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Introduction

The need for new high-frequency, solid-state circuit
design techniques has been recognized both by micro-
wave engineers and circuit designers. These engi-
neers are being asked to design solid state circuits
that will operate at higher and higher frequencies.

The development of microwave transistors and
Agilent Technologies’ network analysis instrumen-
tation systems that permit complete network char-
acterization in the microwave frequency range
have greatly assisted these engineers in their work.

The Agilent Microwave Division’s lab staff has
developed a high frequency circuit design seminar
to assist their counterparts in R&D labs through-
out the world. This seminar has been presented
in a number of locations in the United States and
Europe.

From the experience gained in presenting this orig-
inal seminar, we have developed a four-part video
tape, S-Parameter Design Seminar. While the tech-
nology of high frequency circuit design is ever
changing, the concepts upon which this technology
has been built are relatively invariant.

The content of the S-Parameter Design Seminar is
as follows:

A. S-Parameter Design Techniques—Part |
(Part No. 90i030A586, VHS; 90030D586, 2/4™)

1. Basic Microwave Review-Part [
This portion of the seminar contains a review of:

a. Transmission line theory

b. S-parameters

c. The Smith Chart

d. The frequency response of RL-RC-RLC
circuits

2. Basic Microwave Review-Part 11
This portion extends the basic concepts to:
a. Scattering-Transfer or T-parameters
b. Signal flow graphs

c. Voltage and power gain relationships
d. Stability considerations

B. S-Parameter Design Techniques Part Il
(Part No. 90030A600, VHS; 90030D600, 3/.”)

1. S-Parameter Measurements
In this portion, the characteristics of
microwave transistors and the network ana-
lyzer instrumentation system used to meas-
ure these characteristics are explained.

2. High Frequency Amplifier Design
The theory of Constant Gain and Constant
Noise Figure Circles is developed in this por-
tion of the seminar. This theory is then
applied in the design of three actual amplifier
circuits.

The style of this application note is somewhat
informal since it is a verbatim transcript of these
video tape programs.

Much of the material contained in the seminar,
and in this application note, has been developed
in greater detail in standard electrical engineering
textbooks, or in other Agilent application notes.

The value of this application note rests in its
bringing together the high frequency circuit design
concepts used today in R&D labs throughout the
world.

We are confident that Application Note 154 and
the video taped S-Parameter Design Seminar will
assist you as you continue to develop new high fre-
quency circuit designs.



Chapter 1. Basic Microwave Review |

Introduction

This first portion of Agilent Technologies’ S-Para-
meter Design Seminar introduces some fundamen-
tal concepts we will use in the analysis and design
of high frequency networks.

These concepts are most useful at those frequencies
where distributed, rather than lumped, parameters
must be considered. We will discuss: (1) scattering
or S-parameters, (2) voltage and power gain rela-
tionships, (3) stability criteria for two-port net-
works in terms of these S-parameters; and we will
review (4) the Smith Chart.

Network Characterization

S-parameters are basically a means for characteriz-
ing n-port networks. By reviewing some traditional
network analysis methods we’ll understand why an
additional method of network characterization is
necessary at higher frequencies.
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Figure 1

A two-port device (Fig. 1) can be described by a
number of parameter sets. We're all familiar with
the H-, Y-, and Z-parameter sets (Fig. 2). All of these
network parameters relate total voltages and total
currents at each of the two ports. These are the
network variables.

H-Parameters Y-Parameters

Vi=h;,+h,V,
L=h,;l,+h,V,

L =yuVi+y.V.
L=y,Vi+ y.V,

Z-Parameters

Vi=z,l, +z,,L
V. =1z,1, + z,1

Figure 2

The only difference in the parameter sets is the
choice of independent and dependent variables.
The parameters are the constants used to relate
these variables.

To see how parameter sets of this type can be
determined through measurement, let’s focus on
the H-parameters. H; is determined by setting V,
equal to zero—applying a short circuit to the output
port of the network. Hy; is then the ratio of V; to
I;—the input impedance of the resulting network.
H;s is determined by measuring the ratio of V; to
V,—the reverse voltage gain-with the input port
open circuited (Fig. 3). The important thing to note
here is that both open and short circuits are essen-
tial for making these measurements.
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Moving to higher and higher frequencies, some
problems arise:

1. Equipment is not readily available to measure
total voltage and total current at the ports of the
network.

2. Short and open circuits are difficult to achieve
over a broad band of frequencies.

3. Active devices, such as transistors and tunnel
diodes, very often will not be short or open circuit
stable.

Some method of characterization is necessary to
overcome these problems. The logical variables to
use at these frequencies are traveling waves rather
than total voltages and currents.



Transmission Lines

Let’s now investigate the properties of traveling
waves. High frequency systems have a source of
power. A portion of this power is delivered to a
load by means of transmission lines (Fig. 4).
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Voltage, current, and power can be considered to
be in the form of waves traveling in both directions
along this transmission line. A portion of the
waves incident on the load will be reflected. It then
becomes incident on the source, and in turn re-
reflects from the source (if Zg # Z,), resulting in a
standing wave on the line.

If this transmission line is uniform in cross sec-
tion, it can be thought of as having an equivalent
series impedance and equivalent shunt admittance
per unit length (Fig. 5).
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A lossless line would simply have a series induc-
tance and a shunt capacitance. The characteristic
impedance of the lossless line, Z,, is defined as

Z, = VL/C. At microwave frequencies, most trans-
mission lines have a 50-ohm characteristic imped-
ance. Other lines of 75-, 90-, and 300-ohm imped-
ance are often used.

Although the general techniques developed in this
seminar may be applied for any characteristic
impedance, we will be using lossless 50-ohm trans-
mission lines.

We’ve seen that the incident and reflected voltages
on a transmission line result in a standing voltage
wave on the line.

The value of this total voltage at a given point along
the length of the transmission line is the sum of the
incident and reflected waves at that point (Fig. 6a).

a) Vt = Einc + Eren‘

Einc - Ereﬂ.

b) I, = 7

Figure 6

The total current on the line is the difference
between the incident and reflected voltage waves
divided by the characteristic impedance of the line
(Fig. 6b).

Another very useful relationship is the reflection
coefficient, I'. This is a measure of the quality of the
impedance match between the load and the charac-
teristic impedance of the line. The reflection coeffi-
cient is a complex quantity having a magnitude, rho,
and an angle, theta (Fig. 7a). The better the match
between the load and the characteristic impedance
of the line, the smaller the reflected voltage wave
and the smaller the reflection coefficient.
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This can be seen more clearly if we express the
reflection coefficient in terms of load impedance
or load admittance. The reflection coefficient can
be made equal to zero by selecting a load, Z;,, equal
to the characteristic impedance of the line (Fig. 7b).

To facilitate computations, we will often want to
normalize impedances to the characteristic imped-
ance of the transmission line. Expressed in terms
of the reflection coefficient, the normalized imped-
ance has this form (Fig. 8).
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S-Parameters

Having briefly reviewed the properties of transmis-
sion lines, let’s insert a two-port network into the
line (Fig. 9). We now have additional traveling
waves that are interrelated. Looking at E,,, we see
that it is made up of that portion of E;, reflected
from the output port of the network as well as that
portion of Ei, that is transmitted through the net-
work. Each of the other waves are similarly made
up of a combination of two waves.
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Figure 9

It should be possible to relate these four traveling
waves by some parameter set. While the derivation
of this parameter set will be made for two-port net-
works, it is applicable for n-ports as well. Let’s
start with the H-parameter set (Fig. 10).

H-Parameters

V,=h,l, + h,.V,
L=hy,l + h,,V,

Figure 10
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Figure 11

By substituting the expressions for total voltage
and total current (Fig. 11) on a transmission line
into this parameter set, we can rearrange these
equations such that the incident traveling voltage
waves are the independent variables; and the
reflected traveling voltage waves are the dependent
variables (Fig. 12).

E, =f, (h) E, +f,, (h) E;,
E,--g = f2, (h) En + fzz (h) Ei2
Figure 12

The functions f;q, f21 and f;s, fs5 represent a new set
of network parameters relating traveling voltage
waves rather than total voltages and total currents.
In this case these functions are expressed in terms
of H-parameters. They could have been derived
from any other parameter set.

It is appropriate that we call this new parameter
set “scattering parameters,” since they relate those
waves scattered or reflected from the network to
those waves incident upon the network. These
scattering parameters will commonly be referred to
as S-parameters.

Let’s go one step further. If we divide both sides of
these equations by \/70, the characteristic imped-
ance of the transmission line, the relationship will
not change. It will, however, give us a change in
variables (Fig. 13). Let’s now define the new vari-
ables:

En —_ Ei'.’

a =z, =" VZ,

— En —_ Er'.’

b, = -——\/z_o b, VT,
Figure 13



Notice that the square of the magnitude of these
new variables has the dimension of power. |a;|*
can then be thought of as the incident power on
port one; |by|* as power reflected from port one.
These new waves can be called traveling power
waves rather than traveling voltage waves.
Throughout this seminar, we will simply refer to
these waves as traveling waves.

Looking at the new set of equations in a little more
detail, we see that the S-parameters relate these
four waves in this fashion (Fig. 14):

b,=8,,a,+S;; a
b, =S, a, + Sy a,

Figure 14

S-Parameter Measurement

We saw how the H-parameters are measured. Let’s
now see how we go about measuring the S-parame-
ters. For S;;, we terminate the output port of the
network and measure the ratio b; to a; (Fig. 15).
Terminating the output port in an impedance equal
to the characteristic impedance of the transmission
line is equivalent to setting a; = 0, because a travel-
ing wave incident on this load will be totally absorbed.
S11 is the input reflection coefficient of the network.
Under the same conditions, we can measure Sy;, the
forward transmission through the network. This is
the ratio of b, to a; (Fig. 16). This could either be
the gain of an amplifier or the attenuation of a pas-
sive network.
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By terminating the input side of the network, we
set a; = 0. Sy, the output reflection coefficient, and
S1s, the reverse transmission coefficient, can then
be measured (Fig. 17).

