:MODE:LIST isanimplied ABORt command.

Command Syntax [SOURce]: CURRent:M ODE <CRD>
Parameters FIXed |LIST
*RST Value FIX
Examples CURR:MODE LIST CURR:MODE FIX
Query Syntax [SOURce]: CURRent:M ODE?
Returned Parameters FIX | LIST
Related Commands CURR:LIST *RCL

Language Dictionary 35

CURR:PROT:STAT

This command enables or disables the power module overcurrent (OC) protection function. If the overcurrent protection
function is enabled and the power module goes into constant current (CC) mode, then the output is disabled and the
Questionable Condition status register OC bit is set (see "Chapter 4 - Status Reporting"). An overcurrent condition can be
cleared with the OUTP:PROT:CL E command after the cause of the condition is removed.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

[SOURce]:CURRent:PROTection: STAT e <bool>
0|1|OFF|ON

OFF

CURR:PROT:STATO0 CURR:PROT:STAT OFF
[SOURCce]: CURRent:PROT ection:STATe?
0|1

OUTP:PROT:CLE OUTP:PROT:DEL

*RCL *SAV

CURR:TRIG

This command programs the pending triggered current level of the power module. The pending triggered current level isa
stored value that is transferred to the output terminals when atrigger occurs. A pending triggered level is unaffected by
subseguent CURR commands and remains in effect until the trigger subsystem receives atrigger or an ABORt command is
given. If thereisno pending triggered level, then the query form returns the IMM ediate current level. In order for
CURR:TRIG to be executed, the trigger subsystem must be initiated (see INI Tiate).

Command Syntax [SOURce]:CURRent[:LEV€el]: TRIGgered [:AMPLitude] <NRf+>

Parameters See Table 3-2
Default Suffix A
*RST Value See Table 3-2
Examples CURR:TRIG 1200 MA CURR:LEV:TRIG 1.2
Query Syntax SOURCce]: CURRent[LEVE]: TRIGgered [:AMPL itude]?

[SOURce]:CURRent[LEVE]: TRIGgered [:AMPLitude]? MAXimum
[SOURce]:CURRent[:LEV€]: TRIGgered [:AMPLitude]? MIN
<NR3> CURR:TRIG? returns the presently programmed triggered level.
If no triggered level is programmed, the CURR level is returned.
CURR:TRIG? MAX and CURR:TRIG? MIN return the maximum and
minimum programmabl e triggered current levels.
ABOR CURR[:IMM] CURR:MODE INIT

Returned Parameters
Related Commands *RST
DISPlay Command

This command turns the power module optional front panel voltage and current displays on and off. It does not affect the
annunciators.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

INITiate Command

DI SPlay[:WINDow]:STAT <bool>
0|1| OFF | ON

ON

DISP:STAT1 DISP:STAT OFF
DISPlay[:WINDow]:STAT?

o1

*SAV *RCL

This command enables the trigger subsystem. When atrigger is enabled, an event on the selected trigger source causes the
specified triggering action to occur. If atrigger circuit isnot enabled, all trigger commands are ignored. If INIT:CONT is
OFF, then INIT enables the trigger subsystem only for asingle trigger action. The subsystem must be enabled prior to each
subsequent trigger action. If INIT:CONT isON, then the trigger system is continuously enabled and INIT is redundant.

36 Language Dictionary

Command Syntax INITiate[:IMMediate]
INITiate: CONTinuous <bool>
For INIT[:IMM] (None)
For INIT:CONT 0| 1] OFF |ON
*RST Value OFF
Examples INIT INIT:CONT 1 INIT:CONT ON
Query Syntax For INIT[:IMM] (None)
For INIT:CONT INITiatee CONTinuous?

Returned Parameters 0] 1

Related Commands ABOR CURR:TRIG TRIG *TRG VOLT:TRIG

Parameters

List Subsystem

This subsystem controls the generation of parameter lists that sequence the power module output through values of voltage
and current. Two subsystem commands specify lists of output voltages (L1ST:VOLT), and currents (LI1ST:CURR). A
count command (L 1ST:COUN) determines how many times the power modul e sequences through alist before that list is
completed. A dwell command (LI1ST:DWEL) specifies the time interval that each value (point) of alististo remainin
effect. A step command (LIST:STEP) determinesif atrigger causes alist to advance only to its next point or to sequence
through al of its points.

Each list can have from 1 to 20 points. Normally, voltage, current, and dwell lists must have the same number of points, or
an error is generated when the first list point istriggered. The exception isalist consisting of only one point. Such alistis
treated asif it had the same number of points as the other lists, with all the points having the same value as the one specified

point.

Note All list subsystem commands (aswell asCURR:MODE LIST and VOLT:MODE LIST) areimplied

ABORt commands.

LIST:COUN

This command sets the number of times that the list is executed before it is completed. The command accepts parametersin
the range 1 through 9.9E37, but any number greater than 65534 isinterpreted as INFinity. Use INF if you wish to execute a

list indefinitely.
Command Syntax
Parameters
*RST Value
Examples
Query Syntax
Returned Parameters
Related Commands

LIST:CURR

[SOURCce]:LIST:COUNt <NRf+>

1t0 9.9E37 | INFinity

1

LIST:COUN 3 LIST:COUN INF

[SOURCce]:LIST:COUNt?

<NR3>

CURR:MODE LIST:CURR LIST:DWEL LIST:STEP
LIST:VOLT VOLT:MODE

This command specifies the output current pointsin alist. The current points are given in the command parameters, which
are separated by commas. Up to 20 points may be entered and the output current values specified by the points will be

generated in the same order as they were entered.

Command Syntax
Parameters
Default Suffix
Examples

Query Syntax
Related Commands

[SOURce]:LIST:CURRent <NRf+> {,<NRf+>}
See Table 3-2

A

LIST:CURR 2.5,3.0,3.5 LIST:CURR MAX,2.5,MIN
(None)

CURR:MODE LIST:CURR:POIN? LIST:DWEL

Language Dictionary 37

LIST:CURR:POIN?

This query returns the number of points specified in LIST:CURR. Note that it returns only the total number of points, not
the point values.
Query Syntax [SOURCce]:LIST:CURRent: POINts?
Returned Parameters <NR1>
Example LIST:CURR:POIN?
Related Commands CURR:MODE LIST:CURR LIST:DWEL

LIST:DWEL

This command sets the dwell points for the output current list and output voltage list. Each dwell point specifiesthetime, in
seconds, that the output of the power moduleis to remain at the level specified by the corresponding point in the current or
voltage list. At the end of the dwell time, the output of the power module depends upon the following conditions:

. If LIST:STEP AUTO has been programmed, the output automatically changes to the next point in the list.

. If LIST:STEP ONCE has been programmed, the output remains at the present level until atrigger sequences
the next point in the list.

Command Syntax [SOURCce]:LIST:DWEL 1 <NRf+> {,<NRf+>}
Parameters 0.01 to 65 |[MINimum | MAXimum
Default Suffix S
Examples LIST:DWEL .5,.5,1.5
Query Syntax (None)
Related Commands CURR:MODE LIST:COUN LIST:CURR LIST:STEP
LIST:VOLT VOLT:MODE

LIST:DWEL:POIN?

This query returns the number of points specified in LIST:DWEL. Notethat it returns only the total number of points, not
the point values.

Query Syntax [SOURCce]:LIST:DWFL 1: POINts?
Returned Parameters <NR1>
Example LIST:DWEL:POIN?
Related Commands LIST:CURR LIST:DWEL LIST:VOLT

LIST:STEP

This command specifies how list sequencing occursin response to triggers. If LIST:STEP AUTO is sent, then asingle
trigger causes the list (voltage, current, or dwell) to sequence through all its points. The time that alist remains at each
point is as specified in the dwell list. Assoon asthe dwell interval expires, the list movesto the next point.

If LIST:STEP ONCE issent, then asingle trigger advances alist only one point. After the specified dwell interval, the list
remains at that point until the next trigger occurs.

In either mode, triggers that occur during a dwell interval are ignored.

Command Syntax [SOURCce]:LIST:STEP <CRD>

Parameters AUTO | ONCE

*RST Value AUTO
Examples LIST:STEP ONCE

Query Syntax [SOURCce]:LIST:STEP?
Returned Parameters AUTO | ONCE
Related Commands CURR:MODE LIST:COUN LIST:CURR LIST:DWEL
LIST:VOLT VOLT:MODE

38 Language Dictionary

LIST:VOLT

This command specifies the output voltage pointsin alist. The voltage points are given in the command parameters, which
are separated by commas. Up to 20 points may be entered and the output voltage values specified by the points will be
generated in the same order as they were entered.

Command Syntax [SOURCce]:LIST:VOL Tage <NRf+> {,<NRf+>}
Parameters See Table 3-2
Default Suffix \%
Examples LIST:VOLT 2.0,25,3.0 LIST:VOLT MAX,2.5,MIN
Query Syntax (None)
Related Commands VOLT:MODE LIST:VOLT:POIN? LIST:DWEL

LIST:VOLT:POIN?

This query returns the number of points specified in LIST:VOLT. Note that it returns only the total number of points, not
the point values.

Query Syntax [SOURCce]:LIST:VOL Tage: POINts?
Returned Parameters <NR1>
Example LIST:VOLT:POIN?
Related Commands VOLT:MODE LIST:VOLT LIST:DWEL

MEASure Query

This query returns the current measured at the power modul e output terminals or the voltage measured at the sense
terminals. The query format allows two optional parameters for specifying the expected value and desired measurement
accuracy. The power module accepts the optional parameters but ignores them.

Query Syntax MEASure:CURRent[:DC]? [<NRf>[,<NRf>]]
MEASure:VOL Tage:DC]? [<NRf>[,<NRf>]]
Parameters (None)

Default Suffix Afor MEAS.CURR? Vfor MEAS:VOLT?
Examples MEAS:CURR? MEAS:VOLT?
MEASURE:VOLTAGE:DC? MV
Returned Parameters <NR3>
Related Commands CAL:AUTO

Output Subsystem
This subsystem controls the power modul e voltage and current outputs and the optional output relay.
OUTP

This command enables or disables the power module output. The state of a disabled output is a condition of zero output
voltage and a model-dependent minimum source current.

If the power moduleis configured to use the relay option, the command opens the relay contacts when the output is disabled
and closes them when it isenabled. Transitions between the output ON and OFF states are sequenced so that therelay is
switched while the power mesh isdisabled. Use of the second (NORelay) parameter prevents the command from having
any effect on therelay; it remainsin its existing state when OUT Put is executed. The query form returns the output state,
excluding that of the relay (see OUTP:REL?).

Language Dictionary 39

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

OUTP:DFI

OUTPuUt[:STATE€] <bool>[,NORelay]
0| OFF[,NORe€lay] | 1 | ON[,NOR€lay]
0

OUTP 1 OUTP:STAT ON,NORELAY
OUTPULt[:STATEe]?

0]1

*RCL *SAV

This command enables or disables the discrete fault indicator (DFI) signal to the power module backplane.

Command Syntax
Parameters
*RST Value
Examples
Query Syntax
Returned Parameters
Related Commands

OUTP:DFI:LINK

OUTPut:DFI[:STATe€] <bool>
0]|1|OFF|ON

OFF

OUTP:DFI:1 OUTP:DFI OFF
OUTPut:DFI[:STAT€]?

0|1

OUTP:DFI:LINK OUTP:DFI:SOUR

This command specifies which events within the power module are linked to DFI source events.

Command Syntax OUTPut:DFI:LINK <CRD>

Parameters See Table 3-2
*RST Value SUM3
Examples OUTP:DFI:LINK "CC" OQOUTP:DFI:LINK “OFF”
Query Syntax OUTPut:DFI:LINK?

Returned Parameters See Table 3-2

Related Commands

OUTP:DFI:SOUR

OUTP:DFI:SOUR OUTP:DFI[:STAT]

This command selects the source for DFI events. The only available sourceis LINK.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

OUTP:PROT

OUTP:DFI:SOUR <CRD>

LINK

LINK

OUTP:DFI:SOUR LINK
OUTPut:DFI:SOUR?

LINK

OUTP:DFI:.LINK OUTP:DFI[:STAT]

There are two output protection commands that do the following:

OUTP:PROT:CLE

Clears any overvoltage (OV), overcurrent (OC), overtemperature (OT), or remote inhibit (RI)

protection features. After thiscommand, the output is restored to the state it was in before the
protection feature occurred.

40 Language Dictionary

OUTP:PROT:DEL Sets the delay time between the programming of an output change that producesa CV, CC, or
UNREG condition and the recording of that condition by the Status Operation Condition register.
The delay prevents momentary changes in power module status that can occur during
reprogramming from being registered as events by the status subsystem. Since the delay applies
to CC status, it also delays the OCP (overcurrent protection) feature. The OV P (overvoltage
protection) feature is not affected by this delay.

Command Syntax
Parameters
Default Suffix
*RST Value

Examples
Query Syntax

Returned Parameters
Related Commands

OUTP:REL

OUTPut:PROTection:CL Ear
OUTPut:PROTection:DEL ay <NRf+>
OUTP:PROT:CLE, (none)
OUTP:PROT:DEL 0t032.767 | MIN | MAX
S

100 (milliseconds)

OUTP:PROT:CLE OUTP:PROT:DEL 75E-1
OUTP:PROTection:CLEar (None)
OUTPut:PROTection:DEL ay?
OUTPut:PROTection:DELay? MINimum
OUTPut:PROTection:DELay? MAXimum
<NR3>

OUTP:PROT:CLE (None)
OUTP:PROT:DEL *RCL *SAV

Thiscommand isvalid only if the power module is configured for the optional relay connector. Programming ON closes
therelay contacts, programming OFF opensthem. Therelay is controlled independently of the output state. If the power
moduleis supplying power to aload, that power will appear at the relay contacts during switching. If the power moduleis
not configured for the relay connector, sending either relay command generates an error.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

OUTP:REL:POL

OUTPut:REL ay[:STAT¢] <bool>
0]|1|OFF|ON
0

OUTP:REL 1 OUTP:REL OFF
OUTPut:REL ay?

o

OUTP[:STAT] *RCL *SAV

This command isvalid only if the power moduleis configured for the optional relay connector. Programming NORM al
causes the relay output polarity to be the same as the power module output. Programming REV erse causes the relay output
polarity to be opposite to that of the power module output. If OUTP[:STAT] = ON when either relay command is sent, the
power module output voltage is set to O during the time that the relays are changing polarity. If the power moduleis not
configured for the relay connector, sending either relay command generates an error.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

OUTPut:RELay:POL arity <CRD>
NORMal | REVerse

NORM

OUTP:REL:POL NORM
OUTPut:RELay:POL arity?
NORM | REV

OUTP[:STAT] *RCL *SAV

Language Dictionary 41

OUTP:TTLT

This command enables or disables the power module Trigger Out signal, which is available at a BNC connector on the rear
of the mainframe. Trigger Out is the logical OR of all the power module TTLTrig signals (see "Chapter 5 - Synchronizing
Power Module Output Changes"). It also may be selected as atrigger input (see TRIGger: SOURCce).

Command Syntax OUTPut: TTLTrg[:STATe] <bool>
Parameters 0|1|OFF|ON
*RST Value OFF
Examples OUTP:TTLT1 OUTP:TTLT OFF
Query Syntax OUTPut:TTLrg[:STAT€]?
Returned Parameters 01
Related Commands OUTP:TTLT:LINK OUTP:TTLT:SOUR

OUTP:TTLT:LINK

This command specifies which events within the power module are linked to TTLTrg source events whenLINK isthe
parameter for the OUTP:TTLT:SOUR command.

Command Syntax ~ OUTPut:TTLrg:LINK <CRD>
Parameters SeeTable 3-1
*RST Value OFF
Examples OUTP:TTLT.LINK "CC" OUTP:TTLT:LINK "OFF"
Query Syntax OUTPuUt:TTLrg:LINK?
Returned Parameters See Table 3-1
Related Commands OUTP:TTLT:SOUR OUTP:TTLT[:STAT]

OUTP:TTLT:SOUR

This command selects the signal source for the Trig Out signa as follows:

BUS *TRG or <GET> (Group Execute Trigger) HOLD Notrigger source except TRIG:IMM
EXT Mainframe backplane Trigger In bus LINK Internal power module event as
specified by TRIG:LINK

When an event becomes true at the selected TTLTrg source, a pulse is sent to the BNC connector on the rear of the
mainframe.

Command Syntax OUTPut:TTLrg:SOURce <CRD>
Parameters BUS|EXTernal |LINK |HOLD
*RST Value BUS
Examples OUTP:TTLT:SOUR LINK
Query Syntax OUTPut:TTLrg:SOURce?
Returned Parameters BUS|EXT |LINK |HOLD
Related Commands OUTP:TTLT:LINK OUTP:TTLT[:STAT]

Status Subsystem
This subsystem programs the power module status registers. The power module has three groups of status registers;
Operation, Questionable, and Standard Event. The Standard Event group is programmed with Common commands as

described in "Chapter 4 - Status Reporting”. The Operation and Questionable status groups each consist of the following
five registers:

Condition Enable Event NTR Filter PTR Filter

42 Language Dictionary

Status Operation Registers

The bit configuration of all Status Operation registers is shown in the following table:

Bit Configuration of Operation Registers

Bit Position | 12 11 10 9

8 7 6 5 4 3 2 1 0

Bit Name STC | NU CcC NU

Cv NU NU WTG | NU NU NU NU CAL

Bit Weight 4096 | 2048 | 1024 | 512

256 | 128 | 64 32 16 8 4 2 1

CAL = Interface is computing new calibration constants; CC = The power module isin constant current mode;
CV = The power module isin constant voltage mode; NU = (Not used); STC = Thelist step is complete;

WTG = Interface iswaiting for atrigger.

Note See "Chapter 4 - Status Reporting" for more explanation of these registers

STAT:OPER?

This query returns the value of the Operation Event register. The Event register is aread-only register which holds (latches)
all eventsthat are passed by the Operation NTR and/or PTR filter. Reading the Operation Event register clearsit.

Query Syntax
Parameters

Returned Parameters
Examples
Related Commands

STAT:OPER:COND?

STATus.OPERation[:EVENt]?

(None)

<NR1> (Register Value)

STAT:OPER:EVEN?

*CLS STAT:OPER:NTR STAT:OPER:PTR

This command returns the value of the Operation Condition register. That is aread-only register which holds the real-time
(unlatched) operationa status of the power module.

Query Syntax
Parameters

Examples
Returned Parameters
Related Commands

STAT:OPER:ENAB

STATus.OPERation: CONDition?
(None)

STAT:OPER:COND?

<NR1> (Register value)

(None)

This command and its query set and read the value of the Operation Enable register. This register isamask for enabling
specific bits from the Operation Event register to set the operation summary bit (OPER) of the Status Byte register. This bit
(bit 7) isthelogical OR of al the Operation Event register bits that are enabled by the Status Operation Enable register.

Command Syntax
Parameters

Suffix

Default Value
Examples

Query Syntax
Returned Parameters
Related Commands

STATus.OPERation:ENABIle <NRf>

O0to 32727

(None)

0

STAT:OPER:ENAB 1312 STAT:OPER:ENAB 1
STATus.OPERation:ENABIe?

<NRI> (Register value)
STAT:OPER:EVEN

Language Dictionary 43

STAT:OPER:NTR|PTR Commands

These commands set or read the value of the Operation NTR (Negative-Transition) and PTR (Positive-Transition) registers.
These registers serve as polarity filters between the Operation Enable and Operation Event registers to cause the following

actions:

When abit in the Operation NTR register is set to 1, then a 1-to-0 transition of the corresponding bit in the
Operation Condition register causes that bit in the Operation Event register to be set.

When abit of the Operation PTR register is set to 1, then a 0-to-1 transition of the corresponding bit in the
Operation Condition register causes that bit in the Operation Event register to be set.

If the same bitsin both NTR and PTR registers are set to 1, then any transition of that bit at the Operation
Condition register sets the corresponding bit in the Operation Event register.

If the same bitsin both NTR and PTR registers are set to 0, then no transition of that bit at the Operation
Condition register can set the corresponding bit in the Operation Event register.

Note Setting a bit in the value of the PTR or NTR filter can of itself generate positive or negative eventsin the
corresponding Operation Event register.
Command Syntax STATus.OPERation:NTRansition <Nrf>
STATus.OPERation:PTRansition <NRf>
Parameters Oto 32727
Suffix (None)
Default Value 0
Examples STAT: OPER: NTR 32 STAT: OPER: PTR 1312
Query Syntax STAT:OPER:NTR? STAT:OPER:PTR?
Returned Parameters <NR1> (Register value)
Related Commands STAT:OPER:ENAB
STAT:PRES

This command sets al defined bitsin the Status Subsystem PTR registers and clears all bitsin the subsystem NTR and
Enable registers. STAT:OPER:PTR is set to 1313 and STAT:QUES.PTR is set to 1555.

Command Syntax STATus. PRESet
Parameters (None)
Examples STAT:PRES
Query Syntax (None)
Related Commands (None)

Status Questionable Registers

The bit configuration of all Status Questionable registersisasfollows:

Bit Configuration of Questionable Registers

Bit Position | 15-11 | 10 9 8 7 6 5 4 3 2 1 0
Condition NU UNR | RI NU NU NU NU oT NU NU |OC | OV
Bit Weight 1024 | 512 | 256 | 128 | 64 32 16 8 4 2 1

NU = (Not used); OC = Overcurrent protection circuit has tripped; OT = Overtemperature status condition exists;
OV = Overvoltage protection circuit has tripped; Rl = Remote inhibit is active; UNR = Power supply output is
unregulated.

