5314A UNIVERSAL COUNTER ### **SAFETY** This product has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the product safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section I for general safety considerations applicable to this product. ### **CERTIFICATION** Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members. ### WARRANTY This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment, except that in the case of certain components listed in Section I of this manual, the warranty shall be for the specified period. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective. For warranty service or repair, this product must be returned to a service facility designated by HP. However, warranty service for products installed by HP and certain other products designated by HP will be performed at Buyer's facility at no charge within the HP service travel area. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses. For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country. ### LIMITATION OF WARRANTY The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ### **EXCLUSIVE REMEDIES** THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY. ### **ASSISTANCE** Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual. # HP 5314A UNIVERSAL COUNTER **OPERATING AND SERVICE MANUAL** ### **SERIAL NUMBER PREFIX: 2714** This manual applies directly to HP Model 5314A having serial number prefix 2714A and below. # **NEWER INSTRUMENTS** This manual, with enclosed "Manual Changes" sheet, applies to HP Models 5314A having serial number prefixes as listed on the "Manual Changes" sheets. ©HEWLETT-PACKARD COMPANY 1987, 1993 5301 STEVENS CREEK BLVD, SANTA CLARA, CA 95051-7299 MANUAL PART NUMBER: 05314-90015 Printed: September 1993 # **TABLE OF CONTENTS** | Section | | Title | Page | |---------|--------|-------------------------------------|------| | ŧ | GENER | RAL INFORMATION | .1-1 | | | 1-1. | Introduction | .1-1 | | | 1-4. | Specifications | .1-1 | | | 1-6. | Safety Considerations | | | | 1-8. | Instruments Covered by Manual | | | | 1-11. | Instrument Identification | 1-1 | | | 1-15. | Description | 1-3 | | | 1-18. | Options | 1-3 | | | 1-20. | Equipment Supplied | 1-4 | | | 1-22. | Recommended Test Equipment | 1-4 | | 11 | INSTAL | LATION | 2-1 | | | 2-1. | Introduction | | | | 2-3. | Initial Inspection | | | | 2-5. | Preparation for Use | | | | 2-6. | Power Requirements | | | | 2-8. | Line Voltage Selection | | | | 2-10. | Power Cable | | | | 2-12. | Bench Operation | | | | 2-14. | Installation of Options 001 and 002 | 2-3 | | | 2-16. | Operating Environment | 2-3 | | | 2-18. | Storage and Shipment | | | | 2-19. | Environment | | | | 2-21. | Packaging | | | III | OPERA | TION | 3_1 | | | 3-1. | Introduction | | | | 3-3. | Operating Characteristics | | | | 3-5. | Frequency Measurements | | | | 3-7. | Period Measurements | | | | 3-9. | Time Interval Measurements | | | | 3-12. | Ratio A/B Measurements | | | | 3-14. | Totalize A Measurements | | | | 3-16. | Self-Check | | | | 3-18. | Panel Features | | | | 3-20. | Operating Instructions | 3-3 | | | 3-22. | Operator's Maintenance | | | | 3-24. | Power/Warm-Up | | | IV | PERFOI | RMANCE TESTS | 4-1 | | | 4-1. | Introduction | 4-1 | | | 4-3. | Equipment Required | | | | 4-5. | Operation Verification | 4-1 | | | 4-7. | Performance Test | 4-1 | | | 4-9. | Test Record | | | | 4-13. | Procedure | 4-2 | # **TABLE OF CONTENTS (Continued)** | Section | ٦ | Title | Page | |---------|-------------------|---|---------------| | V | ADII IS | TMENTS | 5-1 | | V | 5-1. | Introduction | | | | 5-1.
5-4. | Equipment Required | | | | 5- 4 . | Adjustment Locations | | | | 5-8. | Safety Considerations | | | | J-0. | Salety Considerations | .5 . | | VI | REPLAC | CEABLE PARTS | | | | 6-1. | Introduction | | | | 6-3. | Reference Designations | | | | 6-5. | Replaceable Parts | | | | 6-8. | How to Order a Part | | | | 6-10. | Parts Identification | .6-1 | | | 6-14. | Contacting Hewlett-Packard | .6-2 | | | 6-18. | Cabinet Parts and Hardware | .6-2 | | VII | MANILI | AL CHANGES | 7-1 | | V 11 | 7-1. | Introduction | | | | 7-1.
7-3. | Manual Changes | | | | 7-3.
7-6. | Older Instruments | | | | /-0. | Older Institutions | ./-1 | | VIII | SERVIC | | | | | 8-1. | Introduction | | | | 8-3. | Theory of Operation | | | | 8-5. | Troubleshooting | .8-1 | | | 8-7. | Recommended Test Equipment | .8-1 | | | 8-9. | Schematic Diagram Notes | | | | 8-11. | Reference Designations | .8-1 | | | 8-13. | Identification Markings on Printed Circuit Boards | | | | 8-16. | Safety Considerations | .8-2 | | | 8-20. | Fuse Replacement | .8-3 | | | 8-22. | Line Input Fuse Replacement | | | | 8-24. | Option 002 Fuse Replacement | .8-3 | | | 8-26. | Theory of Operation | .8-5 | | | 8-27. | Introduction | | | | 8-29. | HP 5314A Overall Block Theory of Operation | .8-5 | | | 8-31. | Detailed A1 Assembly Theory | .8-5 | | | 8-45 | Power Supply Block Theory | .8-12 | | | 8-47. | Detailed A2 Assembly Theory | .8-12 | | | 8-50. | Option 002 Battery Charger Block Theory | .8-12 | | | 8-52. | Detailed Option 002 A2 Assembly Theory | .8-14 | | | 8-56. | Troubleshooting Test Procedures | .8-14 | | | 8-59. | Procedure #1: Testing of 5314A Power Supply | .8-16 | | | 8-61. | Procedure #2: Testing of 5314A Reference Oscillator | .8-16 | | | 8-63. | Procedure #3: Testing Input Channels | .8-1 <i>7</i> | | | 8-65. | Procedure #4: Testing of ICM 7226 | | | | | (Counter-in-a-Chip) and display | .8-20 | | | 8-67. | Procedure #5: 20 MHz Mode | .8-20 | # SAFETY CONSIDERATIONS ### **GENERAL** This is a Safety Class I instrument. This instrument has been designed and tested according to IEC Publications 348, "Safety Requirements for Electronic Measuring Apparatus." Acoustic Noise Emission: LpA <40 dB; no fan installed. GERAeUSCHEMISSION: LpA <40dB; Kein Ventilator eingebaut. ### **OPERATION** BEFORE APPLYING POWER verify that the power transformer primary is matched to the available line voltage and the correct fuse is installed (See Section II). Make sure that only fuses with required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided. ### **SERVICE** Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition. Service and adjustments should be performed only by qualified service personnel. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation. Figure 1-1. Model 5314A and Equipment Supplied # SECTION I GENERAL INFORMATION ### 1-1. INTRODUCTION - 1-2. This manual provides information pertaining to the installation, operation, testing, adjustment, and maintenance of the HP Model 5314A Universal Counter. *Figure 1-1* shows the HP 5314A with the supplied equipment. - 1-3. This operating and service manual is divided into eight sections, each covering a particular topic for the operation and service of the HP 5314A. The eight sections are listed here: | Section | Topic | | |---------|---------------------|--| | ı | General Information | | | П | Installation | | | Ш | Operation | | | IV | Performance Tests | | | V | Adjustments | | | VI | Replaceable Parts | | | VII | Manual Changes | | | VIII | Service | | | | | | ### 1-4. SPECIFICATIONS 1-5. Instrument specifications are listed in *Table 1-1*. These specifications are the performance standards or limits against which the instrument may be tested. ### 1-6. SAFETY CONSIDERATIONS 1-7. The HP 5314A Universal Counter is a Safety Class I instrument, designed according to international safety standards. This operating and service manual contains
information, cautions, and warnings which must be followed by the user to ensure safe operation and keep the HP 5314A in safe operating condition. ### 1-8. INSTRUMENTS COVERED BY MANUAL - 1-9. If the serial number prefix of your HP 5314A is lower than the serial number prefix on the title page of this manual, the manual must be modified for agreement with the HP 5314A. Refer to Section VII, Manual Changes, for the information which will adapt this manual to your HP 5314A. If the serial number prefix is higher, refer to the yellow "manual changes" sheet located inside the front cover. - 1-10. The HP 5314A standard instrument, Option 001, and Option 002 are documented in this manual. The differences are noted in the appropriate locations such as Options in Section I, Replaceable Parts in Section VI, and Service in Section VIII. ### 1-11. INSTRUMENT IDENTIFICATION 1-12. The instrument serial number is located on the rear panel. Hewlett-Packard uses a two-section serial number consisting of a four-digit prefix and a five-digit suffix. A letter between the prefix and suffix identifies the country in which the instrument was manufactured (A=USA, G=West Germany, J=Japan, U=United Kingdom). All correspondence with Hewlett-Packard concerning this instrument should include the complete serial number. # Table 1-1. Specifications | INPUT CHARACTERISTICS | Resolution: | | |--|---|--| | Range: | \pm LSD \pm (B Trigger Error \times FREQUENCY A)/N | | | Channel A 10 Hz to 100 MHz | · · · · · · · · · · · · · · · · · · · | | | | Accuracy: | | | Channel B 10 Hz to 2.5 MHz | ± 1 count of A $\pm (B \text{ Trigger Error} \times \text{FREQUENCY A})/N$ | | | Sensitivity: | TOTALIZE (A) | | | Channel A: | Range: 10 Hz to 10 MHz | | | 25 mV rms to 100 MHz | | | | 75 mV peak-to-peak minimum pulse with 5 ns | Resolution: ± 1 count of input | | | Channel B: | GENERAL | | | 25 mV rms to 2.5 MHz | | | | | Check: Counts internal 10 MHz Oscillator | | | 75 mV peak-to-peak minimum pulse width of 50 ns | Display: 7-digit amber LED display with gate and over- | | | Coupling: AC | flow indication. | | | Impedance: 1 MΩ NOMINAL shunted by less than | Maximum Sample Rate: 5 readings per second. | | | 30 pF | Operating Temperature: 0° to 50°C | | | Attenuator: X1 or X20 NOMINAL (A Channel only) | Power Requirement: | | | Trigger Level: | 115V, +10%, -25%; 230V, -17%, +9%; 48-66 Hz; 10 VA | | | | | | | Continuously variable ±350 mV times attenuator | maximum. | | | setting around average value of signal. | Weight: 2.0 kg (4.4 lbs.) | | | Slope: Independent selection of + or - slope | Dimension: 238 mm wide \times 98 mm high \times 276 mm long | | | Channel Input: Selectable SEPARATE or COMMON A | (93/8 × 33/8 × 107/8 in.) | | | Damage Level: | TIME BASE | | | _ | Frequency: 10 MHz | | | X1: DC to 100 kHz 350V (DC + peak AC) | | | | 100 kHz to 5 MHz 2.5×10^7 C \times Hz Product | Aging Rate: <3 parts in 107 per month | | | Above 5 MHz 5V rms | Temperature: <±1 part in 105, 0° to 50°C | | | X20: DC to 1 MHz 350V (DC + Peak AC) | Line Voltage: $<\pm 1$ part in 107 for $\pm 10\%$ variation. | | | 1 MHz to 50 MHz 2.5 × 108V × Hz Product | OPTIONS | | | | Option 001: High Stability Time Base (TCXO) | | | | | | | FREQUENCY (A) | Frequency: 10 MHz | | | Range: | Aging Rate: <1 part in 107 per month | | | 10 Hz to 10 MHz direct count | Temperature: <±1 part in 106, 0° to 40°C | | | 1 MHz to 100 MHz prescaled by 10 | Line Voltage: <±1 part in 108 for ±10% variation | | | LSD Displayed: Direct count 0.1 Hz, 1 Hz, 10 Hz switch | Option 002: Battery | | | LSD Displayed: Direct Could 0.1112, 1112, 10112 switch | Type: Recharageable lead-acid (sealed) | | | selectable. Prescaled 10 Hz, 100 Hz, 1 kHz switch | Capacity: TYPICALLY 8 hour of continuous operation | | | selectable. | | | | Resolution: ± LSD | at 25°C. | | | Accuracy: \pm LSD \pm (time base error) \times FREQ | Recharging Time: TYPICALLY 16 hours to 98% of full | | | - | charge, instrument nonoperating. Charging cir- | | | PERIOD (A) | cuitry included with option. Batteries not charged | | | Range: 10 Hz to 2.5 MHz | during instrument operation. | | | LSD Displayed: | Battery Voltage Sensor: Automatically shuts instru- | | | $\frac{100 \text{ ns}}{\text{N}}$ for N=1 to 1000 in decade steps of N | ment off when low battery condition exists. | | | N for N=1 to 1000 in decade steps of 14 | Line Failure Protection: Instrument automatically | | | Resolution: | Line railure protection: instrument automatically | | | | switches to batteries in case of line failure. | | | $\pm LSD \pm 1.4 \times \frac{Trigger Error}{N}$ | Weight: Option 002 adds 1.5 kg (3.3 lbs.) to weight | | | • • | of instrument. | | | Accuracy Trigger Error | WARRANTY | | | \pm LSD \pm 1.4 \times $\frac{\text{Trigger Error}}{N}$ | | | | | ALL COMPONENTS WITHIN OPTION 002, | | | \pm (time base error) $ imes$ PER | EXCEPT THE BATTERY, ARE WARRANTED FOR | | | TIME INTERVAL (A TO B) | ONE FULL YEAR. BATTERY BT1 (HP PART NO. | | | Range: 250 ns to 1 s | 1420-0253) IS WARRANTED FOR 90 DAYS. | | | LSD Displayed: 100 ns | (420-0233) IS WARIER (122 FOR 30 27113) | | | Resolution: ± LSD ± START Trigger Error ± STOP | DEFINITIONS | | | | Resolution: Smallest discernible change of measure- | | | Trigger Error | ment result due to a minimum change in the input. | | | Accuracy: ± LSD ± START Trigger Error ± STOP | - | | | Trigger Error \pm (time base error) \times TI | Accuracy: Deviation from the actual value as fixed by | | | Time Interval measurements require an arming signal for | universally accepted standard of frequency and | | | both the START and STOP Channels. | time. | | | (See Paragraph 3-11.) | Trigger Error: | | | | $\sqrt{(80 \text{ mV})^2 + 6^2}$ | | | RATIO | $\frac{\sqrt{(80 \ \mu\text{V})^2 + \text{en}^2}}{\text{Input Slew Rate at Trigger Point } (\mu\text{V/s})} $ (rms) | | | Range: | input siew κατέ αι trigger roint (μν/\$) | | | 10 Hz to 10 MHz Channel A | Where en is the rms noise of the input for a 100 | | | 10 Hz to 2.5 MHz Channel B | MHz bandwidth on Channel A and a 10 MHz | | | LSD Displayed: | bandwidth on Channel B | | | i i | Daniuwiuth on Chamilet B | | | 1 part in $\frac{A}{B} \times N$ in decade steps of N for N=1 to 1000 | LSD: Least Significant Digit. | | | D | | | - 1-13. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL PREFIX on the title page. - 1-14. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement which contains change information that documents the differences. ### 1-15. DESCRIPTION - 1-16. The HP 5314A is a 100 MHz/100 ns Universal Counter. It features a seven-digit, seven-segment LED display with overflow indication, seven function performance, and full input signal conditioning. There are two options available for the 5314A. They are a temperature Compensated Crystal Oscillator (TCXO, Option 001) and a battery pack for portable operation (Option 002). - 1-17. The seven functions are: Frequency, Single-Shot Period, Period Average, Time Interval, Totalize, Ratio, and Self Check. This is accomplished by a single LSI integrated circuit. The input signal is AC coupled and can be conditioned as follows: slope selection, trigger level, and attenuation. ### 1-18. OPTIONS 1-19. The following is a list of options available for the 5314A Universal Counter: ### **NOTE** A full description of the options is given in *Table 1-1*, Specifications. For more information concerning the options for the HP 5314A, contact your local HP Sales and Service Office. A list of HP Sales and Service offices is provided at the end of this manual. ### **Hardware Options** | 001 | High Stability Time Base (TCXO) | |-----|---------------------------------| | 002 | Battery with built-in charger | ### NOTE One of the following hardware options must be included with each order | 115 | Line operating voltage factory set at 115V nominal (86V to 127V) ac | |-----|---| | 230 | Line operating voltage factory set at 230V nominal (190V to 250V ac | ### **Support Options** | W50 Five-year customer return repair coverage W52 Five-year customer return calibration coverage | W30 | Three-year customer return repair coverage | |--|-----|---| | W50 Five-year customer return repair coverage W52 Five-year customer return calibration coverage | W32 | Three-year customer return calibration coverage | | W52 Five-year customer return calibration coverage | W34 | Three-year customer return Standard Compliant Calibration Service | | your customer return cambration coverage | W50 | Five-year customer return repair coverage | | W54 Five-year customer return Standard Compliant Calibration service | W52 | Five-year customer return calibration coverage | | | W54 | Five-year customer return Standard Compliant Calibration service | Support options are available only at time of purchase. Service contracts are available from Hewlett-Packard for instruments which did not include support options at time of purchase. For information, contact your nearest Hewlett-Packard Sales office
(offices are listed at the back of this manual) For field installation of Options 001 and 002, refer to paragraph 2-14, Installation of Options 001 and 002. # 1-20. EQUIPMENT SUPPLIED 1-21. Table 1-2 lists the only equipment supplied with the HP 5314A. Table 1-2. Equipment Supplied | DESCRIPTION | HP PART NO. | |---|-------------| | Detachable Power Cord 229 cm (71/2 feet long) | 8120-1378 | # 1-22. RECOMMENDED TEST EQUIPMENT 1-23. The test equipment listed in *Table 1-3* is recommended for use during performance tests, adjustments, and troubleshooting. Substitute test equipment may be used if it meets the required characteristics listed in the table. Table 1-3. Recommended Test Equipment | Instrument Type | Required Characteristics | HP Model No. Recommended | |------------------------|--------------------------|--------------------------| | Test Oscillator | .10 MHz, 25 mV rms | 3314A | | Signal Generator | 100 MHz, 25 mV rms | 8656B | | 50-ohm Termination | 100 MHz bandwidth | 10100C | | Digital Voltmeter | 10 volts | 3466A | | Oscilloscope (100 MHz) | V: 5 mV
H: 50 ns | 1741A | | Function Generator | 2.5 MHz, 25 mV rms | 3312A | # SECTION II INSTALLATION ### 2-1. INTRODUCTION 2-2. This section provides all information necessary to install the HP 5314A. Covered in this section are initial inspection, preparation for use, field installation of options, operating environment, and repackaging for shipment. ### 2-3. INITIAL INSPECTION 2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the shipment has been checked mechanically and electrically. The contents of the shipment should be as shown in *Figure 1-1*. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping material for the carrier's inspection. ### 2-5. PREPARATION FOR USE ### 2-6. Power Requirements 2-7. The HP 5314A requires a power source of 115V, +10%, -25%; 230V, -17%, +9%; 48-66 Hz; 10 VA maximum. Power consumption is 10 watts maximum. ### 2-8. Line Voltage Selection ### **CAUTION** BEFORE SWITCHING ON THIS INSTRUMENT, make sure the instrument is set to the voltage of the power source. The voltage at which the unit has been factory set, is indicated on the rear panel label. 2-9. Line voltage selection is determined by the position of the line voltage selector switch located inside the instrument on the A2 (05314–60002) power supply assembly. Line voltage is preset at the factor for 115V (86V to 126V) or 230V (172V to 252V) as ordered by the customer. If changing of the line voltage becomes necessary, follow the procedure in *Table 2-1*. ### Table 2-1. Line Voltage Changing Procedure # WARNING THE POWER CORD SHOULD BE REMOVED FROM THE REAR OF THE HP 5314A BEFORE STARTING THIS PROCEDURE. - 1. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 2. Holding the top and bottom covers together, turn the HP 5314A right side up and carefully lift the top cover. This exposes the line voltage selector switch located on the A2 (05314-60006) power supply assembly (large pc assembly located in the rear of the cabinet). - 3. The two-position switch may now be properly set to match the input voltage (115 for 86V to 126V input or 230 for 172V to 252V input). - 4. Replace the top cover and carefully turn the unit upside down. Replace and tighten the four screws, one in each corner, of the cabinet bottom. ### **NOTE** The line voltage selector switch automatically selects the correct line input fuse configuration (the two fuses are located on the A2 assembly and are in series for 230V selection, and in parallel for 115V selection). ### 2-10. Power Cable 2-11. The HP 5314A is shipped with a three-wire power cable. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to *Figure 2-1* for the part numbers of the power cable and plug configurations available. Figure 2-1. Power Cable HP Part Numbers versus Mains Plugs Available ### 2-12. Bench Operation 2-13. The HP 5314A has an adjustable handle, and two rubber strips located at the rear of the cabinet bottom, for convenience in bench operation. By pulling out the ends of the handle and adjusting it, the front of the HP 5314A may be raised for easier viewing of the front panel. The two rubber strips on the cabinet bottom keep the HP 5314A from sliding on smooth-surface benches. # 2-14. INSTALLATION OF OPTIONS 001 AND 002 2-15. For installation of Options 001 and 002, refer to *Tables 2-2* and 2-3, respectively. Field installation of either option should be performed by qualified service personnel only. ### 2-16. OPERATING ENVIRONMENT 2-17. In order for the HP 5314A to meet the specifications listed in *Table 1-1*, the operating environment must be within the following limits: | Temperature | 0° to +55°C | |-------------|---------------| | Humidity | <80% relative | | Altitude | <15.000 feet | ### 2-18. STORAGE AND SHIPMENT #### 2-19. Environment 2-20. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment: | Temperature | -40°C to +75°C | |-------------|----------------| | Humidity | <95% relative | | Altitude | . <50,000 feet | ### 2-21. Packaging - 2-22. ORIGINAL PACKAGING. Containers and materials equivalent to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number. - 2-23. OTHER PACKAGING. The following general instructions should be used for repackaging with commercially available materials. - a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.) - b. Use a strong shipping container. A doublewall carton made of 250 pound test material is adequate. - c. Use enough shock-absorbing material (3- to 4-inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard. - d. Seal the shipping container securely. - e. Mark the shipping container FRAGILE to assure careful handling. Installation of Option 001 (TCXO) should be performed by qualified service personnel only. ### Option 001 consists of the following parts: | HP Part Number | Qty. | Description | | |----------------|------|-----------------------------|-------------| | 05314-60004 | 1 | TCXO Assembly | | | 0380-0013 | . 1 | Spacer (1 in.) | | | 2360-0115 | 1 | 6-32 × 3/8" Machine Screw | | | 2360-0219 | 1 | 6-32 × 1 3/8" Machine Screw | | | 2420-0001 | 2 | 6-32 Nut | | ### **PRELIMINARY** - 1. Turn off the HP 5314A and remove the AC power cord. - 2. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 3. Holding the top and bottom covers together, turn the HP 5314A rightside up and carefully lift the top cover. - Remove the handle. There are two sets of instructions for installing Option 001. The first set (Procedure 1) is used to install Option 001 into a standard HP 5314A. The second set (Procedure 2) is used to install Option 001 into an HP 5314A with Option 002. ### Procedure 1: Installation of Option 001 into standard HP 5314A. - 1. Remove the rear two black plastic spacers which hold the A2 assembly (05314-60006), in place. - 2. Carefully lift the A2 assembly out of the cabinet bottom. - 3. Locate the two holes in the pc board between the large electrolytic capacitor (A2C1) and the power transformer (A2T1). These holes are the mounting holes for the Option 001 A4 (05314-60004) assembly. They are also the +5V and ground ($\frac{1}{2}$) for the A4 assembly. - 5. Remount the combination A2/A4 assemby into the HP 5314A cabinet bottom being careful to properly align the two spacer studs and the line cord input block. Reinstall the two black plastic spacers. - 6. Grasp the combination front panel and A1 assembly and carefully lift it away from the cabinet bottom. - 7. Use an Allen wrench to remove the two front panel LEVEL knobs. - 8. Use a 9/16" nut driver to remove the two front panel securing nuts on the two BNC input jacks. - 9. Remove the combination front panel/window from the A1 assembly. - Locate jumper wire W1 on the A1 assembly (between A1U2 and A1U4). Using a soldering iron and needle-nose pliers, remove W1. ### NOTE Instruments with TCXO Option 001 require addition of diode A1CR4 on circuit board A1. See Figure 8-8 for A1CR4 location between A1U2 and A1C2 in lower left corner of illustration. If Option 001 is being installed, add A1CR4 diode (HP Part No. 1901-0050). 11. Referring to the sketch below, solder the coax cable from the Option 001 A4 assembly to the component side of the A1 assembly as follows. Solder the shield to the solder pad labeled in the sketch and the center conductor to the solder pad labeled in the sketch. The solder pad labeled is left open. Use the diagonal cutters to clip any protruding wire on the circuit side of A1. - 12. Dress the coaxial cable between U2 and the switch pack as shown in the sketch. Lead the coax through the cutout (on the side of the
A1 assembly) with the rest of the cables. - 13. Assemble the front panel to A1 and secure with a 9/16" BNC nut. - 14. Replace the LEVEL knobs, being careful to center them between the + and positions. Tighten both Allen slugs. Turn the HP 5314A ON. - 15. Installation of Option 001 into a standard HP 5314A is now complete. IMMEDIATELY proceed to step 4 (PRELIMINARY) of Table 5-3, Option 001 Adjustment. ### Procedure 2: Installation of Option 001 into HP 5314A with Option 002. - 1. Remove the red and black cables (of the A3 assembly) from the battery posts by pulling on the terminal lugs. - 2. Remove the screw which holds the battery and A3 assemby to the cabinet bottom. - 3. Carefully remove the A3 assembly by first pulling the assembly toward the battery and second, lifting the assembly. - 4. Remove the two front black plastic spacers which hold the battery in place. Lift the battery out of the cabinet bottom. - 5. Perform steps 1 through 14 of Procedure 1 in this table. Then return and continue with step 6. - 6. Install the battery pack into the cabinet bottom. Mount the two front black plastic spacers. - Install the A3 assembly into J1 of the A2 assembly but DO NOT connect the red or black cable to the battery. - 8. Insert and tighten the hold-down screw for the A3 assembly. - 9. Connect the red and black cables to the battery's positive and negative posts, respectively. Turn the HP 5314A ON. - 10. Installation of Option 001 into an HP 5314A with Option 002 is now complete. IMMEDIATELY proceed to step 4 (PRELIMINARY) of Table 5-3, Option 001 Adjustment. Table 2-3. Option 002 Installation Instructions Installation of Option 002 (battery pack) should be performed by qualified service personnel only. ### Option 002 consists of the following parts: | HP Part Number | Qty. | Description | | |----------------|------|--------------------------|--| | 05314-60003 | 1 | Battery Charger Assembly | | | 1420-0253 | 1 | 6V Lead-Acid Battery | | | 05314-00002 | 1 | Battery Bracket | | | 2420-0001 | 1 | 6-32 × ½" Machine Screw | | - 1. Turn off the HP 5314A and remove the AC power cord. - 2. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - Holding the top and bottom covers together, turn the HP 5314A rightside up and carefully lift the top cover. - 4. Remove the front two black plastic spacers and washers (located 1 ½" behind the combination front panel and A1 assembly). Discard the washers only. - 5. Assemble the battery and battery hold-down bracket, matching the polarity of the battery with that shown on the hold-down bracket. - 6. Dress all A1-A2 interconnect cables to lay across the lower left corner of the cabinet bottom. - 7. Install the battery pack and A3 assembly as follows: - a. Locate the two spacer studs in the front of the cabinet bottom (approximately 1 ½" behind the combination front panel A1 assembly). - b. Mount the battery pack and bracket so the two spacer studs go through the two large holes on the bracket, and the battery posts (+ and -) are pointing toward the A2 assembly (rear of the cabinet). - c. Locate the Option 002 A3 assembly (05314-60003). Lay the assembly on a flat surface (component side up) and dress the two cables (red and black) so they point straight up (perpendicular from the assembly). - d. Install the A3 assembly (05314-60003), component-side up, into A2J1 (the 6-pin plastic board connector on the A2 power supply assembly). - e. Install a ½" 6-32 screw through the board assembly/battery mounting bracket and secure them to the cabinet bottom. ### NOTE Make sure the HP 5314A power switch is in the STBY position! - f. Connect the red cable to the (+) post of the battery pack. - g. Connect the black cable to the (-) post of the battery pack. - h. Install the two black plastic spacers (without washers) onto the front spacer studs. - Installation of Option 002 is now complete. IMMEDIATELY proceed to step 4 of Table 5-4, Battery Cutoff Voltage Adjustment. # SECTION III OPERATION ### 3-1. INTRODUCTION 3-2. This section provides complete operating information needed for the HP 5314A Universal Counter. This section includes a description of all front panel controls, connectors and indicators, operating instructions, operator's checks, and operator's maintenance. # 3-3. OPERATING CHARACTERISTICS 3-4. The following paragraphs describe the operating ranges and resolution for frequency, period, time interval, ratio A/B, totalize A, and self-check functions. # 3-5. Frequency Measurements 3-6. All frequency measurements are made through the A channel input. The frequency range is 10 Hz to 10 MHz direct count and 10 Hz to 100 MHz prescaled by 10, with a minimum input level of 25 mV rms or 75 mV p-p (with a minimum pulse width of 5 ns) times the attenuator setting. The resolution is 0.1 Hz for frequencies up to 10 MHz. With frequencies above 10 MHz (prescale mode), the resolution is 10 Hz. See *Figure 3-3* for a typical frequency measurement setup. ### 3-7. Period Measurements 3-8. All period measurements are made through the A channel input. The signal can be a sine wave, square wave, or a wave form with components faster than 10 Hz. The period range is 100 ms to 400 ns (10 Hz to 2.5 MHz). The sensitivity is 25 mV rms or 75 mV p-p. The resolution is 100 ns. See Figure 3-4 for a typical period measurement setup. ### 3-9. Time Interval Measurements - 3-10. The counter measures time intervals from Channel A to Channel B; that is, Channel A starts the measurement and Channel B stops the measurement. Time between points on a single waveform can be measured by connecting the input signal to CHANNEL A jack and placing the Input Amplifier Control switch to COM A. Under these conditions, the slope and level controls of Channel A and Channel B allow variable triggering on either the + or slope. With the Input Amplifier Control switch set to SEP, measurements can be made between points on separate waveforms. The time interval range is 250 ns to 1 s. The sensitivity is 25 mV rms (75 mV p-p). The resolution is 100 ns. See Figures 3-5 and 3-6 for typical time interval measurement setups. - 3-11. INITIATING A MEASUREMENT. The HP 5314A does not internally arm itself in time interval. Both Channels A and B must be externally armed before a time interval measurement can be initiated, see Figure 3-1. Each channel is armed by the first positive or negative edge (corresponding to the slope selection setting) of the input signal. Channel A is armed first. Channel B ignores all input edges until Channel A is armed. Once Channel A is armed, the first positive or negative edge (corresponding to the slope selection setting) arms Channel B. Until Channel B is armed, Channel A ignores any further input edges. Once Channel B is armed, the next slope selected edge in Channel A starts the time interval measurement, and the next slope selected edge in Channel B stops the time interval measurement. Figure 3-1. Time Interval Measurement Routine ### 3-12. Ratio A to B Measurements 3-13. The ratio between two frequencies (FA/FB) is measured by connecting one signal to Channel A and the other to Channel B. Channel A operates in the range of 10 Hz to 10 MHz. Channel B operates in the range of 10 Hz to 2.5 MHz. If the higher frequency is connected to Channel A, the ratio will be greater than one. The answer for a ratio measurement is a unitless figure. See Figure 3-7 for a typical ratio measurement setup. ### 3-14. Totalize A Measurements 3-15. The HP 5314A can totalize directly from 10 Hz to 10 MHz with a resolution of 1 count. Input frequencies between 10 Hz and 100 MHz may be totalized in the prescale mode (see Figure 3-8) with a resolution of 10 Hz. The HOLD switch may be used to latch the display. However, the counter continues to increment and when the HOLD is released, the updated count is displayed. See Figure 3-8 for a typical totalize measurement setup. ### 3-16. Self-Check 3-17. The HP 5314A contains a built in self-check function. The self-check mode programs the unit to make a frequency measurement on its internal 10 MHz time base. For details concerning self-check, see *Figure 3-9*, Operator's Checks. ### 3-18. PANEL FEATURES 3-19. Front panel features of the HP Model 5314A are described in *Figure 3-2*, Front Panel Controls and Connectors. Contained in *Figure 3-2* is a description of each of the controls and connectors. Description numbers match the numbers on the illustration. # 3-20. OPERATING INSTRUCTIONS 3-21. General operating procedures with the HP Model 5314A Universal Counter connected in typical measurement setups are shown in *Figures 3-3, 3-4, 3-5, 3-6, 3-7,* and *3-8*. Many other applications are possible but not shown because the general operating procedure is the same. Description numbers match the numbers on the illustration. # 3-22. OPERATOR'S MAINTENANCE 3-23. There is no operator's maintenance for the HP 5314A. All maintenance should be performed by qualified service personnel only. # 3-24. Power/Warm-Up 3-25. The HP 5314A has a two position power switch, STBY and ON. For HP 5314A models with Option 002, it is important that the instrument be connected to the power source in the STBY mode when not in use. This supplies power to the battery charging circuitry. Figure 3-2. Front Panel Controls and Connectors There are two additional functions which are selected using combinations of switches 6 and 7. These two functions are Self-Check and Ratio A to B. For self-check mode, place both function switches 6 and 7 in the IN position. The instrument is now making a frequency measurement on the internal 10 MHz time base. Activating switches 9 and 10 causes 10 MHz to be displayed. Activating switch 11 causes 100 MHz to be displayed. Resolution selection switches can now be checked for proper operation. For Ratio A to B, place both function switches 6 and 7 in the OUT position. For more details on Ratio A to B, refer to paragraph 3-12 and Figure 3-7. 8 SHIFT KEY
IN/OUT position determines the function selected by keys 6 and 7. IN position selects the bottom row functions. OUT position selects the upper row functions. #### NOTE The following three switches 9 10 11 are dual purpose. Depending on the function selected (Frequency, Period, Ratio, etc.) the switches either represent the resolution and bandwidth (gate time) or the sample size (N samples). 9 1 Hz/N=100 In frequency (10 Hz to 10 MHz), this switch, when IN, gives a display with a 1 Hz resolution (1 second gate time). For frequencies between 10 MHz and 100 MHz, see the explanation for switch 11. In period, this switch, when IN, causes the HP 5314A to measure 100 periods and display the average value in microseconds. In ratio, this switch when IN, causes the HP 5314A to make 100 measurements and display the average ratio. This switch does not improve accuracy beyond 100 nanoseconds for time interval measurements! 10 10 Hz/N=10 In frequency (10 Hz to 10 MHz), this switch, when IN, gives a display with a 10 Hz resolution (100 millisecond gate time). For frequencies between 10 MHz and 100 MHz, see the explanation for switch. In period, this switch, when IN, causes the HP 5314A to measure 10 periods and display the average value in microseconds. In ratio, this switch, when IN, causes the HP 5314A to make 10 measurements and display the average ratio. This switch does **not** improve accuracy beyond 100 nanoseconds for time interval measurements! ### NOTE There is another resolution available using switches and in addition to the two resolutions called out on the front panel. It is 0.1 Hz/N=1000. This is generated when switches in a manner of the switches in a manner of the out position. In frequency (10 Hz to 10 MHz), with these three switches out, the HP 5314A gives a display with 0.1 Hz resolution (10 second gate time). For frequencies between 10 MHz and 100 MHz, see the explanation for switch in the period, with these three switches out, the HP 5314A measures 1000 periods and displays the average value in microseconds. In ratio, with these three switches out, the HP 5314A makes 1000 measurements and displays the average ratio. This switch combination does not improve accuracy beyond 100 nanoseconds for time interval measurements. Figure 3-2. Front Panel Controls and Connectors (Continued) This switch, when IN, reroutes the Channel A input signal through a divide-10 Hz/N=1 by-10 prescaler circuit (when FREQ A/START A switch 6 is in). This switch MUST be used for frequencies between 10 MHz and 100 MHz. In frequency, this switch, when IN, prescales the input signal by 10 and gives a display with a 10 Hz resolution (prescale by 10 with a 1-second gate time). This switch and switch (1 Hz/N=100) IN prescales the input and gives a display with a 100 Hz resolution (prescale by 10 with a 100-millisecond gate time). This switch and switch 10 (10 Hz/N=10) IN prescales the input and gives a display with a 1 kHz resolution (prescale by 10 with a 10-millisecond gate time). In Period, this switch IN causes the HP 5314A to measure 1 period and display the value in microseconds (this switch is used for single-shot period measurements). In Ratio, this switch IN causes the HP 5314A to make 1 measurement and display the ratio (this switch is used for single-shot ratio measurements). In Time Interval, this switch should be pressed. This programs the HP 5314A to make single-shot time interval measurements. In Start, the HP 5314A counts the input directly (10 Hz to 10 MHz) and displays in units. With this switch IN, the input is prescaled by 10 and the display is in kilo units. This switch MUST be used in START A for signals above 10 MHz. This switch setting determines which slope of the Channel A input signal **SLOPE** will be used as the triggering slope. LEVEL control used in conjunction with the attenuator switch (15), to LEVEL A select the relative voltage at which triggering occurs. Approximately ±350 millivolts is the amount varied. The input amplifiers are ac coupled. The actual dc level of the trigger point is unknown. INPUT A BNC connector for the A channel signal input. The input impedance is 1 Meg. For more information on the input signal, refer to Table 1-1, Specifications. **ATTN** Channel A input signal attenuator switch. Used in conjunction with the LEVEL control to set the trigger point. The input signal is not affected in X1 position. Input signal amplitude is reduced by a factor of 20 in the X20 position. 