Sy, = b,
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Figure 17

A question often arises about the terminations
used when measuring the S-parameters. Because
the transmission line is terminated in the charac-
teristic impedance of the line, does the network
port have to be matched to that impedance as well?
The answer is no!

To see why, let’s look once again at the network
enmeshed in the transmission line (Fig. 18). If the
load impedance is equal to the characteristic imped-
ance of the line, any wave traveling toward the load
would be totally absorbed by the load. It would not
reflect back to the network. This sets a; = 0. This
condition is completely independent from the net-
work’s output impedance.
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Figure 18

Multiple-Port Networks

So far we have just discussed two-port networks.
These concepts can be expanded to multiple-port
networks. To characterize a three-port network, for
example, nine parameters would be required (Fig. 19).
S11, the input reflection coefficient at port one, is
measured by terminating the second and third
ports with an impedance equal to the characteris-
tic impedance of the line at these ports. This again
ensures that a, = ag = 0. We could go through the
remaining S-parameters and measure them in a
similar way, once the other two ports are properly
terminated.
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Figure 19

What is true for two- and three-port networks is
similarly true for n-port networks (Fig. 20). The
number of measurements required for characteriz-
ing these more complex networks goes up as the
square of the number of ports. The concept and
method of parameter measurement, however, is the
same.
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Figure 20

Let’s quickly review what we’ve done up to this
point. We started off with a familiar network
parameter set relating total voltages and total cur-
rents at the ports of the network. We then
reviewed some transmission line concepts. Apply-
ing these concepts, we derived a new set of param-
eters for a two-port network relating the incident
and reflected traveling waves at the network ports.

The Use of S-Parameters

To gain further insight into the use of S-parame-
ters, let’s see how some typical networks can be
represented in terms of S-parameters.

A reciprocal network is defined as having identical
transmission characteristics from port one to port
two or from port two to port one (Fig. 21). This
implies that the S-parameter matrix is equal to

its transpose. In the case of a two-port network,
Si2= Sa1.

a) —» Reciprocal [ — b,
b, --— | Network - a,
S=8
Si; =Sy
Figure 21

A lossless network does not dissipate any power.
The power incident on the network must be equal
to the power reflected, or ) |a,|* = 3 |b,|?* (Fig. 22).
In the case of a two-port, |a;|? + |az|*= |by|* +

| by |2 This implies that the S-matrix is unitary as
defined here. Where: I is the identity matrix and S*
is the complex conjugate of the transpose of S. This
is generally referred to as the hermetian conjugate
of S. Typically, we will be using lossless networks
when we want to place matching networks
between amplifier stages.

le]
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Figure 22

For a lossy network, the net power reflected is less
than the net incident power (Fig. 23). The differ-
ence is the power dissipated in the network. This
implies that the statement I — S* S is positive defi-
nite, or the eigen-values for this matrix are in the
left half plane so that the impulse response of the
network is made up of decaying exponentials.

o m—  —)
a; —» Lossy — b,
b, -~ Network - a;
Ilby)? < Elaf?
I-S*S>0
Figure 23



Change in Reference Plane

Another useful relationship is the equation for chang-
ing reference planes. We often need this in the meas-
urement of transistors and other active devices
where, due to device size, it is impractical to attach
RF connectors to the actual device terminals.

Imbedding the device in the transmission line
structure, we can then measure the S-parameters
at these two planes (Fig. 24). We've added a length
of line, @, to port one of the device and another
length, @, to port two.
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Figure 24

The S-parameter matrix, S’, measured at these
two planes is related to the S-parameter matrix
of the device, S, by this expression. We've simply
pre-multiplied and post-multiplied the device’s
S-parameter matrix by the diagonal matrix, ®.

To see what’s happening here, let’s carry through
the multiplication of the S;; term. It will be multi-
plied by e —j@, twice, since a; travels through this
length of line, @, and gets reflected and then travels
through it again (Fig. 25). The transmission term,
S’s1, would have this form, since the input wave,
ay, travels through @ and the transmitted wave, by,
through @. From the measured S-parameters, S’, we
can then determine the S-parameters of the device,
S, with this relationship (Fig. 26).

S =98, e

Sy =S,, eV + &2)
Figure 25
S=¢'§ P!
Figure 26

Analysis of Networks Using S-Parameters
Let’s now look at a simple example which will
demonstrate how S-parameters can be determined
analytically.
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Figure 27

Using a shunt admittance, we see the incident and
reflected waves at the two ports (Fig. 27). We first
normalize the admittance and terminate the net-
work in the normalized characteristic admittance
of the system (Fig. 28a). This sets ay = 0. Sy3, the
input reflection coefficient of the terminated net-
work, is then: (Fig. 28b).

To calculate Sy, let’s recall that the total voltage at
the input of a shunt element, a; + by, is equal to the
total voltage at the output, a, + b, (Fig. 28c). Because
the network is symmetrical and reciprocal, Sgs = Sy
and S;s = S;;. We have then determined the four S-
parameters for a shunt element.
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The Smith Chart

Another basic tool used extensively in amplifier
design will now be reviewed. Back in the thirties,
Phillip Smith, a Bell Lab engineer, devised a graph-
ical method for solving the oft-repeated equations
appearing in microwave theory. Equations like the
one for reflection coefficient, ' = (Z - 1)/(Z + 1).
Since all the values in this equation are complex
numbers, the tedious task of solving this expres-
sion could be reduced by using Smith’s graphical
technique. The Smith Chart was a natural name for
this technique.

This chart is essentially a mapping between two
planes—the Z (or impedance) plane and the ' (or
reflection coefficient) plane. We're all familiar with
the impedance plane—a rectangular coordinate
plane having a real and an imaginary axis. Any
impedance can be plotted in this plane. For this
discussion, we’ll normalize the impedance plane
to the characteristic impedance (Fig. 29).
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Figure 29

Let’s pick out a few values in this normalized plane
and see how they map into the I' plane. Let z = 1.
In a 50-ohm system, this means Z = 50 ohms. For
this value, |'| = 0, the center of the " plane.

We now let z be purely imaginary (i.e., z = jx where
x is allowed to vary from minus infinity to plus
infinity). Since I' = (jx - 1)/(jx + 1), |'| = 1 and its
phase angle varies from 0 to 360°. This traces out a
circle in the I plane (Fig. 29). For positive reac-
tance, jx positive, the impedance maps into the
upper half circle. For negative reactance, the
impedance maps into the lower half circle. The
upper region is inductive and the lower region is
capacitive.

Now let’s look at some other impedance values.

A constant resistance line, going through the point
z = 1 on the real axis, maps into a circle in the I
plane. The upper semicircle represents an imped-
ance of 1 + jx, which is inductive; the lower semi-
circle, an impedance of 1 - jx or capacitive (Fig. 30).
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Figure 30

The constant reactance line, r + j1, also maps into
the [ plane as a circle. As we approach the imagi-
nary axis in the impedance plane, ' approaches
the unit radius circle. As we cross the imaginary
axis, the constant reactance circle in the [ plane
goes outside the unit radius circle.

If we now go back and look at z real, we see at

z = -1, = . When z is real and less than one,

we move out toward the unit radius circle in the I
plane. When the real part of z goes negative, [ con-
tinues along this circle of infinite radius. The entire
region outside the unit radius circle represents
impedances with negative real parts. We will use
this fact later when working with transistors and
other active devices, which often have negative real
impedances.



In the impedance plane, constant resistance and
constant reactance lines intersect. They also cross
in the I plane. There is a one-to-one correspon-
dence between points in the impedance plane and
points in the I" plane.

The Smith Chart can be completed by continuing
to draw other constant resistance and reactance
circles (Fig. 31).

T zl = 'ryl
Figure 32
We can approach this impedance to admittance

conversion in another way. Rather than rotate the
" vector by 180°, we could rotate the Smith Chart

Figure 31 by 180° (Fig. 33). We can call the rotated chart an

admittance chart and the original an impedance
Applications of the Smith Chart chart. Now we can convert any impedance to
Let’s now try a few examples with the Smith Chart admittance, or vice versa, directly.

to illustrate its usefulness. Admittance -
1. Conversion of impedance to admittance: Converting a
normalized impedance of 1 + j1 to an admittance
can be accomplished quite easily. Let’s first plot
the point representing the value of z on the Smith
Chart (Fig. 32). From these relationships, we see
that while the magnitude of admittance is the
reciprocal of the magnitude of impedance, the mag-
nitude of ' is the same—but its phase angle is
changed by 180°. On the Smith Chart, the ' vector
would rotate through 180°. This point could then
be read off as an admittance.

+180°

Figure 33
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2. Impedances with negative real parts: Let’s now take
a look at impedances with negative real parts. Here
again is a conventional Smith Chart defined by the
boundary of the unit radius circle. If we have an
impedance that is inductive with a negative real
part, it would map into the I plane outside the
chart (Fig. 34). One way to bring this point back
onto the chart would be to plot the reciprocal of I',
rather than I itself. This would be inconvenient
because the phase angle would not be preserved.
What was a map of an inductive impedance
appears to be capacitive.

Figure 35

In the rest of this seminar, we will see how easily
we can convert measured reflection coefficient

2180"

Chart overlay over the Agilent Technologies net-
work analyzer polar display.

data to impedance information by slipping a Smith

3. Frequency response of networks: One final point needs
to be covered in this brief review of the Smith Chart,
and that is the frequency response for a given net-

work. Let’s look at a network having an impedance,

>1

T z = 0.4 + jx (Fig. 36). As we increase the frequency
of the input signal, the impedance plot for the net-

Figure 34 work moves clockwise along a constant resistance

circle whose value is 0.4. This generally clockwise
movement with increasing frequency is typical of
impedance plots on the Smith Chart for passive
networks. This is essentially Foster’s Reactance
Theorem.