Note

See "Chapter 4 - Status Reporting" for more explanation of these registers.

44 L anguage Dictionary

STAT:QUES?

This command returns the value of the Questionable Event register. The Event register is aread-only register which holds
(latches) all events that are passed by the Questionable NTR and/or PTR filter. Reading the Questionable Event register

clearsit.
Query Syntax
Parameters
Returned Parameters
Examples
Related Commands

STAT:QUES:COND?

STATus.QUEStionable]: EVENLt]?

(None)

<NR1> (Register Vaue)

STAT.QUES:EVEN?

*CLS STAT:QUESINTR STAT:QUESPTR

This query returns the value of the Questionable Condition register. That is aread-only register which holds the real-time
(unlatched) questionable status of the power module.

Query Syntax
Example

Returned Parameters
Related Commands

STAT:QUES:ENAB

STATus.QUEStionable; CONDition?
STAT: QUES: COND?

<NR1> (Register value)

(None)

This command sets or reads the value of the Questionable Enable register. Thisregister isamask for enabling specific bits
from the Questionable Event register to set the questionable summary (QUES) hit of the Status Byte register. This bit (bit
3) isthelogical OR of al the Questionable Event register bits that are enabled by the Questionable Status Enable register.

Command Syntax
Parameters

Suffix

Default Value
Example

Query Syntax
Returned Parameters
Related Commands

STAT:QUES:NTR|PTR Commands

STATus.QUEStionable:ENABIle <NRf>
0to 32727

(None)

0

STAT:QUES:ENAB 18
STATus.QUEStionable: ENABIe?
<NR1> (Register value)
STAT:QUES.EVEN?

These commands allow the values of the Questionable NTR (Negative-Transition) and PTR (Positive-Transition) registers
to be set or read. These registers serve as polarity filters between the Questionable Enable and Questionable Event registers

to cause the following actions:

. When abit of the Questionable NTR register is set to 1, then a 1-to-0 transition of the corresponding bit of the
Questionable Condition register causes that bit in the Questionable Event register to be set.

. When abit of the Questionable PTR register is set to 1, then a 0-to-I transition of the corresponding bit in the
Questionable Condition register causes that bit in the Questionable Event register to be set.

. If the same bitsin both NTR and PTR registers are set to 1, then any transition of that bit at the Questionable
Condition register sets the corresponding bit in the Questionable Event register.

. If the same bitsin both NTR and PTR registers are set to 0, then no transition of that bit at the Questionable

Condition register can set the corresponding bit in the Questionable Event register.

Note

Setting abit in the PTR or NTR filter can of itself generate positive or negative eventsin the

corresponding Questionable Event register.

Language Dictionary 45

Command Syntax STATus.QUEStionable:NTRansition <NRf>
STATus.QUEStionable:PTRansition <NRf>
Parameters Oto 32727
Suffix (None)
Default Value 0
Example STAT:QUES:NTR 16 STAT:QUES:PTR 512
Query Syntax STATus.QUEStionable:NTRansition?
STATus.QUEStionable:PTRansitiion?
Returned Parameters <NR1> (Register vaue)
Related Commands STAT:QUES.ENAB

SYST:ERR?

This query returns the next error number followed by its corresponding error message string from the remote programming
error queue. The queueisaFIFO (first-in, first-out) buffer that stores errors asthey occur. Asitisread, each error is
removed from the queue. When al errors have been read, the query returns O,NO ERROR. If more errors are accumulated
than the queue can hold, the last error in the queueis -350,TOO MANY ERRORS.

Query Syntax SYSTem:ERRor?
Parameters (None)
Returned Parameters <NR1><SRD>

Example SYST:ERR?

SYST:VERS?

This query returns the SCPI version number to which the power module complies. The returned valueis of the form
YYYY.V, where YYYY represents the year and V is the revision number for that year.

Query Syntax SYSTem:VERSion?
Parameters (none)
Returned Parameters <NR2>
Example SYST:VERS?
Related Commands (None)

Trigger Subsystem

This subsystem controls the triggering of the power module. See " Chapter 5 - Synchronizing Power Module Output
Changes’ for an explanation of the Trigger Subsystem.

Note The trigger subsystem must be enabled from the Initiate Subsystem or no triggering action will occur.

TRIG

When the trigger subsystem is enabled, TRI G generates an immediate trigger signal that bypasses any selected
TRIG:SOUR and TRIG:DEL. Thetrigger will then:

1 Initiate a pending level change as specified by CURR[:LEV]:TRIG or VOLT[:LEV]:TRIG.

2. Initiate a pending level change as specified by CURR:MODE LIST or VOLT:MODE LIST and in accordance
with LIST:STEP.

3. Clear the WTG bit in the Status Operation Condition register.

46 Language Dictionary

Command Syntax
Parameters
Examples

Query Syntax
Related Commands

TRIG:DEL

TRIGger[:STARt][:IMMediate]

(None)

TRIG TRIG: IMM

(None)

ABOR CURR:MODE CURR:TRIG INIT *TRG
VOLT:MODE VOLT:TRIG

This command sets the time delay between the detection of an event on the specified trigger source and the start of any
corresponding trigger action on the power modul€’ s output.

Command Syntax
Parameters

Default Suffix

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

TRIG:LINK

TRIGger[:STARt]:DELay <NRf+>

0to 65| MIN | MAX

S

0

TRIG:DEL .25 TRIG:DEL MAX
TRIGger[:STARt]:DEL ay?

<NR3>

ABOR CURR:TRIG INIT *TRG TRIG[:IMM]
VOLT:TRIG

This command specifies which event conditions within the power module are linked to trigger source events when LINK is

the parameter of the TRIG:SOUR command.

Command Syntax
Parameters

*RST Value
Examples

Query Syntax
Returned Parameters
Related Commands

TRIG:SOUR

TRIGger[:STARt]:LINK <CRD>

(See Table 3-1)

OFF

TRIG:LINK "CC" TRIG:LINK "OPER"
TRIGger[:STARt]:LINK?

<CRD> (See Table 3-1)

ABOR INIT *TRG TRIG[:IMM] TRIG:SOUR

This command selects the power module input trigger source as follows:

BUS *TRG or <GET> (Group Execute Trigger)

EXT Mainframe backplane Trigger In bus
HOLD Notrigger source except TRIG:IMM

LINK Internal power module event as specified by TRIG:LINK

TTLT Mainframe Trigger Out bus
Command Syntax
Parameters
*RST Value
Examples
Query Syntax
Returned Parameters
Related Commands

TRIGger[:STARt]:SOURce <CRD>
BUS|EXT |HOLD |LINK | TTLT

BUS

TRIG: SOUR BUS TRIG: SOUR LINK
TRIGger[:STARt]: SOURce?

BUS|EXT |HOLD |TTLT

ABOR CURR:TRIG INIT OUTP.TTLT
VOLT:TRIG

Language Dictionary 47

Voltage Subsystem
This subsystem programs the output voltage of the power module.
VOLT

This command directly programs the immediate voltage level of the power module. The immediate level isthe voltage
applied at the output terminals. This command is always active, even when the voltage subsystem isin the list mode (see
VOLT:MODE).

Command Syntax [SOURCce]:VOLTage[:LEVe] [:IMMediate][:AMPLitude] <NRf+>
Parameters Table 3-2
Default Suffix Y,
*RST Value Table 3-2
Examples VOLT 2500 MV VOLT:LEV 2.5
Query Syntax [SOURCce]:VOL Tage[:LEVE] [:IMMediate][: AM Plitude] ?
[SOURCce]:VOL Tage[:LEVe] [:IMMediate][:AMPLitude]? MAX
[SOURce]:VOLTage[:LEVE] [:IMMediate][:AMPLitude]? MIN
Returned Parameters <NR3> VOL T? returns the presently programmed immediate voltage
level.
VOLT? MAX and VOLT? MIN return the maximum and minimum
programmable immediate voltage levels.
Related Commands *SAV *RCL *RST

VOLT:MODE

This command enables or disables list subsystem control over the power module output voltage. When programmed with
FIX, this command prevents the output voltage from being controlled by the sequencing of points specified by
LIST:VOLT. If theLIST parameter is used, then the output voltage may be changed by the subsequent execution of alist.
However, the list mode does not prevent the output voltage from being set by VOLT[:IMM] and *RCL.

Note VOLT:MODE LIST isanimplied ABORT command.

Command Syntax [SOURCce]:VOL Tage:M ODE <CRD>
Parameters FIXed |LIST
*RST Value FIX
Examples VOLT:MODE LIST VOLT:MODE FIX
Query Syntax [SOURCce]:VOL Tage:MODE?
Returned Parameters FIX|LIST
Related Commands VOLT:LIST *RCL

VOLT:PROT

This command sets the overvoltage protection (OVP) level of the power module. If the output voltage exceeds the OVP
level, then the power module output is disabled and the Questionable Condition status register OV bit is set (see "Chapter 4
- Status Reporting"). An overvoltage condition can be cleared with the OUTP:PROT:CL E command after the condition
that caused the OVP trip isremoved. The OV P always trips with zero delay and is unaffected by the OUTP; PROT:DEL
command.

Command Syntax [SOURCce]:VOL Tage:PROTection [:LEVe] <NRf+>
Parameters See Table 3-2
Default Suffix \%
*RST Value MAX
Examples VOLT:PROT 2.5 VOLT:PROT:LEV MAX

48 Language Dictionary

Query Syntax [SOURCce]:VOLTage:PROTection [:LEVd]?
[SOURCce]:VOL Tage:PROTection [:LEVe]? MIN
[SOURCce]:VOL Tage:PROTection [:LEVd]? MAX
Returned Parameters <NR3>VOLT:PROT? returns presently programmed OVP level.
VOLT:PROT? MAX and VOLT:PROT? MIN return the
maximum and minimum programmable OVP levels.
Related Commands OUTP:PROT:CLE *RST *SAV *RCL

VOLT:SENS:SOUR?

This command reads the state of the power modul e output connector remote sense switch. The INTernal parameter
corresponds to the LOCAL position of the switch. (See the power module User’s Guide for more information about this
switch.)VOLT:SENS:SOUR is an alias for the SCRIOLT:ALC:SOUR command.

Query Syntax [SOURce]:VOL Tage: SENSe: SOURce?
Example VOLT:SENS:SOUR?
Returned Parameters EXTernal | INTernal
Related Commands VOLT:ALC:SOUR?

VOLT:TRIG

This command programs the pending triggered voltage level of the power module. The pending triggered voltage level is a
stored value that is transferred to the output terminals when a trigger occurs. A pending triggered level is unaffected by
subsequenY OLT:LEV[:IMM] commands and remains in effect until the trigger subsystem receives a trigger or an

ABORt command is given. In order fofOLT:TRIG to be executed, the trigger subsystem must be initiated (see

INITiate).

Command Syntax [SOURCce]:VOLTage[:LEVe]: TRIGgered [:AMPLitude] <NRf+>
Parameters See Table 3-2
Default Suffix Y
*RST Value See Table 3-2
Examples VOLT:TRIG 1200 MV VOLT:LEV:TRIG 1.2
Query Syntax [SOURCce]:VOLTage[:LEVe]: TRIGgered [:AMPLitude]?
[SOURCce]:VOL Tage[LEVel]: TRIGgered [:AMPLitude]? MAX
[SOURCce]:VOLTage[:LEVE]: TRIGgered [:AMPLitude]? MIN
Returned Parameters <NR3>VOLT:TRIG? returns the presently programmed current
level. If theTRIG level is not programmed, th1M level is returned.
VOLT:TRIG? MAX andVOLT:TRIG? MIN return the
maximum and minimum programmable triggered voltage levels.
Related Commands ABORVOLT[:IMM] VOLT:MODE INIT *RST

Language Dictionary 49

Table 3-1. Link Parameter List

Parameter True Event Condition Valid for
CcC Constant current event bit* OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
cv Constant voltage event bit* OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
ESB Standard event summary bit* OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
LSC List sequence complete pulse? OUTP.TTLT:LINK TRIG[:STAR]:LINK
oPC Operation complete bit* OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
OPER Operation summary bit* OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
QUES Questionable summary bit! OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
MAV Message available summary bitt OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
OFF No linked event condition OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
RQS Request service summary bit OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
RTG Received atrigger bit? OUTP.TTLT:LINK TRIG[:STAR]:LINK
STC List step completed pulse? OUTP.TTLT:LINK TRIG[:STAR]:LINK
STS List step started pulse? OUTP.TTLT:LINK TRIG[:STAR]:LINK
SUM3 OPER or QUES or ESB hit! OUTP:DFI:LINK OUTP.TTLT:LINK TRIG[:STAR]:LINK
TDC Trigger delay complete pulse? OUTP.TTLT:LINK TRIG[:STAR]:LINK
! See “Chapter 4 - Status Reporting” See “Chapter 5 - Synchronizing Power Module Output Changes”.

Table 3-2. Power Module Programming Parameters

Agilent Model
Parameter 66101A 66102A 66103A 66104A 66105A 66106A
Output Programming Range
(maximum programmable values):
Voltage: 8.190V 20475V 35.831V 61.425V 122.85V 204.75V
Current: 16.380 A 7678 A 4.607 A 2559 A 1.280 A 0.768 A
QV Protection: 88V 220V 385V 66.0 V 1320V 2200V
Average Resolution
Voltage: 24mv 59mVv 104 mV 18.0mV 36.0 mV 60.0 mV
Current: 4.6 mA 23mA 1.4mA 0.75mA 0.38 mA 0.23mA
OV Protection: 50 mV 120 mvV 200 mvV 375 mVvV 750 mV 125V
*RST State Values'
Voltage: 0
Current: 257 mA 120 mA 72 mA 40 mA 20 mA 12 mA
QV Protection: 8.8V 220V 385V 66.0 V 1320V 2200V
! These also are the power-on reset values when the factory default parameters are left in effect (see "Chapter 2
Installation” in the power moduldser’s Guidé.
Nonvolatile Memory L ocations: 5; (0 through 4)
Volatile Memory L ocations: 5; (5 through 9)

50 Language Dictionary

Status Reporting

Power Module Status Structure

Figure 4-1 shows the status register structure of the power module. The Standard Event, Status Byte, and Service Request
Enable registers and the Output Queue perform standard GPIB functions as defined in the IEEE 488.2 Sandard Digital
Interface for Programmable Instrumentation. The Operation Status and Questionable Status registers implement status
functions specific to the power module.

Status Register Bit Configuration

Table 4-2 and Figure 4-1 show the bit configuration of each status register.

Operation Status Group
Register Functions

The Operation Status registers record signals that occur during normal operation. The group consists of the following
registers:

. A Condition register that holds real-time status of the circuits being monitored. It is aread-only register.

. A PTR/NTR (positive transition/negative transition) Filter that functions as described under
STAT:OPER:NTR|PTR COMMANDS in "Chapter 3 - Language Dictionary". This is a read/write register.

. An Event register that latches any condition that is passed through the PTR or NTR filters. Reading the Event
register clearsit.

. An Enable register that functions as described under STAT:OPER:ENAB in "Chapter 3 -Language

Dictionary". Thisis aread/write register.

The outputs of the Operation Status group are logically-ORed into the OPER(ation) summary bit (7) of the Status Byte
register.

Register Commands

Commands that access this group are derived from the STAT:OPER commands described in "Chapter 3 - Language
Dictionary" and summarized in Table 4-1.

Table 4-1. Status Operation Commands

Register Command Query Cleared By
Condition (None) STAT:OPER:COND? Cannot be cleared
PTRFilter | STAT:OPER:PTR <NRf> STAT:OPER:PTR? Programming O or

STAT:.PRES
NTR Filter | STAT:OPER:NTR <NRf> STAT:OPER:NTR? Programming O
Event (None) STAT:OPER:EVEN? Readingor *CL S
Enable STAT:OPER:ENAB <NRf> STAT:OPER:ENAB? Programming O

Status Reporting 51

Table 4-2. Bit Configurations of Status Registers

Bit Signal Meaning Bit Signal Meaning
Operation Status Group Standard Event Status Group
0 CAL The interface is computing new 0 OPC Operation complete
calibration constants
5 WTG Theinterface iswaiting for atrigger 2 QYE Query error
8 Ccv The power module isin constant 3 DDE Device-dependent error
voltage mode
10 | CC The power module isin constant 4 EXE Execution error
current mode
12 | DWE The list step is active (dwelling) 5 CME Command error
7 PON Power on
Questionable Status Group Status Byte and Service Request
Enable Registers
0 ov The power module overvoltage 3 QUES Questionabl e status summary bit
protection circuit has tripped
1 oC The power module overcurrent 4 MAV Message Available summary bit
protection circuit has tripped
4 oT The power module has an 5 ESB Event Status summary bit
overtemperature condition
9 RI The power module remote inhibit state 6 MSS Master Status summary bit
isactive RQS Request Service bit
10 | UNR The power module output is 7 OPER Operation status summary bit
unregulated

Questionable Status Group

Register Functions

The Questionable Status registers record signals that indicate abnormal operation of the power module. As shown in Figure
4-1, the group consists of the same type of registers as the Status Operation group. The outputs of the Questionable Status
group are logically-ORed into the QUES(tionable) summary hit (3) of the Status Byte register.

Register Commands

Programming for this group is derived from the STAT: QUES commands described in " Chapter 3 - Language Dictionary"
and summarized in Table 4-3.

Table 4-3. Status :Questionable Commands

Register Command Query Cleared By
Condition (None) STAT:QUES:COND? Cannot be cleared
PTR Filter | STAT:QUES.PTR <NRf> STAT:QUES.PTR? Programming O
NTRFilter | STAT:QUES:NTR <NRf> STAT:QUES.NTR? Programming O or

STAT:PRES
Event (None) STAT:QUES.EVEN? Readingor *CL S
Enable STAT:QUES:ENAB <NRf> STAT:QUES.ENAB? Programming O

52 Status Reporting

QUESTIONABLE STATUS
CONDITION PTRINTR EVENT ENABLE
o p—
o —— ; ; 1 EVENT
»?S =1 2 2 HANDLE: CC CV ESB OPC OPER QUES MAV RQS DWE SUM3
o e deld]| |~ c0OOOOODOGOGO®
NU. 58] 3‘
R —— s 512 512 512 g 0
10 S
UNR) 024 024 024 024 SERVICE
Nu., 8 REQUEST
GENERATION
h—
2
SERVICE
g STATUS REQUEST
STANDARD EVENT STATUS S BYTE ENABLE
— " 2 NU. 0-2
EVENT ENABLE g =
0 — S QUES 3 8 8
o D + H
o " ™ > Mav & | s % §
— - 2
e — o [- g BN 2 g
‘ | S S o RQS
e —4 s | » $ ©— = T B 2
oME — | » g OPER e 8
NU. :
PON 28 —] s —
OPERATION STATUS
CONDITION PTRINTR EVENT ENABLE OUTPUT QUEVE
car —24 1 1 1] DATA
N.U. ‘;‘ DATA
WTG 2 H = 32 2 -
vie —5 5 DATA
-
ov 8 1256 |—{ 2% 2% @) 2% 3 '
NU. : 512 512 s 512 & hdf
- 4
s% ” 1024 024 024 —c>— 02
OWE ([0) -2 409 |—] 406 40% 40% L Floa-1.6a
NU, =131

Figure 4-1. Power Module Status Model

Standard Event Status Group

Register Functions

This group consists of an Event register and an Enable register that are programmed by COMMON commands. The
Standard Event register latches events relating to interface communication status (see Table 4-2). It isaread-only register
that is cleared when read. The Standard Event Enable register functions similarly to the enable registers of the Operation
and Questionable status groups.

Register Commands

The common * ESE command programs specific bits in the Standard Event Status Enable register. Because the power
module implements*PSC, the register is cleared at power on if *PSC = 1.

*ESR? reads the Standard Event Status Event register. Reading the register clearsit.

Status Reporting 53

Status Byte Register

This register summarizes the information from all other status groups as defined in the | EEE 488.2 Sandard Digital
Interface for Programmable Instrumentation standard. The bit configuration is shown in Table 4-2. The register can be
read either by a serial poll or by *STB?. Both methods return the same data, except for bit 6. Sending * STB? returns MSS
in bit 6, while polling returns RQS in hit 6.

The RQS Bit

Whenever the power module requests service, it sets the SRQ interrupt line true and latches RQS into bit 6 of the Status
Byteregister. When the controller services theinterrupt, RQS is cleared inside the register and returned in bit position 6 of
the response. The remaining bits of the Status Byte register are not disturbed.

The MSS Bit

Thisis areal-time (unlatched) summary of all Status Byte register hits that are enabled by the Service Request Enable
register. MSSiis set whenever the power module has at |east one reason (and possible more) for requesting service. Sending
*STB? reads the MSS in bit position 6 of the response. No bits of the Status Byte register are cleared by reading it.

Determining the Cause of a Service Interrupt

Y ou can determine the reason for an SRQ by the following actions:
. Use aseria poll or the *STB? query to determine which summary bits are active.

. Read the corresponding Event register for each summary bit to determine which events caused the summary
bit to be set. When an Event register isread, it is cleared. This aso clears the corresponding summary bit.

. Theinterrupt will recur until the specific condition that caused the each event is removed. If thisis not
possible, the event may be disabled by programming the corresponding bit of the status group Enable register or
NTR|PTR filter. A faster way to prevent the interrupt is to disable the service request by programming the
appropriate hit of the Service Request Enable register.

Output Queue

The Output Queue is afirst-in, first-out (FIFO) data register that stores power module-to-controller messages until the
controller reads them. Whenever the queue holds one or more bytes, it setsthe MAV bit (4) of the Status Byte register. If
too many unread error messages are accumulated in the queue, a system error message is generated (see "Chapter 6 - Error
Messages"). The Output Queueis cleared at power on and by *CLS.