16 SEP/COM A Input amplifier control switch. a. SEP - Allows independent operation of A and B channels. COM A - Operationally connects Channels A and B in parallel. Used for single source time interval measurements. Channel B input jack is not active. The input impedance remains the same as in SEP. INPUT B BNC connector for the B channel signal input. The input impedance is 1 Meg. For more information on the input signal, refer to Table 1-1, Specifications. SLOPE This switch setting determines which slope of the Channel B input signal will be used as the triggering slope. LEVEL control used to select the relative voltage at which triggering LEVEL B occurs. When switch IB is in SEP, the trigger voltage varies approximately ±350 mV. When switch 15 is in COM A, the trigger voltage varies approximately ±350 mV times the attenuator (switch 15) setting. The input amplifiers are ac coupled. The actual dc level of the triggering point Figure 3-2. Front Panel Controls and Connectors (Continued) is unknown. See Table 1-1 for the specifications on all input signals concerning bandwidth, accuracy, and amplitude. - 1. Set line switch 3 to the ON position. - 2. Set COM A/SEP switch 16 to SEP position. - 3. Connect the input signal to INPUT A jack 14. - 4. Press FREQ A/START A switch 6 IN. Be sure the blue shift key 8 is in the OUT position. This selects the top function of switch 6. - 5. Set SLOPE 12, ATTN 15, and LEVEL A 13 to desired positions; see *Table 1-1*, Specifications, for details. - 6. Select either 1 Hz 9 or 10 Hz 10 resolution for frequencies between 10 Hz and 10 MHz. NOTE: 10 Hz 11 may also be used. For frequencies higher than 10 MHz, the 100 MHz/10 Hz switch 11 must be pressed IN. ### NOTE The following three resolutions are available with the HP 5314A but are not printed on the front panel. - A. For 0.1 Hz resolution (10 second gate time) on frequenices from 10 Hz to 10 MHz, place all three resolution switches (9) (10) in the OUT position. - B. For 100 Hz resolution (0.1 second gate time) on frequencies to 100 MHz, place switches and in the IN position. - C. For 1 kHz resolution (0.01 second gate time) on frequencies to 100 MHz, place switches and in the IN position. See Table 1-1 for the specifications on all input signals concerning bandwidth, accuracy, and amplitude. - 1. Set line switch 3 to the ON position. - 2. Set COM A/SEP switch 16 to SEP position. - 3. Connect the input signal to INPUT A jack 14. - 4. Press PER A/T.I. A—B switch 1 IN. Make sure the blue shift key 8 is in the OUT position. This selects the top function of switch 1. - 5. Set SLOPE 12, ATTN 15 and LEVEL A 13 to desired positions; see *Table 1-1*, Specifications, for details. - 6. Press desired sample size switch (9, 10, 11). For an explanation of the sample size switches 9 10 and 11, see Figure 3-2. See *Table 1-1* for the specifications on all input signals concerning bandwidth, accuracy, and amplitude. See paragraph 3-11 for time interval arming characteristics. - 1. Set line switch 3 to the ON position. - 2. Set COM A/SEP switch 16 to COM A position. - 3. Connect the input signal to the INPUT A jack 14. - 4. Press PER A/T.I. A→B switch IN. Press the blue shift key (IN position). This selects the bottom function of switch . - 5. Set SLOPE switches 12 and 18, ATTN switch 15 and LEVEL A and B controls 13 and 19 to desired positions; see *Table 1-1*, Specifications, for details. - 6. Press resolution switch (N=1) IN. This places the HP 5314A into single-shot mode. All time interval measurements made with the HP 5314A should be single-shot. Figure 3-5. One-Source Time Interval Measurement Setup See Table 1-1 for specifications on all input signals concerning bandwidth, accuracy, and amplitude. See paragraph 3-11 for time interval arming characteristics. - 1. Set line switch 3 to the ON position. - 2. Set COM A/SEP switch 16 to SEP position. - 3. Press PER A/T.I. A—B switch IN. Press the blue shift key (IN position). This selects the bottom function of switch In. - 4. Connect the start time-interval signal to the INPUT A jack. 14. Connect the stop time-interval signal to the INPUT B jack 17. - 5. Set SLOPE switches 12 and 18, ATTN switch 15, and LEVEL A and B controls 13 and 19 to desired positions; see Table 1-1, Specifications, for details. - 6. Press resolution switch (N=1) IN. This places the HP 5314A into single-shot mode. All time interval measurements made with the HP 5314A should be single-shot. See Table 1-1 for specifications on all input signals concerning bandwidth, accuracy, and amplitude. - 1. Set line switch 3 to the ON position. - 2. Set COM A/SEP switch 16 to SEP position. - 3. Place the two function switches 6 and 7 in the OUT position. This places the HP 5314A in the Ratio A to B function. - 4. Connect the higher frequency signal to the INPUT A jack . Connect the lower frequency signal to the INPUT B jack (the higher frequency can be input to INPUT B if it is below 2.5 MHz). - 5. Set SLOPE switches 12 and 18, ATTN switch 15, and LEVEL A and B controls 13 and 19 to desired positions; see Table 1-1, Specifications, for details. - 6. Press the desired sample size switch (9, 10, 11). For an explanation of the sample size switches, see Figure 3-2, 9, 10, and 11. Figure 3-7. Ratio Measurement Setup See Table 1-1 for specifications on all input signals concerning bandwidth, accuracy, and amplitude. - 1. Set line switch 3 to the ON position. - 2. Set COM A/SEP switch 16 to SEP position. - 3. Press the FREQ A/START A switch 6 IN. -
4. Press the blue shift key 8 (IN position). This selects the bottom function of switch 6 - 5. Set SLOPE 12, ATTN 15, and LEVEL A 13 to desired positions; see *Table 1-1*, Specifications, for details. - 6. Connect the input signal to INPUT A jack 14. For input frequencies higher than 10 MHz, the 100 MHz/10 Hz resolution switch 11 (prescale by 10) MUST be pressed (IN position). This operator's check checks for proper operation of the counter chip A1U2, the function and resolution switches, and the display. This procedure does not check the operation of the two input amplifiers. See Figure 4-1, Operation Verification, for a more complete operational check. - 1. Set the line switch 3 to the ON position. - 2. Depress both function switches 6 and 7 (IN position). This places the HP 5314A in the self-check mode. - 3. Place resolution switch (9 (1 Hz/N=100) in the IN position. The HP 5314A should display ### 0000.000 - with the overflow LED 2 ON and the instrument gating once every second. - 4. Place resolution switch (10 Hz/N=10) in the IN position. The HP 5314A should display ### 10000.00 with the overflow LED OFF and a 100-millisecond gate time. 5. Place resolution switch (10 Hz/N=1) in the IN position. The HP 5314A should display ### 99999.99 with the overflow LED 2 ON and a 1-second gate time. 6. Place both resolution switches 9 and 11 in the IN position. The HP 5314A should display 188899.8 ------ 100000. with the overflow LED 2 OFF and a 100-millisecond gate time. 7. Place both resolution switches 10 and 11 in the IN position. The HP 5314A should display with a 10-millisecond gate time. Figure 3-9. Operator's Check # SECTION IV PERFORMANCE TESTS ### 4-1. INTRODUCTION 4-2. The two procedures in this section test the instrument's electrical performance using the specifications of *Table 1-1* as performance standards. The first test is an operation verification which checks all major functions of the HP 5314A. The second test is the full performance test which checks all specifications. # 4-3. EQUIPMENT REQUIRED 4-4. Equipment required for the complete test and operation verification is listed in *Table 1-2*. Any equipment which satisfies the critical specifications given in the table may be substituted for the recommended model. ### 4-5. OPERATION VERIFICATION 4-6. The abbreviated checks given in *Table 4-1* can be performed to give a high degree of confidence that the HP 5314A is operating properly without performing the complete performance test. The operation verification should be used for incoming QA, routine maintenance, and after instrument repair. ### 4-7. PERFORMANCE TEST 4-8. The performance test is given in *Table 4-2*. The performance test verifies all specifications listed in *Table 1-1*. Depending on the use and environmental conditions, the instrument should be checked using the performance test at least once a year. ### 4-9. TEST RECORD 4-10. Results of the operation verification may be tabulated on the operation verification test card located at the end of *Table 4-1*. Results of the performance tests may be tabulated on the performance check test card located at the end of *Table 4-2*. Table 4-1. Operation Verification ### I. SELF TEST Perform the self test procedure per Figure 3-9. Mark the results on the test card. # II. FREQUENCY RESPONSE AND SENSITIVITY A. CHANNEL A Specification: 10 Hz-100 MHz, 25 mV rms Set the HP 5314A front panel controls as follows: | FUNCTION . | | | FRFO A | |--------------------|-------------------------|---|-----------| | RESOLUTION | | | 1 47 | | BOTH SLOPES | | • | 175 | | BOTH LEVELS | | | ···· | | ATTN | | ••••• | VII alige | | SEP/COM A | | | AI | | Jan / CO | • • • • • • • • • • • • | | ١٢٢ | 2. Connect an HP 3314A test oscillator to the HP 5314A INPUT A with a cable and 50-ohm feed-through. Set the HP 3314A for 500 Hz and 5 MHz at 25 mV rms (~70 mV p-p). Replace the HP 3314A with an HP 8656A signal generator. Press resolution switch 10 Hz prescale (N=1). Set the HP 8656A for 50 MHz and 100 MHz at 25 mV rms (~70 mV p-p). The counter should display the specified frequencies. Mark the results on the test card. ### **B. CHANNEL B** Specification: 10 Hz-2.5 MHz, 25 mV rms - Repeat step A1. Set the HP 5314A SEP/COM A switch to COM A. Set both function switches FREQ A and PER A OUT. - 2. Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Set the HP 3314A for 500 Hz and 2.5 MHz at 25 mV rms (~70 mV p-p). The HP 5314A should display "1.00" at both specified frequencies. Mark the results on the test card. #### III. PERIOD Specification: 10 Hz-2.5 MHz, 25 mV rms - A. Repeat Test II, Step A1. Set the HP 5314A function switch PER A IN (make sure the HP 5314A blue key is OUT). - B. Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Set the HP 3314A for 500 Hz and 2.5 MHz at 25 mV rms (~70 mV p-p). The HP 5314A should display 2 milliseconds and 0.400 microseconds, respectively. Mark the results on the test card. ### IV. TIME INTERVAL Specification: 250 ns-1 s, 25 mV rms A. Set the HP 5314A front panel controls as follows: | FUNCTION | TI A→B | |-----------------|-------------| | RESOLUTION | N=1 | | BLUE key | IN | | CHANNEL A SLOPE | <i>></i> | | ATTN | X1 | | SEP/COM A | COM A | | CHANNEL B SLOPE | محر | | BOTH LEVELS M | idrange | B. Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Set the HP 3314A for 1 MHz at 100 mV rms (~285 mV p-p). The HP 5314A should display 0.5 microseconds ±100 nanoseconds. Mark the results on the test card. ### V. RATIO Specifications: Channel A: 10 Hz—10 MHz, 25 mV rms Channel B: 10 Hz—2.5 MHz, 25 mV rms A. Set the HP 5314A front panel controls as follows: | FUNCTION | RATIO A/B | |-------------|-----------| | RESOLUTION |
N=100 | | BOTH SLOPES | | | BOTH LEVELS | | | ATTN |
X1 | | SEP/COM A |
SEP | B. Connect the HP 5314A, HP 3314A, and HP 3312A as shown in the following diagram: Ratio Test Setup C. Set the HP 3314A for 10 MHz at 25 mV rms. Set the HP 3312A function generator to 2 MHz at 25 mV rms (square wave). The HP 5314A should display 5.00. Mark the results on the test card. ### **OPERATION VERIFICATION TEST CARD** | HEWLETT-PACKARD I
UNIVERSAL COUNTE | MODEL 5314A Test Performed by
R | | |---------------------------------------|--------------------------------------|-------------| | Serial No. | | Date | | | DESCRIPTION | CHECK | | | | | | I. SELF-CHECK | | | | | | | | | | | | II. FREQUENCY RESPO | NSE AND SENSITIVITY | | | Channel A: | 500 Hz, 5 MHz, 50 MHz 100 MHz | | | Channel B: | 500 Hz, 2.5 MHz | | | | | | | III. PERIOD | | | | 2 milliseconds | | | | 0.400 milliseconds | | | | | | | | IV. TIME INTERVALAN | D TIME INTERVAL AVERAGE | | | | nilliseconds at 100 mV (~285 mV p-p) | | | | | | | V DATIO A /P | | | | V. RATIO A/B Ratio A/B as per Test | V. step c | | | nand 10 da per rest | ·,,,,,,, | | | | | | ### I. SELF TEST Perform the self test procedure per Figure 3-9. Mark the results on the test card. ### II. FREQUENCY RESPONSE AND SENSITIVITY ### A. CHANNEL A Specification: 10 Hz-100 MHz, 25 mV rms 1. Set the HP 5314A front panel controls as follows: | FUNCTION FREQ A | |----------------------| | RESOLUTION 1 Hz | | BOTH SLOPES £ | | ATTN | | SEP/COM A SEP | | BOTH LEVELS Midrange | - Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Vary' the HP 3314A from 10 Hz to 10 MHz, maintaining a 25 mV rms signal level. The counter should display the correct frequencies. Mark the results on the test card. - 3. Connect an HP 8656A signal generator to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Press the prescaled 10 Hz (N=1) resolution switch IN. Vary the HP 8656A signal generator from 10 MHz to 100 MHz, maintaining a 25 mV rms signal level. The counter should display the correct frequencies. Mark the results on the test card. ### B. CHANNEL B Specification: 10 Hz-2.5 MHz, 25 mV rms - Repeat step A1. Set the HP 5314A SEP/COM A switch to COM A. Set all three function switches OUT. - 2. Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Vary the HP 3314A from 10 Hz to 2.5 MHz, maintaining a 25 mV rms signal level. The counter should display "1.00" throughout the specified frequencies. Mark the results on the test card. ### III. PERIOD Specification: 10 Hz-2.5 MHz, 25 mV rms - A. Repeat Test II, Step A1. Set the HP 5314A function switch PER A IN (FREQ A switch OUT). Make sure the HP 5314A blue key is OUT. - B. Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Vary the HP 3314A from 10 Hz to 2.5 MHz maintaining a 25 mV rms signal level. The counter should display the correct period of all frequencies in this range. Mark the results on the test card. ### IV. TIME INTERVAL Specification: 250 ns-1 s, 25 mV rms A. Set the HP 5314A front panel controls as follows: | В | |---------| | IN | | l=1 | | <u></u> | | _ | | X1 | | ١Ã | | ige | | | B. Connect an HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Set the HP 3314A for 1 MHz at 100 mV rms (~285 mV p-p). The HP 5314A should display 0.5 microseconds ±100 nanoseconds. Mark the results on the test card. Table 4-2. In-Cabinet Performance Test (Continued) ### V. RATIO Specifications: Channel A: 10 Hz—10 MHz, 25 mV rms Channel B: 10 Hz—2.5 MHz, 25 mV rms A. Set the HP 5314A front panel controls as follows: | FUNCTION | RATIO A/B | |-------------|-----------| | RESOLUTION | N=100 | | BOTH SLOPES | | | BOTH LEVELS | | | ATTN | X1 | | SEP/COM A | SEP | B. Connect the HP 5314A, HP 3314A, and HP 3312A as shown in the following diagram: C. Set the HP 3314A for 10 MHz at 25 mV rms. Set the HP 3312A function generator to 2 MHz at 25 mV rms (square wave). The HP 5314A should display 5.00. Mark the results on the test card. ### VI. TOTALIZE Specification: 10 Hz-10 MHz, 25 mV rms A.