If we plot the reciprocal of the complex conjugate
of I', however, the phase angle is preserved. This
value lies along the same line as the original I'.
Typically in the Agilent Technologies transistor
data sheets, impedances of this type are plotted
this way.

There are also compressed Smith Charts available
that include the unit radius chart plus a great deal
of the negative impedance region. This chart has a
radius that corresponds to a reflection coefficient
whose magnitude is 3.16 (Fig. 35).



Figure 36

If we now look at another circuit having a real part
of 0.2 and an imaginary part that is capacitive, the
impedance plot again moves in a clockwise direc-
tion with an increase in frequency.

Another circuit that is often encountered is the
tank circuit. Here again, the Smith Chart is useful
for plotting the frequency response (Fig. 37). For
this circuit at zero frequency, the inductor is a
short circuit. We start our plot at the point, z = 0.
As the frequency increases, the inductive reac-
tance predominates. We move in a clockwise direc-
tion. At resonance, the impedance is purely real,
having the value of the resistor. If the resistor had
a higher value, the cross-over point at resonance
would be farther to the right on the Smith Chart.
As the frequency continues to increase, the
response moves clockwise into the capacitive
region of the Smith Chart until we reach infinite
frequency, where the impedance is again zero.
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In theory, this complete response for a tank circuit
would be a circle. In practice, since we do not gen-
erally have elements that are pure capacitors or
pure inductors over the entire frequency range, we
would see other little loops in here that indicate
other resonances. These could be due to parasitic
inductance in the capacitor or parasitic capaci-
tance in the inductor. The diameter of these circles
is somewhat indicative of the Q of the circuit. If we
had an ideal tank circuit, the response would be
the outer circle on the Smith Chart. This would
indicate an infinite Q.

Agilent Technologies Application Note 117-1
describes other possible techniques for measuring
the Q of cavities and YIG spheres using the Smith
Chart. One of these techniques uses the fact that
with a tank circuit, the real part of the circuit
equals the reactive part at the half-power points.
Let’s draw two arcs connecting these points on the
Smith Chart (Fig. 38). The centers for these arcs
are at £j1. The radius of the arcs is V2.
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Figure 38

We then increase the frequency and record its
value where the response lies on the upper arc.
Continuing to increase the frequency, we record
the resonant frequency and the frequency where
the response lies on the lower arc. The formula for
the Q of the circuit is simply f,,, the resonant fre-
quency, divided by the difference in frequency
between the upper and lower half-power points.

Q = f,/Af.

Summary

Let’s quickly review what we’ve seen with the
Smith Chart. It is a mapping of the impedance
plane and the reflection coefficient or I' plane. We
discovered that impedances with positive real
parts map inside the unit radius circle on the
Smith Chart. Impedances with negative real parts
map outside this unit radius circle. Impedances
having positive real parts and inductive reactance
map into the upper half of the Smith Chart. Those
with capacitive reactance map into the lower half.

In the next part of this S-Parameter Design Semi-
nar, we will continue our discussion of network
analysis using S-parameters and flow graph tech-
niques.



Chapter 2. Basic Microwave Review I

This second portion of Agilent Technologies’ Basic
Microwave Review will introduce some additional
concepts that are used in high frequency amplifier
design.

Scattering Transfer Parameters

Let’s now proceed to a set of network parameters
used when cascading networks. We recall that we
developed the S-parameters by defining the
reflected waves as dependent variables, and inci-
dent waves as independent variables (Fig. 39a). We
now want to rearrange these equations such that
the input waves a; and b; are the dependent vari-
ables and the output waves a; and by the independ-
ent variables. We’ll call this new parameter set
scattering transfer parameters or T-parameters
(Fig. 39b).
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Figure 39

The T-parameters can be developed by manipulat-
ing the S-parameter equations into the appropriate
form. Notice that the denominator of each of these
terms is So; (Fig. 40).
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We can also find the S-parameters as a function of
the T-parameters.
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While we defined the T-parameters in a particular
way, we could have defined them such that the out-
put waves are the dependent variables and the input
waves are the independent variables. This alter-
nate definition can result in some problems when
designing with active unilateral devices (Fig. 41).
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Figure 41

Using the alternate definition for the transfer
parameters, the denominator in each of these
terms is S;, rather than S,; as we saw earlier.

Working with amplifiers, we often assume the
device to be unilateral, or S5 = 0. This would cause
this alternate T-parameter set to go to infinity.

Both of these definitions for T-parameters can be
encountered in practice. In general, we prefer to
define the T-parameters with the output waves as
the dependent variables, and the input waves as
the independent variables.

We use this new set of transfer parameters when we
want to cascade networks—two stages of an ampli-
fier, or an amplifier with a matching network for
example (Fig. 42a). From measured S-parameter
data, we can define the T-parameters for the two
networks. Since the output waves of the first net-
work are identical to the input waves of the sec-
ond network, we can now simply multiply the two
T-parameter matrices and arrive at a set of equa-
tions for the overall network (Fig. 42b).
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Since matrix multiplication is, in general, not com-
mutative, these T-parameter matrices must be mul-
tiplied in the proper order. When cascading networks,
we’ll have to multiply the matrices in the same order
as the networks are connected. Using the alternate
definition for T-parameters previously described,
this matrix multiplication must be done in reverse
order.

This transfer parameter set becomes very useful
when using computer-aided design techniques
where matrix multiplication is an easy task.

Signal Flow Graphs

If we design manually, however, we can use still
another technique—signal flow graphs—to follow
incident and reflected waves through the networks.
This is a comparatively new technique for microwave
network analysis.

A. Rules
We'll follow certain rules when we build up a net-
work flow graph.

1. Each variable, a,, as, by, and by, will be desig-
nated as a node.

2. Each of the S-parameters will be a branch.

3. Branches enter dependent variable nodes, and
emanate from the independent variable nodes.

4. In our S-parameter equations, the reflected
waves b; and b, are the dependent variables and
the incident waves a; and a, are the independent
variables.

5. Each node is equal to the sum of the branches
entering it.

Let’s now apply these rules to the two S-parameter
equations (Fig. 43a). The first equation has three
nodes: b}, a;, and ay. b; is a dependent node and is
connected to a; through the branch S;; and to node
ay through the branch S;5. The second equation is
constructed similarly. We can now overlay these to
have a complete flow graph for a two-port network
(Fig. 43b).
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The relationship between the traveling waves is
now easily seen. We have a; incident on the net-
work. Part of it transmits through the network to
become part of b,. Part of it is reflected to become
part of b;. Meanwhile, the a, wave entering port
two is transmitted through the network to become
part of by as well as being reflected from port two
as part of b,. By merely following the arrows, we
can tell what’s going on in the network.

This technique will be all the more useful as we
cascade networks or add feedback paths.



B. Application of Flow Graphs

Let’s now look at several typical networks we will
encounter in amplifier designs. A generator with
some internal voltage source and an internal
impedance will have a wave emanating from it. The
flow graph for the generator introduces a new
term, bg (Fig. 44). It’s defined by the impedance of
the generator. The units in this equation look pecu-
liar, but we have to remember that we originally
normalized the traveling waves to \/Z_O The magni-
tude of bg squared then has the dimension of
power.
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Figure 44

For a load, the flow graph is simply [}, the complex
reflection coefficient of the load (Fig. 45).
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When the load is connected to the generator, we
see a wave emanating from the generator incident
on the load, and a wave reflected back to the gen-
erator from the load (Fig. 46).

Figure 46

To demonstrate the utility of flow graphs, let’s
embed a two-port network between a source and

a load. Combining the examples we have seen, we
can now draw a flow graph for the system (Fig. 47).
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Figure 47

We can now apply the rule known as Mason’s rule
(or as it is often called, the non-touching loop rule)
to solve for the value of any node in this network.
Before applying the rule, however, we must first
define several additional terms.

A first order loop is defined as the product of the
branches encountered in a journey starting from a
node and moving in the direction of the arrows
back to that original node. To illustrate this, let’s
start at node a;. One first order loop is S;;[s.
Another first order loop is Sa1IM,S12[ 5. If we now
start at node a,, we find a third first order loop,
Ssol 1. Any of the other loops we encounter is one
of these three first order loops.

A second order loop is defined as the product of any
two non-touching first order loops. Of the three
first order loops just found, only S;;['s and Sssl;, do
not touch in any way. The product of these two
loops establishes the second order loop for this
network. More complicated networks, involving
feedback paths for example, might have several
second order loops.

A third order loop is the product of any three non-
touching first order loops. This example does not
have any third order loops, but again, more compli-
cated networks would have third order loops and
even higher order loops.

Let’s now suppose that we are interested in the
value of by. In this example, bg is the only independ-
ent variable because its value will determine the
value of each of the other variables in the network.
B, therefore, will be a function of bs. To determine
b,, we first have to identify the paths leading from
bs to by. Following the arrows, we see two paths—
(1) S1; and (2) Szl LS.



The next step is to find the non-touching loops
with respect to the paths just found. Here, the path
S11 and the first order loop, Ss,'1, have no nodes or
branches in common. With this condition met, we
can call Sy5l'1, a non-touching loop with respect to
the path S;;.

The other path, So;1,S12, touches all of the net-
work’s first order loops, hence there are no non-
touching loops with respect to this path. Again, in
more complex networks, there would be higher
order non-touching loops.

Let’s now look at the non-touching loop rule itself
(Fig. 48). This equation appears to be rather omi-
nous at first glance, but once we go through it term
by term, it will be less awesome. This rule deter-
mines the ratio of two variables, a dependent to an
independent variable. (In our example, we are
interested in the ratio b; to bg.)

=Pl = SLA+ SL@V — . . ]+ P,(1 - SO .
1-2LD+ILU2)— L@@+ . . .
b
T_bs
Figure 48

P, P, etc., are the various paths connecting these
variables.