Location Of Event Handles

"Event handles" are signals within the interface that can be used for triggers, for a Trigger Out signal, or for a DFI signal.
Those event handles derived from signals in the Status Subsystem are shown as circled numbersin Figure 4-1. Other event
handles are described in "Chapter 5 - Synchronizing Power Module Output Changes'.

54 Status Reporting

Initial Conditions At Power On

Status Registers

When the power module is turned on, a sequence of commands initializes the status registers. Table 4-4 shows the register
states and corresponding power-on commands for the factory-default *RST power-on state. If the module power-on function
switch is set to O, then the power-on state is determined by the parameters stored in location O (see Chapter 4 of the User’s
Guide).

Table 4-4. Default Power On Register States

Register Condition Caused By
Operation PTR; Questionable PTR All bits=1 STAT:PRE
Operation NTR; Questionable NTR All bits=0 STAT:PRE
Operation Event; Questionable Event All bits=0 *CLS
Operation Enable; Questionable Enable All bits=0 STAT:PRE
Standard Event Status Enable All bits= 0" *ESE 0
Status Byte All bits=0 *CLS
Status Request Enable All bits= 0" *SRE 0
Output Queue Cleared *CLS
Yf PSC=1. If PSC = 0, then the last previous state before turn onisrecalled. Thevalue of PSC is
stored in nonvolatile memory.

The PON (Power On) Bit

The PON bit in the Standard Event register is set whenever the power module is turned on. The most common use for PON
isto generate an SRQ at power on following an unexpected loss of power. To do this, bit 7 of the Standard Event Enable
register must be set so that a power-on event registersin the ESB (Standard Event Summary Bit). Also, bit 5 of the Service
Request Enable register must be set to permit an SRQ to be generated. The commands to accomplish these two conditions
are:

*ESE 128

*SRE 32

If *PSC is programmed to 0, the contents of the Standard Event Enable and Service Request Enable registers are saved in
nonvolatile memory and recalled at power on. Thisalows aPON event to generate SRQ at power on. Programming * PSC
to 1 prevents these registers from being saved and they are cleared at power on. This prevents a PON event from generating
SRQ at power on.

Examples

Note These examples are generic SCPI commands. See "Chapter 2 - Programming Introduction” for
information about encoding the commands as language strings.

Servicing an Operation Status Mode Event
This example assumes you want a service request generated whenever the power module switches to the CC (constant

current) mode. From Figure 4-1, note that the required path is for acondition at bit 10 (CC) of the Operation Status register
to set bit 6 (RQS) of the Status Byte register. The required register programming is as follows:

Status Reporting 55

Table 4-5. Generating RQS from the CC Event

Register Command Comment

Operation PTR STAT:OPER:PTR 1024 Allows a positive transition at the CC input (bit 10) to be
latched into the Status Event register.!

Operation Enable STAT:OPER:ENAB 1024 Allows the latched CC event to be summed into the OPER
summary bit.

Service Request Enable *SRE 128 Enables the OPER summary bit from the Status Byte register to
generate RQS.

Operation Condition STAT:OPER:EVEN? When you service the request, read the event register to
determine that bit 10 (CC) is set and to clear the register for the
next event.

Al bits of the PTR registers bits are set to 1 at power on.
Adding More Operation Events
To add CV (constant voltage) and DWE (dwelling) events to this example, it is only necessary to add the decimal values for
bit 8 (value 64) and bit 12 (value 4096) to the programming commands of the Operation Status group. The commands to do
thisare:

STAT:OPER:PTR 5376;ENAB 5376

It is not necessary to change any other registers, since the programming for the operation summary bit (OPER) path has
already been done.

Servicing Questionable Status Events

To add OC (overcurrent) and OT (overtemperature) events to this example, program Questionable Status group bits
1and4.

STAT:QUES:PTR 18;ENAB 18

Next, you must program the Service Request Enable register to recognize both the questionable (QUES) and the operational
(OPER) summary bhits.

*SRE 136
Now when there is a service request, read back both the operational and the questionable event registers.
STAT:OPER:EVEN?;QUES:EVEN?
Monitoring Both Phases of a Status Transition
Y ou can monitor a status signal for both its positive and negative transitions. For example, to generate RQS when the
power module either enters the CC (constant current) condition or leaves that condition, program the Operational Status

PTR/NTR filter asfollows:

STAT:OPER:PTR 1024;NTR 1024
STAT:OPER:ENAB 1024;*SRE 128

The PTR filter will cause the OPER summary bit to set RQS when CC occurs. Then the controller subsequently reads the

event register (STAT: OPER: EVEN?), the register is cleared. When CC subsequently goes false, the NTR filter causes the
OPER summary bit to again set RQS.

56 Status Reporting

Synchronizing Power Module Output Changes

Introduction

If you use only the VOLT [: LEV] : TRIG and/or CURR [: LEV] : TRIG commands to trigger output changes, you do not need the
information in this chapter. This chapter gives supplemental information on how you can synchronize power module output
changesto internal or external events. The output changes can be;

. A changein output voltage level.

. A changein output current level.

. The start of an internally-paced list of output voltage or current levels.
. A step tothe next level in alist of output voltage or current levels.

. A changein the output state (on or off).

The event to which the output change is synchronized can be any of the following:

. A command from the controller.

. A GPIB bus command.

. An event that occurs within the power module.

. An event that occurs within another power module.

. An external signal at the mainframe trigger input.

. An external signal at the mainframe fault inhibit input (INH).

The output synchronization is implemented by the following power module functions:

. Trigger subsystem.

. List subsystem.

. Remote inhibit (RI) subsystem.

. Discrete fault indicator (DFI) subsystem.

Trigger Subsystem

Two simplified models of the trigger subsystem are presented. The first model shows how the trigger subsystem functions
during fixed-mode output. This mode occurs when VOLT:MODE FIX or CURR:MODE FIX isin effect (see "Chapter 3 -
Language Dictionary"). In this mode of output control, each triggered output voltage or current valueis explicitly specified
by atriggered-level command (for example, VOLT: TRIG 20 or CURR: TRIG 1.55). The trigger then causes the output to
change to this pending triggered level.

The second model shows the difference in trigger subsystem operation during list-mode output. This mode occurs when the
VOLT:MODE LIST or CURR:MODE LIST command is programmed (see "List Subsystem" further in this chapter for an
explanation of lists). In this mode of output operation, the triggered output voltage or current levels are specified within a
list and the trigger controls the sequencing through the valuesin the list.

Model of Fixed-Mode Trigger Operation
Figure 5-1A isasimplified model of trigger subsystem operation when the power module is programmed for fixed-mode

output. The rectangular boxes represent states. The arrows show the transitions between states. These are |abeled with the
input or event that causes the transition to occur.

Synchronizing Power Module Output Changes 57

Idle State

When the power module isturned on, the trigger subsystem isin theidle state. In this state, the trigger subsystem ignores
all triggers. When the trigger action has been completed, the trigger subsystem returns to this state. It also returnsto the

Idle state if the ABORt command or an implied ABORt command (*RST, *RCL, or any LIST) is sent.

Initiated State

The INITiate command moves the trigger subsystem from the Idle state to the Initiated State. This enables the power module
to receivetriggers. The source of the trigger is selected with the TRIGger:SOURce command (see " Chapter 3 - Language
Dictionary"). When in the Initiated state, the power module responds to events on the selected trigger source by transferring
to the Delaying state. Asshown in Figure 5-1A there is another trigger signal that is not subject to TRIG: SOUR control. This
isthe TRIGger:IMMediate command. If the trigger subsystem isin the Initiated state, this command generates atrigger that

transfers the trigger subsystem directly to the Output Change state, bypassing the Delaying state.

Delaying State

When atrigger event occurs on the selected trigger source, the trigger subsystem transfers to the Delaying state. In this
state, the subsystem waits for the interval specified by the TRIGger:DELay command before moving to the next state. As
shown in Figure 5-1A, aTRIGger: IMMediate command will bypass any programmed delay and cause an immediate transition

to the Output Change state.

ABOR

#RST IDLE STATE
*RCL —»

INIT:IMM] l

INTIATED STATE

TRIGGERED EVENT TRIGLIMM]

DELAYING STATE

ABOR —=
#RST —»
#RCL —»|

DELAY COMPLETED
OR TRIGLIMM]

IDLE STATE

INITLIMM] l

INITIATED STATE

TRIGGERED EVENT

TRIGLIMM]

DELAYING STATE

DELAY COMPLETED

OR TRIGLIMM]

—

OUTPUT CHANGE STATE

A FIXED MODE

QUTPUT CHANGE STATE

DWELLING STATE

DWELL COMPLETED

B) LIST MODE Fres-1.00

58

Figure 5-1. Simplified Models of Trigger Modes

Synchronizing Power Module Output Changes

Output Change State

When the trigger subsystem enters the Output Change state, the output voltage and current are set to the pending levels
programmed by the VOLTage:TRIGgered and CURRent:TRIGgered commands. Once this occurs, the existing triggered levels
are cleared and must be reprogrammed. I no triggered levels are programmed, then the trigger has no effect on the output
levels. When the triggered actions are completed, the trigger subsystem returns to the Idle state.

Model of List Mode Trigger Operation

Figure 5-1B isasimplified model of trigger subsystem operation when power module is programmed for list-mode output.
Operation in the Idle, Initiated, and Delaying states are identical to that described under fixed-mode operation.

Output Change State

When the trigger subsystem enters the Output Change state in List mode, the output voltage and/or current is set to the next
value (point) in the programmed list. The trigger subsystem then transfers to the next (Dwelling) state and increments the
list to the next point. If there are no more pointsin the list, the subsystem resetsthe list to the first point. This completes
thelist, unless LIST: COUNLt is programmed to greater than one. In that case, the list is not completed until it has repeated the
list sequence the number of times specified by the count.

Dwelling State

Each voltage and current list point has an associated dwell interval specified by the LIST:DWELL command. After the new
output value is established, the trigger system pauses for the programmed dwell interval. During this dwell interval, trigger
events are ignored and only an ABORt (or implied abort) command can transfer the subsystem out of the Dwelling state.

At the end of the dwell interval, the transition to the next state depends on whether or not the list has completed its
sequencing and on how the LIST: STEP command has been programmed.

. If thelist is completed, the trigger subsystem returns to the Idle state.
. If thelist is not completed, then the subsystem reacts as follows:
. If LIST: STEP ONCE has been programmed, the trigger subsystem returns to the Idle state.
. If LIST: STEP AUTO has been programmed, the trigger subsystem returns to the Output Change state and

immediately executes the next list point.

The INITiate:CONTinuous Command

In the above descriptions of the trigger subsystem models, the INITiate: IMMediate command was used to move from the Idle
to the Initiated state. In some applications, it may be desirable to have the subsystem return directly to the Initiated state
after atrigger action has completed. Programming INITiate:CONTinuous ON does this by bypassing the Idle state. If the
ABORt command is given whileINIT: CONT is ON, the trigger subsystem transfersto the Idle state but immediately exitsto
the Initiated state.

Trigger Status and Event Signals

Some transitions of the trigger subsystem provide inputs to the status subsystem. Others are defined as "event handles’,
which are selectable trigger sources by way of parametersin link commandsTRIGger:LINK, OUTPut:DFI:LINK and
OUTPUt:TTLT:LINK (see Table 3-1). Table 5-1 summarizes these signals.

Synchronizing Power Module Output Changes 59

Table 5-1. Trigger Subsystem Status and Event Signals

Signal Type Description

DWE Status Bit Dwelling. True only during the dwelling state. DWE can be monitored at the
Operation Status register (see " Chapter 4 - Status Reporting").
LSC Event Handle | List Sequence Complete. Occurs upon exit from the Dwelling state after the
last programmed list point has been executed. If LIST: COUNLt is greater than
1, LSC occurs once for each count until thelist is done.

RTG Event Handle | Received atrigger. Occurs upon exit from the Initiated state.

TDC Event Handle | Trigger delay complete. Occurs upon exit from the Delaying state.

STC Event Handle | Step Completed. Occurs upon exit from the Dwelling state.

STS Event Handle | Step Started. Occurs upon transition into the Dwelling state.
WTG Status Bit Waiting for trigger. True only when the trigger subsystemisin either the
Initiated or the Delaying state. WTG can be monitored at the Operation Status
register (see "Chapter 4 - Status Reporting”).

Trigger In and Trigger Out

The mainframe has two bnc connectors lab@&ledger In andTrigger Out. Figure 5-2 shows the model for these signals,
which are applied to all power modules in the mainframe (see “TrigIn/TrigOut Characteristics” in Chapter 1 of Agilent
66000A Installation Guide for electrical parametefs)gger In andTrigger Out are electrically isolated at each power
module from the mainframe chassis reference ground.

Trigger In
Trigger Inis a TTL level input that can be selected as a trigger source for each module. Modules recbgger &n
signal on its falling edgd.rigger In is selected as a trigger source with EX@ernal parameter. For example:
TRIGger:SOURce EXT
OUTPut:TTLT:SOURce EXT

Trigger Out

TheTrigger Out signal is a 20-microsecond, negative-true TTL pulse. This pulse can be driven by each power module by
programming th@UTPut:TTLTrg commands. Each module can also séleajger Out as a trigger source by programming

the SCPITRIGger:SOURce TTLT command (see "Chapter 3 - Language Dictionary" for details of these commands).

. To select th&rigger In connector as a trigger source, T&¢G: SOUR EXT
. To apply a trigger to th&rigger Out connector, us®UTP:TTLT ON. You must also select the source
(OUTP:TTLT:SOUR).
OUTP:TTLT:SOURx
! TRIGGER OUT |
LINK ™ RiGGER : @ :
BUS =1 souRce
EXT TRIG:SOURX :
HOLD } I | MAINFRAME |
LINK ———{ TRIGGER L_»rmeesnso '
BUS —*{ SOURCE EVENT ; -:
EXT : :
HoLD ! TRIGGER IN
—@ |
* See Chapter 3 - “Language Dictionary F165-2.6AL) :

Figure 5-2. TTLT Trigger Model

60 Synchronizing Power Module Output Changes

List Subsystem

The List Subsystem commands allow you to program a sequence of voltage and/or current values that will be applied to the
power module output when it is the list mode (VOLTage:MODE LIST or CURRent:MODE LIST). Up to 20 voltage and current
values, with 20 associated time intervals (dwells), may be programmed. By using lists, you can program a complex
sequence of power module outputs with minimal interaction between the controller and the power module. Lists allow you
to time output changes more precisely or to better synchronize them (using triggers) with asynchronous events.

Basic Steps of List Sequencing

Y ou can program the number of output levels (or points) in thelist, the time interval that each level is maintained, the
number of times that the list will be executed, and how the levels change in response to triggers. Thisis a synopsis of the
list commands:

List Function Command
Enable the voltage list function VOLT:MODE LIST
Enable the current list function CURR:MODE LIST
Specify the voltage output levels (points) LIST:VOLT <NRf+>
Specify the current output levels (points) LIST:CURR <NRf+>
Specify the time duration of each output level LIST:DWEL <NRf+>
Specify thetimesthe list is repeated LIST:COUN <NRf+>
Select the list response to a trigger LIST:STEP AUTO|ONCE

Programming the List Output Levels

1. Enable the specific output to be controlled by thelist. For example,
VOLT:MODE LIST
CURR:MODE LIST

2. Program the desired output levels or points. The order of the points determines the order in which the output levels will
occur. To sequence the voltage through values of 1, 1.5, 3, 1.5, and 1 volts, program:

LIST:VOLT 1,1.5,3.0,1.5,1
Y ou can specify lists for both voltage and current. For example:

LIST:VOLT 1,2,5,6,8

LIST:CURR 10,5,2,1.67,1.25

Both lists must have the same number of points. The exception isif alist has only asingle point. In this case, the single-
point list istreated asif it has the same number of points as the other list with each point equal to the programmed value.
For example, if you send:

LIST:VOLT 1,2,5,6,8;CURR 1

then the power module will respond as if the two lists were:
LIST:VOLT 1,2,5,6,8
LIST:CURR1,1,1,1,1

Note Execution of a list will be aborted if an ABORt command or an implied ABORt command (another list
command, the *RST command or the *RCL command) is sent.

Programming List Intervals
The dwell timeistheinterval that the output remains at the programmed value. The time unit is seconds. The following

command specifies five dwell intervals:
LIST:DWEL 1,1.5,3,1.5,.5

Synchronizing Power Module Output Changes 61

The number of dwell points must equal the number of output points:
LIST:VOLT 3.0,3.25,3.5,3.75
LIST:DWEL 10,10,25,40

The only exception isfor adwell list with one value, which gives the same interval to al the pointsin the corresponding
voltage or current list.

Note Sending aVOLT [: LEV: IMM] or CURR [: LEV: IMM] command during an interval will override the list
output value for that interval. When the next interval begins, the output will be determined by the list
value for that interval.

Automatically Repeating a List

Y ou can repeat alist by entering aLIST: COUNt parameter. The parameter determines how many times alist is executed or
sequenced. Enter aninteger or enter the value INF to make the list repeat indefinitely. For example, to make the current list
2,3,12,15 repeat 5 times, send:

LIST:CURR 2,3,12,15

LIST:COUN 5

The LIST: COUNt parameter is stored by * SAV and restored by *RCL. The GPIB *RST valueis 1.
Triggering a List

No list will execute without atrigger. How the list responds to a trigger depends on how you program theLIST: STEP AUTO
| ONCE command. The method you use will depend upon whether you want the list to be paced by dwell intervals or by
triggers.

Dwell-Paced Lists

For a closely controlled sequence of output levels, you can use a dwell-paced list. Each list output point remainsin effect
for the dwell time associated with that point. When the dwell time expires, the output immediately changes to the next point
inthelist.

For dwell pacing, program LIST: STEP to AUTO (see Figure 5-3-A). The dwell-paced list requires only a single trigger to
start the list. Thetrigger subsystem remainsin the dwelling state until the list is completed. 1f LIST: COUN is greater than 1,
the entirelist is repeated until the count has been satisfied (see Figure 5-1-B).

Trigger-Paced Lists

If you need the output to closely follow asynchronous events, then a trigger-paced list is more appropriate. Program LIST:
STEP to ONCE (see Figure 5-3-B). Now expiration of adwell interval returns the trigger subsystem to the Initiated state.
The subsystem then waits for atrigger to start the next dwell interval. During this time, the power module output remains at
the level set by the last executed point in the list.

Note If the subsystem is not in the dwelling state, aTRIGger [: IMMediate] command will sequence the next point
inthelist.

62 Synchronizing Power Module Output Changes

ootaeconds LIIIIILILELRERRIQTRRQ QI 0Lttty iiiinngnl (COMMAND)

Trig initiated D ; Co INIT:IMM

WTG____: l

Trigger Event : ”

RTG

e = <@

TRIG:DEL .02

sts || | .
DWELL @ .‘ @ VJ@P‘ LIST:DWEL .05,.15,.03
sTC | [l
opc | i L ®
10k ' o

OUTPUT

VOLTAGE s-- _I_
°

LIST:VOLT 5,10,0
NOTES: 1. Trigger delay 3. Returns true only it there
2. Dwell time are no other pending operations

A) LIST:STEP AUTO

0.01 seconds

REESY : NEREE (COMMAND)
Trig Initiated ___J I__ INIT:IMM
wa 01 [
Trigger Event H ” ﬂ ﬂ :
S S S S
Toe f " I“@ : |“® ; I I“*G) TRIG:DEL .02
DWELL <@_> @ :Q,, LIST:DWEL ,05,.15,.03
oPC _l 5 [®
10 e ' ‘
OUTPUT
VOLTAGE 5-;[_
0 —_ LIST:VOLT §,10,0

NOTES: 1. Trigger delay 3. Walting for trigger event
2. Dwell time 4. Returns true only if there
are no other pending operations

B) LIST:STEP ONCE

Fros-3. a4

Figure 5-3. Timing diagrams of LIST:STEP Operation

Synchronizing Power Module Output Changes 63

DFI (Discrete Fault Indicator) Subsystem

Whenever afault is detected in the power module, it is capable of generating alow-true TTL signal at the mainframe FLT

jack for communication with external devices (see “INH/FLT Characteristics” in Chapter 1 of the Agilent 66000A
Installation Guide for the electrical parameters). The source for the DFI signal can be any of the parameters of the
OUTPut:DFI:LINK command (see Table 3-1). T8dM3 link parameter allows any combination of Questionable, Operation,
or Event status bits to generate the DFI signal. The GRSB command sets the link parameteBti3.

RI (Remote Inhibit) Subsystem

Each power module is connected to the mainframe INH jack via a function selector switch. (See Chapter 2 of the Operating
Guide for details concerning this switch.) When the switch is set to enable the RI function, a low-true TTL signal at the INH
input will shut down the power module. This generates an RI status bit at the Questionable Status register (see "Chapter 4 -
Status Reporting"). By programming the status subsystem, you may use RI to generate a service request (SRQ) to the
controller and/or to create a DFI output at the mainframe FLT jack. By using RI/DFI in this way, you can chain the power
modules to create a serial shutdown in response to the INH input.

SCPI Command Completion

SCPI commands sent to the power module are processed either sequentially or in parallel. Sequential commands finish
execution before a subsequent command begins. A parallel command can begin execution while a preexisting command is
still executing (overlapping commands). Commands that affect list and trigger actions are among the parallel commands.