Set the HP 5314A front panel controls as follows: | NORM/HOLD | . NORM | |-------------|----------| | FUNCTION | START A | | BLUE key | IN | | RESOLUTION | 1 Hz | | BOTH SLOPES | ₹ | | ATTN | X1 | | SEP/COM A | SEP | | BOTH LEVELS | Midrange | B. Set the HP 3314A to 10 Hz at 25 mV rms. Connect the HP 3314A to the HP 5314A INPUT A with a cable and 50-ohm feedthrough. Observe the HP 5314A display upcounting at a 10 Hz rate. Press the NORM/HOLD switch IN. Notice the display stops upcounting. Release the NORM/HOLD switch (OUT position). Notice the updated display and a resume in counting. Set the HP 3314A to 10 MHz at 25 mV rms. The HP 5314A display should be counting with the OVFL indicator lit. Mark the results on the test card. ### PERFORMANCE TEST RECORD | | /LETT-PACKARD MODEL 5314A
VERSAL COUNTER | Repa | · · · · · · · · · · · · · · · · · · · | 0 | | |--------|--|--|---------------------------------------|---------|---------| | 0-2-14 | | | | | | | Test | Performed By: | - | | | | | | | | Calibration Test: | | | | | s: | | | | | | | | ——— Pre C | Calibration Test: | | | | PARA. | | CORRECT | | RESULTS | | | NO. | TEST | DISPLAY | PASS | FAIL | | | 1. | SELF-TEST | | | | | | | Resolution, | | | | | | | 1 Hz/N = 100
10 Hz/N = 10 | 0000.000 | | | | | | 10 Hz/N = 1 | 00000.00 | | | | | | 100 Hz | 100000.0 | | | | | | 1 kHz | 100000. | | | | | II. | FREQUENCY RESPONSE AND SENSITIVITY | | | | | | | CHANNEL A: | | | | | | | 10 Hz — 10 MHz @ 25 mV rms
10 MHz — 100 MHz @ 25 mV rms | Stable Count
Stable Count | | | | | | CHANNEL B:
10 Hz — 2.5 MHz @ 25 mV rms | 1.00 | | | | | III. | PERIOD | | | | | | | 10 Hz — 2.5 MHz @ 25 mV rms | Correct Period | | | | | | | | MINIMUM | ACTUAL | MAXIMUM | | IV. | TIME INTERVAL | | | | | | | Time Interval 0.5 microseconds @ 100 mV rms (~285 mV p-p) | 0.5 μs | .400 | | .600 | | | | | PASS | FAIL | | | ٧. | RATIO | | | | - | | | Ratio A/B | 5.00 | | | | | VI. | TOTALIZE | | | | | | Ì | Totalize A: | | | | | | | 10 Hz Up Count | 10 Hz Up Count
Rate | | | | | | Up Count Stops | Stable Count | | | ! | | | Display Update/Resume Count | Updated
Display
10 Hz Up Count
Rate | | | | | | Display Update | Count with OVFL | | | | # SECTION V ADJUSTMENTS # 5-1. INTRODUCTION - 5-2. This section describes the two adjustments that may be made to the HP 5314A. First, the power transformer primary is switchable to allow selection of two different nominal line voltages and second, the time base oscillator frequency is adjustable. The HP 5314A top cover must be removed to change the power transformer primary (line voltage change) as directed in Table 5-1. The time base oscillator frequency may be adjusted via an adjustment window located in the lower left-hand corner of the front panel. Two methods for adjusting the time base frequency are given in Table 5-2. The first method uses an external input, with the HP 5314A in frequency mode. The second method compares (using an oscilloscope) the buffered internal 10 MHz time base with an external house standard. - 5-3. Adjustments for Options 001 and 002 are described in *Tables 5-3* and *5-4*, respectively. *Table 5-3* describes how to adjust the Temperature Compensated Crystal Oscillator (TCXO) frequency. *Table 5-4* describes how to adjust the automatic battery charger's cutoff voltage. Adjustments for both Options 001 and 002 require access to the inside of the HP 5314A. # 5-4. EQUIPMENT REQUIRED 5-5. The test equipment required for the adjustment procedures is listed in *Table 1-3*, Recommended Test Equipment. Substitute equipment may be used if it meets or exceeds the critical specifications. # 5-6. ADJUSTMENT LOCATIONS 5-7. Adjustment locations are identified in the component locators in Section VIII and in the top internal view of the HP 5314A as shown in Figure 8-7. ### 5-8. SAFETY CONSIDERATIONS 5-9. This section contains warnings and cautions that must be followed for your protection and to avoid damage to the equipment. ### WARNING MAINTENANCE DESCRIBED HEREIN IS PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT, AND PROTECTIVE COVERS REMOVED. SUCH MAINTENANCE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL WHO ARE AWARE OF THE HAZARDS INVOLVED (FOR EXAMPLE, FIRE AND ELECTRICAL SHOCK). WHERE MAINTENANCE CAN BE PERFORMED WITHOUT POWER APPLIED, THE POWER SHOULD BE REMOVED. BEFORE ANY REPAIR IS COMPLETED, ENSURE THAT ALL SAFETY FEATURES ARE INTACT AND FUNCTIONING, AND THAT ALL NECESSARY PARTS ARE CONNECTED TO THEIR PROTECTIVE GROUNDING MEANS. ### WARNING # THE POWER CORD SHOULD BE REMOVED FROM THE REAR OF THE HP 5314A BEFORE STARTING THIS ADJUST-MENT PROCEDURE. - 1. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 2. Holding the top and bottom covers together, turn the HP 5314A right-side up and carefully lift the top cover. This exposes the line voltage selector switch located on the A2 (05314-60006) power supply assembly (large pc assembly located in the rear of the cabinet). - The two position switch may now be properly set to match the input voltage (115 for 86V to 126V input or 230 for 172V to 252V input). - 4. Replace the top cover and carefully turn the unit upside down. Replace and tighten the four screws, one in each corner, of the cabinet bottom. #### NOTE The line voltage selector switch automatically selects the correct line input fuse configuration (the two fuses are located on the A2 assembly and are in series for 230V operation and in parallel for 115V operation). ## Table 5-2. Time Base Frequency Adjustment ### NOTE If this adjustment is to be considered valid, the HP 5314A must have a half-hour warm-up and the line voltage must be within +5% to -10%. ### METHOD #1 - Apply an external signal of known frequency (i.e., house standard) and suitable amplitude (minimum 25 mV rms) to the Channel A input of the HP 5314A. - 2. Set the HP 5314A front panel controls as follows: | ON/OFF ON | |------------------------------| | NORM/HOLD NORM | | FUNCTION FREQ A | | BLUE Key OUT | | RESOLUTION 1 Hz | | CHANNEL A | | LEVEL A 0V (center position) | | SLOPE + (UP) | | ATTN X1 | | CHANNEL B | | LEVEL B | | SLOPE + (UP) | | SEP/COM A SEP | The approximate input frequency should be in the display with an update once a second. 3. Locate the OSC ADJ window in the lower left-hand corner of the front panel. Insert a plastic tuning wand through the window and turn the adjustor (A1C2) slowly until the display shows the input frequency. The internal time base frequency is now correctly adjusted. #### METHOD #2 The second method requires access to the inside of the HP 5314A. However, it accomplishes a more accurate adjustment of the time base frequency than Method #1. #### NOTE The power cord should be remove while performing the first four steps. - Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 2. Holding the top and bottom covers together, turn the HP 5314A right-side up and carefully lift the top cover. - Carefully grasp the combination front panel and A1 board assembly and lift until it clears the grooves. - 4. Swing the right-side of the assembly (while looking toward the rear of the unit) away from the cabinet (toward you). Press the power switch to turn on the HP 5314A. - 5. Install the line cord and the HP 5314A should come on (the unit will be on already if it contains the optional battery pack and the battery is charged). - 6. Connect an oscilloscope to TP P of the A1 assembly (test point located near pin 40 of IC U2). This is the buffered 10 MHz internal oscillator. - 7. Connect a house-standard signal to the EXT trigger input of an oscilloscope. Refer to the diagram below. Every few months, the oscillator should be checked to a house standard. When adjustment is required, use the oscilloscope method shown below. Using the appropriate sweep speed, adjust the oscillator until the movement of the pattern is stopped. Oscillator Adjustment Interconnections 8. Set the controls of the oscilloscope as follows: | COUPLING | | AC | |--------------------|-----|--------| | INPUT IMPEDANCE | | 1 Meg | | HORIZONTAL TRIGGER | | . FXT | | TIME BASE | 0.1 | us/div | - 9. Adjust the vertical gain for a full screen waveform. The waveform should be moving either to the left or to the right. - 10. Adjust A1C2 (variable capacitor located in the lower left-hand corner of the A1 assembly) until the waveform is stationary. The accuracy of the frequency adjustment can be determined by referring to the table at the top of the next page. Table 5-2. Time Base Adjustment (Continued) | Movement | | NOTES | | | |------------|-----------------------|------------------|------------|-----------------| | | 1 μ scm | 0.1 μs/cm | 0.01 μs/cm | 110.25 | | 1 cm/s | 1 × 10-6 | 1 × 10-7 | 1 × 10-8 | TIME SCOPE TRAC | | 1 cm/10 s | 1 × 10-7 | 1 × 10-8 | 1 × 10-9 | MOVEMENT WITH | | 1 cm/100 s | 1 × 10-8 | 1 × 10-9 | 1 × 10-10 | SECOND HAND O | | | | 1 | | WATCH OR CLOC | The time base frequency adjustment is now complete. Mount the combination front panel/A1 assembly back into the cabinet bottom. Making sure the cables are properly routed, replace the top cover. Turn the HP 5314A upside down. Install and tighten the four screws, one in each corner, in the cabinet bottom. Table 5-3. Option 001 Adjustment #### NOTE If this adjustment is to be considered valid, the HP 5314A must have a half-hour warm-up and the line voltage must be within +5% to -10% of nominal. There are two methods of adjustment. The preliminary instructions apply to both methods and must be performed regardless of which method is chosen. The first method uses a house-standard signal applied to the channel A input with the HP 5314A making a frequency measurement. The second method compares a house-standard signal with the HP 5314A internal time base using an oscilloscope.
PRELIMINARY - 1. Remove the power cord from the rear of the HP 5314A. - 2. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 3. Holding the top and bottom covers together, turn the HP 5314A right-side up and carefully lift the top cover. - 4. Install the line cord. ### METHOD #1 - 1. Apply an external house-standard signal (minimum 25 mV rms) to the Channel A input of the HP 5314A. - 2. Set the HP 5314A front panel controls as follows: | ON/OFF ON | |------------------------------| | NORM/HOLD NORM | | FUNCTION FREQ A | | RESOLUTION 1 Hz | | CHANNEL A | | LEVEL A 0V (center position) | | SLOPE + (UP) | | ATTN X1 | | CHANNEL B | | LEVEL B | | SLOPE + (UP) | | SEP/COM A SEP | The approximate input frequency should be displayed with an update once a second. The time base frequency is now properly adjusted. Replace the top cover and turn the HP 5314A upside down. Replace and tighten the four screws in the cabinet bottom. ### METHOD #2 - 1. Carefully grasp the combination front panel and A1 board assembly and lift until it clears the grooves. - 2. Swing the right-side of the assembly away from the cabinet. - 3. Press the power switch to turn the instrument ON. - 4. Connect an oscilloscope to TP P of the A1 assembly (test point located near pin 40 of IC U2). This is the buffered 10 MHz time base. - 5. Connect a house-standard signal to the EXT trigger input of the oscilloscope. Refer to the diagram below. Every few months the oscillator should be checked to a house standard. When adjustment is required, use the oscilloscope method below. Using the appropriate sweep speed, adjust the oscillator until the movement of the pattern is stopped. Oscillator Adjustment Interconnections 6. Set the controls of the oscilloscope as follows: | COUPLING | | AC | |--------------------|-----|--------| | INPUT IMPEDANCE | | 1 Meg | | HORIZONTAL TRIGGER | | . EXT | | TIME BASE | 1.1 | us/div | - 7. Adjust the vertical gain for a full screen waveform. The waveform should be moving either to the left or to the right. - 8. Locate the A4 assembly (TCXO) which is mounted on the A2 power supply assembly. The frequency adjustment is a screw-type adjustor located on the top of the TCXO. Using a plastic tuning wand, adjust the TCXO frequency until the correct reading (the exact frequency of the input house-standard) is in the HP 5314A display. Table 5-3. Option 001 Adjustment (Continued) | Movement | | SWEEP SPEED | | NOTES | |-----------------------------------|--|--|-----------------------------------|--| | | 1 μscm | 0.1 μs/cm | 0.01 μs/cm | 1 | | 1 cm/s
1 cm/10 s
1 cm/100 s | 1 × 10 ⁻⁶
1 × 10 ⁻⁷
1 × 10 ⁻⁸ | 1 × 10 ⁻⁷
1 × 10 ⁻⁸
1 × 10 ⁻⁹ | 1 × 10-8
1 × 10-9
1 × 10-10 | TIME SCOPE TRACE MOVE-
MENT WITH SECOND HAND