This term, Y L(1)®, is the sum of all first order
loops that do not touch the first path between the
variables.

This term, Y L(2)®, is the sum of all second order
loops that do not touch that path, and so on down
the line.

Now, this term, Y L(1)®, is the sum of all first order
loops that do not touch the second path.

The denominator in this expression is a function of
the network geometry. It is simply one minus the
sum of all first order loops, plus the sum of all sec-
ond order loops, minus the third order loops, and
SO on.

Let’s now apply this non-touching loop rule to our
network (Fig. 49). The ratio of b;, the dependent
variable, to bg, the independent variable, is equal
to the first path, Sy;, multiplied by one minus the
non-touching first order loop with respect to this
path, FLSZZ.

— Sn(1 - FLS'I'Z) + SzlrLSrz(l)
1- (Snrs + S‘Z‘)rL + S-zlrl.slzrs) + Snrsszzrl,

b,
bs
Figure 49

The second path, Ss;I1,S1, is simply multiplied by
one because there are no non-touching loops with
respect to this path.

The denominator is one minus the sum of first
order loops plus the second order loop.

This concludes our example. With a little experi-
ence drawing flow graphs of complex networks,
you can see how this technique will facilitate your
network analysis. In fact, using the flow graph
technique, we can now derive several expressions
for power and gain that are of interest to the cir-
cuit designer.

First of all, we need to know the power delivered to a
load. Remember that the square of the magnitudes
of the incident and reflected waves has the dimen-
sion of power. The power delivered to a load is
then the difference between the incident power
and the reflected power, P4 = |a|? —|b |2

The power available from a source is that power deliv-
ered to a conjugately matched load. This implies

that the reflection coefficient of the load is the con-
jugate of the source reflection coefficient, ['s* = I'1.

b, 1 b 1
T re*
a 1
Figure 50

Looking at the flow graph describing these condi-
tions (Fig. 50), we see that the power available
from the source is:

Pavs = |b|2_|a|2

Using the flow graph techniques previously
described, we see that:



The power available from the source reduces to
(Fig. 51):
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We can also develop voltage and power gain equa-
tions that will be useful in our amplifier designs
using these flow graph techniques. For a two-port
network, the voltage gain is equal to the total volt-
age at the output divided by the total voltage at the
input,

Av=227%Ds
a; + by

If we divide the numerator and denominator by bs,
we can relate each of the dependent variables of the
system to the one independent variable (Fig. 52a).
Now we have four expressions or four ratios that
we can determine from the non-touching loop rule.
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We can simplify this derivation by remembering
that the denominator in the expression for the
non-touching loop rule is a function of the network
geometry. It will be the same for each of these
ratios, and will cancel out in the end. So we only
need to be concerned with the numerators of these
ratios.

Let’s trace through a couple of these expressions to
firm up our understanding of the process (Fig. 52b).
As is connected to bg through the path Sg;lM;,. All
first order loops touch this path, so this path is
simply multiplied by one. by is connected to bg
through the path Sy;. All first order loops also
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touch this path. a; is connected to bg directly, and
there is one non-touching loop, Seol1. We have
already determined the ratio of b; to bg, so we can
simply write down the numerator of that expres-
sion. We have now derived the voltage gain of the
two-port network.

The last expression we wish to develop is that for
transducer power gain. This will be very important
in the amplifier design examples contained in the
final section of this seminar. Transducer power
gain is defined as the power delivered to a load
divided by the power available from a source.

Pyl

Gy =
' Paws

We have already derived these two expressions.

[ba2(1 —|T.1}
[bsl?/ (1 —1{Ts )

G =

What remains is to solve the ratio by to bg (Fig. 53a).
The only path connecting bg and by is Ss;. There are
no non-touching loops with respect to this path.
The denominator is the same as in the previous
example: one minus the first order loops plus the
second order loop. Taking the magnitude of this
ratio, squaring, and substituting the result yields
the expression for transducer power gain of a two-
port network (Fig. 53b).
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Needless to say, this is not a simple relationship, as
the terms are generally complex quantities. Calcu-
lator or computer routines will greatly facilitate the
circuit designer’s task.

Later, when designing amplifiers, we will see that
we can simplify this expression by assuming that
the amplifier is a unilateral device, or S5 = 0. In
general, however, this assumption cannot be made,
and we will be forced to deal with this expression.



One of the things you might want to do is to opti-
mize or maximize the transducer gain of the net-
work. Since the S-parameters at one frequency are
constants depending on the device selected and
the bias conditions, we have to turn our attention
to the source and load reflection coefficients.

Stability Considerations

To maximize the transducer gain, we must conju-
gately match the input and the output. Before we
do this, we will have to look at what might happen
to the network in terms of stability—will the ampli-
fier oscillate with certain values of impedance
used in the matching process?

There are two traditional expressions used when
speaking of stability: conditional and uncondi-
tional stability.

A network is conditionally stable if the real part of Z;,
and Z,, is greater than zero for some positive real
source and load impedances at a specific frequency.

A network is unconditionally stable if the real part of
Zin and Z,, is greater than zero for all positive real
source and load impedances at a specific frequency.

It is important to note that these two conditions
apply only at one specific frequency. The condi-
tions we will now discuss will have to be investi-
gated at many frequencies to ensure broadband
stability. Going back to our Smith Chart discus-
sion, we recall that positive real source and load
impedances imply: [s]and || <1.
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Let’s look first at the condition where we want to
conjugately match the network to the load and
source to achieve maximum transducer gain (Fig. 54).
Under these conditions, we can say that the network
will be stable if this factor, K, is greater than one
(Fig. 55). Conjugately matched conditions mean

that the reflection coefficient of the source, [g, is
equal to the conjugate of the input reflection coef-
ficient, I,.

g =Ty

L is equal to the conjugate of the output reflection
coefficient, I .

I_L = rout’k
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Figure 55

A precaution must be mentioned here. The K factor
must not be considered alone. If we were operating
under matched conditions in order to achieve max-
imum gain, we would have to consider the following:
(1) What effect would temperature changes or drift-
ing S-parameters of the transistor have on the sta-
bility of the amplifier? (2) We would also have to
be concerned with the effect on stability as we sub-
stitute transistors into the circuit. (3) Would these
changing conditions affect the conjugate match or
the stability of the amplifier? Therefore, we really
need to consider these other conditions in addition
to the K factor.

Looking at the input and output reflection coeffi-
cient equations, we see a similarity of form (Fig. 56).
The only difference is that S;; replaces Sy, and [,
replaces [s.
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If we set this equation, |[;,], equal to one, a
boundary would be established. On one side of the
boundary, we would expect |[;,| <1. On the other
side, we would expect |[i,| >1.

Let’s first find the boundary by solving this expres-
sion (Fig. 57). We insert the real and imaginary
values for the S-parameters and solve for ['1.
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The solutions for '{, will lie on a circle. The radius
of the circle will be given by this expression as a
function of S-parameters (Fig. 58a).

a
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The center of the circle will have this form (Fig. 58b).
Having measured the S-parameters of a two-port
device at one frequency, we can calculate these
quantities.

If we now plot these values on a Smith Chart, we
can determine the locus of all values of ', that
make || = 1.

This circle then represents the boundary (Fig. 59).
The area either inside or outside the circle will
represent a stable operating condition.

I, on stability circle yields

1180"

Figure 59
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To determine which area represents this stable oper-
ating condition, let’s make Z;, = 50 ohms, or '}, = 0.
This represents the point at the center of the Smith
Chart. Under these conditions, |Ii,| = |Si1].

Let’s now assume that S;; has been measured and
its magnitude is less than one. [;,’s magnitude is
also less than one. This means that this point, '}, = 0,
represents a stable operating condition. This region
(Fig. 60) then represents the stable operating con-
dition for the entire network.

'L on stability circle yields

~

Figure 60

If we select another value of ', that falls inside the
stability circle, we would have an input reflection
coefficient that would be greater than one, and the
network would be potentially unstable.

If we only deal with passive loads, that is, loads
having a reflection coefficient less than or equal to
one, then we only have to stay away from those
[1’s that are in this region (Fig. 61) to ensure sta-
ble operation for the amplifier we are designing.
Chances are, we should also stay away from imped-
ances in the border region, since the other factors
like changing temperature, the aging of the transis-
tors, or the replacement of transistors might cause
the center or radius of the stability circle to shift.
The impedance of the load could then fall in the
expanded unstable region, and we would again be
in trouble.



Figure 61

If, on the other hand, |S;;| >1, with Z;, = 50 Q, then
this area would be the stable region and this
region the unstable area (Fig. 62).

Figure 62

To ensure that we have an unconditionally stable con-
dition at a given frequency in our amplifier design,
we must be able to place any passive load on the
network and drive it with any source impedance
without moving into an unstable condition.

From a graphical point of view, we want to be sure
that the stability circle falls completely outside the
Smith Chart, and we want to make sure that the
inside of the stability circle represents the unstable
region (Fig. 63). The area outside the stability cir-
cle, including the Smith Chart, would then repre-
sent the stable operating region.

Figure 63

To satisfy this requirement, we must ensure that
the magnitude of the vector, Cy, the distance from
the center of the Smith Chart to the center of the
stability circle, minus the radius of the stability
circle, 1, is greater than one. This means that the
closest point on the stability circle would be out-
side the unit radius circle or Smith Chart.

To ensure that the region inside the Smith Chart
represents the stable operating condition, the
input or output impedance of the network must
have a real part greater than zero when the net-
work is terminated in 50 ohms. For completeness,
we must also add the output stability circle to gain
a better understanding of this concept. This means
that the magnitude of S;; and Sy, must be less than
one.

One word of caution about stability.