There*WAI, *OPC, and*OPC? common commands provide different ways of indicating when all transmitted commands,
including any parallel ones, have completed their operations. The syntax and parameters for these commands are described
in "Chapter 3 - Language Dictionary". Some practical considerations for using these commands are as follows:

*WAI This prevents the power module from processing subsequent commands until all pending operations are
completed. If something prevents completion of an existing operatidhcan place the module and the
controller in a "hang-up" condition.

*OPC? This places 4 in the Output Queue when all pending operations have completed. Because it requires
your program to read the returned value from the queue before executing the next program statement,
*OPC? could prevent subsequent commands from being executed.

*OPC This sets th@PC status bit when all pending operations have completed. Since your program can read
this status bit on an interrupt bas3PC allows subsequent commands to be executed.

The trigger subsystem must be in the Idle state in order for the status OPC bit to be true. Therefore, as far as triggers and
lists are concerned, OPC is false whenever the trigger subsystem is in the Initiated state. However, OPC is alsosfalse if ther
are any commands pending within any other subsystems. For example, if yGURRNIRIG 1.5 after aVOLT:LIST

command, completion of tl@JRR:TRIG command will not set OPC if the list command is still executing.

Note For a detailed discussion ®Al, *OPC and*OPC?, see "Device/Controller Synchronization Techniques"
in ANSI/IEEE Sd. 488.2-1987.

64 Synchronizing Power Module Output Changes

Error Messages

Power Module Hardware Error Messages
Front panel error messages resulting from selftest errors or runtime failures are described in the power module User’s

Guide.

System Error Messages

System error messages are read back viathe SYST:ERR? query. The error number is the value placed in the power module
error queue. SY ST:ERR? returns the error number into a variable and combines the number and the error messageinto a
string. Table 6-1 lists the system errors that are associated with SCPI syntax errors and interface problems. Information
inside the bracketsis not part of the standard error message, but isincluded for clarification. When system errors occur, the
Standard Event Status register (see "Chapter 4 - Status Reporting") records them as follows:

Standard Event Status Register Error Bits

Bit Set Error Code Error Type Bit Set Error Code Error Type
5 -100 thru -199 Command 3 -300 thru -399 Device-dependent
4 -200 thru -299 Execution 2 -400 thru -499 Query
Table 6-1. Summary of System Error Messages
Error Error String [Description/Explanation/Examples]
Number
-100 Command error [generic]
-101 Invalid character
-102 Syntax error [unrecognized command or data type]
-103 Invalid separator
-104 Data type error [e.g., “numeric or string expected, got block date”]
-105 GET not allowed
-108 Parameter not allowed [too many parameters]
-109 Missing parameter [too few parameters]
-112 Program mnemonic too long [maximum 12 characters]
-113 Undefined header [operation not allowed for this device]
-121 Invalid character in number [includes "9" in octal data, etc.]
-123 Numeric overflow [exponent too large; exponent magnitude >32 K]
-124 Too many digits [number too long; more than 255 digits received]
-128 Numeric data not allowed
-131 Invalid suffix [unrecognized units, or units not appropriate]
-138 Suffix not allowed
-141 Invalid character data [bad character, or unrecognized]
-148 Character data not allowed
-150 String data error
-151 Invalid string data [e.g., END received before close quote]
-158 String data not allowed
-161 Invalid block data [e.g., END received before length satisfied]
-168 Block data not allowed
-200 Execution error [generic]
-220 Parameter error

Error Messages 65

Table 6-1. Summary of System Error Messages (continued)

Error Error String [Description/Explanation/Examples]

Number
-222 Data out of range [e.g., too large for this device]
-223 Too much data [out of memory; block, string, or expression too long]
-241 Hardware missing [device-specific]
-310 System error
-330 Self-test failed
-350 Too many errors [errors lost due to queue overflow]
-400 Query error [generic]
-410 Query INTERRUPTED [query followed by DAB or GET before response complete]
-420 Query UNTERMINATED [addressed to talk, incomplete programming message received]
-430 Query DEADLOCKED [too many queriesin command string]
-440 Query UNTERMINATED [after indefinite response]

66 Error Messages

SCPI Conformance Information

Note See Chapter 3 - Language Dictionary for command syntax.

SCPI Version

This power module conforms to Version 1990.0.

SCPI Confirmed Commands

ABOR
CAL:AUT

CAL:STAT
DISP[:WIND][:STAT]
DISP[:WIND][:STAT]?
INIT:IMM]
INIT:CONT
INIT:CONT?
MEAS.CURR[:DC]?
MEAS:VOLT[:DC]?
OUTP[:STAT]
OUTP[:STAT?]
OUTP:PROT:CLE
OUTP:PROT:DEL
OUTP:PROT:DEL?
OUTP:TTLT[:STAT]
OUTP:TTLT[:STAT]?
OUTP:TTLT:LINK
OUTP:TTLT:LINK?
OUTP:TTLT:SOUR
OUTP:TTLT:SOUR?
STAT:OPER[:EVEN]?
STAT:OPER:COND?
STAT:OPER:ENAB
STAT:OPER:ENAB?
STAT:OPER:NTR

STAT:OPER:NTR?
STAT:OPER:PTR
STAT:OPER:PTR?

STAT:PRES

STAT:QUES[:EVEN]?
STAT:QUES:COND?
STAT:QUES.ENAB
STAT:QUES.ENAB?
[SOUR]:CURR[:LEV][:IMM][:AMPL]
[SOUR]:CURR[:LEV][:IMM][:AMPL]?
[SOUR]:CURR[:LEV]: TRIG[:AMPL]
[SOUR]:CURR[:LEV]: TRIG[:AMPL]?
[SOUR]: CURR:MODE

[SOUR]: CURR:MODE?
[SOUR]:CURR:PROT:STAT
[SOUR]:CURR:PROT:STAT?
[SOUR]:LIST:COUN
[SOUR]:LIST:COUN?
[SOUR]:LIST:CURR
[SOUR]:LIST:CURR:POIN?
[SOUR]:LIST:DWEL?
[SOUR]:LIST:DWEL:POIN?
[SOUR]:LIST:STEP
[SOUR]:LIST:STEP?
[SOUR]:LIST:VOLT
[SOUR]:LIST:VOLT:POIN?

[SOUR]:VOLT[:LEV][:IMM][:AMPL)
[SOURI:VOLT[:LEV][:IMM][:AMPL]?
[SOUR]:VOLT[:LEV][: TRIG][:AMPL]
[SOUR]:VOLT[:LEV][: TRIG][:AMPL]?
[SOUR]:VOLT:MODE
[SOUR]:VOLT:MODE?
[SOUR]:VOLT:PROT[:LEV]
[SOUR]:VOLT:PROT[:LEV]?
SYST:ERR?

SYST:VERS?

TRIG[:STAR][:IMM]

TRIG:DEL

TRIG:DEL?

TRIG:LINK

TRIG:LINK?

TRIG:SOUR

TRIG:SOUR?

*CLS

*ESE *ESE? *ESR?

*|DN?

*OPC *OPC?*OPT?

*PSC *PSC?

*RCL *RST

*SAV *SRE *STB?

*TRG *TST?

*WAI

SCPI Approved Commands

(None)

SCPI Conformance Information 67

Non-SCPI Commands

CAL:CURR OUTP:DFI:SOUR?
CAL:PASS OUTP:REL[:STAT]
CAL:SAVE OUTP:REL[:STAT]?
CAL:VOLT OUTP:REL:POL
OUTP:DFI[:STAT] OUTP:REL:POL?
OUTP:DFI[:STAT]? [SOUR]:LIST:STEP
OUTP:DFI:LINK [SOUR]:LIST:STEP?
OUTP:DFI:LINK? [SOUR]:VOLT:SENS?

OUTP:DFI:SOUR

68 SCPI Conformance I nformation

Application Programs

This section contains seven example applications. For each application, thereis:

. An overview of the application.

. Which MPS features are used to implement the application.
. The advantages and benefits of the MPS solution.

. The details of the implementation of the solution.

. A block diagram of the setup.

. A sample program listing in Agilent BASIC.

. A description of variations on the application.

The following table lists what M PS features are used in each of the applications. It can be used as an index into this section.

Application 1. Sequencing Multiple Modules During Power Up
Application 2. Sequencing Multiple Modules to Power Down on Event
Application 3. Controlling Output Voltage Ramp Up at Turn On
Application 4. Providing Time-Varying Voltages

Application 5. Providing Time-Varying Current Limiting

Application 6. Output Sequencing Paced by the Computer

Application 7. Output Sequencing Without Computer Intervention

Application

1 2 3 4 5 6 7
Lists
20-point current List ®
20-point voltage List °)))
Repetitive Lists ®
Dwell time)) o °
List Pacing
Dwell-paced Lists o))
Trigger-paced Lists))
Actions Due To A Change In Status
Generate an SRQ o [)
Generate atrigger L)
Disable the output ® o
Stop the List))
Triggers
Change the voltage on trigger o o °
Trigger infout from MPS backplane TTL ® L] ® ®
Trigger
Trigger on a GPIB trigger command o ® ® ° °
Trigger delay o ®
Other Features
Active downprogramming ° o o
Overcurrent protection ® o

Application Programs 69

Application 1. Sequencing Multiple Modules During Power Up
Overview of Application

When testing mixed signal devices, + bias supply voltages are typically applied before logic bias supply voltages. For a
device that is sensitive to when bias voltages are applied, the order of power up of multiple power modules can be
controlled.

For this example, the device requires three bias supplies, + 5 V for the logic circuits and + 15 V for amplifier circuits. To
properly power up the device, the supplies must be sequenced so that the £ 15 V are applied first and the + 5 V is applied 50
ms later.

The MPS can easily address this application through the use of triggers. The trigger will cause the modules to change from
0V, where they are not powering the DUT, to their final voltage. By delaying the response to the trigger, you can control
when the module's output voltage changes. This means you can control the sequence of the modules during power up.

MPS Features Used

. Change the voltage on trigger.

. Trigger infout from MPS mainframe backplane TTL Trigger.
. Trigger on a GPIB trigger command Trigger delay.

. Trigger delay.

Advantages/Benefits Of The MPS Solution

By using trigger delay, the timing is accurate and repeatable.
The sequence is simpler to program (no timing loops).

The computer is not devoted to sequencing power modules.
The computer does not provide timing for the sequence.
One command initiates the sequence.

Implementation Details
How the MPS Implements The Sequence

The computer sends a trigger command to the first module.

The first module simultaneously sends a backplane trigger to other two modules and goes to + 15 V.
The second module receives the backplane TTL Trigger and immediately goes to - 15 V.

The third module receives the backplane TTL Trigger, delays 50 ms, and then goesto + 5 V.

MPS Set Up

Modulein slot O:

The module is connected to + 15 V on the DUT.

The initial voltage settingis 0 V.

The module listens for the computer to send a trigger command.

Upon receipt of the trigger command, the module goes to 15 V.

Also upon receipt of the trigger command, the module generates a backplane TTL Trigger.

Modulein slot 1:

The module is connected to - 15 V on the DUT.

The initial voltage settingis 0 V.

The module listens for a backplane TTL Trigger.
Upon receipt of the trigger, the module goes to 15 V.

70 Application Programs

Modulein dot 2:

The module is connected to + 5V on the DUT.

Theinitial voltage settingisO V.

The module listens for abackplane TTL Trigger.

Thetrigger delay is programmed to 50 ms.

Upon receipt of the trigger, the module waits the trigger delay time and then goesto 5 V.

Variations On This Implementation

1. The modules could be set to generate SRQ when the last module (+ 5 V) reachesitsfinal output value. Thiswould notify
the computer that power has been applied to the DUT and the testing can begin.

2. To provide a delay between the application of the + 15V and the - 15 V bias, you can program different trigger delays
into modules 2 and 3. The delay time will be relative to the modulein slot O.

3. To get all three modules to apply power to the DUT at the same time, simply eliminate the trigger delay on the + 5V
module.

4. When modules need to be connected in parallel to increase current, they will also need to be synchronized so that they al
apply power simultaneously. To get modulesin parallel to apply power at the same time, use the approach described in
this example, but eliminate any trigger delays.

GPIB
Trigger
Backplane TTL Trigger
Out in In
MPS 0 ms delay 50 ms deiay
Mainframe
Siot Slot Slot
0 1 2
+ - + - + -

T |

+ 15V -15 v +
DUT Q] 5V

| b

Figure B1-1. Block Diagram of Application #1

Application Programs 71

Computer @ = Trigger response < 3 ms
Trigger
Command
‘® 15 v
Module, b
Slot0 oV —
MPS Mainframe |
Backplane |_| :
TTL Trigger i 15 v
--a—:
Module, O]
Slot1 pv
| 5V
Module, i
Siot2 0V :
I 50 ms —-—15
:@‘ Trigger Delay

Figure B1-2. Timing Diagram of Application #1

72 Application Programs

10
20
30
40
50
60
70
80
90
100
110
120
130
140

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

I APPLICATION #1: SEQUENCING MULTIPLE MODULES DURING POWER UP
I PROGRAM: APP_1

!

ASSIGN @Slot0 TO 70500
ASSIGN @Slotl TO 70501
ASSIGN @Slot2 TO 70502
!

I'SET UP MODULE IN SLOT 0 AS +15 V BIAS SUPPLY
1

I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 01
I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 02

OUTPUT@SIot0;"*RST;*CLS;STATUS:PRESET" RESET AND CLEAR MODULE
OUTPUT@SIot0;"VOLT 0" START ATOV
GO TO 15V ON TRIGGER

OUTPUT@Stot0;" TRIGGER:SOURCE BUS"
OUTPUT@Stot0;"OUTPUT:TTLTRG:SOURCE BUS"

TRIGGER SOURCE IS Agilent -18 'BUS'

!
!
OUTPUT@SIot0;"VOLT:TRIGGERED 15 !
!
! GENERATE BACKPLANE TTL TRIGGER WHEN GPIB 'BUS' TRIGGER IS

RECEIVED
OUTPUT@SIot0;"OUTPUT:TTLTRG:STATE ON" I ENABLE BACKPLANE TTL TRIGGER DRIVE
OUTPUT@SIot0;"OUTPUT ON" ! ENABLE OUTPUT

OUTPUT@SIot0;"INITIATE" !
I

ENABLE RESPONSE TO TRIGGER

I'SET UP MODULE IN SLOT 1 AS -15V BIAS SUPPLY
1

OUTPUT@SlIot1;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
OUTPUT@SlIot1;"VOLT 0" ! STARTATOV
OUTPUT@SIot1;"VOLT:TRIGGERED 15" ! GO TO 15V ON TRIGGER
OUTPUT@SIot1;"TRIGGER:SOURCE TTLTRG" I TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
OUTPUT @Slot1;"OUTPUT ON" ! ENABLE OUTPUT

I

OUTPUT @Slotl;"INITIATE"
I

I' SET UP MODULE IN SLOT 2 AS +5 V BIAS SUPPLY ---------nmeeemeeemev
I

OUTPUT @Slot2;*RST;*CLS;STATUS:PRESET"

ENABLE RESPONSE TO TRIGGER

! RESET AND CLEAR MODULE
OUTPUT @Slot2;"VOLT 0" ! STARTATOV
OUTPUT @Slot2;"VOLT.TRIGGERED 5” ! GO TO5V ON TRIGGER
OUTPUT @Slot2;"TRIGGER:SOURCE TTLTRG" ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
OUTPUT @Slot2;"TRIGGER:DELAY 0.050" ! 50 ms TRIGGER DELAY
OUTPUT @Slot2;"OUTPUT ON" ! ENABLE OUTPUT
I

OUTPUT @Slot2;"INITIATE" ENABLE RESPONSE TO TRIGGER

BEFORE TRIGGERING THE MODULES, DETERMINE IF THE MODULES ARE READY BY CHECKING FOR

'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER). IF THE LAST MODULE PROGRAMMED
IS READY THEN SO ARE THE OTHERS, SO JUST CHECK SLOT 2.

|
|
|
|
!
! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
! THAT TAKE TIME WILL GIVE THE MODULES A CHANCE TO COMPLETE PROCESSING.
|
REPEAT
OUTPUT @Slot2;"STATUS:OPERATION:CONDITION?"
ENTER @Slot2;Condition_data
UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
|

I TRIGGER MODULE IN SLOT 0 TO BEGIN SEQUENCING THE 3 MODULES TO POWER UP
I

OUTPUT @Slot0;"*TRG” !
!
END

SEND Agilent -1B 'BUS' TRIGGER

Figure B1-3. Agilent BASIC Program Listing for Application #1

Application Programs 73

Application 2. Sequencing Multiple Modules to Power Down on Event

Overview Of Application

When testing devices, such as some GaAs and ECL devices that are sensitive to when bias voltages are removed, the order
of power-down of multiple power modules can be controlled. The power-down sequence can be initiated by an event, such
as achange in power module status, fault condition, detection of aTTL signal, etc.

For this example, there are three supplies + 5V and + 15 V. (See previous application for how to generate a power up
sequence.) Once the power has been applied to the DUT, the modules can be reprogrammed to perform the power down
sequence. The power down sequence is initiated when a fault in the DUT draws excessive current from the power module,
causing the module to change from CV to CC. To prevent damage to the DUT, it is necessary to remove the + 5 V first,
then the + 15 V modules 15 ms later.

Once again, MPS triggering can solve the application. In this scenario, the CV-to-CC crossover event will be used as the
trigger source. The trigger will cause the modules, in the correct order, to change from their programmed voltages down to
oV.

MPS Features Used

. Generate a trigger on a change in internal status.

. Change the voltage on trigger.

. Trigger infout from MPS mainframe backplane TTL Trigger o Trigger delay.
. Active downprogramming.

Advantages/Benefits Of The MPS Solution

By using the modules' change in status to automatically generate a trigger, the computer is not devoted to polling the
modules to detect a change in state.

By letting each module monitor its status, the CC condition will generate a response faster than if the computer was polling
the module to detect a change in state.

The sequence is simpler to program (no timing loops).

By using trigger delay, the timing is accurate and repeatable because the computer does not provide timing for the sequence.

The active downprogrammers in the module output can quickly discharge the module's output capacitors and any
capacitance in the DUT.

Implementation Details

How The MPS Implements The Solution

All modules are set to listen for a backplane TTL Trigger.

When any module detects a change in status from CV to CC, it sends out a backplane TTL Trigger.

When the + 5 V module receives the trigger, it immediately goes to 0 V.
When the + 15 V and - 15 V modules receive the trigger, they wait the trigger delay time and then go to 0 V.

Note Any module can generate both the backplane TTL Trigger signal and be triggered by that same signal.

74 Application Programs

MPS Set Up

Modulein ot O:

The module is connected to + 15 V on the DUT.

Theinitial voltage settingis15 V.

The module monitors its status.

The module will generate abackplane TTL Trigger on CV-to-CC crossover.

The module listens for abackplane TTL Trigger.

Thetrigger delay is programmed to 15 ms.

Upon receipt of the trigger, the module waits the trigger delay time and then goesto 0 V.

Modulein dot 1:

The module is connected to supply - 15V to the DUT.

The initial voltage settingis 15V

The module monitors its status.

The module will generate a backplane TTL Trigger on CV-to-CC crossover.

The module listens for backplane TTL Trigger.

The trigger delay is programmed to 15 ms.

Upon receipt of the trigger, the module waits the trigger delay time and then goesto 0 V.

Modulein ot 2.

The module is connected to supply + 5V to the DUT.

Theinitial voltage settingis5 V.

The module monitors its status.

The module will generate a backplane TTL Trigger on CV-to-CC crossover.
The module listens for backplane TTL Trigger.

Upon receipt of the trigger, the module immediately goesto 0 V.

Variations On This Implementation

1. The modules could be set to generate SRQ when the last module reaches 0 V. This could notify the computer that power
has been removed from the DUT.

2. The modules could be set to generate a DFI (Discrete Fault Indicator) signal on the MPS rear panel on a change in status.
Thissignal could be used to shut down other power modules, to flash an alarm light, or to sound a buzzer. This could
also be routed to other instruments to signal them to stop making measurements.

3. To get all three modules to remove power from the DUT at the same time, simply eliminate the trigger delay on the + 15

V modules.

4. To provide a delay between the removal of the three bias voltages, you can program a different trigger delay into each

module.

Application Programs 75

76

Backplane TTL Trigger
Out In Qut In Out In
on 15 ms on 15ms on 0 ms
MPS cC delay CC delay CC delay
Mainframe
Slot Slot Slot
0 1 2
+ - + _ + -
+15V -5V + -
DUT ‘{7 5V

Figure B2-1. Block Diagram of Application #2

(@) = Trigger response < 3 ms

CV to CC CccC
Status Change
in Any Module cV

MPS Mainframe .

' Trigger Delay

Backplane |
TTL Trigger \
5V .
Module, —
Slot 2 Q)
oV
15 V . :
Module, [!
Slot 0 O !
I 1 oV
Module, 15V — —
Siot 1 ‘@; N\
D f ov
i e—— 15msy ——

Figure B2-2. Timing Diagram of Application #2

Application Programs

10 I APPLICATION #2: SEQUENCING MULTIPLE MODULES TO POWER DOWN ON EVENT

20 ' PROGRAM: APP_2

30 !

40 ASSIGN @Slot0 TO 70500 ' SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 ASSIGN @Slot1 To 70501 I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 01
60 ASSIGN @Slot2 TO 70502 ' SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 02
70 !

80 I' SET UP MODULE IN SLOT 0 AS +15V BIAS SUPPLY ~ ----meemmememmeeeen

90 !