OR WATCH OR CLOCK | The time base frequency adjustment is now complete. Mount the combination front panel/A1 assembly back into the cabinet bottom. Making sure the cables are properly routed, replace the top cover. Turn the HP 5314A upside down. Install and tighten the four screws, one in each corner, in the cabinet bottom. Table 5-4. Option 002 Charger Cutoff Voltage Adjustment This adjustment set the voltage at which the 0.5 amp charging current to the battery is terminated. It is preset at the factory and normally requires no further adjustment. However, readjustment is necessary after a repair to the A3 assembly or after field installation of Option 002. - 1. Remove the power cord from the rear of the HP 5314A. - 2. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 3. Holding the top and bottom covers together, turn the HP 5314A right-side up and carefully lift the top cover. - 4. Disconnect the red and black cables from the battery. - 5. Insert the line cord and turn the HP 5314A ON. - 6. Connect a low voltage power supply to the A3 assembly charger cables (positive lead to read cable and negative lead to black cable. - 7. Turn the pot on the A3 assembly (A3R12) fully clockwise. - 8. Adjust the power supply to 0 volts, then increase it to +6.5 volts ± 5 milllivolts. - 9. Connect a voltmeter between ground and A3U1(7). - 10. Turn the pot (A3R12) counterclockwise slowly until the voltage rises above 5 volts (typically 9–13 volts). - 11. Disconnect the low voltage power supply from the red and black cables. - 12. Turn the HP 5314A to STBY and remove the line cord. - 13. Connect the red and black charger cable to the positive and negative posts of the battery, respectively. - 14. Replace the handle and top cover. - 15. Turn the unit upside down. Install and tighten the four screws (one in each corner) of the cabinet bottom. - Adjustment of the A3 assembly is now complete. # SECTION VI REPLACEABLE PARTS # 6-1. INTRODUCTION 6-2. This chapter contains information for ordering parts. The following replaceable parts lists are included. | Table 6-1 | Reference Designations and Abbreviations | |-----------|--| | Table 6-2 | Replaceable Parts | | Table 6-3 | Manufacturer's Codes | # 6-3. REFERENCE DESIGNATIONS 6-4. Table 6-1 lists the abbreviations and reference designations used in the parts lists, block diagrams, and throughout the manual. ### 6-5. REPLACEABLE PARTS - 6-6. Table 6-2 is the list of replaceable parts and is organized as follows: - 1. Electrical assemblies in alphanumerical order by reference designation. - 2. Chassis-mounted electrical parts in alphanumerical order by reference designation. - 3. Chassis-mounted mechanical parts in alphanumerical order by reference designation. - 6-7. The information given for each part consists of the following: - 1. Reference Designation - 2. Hewlett-Packard part number. - 3. Part number check digit (CD). - 4. Total quantity (QTY) in instrument. The total quantity is given once and at the first appearance of the part number in the list. - 5. Description of the part. - 6. Typical manufacturer's part number for the part. # 6-8. HOW TO ORDER A PART - 6-9. Hewlett-Packard wants to keep your parts ordering process as simple and efficient as possible. Think of the process as having the following steps: - Identifying the part and the quantity that you want. - Determining the ordering method to be used and contacting Hewlett-Packard. # 6-10. Parts Identification 6-11. To identify the part(s) you want, first refer to the replaceable parts lists (*Tables 6-2 and 6-3*) in this chapter. - 6-12. When ordering from Hewlett-Packard, the important numbers to note from the Parts List are the HP Part Number and part-number check digit (in the "CD" column), and the quantity of the part you want. - 6-13. If the part you want is NOT identified in the manual, you can call on Hewlett-Packard for help (see the following section ("Contacting Hewlett-Packard"). Please have the following information at hand when you contact HP for help: - Instrument Model Number (example "HP 5314A"). - Complete instrument Serial Number (example "1234A56789"). Information about where to find the serial number is given in the preface of this manual in the "HOW TO USE THIS MANUAL" section. - Description of the part and its use. - Quantity of the part required. # 6-14. Contacting Hewlett-Packard - 6-15. Depending on where you are in the world, there are one or more ways in which you can get parts or parts information from Hewlett-Packard. - Outside the United States, contact your local HP sales office. HP sales offices are listed at the back of this manual. - Within the United States, we encourage you to order replacement parts or request parts information directly by telephone or mail from the HP Support Materials Organization, using the telephone numbers or address listed below. (You can also contact your local HP sales office. HP sales offices are listed at the back of this manual.) ### 6-16. By telephone: - a. For Parts Ordering, use our toll-free number (800) 227-8164, Monday through Friday (except Holidays), 6 am to 5 pm (Pacific Time). - b. If you need a part in a hurry, an extra-cost Hotline phone ordering service is available, 24 hours a day. Use the toll free number above at the times indicated; at other times, use (415) 968-2347. - c. For Parts Identification Assistance, call us at (916) 783-0804. Our Parts Identification hours are from Monday through Friday, 6 am to 5 pm (Pacific Time). - 6-17. For mail correspondence, use the address below: Hewlett-Packard Support Materials Roseville P.O. Box 1145 Roseville, Ca 95661-1145 ### 6-18. CABINET PARTS AND HARDWARE: 6-19. To locate and identify miscellaneous cabinet parts, refer to *Figure 6-1*. This figure provides an exploded view of the cabinet, with the parts identified by reference designations; the reference designations correspond with the ones in *Table 6-3*. | | | | | REFERENCE D | E | SIC | GNATIONS | | | | |--------------|--|-------------------------------------|-------------|--|--------------------------|-----|--|-------------------|--------|--| | AT
BT CCP CR | assembly attenuator, isolat termination fan, motor battery capacitor coupler diode; diode thyt varactor directional coupl delay line | F
F
FL
H
HY
istor; J | =
=
= | annunciator; signaling device audio or visual; lamp; LED miscellaneous electrical part fuse filter hardware circulator electrical connector stationary portion, jack relay, coil; inductor | LS
MMP
P QRT
ST | | audible alarm; audible signaling device; buzzer; transducer metre miscellaneous mechanical part electrical connector, movable portion; plug transistor; SCR; triode thyristor resistor thermistor switch transformer | TBCTCPUV VR W XYZ | =
= | terminal board thermocouple test point integraled circuit; microcircuit electron tube voltage regulator; breakdown diode cable, transmission path; wire; jumper socket crystal unit-piezo-electric tuned cavity; tuned circuit | | abude specified in the common of | DL = | delay | line | L = | coil; ir | nductor | Ť = 1 | trans | ormer | Z = | tuned cavity; tuned circuit | |---|----------|-------|-----------------------------|--------------------------|----------|---------------------------------|----------|-------|-------------------------------|--------------|--| | April | | | | | | ABBRE\ | /IATIO | NS | 3 | | | | April | Α. | _ | ampere | HDW | | hardware | ρF | _ | nanofarad | CDDT | . pipelo pelo deciblo di | | | ac | = | alternating current | HF | | high frequency | NIPL | | | SPG | | | | ACCESS | = | | | | | | | normally open | SPL | = special | | | VD. | = | analog-to-digital | | | nigh
Hewlett-Packard | | | | | single-pole, single-throw | | | λF | - | audio frequency | HPF | | | NPN | | | SSB | = spirt ring
= single sideband | | | AFC. | | automatic frequency control | HR | | hour (used in parts list) | NP0 | | negative-positive zero (zero | SST | | | | NGC | | | | | | | | temperature coefficient) | STL | = steel | | | ALC: | | | HZ | | | NRFR | = | not recommended for field | SQ | | | Anthony of the property | ÀМ | | amplitude modulation | ăi | | | | | | SVNC | | | autoratic phase control Mild succider No. Control of the property pro | AMPL | = | amplifier | IF | - | | NS NS D | | | T | = timed (slow-blow fuse) | | average weg pauge ACL Balance BINS INS INS INS INS INS INS IN | APC | | automatic phase control | | | | nW | | | TA | = tantalum | | average weg pauge ACL Balance BINS INS INS INS INS INS INS IN | ASSY | | assembly | INICD | | | OBD | | | ŢC | | | Agriculture | WG | | | | | | QD. | | outside diameter | TERM | | | Section Company Comp | WG | | american wire gauge | INP | | | OH AMBI | | | TFT | = thin-film transistor | | | BAL | | | INS | | | OPT | | | | | | Description oppose | מטנ | | | | | | | | | THD. | = thread | | DO boat frequency scalator AC slock Signature P P P P P P P P P | E CU | _ | | kHz | | kilohertz | | | | | | | Product head V Solvock Product Produ | 3FO | = | beat frequency oscillator | kΩ | | | | | | TOL | | | De Deutschoon D. Deutschoo | H | = | | | | | Σ2
P | | | TRIM | | | ber bandpass filter LED International Content of the | KUN | | | lp | | | | | pulse-amplitude modulation | <u>TS</u> TR | | | Signature of the control cont | SPF | = | bandoass filter | IEU | | | PC | | printed circuit | | = transistor-transistor logic | | AU backward wave escillator AL calibrate A | RS | - | | LF | | low frequency | PCM | = | | | | | channel continuetr continuet | 3WO | = | backward wave oscillator | LG | | long | 0011 | | | | = traveling wave tube | | channel continuetr continuet | CAL | | | LH. | | | | | | U_ | = micro (10 ⁻⁶) (used in parts li | | channel in continuote continuote L K WASH continuote continuo con | CM | | | | | limit | PH 887 | | | | microfarad (used in parts list | | contimeter MAGE collimeter controlled or coefficient MOGE coefficient MOGE collimeter controlled c | | | | | | | PHL | | phillips | UHF | | | Composition LOG log low local oscillator PIV pask inverse votage VA voltangere volta according vo | m | | | | | | | = | positive-intrinsic-negative | | s volt | | OMP composition compositio | MO | | | | | low; local oscillator | | | peak inverse voltage | VΑ | | | OMP composition compositio | OFF | | | LOG | - | | PK
Pi | | | Vac | | | OMPL complete comple | COMP | | | lon | _ | parts list) | ΡĽL | | | VAH | | | connector in the connec | COMPL | | complete | ΪĎΕ | | | | = | phase lock oscillator | | | | admum hatabe manufacture metre (distance) manufacture metal oxide metal isin meta | CONN | | | | | low voltage | | | | VDCW | | | complementary transistor logic will continuous wave continuous wave will willinuous wave willinuou | | | | | | metre (distance) | | | | | | | continuous wave MG | STL | | | | | milliampere | | | polystyrene | YE) | | | Cockwise MeG med mark med med mark med | SW . | | continuous wave | | | | | | porcelain | VHE | = variable-frequency oscillator | | metal carbon declared to 1mW MFT CX metal carbon degree (temperture interval or difference) direct current degree (temperture interval or difference) degree (claims (continged)) (continge | w- | | clockwise | MEG | | | POS | | | | = volts peak | | decide referred to 1mW MF | D/A | | digital-to-analog | | = | metal film | POSN | | | | ⇒ volts peak-to-peak | | direct current degree (temperture interval or difference) | ßm | | | MET OX | | | | | | Vrms | | | difference) degree (plane angle) Mg | ic | | | MF | = | | | = | | VTO | = votage standing wave ratio | | difference) mg milligram pPM leading of degree (plane angle) mg metry milligram pPM leading of degree Celsius (contigrade) mH millihenry PRF production frequency million freq | leg | = | | MED | _ | microtarad (used in parts list) | PP | = | peak-to-peak (used in parts | | | | degree Celsius (centigrade) degree Fahrenheit degree Fahrenheit mh conductance mh conductance pRR plus-repetition frequency pulse-repetition pulse-rep | | | difference) | | | | DDM | _ | | V(X) | volts, switched | | degree Fahrenheit, mho egree Selvin MIN = minimum place onductance before Selvin MIN = minimum place onductance degree Selvin MINAT = minimum place onductance of selector | | | degree (plane angle) | MHz | | | | = | puise-position modulation | W. | | | degree Kelvin MIN | Ċ
F | | degree Celsius (centigrade) | | | | PRF | = | | | | | dejector min dejector min dejector min dejector min dejector ministure minute (time) production and dejector minute (time) production and dejector minute (time) production and dejector minute (plane angle) production position modulation and position modulation ministure production produ | K | | | | | | PRR | | pulse-repetition rate | | | | am diameter (used in parts list) A e pusc (unit modulation pusk virgo voltage resistance capacitance reference and voltage reference and very reference and very reference and or reference reference reference reference and very resistance and or replaceable A electromotive force mV millivott and REF reference r | DEPC | | deposited carbon | | | | ps