S-parameters are typically measured at some par-
ticular frequency. The stability circles are drawn
for that frequency. We can be sure that the ampli-
fier will be stable at that frequency, but will it
oscillate at some other frequency either inside or
outside the frequency range of the amplifier?
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Typically, we want to investigate stability over a
broad range of frequencies and construct stability
circles wherever we might suspect a problem.
Shown here are the stability circles drawn for
three different frequencies (Fig. 64). To ensure
stability between f; and f3, we stay away from
impedances in this (shaded) area. While this
process may sound tedious, we do have some
notion based on experience where something
may get us into trouble.

Figure 64
Stability is strongly dependent on the |Sis| |Sa1]

product (Fig. 65). |Ss;| is a generally decreasing
function of frequency from f on.
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Figure 65

22

|S12] is an increasing function.

Looking at the [Si2| |Ss;| product, we see that it
increases below fg, flattens out, then decreases at
higher frequencies.

It is in this flat region that we must worry about
instability.

On the other hand, if we synthesize elements such
as inductors by using high impedance transmission
lines, we might have capacitance rather than
inductance at higher frequencies, as seen here on
the Impedance Phase plot (Fig. 66). If we suspect
that this might cause oscillation, we would investi-
gate stability in the region where the inductor is
capacitive. Using tunnel diodes having negative
impedance all the way down to dc, we would have
to investigate stability right on down in frequency
to make sure that oscillations did not occur outside
the band in which we are working.
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Chapter 3. S-Parameter Measurements

The material presented in this program is a contin-
uation of Agilent Technologies’ video tape S-Para-
meter Design Seminar.

S-Parameters

A. Their Importance

Microwave transistor technology is continually
pushing maximum operating frequencies ever
upward. As a result, manufacturers of transistors
are specifying their transistors in terms of S-
parameters. This affects two groups of design
engineers. Transistor circuit designers must now
switch their thinking from the well-known H-, Y-,
and Z-parameters in their circuit designs to the

S or scattering parameters. Microwave engineers,
because transistor technology is moving into their
frequency domain, must now become conversant
with transistor terminology and begin to think of
applying transistors to the circuits they work with.

In this tape we will:
1. Review the S-parameter concept.

2. Show the results of typical S-parameter meas-
urements of a 12-GHz transistor.

3. Demonstrate the network analyzer system used
in these measurements.

B. Review of S-Parameters

The function of network analysis is to completely
characterize or describe a network so we’ll know
how it will behave when stimulated by some signal.
For a two-port device, such as a transistor, we can
completely describe or characterize it by establish-
ing a set of equations that relate the voltages and
currents at the two ports (Fig. 67).
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Figure 67

In low frequency transistor work, one such set of
equations relates total voltages across the ports
and total current into or out of these ports in
terms of H-parameters. For example,

\'%
hy, = ASS

Lily, =0

These parameters are obtained under either open
or short circuit conditions.

At higher frequencies, especially in the microwave
domain, these operating conditions present a prob-
lem since a short circuit looks like an inductor and
an open circuit has some leakage capacitance.
Often, if the network is an active device such as a
transistor, it will oscillate when terminated with a
reactive load.

It is imperative that some new method for charac-
terizing these devices at high frequencies is used.
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Figure 68

If we embed our two-port device into a transmis-
sion line, and terminate the transmission line in its
characteristic impedance, we can think of the stim-
ulus signal as a traveling wave incident on the
device, and the response signal as a wave reflect-
ing from the device or being transmitted through
the device (Fig. 68). We can then establish this new
set of equations relating these incident and “scat-
tered” waves (Fig. 69a): E;. and Es, are the voltages
reflected from the 1st and 2nd ports, E;; and Ey;
are the voltages incident upon the 1st and 2nd
ports. By dividing through by \/Z_O7 where Z, is the
characteristic impedance of the transmission line,
we can alter these equations to a more recogniza-
ble form (Fig. 69b). Where, for example, |b;|* =
Power reflected from the 1st port and|a;|? = Power
incident on the 1st port.
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a) E=8,E;; + S,,E;
Ey=S5,E; + S.E,

b) b, = §,,a, + S,,a,
b2 = S-_)la| + ngaz

where by = Ex and ay= Ey

Vaz, Vaz,
Figure 69

S11 is then equal to b;/a; with a; = 0 or no incident
wave on port 2. This is accomplished by terminat-
ing the output of the two-port in an impedance
equal to Z,.

C. Summary
S11 = input reflection coefficient with the output
matched.

Ss; = forward transmission coefficient with the
output matched.

This is the gain or attenuation of the network.

Sso = output reflection coefficient with the input
matched.

Si2 = reverse transmission coefficient with the
input matched.

To the question “Why are S-parameters impor-
tant?” you can now give several answers:

1. S-parameters are determined with resistive ter-
minations. This obviates the difficulties involved in
obtaining the broadband open and short circuit
conditions required for the H-, Y-, and Z-parameters.

2. Parasitic oscillations in active devices are mini-
mized when these devices are terminated in resis-
tive loads.

3. Equipment is available for determining S-param-

eters since only incident and reflected voltages
need to be measured.
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Characterization of Microwave Transistors

Now that we’ve briefly reviewed S-parameter the-
ory, let’s look at some typical transistor parame-
ters. There are three terms often used by transistor
circuit designers (Fig. 70):

1. f; or the frequency at which the short circuit
current gain is equal to one;

2. fs or the frequency where |Sg;| =1 or the power
gain of the device, |Ss;|?% expressed in dB is zero;

3. fax Or the frequency where the maximum avail-
able power gain, G,nay, of the device is equal to
one. F.« is also referred to as the maximum fre-
quency of oscillation.
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Figure 70

To determine f; of a transistor connected in a com-
mon emitter configuration, we drive the base with
a 50-ohm voltage source and terminate the collec-
tor in the 50-ohm characteristic impedance. This
results in a gain versus frequency plot that decays
at about 6 dB per octave at higher frequencies.

Due to the problems involved in obtaining true
short circuits at high frequencies, the short circuit
current gain |hg| cannot be measured directly, but
can be derived from measured S-parameter data.
The shape of this gain versus frequency curve is
similar to that of |Ss;|? and, for this example, f; is
slightly less than f.



Fhax is determined after conjugately matching the
voltage source to the transistor input, and the tran-
sistor output to the characteristic impedance of
the line. The resulting gain is the maximum avail-
able power gain as a function of frequency. It is
higher than |S,;|* because of impedance matching
at the input and output. With proper impedance
matching techniques, the transistor is usable above
fs in actual circuit design.

S-Parameters of Transistors

A. Introduction

Let’s now shift our attention to the actual S-param-
eters of a transistor. We’ll look at transistors in
chip form and after the chips have been packaged.
The advantage of characterizing the chip is that
you will get a better qualitative understanding of
the transistor. However, fixtures to hold these chips
are not readily available. Most engineers will be
using packaged transistors in their R&D work.
There are fixtures available for characterizing
packaged transistors, and we will demonstrate
these later on (Fig. 71). The bias conditions used
when obtaining these transistors’ parameters con-
nected as common emitter: V4, = 15 Vand I, = 15 mA.

Figure 71

B. S41 of Common Emitter

The input reflection characteristic, S, of the chip
transistor seems to be following a constant resist-
ance circle on the Smith Chart (Fig. 72). At lower
frequencies, the capacitive reactance is clearly visi-
ble, and as the frequency increases, this reactance
decreases and the resistance becomes more evident.
A small inductance is also evident, which for this
example, resonates with the capacitance at 10 GHz.

Figure 72

An equivalent circuit can be drawn that exhibits
such characteristics (Fig. 73). The resistance comes
from the bulk resistivities in the transistor’s base
region plus any contact resistance resulting from
making connections to the device. The capacitance
is due mainly to the base-emitter junction. The
inductance results from the emitter resistance
being referred back to the input by a complex 3 at
these high frequencies.
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Figure 73

If you characterize the same chip transistor after
packaging, the input reflection characteristic again
starts in the capacitive reactance region at lower
frequencies and then moves into the inductive
reactance region at higher frequencies (Fig. 72).
Another equivalent circuit explaining this charac-
teristic can be drawn (Fig. 74). Package inductance
and capacitance contribute to the radial shift
inward as well as to the extension of the S;; char-
acteristic into the upper portion of the Smith Chart.
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Input Equivalent Circuit (Package)

Figure 74
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C. Sy, of Common Emitter

The output reflection coefficient, Sy, is again in
the capacitive reactance portion of the Smith
Chart (Fig. 75). If you overlay an admittance Smith
Chart, you can see that this characteristic roughly
follows a constant conductance circle. This type of
characteristic represents a shunt RC type of equiv-
alent circuit where the angle spanned would be
controlled by capacitive elements, and the radial
distance from the center of the Smith Chart would
be a function of the real parts (Fig. 76).

Figure 75

R,
—

Output Equivalent Circuit (Chip)
Figure 76
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The output reflection coefficient of the packaged
transistor is again shifted radially inward and the
angle spanned is extended. From an equivalent cir-
cuit standpoint (Fig. 77), you can see that we have
added the package inductance and changed the
capacitance. This added inductance causes this
parameter to shift away from a constant conduc-
tance circle.

| R,

Sy, —= c’ R,
o 1

Output Equivalent Circuit (Package)

Figure 77

D. S;; of Common Emitter

The forward transmission coefficient, S,;, that we
have seen before when discussing f;, exhibits a
voltage gain value slightly greater than 4 or 12 dB
at 1 GHz and crosses the unity gain circle between
4 and 5 GHz (Fig. 78). The packaged transistor
exhibits slightly less gain and a unity gain
crossover at around 4 GHz.

Figure 78



In an equivalent circuit, we could add a current
source as the element giving gain to the transistor
(Fig. 79).
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Figure 79

E. S1, of Common Emitter

Since a transistor is not a unilateral device, the
reverse transmission characteristic, S;,, will have
some finite value in chip form. On a polar plot, the
S12 characteristic approximates a circular path
(Fig. 80).