100 OUTPUT @Slot0;*RST;*CLS;STATUS:PRESET" ' RESET AND CLEAR MODULE

110 OUTPUT @Slot0;"CURR .5"

120 OUTPUT @Slot0;"VOLT 15" START AT 15V

130 OUTPUT @Slot0;"VOLT:TRIGGERED 0" GO TO 0V ON TRIGGER

140 OUTPUT @Slot0;"TRIGGER:SOURCE TTLTRG" TRIGGER SOURCE IS TTL TRIGGER
150 OUTPUT @Slot0;"TRIGGER:DELAY .015" 15 ms TRIGGER DELAY

ENABLE RESPONSE TO TRIGGER
GENERATE A BACKPLANE TTL TRIGGER
WHEN A CV-TO-CC TRANSITION OCCURS

160 OUTPUT @SIot0;"INITIATE"
170 OUTPUT @Slot0;"OUTPUT:TTLTRG:SOURCE LINK"
180 OUTPUT @Slot0;"OUTPUT:TTLTRG:LINK 'CC’

190 OUTPUT @SIot0;"OUTPUT.TTLTRG:STATE ON" ENABLE TTL TRIGGER DRIVE
200 OUTPUT @Slot0;"OUTPUT ON" ENABLE OUTPUT

210 !

220 I' SET UP MODULE IN SLOT 1 AS -15 V BIAS SUPPLY -------mmeeeemmmeeeen

230 !

240 OUTPUT @Slot1;*RST;*CLS;STATUS:PRESET" ' RESET AND CLEAR MODULE
250 OUTPUT @Slot1;"CURR .5"

260 OUTPUT @Slotl1;"VOLT 15" START AT 15V

270 OUTPUT @Slot1;"VOLT:TRIGGERED 0" GO TO 0V ON TRIGGER

280 OUTPUT @Slotl1;"TRIGGER:SOURCE TTLTRG" TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
290 OUTPUT @Slot1;"TRIGGER:DELAY .015" 15 ms TRIGGER DELAY

300 OUTPUT @Slotl;"INITIATE"
310 OUTPUT @Slot1;"OUTPUT:TTLTRG:SOURCE LINK"
320 OUTPUT @Slot1;"OUTPUT:TTLTRG:LINK 'CC’

ENABLE RESPONSE TO TRIGGER
GENERATE A BACKPLANE TTL TRIGGER
WHEN A CV-TO-CC TRANSITION OCCURS

330 OUTPUT @Slot1;"OUTPUT:TTLTRG:STATE ON" ENABLE TTL TRIGGER DRIVE
340 OUTPUT @Slot1;"OUTPUT ON" ENABLE OUTPUT

350 !

360 I'SET UP MODULE IN SLOT 2 AS +5 V BIAS SUPPLY ~ ---meemmeeemeeeen

370 !

380 OUTPUT @Slot2;*RST;*CLS;STATUS:PRESET" ' RESET AND CLEAR MODULE
390 OUTPUT @Slot2;"CURR .5"

400 OUTPUT @Slot2;"VOLT 5" STARTAT 5V

410 OUTPUT @Slot2;"VOLT:TRIGGERED 0" GO TO 0V ON TRIGGER

TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
ENABLE RESPONSE TO TTL TRIGGER
GENERATE A BACKPLANE TTL TRIGGER

WHEN A CV-TO-CC TRANSITION OCCURS

420 OUTPUT @Slot2;"TRIGGER:SOURCE TTLTRG"
430 OUTPUT @Slot2;"INITIATE"
440 OUTPUT @Slot2;"OUTPUT:TTLTRG:SOURCE LINK"

I
I
I
I
I
450 OUTPUT @Slot2;"OUTPUT.TTLTRG:LINK 'CC’ !
I
I

460 OUTPUT @Slot2;"OUTPUT:TTLTRG:STATE ON" ENABLE TTL TRIGGER DRIVE

470 OUTPUT @Slot2;"OUTPUT ON" ENABLE OUTPUT

480 !

490 ! THE POWER MODULES ARE NOW SET UP TO IMPLEMENT THE POWER DOWN ON EVENT.
500 I ANY TIME ANY MODULE GOES INTO CC, THE SEQUENCE WILL OCCUR.

510 !

520 END

Figure B2-3. Agilent BASIC Program Listing for Application #2

Application Programs 77

Application 3. Controlling Output Voltage Ramp Up at Turn On

Overview Of Application

When control over the rate of voltage ramp up at turn-on of the power module output is required, the desired shape can be
approximated by downloading and executing a series of voltage and dwell time points.

For this example, you need to program the power module to change its output from 2 voltsto 10 volts, slewing through the 8
volt transition in 0.5 seconds. This resultsin aturn-on ramp-up of 16 V per second.

The MPS can create this voltage versus time characteristic using Lists. The desired characteristic (in this case, linear) is
simulated using the 20 available voltage points. To determine the value of each point in the transition, simply divide the
changein voltage by 20. To determine the dwell time of each voltage point, divide the total transition time by 19. After the
List has been executed, the module will continue to output the final value (in this case, 10 volts) until the output has been
reprogrammed to another value. Note that the dwell-time of the last point is not part of the transition time.

To determine the slowest ramp up (longest transition time) that can be generated, you must consider how smooth you need
the voltage versus time characteristic to be. Asthe dwell time associated with each point gets longer, the output voltage will
become more like a"stair step” and less like alinear transition. (see Figure B3-1)

To determine the fastest ramp up (shortest transition time) that can be generated, you must consider the minimum dwell time
specification (10 ms) and the maximum risetime of specification the power module (20 ms). If you program 10 ms dwell
times, the power module will not be able to reach its output voltage before the next voltage point is output. (see Figure B3-
2)

MPS Features Used

. 20-point voltage List.
. Dwell time.
. Dwell-paced Lists.

Advantages/Benefits Of The MPS Solution

By using Lists, the module changes its output voltage automatically, so that the computer is not devoted to reprogramming
the output voltage.

The outputs can change faster when dwell paced than when the computer must explicitly reprogram each change.

The sequence is simpler to program (no timing loops). By using dwell times, the timing of each point is accurate and
repeatable.

The computer does not provide timing for the sequence. For negative-going ramps, the active downprogrammersin the
module output can quickly discharge the modul€'s output capacitors and any capacitance in the DUT when negative going
ramps are required.

Implementation Details
How the MPS Implements The Sequence

The module is programmed to List mode.

The module will execute a dwell-paced List.

The 20 voltage points are downloaded to the module.

The 20 dwell times are downloaded to the module.

When the transition must occur, the module is triggered by the computer.
The module output ramps under its own control.

78 Application Programs

Desired 7
Voltage 4

Ramp

()
o]
s
°
>
Time in seconds
Figure B3-1. Simulating a Slow Voltage Ramp
Close-up View
i of Two Steps
Desired d
Voitage 41
Ramp
d
©
(e]
o
=
o
>
(10-90% }
risetime
7
0 ms . . 200 ms
Time in milliseconds

Figure B3-2. Simulating a Fast Voltage Ramp

Variations On This Implementation

1. The module could be set to begin ramping in response to an external or backplane TTL Trigger.

2. The module could be set to generate SRQ when it has finished itstransition. Thiswould notify the computer that the
voltageis at the proper level.

Application Programs 79

3. The module could be set to generate an external trigger when it has finished its transition. Thistrigger could be routed to
other instruments as a signal to start making measurements.

4. Multiple modules could be programmed to slew together in response to the computer trigger command.

5. The module could be set to generate an external trigger for each point in the transition. Thistrigger could be routed to
other instruments as a signal to take a measurement at various supply voltages. (see application #7)

6. Many voltage versus time characteristics can be generated by varying the voltage values and the dwell timesin the List.

A Last dwell time is not

included in the transition 10V
O
o))
8
Q | Computer sends Each Step = 8 V / 20
trigger =04V
command
Each Dwell Time = 0.5s /19
= .026 s
= 26 ms
2V
T —

Time in seconds

Figure 3-3. Generating the Desired Voltage Ramp for Application #3

80 Application Programs

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

480
490

I APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON

' PROGRAM: APP_3
I

ASSIGN @Slot0 To 70500 I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
|

OPTION BASE 1

DIM V_Step(20) I ARRAY TO HOLD THE VOLTAGE RAMP STEPS
Vstart=2 I START VOLTAGE FOR RAMP

Vstop=10 I STOP VOLTAGE FOR RAMP

Ramp_time=.5 ! SECONDS TO CHANGE FROM Vstart TO Vstop
Dwell=Ramp_time/19 ! IN SECONDS

I

I SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
I LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.

I ALSO, YOU ONLY NEED TO DOWNLOAD 1 DWELL TIME. IF THE MODULE RECEIVES ONLY 1 DWELL TIME, IT ASSUMES
! YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST.

I

FOR1=1TO 20

V_step(l)=Vstart+(((Vstop-Vstart)/20)*1) ! CALCULATES VOLTAGE LIST POINTS
NEXT |
!
OUTPUT @Slot0;*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
OUTPUT @Slot0;"VOLT ";Vstart ! START RAMP AT Vstart

OUTPUT @Slot0;"CURR .1"

DWELL-PACED LIST
ENABLE TRIGGER TO START LIST

OUTPUT @SIot0;"LIST:STEP AUTO"

OUTPUT @Slot0;"INITIATE"
I

OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT
OUTPUT @Slot0;"VOLT:MODE LIST" ! SET TO GET VOLTAGE FROM LIST
OUTPUT @SIot0;"LIST:VOLT ";V_step(*) ! DOWNLOAD VOLTAGE POINTS
OUTPUT @Slot0;"LIST:-DWELL ";Dwell ! DOWNLOAD 1 DWELL TIME

I

I

BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

|
|
!
I YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
I CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
I THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
|
REPEAT

OUTPUT @SIot0;"STATUS:OPERATION:CONDITION?"

ENTER @Slot0;Condition_data
UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
|

I SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP
I

OUTPUT @Slot0;' TRIGGER:IMMEDIATE" I THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
I THEREFORE, IT DOES NOT NEED TO BE SELECTED AS A TRIGGER
SOURCE.
!
END

Figure B3-4. Agilent BASIC Program Listing for Application #3

Application Programs 81

Application 4. Providing Time-Varying Voltages

Overview of Application

To burn-in devices using thermal or mechanical cycling/stress, cyclical time-varying voltageis provided by programming a
set of voltage and dwell time points that repetitively sequence over time.

For this example, the power module must provide the repetitive waveform shown in Figure B4-1. Thistime-varying voltage
will be applied to ahybrid IC. By continually cycling the voltage from 0O to 7 volts over a 33 second interval, the hybrid is
given time to heat up and undergo thermal and mechanical stress as the welds inside the hybrid expand and contract, and

then subsequently cool down.

A Stress and
Burn-in
Normal 7V — 7V
Operation
2s
o \
(o]
> 1s
Cool
Down
oV oV
/ 30 s \

Time in seconds \

Computer trigger End of cycle

command . repeats indefinitely
starts cycling

Figure B4-1. Voltage Waveform for Application #4

In addition to generating the cyclical voltage, it is desirable to have the power module notify the computer should the device
fail and stop the cycling. Since the module is monitoring test status, the computer is free to perform other tests.

The MPS can address this application using dwell-paced repetitive Lists. This application could be thought of asasimple
power arbitrary waveform generator. To get the desired time-varying voltage, you must be able to describe the waveform in
20 discrete voltage points, with each point ranging from 10 msto 65 seconds. Thisrange of dwell times determines the
range of frequencies (or time rate of change) of the voltage waveform to be generated.

Once the waveform has been described, it is downloaded to the module. Upon being triggered, it will repetitively generate
the waveform without computer intervention.

The module will also be set up to generate an SRQ and stop the voltage cycling of the hybrid should fail. If the hybrid fails
by shorting, the module will go into CC. This change in status will cause the module to protect the DUT by disabling the
output, which will stop the test and generate an SRQ. (Open circuit failures will not be detected. Since failures of thistype
arelesslikely to have destructive consequences, detection is not required.)

82 Application Programs

MPS Features Used

. 20-point voltage List.

. Repetitive Lists.

. Dwell time.

. Dwell-paced Lists.

. Generate an SRQ on achangein internal status.
. Disable the output on achangein internal status.
. Stop the List on achangeininterna status.

. Trigger on a GPIB trigger command.

. Overcurrent protection.

. Active downprogramming.

Advantages/Benefits Of The MPS Solution

By using Lists, the module changes its output voltage automatically, so that the computer is not devoted to reprogramming
the output voltage.

The output can change faster when dwell paced than when the computer must explicitly reprogram each change.

Overcurrent protection can disable the output before the DUT is damaged.

By letting each module monitor its status, the CC condition will be responded to faster than if the computer was responsible
for stopping the test.

The sequence is ssimpler to program (no timing loops),

By using dwell times, the timing of each point is accurate and repeatable because the computer does not provide timing for
the sequence.

When the output is disabled, the active downprogrammers in the module output can quickly discharge the modul€e' s output
capacitors and any capacitance in the DUT.

Implementation Details
How The MPS Implements The Sequence

The module is programmed to List mode.

The module will execute a dwell-paced List.

The 3 voltage points are downloaded to the module.

The 3 dwell times are downloaded to the module.

To begin the cycling, the module istriggered by the computer.

The module continuously generates the voltage waveform.

The module continuously monitors its status.

If the module goesinto CC, the overcurrent protection disables the output.
The module generates an SRQ when the overcurrent protection occurs.

Module set up

Set voltage modeto List.

Download voltage List.

Download dwell times.

Set Liststo dwell paced.

Set Liststo infinitely repeat.

Enabl e status monitoring of overcurrent condition.

Enable overcurrent protection.

Enable SRQ generation on overcurrent protection occurrence.

Application Programs 83

Variations On This Implementation

1. The module could be set to begin generating the waveform in response to an external or backplane TTL Trigger.

2. The module could be set to generate external triggers for each point inthe List. Thistrigger could be routed to other
instruments to synchronize external measurements to the change in voltage. (see application #7) Using this technique,
parametric measurements could be made on the device during the thermal cycling.

3. Multiple modules could be programmed to cycle together in response to the computer trigger command.

4. To determine how many times the hybrid was cycled before it failed, you can use the SRQ (that was generated when the

hybrid failed and the module went into CC) to timestamp the failure. The elapsed time will give the number of cycles
executed.

84 Application Programs

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

500
510

I APPLICATION #4: PROVIDING TIME-VARYING VOLTAGES
' PROGRAM: APP_4
I

ASSIGN Slot0 TO 70500 !
!

'INITIALIZE THE MODULE

!

OUTPUT @Slot0;"*RST;*CLS;STATUS:PRESET"
OUTPUT @Slot0;"VOLT 0"

OUTPUT @Slot0;"CURR .1"

OUTPUT @Slot0;"OUTPUT ON"
!

SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00

RESET AND CLEAR MODULE
START TESTATOV

SET CURRENT LIMIT
ENABLE OUTPUT

I'SET UP OVERCURRENT PROTECTION (OCP) AND GENERATE SRQ ON OCP TRIP

!

OUTPUT @SIot0;"CURRENT:PROTECTION:STATE ON"
OUTPUT @Slot0;"OUTPUT:PROTECTION:DELAY 0"
OUTPUT @Slot0;"STATUS:QUESTIONABLE:ENABLE 2"

OUTPUT @Slot0;"STATUS:QUESTIONABLE:PTRANSITION 2"

OUTPUT @Slot0;*SRE 8"

| SET UP THE VOLTAGE LIST

|

OUTPUT @Slot0;"VOLT:MODE LIST" !
OUTPUT @Slot0;"LIST:VOLT 5,7,0" !
OUTPUT @Slot0;"LIST:DWELL 1,2,30" !
OUTPUT @Slot0; LIST:STEP AUTO" !
OUTPUT @Slot0;"LIST:COUNT INF" !
OUTPUT @Slot0;"INITIATE" !

I ENABLE OCP
I NO DELAY BEFORE PROTECTION OCCURS
I ENABLE DETECTION OF OC CONDITION IN THE
' QUESTIONABLE REGISTER, WHERE OC = BIT 1=VALUE 2.
I ENABLES DETECTION ON POSITIVE TRANSITION, I.E.,
GOING INTO OC.
I ENABLES THE SERVICE REQUEST REGISTER TO GENERATE
I AN SRQ WHEN ANY EVENT IN THE QUESTIONABLE REGISTER
I IS ASSERTED. THE QUESTIONABLE REGISTER = BIT 3= VALUE 8.

SET TO GET VOLTAGE FROM LIST
DOWNLOAD VOLTAGE POINTS

DOWNLOAD DWELL TIMES

DWELL-PACED LIST

CONTINUOUSLY REPEAT LIST (INF = INFINITE)
ENABLE TRIGGER TO START LIST

BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

THAT TAKE TIME WILL GIVE TNE MODULE A CHANCE TO COMPLETE PROCESSING.

!
I CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
!
I

REPEAT
OUTPUT @Slot0;"STATUS:OPERATION:CONDITION?"
ENTER @Slot0;Condition_data
UNTIL BIT(Condition_data,5) !
!
I' SEND Agilent -1B TRIGGER COMMAND TO START LIST
|

OUPUT @Slot0;"TRIGGER:IMMEDIATE" !

END

TEST FOR BIT 5=TRUE

THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
THEREFORE, IT DOES NOT NEED TO BE SELECTED AS A TRIGGER
SOURCE.

Figure B4-2. Agilent BASIC Programming Listing for Application #4

Application Programs 85

Application 5. Providing Time-Varying Current Limiting
Overview Of Application

To provide current limit protection which varies as a function of time, multiple thresholds on current limit are required.
Having multiple thresholds can provide a high limit to protect the DUT during its power-up in-rush with automatic
switchover to alower limit to protect the DUT during its steady state operation.

For this example, the DUT isaprinted circuit assembly. This assembly is being tested prior to installation in the end
product. The module provides power to the assembly, which will undergo afunctional test. The assembly has capacitors
on-board, and when power is applied, the in-rush current approaches 4 A. After the capacitors charge, which takes about
500 milliseconds, the steady state current settles to 600 mA. See Figure B5-1.

The MPS can address this application using dwell-paced Lists. In this case, the List will consist of a set of current limits
and dwell times, because the voltage will remain constant throughout the test.

Once power has been applied, the first current limit, which provides protection to a shorted DUT while still allowing high
current in-rush to occur, will remain in effect for the dwell time. Then the current limit will switch to its next setting in the
List. Theresultisacurrent l[imit which changes with time and provides protection as the DUT current requirements drop
off to their steady state value. When the dwell time expires for the last current limit in the List, the current limit stays at this
value until reprogrammed. Thus, the actual value of the last dwell time is not important. The last current List point would
be the current limit for the steady state operation during the test of the DUT. See Figure B5-2 for how the MPS implements
this protection.

Throughout List execution, overcurrent protection will be enabled. If at any time the module goes into CC, the output will
be disabled, the test stopped, and the DUT protected.

MPS Features Used

. 20-point current List.

. Dwell time.

. Dwell-paced Lists.

. Disable the output on achange in interna status.
. Stop the List on achangein internal status.

. Change the voltage on trigger.

. Trigger on a GPIB trigger command.

. Overcurrent protection.

. Active downprogramming.

Advantages/Benefits Of The MPS Solution

By using Lists, the module changes its current limit automatically, so that the computer is not devoted to reprogramming the
current limit.

The output can change faster when dwell paced than when the computer must explicitly reprogram each change.

Overcurrent protection can disable the output before the DUT is damaged.

By letting the modules monitor status, the CC condition will be responded to faster than if the computer was responsible for
stopping the test.

The sequence is simpler to program (no timing loops).

By using dwell times, the timing of each point is accurate and repeatable because the computer does not provide timing for
the sequence.

When the output is disabled, the active downprogrammers in the module output can quickly discharge the modul€e' s output
capacitors and any capacitancein the DUT.

86 Application Programs

4 A
c
2 At 12 Volts
3
o
600 mA
| [
100 ms 500 ms
Time
Figure B5-1. Typical DUT Current vs. Time
A
200 ms
41A —-——— = typical DUT current
7
7 \
/ \ S0 ms — = programmed current limit
- / A 3A
C / \\
2 Il \\
3 J \ | 100 ms
o / N, 2 A Dwell time on
! N last point is
! \\ 150 ms 1A (not important
1 \\\
/ Sl 1_ ____________ 700 mA
ll '
| I ! o
0O ms 100 ms Time 500 ms
12V ‘
oV

Computer trigger command

Figure B5-2. Desired Current vs. Time

Application Programs 87

Implementation Details
How The MPS Implements The Sequence.

The module is programmed to current List mode.

The module will execute a dwell-paced current List.

The current limit List points are downloaded to the module.

The dwell times are downloaded to the module.

To begin powering the DUT, the moduleis triggered by the computer. This one trigger causes the current List to begin
executing and the voltage to go to its programmed value.

The module steps through the current limit List.

The module continuously monitors its status.

If the modules goesinto CC, the overcurrent protection disables the output.

Module Set Up

Set the current modeto List.

Download current List.

Download the dwell times.

Set the List to be dwell paced.

Enable overcurrent protection.

Theinitial voltage settingisO V.

The module listens for the computer to send a trigger command.

Upon receipt of the trigger command, the module goesto 12 V.

Also upon receipt of the trigger command, the modul e begins executing its current limit List.

Variations On This Implementation
1. The module could be set to begin applying power in response to an external or backplane TTL Trigger.

2. Multiple modules could be programmed to cycle together in response to the computer trigger command. Each module
could have unique current limits, voltage settings, and dwell times.

3. The module could be set to generate an SRQ if the overcurrent protection disables the output.

4. The module could be set to generate an external or backplane TTL Trigger if the overcurrent protection disables the
output.

5. Thein-rush current can be controlled using the current limit settings of the current List. Instead of setting the current
limit slightly above 4 A, it could be set at a much lower value. Thiswould limit the in-rush current to the value in the
List. It would take longer to charge the capacitors on the assembly, but the inrush condition would be controlled. Inthis
variation, the overcurrent protection could not be used, because you want the module to bein CC.