DT | = | | W/O | | | idameter (used in parts list) FF AMPL diameter (used in parts list) mm miniature millimeter modulator | ET | | | • | | minute (plane angle) | | - | | | yttrium-iron-garnet | | mm milimeter pww poak working voltage differential amplifier MOD modulator RC resistance capacitance restriction double-pole, double-throw MOS modulator RECT restriction restriction double-pole, double-throw MOS modulator RECT restriction restriction modulator RECT restriction restriction modulator RECT restriction restriction restriction with modulator RECT restriction restriction restriction modulator RECT restriction restriction. | | | | MINAT | = | | PWM | - | | Zo | characteristic impedance | | POT = division MOM = modulator
RECT = restraince capacitance regulated = regul | IFF AMPI | | differential amplifier | mm | | millimeter | PWV | | peak working voltage | | | | The standard process of st | iv | - | | | | | RC | - | resistance capacitance | | | | Mode transistor logic MTG mounting REPL replaceable register and of frequency mounting REPL radio frequency register and of | PDT | = | double-pole, double-throw | | | | RECT | | | | NOTE | | Mode transistor logic MTG mounting REPL replaceable register and of frequency mounting REPL radio frequency register and of | R | | | | | millisecond | REG | | | | NOTE | | multiplexer RFI = radio frequency interference multivolt RH = round head; right hand resistance-inductance-capacitance electronic data processing millivolt, ac millivolt, ac electronic data processing millivolt, peak milli |)TL | | diode-transistor logic | MTG | = | mounting | REPL | | replaceable | طو ال۵ | breviations in the narte liet will be | | The electromotive force mV millivolt, ac electromotive force mV millivolt, ac electromotive force electromotive force electromic data processing electromotive force electromotive force electromotive force electromic data processing mVac millivolt, ac electrolytic electrolytic electrolytic electrolytic electrolytic encapsulated mVpk millivolt, peak move encapsulated mVpk millivolt, peak external mVrms millivolt, peak move encapsulated mVpk millivolt, peak external mVmms millivolt, peak external mVpk millivolt, peak external mVpk millivolt, peak external mVpk millivolt, rms round, rms millivolt, rms reack and panel millivolt, peak m | NVM | | digital voltmeter | | | meter (indicating device) | RF. | = | radio frequency | | | | CCP | CL | | emitter-coupled logic | | | | | = | | 067 | 701 0420. | | CCP | MF | | electromotive force | | | milivoti ac | | - | resistance-industance- | | | | ACAP = encapsulated encapsulat | LECT | | | | - | millivolt, dc | | _ | | | | | Tolor mean-square root-mean-square root | NCAP | _ | | mVpk | = | millivolt, peak | RMO | | | | MILL TIPL IEPO | | ET = field-effect transistor mWy = miliwatt HOM = read-only memory Abbreviation Prefix Mutriple F = flip-flop MY = mylar R&P = rack and panel flat head μA = microampere RWV = reverse working voltage stering parameter T tera 10 ¹² frequency modulation μH = microfarad S = scattering parameter T tera 10 ¹² frequency modulation μH = microsecond S-B = scoond (time) G gigsa 10 ⁹ mega 10 ⁶ microsecond S-B = slow-blow fuse (used in parts k killo 10 ² frequency μV = microvolt microvolt list) da deka 10 10 ² gram μVac = microvolt, dc screw screw c c centi 10 ² gram μVpb = microvolt, dc screw c screw c c centi 10 ² glass μVpp = microvolt, peak-to-peak SE = selonium m milli 10 ³ sections μν microvolt, rms SEMICON semiconductor μν microvolt, rms sections μν microvolt n nano 10 ⁹ heart NC = neoronection SIL = silicer cation or p picco 10 ¹² street the part of the microvolt of the part of the microvolt micr | XT | - | external | | = | | | | | i | MULTIPLIERS | | ted = frequency | | | | | | | | | round | | | | ted = frequency | /F | | tield-effect transistor | MY | | | R&P | | rack and panel | Abt | reviation Prefix Multiple | | ted = frequency | Ä | | flat head | | 13 | microampere | RWV | | reverse working voltage | | | | ted = frequency | IL H | | fillister head | μF | | | | = | scattering parameter | | | | ted = frequency | M | = | frequency modulation | | | | | = | | | | | yVac = microvolt, ac SCR = silicon controlled rectifier; d deci 10·1 germanium μVdc = microvolt, peak SE = selenium c c centi 10·2 screw c selenium m milli 10·3 microvolt, peak SECT = milli 10·3 microvolt, peak SECT = selenium m milli 10·3 10· | P | - | | | | | | = | | | | | yVac = microvolt, ac SCR = silicon controlled rectifier; d deci 10·1 germanium μVdc = microvolt, peak SE = selenium c c centi 10·2 screw c selenium m milli 10·3 microvolt, peak SECT = milli 10·3 microvolt, peak SECT = selenium m milli 10·3 10· | HEQ: | | | ũν | | | 9-B | = | slow-blow tuse (used in parts | | | | germanium μVdc = microvolt, dc germanium μVpk = microvolt, peak Hz = gigahertz μVp = microvolt, peak ND = glass μVp-p = microvolt, peak ND = ground(ed) μVrms = microvolt, rms SEMICON = semiconductor μ microvolt Final properties of the p | | - | | μVac | | microvolt, ac | SCR | _ | | | | | HZ = gigahertz μνρκ = microvolt, peak SE = selenium C C C C C C C C C C C C C C C C C C C | žΕ | - | | μVdc | * | microvolt, dc | | - | | | | | VD = ground(ed) μV/ms = microvolt, rms SEMICON = semiconductor μ micro 10 ⁶ | SHZ | - | gigahertz | μVpk
uVp-> | | microvolt, peak | SE | - | selenium | | | | henry nA = nanoampere SIF = super-high frequency n nano 10°9 = hour nA = nanoampere SI = silicon p pico 10°12 T = heterodyne NC = no connection SIL = silicor f femto 10°15 X = hexagonal N/C = normally closed SL = silicor a atto 10°18 | SI . | = | glass | μνρ-p
uVmos | | microvoit, peak-to-peak | SECT | - | sections | | | | hour nA = nanoampere SI = silver | | - | | μντιπ s
uW | | | | • | | | | | T = heterodyne NC = no connection SIL = silver f femto 10 15 X = hexagonal NC = normally closed SL slide a atto 10 18 NE = neon SNR = signal-to-noise ratio | 1 | = | | 'nΑ | | | | - | | | 12 | | X = hexagonal IV = nonnany closed SL = slide a atto 10 ⁻¹⁸ | ET | | | NC | | no connection | SiL | = | | | | |) * head SNR = signal-to-noise ratio | EΧ | - | hexagonal | NE | | | SL | | slide | | | | NEG = negative | U | * | head | NEG | | neon
negative | SNR | = | signal-to-noise ratio | | | Table 6-2. Replaceable Parts | Reference | HP Part | С | | | Mfr | | |---|-------------------------------------|-----|-----|--|--------|-------------------| | Designation | Number | D | Qty | Description | Code | Mfr Part Number | | A1A1 | 05314-60008 | | 1 | BD ASSY, MAIN (SERIES 2538A) | 28480 | 05314-60008 | | | | 1 | _ : | AND AND THE SAME OF SAME ASSUED OF D | 28480 | 0160-2055 | | A1C1 | 0160-2055 | 9 | 6 | CAPACITOR-FXD .01UF +80-20% 100VDC CER | D2540 | 2222 808 11229 | | A1C2 | 0121-0475 | 1 | 1 | CAPACITOR-V TRMR POLYP 2-22PF 100V | | I . | | A1C3 | 0180-0562 | 1 1 | 1 | CAPACITOR-FXD 33UF +-20% 10VDC TA | 56289 | 199D1120 | | A1C4° | 0160-4386 | 3 | 0 | CAPACITOR-FXD 33PF +5% 200VDC CER 0+30 | 28480 | 0160-4386 | | A1C4* | 0160-4387 | 4 | 0 | CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 | 28480 | 0160-4387 | | A1C4° | 0160-4494 | 4 | 1 | CAPACITOR-FXD 39PF +-5% 200VDC CER 0+-30 | 28480 | 0160-4494 | | A1C5* | 0160-4387 | 4 | 1 | CAPACITOR-FXD 47PF +5% 200VDC CER 0+30 | 28480 | 0160-4387 | | A1C5* | 0160-4527 | 4 | 1 | CAPACITOR-FXD 56PF +-5% 200VDC CER 0+-30 | 28480 | 0160-4527 | | | | | | 0.00 0.000 EVD 0.000 000 000 000 000 | 28480 | 0160-2055 | | A1C6 | 0160-2055 | 9 | | CAPACITOR-FXD .01UF +80-20% 100VDC CER | I | 1 | | A1C7 | 0160-2055 | 9 | | CAPACITOR-FXD .01UF +80-20% 100VDC CER | 28480 | 0160-2055 | | A1C8 | 0160-3875 | 3 | 1 | CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 | 28480 | 0160-3875 | | A1C9 | 0160-3876 | 4 | 3 | CAPACITOR-FXD 47PF +-20% 200VDC CER | 28480 | 0160-3876 | | A1C10 | 0180-2929 | 8 | 1 | CAPACITOR-FXD 68UF +-10% 10VDC TA | 28480 | 0180-2929 | | | | | | CAPACITOR-FXD 60UF +-20% 6VDC TA | 56289 | 150D606X0006B2 | | A1C11 | 0180-0106 | 9 | 4 | | 28480 | 0160-3876 | | A1C12 | 0160-3876 | 4 | | CAPACITOR-FXD 47PF +-20% 200VDC CER | l . | | | A1C13 | 0160-2055 | 9 | | CAPACITOR-FXD .01UF +80-20% 100VDC CER | 28480 | 0160-2055 | | A1C14 | 0180-4135 | 7 | 2 | CAPACITOR-FXD 33UF 10% 10V TA | 12340 | T322D336K010AS | | A1C15 | 0180-0106 | 9 | | CAPACITOR-FXD 60UF +-20% 6VDC TA | 56289 | 150D606X0006B2 | | 1,000 | 0400 4511 | | 2 | CAPACITOR-FXD 220PF +-5% 200VDC CER | 28480 | 0160-4511 | | A1C16 | 0160-4511 | 6 | | | 56289 | 150D335X0015A2 | | A1C17 | 0180-0210 | 6 | 3 | CAPACITOR-FXD 3.3UF +20% 15VDC TA | | 1 | | A1C18 | 0160-3876 | 4 | | CAPACITOR-FXD 47PF +-20% 200VDC CER | 28480 | 0160-3876 | | A1C19 | 0160-4424 | 0 | 2
 CAPACITOR-FXD .047UF +20% 500VDC CER | 51642 | 400-500-X7R-473M | | A1C20 | 0160-0571 | 0 | 1 | CAPACITOR-FXD 470PF +-20% 100VDC CER | 28480 | 0160-0571 | | 44004 | 0400 2070 | 4 | | CAPACITOR-FXD 47PF +-20% 200VDC CER | 28480 | 0160-3876 | | A1C21 | 0160-3876 | | | CAPACITOR-FXD 60UF +20% 6VDC TA | 56289 | 150D606X0006B2 | | A1C22 | 0180-0106 | 9 | | CAPACITOR-FAD 600F +20% 0VDC 1A | 28480 | 0160-2055 | | A1C23 | 0160-2055 | 9 | | | 1 | T322D336K010AS | | A1C24 | 0180-4135 | 7 | | CAPACITOR-FXD 33UF 10% 10V TA | 12340 | | | A1C25 | 0180-0106 | 9 | | CAPACITOR-FXD 60UF +-20% 6VDC TA | 56289 | 150D606X0006B2 | | A1C26 | 0160-4511 | 6 | | CAPACITOR-FXD 220PF +5% 200VDC CER | 28480 | 0160-4511 | | | | 6 | | CAPACITOR-FXD 3.3UF +20% 15VDC TA | 56289 | 150D335X0015A2 | | , A1C27 | 0180-0210 | | 2 | CAPACITOR-FXD .047UF +-20% 500VDC CER | 51642 | 400-500-X7R-473M | | A1C28 | 0160-4424 | 0 | • | | 28480 | 0160-0576 | | A1C29 | 0160-0576 | 5 | 1 | CAPACITOR-FXD .1UF +-20% 50VDC CER | 28480 | 0160-2055 | | A1C30 | 0160-2055 | 9 | | CAPACITOR-FXD .01UF +80-20% 100VDC CER | 25460 | 0180-2055 | | A1C31 - C44 | | | | NOT ASSIGNED | | 1 | | A1C45 - C47 | 0160-4040 | 1 | 3 | CAPACITOR-FXD 1000PF 5% 100V CER | 12340 | C320C102J1G5CA | | A1CR1 - CR9 | 1901-0050 | 3 | 9 | DIODE-SWITCHING 80V 200MA 2NS DO-35 | 9N171 | 1N4150 | | Aloni - ona | 1301-0030 | " | * | | 1 | | | | | 1 | l | NOTE | | l | | | | 1 | 1 | DIODE A1CR4 IS REQUIRED IN ANY INSTRUMENT | i | 1 | | | | | | WITH TCXO OPTION 001. IF OPTION 001 IS ADDED IN THE FIELD, A1CR4 MUST ALSO BE ADDED. | | | | | | | | I THE FIELD, A TORY MOST ALSO BE ADDED. | | | | A1DS1 - DS7 | 1990-0730 | 3 | 7 | DISPLAY-NUM SEG 1-CHAR .3-H RED | 28480 | 5082-7611 | | A1DS8 | 1990-0486 | 6 | 1 | LED-LAMP RED | 28480 | HLMP-1301 | | | | | _ | COMMISSION DE DING SEM COMMISSION DE COMMISS | 20400 | 1250-1504 | | A1J1 - J2 | 1250-1594 | 1 | 2 | CONNECTOR-RF BNC FEM SGL-HOLE RR 50-OHM | 28480 | 1250-1594 | | A1MP1 - MP3 | | 1 | 1 | NOT ASSIGNED | | | | A1MP4 - MP6 | 0890-0324 | 8 |] з | TUBING-FLEX .032-ID TFE .012-WALL | 28480 | 0890-0324 | | A1MP7 | 1251-4707 | 6 | 1 | CONNECTOR-SGL CONT PIN .031-IN BSC-SZ | 28480 | 1251-4707 | | | 0370-2486 | 5 | 6 | PUSHBUTTON, JADE GRAY | 28480 | 0370-2486 | | A1MP8 - MP13 | | 4 | 1 | PUSHBUTTON WHITE | 28480 | 0370-2625 | | A1MP14 | 0370-2625 | | | PUSHBUTTON, BLUE | 28480 | 0370-2917 | | A1MP15 | 0370-2917 | 7 | 1 | | 28480 | 5040-8816 | | A1MP16 - MP19 | 5040-8816 | 3 | 4 | SWITCH CAP, MINT GRAY | 2,0400 | 3370,50.0 | | A1Q1 - Q6 | 1853-0015 | 7 | 7 | TRANSISTOR PNP SI PD=200MW FT=500MHZ | 28480 | 1853-0015 | | | 1853-0354 | 7 | 1 1 | TRANSISTOR PNP SI TO-92 PD=350MW | 04713 | SPS6837 | | | 1855-0267 | 5 | 2 | TRANSISTOR J-FET N-CHAN D-MODE TO-92 SI | 28480 | 1855-0267 | | A1Q7 | | 7 | 1 ' | TRANSISTOR PNP SI PD=200MW FT=500MHZ | 28480 | 1853-0015 | | A1Q7
A1Q8 | 1050 0015 | 1 / | 1 | TRANSISTOR FIRE SI FD=200MW FT=300MH2 TRANSISTOR J-FET N-CHAN D-MODE TO-92 SI | 28480 | 1855-0267 | | A1Q7
A1Q8
A1Q9 | 1853-0015
1855-0267 | 5 | | | | | | A1Q7
A1Q8 | 1853-0015
1855-0267 | 5 | | | | = | | A1Q7
A1Q8
A1Q9 | | 5 | 7 | RESISTOR 511 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-511R-F | | A1Q7
A1Q8
A1Q9
A1Q10 | 1855-0267 | | 7 | RESISTOR 511 1% .125W F TC=0+100
RESISTOR 511 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-511R-F | | A1Q7
A1Q8
A1Q9
A1Q10
A1R1
A1R2 | 1855-0267
0757-0416
0757-0416 | 7 | 7 | | | 1 | | A1Q7
A1Q8
A1Q9
A1Q10 | 1855-0267
0757-0416 | 7 7 | 1 . | RESISTOR 511 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-511R-F | | | Table 6-2. Replaceable Parts (Continued) | | | | | | | | | |--------------------------|--|-------|-----|---|-------------|----------------------|--|--|--| | Reference
Designation | HP Part
Number | CD | Qty | Description | Mfr