Packaged

Figure 80

If you were to plot |S;2| on a Bode Diagram, you
would see a gradual buildup at about 6 dB/octave
at low frequencies, a leveling off, and then ultimately
a decay at the higher frequencies. Let’s now super-
impose a Bode Plot of |Ss;|. It is constant at frequen-
cies below 3 and then decays at about 6 dB/octave.
Therefore, the product of these two characteristics
would increase up to fg, around 100 to 200 MHz,
and remain relatively flat until a break point at
around the f; of the transistor (Fig. 81).

10
) Frequency

Figure 81

This |Si2| | Se1|product is significant since it both
represents a figure of merit of the feedback or sta-
bility term of the device and it also appears in the
complete equations for input and output reflection
coefficients.

F. Combined Equivalent Circuit

If you were to now combine the equivalent circuits
drawn up to this point, you could arrive at a quali-
tative model that describes the transistor’s opera-
tion (Fig. 82).
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Measurement Demonstration

Now that you’'ve seen some typical transistor char-
acteristics, let’s actually make several measure-
ments to see how simply and accurately you can
make the measurements that will provide you with
the necessary data for designing your circuits.

The S-parameter characteristics we have seen are
those of a Model 35821E Transistor. In these meas-
urements we will measure the transistor in a K-
disc common emitter package.
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The standard bias conditions are:

Vo = 15 volts
I. =15 mA

On the polar display with the Smith Chart overlay
inserted, the input impedance can be read off
directly. To ensure that we are in the linear region
of the transistor, we can measure S;; at two input
power levels to the transistor. If these readings

do not change, we know that we are driving the
transistor at an optimum power level and the S-
parameters are truly the small signal characteris-
tics. If we now vary the collector current bias level,
we note very little difference (Fig. 90).

\ Z(Increasing

Frequency

\ A
Notes:

1.’Vcb =15V; Ic = 15ma.
2. Vcb = 15 V; Ic = 5ma.
3.\Vcb =5 V; Ic = 15ma.

-90*
Frequency Range: 1 to 10 GHz
Figure 90

Returning the current level to the original value,
we now decrease Vg, and note a shift of the origi-
nal characteristic. Decreasing V., causes the epi-
taxial layer to be less depleted so you would expect
less capacitive reactance in the input equivalent
circuit.
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1. Vcb = 15V; Ic = 15pa.
2. Voo = 15V; I, = bpa.
3. Vcb = 5V, Ic = 15ma.
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Frequency Range: 1 to 10 GHz

Figure 91

Now you can measure the output reflection coeffi-
cient (Fig. 91). Let’s now reduce the collector cur-
rent and note the effect on this characteristic. The
radial shift outward indicates an increase in the
real part of the output impedance. This shift is due
to the real part being inversely proportional to the
gm of the transistor, while the collector current is
directly proportional to g, (Fig. 92).
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Figure 92
Let’s now return I. to 15 mA and decrease V., You

note a radial shift inward. This shift is again
related to the depletion of the epitaxial layer.



Let’s now turn our attention to the gain of the
transistor and depress S,; with the bias conditions
back at their original values. The forward gain of
the device, Sy;, is now visible. This characteristic is
also affected by varying the bias conditions (Fig. 93).

Increasing
Frequencies

1. Vo =15 V; I, = 15,
2. Vcb =5V; L =154,
3. Vu=15V; I, =5p,
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Frequency Range: 1 to 10 GHz

Figure 93

Let’s look now at the reverse transmission charac-
teristic, Sq5. This value is much smaller than the
forward gain, so we will have to introduce more
test channel gain into the system to enable us to
have a reasonable display. This characteristic is
relatively invariant to bias changes.

One characteristic that often appears on transistor
data sheets is the relation of power gain |Ss;|?* ver-
sus collector current at one frequency. This charac-
teristic curve was determined at 1 GHz (Fig. 94).
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At low current levels, there is a gradual increase,
then the power gain characteristic flattens out and
decreases at higher current levels. The base-collector
transit time determines the flat plateau. The high
current roll-off is due to two effects: (1) thermal
effects on the transistor; (2) if we try to pump more
current into the device than it can handle, the base
of the transistor stretches electrically. Since the
electrons move across the base-collector junction
at a finite rate, the current density increases as

we try to pump more current in, until, at the limit,
the base has stretched to the width of the epitaxial
layer and this will account for the gain going
toward zero.

Summary

This tape has presented an overview of S-parame-
ter theory and has related this theory to actual
transistor characterization.

The remaining tapes in this S-Parameter Design
Seminar are devoted to high frequency circuit
design techniques using S-parameters. Constant
gain and noise figure circles will be discussed and
then used in designing unilateral narrow and
broadband amplifiers.

This amplifier (Fig. 95), for example, was designed
with S-parameter data, and operates from 100 MHz
to 2 GHz with a typical gain of 40 dB and flat to
within 3 dB across the band. A similar amplifier
will be designed in the next tape.

- Agilent
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1-2 GHz AMPLIFIER
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Figure 95
The use of these design techniques and measure-

ment equipment will also prove valuable to you in
your device development.
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Chapter 4. High Frequency Amplifier Design

Introduction

In this tape, the practical application of S-parameters
will be discussed. They will specifically be applied
to unilateral amplifier design. This tape is a contin-
uation of the Agilent Technologies Microwave Divi-
sion’s S-Parameter Design Seminar. We will discuss:
Transducer Power Gain, Constant Gain, and Con-
stant Noise Figure Circles; and then use these con-
cepts with S-parameter data in the design of ampli-
fiers for the case where the transistor can be
assumed to be unilateral, or S;s = 0.

S-Parameter Review
Before introducing these concepts, let’s briefly
review S-parameters.

Z

2-Port
Network
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b, —e= " \_
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I  Z.=2,

Z

a,=0

Figure 96

As opposed to the more conventional parameter
sets which relate total voltages and total currents
at the network ports, S-parameters relate traveling
waves (Fig. 96). The incident waves, a; and a,, are
the independent variables, and the reflected waves,
b; and b,, are the dependent variables. The network
is assumed to be embedded in a transmission line
system of known characteristic impedance which
shall be designated Z,. The S-parameters are then
measured with Z, terminations on each of the ports
of the network. Under these conditions, S;; and Sas,
the input and output reflection coefficients, and
So1 and Sps, the forward and reverse transmission
coefficients, can be measured (Fig. 97).

b b
S, = a_l S, = a_l
“"a,=0 la, =0
b, b,
Sy, =a_' S~12=a_2
"a,=10 Ha, =0
Figure 97
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Transducer Power Gain

In the design of amplifiers, we are most interested
in the transducer power gain. An expression can
be derived for transducer power gain if we first
redraw the two-port network using flow graph
techniques (Fig. 98).

The transducer power gain is defined as the power
delivered to the load divided by the power avail-
able from the source. The ratio of bs to by can be
found by applying the non-touching loop rule for
flow graphs resulting in this expression for trans-
ducer power gain (Fig. 99).

Figure 98
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Figure 99

If we now assume the network to be unilateral,
that is, S;» is equal to zero, this term (S5;S15[ L.l'g)
drops out and the resulting expression can be sep-
arated into three distinct parts. This expression
will be referred to as the unilateral transducer
power gain (Fig. 100).
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Figure 100

The first term is related to the transistor or other
active device being used. Once the device and its
bias conditions are established, Sy; is determined
and remains invariant throughout the design.



The other two terms, however, are not only related
to the remaining S-parameters of the two-port
device, S;; and Sy, but also to the source and load
reflection coefficients. It is these latter two quanti-
ties which we will be able to control in the design
of the amplifier. We will employ lossless impedance
transforming networks at the input and output
ports of the network. We can then think of the uni-
lateral transducer power gain as being made up of
three distinct and independent gain terms and the
amplifier as three distinct gain blocks (Fig. 101).

G = A=in 1S 8 Sl LY )
Y =S, G # |1~ Spl
=G, . G, . G,
= Gyon + Gups + Gios
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Figure 101

The Gs term affects the degree of mismatch between
the characteristic impedance of the source and the
input reflection coefficient of the two-port device.
Even though the G block is made up of passive
components, it can have a gain contribution greater
than unity. This is true because an intrinsic mismatch
loss exists between Z, and S;;, and the impedance
transforming elements can be employed to improve
this match, thus decreasing the mismatch loss, and
can, therefore, be thought of as providing gain.

The G, term is, as we said before, related to the
device and its bias conditions and is simply equal
to | 821 I 2,

The third term in the expression, Gy, serves the
same function as the G4 term, but affects the
matching at the output rather than the input.

Maximum unilateral transducer gain can be accom-
plished by choosing impedance matching networks
such that ' = S11* and [, = Syo* (Fig. 102).

1 , 1

Gumex = T5TF 18at* O TDISaE
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z, Matching Matching
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S.* S, S.. *

C‘u max — C's max dB + G,dB +
Figure 102

Constant Gain Circles

Let’s look at the G4 term now in a little more detail.
We have just seen that for [ = S;;*, G, is equal to a
maximum. It is also clear that for | '] = 1, G, has
a value of zero. For any arbitrary value of Gy
between these extremes of zero and G¢ max, solu-
tions for [ lie on a circle (Fig. 103).

For G,=0 < g < Gsmax
_ 1_‘rs|2
ET T —T8,F

Figure 103

It is convenient to plot these circles on a Smith
Chart. The circles have their centers located on the
vector drawn from the center of the Smith Chart to
the point S;;1* (Fig. 104).

These circles are interpreted as follows:
Any I along a 2 dB circle would result in a G, = 2 dB.

Any I along the 0 dB circle would result in a G, =
0 dB, and so on.