88 Application Programs

10 I APPLICATION #5: PROVIDING TIME-VARYING CURRENT LIMITING

20 I PROGRAM: APP_5

30 !

40 DIM C_limit$[50],Dwell[50]

50 !

60 C_limit$="4.1, 3.0, 2.0, 1.0, 0.7" ! CURRENT LIMIT DATA

70 Dwell$="0.2, 0.05, 0.1, 0.15, 0.1" ! DWELL TIME DATA

80 !

90 ASSIGN @Slot0 To 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
100 !

110 OUTPUT @Slot0;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE

120 OUTPUT @Slot0;"VOLT 0" ! START TESTATOV

130 OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT

140 OUTPUT @Slot0;"CURRENT:PROTECTION:STATE ON" ! ENABLE OCP

150 OUTPUT @Slot0;"OUTPUT:PROTECTION:DELAY 0" ! NO DELAY BEFORE PROTECTION OCCURS
160 OUTPUT @Slot0;"CURRENT:MODE LIST" ! SET TO GET CURRENT FROM LIST

170 OUTPUT @SIot0;"LIST:CURRENT ";C _limit$ DOWNLOAD CURRENT POINTS

180 OUTPUT @Slot0;"LIST:DWELL ";Dwell$ DOWNLOAD DWELL TIMES

200 OUTPUT @Slot0;"VOLT:TRIGGERED 12" GO TO 12 V WHEN TRIGGERED

!
!
190 OUTPUT @SIot0;"LIST:STEP AUTO" ! DWELL-PACED LIST
!
210 OUTPUT @Slot0;"INITIATE" ! ENABLE TRIGGER TO START LIST AND APPLY 12 V

220 !

230 ! BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR

240 I 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

250 !

260 I YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
270 I CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
280 I THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.

290 !

300 REPEAT

310 OUTPUT @Slot0;"STATUS:OPERATION:CONDITION?"

320 ENTER @Slot0;Condition_data

330 UNTIL BIT(Condition_data,5) I TEST FORBIT 5=TRUE

340 !

350 I SEND Agilent -1BTRIGGER COMMAND TO START LIST AND APPLY 12 V

360 !

370 OUTPUT @Slot0;' TRIGGER:IMMEDIATE" I THIS IS AN IMMEDIATE TRIGGER, WHICH IS

380 I ALWAYS ACTIVE. THEREFORE, IT DOES NOT NEED
390 END I TOBE SELECTED AS A TRIGGER SOURCE.

Figure B5-3. Agilent BASIC Program Listing for Application #5

Application Programs 89

Application 6. Output Sequencing Paced by the Computer
Overview Of Application

When performing bias supply margin testing, throughput can be maximized by eliminating the command processing time
associated with reprogramming all outputs for each set of limit conditions. Instead, multiple sets of bias limit conditions can
be downloaded to the power modules during test system initialization. During the testing, the computer can use asingle
command to simultaneously signal al power modules to step through each test condition.

In this example, the DUT requires + 5V and + 12 V. The DUT is tested to ensure proper operation at marginal supply
voltages. The margin specified is £ 5 % of nominal voltage. At each of the combinations given below, the computer first
sets up the three modules and makes a measurement on the DUT. The combinations to be tested are:

Nominal 5V Nominal + 12 V Nominal - 12 V

475V 12V -12vV
5V 12V -12vV

5.25V 12V -12vV
5V 114V -12vV
5V 126V -12vV
5V 12V -11.4V
5V 12V -126V

When conducting this test, the modules will need to be reprogrammed 21 times and seven measurements made. The
command processing time could slow down this test.

The MPS can be used to increase throughput. By downloading all of the combinations into the three modules, each setting
can be quickly stepped through by triggering all modules to change to their next voltage setting and then taking a
measurement from the DUT. This permits testing without command processing overhead.

MPS Features Used

. 20-point voltage List.

. Trigger-paced Lists.

. Trigger infout from MPS mainframe backplane TTL Trigger.
. Trigger on a GPIB trigger command.

Advantages/Benefits Of The MPS Solution

By using Lists, the module changes its voltage without delays due to processing the command to change the output voltage.
By using triggers, all three outputs can be changed with one command.

The computer loop to change the settings and take a measurement is simplified, because you do not have to explicitly
reprogram each module output. Instead, the loop becomes "Trigger" and "Measure".

Implementation Details

How The MPS Implements The Sequence

The following steps are performed for each point in the List:

The computer sends a trigger command to the first module.

The first module simultaneously sends a backplane TTL Trigger to the other two modules and goes to its next List point.
The second module receives the backplane TTL Trigger and immediately goes to its next List point.

The third module receives the backplane TTL Trigger, immediately goes to its next List point.

The computer gets a measurement from the measurement instrument.

90 Application Programs

MPS Set Up

Modulein ot O:

The module is connected to + 5V on the DUT.

Theinitial voltage settingisO V.

Set the voltage mode to List.

Download the voltage List.

Set the List to be trigger paced.

The module listens for the computer to send atrigger command. Upon receipt of the trigger command, the module outputs
its next List point.

Also upon receipt of the trigger command, the module generates a backplane TTL Trigger.

Modulein dot 1:

The module is connected to + 12 V on the DUT.

Theinitial voltage settingisO V.

Set the voltage mode to List.

Download the voltage List.

Set the List to be trigger paced.

The module listens for abackplane TTL Trigger.

Upon receipt of atrigger, the module goesto its next List point.

Modulein dlot 2.

The module is connected to - 12 VV on the DUT.

Theinitial voltage settingisO V.

Set the voltage mode to List.

Download the voltage List.

Set the List to be trigger paced,

The module listens for abackplane TTL Trigger.

Upon receipt of atrigger, the module goesto its next List point.

Variations On This Implementation

1. A current List could also have been executed by the module so that for each voltage point, a corresponding current limit
could be programmed.

2. Overcurrent protection could be enabled to protect afaulty DUT.
3. The module could generate an SRQ when it finishes changing voltage for each point in the List based on the STC (Step
Completed) status bit, which indicates when the module has completed executing the next point in the List. The SRQ

could tell the computer to get a measurement from the measurement instrument.

4. The module could be told to output its next List point in response to an external or backplane TTL Trigger. (see next
application.)

Application Programs 91

GPIB ‘
Trigger
Backplane TTL Trigger
Out In In
MPS Y GPIB
Mainframe "Make a
Slot Slot Slot Measurement”
0 2
Measurement
Instrument
M + 12V -12V
DUT 5V {7
Figure B6-1. Block Diagram of Application #6
| List Point 1 5 List Point 2 List Point 3
Computer
Trigger —] —] H
Command -
} 525V ...
5V
MSot 0 475 v |
%% ov | |
MPS Mainframe | v
Backplane J J
TTL Trigger
| 12 v ! 12 v L2V
Module, T T
Slot1 OV | }
| 12 v | 12 v 12V
Module, + -+ -
Slot 2 0V : |
| —
Computer Gets ! |
Reading ———— i
from DMM ' |

Figure B6-2. Timing Diagram of Application #6

92 Application Programs

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

I APPLICATION #6: OUTPUT SEQUENCING PACED BY THE COMPUTER
I PROGRAM: APP-6

DIM Plus_5v$[50],Plus_12v$[50],Minus_12v8[50]
|

Plus_5v$="

'4.75,5,5.25,5, 5,5, 5 !

Ptus_12v$="12, 12,12, 11.4,12.6, 12, 12" !
Minus_12v$="12, 12, 12, 12, 12, 11.4, 12.6" !

Num_test_steps=7 !

Dwell=.010
|

ASSIGN @Slot0 TO 70500
ASSIGN @Slot1 TO 70501
ASSIGN @Slot2 TO 70502

I SET UP MODULE IN SLOT 0 AS +5 V BIAS SUPPLY

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
ONTPUT
OUTPUT
OUTPUT

OUTPUT
I

' SET UP MODULE IN SLOT 1 AS +12 V BIAS SUPPLY

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

OUTPUT
I

@Slot0;"*RST;*CLS;STATUS:PRESET"
@Slot0;"VOLT 0"

@Slot0;"OUTPUT ON"
@Slot0;"VOLTAGE:MODE LIST"
@Slot0;"LIST:VOLTAGE ";Plus_5v$
@SIot0;"LIST:DWELL";Dwell
@SIot0;"LIST:STEP ONCE"
@Slot0;"TRIGGER:SOURCE BUS"
@SIot0;"OUTPUT:TTLTRG:SOURCE BUS"!
@SIot0;"OUTPUT.TTLTRG:STATE ON" !
@SIot0;"INITIATE" !

@Slot1;"*RST;*CLS;STATUS:PRESET" !
@Slot1;"VOLT 0" !
@Slot1;"OUTPUT ON" !
@Slot1;"VOLT:MODE LIST" !
@Slot1;"LIST:VOLTAGE ";Plus_12v$!
@Slot1;"LIST:DWELL";Dwell !
@Slot1;"LIST:STEP ONCE" !
@Slot1;"TRIGGER:SOURCE TTLTRG" !
@Slot1;"INITIATE" !

I'SET UP MODULE IN SLOT 2 AS -12 V BIAS SUPPLY

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

@Slot2;"*RST;*CLS;STATUS:PRESET" !
@Slot2;"VOLT 0 !
@Slot2;"OUTPUT ON" !
@Slot2;"VOLT:MODE LIST" !
@Slot2;"LIST:VOLTAGE ";Minus_12v$!
@Slot2;"LIST:DWELL";Dwell !
@Slot2;"LIST:STEP ONCE" !
@Slot2;"TRIGGER:SOURCE TTLTRG" !
@Slot2;"INITIATE" !

THESE ARE THE BIAS
SUPPLY LIMIT CONDITIONS
TO BE TESTED

NUMBER OF BIAS SUPPLY LIMIT COMBINATIONS
SECONDS OF DWELL TIME

I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 01
I SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 02

RESET AND CLEAR MODULE

STARTATOV

ENABLE OUTPUT

SET TO GET VOLTAGE FROM LIST

DOWNLOAD VOLTAGE LIST POINTS

DOWNLOAD | DWELL TIME (ASSUMES SAME FOR ALL POINTS)
EXECUTE 1 LIST POINT PER TRIGGER

TRIGGER SOURCE IS GPIB 'BUS'

GENERATE BACKPLANE TTL TRIGGER WHEN GPIB 'BUS' TRIGGER IS RECEIVED
ENABLE TTL TRIGGER DRIVE

ENABLE RESPONSE TO TRIGGER

RESET AND CLEAR MODULE

STARTATOV

ENABLE OUTPUT

SET TO GET VOLTAGE FROM LIST

DOWNLOAD VOLTAGE LIST POINTS

DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)
EXECUTE 1 LIST POINT PER TRIGGER

TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

ENABLE RESPONSE TO TRIGGER

RESET AND CLEAR MODULE

STARTATOV

ENABLE OUTPUT

SET TO GET VOLTAGE FROM LIST

DOWNLOAD VOLTAGE LIST POINTS

DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)
EXECUTE 1 LIST POINT PER TRIGGER

TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

ENABLE RESPONSE TO TTL TRIGGER

!

I BEFORE TRIGGERING THE MODULES, DETERMINE IF THE MODULES ARE READY BY CHECKING FOR

I 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER). IF THE LAST MODULE PROGRAMMED
I' IS READY THEN SO ARE THE OTHERS, SO JUST CHECK SLOT 2.
!
!

YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

Application Programs 93

600 I CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS

610 I THAT TAKE TIME WILL GIVE THE MODULES A CHANCE TO COMPLETE PROCESSING.
620 !

630 REPEAT

640 OUTPUT @Slot2;"STATUS:OPERATION:CONDITION?"

650 ENTER @Slot2;Condition_data

660 UNTIL BIT(Condition_data,5) I TESTFORBIT5=TRUE

670 !

680 I GENERATE A TRIGGER AND MAKE A MEASUREMENT FOR EACH TEST CONDITION
690 !

700 FOR Loop_count=1 TO Num_test_steps

710 OUTPUT @Slot0;"*TRG" ! SEND Agilent -1B BUS TRIGGER
720 GOSUB Get_measurement

730 NEXT Loop_count

740 !

750 STOP

760 !

770 Get_measurement:

780 !

790 I THIS IS JUST TO SHOW YOU WHERE YOU WOULD ADD CODE TO GET DATA FROM THE MEASUREMENT INSTRUMENT.
800 ! THE MEASUREMENT MUST TAKE LONGER THAN THE PROGRAMMED DWELL TIME OR YOU WILL MISS TRIGGERS.
810 !

820 WAIT .1

830 !

840 RETURN

850 !

860 END

Figure B6-3. Agilent BASIC Program Listing for Application #6

94 Application Programs

Application 7. Output Sequencing Without Computer Intervention
Overview Of Application

When characterizing devices, the DUT’ s performance is measured over arange of power supply voltages. Thistest can be
performed without computer intervention by using hardware signals from the measurement instrument to cause the power
module to sequence to the next voltage in a preprogrammed List. By buffering these readings in the measurement
instrument, the entire test can be executed without computer involvement. For characterizations that require long
measurement times, the computer is free to do other tasks. For characterizations that must execute at hardware speeds, the
computer is not involved and will not slow down the test loop.

In this example, the power module must apply 8 to 14 volts (in 13 0.5-volt increments) to an automotive engine sensor. The
module varies the bias voltage to the engine sensor and the sensor’ s output is measured to characterize its performance over
the range of possible "battery voltages'. The sensor output is measured by aDMM that has an interna buffer and stores
each reading.

By combining Lists and trigger capabilities, the MPS can be used to address this application. The module can be
programmed to use its triggering capahilities to the fullest extent. Each time the module executes the next step initsList
and changes voltage, the module will generate an external trigger. The external trigger will cause the DMM, equipped with
an externa trigger input, to take and store areading. The DMM, also equipped with a"Measurement Complete” output,
sends its output trigger signal to the module to tell the module to go to its next List point. Effectively, the module and the
DMM "handshake", so that the two function at hardware speeds without computer intervention.

When the test is complete, either device can signal the computer to get the data from the DMM. For the purpose of this
example, the module will generate an SRQ when the last List point has been executed. Thisisindicated by the OPC
(Operation Complete) bit in the status register.

Another detail that needs attention istiming. The DUT may require some settling time before the DMM istold to take a
reading. The modul€’ s dwell time can be used to do this. The STC (Step Complete) status signal indicates when the point
has been executed and its dwell time has expired. The dwell timeis programmed to be the engine sensor’ s settling time.
The external trigger is generated when STC is asserted. Thus, the DMM will not be triggered until the dwell time has
expired and the sensor’ s output has settled.

Thistype of self-paced test execution is useful in two situations. When the test must execute very fast, there is no time for
the computer to be involved in each iteration of the test loop. Therefore, the test must execute without computer
intervention. The second situation iswhen thetest isvery long. For example, if the measurement instrument took 1 minute
to make each measurement, the test would take 13 minutes to execute. The computer is not used efficiently if it isidle while
waiting for each measurement loop, so it would be best to have the computer executing another task. Without self-pacing,
you would need to develop interrupt driven software that stops every 1 minute to take areading. By letting the module and
the DMM run on their own, code development is much simpler and computer resources are used more efficiently.

MPS Features Used

. 20-point voltage List.

. Dwell time.

. Trigger-paced Lists.

. Generate an SRQ on achange in internal status.

. Generate atrigger on achangein internal status.

. Trigger infout from MPS mainframe backplane TTL Trigger.
. Trigger on a GPIB trigger command.

Application Programs 95

Advantages/Benefits Of The MPS Solution

The entire test executes without computer involvement, the command processing time is eliminated from the test loop.

The entire test executes without computer involvement, so the computer can perform other tasks while the test executes.

Software development is simplified; you do not need to write atest loop because the module and the DMM are running on
their own.

By using dwell times, the trigger out signal can be sent at the correct time, which permits the DUT to settle before areading
istaken.

Implementation Details
How The MPS Implements The Sequence

The module listens for the computer to send a trigger command.

Upon receipt of the trigger command, the module outputs its first List point.

After the dwell time expires, the STC is asserted and the modul e generates an external trigger.

The DMM receives the external trigger, takes and stores a reading.

The DMM generates a"Measurement Complete” output signal when it’'s done.

The module receives the DMM output signal as an external trigger in.

Also upon receipt of the trigger in, the module outputs its next List point.

The process repeats for each List point.

After thelast List point has executed, the modul e generates SRQ, telling the computer the test has compl eted.

MPS Set Up

Set the voltage mode to List.

Download the voltage List.

Download the dwell time List.

Set the List to be trigger paced.

Set the trigger source to external trigger.

Note The computer trigger command "TRIGGER:IMMEDIATE" is always active, even if the external trigger
isthe selected source.

Set the module to generate abackplane TTL Trigger on STC. Thisbackplane TTL Trigger drives external trigger out.
Set the module to generate SRQ on OPC.

Variations On This Implementation

1. A current List could also have been executed by the module so that for each voltage point, a corresponding current limit
could be programmed.

2. Overcurrent protection could be enabled to protect afaulty engine sensor.

3. If the DMM does not have an internal buffer, the computer could take a reading on each iteration of the test loop (see
previous application).

96 Application Programs

“Handshake” Connections
GPIB — Trig Trig Trig Measurement
Trigger n Out n Complete
to start
Backplane
Ext Trigger In Backplane
MPS TTL Trigger DMM
Mainframe " In Out with
internal
data
Module buffer
+ -
+ - .
DUT Test Point
Figure B7-1. Block Diagram of Application #7
Signals
. computer
List to take
c ter Tri Points data from
omputer irigger DMM
Command to Module ! l 4toM

Operation Compliete I /

(OPC)

List Point 1 2 3 12 13!

Module Output

(@) = pwell Time

S sto) [

MPS Ext Trigger Out : . U..__ —U_
DMM Trigger In U ‘ U . ’
DMM Measurement r—‘ :ﬂ J—_ ___(_L

DMM Measurement X ; . {

Complete \
MPS Ext Trigger In ‘ U ‘ U 2 H l

Figure B7-2. Timing Diagram of Application #7

Application Programs 97

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

580
590

I APPLICATION #7: OIJTPUT SEQUENCING WITHOUT COMPUTER INTERVENTION

I PROGRAM: APP_7
I

ASSIGN @Slot0 TO 70500 | SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
!

DIM Viist$[80]

Viist$="8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 135, 14" ! VOLTAGE LIST POINTS

!

OUTPUT @SIot0;*RST:*CLS;STATUS:PRESET" RESET AND CLEAR MODULE

OUTPUT @Slot0;’VOLT 0" STARTATOV

OUTPUT @SIot0;"CURR 1" SET CURRENT LIMIT

OUTPUT @Slot0;"OUTPUT ON" ENABLE OUTPUT

OUTPUT @SIot0;"LIST:VOLT ";Vlist$ DOWNLOAD VOLTAGE LIST POINTS
OUTPUT @Slot0;"LIST:DWELL .050" DOWNLOAD 1 DWELL POINT (ASSUMES SAME FOR ALL POINTS)
USE A 50 ms SETTLING TIME AS THE DWELL TIME

I
I
I
I
OUTPUT @Slot0;"VOLT:MODE LIST" ! SET TO GET VOLTAGE FROM LIST
I
I
I
! EXECUTE 1 POINT PER TRIGGER

OUTPUT @Slot0;"LIST:STEP ONCE"
I

OUTPUT @Slot0;*ESE 1" ENABLES DETECTION OF OPC IN THE STANDARD EVENT REGISTER.

OPC =BIT 0 = VALUE 1 OF THE STANDARD EVENT REGISTER.

ENABLES THE SERVICE REQUEST REGISTER TO GENERATE AN SRQ WHEN
ANY EVENT IN THE STANDARD EVENT REGISTER IS ASSERTED.

THE STANDARD EVENT REGISTER = BIT 5 = VALUE 32.

OUTPUT @Slot0;"™*SRE 32"

OUTPUT @Slot0;"OUTPUT.TTLTRG:STATE ON" ! ENABLE BACKPLANE TTL TRIGGER DRIVE
OUTPUT @SIot0;"OUTPUT:TTLTRG:SOURCE LINK" I WHEN THE MODULE INDICATES SIC (STEP COMPLETED),
OUTPUT @Slot0;"OUTPUT:TTLTRG.LINK 'STC” ! GENERATE A BACKPLANE TTL TRIGGER
OUTPUT @Slot0;'TRIGGER:SOURCE EXTERNAL" ! USE EXTERNAL TRIGGER IN BNC AS TRIGGER SOURCE
OUTPUT @SIot0; INITIATE" ! ENABLE RESPONSE TO TRIGGER
OUTPUT @Slot0;"*OPC” ' TELLS MODULE TO ASSERT OPC (OPERATION COMPLETE)
I WHEN IT COMPLETES THE LIST. OPC GENERATES SRO.
I
ON INTR.7 GOSUB Srg_handler ! ENABLE SRQ INTERRUPT AND
ENABLE INTR 7;2 ! IDENTIFY HANDLER SUBROUTINE

BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

|
|
|
!
I YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
I CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
I THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
|
REPEAT

OUTPUT @SIot0;"STATUS:OPERATION:CONDITION?"

ENTER @Slot0;Condition_data
UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5= TRUE
|

I BEGIN THE SELF-PACED TEST LOOP BY TRIGGERING THE MODULE TO START THE LIST
I

OUTPUT @Slot0;"TRIGGER:IMMEDIATE" ! THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
! IT DOES NOT NEED TO BE SELECTED AS TRIGGER SOURCE.

!

GOTO 530 ! IDLE IN LOOP WAITING FOR SRQ OR GO DO OTHER TASKS

!

Srg_handler: !

!
I ADD LINES HERE TO READ THE DATA BUFFER FROM THE DMM
!
END
Figure B7-3. Agilent BASIC Program Listing of Application #7

98 Application Programs

Supplemental Information

This appendix contains program listings trandated into the following DOS-compatible languages and GPIB interfaces:

GWBASIC and the Agilent 61062/82990/82335A GPIB Command Library for MS-DOS
GWBASIC and the National Instruments GPIB-PC Interface Card
Microsoft C and the Agilent 61062/82990/82335A GPIB Command Library for MS-DOS
Microsoft C and the National Instruments GPIB-PC Interface Card

Each program istranslated from the Agilent BASIC listing found in application #3. This example program was chosen as
representative of all application programs because it shows how to:

Configure the interface card.

Address the power module.

Write strings to the power module.

Write real arrays to the power module.
Receive real numbers from the power module.

The six other application programs all use a subset of the above functions.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

" MERGE "SETUP.BAS" AS DESCRIBED IN YOUR GPIB COMMAND LIBRARY MANUAL

* APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
‘ FOR GWBASIC AND THE Agilent 61062/82990/82335A GPIB COMMAND LIBRARY
* PROGRAM: Agilent 3.BAS

OPTION BASE 1

INTERFACE =7 * SELECT CODE OF THE GPIB CARD

SLOTO 705001 * SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00

CRLFS CHR$(13) + CHR$(10) * CARRIAGE RETURN + LINE FEED = END OF LINE TERMINATION
DIM VSTEP(20) * ARRAY TO HOLD THE VOLTAGE RAMP STEPS

NUM.POINTS =20 * NUMBER OF POINTS IN THE VOLTAGE RAMP ARRAY

VSTART =2 ' START VOLTAGE FOR RAMP

VSTOP =10 ' STOP VOLTAGE FOR RAMP

RAMPTIME = .5 * TIME IN SECONDS TO CHANGE FROM VSTART TO VSTOP

DWELL = RAMPTIME / 19 * DWELL TIME FOR EACH POINT

* SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
 LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.
‘ YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST, SO YOU NEED TO DOWNLOAD ONLY 1 DWELL TIME.

FORI=1TO 20
VSTEP(I) = VSTART + (((VSTOP - VSTART) /20) *I') ‘ CALCULATES VOLTAGE LIST POINTS
NEXT |

NOTE REGARDING GPIB READ/WRITE TERMINATIONS:

THE DEFAULT MODE OF THE INTERFACE CARD IS THAT EOI IS ENABLED AND THE READ/WRITES TERMINATE
* ON CARRIAGE RETURNI/LINE FEED. THE MODULE TERMINATES ON EITHER EOI OR LINE FEED, SOTHE
DEFAULT SETTINGS OF THE CARD ARE SUFFICIENT.
CMD$ = "*RST;*CLS;STATUS:PRESET" * RESET AND CLEAR MODULE
L = LEN(CMD$)
CALL IOOUTPUTS(SLOTO, CMD$, L)
IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

Application Programs 99

1340 CMD$ = "VOLT+ STR$(VSTART) * START RAMP AT VSTART. USE NUMBER TO STRING

1350 L =LEN(CMD$) * CONVERSION TO SEND REAL NUMBERS OVER THE BUS
1360 CALL IOOUTPUTS(SLOTO, CMDS$, L) * AS PART OF THE COMMAND STRING.

1370 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1380 ‘

1390 CMD$="CURR .1’
1400 L =LEN(CMD$)
1410 CALL I0OUTPUTS(SLOTO, CMD$, L)

1420 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1430 '
1440 CMD$ = "OUTPUT ON" * ENABLE OUTPUT

1450 L =LEN(CMDS$)
1460 CALL IOOUTPUTS(SLOTO, CMDS, L)

1470 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1480 ‘
1490 CMD$ = "VOLT:MODE LIST" * SET TO GET VOLTAGE FROM LIST

1500 L =LEN(CMD$)

1510 CALL IOOUTPUTS(SLOTO, CMD$, L)

1520 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1530

1540 ' SENDING THE VOLTAGE DATA POINTS REQUIRES TWO STEPS USING THE GPIB COMMAND LIBRARY. THE INSTRUCTION CONTAINS BOTH
1550 ‘' STRING DATA AND A REAL ARRAY. FIRST, SEND THE STRING DATA COMMAND HEADER "LIST:VOLT" TO THE MODULE USING IOOUTPUTS.
1560 ‘' THEN, SEND THE REAL ARRAY USING IOOUTPUTA. HOWEVER, YOU MUST INHIBIT THE EOI AND END-OF-LINE TERMINATOR AFTER THE
1570 ‘'IOOUTPUTS COMMAND OR THE MODULE WILL STOP TAKING DATA. THEN RE-ENABLE THEM TO TERMINATE THE IOOUTPUTA.

1580

1590 EOCL.STATE=0 * TURN OFF EOI

1600 CALL IOEOQI(INTERFACE, EOI.STATE)

1610 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1620 '

1630 END.OF.LINE=0 * TURN OFF END-OF-LINE TERMINATION
1640 CALL IOEOL(INTERFACE, CR.LF$, END.OF.LINE)

1650 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1660 ‘

1670 CMDS$ ="LIST:VOLT
1680 L =LEN(CMD$)
1690 CALL IOOUTPUTS(SLOTO, CMD$, L)

SEND THE VOLTAGE HEADER (STRING) ...

1700 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1710 '

1720 EOI.STATE=1 * TURN ON EQI

1730 CALL IOEOI(INTERFACE, EOI.STATE)

1740 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1750 ‘

1760 END.OF.LINE = LEN (CR.LF$) * TURN ON END-OF-LINE TERMINATION

1770 CALL IOEOL(INTERFACE, CR.LF$, END.OF.LINE)

1780 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1790 ‘

1800 CALL IOOUTPUTA(SLOTO, VSTEP(1), NUM.POINTS) * DOWNLOAD THE VOLTAGE POINTS (ARRAY)

1810 IF PCIB.ERR<>0 THEN ERROR PCIS.BASERR

1820 ‘

1830 CMD$ = "LIST:DWELL “ + STR$(DWELL) ‘ DOWNLOAD 1 DWELL TIME. USE NUMBER TO STRING
1840 L =LEN(CMD$) * CONVERSION TO SEND REAL NUMBERS OVER THE BUS
1850 CALL IOOUTPUTS(SLOTO, CMDS$, L) * AS PART OF THE COMMAND STRING.

1860 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1870 '

1880 CMD$ = "LIST.STEP AUTO" * DWELL-PACED LIST

1890 L=LEN(CMD$)
1900 CALL IOOUTPUTS(SLOTO, CMDS$, L)

1910 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1920 ‘
1930 CMD$ = "INITIATE" * ENABLE TRIGGER TO START LIST

100 Application Programs

1940 L =LEN(CMD$)
1950 CALL IOOUTPUTS(SLOTO, CMDS, L)

1960 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

1970 '

1980 ' BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
1990 " WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

2000

2010 YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
2020 * CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
2030 THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.

2040
2050 CONDITION.DATA =0

2060

2070 WHILE ((CONDITION.DATAAND 32))<>32) * CONTINUE TO LOOP UNTIL BIT 5 (VALUE 32) = TRUE
2080 CMD$ = "STATUS:OPERATION:CONDITION?"

2090 L = LEN(CMD$)

2100 CALL I0OUTPUTS(SLOTO, CMDS$, L)

2110 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

2120 CALL IOENTER(SLOTO, CONDITION.DATA)

2130 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

2140 WEND

2150

2160 * SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP

2170

2180 CMD$ = "TRIGGER:IMMEDIATE" * THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS
2190 L=LEN(CMD$) * ACTIVE. THEREFORE, IT DOES NOT NEED TO BE
2200 CALLI0OUTPUTS(SLOTO, CMD$, L) * SELECTED AS A TRIGGER SOURCE.

2210 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR

220

2230 END

Application Programs 101

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570

* MERGE "DECL.BAS" AS INSTRUCTED IN YOUR NATIONAL INSTRUMENTS GPIB-PC MANUAL

* APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
FOR GWBASIC AND THE NATIONAL INSTRUMENTS GPIB-PC INTERFACE CARD
* PROGRAM: N3.BAS

* CONFIGURE THE GPIB.COM HANDLER FOR THE FOLLOWING:

‘ EOI ENABLED FOR BOTH READ AND WRITE
DISABLE AUTO SERIAL POLL

INSTRUMENT.NAMES = "SLOTO"
CALL IBFIND(INSTRUMENT.NAME$, SLOTO%)
IF SLOTO% < 0 THEN PRINT “COULDN'T FIND MODULE" : STOP

OPTION BASE 1

VSTEP$ =" * STRING TO HOLD THE VOLTAGE RAMP STEPS

VSTART =2 ' START VOLTAGE FOR RAMP

VSTOP =10 ' STOP VOLTAGE FOR RAMP

RAMPTIME = .5 * TIME IN SECONDS TO CHANGE FROM VSTART TO VSTOP

DWELL = RAMPTIME / 19 ‘* DWELL TIME FOR EACH POINT

* SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
" LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.
" YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST, SO YOU NEED TO DOWNLOAD ONLY 1 DWELL TIME.

" SINCE THE NATIONAL INSTRUMENTS GPIB-PC WORKS WITH STRINGS, THE RAMP DATA MUST BE CONSOLIDATED INTO A
" SINGLE STRING WHICH CONTAINS ALL THE POINTS, SEPARATED BY COMMAS.

FOR1=1TO 20 MAKES THE STRING EQUIVALENTS OF THE
VSTEP$ = VSTEP$ + STR$(VSTART + (((VSTOP - VSTART)/ 20 *1)) * VOLTAGE POINTS AND CONCATENATES THEM ONLY
IF 1<>20 THEN VSTEP$=VSTEP$+"," ‘ FOR THE FIRST 19 POINTS, EACH FOLLOWED
NEXT | * BY ACOMMA. THE LAST POINT IS NOT
‘ ‘* FOLLOWED BY A COMMA.

CMD$ = "*RST;*CLS;STATUS:PRESET"
CALL IBWRT(SLOTO%, CMD$)
IF IBSTA% < 0 THEN GOTO 1960

RESET AND CLEAR MODULE

CMD$ ="VOLT “ + STR$(VSTART) START RAMP AT VSTART. USE NUMBER TO STRING
CALL IBWRT(SLOTO%, CMD$) * CONVERSION TO SEND REAL NUMBERS OVER THE BUS
IF IBSTA% < 0 THEN GOTO 1960 AS PART OF THE COMMAND STRING.

CMD$ ="CURR.1"
CALL IBWRT(SLOTO%, CMD$
IF IBSTA% < 0 THEN GOTO 1960

CMD$ = "OUTPUT ON"
CALL IBWRT(SLOTO%, CMD$)
IF IBSTA% < 0 THEN GOTO 1960

ENABLE OUTPUT

CMD$ = "VOLT:MODE LIST"
CALL IBWRT(SLOTO%, CMD$)
IF IBSTA% < 0 THEN GOTO 1960

SET TO GET VOLTAGE FROM LIST

CMD$ = "LIST:VOLT “ + VSTEP$
CALL IBWRT(SLOTO%, CMD$)
IF IBSTA% < 0 THEN GOTO 1960

DOWNLOAD VOLTAGE LIST POINTS

CMD$ = "LIST:.DWELL" + STR$(DWELL) DOWNLOAD 1 DWELL TIME. USE NUMBER TO STRING

102 Application Programs

1580 CALL IBWRT(SLOTO%, CMD$) * CONVERSION TO SEND REAL NUMBERS OVER THE BUS

1590 IF IBSTA% < 0 THEN GOTO 1960 * AS PART OF THE COMMAND STRING.
1600

1610 CMDS$ = "LIST:STEP AUTO" * DWELL-PACED LIST

1620 CALL IBWRT(SLOTO%, CMD$)

1630 IF IBSTA% < 0 THEN GOTO 1960

1640

1650 CMDS$ = "INITIATE" * ENABLE TRIGGER TO START LIST
1660 CALL IBWRT(SLOTO%, CMD$)

1670 IF IBSTA% < 0 THEN GOTO 1960

1680

1690 ' BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
1700 ' WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

1710

1720 * YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

1730 CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
1740 * THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.

1750 '

1760 CONDITION.DATAS = SPACE$(20) ‘* RESERVE SPACE FOR READING IN STRING

1770 '

1780 WHILE ((VAL(CONDITION.DATA$) AND 32) <>32)* CONTINUE TO LOOP UNTIL BIT 5 (VALUE 32) = TRUE

1790 CMD$ = "STATUS:OPERATION:CONDITION?"

1800 CALL IBWRT(SLOTO%, CMD$)

1810 IF IBSTA% < 0 THEN GOTO 1960

1820 CALL IBRD(SLOTO%, CONDITION.DATA$)

1830 IF IBSTA% < 0 THEN GOTO 1960

1840 WEND

1850

1860 ' SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP

1870

1880 CMD$ = "TRIGGER:IMMEDIATE" " THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS
1890 CALL IBWRT(SLOTO%, CMDS) * ACTIVE THEREFORE, IT DOES NOT NEED TO BE
1900 IF IBSTA% < 0 THEN GOTO 1960 ' SELECTED AS A TRIGGER SOURCE.

1910

1920 STOP

1930

1940 ' GENERAL ERROR HANDLER

1950 ¢

1960 PRINT “GPIB function call error:

1970 PRINT "IBSTA% =; IBSTA%, "IBERR% ="; IBERR% “IBCNT% = “;IBCNT%
1980 ‘

1990 END

Application Programs 103

[* APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
FOR MICROSOFT C AND THE Agilent 61062/82990/82335A GPIB COMMAND LIBRARY FOR MS-DOS PROGRAM: Agilent3.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "chpib.h”
#include "cfunc.h”

#define INTERFACE 7L

I* Select code 7 for the Agilent -1B interface card. ¥/

#define SLOTO 70500L [* Select code 7, mainframe address 05, slot 00. */
#define WTG 32 I* Waiting for Trigger (WTG) = bit 5 = value 32. */
#define NUM_PTS 20 [* 20 points in the voltage List. *
int error;
main()
{
char *cmd; /¥ Used to hold command strings sent to the module. */
char cmd-buff[255]; ¥ Used to hold command strings during string manipulations. */
static char cr_If[3] ={13,10,0}; [¥ Carriage return+line feed = end of line. */
inti; ¥ Loop counter. */
float condition_data; /¥ Used to hold data from read back of status conditions. */
float vstart = 2.0; [+ Start voltage for the ramp. */
float vstop = 10.0; ¥ Stop voltage for the ramp. */
float vstep[NUM_PTS]; ¥ Used to hold voltage List points for the ramp. */
float ramptime = 0.5; [¥ Transition time (in seconds) for the ramp. */
float dwell; * Dwell time (in seconds) for each ramp step. */
dwell = ramptime / 19.0; ¥ Since the output stays at the last voltage point after its dwell
time expires, the dwelt time of the last point is not part of the transition time.
Therefore, divide the total time by 19 points, not 20. You want the same dwell
time for every point in the List, so only download 1 dwell time. */
for (i=1; i <= NUM_PTS; i++) ¥ Calculate the voltage List points */

vstepli] = vstart + (((vstop - vstart) / NUM_PTS) *i);

error = ioreset(INTERFACE); *
error_handler(error, "Resetting the interface");

error = iotimeout(INTERFACE, (double)2.0);
error_handler(error, "Setting the timeout”);

[* Note regarding GPIB read/write terminations:

To get the interface to its defaults. */

[* Enables timeout of 2 seconds. */

The default of the interface card is that EOI is enabled and the read/writes terminate on carriage return/line feed. The module terminates
on either EOI or Line feed, so the default settings of the card are sufficient. ¥

cmd = "*RST;*CLS;STATUS:PRESET", I*
error = iooutputs(SLOTO, cmd, strlen(cmd));
error_handler(error, cmd);

sprintf(cmd_buff , "VOLT %f", vstart); I*
error = iooutputs(SLOTO, cmd_buff, strlen(cmd_buff)); /*

error_handler(error, cmd-buff); I*
cmd = "CURR .1%;

error = iooutputs(SLOTO, cmd, strlen(cmd));
error-handler(error, cmd);

cmd = “OUTPUT ON"; I*

104 Application Programs

Reset and clear module. */

Start ramp at vstart. Use number to string */
conversion to send real numbers over the ¥/
bus as part of the command string. *

Enable output */

real

error = iooutputs(SLOTO, cmd, strlen(cmd));
error_handler(error, cmd);

cmd = "VOLT:MODE LIST"; I*
error = iooutputs(SLOTO, c¢md, strlen(cmd));
error_ handler(error, cmd);

Set to get voltage from List */

I* Sending voltage data points requires two steps using the Agilent -1B Command Library. The instruction contains both string data and a

array. First, send the string data command header "LIST:VOLT “ to the module using iooutputs. Then, send the real array using iooutputa.
However, you must inhibit the EOI and End-of-Line terminator after the iooutputs or the module will stop taking data. Then, re-enable them
to terminate the iooutputa. *

error = i0eoi(INTERFACE, 0); I*
error_handler(error, "Disabling EOI");

Turn off EOI ¥/

error = ioeol(INTERFACE, “, 0); /¥ Turn off End-of-Line termination */

error-handler(error, "Disabling EOI");

cmd = "LIST:VOLT *, I*
error = iooutputs(SLOTO, cmd, strlen(cmd));
error_handler(error, cmd);

First send the voltage header (string) ... */

error = i0eoi(INTERFACE, 1); I*
error_handler(error, "Enabling EOI");

Turn on EOI ¥/

error = ioeoL(INTERFACE, cr_If, strlen(cr_If)); /¥ Turn on End-of-Line termination */

error_handler(error, "Enabling EOL”);

error = iooutputa(SLOTO, &vstep[1], NUM_PTS); I+ Download voltage points (array), starting */

error_handler(error, "Voltage List Array"); /¥ with the element 1, not 0. */
sprintf(cmd_buff, "LIST:DWELL %f", dwell); /¥ Download 1 dwell time. Use numberto *
error = iooutputs(SLOTO, cmd_buff, strlen(cmd_buff)); # string conversion to send the real #
error_handler(error, cmd_buff); /¥ number over the bus as part of the */
¥ command string. *
cmd = "LIST:STEP AUTO"; I+ Dwell-paced List */

error = iooutputs(SLOTO, cmd, strlen(cmd));
error_handler(error, cmd);

cmd ="INITIATE"; I*
error = iooutputs(SLOTO, cmd, strlen(cmd));
error_handler(error, cmd);

Enable trigger to start List

I* Before triggering the module, determine if it is ready by checking for
'Waiting for Trigger' (bit 5 of the Operation Status Register).

You could eliminate this step by simply inserting a pause in the program. However, by checking the instrument status,
you can avoid timing problems. Also, any other operations that take time will give the module a chance to complete processing. */

do {
cmd ="STATUS:OPERATION:CONDITION?";

error = iooutputs(SLOTO, cmd, strlen(cmd));
error_handler(error, cmd);

error = ioenter(SLOTO, &condition_data); I*
error_handler(error, "Read back of status"); *

You must convert float to integer */
to do an integer bit test. */

Application Programs 105

} while (((int)condition_data && WTG) == 0) ; /¥ Loop until bit 5 (value 32) is true. */

[* Send trigger command to start List and generate the voltage ramp. */

cmd = "TRIGGER:IMMEDIATE", [* This is an immediate trigger, which is always */
error = iooutputs(SLOTO, cmd, strlen(cmd)); ¥ active. Therefore, it does notneedtobe ¥/
error_handler(error, cmd); ¥ selected as a trigger source. */
error_handler(error,bad_string) ¥ This is a generalized error checking routine. */
int error;
char *bad_string;
{

if (error 1= 0) {

printf("Agilent -1B error while sending or receiving ‘%s’.\n", bad_string);
printf("Error #: %d - - %s\n”, error, errstr(error));

106 Application Programs

[* APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON,
FOR MICROSOFT C AND THE NATIONAL INSTRUMENTS GPIB-PC INTERFACE CARD
PROGRAM: N3.C

Configure the GPIB.COM handler for the following:

EOI enabled for both read and write

#include <stdio.h> Disable auto serial poll *
#include <stdlib.h>
#include <string.h>
#include "decl.h”
#define ERR (1<<15) [* Error detected as bit 15 of ibsta. *
#define NUM_PTS 20 ¥ The number of points in the voltage List. *
#define MAX_LEN 255 ¥ Maximum length of a string = 255 characters.*/
#define SMALL_STRING 15 ¥ When you need a small string of 15 characters. */
#define WTG 32 [* Waiting for Trigger (WTG) = hit 5 = value 32 */
int slot0; /¥ Device number of module in slot 0. Slot0 is configured in GPIB.Com as
GPIB address 5, secondary address 96. *
main()
{
char *cmd; ¥ Used to hold command strings sent to the module. */
char cmd_buff[MAX_LEN]; /¥ Used to hold command strings during string manipulations. */
char vpoint{SMALL_STRING]; ¥ Used to hold the string equivalent of one voltage ramp step. */
char vlisttMAX_LEN]; /¥ Used to hold the entire voltage List command header and points. */
char condition_data[SMALL_STRING]; ¥ Reserve space for reading back status conditions. */
inti; ¥ Loop counter. */
float vstart = 2.0; [+ Start voltage for the ramp. */
float vstop = 10.0; /¥ Stop voltage for the ramp. */
float ramptime = 0.5; ¥ Transition time for the ramp. */
float dwell; /¥ Dwell time for each ramp step. */
dwell = ramptime / 19.0; * Since the output stays at the last voltage point after its
dwell expires, the dwell time of the last point is not part of the
transition time. Therefore, divide the total time by 19 points, not 20.
You want the same dwell time for every point in the List, so only
download 1 dwell time. ¥/
if ((slot0 = ibfind(“SLOTO")) < 0) I+ Assign unique identifier to the device slot0 and store in */
finderr(); [¥ variable slot0. Error = negative value returned. *
cmd = "*RST;*CLS;STATUS:PRESET"; /* Resetand clear module. */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)
error(cmd);
sprintf(cmd_buff , "VOLT %f", vstart); [+ Start ramp at vstart. Use number to string conversion to send */

/*
ibwrt(slot0, cmd_buff, strlen(cmd_buff));
if (ibsta & ERR)
error(cmd_buff);

cmd ="CURR .17
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)

error(cmd);

cmd = "OUTPUT ON";
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)

error(cmd);

real numbers over the bus as part of the command string. ¥/

[* Enable output */

Application Programs 107

cmd = "VOLT:MODE LIST"; I* Set to get voltage from List */
ibwrt(sloto, cmd, strten(cmd));

if (ibsta & ERR)
error(cmd);
strepy(vlist, "LIST:VOLT “); [* Start with the command header for the voltage List. */
for (i=1;i < NUM_PTS; i++) { ¥ The Loop calculates the string *
sprintf(vpoint, “ %f, “, vstart+(((vstop - vstart) / NUM_PTS) *i)); * equivalents of the voltage List *
strcat(vlist, vpoint); [* points and concatenates them for */
} [+ only the first 19 because there *
¥ should not be comma after the *
sprintf(vpoint , “%f" , vstop); * last point. Do the last point *
strcat(vlist, vpoint); ¥ separately with no comma. #
ibwrt(slot0, vlist, strlen(vlist)); /¥ Download voltage List points */
if (ibsta & ERR)
error(vlist);
sprintf(cmd_buff, "LIST:DWELL %f", dwell); /¥ Download 1 dwell time. Use numberto *
ibwrt(slot0, cmd_buff, strlen(cmd_buff)); ¥ string conversion to send the real *
if (ibsta & ERR) ¥ number over the bus as part of the *
error(cmd_buff); ¥ command string. ¥
cmd = "LIST:STEP AUTO", ¥ Dwelt-paced List */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)
error(cmd);
cmd = "INITIATE"; [* Enable trigger to start List */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)
error(cmd);

I* Before triggering the module, determine if it is ready by checking for
'Waiting for Trigger' (bit 5 of the Operation Status Register).