For points in this region (within the 0 dB circle),
the impedance transforming network is such as to
improve the input impedance match and for points
in this region (area outside the 0 dB circle), the
device is further mismatched. These circles are
called constant gain circles.
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Figure 104

Since the expression for the output gain term, Gy,
has the same form as that of Gy, a similar set of
constant gain circles can be drawn for this term.
These circles can be located precisely on the Smith
Chart by applying these formulas (Fig. 105):

e e
R, =~ 1—-g (.,1 — [Sul»
1—IS,*(1 — gy
g =Gl — Sy = GlGnilax
G; = Gain represented by the circle.
Figure 105

1. d; being the distance from the center of the
Smith Chart to the center of the constant gain
circle along the vector Sy*

2. R; is the radius of the circle

3. g; is the normalized gain value for the gain circle G;.

Constant Noise-Figure Circuits

Another important aspect of amplifier design is
noise figure, which is defined as the ratio of the
S/N ratio at the input to the S/N ratio at the out-
put.

NF = S/Nin
S/N out
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In general, the noise figure for a linear two-port
has this form (Fig. 106a), where r, is the equivalent
input noise resistance of the two-port. G5 and b rep-
resent the real and imaginary parts of the source
admittance, and g, and b, represent the real and
imaginary parts of that source admittance which
results in the minimum noise figure, F .

If we now express Ys and Y, in terms of reflection
coefficients and substitute these equations in the
noise figure expression, we see once again that the
resulting equation has the form of a circle (Fig. 106B).
For a given noise figure, F, the solutions for 'y will
lie on a circle. The equations for these circles can
be found given the parameters I, Fiin, and r,.
Unless accurately specified on the data sheet for
the device being used, these quantities must be
found experimentally.

Generally, the source reflection coefficient would
be varied by means of a slide screw tuner or stub
tuners to obtain a minimum noise figure as read
on a noise figure meter. F,;, can then be read off
the meter and the source reflection coefficient can
be determined on a network analyzer.
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B~ Fon =400 T= [N+ T
To Find r,, Measure F for I';=0
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4rn = [F[‘s=0 - len] IF0|2

Figure 106



The equivalent noise resistance, r,, can be found
by making one additional noise figure reading with
a known source reflection coefficient. If a 50-ohm
source were used, for example, ['; = 0 and this
expression could be used to calculate r, (Fig. 107).

ForI;=0

1+ I,?
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Figure 107

To determine a family of noise figure circles, let’s
first define a noise figure parameter, N;:

Fi — Fmin .
4r,

2

N‘——_ 1—+'r‘o

Here, F; is the value of the desired noise figure cir-
cle and Iy, Fyin, and r,, are as previously defined.
With a value for N; determined, the center and
radius of the circle can be found by these expres-
sions (Fig. 108).
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From these equations, we see that N; = 0, where F;
= Fhin; and the center of the Fy,;, circle with zero
radius is located at I, on the Smith Chart. The cen-
ters of the other noise figure circles lie along the I,
vector.

This plot then gives the noise figure for a particu-
lar device for any arbitrary source impedance at a
particular frequency (Fig. 109). For example, given
a source impedance of 40 + j 50 ohms, the noise
figure would be 5 dB. Likewise, a source of 50 ohms
would result in a noise figure of approximately 3.5 dB.

Figure 109

Constant gain circles can now be overlaid on these
noise figure circles (Fig. 110). The resulting plot
clearly indicates the tradeoffs between gain and
noise figure that have to be made in the design of
low noise stages. In general, maximum gain and
minimum noise figure cannot be obtained simulta-
neously. In this example, designing for maximum
gain results in a noise figure of about 6 dB, while
designing for minimum noise figure results in
approximately 2 dB less than maximum gain.

Circles of
Constant Gain

Figure 110
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The relative importance of the two design objec-
tives, gain and noise figure, will dictate the com-
promise that must be made in the design.

It is also important to remember that the contribu-
tions of the second stage to the overall amplifier
noise figure can be significant, especially if the
first stage gain is low (Fig. 111). It is, therefore, not
always wise to minimize first stage noise figure if
the cost in gain is too great. Very often there is a
better compromise between first stage gain and
noise figure which results in a lower overall ampli-
fier noise figure.

1st 2nd
© Stage Stage
F,—~1
Foverall = Fl + 2Gl
Figure 111

Design Examples

With the concepts of constant gain and constant
noise figure circles well in hand, let’s now embark
on some actual design examples.

Shown here is a typical single stage amplifier with
the device enmeshed between the input and output
matching networks (Fig. 112). The device we will
be using for the design examples is an Agilent-21
12 GHz transistor.

Input Matching Device Output Matching
5012 .
v I | 5081
source T Load
82|
5011
v, ( ) G, G, G. 5012
- -— —
[NV S

Figure 112
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The forward gain characteristic, Sy;, of this partic-
ular transistor was measured in the previous video
tape of this seminar, and we noted that |Sy;|? is a
decreasing function with frequency having a slope
of approximately 6 dB per octave. Gunax, Which is
the maximum unilateral transducer gain, is essen-
tially parallel to the forward gain curve (Fig. 113).
This is not necessarily true in general, but in this
case, as we can see on this Smith Chart plot, the
magnitudes of S;; and Ss, for this device are essen-
tially constant over the frequency band in question
(Fig. 114). Thus, the maximum values of the input
and output matching terms are also relatively con-
stant over this frequency range.
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To illustrate the various considerations in the
design of unilateral amplifier stages, let’s select
three design examples (Fig. 115). In the first exam-
ple, we want to design an amplifier stage at 1 GHz
having a gain equal to Gumax, Which in this case is
18.3 dB. No consideration will be given in this
design to noise figure. In the second example, we
will aim for minimum noise figure with a gain of
16 dB. The third example will be the design of an
amplifier covering the frequency band from 1 to

2 GHz with a minimum gain of 10 dB and a noise
figure less than 4.5 dB.
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Figure 115

In these examples, we will assume a source imped-
ance and a load impedance of 50 ohms. In general,
however, the source impedance could be complex
such as the output impedance of the previous
stage. Likewise, the output load is quite often the
input impedance of a following stage.

A. Design for G,ax

Now, in this first example, since we will be design-
ing for Gymax at 1 GHz, the input matching network
will be designed to conjugate match the input
impedance of the transistor. This will provide a net
gain contribution of 3 dB (Fig. 116).
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The output matching network will be used to con-
jugately match the 50-ohm load impedance to the
output impedance of the transistor. From the
measured data for Sy at 1 GHz, we find that this
matching network will provide a gain contribution
of 1.3 dB at the output.

Since the gain of the transistor at 1 GHz with 50-ohm
source and load termination is 14 dB, the overall
gain of this single stage amplifier will be 18.3 dB.
The matching elements used can be any routine
element, including inductors, capacitors, and
transmission lines.

In general, to transform one impedance to any
other impedance at one frequency requires two
variable elements. A transmission line does, by
itself, comprise two variables in that both its
impedance and its length can be varied. In our
example, however, we will use only inductors and
capacitors for the matching elements.
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The next step in the design process is to plot on a
Smith Chart the input and output constant gain
circles. If noise figure was a design consideration,
it would be necessary to plot the noise figure cir-
cles as well. In most cases it is not necessary to
plot an entire family of constant gain circles. For
this example, only the two circles representing
maximum gain are needed. These circles have zero
radius and are located at S;;* and Sgo* (Fig. 117).

Figure 117

To facilitate the design of the matching networks,
let’s first overlay another Smith Chart on the one
we now have. This added Smith Chart is oriented
at 180° angle with respect to the original chart.
The original chart can then be used to read imped-
ances and the overlaid chart to read admittances.

To determine the matching network for the output,
we start from our load impedance of 50 ohms at the
center of the chart and proceed along a constant
resistance circle until we arrive at the constant
conductance circle that intersects the point repre-
senting S,,.* This represents a negative reactance
of 75 ohms. Hence, the first element is a series
capacitor.
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We now add an inductive susceptance along the
constant conductance circle so that the impedance
looking into the matching network will be equal

to Szz.*

The same procedure can now be applied at the
input, resulting in a shunt capacitor and a series
inductor (Fig. 118).
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Figure 118

There are, of course, other networks that would
accomplish the purpose of matching the device to
the 50-ohm load and source. We could, for exam-
ple, have added an inductive reactance and then a
shunt capacitor for the output matching.

Choosing which matching network to use is gener-
ally a practical choice. Notice in this example, the
first choice we made provides us with a convenient
means of biasing the transistor without adding
additional parasitics to the network other than the
bypass capacitor. Another consideration might be
the realizability of the elements. One configuration
might give element values that are more realizable
than the other.

Along these same lines, if the element values
obtained in this process are too large, smaller val-
ues can generally be obtained by adding more cir-
cuit elements, but as you can see, at the cost of
added complexity.

In any case, our design example is essentially com-
plete with the final circuit looking like this.



So far we have not considered noise figure in this
design example. By plotting the noise figure circles
for the device being used, we can readily determine
the noise figure of the final circuit, which in this
case is approximately 6 dB (Fig. 119).

Figure 119

B. Design for Minimum Noise Figure

Let’s now proceed with the second design example
in which low noise figure is the design objective.
This single stage amplifier will be designed to have
minimum noise figure and 16 dB gain at 1 GHz
(Fig. 120).

G =G, + G, + G,
G, +14+G,

G,and G, are determined after input
matching for minimum noise figure is accomplished

Figure 120

To accomplish the design, we first determine the
input matching necessary to achieve minimum
noise figure. Then, using the constant gain circles,
G1, the gain contribution at the input can be deter-
mined. Knowing the gain of the device at 1 GHz,
the desired value of G, the gain contribution of the
output matching network can then be found. The
appropriate output matching network can be deter-
mined by using the constant gain circles for the
output.

In this example a shunt capacitor and series induc-
tor can be used to achieve the desired impedance
for minimum noise figure. Referring once again to
the Smith Chart and the mapping techniques used
previously, we follow the constant conductance cir-
cle from the center of the Smith Chart and then
proceed along a constant resistance circle (Fig. 121).
Sometimes this requires several trials until the
exact constant resistance circle that intersects

the minimum noise figure point is found.