You could eliminate this step by simply inserting a pause in the program. However, by checking the instrument status, you can avoid
timing problems. Also, any other operations that take time will give the module a chance to complete processing. */

do {
cmd = "STATUS:OPERATION:CONDITION?",
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)
error(cmd);

ibrd(slot0, condition_data, SMALL_STRING); ~ /* Allow to read SMALL_STRING hytes, which is more */

if (ibsta & ERR) /¥ than enough. Note that first byte will be a + sign, */
error(condition_data); * so you must convert the string to float, then to int, */
/¥ todo an integer bit test. *

} while (((int)(atof(condition_data)) && WTG) ==0); / * Loop until WTG = hit 5 (value 32) is true. ~ */

[* Send trigger command to start List and generate the voltage ramp. */

cmd = "TRIGGER:IMMEDIATE", [* This is an immediate trigger, which is always */

ibwrt(slot0, cmd, strlen(cmd)); ¥ active. Therefore, it does not need to be *

if (ibsta & ERR) ¥ selected as a trigger source. *
error(cmd);

108 Application Programs

}

firiderr() ¥ Indicates that ibfind failed */
{
printf(“lbfind error: Does device name given match configuration name?\n");
}
error(bad_string) I* This is a generalized error checking routine. */

char *bad_string;

printf("GPIB error while sending or receiving ‘%s’.\n", bad_string);
printf("GPIB status: ibsta = 0x%, iberr = 0x%x, ibcnt = 0x%x\n", ibsta, iberr, ibent);

}

Application Programs 109

A
CAARDS ..ottt ee e e ebee e eheeeabeeeateeeabeeaaheeeabeeaabeeabeeaabeeabeeeaaeebeteaheeebeteareeeteeeneeebeeeareenares 15
ANSIJIEEE,oeietee ettt ettt ettt e e b e e be e e be e e be e e ebaeebee e ebeeeabeeesbeeebeeeabeeesesateesnbeesaneesn 7-8, 23,51, 54, 64
C
(07 2 I o 1 SO U RRURRRPRRRUR 43,52
Lo T o= 0] 0= XS Yo o S 33
(OO o] SO P RSSO RTRPRRRT 43, 50, 52, 56
commands
(o]0 1) o TSR 10, 14, 23, 24
(oo .01 o] 1= 1 o o TR PSPPSR 64
diagram (see tree diagram)
L0 =0 o <o ST 26, 64
(== = R RSO UP 23
(O o 1 PRSPPSO 25, 52
O B DSOS 15
(LY o PR S R RRSRR 43, 50, 52, 55
D
data
o100 =7 o O SUO 15
(02 1= = 1 (< GO 15
001U oL RS RSRSRRN 15
Q10 10 0= or= RSO 14
LS LS 15
[1@ I oo 1 4017 o ISR 27,31
)]0 o OSSR 25, 52
default state (see *RST state)
()] o U1 o1 | PRSP S PR PP PPRPRT 49, 62
XA o PR ORR 52, 56, 59
D 1O Yo [(LY O 16
E
EITOF QUEUE, ..ueeieiteeuteesuteesueeestteesueeesaeeesseeesseeesaeeesae e e aaeeesh et e aee e SR EeeRe e e SR e e e ae e e 4R e e e ame e e sh e e eb e e emseesmbeeamteesnbeesnneesabeennneesa 24, 46
error messages
(010110 = 65
S 1 R 31,65
Y [1 T TSP PSP PPPTRRRON 65
2 o PRSP 25, 30, 50, 52, 55
(Y= L 17=. 1o =R 49, 54
o o1 RSO 25, 52
F

factory-default state (see * RST state)
FLT output (see DFI)

Index 111

€ SO PP TS U ROTPPRSTTR 31, 47
GWBASIC, .ottt ettt e et e R R e RS R R AR R AR AR R AR R R e R Rt R R e n e nnes 17,20
H
1S L. SRS 11
Lore) 0117 0110 1S OSSR 12
(To]aTo o1 1 0 T TSSO PSP PSP PTUTSTPPTPTSTPRTPRIR 11
o] 01T o "= RSP SOS PP U TSP PSOUPP 12,13
PN, b E e bR e bR £ SRR e R R e R e ek £ E e £ b E bt R e eR e e R e e eRenRe e b e nEe e erenreneas 13
S S 072 (= 0] PP 12
S 10 0 1 PRSPPI 11
GPIB address
(ST 172" VOSSP USSP PRSTRP 9, 11,17, 18
SECONTBY, +.vevereeueetereesteteseese et re st et e st eseebese e st eb e s e e st eb e seeh e e b e seeheeh e A e e heeb e Aeeh e eE e seeh e e R e s e eb e e b eb et ebesr e e ebenR e e ebenrennas 9, 17,18
S S 1] 0o TSROSO PR PTRPTO 9
AGIENE BASIC, .ottt b et b bt b et e e ke b e £ bt e bk e e bbb et et et s 17,18, 19
GPIB CAPBDIITIES,veeeeeitiieiestireeeet ettt bbb bt b et bR e et R bt b s Rt b et b e 9
I
|EEE (see ANSI/IEEE)
INH input (see RI)
IMPIIE ABORT, ..ottt st b ettt s b e bt s e b e Rt se e b e bt e e e Rt e e e b e b e e e b e Rt ee s b et se b e st ee et ebesebere et 28, 37,60
TNEEITUPE, SOUFCE OF, ...ttt ettt sttt sttt st b e et b e e ae b s e e he b e ne e bt e b e e e e bt e b e sE e Rt SR seE e Rt e b e b e Rt e b e ne e st eb e s e enenbene e st nbennns 54
K
keyboard operation (see User’s Guide)
keyword (see header)
L
language, SCPI (see SCPI)
[INK PBIBMELETS,eiveeeeeete ettt et h et h e b e e b e b e e bt e b e e e bt e R e e e bt e b e e b eE e st e b e e e Rt e b e ne e st eb e s e e st nbeneenenbe e 50
[FoTo ! Lol (o 10| ae{] 191010 7= 5 o TSRS 7
LaTor= IS S 1S SRS (o o TSP OSRRRSRN 48
T PSSR 61
(o0] 0.1 4= 070 LSRR 35, 37, 38, 39, 48
OWEIT-PBCEM, ... ettt b bbb b £ e bR b e R R R e Rt R e et b et Rt b et b n e 62
1= Y PSSP 61
81070 121010101011 1o RN TSP U TSP PP 61
S <o (U< 0ol 0o OSSOSO U ST P TSP PT SR 61
L o L= 0= o= OO ST P TSR PTSUPP 62
LSC PUISE, ettt sttt b et b bbbt b e bt bt e R bt SR e e R AR e E bR R R R Rt eE e Rt R Rt R e ne b n e 49, 59
M
MEBNUAIS, SEMES BOIXXA, . eeeeetieteeietieeee et et e e st et e e st e eeseeseebeaeeseesbesaesbesbesaeebeebesaeebeeseese e £eseeaeeseeneeseeseeneeneensensensensans 7
IMIAV DT, ettt et et bbb £ b e £ Rk e bRt e At £t b b et e b bt et ebene s 30, 50, 52, 54
IMNESSAGE LEIMNINGBLON,eivieetirteeetereetert et ettt se et st eeb e seeseeb e s eb e s es e e e e e eh e e e eaeeh e e eb e R e R e b e e eb e Ao £ebe b eaeeb e s eb e nbenenb e s ebeneenennenes 12
IYIESSAGE UNIT, ..eeveeeterteseetere ettt st e et e st b e e bt seese b e e ehese e s e e s e e eb e e e s e e R e e eh £ A e e h £ 8 £ e eh e A eb £ Eee S8 e a e e b e b eh e R eneeb e e b e b e nbens e bt e ene e enes 10

112 Index

MESSAYE UNIT SEPAIGLOT,veuveterteuertieetertesesteseetersesessesesessesesseses e s b es e b e s e st bea e b e s e he s R e ae e b e e es e £ae e bt b e st eb e e eb e b e st nbe e e benne st ees 12

MESSAYE UNItS, COMDINING, ..eueitieetirtieeetiteiertetst ettt ss et b e s s e st b e e e b e b es e b e e s b e b e st e b et b e she b e st nb e e e bt be st et e e e senbeneens 10

YTt 01") i A SRS 18, 19

aaToTo (B1CaTo (= g1 (1 o= [l g AR 26

MOTUIE OPILIONS, ...tttk eh et b et b et b e s b e e b e e s e h e e eb £ eeeh R e s e b £ A Ees £ s eb e e eae e bt s ebenb e s e nb et en e e enenn s 27

Y S Y o PSPPSR 29, 30,52, 54
N

National INStrUMENES DOS AIIVEL,ccviiieiiiriiieresies ettt sttt ae b e s aeeseese et eseeseenes ssenseseansenseseateseeseeneas 18

NON=-SCPl COMMIBINGS, ... viveiteitieieriesieeesie sttt se ettt et st se et et et et eseesee e eneeseesseneeseeasesbeseeabesbess saeeseeseeneeneensensensenseseansanes 67

NONVOI AT IMEIMOIY, ...ttt b s b bbb bt s e et bt s bt b es she b e e bt b enesnenes 26, 28, 29, 30

N RIS ettt ettt eeh et e b et e bt e sa b e e e Re e e R et e R e e eRE e e SRR e e Re e eaE et eEeeeREeeeRee e Re e s beeaneeenReeenneenareas 15

N RS ettt bttt esh et e sk et e be e sa b e e e ae e e Re e e R e e eaE e e SR Re e Re e oA Ee £eeaneeeREeeeRRe e Ee e e beeeneeenReeenneenareas 15
@]

L@ O o 1 TSRS 36, 41, 45, 56

OCP, ettt bt bbb e Ao e bRt A b e Rt EeE e R £ E R e Rt e A b e R £ AR e Rt A SR e R e eE R eb e £ A e R e e b e b e e b e Rt bebe et bene et 36, 41

L@] = 3 1 TSSOSO 25, 26, 41, 52, 63, 72, 74

OPER DT, etttk b et b b st e b b e ket et e s bbbt nas 30, 45, 50, 52, 55, 56

L@ I o SRR 41, 45, 52, 56

(010 11 10 [0 [L PP 27,54

overcurrent protection (see OCP)

OVENTAPPE COMMEINTS,veviueetirtiiet ittt ettt ettt ettt e bbbt et e bt e s eb e e bt e e e e bt b et b e st b et e se bt b e e b nnenes 26, 63

overvoltage protection (see OVP)

(@Y«) PSSO 45, 50, 52
P

parallel commands (see commands, overlapped)

022 = 01 (< PP 23,24, 31,50

passcode, calibration (see calibration password)

PENAING OPEIGLIONS, ...c.vereeueitireeiiete sttt sttt sttt e ettt ettt e h e eb e se e st e b e seeb e e bt s e ebeeheseeb e ebeseebaeeb e sb e b ebesbe e ebesbeneebenrenea 27,31

PON DL, vttt sttt st b et e b et £ bRt s e b e R s o E e s e £ £ e b e Rt e A e b e Re s S e b e R eR e e b ek e e b e Re et b ek e nebeRe e b 25,52, 55

power-on status (see * RST state)

primary address (see GPIB address)

PrOQIaM IMESSATE,eeviriiiiieiiee i it s b e e b e s b e e e s e s he s sh e e e e e ae s s hs e e he e e b e s b e e R b e s a b e s he e s h e eE e s b e e b e e b s sha e sb e e s b e e b e e b e s anesan s 10

ProgrammMing VOITAOE,coeiueieerieiete ittt ettt et sttt e et b e se et b e se e st eb e seeseeb e se e st e bR e sb e e eb e s b e e ebesbe e ebesrenna 77,78

S OO OSSPSRV 25,27, 54
Q

[0 L TP 12,23

QUES DI, ettt ettt ettt bbbt e bt b b e £ e b et s b ek e e A e b et b e b e e e e bRt e b b et b e ne e b 30, 45, 50, 52

L@ N o PSSRSO 25,52
R

== 01T [=0 (= £ OPSRSN 55

TECAIIEU PAIBIMELEL'S, ...oviiieieieieitecteee et e et s et e et e e st e s te s reeteese e e e s teseesbesaeeReeseeasesseseestesereeneeneensesteseenbenneeneensenseeesrens 28

FEFEIENCE UOCUIMENTS,ivieeiestetisest ekttt s et e bR R et s e R e st e R e e R e e R s s e Rt ne e rer e nenn e e nnas 7

remote inhibit (see RI)

FEMOLE SENSE SWITCH, ...viiieiiiesre sttt b e e et R Rt e b e R b e Rt R e ne st nenr b e n s e nnas 49

Index 113

TESEL, PAFAIMELENS,ooiiiiiiiiiiie e s b e b h e e s b e s b e e b e e b e s e s b e s b e b e R e b e e b e 50
reset state (see *RST state)
TESPONSE MESSAGE,veeuveeuriiurerieesieesiea st et sssssaeesb e e s b e s b e s ae s aes s ae e she e bE o s s s ae s s he e s b e e b e e b e £ ab e s Re e s EeRE e s b e e b e s b s sha e sb e e s b e e b e e b e sanesan s 10
RI
configuration switch for (see Chapter 2 in User’s Guide)
(0[S ot gT o1 Lo] 1 Ko TSSOSO PP 62
digital connector pinsfor (see Chapter 3 in Installation Guide)
examples of use (see Chapter 4 in User’s Guide)
example of wiring (see Chapter 3 in Installation Guide)

RI QUESHIONEDIE SEALUS DT, ...ttt e e ne e saesnesaesneeneas 41, 45, 52
signal electrical characteristics (see Chapter 1 in Installation Guide)
010 == ol 1= S TSSO PSS UY ST PTSTPPO 12
0 1S | PSR SRS 29, 30, 52, 53, 55
Bl S] I SRR 28,50
L LG o101 TSRS 50, 60, 63
S
SAVEA PAFAIMELEN'S,e.viueetiiteeetertee et st et et st ettt st et eb e s e et et e se et eb e seeae et e sEeaeeb e e e e aeeb e 4R emeeb e 4R e aeebeeeb e s R e e ebese et et e sbe e ebeseennebenrennas 29
S ! TSR 9
CONFITMEA COMIMBINGS, ... eeieeiite ittt ettt et eb et e s e et e e e b e seesbe e st es e e e e seebeseesbesaeene et enseneesneneas 67
A= £ o o TSRS RSPRN 49, 67
secondary address (see GPIB address)
SEQUENLIEL COMIMBINGS,eveeeueetereeeet ettt sttt ettt eb e se st b s e et eb e se e st e b e seeaeeb e se e st e b e sE e st eE e seb e e eb e se e e et e see e ebesreneebesrennas 63
SEITAI PO, ettt h R R R R R R e R R e Rt R n Rt Rt ne b e e 4-3
SETUP.BAS, .ottt sttt b st e st st e st ettt e s s e s e b e s s e st e R e st e Re b et e Rt R et e Re e R e e s e Rt R et e Rt e R et e Re e EetenenEe e eneeee 2-8
SRQ, ettt et e— et et et et A et Ee A e Rt Ee A e Rt EeeR e Rt e EeeAeReeEeete Rt R e s etenae Rt e EenaenenEenaenenrenaens 27, 30, 54, 55
Y 1O o101 SRS 43, 50, 60
S 1 o1 =PRSS 49, 60, 63
STV o TSRS 49
T
LI L O o0 =SSOSR 49, 60, 63
LUL= S0 = oSS 31-32
I T L= 1P 60
trigger
01 SO 58
LD CE: o I 110 L= TSP 58
FNITIBEING, veveveireerereeeeeese e e see s e seeete s e ese e aeseetesaeesesseeseesee e esteseeasesseeseessensanteseeEeaaeaReReeseessensesteseentenseeneeneenseneeneenten 58
TS0 oo LS PSPPSR 58, 59
LI T L= L | TS 60
LD = TSP 58
PSSO SOS 59
U
units (see data suffix)
L8N o PSPPSR 45, 52
w
LT I o TSP 32,43, 47,52, 59, 105

114 Index

Agilent Sales and Support Offices

For more information about Agilent Technologies test and measurement products, applications, services,
and for a current sales office listing, visit our web site: http://www.agilent.com/find/tmdir

Y ou can aso contact one of the following centers and ask for atest and measurement sales

representative.

United States:

Agilent Technologies

Test and Measurement Call Center
P.O. Box 4026

Englewood, CO 80155-4026

(tel) 1 800 452 4844

Canada:

Agilent Technologies Canada Inc.
5150 Spectrum Way

Mississauga, Ontario

L4W 5G1

(tel) 1877 894 4414

Europe:

Agilent Technologies

Test & Measurement European Marketing Organisation
P.O. Box 999

1180 AZ Amstelveen

The Netherlands

(tel) (31 20) 547 9999

Japan:

Agilent Technologies Japan Ltd.
M easurement Assistance Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192-8510, Japan

(tel) (81) 426 56 7832

(fax) (81) 426 56 7840

Technical datais subject to change.

115

Latin America:

Adgilent Technologies

Latin American Region Headquarters
5200 Blue Lagoon Drive, Suite #950
Miami, Florida 33126

U.SA.

(tel) (305) 267 4245

(fax) (305) 267 4286

Australia/New Zealand:
Adgilent Technologies Australia Pty Ltd
347 Burwood Highway
Forest Hill, Victoria 3131
(tel) 1-800 629 485 (Australia)
(fax) (613) 9272 0749
(tel) 0800 738 378 (New Zealand)
(fax) (64 4) 802 6881

Asia Pacific:

Adgilent Technologies

24/F, Cityplaza One, 1111 King's Road,
Taikoo Shing, Hong Kong

tel: (852)-3197-7777

fax: (852)-2506-9284

Manual Updates

The following updates have been made to this manual since the print revision indicated on the title page.
4/15/00

All references to HP have been changed to Agilent.

All references to HP-1B have been changed to GPIB.
Information about V XIPlugé& Play instrument drivers has been added to chapter 1.

	Title Page
	Safety Guidelines
	Table of Contents
	Introduction
	About this Guide
	Documentation Summary
	External References

	Introduction to Programming
	GPIB Capabilities of the Power Module
	Module GPIB Address
	Introduction to SCPI
	SCPI Data Formats
	System Considerations
	Translation Among Languages

	Language Dictionary
	Introduction
	Parameters
	Related Commands
	Order of Presentation
	Common Commands
	Subsystem Commands
	Description of Common Commands
	Description of Subsystem Commands

	Status Reporting
	Power Module Status Structure
	Status Register Bit Configuration
	Operation Status Group
	Questionable Status Group
	Standard Event Status Group
	Status Byte Register
	Output Queue
	Location of Event Handles
	Initial Conditions at Power On
	Examples

	Synchronizing Power Module Output Changes
	Introduction
	Trigger Subsystem
	List Subsystem
	DFI Subsystem
	RI Subsystem
	SCPI Command Completion

	Error Messages
	Power Module Hardware Error Messages
	System Error Messages

	SCPI Conformance Information
	Application Programs
	Index
	Manual Updates