Figure 121

Since we now know that the minimum noise figure
circle on the Smith Chart represents a specific
source reflection coefficient, we can insert this
value of [ into the formula for G; to determine
the value of the input constant gain circle passing
through this point. In this case, it is the 1.22 dB
gain circle. This is 1.8 dB less than the maximum
gain attainable by matching the input.
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We can now calculate the output gain circle as fol-
lows. The desired gain is 16 dB. The gain due to
the input matching networks is 1.22 dB and the
forward gain of the device with 50-ohm source and
load terminations is 14 dB. The gain desired from
the matching network at the output is, therefore,
0.78 dB.

The output matching can again be accomplished
by using a series capacitor with a shunt inductor.
Notice that for the output matching there are an
infinite number of points which would result in a
gain of 0.78 dB. Essentially, any point on the 0.78 dB
circle would give us the desired amount of gain.

There is, however, a unique feature about the com-
bination of matching elements just selected. The

value of capacitance was chosen such that this point

fell on the constant conductance circle that passes
through the maximum gain circle represented by

Figure 122

This combination of elements would assure an out-
put gain-frequency response that would be sym-
metric with frequency.

If, for example, the frequency were increased
slightly, the capacitive reactance and the inductive
susceptance would both decrease, and the resulting
impedance would be at this point.

38

Similarly, decreasing the frequency would result in
this impedance. Both of these points fall on a con-

stant gain circle of larger radius, and hence, lower
gain (Fig. 123).

Figure 123

The gain response for the output matching, there-
fore, is more or less symmetric around the center
frequency (Fig. 124).
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If we look at the input side, however, we have a far
different situation. With an increase in frequency,
both the capacitive susceptance and inductive
reactance increase, resulting in an increase in gain.
When the frequency is reduced, these quantities
decrease, resulting in a lower value of gain. The
gain contribution at the input is, therefore, unsym-
metric with respect to frequency.

Since the overall gain as a function of frequency is
the combination of the Gi, G,, and Gy terms, the
resulting gain would be reasonably symmetric
about the center frequency. (If another point on
the 0.78 dB gain circle at the output were chosen,
the final overall gain characteristic would be asym-
metric with frequency.)

The important point is that the selection of the
matching elements for the output, in this case, is
not as arbitrary as it first appears. The final selec-
tion must be based not only on the gain at a spe-
cific frequency but also on the desired frequency
response. The element values can now be calcu-
lated resulting in the circuit shown (Fig. 125).
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Figure 125

From a practical standpoint, one would not achieve
the noise figure design objective for a number of
reasons. For one thing, the circuit elements used
for matching purposes would have a certain loss
associated with them. This resistive loss would add
directly to the noise figure. To keep this loss to a
minimum, it is desirable to use high-Q circuit ele-
ments and to use the minimum number of elements
necessary to obtain the desired source impedance.
Second, there will be some contribution to the
overall noise figure from the second stage. Third,
additional degradation in noise figure would occur
because of device and element variations from unit
to unit.

In practice, typically '/> to 1 dB would be added
from these sources to the predicted theoretical
noise figure for a narrow band design. As much as
2 dB could be added in the case of an octave band
design such as in our next example.

C. Broadband Design for Specific Gain and Noise Figure
Here, the design objective will be 10 dB unilateral
transducer gain from 1 to 2 GHz with a noise fig-
ure less than 4.5 dB (Fig. 126).

In this example, the input and output matching
networks will be designed to have a gain of 10 dB
at the band edges only, The gain at 1.5 GHz will
then be calculated. The response will be found to
look similar to this curve. If a greater degree of
flatness were necessary, additional matching ele-
ments would have to be added. We could then
design for 10 dB gain at three different frequen-
cies, or more if necessary. Three frequencies would
generally be the practical limit to the graphical
design approach we have been using.
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Figure 126

When matching is required at more than three fre-
quencies, computer-aided design techniques are
generally employed.
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The schematic again looks similar to that which we
had in the previous two examples (Fig. 127).

Figure 127

The design approach is to:

1. Match the input for the best compromise between
low and high frequency noise figure. In this case, it
is important to keep the number of matching elements
to a minimum for the reasons cited earlier. It might
be possible to get an additional 0.2 dB improvement
in noise figure with one additional element, but the
extra element might, in turn, add an additional inser-
tion loss at 0.2 dB or more.

2. The next step is to determine the gain contribu-
tion at the input as a result of the noise figure match-
ing. This then allows us to calculate the desired
gain at the output from the design objective.

3. The output matching elements are then selected,
completing the design.

Let’s first plot S;;* for 1 and 2 GHz and then plot

the points resulting in minimum noise figure for
these frequencies (Fig. 128).

40

Figure 128

To match the input for minimum noise figure we
must first choose a combination of elements that
gives the best compromise at the two design fre-
quencies. On the plot we see that a shunt capacitor
followed by a series inductor will provide a source
impedance such that the noise figure will be less
than 3.5 dB at 1 GHz and less than 4.5 dB at 2 GHz'
(Fig. 129). At both frequencies we are about as
close as is practical to the theoretical minimum
noise figure for the device.

Figure 129

1. For the particular transistor measured. We want to emphasize that the methodology
followed in these design examples is more important than the specific numbers.



The constant gain circles, which intersect the
points established by the input matching network,
are calculated and found to have the values 0.3 dB
at 1 GHz and 1.5 dB at 2 GHz.

The desired gain due to output matching can now
be calculated and found to be -4.3 dB at 1 GHz and
+0.5 dB at 2 GHz (Fig. 130).

AT 1 GHz
G, =G, +G,+G,=10dB
3+14+G,=10dB
G.,=-43dB

AT 2 GH,
Gr,=G, +G,+ G,=10dB
1.5+8+G,=10dB
G,=+.5dB

Figure 130

The constant gain circles having these gain values
are then plotted as shown (Fig. 131). A trial-and-
error process is followed to find the proper match-
ing elements to provide the required output match
at the two frequencies. Let’s start from the 50-ohm
point on the Smith Chart and add an arbitrary nega-
tive series reactance and the appropriate negative
shunt susceptance to land on the 0.5 dB gain circle
at 2 GHz. We then determine where these matching
elements will bring us at 1 GHz, and in this case,
we fall short of reaching the proper gain circle
(Fig. 132). By increasing the capacitive reactance
we find a combination that lands on both circles
and the design is complete (Fig. 133).

Figure 131

Figure 132

Figure 133

So far, by our design procedure we have forced the

gain to be 10 dB at 1 and 2 GHz. The question nat-

urally arises: what happens between these two fre-

quencies? From the matching element values already
determined, we can calculate the matching network
impedances at 1.5 GHz and then determine the con-
stant gain circles that intersect those points.

For this case, we find that the output gain circle
has a value of -0.25 dB and the input gain circle, a
value of +1 dB. The gain of the device at 1.5 GHz is
10.5 dB. Hence the overall gain of the amplifier at
1.5 GHz is 11.25 dB.
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In summary form, the contribution of the three
amplifier gain blocks at the three frequencies can
be seen (Fig. 134). If the resulting gain characteris-
tic was not sufficiently flat, we would add an addi-
tional matching element at the output and select
values for this added element such that we landed
on the original gain circles for 1 and 2 GHz, but on
the —1.5 dB rather than -0.25 dB circle at 1.5 GHz.
This would give us a gain for the amplifier of 10 dB
at 1, 1.5, and 2 GHz with some ripple in between.

AT 1.0 GHz
G+G,+G,=3+14—43=10dB
AT 1.5 GHz
G +G,+G,=1.0+105—.25=11.25dB
AT 2.0 GHz

G, +G,+G,=15+80+.5=10dB
Figure 134
If, however, we were satisfied with the first gain-

frequency characteristic, our final schematic would
look like this (Fig. 135).
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Figure 135

D. Multistage Design

While the examples we have just completed are sin-
gle stage amplifiers, the techniques presented are
equally applicable to multistage amplifier design.
The difference in a multistage design is that the
source and load impedances for a given stage of
the amplifier are, in general, not 50 ohms but are
rather an arbitrary complex impedance. In certain
cases, this impedance might even have a negative
real part.
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Multistage design can be handled by simply shift-
ing the reference impedance to the appropriate
point on the Smith Chart. This is illustrated in the
following example.

Let’s now concentrate on the matching network
design between two identical stages (Fig. 136). For
the first stage, as we have seen, there is a gain of
1.3 dB attainable by matching the output to 50 ohms.
Similarly, there is a gain of 3 dB attainable by match-
ing 50 ohms to the input of the second stage. We
can then think of a gain of 4.3 dB being attainable
by matching the output impedance of the first
stage to the input impedance of the second stage.

Ol -0 O 0
1st 2nd
Stage Stage
o —0 O
Gll G(" G2| GIZ GU'I G22
30dB 14dB 13dB 3.0dB 14dB 13dB
L ———
3.04dB 14 dB 4.3 dB 14.dB 1.3dB
Figure 136

The constant gain circles for the first stage output
would then be plotted on the Smith Chart (Fig. 137).
The maximum gain is now 4.3 dB. The gain circle
that intersects the point represented by the second
stage’s S;; has a value of 0 dB.

2nd Stage o
\SII ' '
0dB

Figure 137



To design for a specific interstage gain, we could,
as before, add a series capacitor followed by a
shunt inductor—except in this case we start from
the input impedance of the second stage, S;,
rather than the 50-ohm point.

The resulting interstage matching network looks
like this. As you can see, the design of multistage
amplifiers is handled as easily as single stage
designs (Fig. 138).

1st 2nd
Stage Stage
Ot —o
S, Sy
Figure 138
Summary

The measurement and design techniques demon-
strated in this video-tape seminar are presently
being used by engineers in advanced R&D labs
throughout the world. When coupled with design
and optimization computer programs, engineers
will have at their disposal the most powerful and
rapid design tools available.
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