Code | Mfr Part Number | | | | | A1R6 | 0699-0073 | 8 | 2 | RESISTOR 10M 1% .125W F TC=0+-150 | 20.400 | | | | | | A1R7 | 0757-0416 | 7 | - | RESISTOR 10M 1% .125W F TC=0+-100 | 28480 | 0699-0073 | | | | | A1R8 | 0757-0418 | Ιó | | | 24546 | CT4-1/8-TO-511R-F | | | | | A1R9 | | 1 - | 6 | RESISTOR 100 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-101-F | | | | | A1R10 | 0698-3132 | 7 | l ° | RESISTOR 261 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-2610-F | | | | | AIHIU | 0757-0416 | 1 ′ | | RESISTOR 511 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-511R-F | | | | | A1R11 | 0698-3132 | 4 | ŀ | RESISTOR 261 1% .125W F TC=0+-100 | 24540 | 07.45.75.75.7 | | | | | A1R12 | 0698-3132 | 4 | | RESISTOR 261 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-2610-F | | | | | A1R13 | 0757-0401 | 0 | | RESISTOR 100 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-2610-F | | | | | A1R14 | | 1 4 | | | 24546 | CT4-1/8-TO-101-F | | | | | | 0698-3132 | 7 | İ | RESISTOR 261 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-2610-F | | | | | A1R15 | 0757-0416 | 1 ′ | İ | RESISTOR 511 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-511R-F | | | | | A1R16 | 0757-0416 | 7 | | RESISTOR 511 1% .125W F TC=0+-100 | 0.510 | 07.40.70.740.7 | | | | | A1R17 | 1810-0203 | 5 | 2 | | 24546 | CT4-1/8-TO-511R-F | | | | | A1R18 | 1810-0400 | 4 | 2 | NETWORK RESISTOR 8-SIP 470.0 OHM X 7 | 11236 | 750-81-R470 | | | | | ı | | 1 | ł | NETWORK RESISTOR 8-SIP MULTI-VALUE | 28480 | 1810-0400 | | | | | A1R19 | 0698-8812 | 7 | 1 | RESISTOR 1 1% .125W F TC=0+-100 | 28480 | 0698-88`1 | | | | | A1R20 | 0757-0346 | 2 | 2 | RESISTOR 10 1% .125W F TC=0+100 | 28480 | 0757-0346 | | | | | A1R21 | 1810-0401 | 5 | 2 | NETWORK DESIGNOR 7 CID 44 II TO VALUE | | | | | | | A1R22 | 0698-3458 | 7 | 2 | NETWORK RESISTOR 7-SIP MULTI-VALUE | 28480 | 1810-0401 | | | | | A1R23 | | | | RESISTOR 348K 1% .125W F TC=0+-100 | 28480 | 0698-3458 | | | | | | 0757-0407 | 6 | 2 | RESISTOR 200 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-201-F | | | | | A1R24 | 0757-0428 | 1 1 | 2 | RESISTOR 1.62K 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-1621-F | | | | | A1R25 | 0698-4009 | 6 | 1 | RESISTOR 50K 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-5002-F | | | | | AIBOS | 0600 0400 | 1. | | DECISTOR OCT 10/ 100W E TO 0 100 | | | | | | | A1R26
A1R27 | 0698-3132 | 4 | _ | RESISTOR 261 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-2610-F | | | | | | 0698-8827 | 4 | 2 | RESISTOR 1M 1% .125W F TC=0+100 | 28480 | 0698-8827 | | | | | A1R28 | 0698-3442 | 9 | 2 | RESISTOR 237 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-237R-F | | | | | A1R29 | 2100-4046 | 7 | 2 | RESISTOR-VAR SS 20K 10% LIN 1 TRN | 28480 | 2100-4046 | | | | | A1R30 | 1810-0203 | 5 | | NETWORK RES 8-SIP 470.0 OHM X 7 | 11236 | 750-81-R470 | | | | | 14504 | | 1. 1 | | | | | | | | | A1R31 | 1810-0400 | 4 | | NETWORK RESISTOR 8-SIP MULTI-VALUE | 28480 | 1810-0400 | | | | | A1R32 | 0757-0346 | 2 | | RESISTOR 10 1% .125W F TC=0+100 | 28480 | 0757-0346 | | | | | A1R33 | 0698-8812 | 7 | | RESISTOR 1 1% .125W F TC=0+-100 | 28480 | 0698-8812 | | | | | A1R34 | 1810-0401 | 5 | | NETWORK RESISTOR 7-SIP MULTI-VALUE | 28480 | 1810-0401 | | | | | A1R35 | 0698-3458 | 7 | | RESISTOR 348K 1% .125W F TC=0+-100 | 28480 | 0698-3458 | | | | | 44500 | | 1 . 1 | | | 1 | | | | | | A1R36 | 0757-0407 | 6 | | RESISTOR 200 1% .125W F TC=0+100 | 24546 | CT4-1/8-TO-201-F | | | | | A1R37 | 0757-0428 | 1 1 | | RESISTOR 1.62K 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-1621-F | | | | | A1R38 | 2100-4046 | 8 | | RESISTOR-VAR SS 20K 10% LIN 1 TRN | 28480 | 2100-4046 | | | | | A1R39 | 0698-3442 | 9 | | RESISTOR 237 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-237R-F | | | | | A1R40 | 0698-3442 | 9 | | | | 1 | | | | | | | 1 (| | | | | | | | | A1R41 | 0698-8827 | 4 | | RESISTOR 1M 1% .125W F TC=0+100 | 28480 | 0698-8827 | | | | | A1R42 | 0699-0073 | 8 | | RESISTOR 10M 1% .125W F TC=0+150 | 28480 | 0699-0073 | | | | | A1R43 | 0757-1093 | 8 | 1 | RESISTOR 3K 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-3001-F | | | | | A104 OF | 0404 0404 | 1 . | ا | CUNTOU DO DOOT ALTINO | 1 | 1 | | | | | A1S1 - S5 | 3101-2124 | 2 | 9
| SWITCH PB DPDT ALTNG .25A 115VAC | 28480 | 3101-2124 | | | | | A1S6 - S8 | 3101-2186 | 6 | 1 | SWITCH PB 3-STATION 10MM C-C SPACING | 28480 | 3101-2186 | | | | | A1S9 - S12 | 3101-2124 | 2 | | SWITCH PB DPDT ALTNG .25A 115VAC | 28480 | 3101-2124 | | | | | A | 4000 47 | | | | | | | | | | A1U1 | 1820-1470 | 1 1 | 1 | IC MUXR/DATA-SEL TTL LS 2-TO-1 LINE QUAD | 01295 | SN74LS157N | | | | | A1U2 | 1820-2187 | 9 | 1 | IC COUNTER CMOS 2-INP | 32293 | ICM7226A | | | | | A1U3 | 1820-1383 | 5 | 1 | IC COUNTER ECL BCD POS-EDGE-TRIG | 04713 | MC10138L | | | | | A1U4 | 1820-0694 | 9 | 1 | IC GATE TTL S EXCL-OR QUAD 2-INP | 01295 | SN74S86N | | | | | A1U5 | 1820-1224 | 3 | 2 | IC RECEIVER ECL LINE RECEIVER TPL 2-INP | 04713 | MC10216P | | | | | A1U6 | 1820-1224 | 3 | | IC RECEIVER ECL LINE RECEIVER TPL 2-INP | 04713 | MC10216P | | | | | A1W1 | 8159-0005 | | , | RESISTOR ZERO OHMS 22 AWG LEAD DIA | 28480 | 8159-0005 | | | | | ł | | 1 1 | | The same state of the same | 20400 | 0103-0003 | | | | | A1XDS1 - DS7 | 1200-0805 | 0 | 7 | SOCKET-DSPL 14-CONT DIP DIP-SLDR | 28480 | 1200-0805 | | | | | A1XDS8 | 0500-20017 | 7 | 1 | SPACER-LED SINGLE | 28480 | 05000-20017 | | | | | A1XU2 | 1200-0654 | | 1 | SOCKET-IC AC-CONT DID SI DD | 20.00 | 1000 0555 | | | | | A1XU4 | 1200-0679 | 6 | ' l | SOCKET-IC 40-CONT DIP-SLDR
SOCKET-IC 14-CONT DIP DIP-SLDR | 28480 | 1200-0552 | | | | | | 1200.0013 | | . | COOKET-10 14-COM DIE DIE-SEDM | 28480 | 1200-0679 | | | | | A1Y1 | 0410-1188 | 8 | 1 | CRYSTAL-QUARTZ 10.000 MHZ HC-35/U-HLDR | 28480 | 0410-1188 | | | | | | 0361-0079 | 9 | 2 | DIVET SEMI-TUR OVAL 100 DIA 010 LO | | l | | | | | | 3050-0016 | " | 1 | RIVET SEMI-TUB OVH . 123 DIA .312 LG | 28480 | 0361-0079 | | | | | 1 | | | 4 | WASHER-FL MTLC NO. 6 .147-IN-ID | 00000 | ORDER BY DESCRIPTION | | | | |] | 5040-8816 | | 4 | SWITCH CAP, MINT GRAY | 00000 | 5040-8816 | | | | | | 05314.90001 | 1 ! | , 1 | LARELLINE ELICE | 40 | | | | | | | 05314-80001 | | 1 | LABEL-LINE FUSE | 28480 | 05314-80001 | | | | | | 05314-80001 | | 1 | LABEL-LINE FUSE | 28480 | 05314-80001 | | | | | | 05314-80001 | | 1 | LABEL-LINE FUSE | 28480 | 05314-80001 | | | | | | 05314-80001 | | 1 | LABEL-LINE FUSE | 28480 | 05314-80001 | | | | Table 6-2. Replaceable Parts (Continued) | | A2 | Reference
Designation | HP Part
Number | CD | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|----------------------------|--|-----|---------|---|--|--| | 180-2101 8 1 | ### A2C1 0180-2101 8 1 CAPACITOR-FXD 4000UF +75-10% 15VDC AL 28480 0180-2101 A2C2 0160-2055 9 2 CAPACITOR-FXD 6.8UF -200% 100VDC CER 28480 1060-2055 A2C3 0160-2055 9 CAPACITOR-FXD 6.8UF -200% 8.9UC TA 58289 150D0855X006A2 0160-2055 A2C3 0160-2055 9 CAPACITOR-FXD 6.8UF -200% 8.9UC TA 58289 150D085XX006A2 0160-2055 A2C3 0160-2055 9 CAPACITOR-FXD 6.8UF -200% 100VDC CER 28480 0160-2055 A2C3 0160-2055 A2C3 O160-2055 A2C3 A2C4 O160-2055 9 CAPACITOR-FXD 3.9UF -200% 15VDC TA 58289 150D035XX0015A2 A2C4 | | | | 1 | POWER SUPPLY BOARD ASSEMBLY (SERIES 2536) | | 05314-60102 | | 0169-2055 9 2 CAPACITOR-FXD 31UF +80-20% 10VDC CER 28480 0160-2055 0160-2055 9 | A2C2 0180-0265 9 2 CAPACTTOR-FXD JULF 480-20% 1007UC CER 28480 0180-2055 A2C3 0180-0210 6 CAPACTTOR-FXD JULF 480-20% 1007UC CER 28480 0180-2055 A2C5 0180-0210 6 CAPACTTOR-FXD JULF 480-20% 1007UC CER 28480 0180-2055 A2C5 0180-0210 6 CAPACTTOR-FXD JULF 480-20% 1007UC CER 28480 0180-2055 A2C5 0180-0210 6 CAPACTTOR-FXD JULF 480-20% 1007UC CER 28480 0180-2055 A2C5 0180-0210 6 CAPACTTOR-FXD JULF 480-20% 1007UC CER 28480 0180-2055 A2C6 1901-0731 7 A DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1901-0500 3 2 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1901-0500 3 2 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1901-0501 7 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1
DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G A2C7 A2C7 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G 1902-0551 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G 1902-0551 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G 1902-0551 1902-0551 1 DIODE-FOWER RECT 400V 1A 14433 1N4004G 1902-0551 1902-0 | | | l a | ١, | CAPACITOR-EXD 4000HF +75-10% 15VDC AI | 28480 | 0180-2101 | | O180-1701 2 | ACC3 | | | | 2 | | | | | 0180-2055 9 0180-2055 9 0180-2010 6 2 CAPACITOR-FXD 31UF +80-20x 10VDC CER 28480 0180-2055 1500335X0015A2 1500335X0015 | A2CA 0169-0255 9 9 2 CAPACITOR-FXD 31UF 490-20% 100/UC CER 28480 0160-2055 A2 C8 0180-0210 6 2 CAPACITOR-FXD 31UF 490-20% 100/UC CER 56289 9 1500335X0015A2 A2 C8 0180-0210 6 2 CAPACITOR-FXD 31UF 420% 15VDC TA 56289 1500335X0015A2 A2 C8 1901-0731 7 4 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0503 3 2 D1005-SWITCHING 80V 200MA ANS DO-35 9N171 1N4150 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1000-500 1 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1000-500 1 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1000-500 1 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1000-500 1 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1000-500 1 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 7 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1N4004G A2 CR3 1901-0731 1 D1005-POWER RECT 4000 1A 14433 1 D1005-POWER A2 CR3 1901-0731 1 D1005-POWER A2 CR3 1901-0731 1 D10 | | | | r e | | | | | 0180-0210 6 CAPACITOR-FXD 3.3UF + 20% 15VDC TA 56289 1500335X0015A2 14433 1N4004G 1N4 | A2CS 0180-0210 6 2 2 CAPACITOR-FXD 3.3UF +20% ISVDC TA 56828 1500335X0015A2 A2 CB 0180-0210 6 CAPACITOR-FXD 3.3UF +20% ISVDC TA 56828 1500335X0015A2 150035X0015A2 15005X0015A2 150035X0015A2 15005X0015A2 150035X0015A2 15005X0015A2 15005X0015A2 15005X0015A2 15005X0015A2 1500 | | | | ' | | | 1 | | 1901-0731 7 | A2 06 0180-0210 6 CAPACITOR-FXD 3.3UF +20% 15VDC TA 56289 150D35X0015A2 A2CR1 1901-0731 7 4 DIODE-POWER RECT 400V 1A 14433 11N4004G 1901-050 3 DIODE-SWITCHING 80V 200MA 2RIS DO-35 9N171 1N4150 100DE-SWITCHING 80V 200MA 2RIS DO-35 9N171 1N4150 100DE-SWITCHING 80V 200MA 2RIS DO-35 9N171 1N4150 100DE-POWER RECT 400V 1A 14433 1N4004G 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1N4004G 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-ZNR 6.2V 5% PD=1W IR=10UA DIODE- | 1 | | | Í . | 1 | II | 1 | | 1901-0731 7 | A2CRI 1901-0731 7 4 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR2 1901-0731 7 2 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1901-0050 3 2 DIODE-SWITCHING 80V 200MA 2NS DO-35 9N171 1N4150 1DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1801-0731 7 DIODE-POWER RECT 400V 1A 14433 1N4004G 1A2CR3 1 | A2C5 | 0180-0210 | 6 | 2 | | | 1 | | 1901-0731 7 2 DIODE-POWER RECT 400V 1A 14433 114409G 1901-0500 3 1901-0731 7 1901-0731 7 1901-0731 7 1902-0551 1 1 DIODE-SWITCHING BOV 200MA 2NS DO-35 19N171 114150 114 | ACCR2 1901-0731 7 2 2 DIODE-POWER RECT 400V 1A 14433 144500 14451 1901-050 3 2 DIODE-SWITCHING BOY 200MA 2NS DO-35 99171 144150 2007 2007 2007 2007 2007 2007 2007 20 | A2 C6 | 0180-0210 | 6 | | CAPACITOR-FXD 3.3UF +-20% 15VDC TA | 56289 | 150D335X0015A2 | | 1901-0050 3 2 DIODE-SWITCHING 80V 200MA 2NS DO-35 1901-0731 1901-0731 7 DIODE-SWITCHING 80V 200MA 2NS DO-35 1901-0731 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 114433 1144004G 114004G | ACCR3 1901-0050 3 2 DIODE-SWITCHING BOY 200MA 2NS DO-35 9N171 1M4150 ACCR6 1901-0731 7 2 DIODE-SWITCHING BOY 200MA 2NS DO-35 9N171 1M4150 ACCR6 1901-0731 7 2 DIODE-POWER RECT 400V 1A 14433 1M4004G 1M4004G 1902-0551 1 1 DIODE-ZWR RECT 400V 1A 14433 1M4004G 1M4004 | A2CR1 | 1901-0731 | 7 | 4 | | • | 1 | | 1901-0050 3 | A2CR3 1901-0050 3 3 2 DIODE-SWITCHING BOY 200MA 2NS DO-35 9N171 1M4150 A2CR6 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR6 1901-0731 7 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR7 1902-0551 1 1 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR7 1902-0551 1 1 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR7 1902-0551 1 1 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR7 1902-0551 1 1 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR7 1902-0551 1 1 DIODE-POWER RECT 400V 1A 14433 1M4004G A2CR7 2 210-0234 2 28480 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 1902-0551 1 DIODE-POWER RECT 400V 1A 28480 2848 | A2CR2 | 1901-0731 | 7 | ł | DIODE-POWER RECT 400V 1A | 14433 | 1N4004G | | 1901-0050 3 1901-0731 7 1901-0731 7 1901-0731 7 1901-0731 7 1901-0731 7 1902-0551 1 1 100DE-PUWER RECT 400V 1A 14433 1144004G 114433 1144004G 114433 1144004G 114433 1144004G 114433 114434 1144 | ACCR 3901-0050 3 ACCR 3901-0731 7 DIODE-POWER RECT 400V 1A 14433 114004G 14437 14437 144004G 14437 14437 144004G 14437 14437 14437 14437 14437 14437 144004G 14437 14437 14437 144004G 14437 14437 14437 144004G 14437 14437 14437 14437 14437 14438 144004G 14437 14437 14438 144004G 14438 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439 14439
14439 1 | | 1901-0050 | 3 | 2 | DIODE-SWITCHING 80V 200MA 2NS DO-35 | 9N171 | 1N4150 | | 1901-0731 7 1901-0731 7 1902-0551 1 1 1 1 1 1 1 1 1 | ACCR6 | 1 | | 3 | 1 | DIODE-SWITCHING 80V 200MA 2NS DO-35 | 9N171 | 1N4150 | | 1901-0731 7 1902-0551 7 1 1 1 1 1 1 1 1 | A2CR6 | | | | 1 | DIODE-POWER RECT 400V 1A | 14433 | 1N4004G | | 1902-0551 1 1 DIODE-ZNR 6.2V 5% PD=1W IR=10UA 28480 1902-0551 2110-0234 2110-0234 8 2 FUSE (INCH) .1 A 250V TD FE UL LIST | A2CR7 1902-0551 1 1 DIODE-ZNR 6.2V 5% PD=1W IR=10UA 28480 1902-0551 A2F1 2110-0234 8 FUSE (INCH) .1A 250V TD FE UL LIST 28480 2110-0234 A2F2 2110-0234 8 FUSE (INCH) .1A 250V TD FE UL LIST 28480 2110-0234 A2F1 2200-0105 4 1 SCREW-MACH 4-40 .312.IN LG PAN-HD POZI 28480 2110-0234 A2H1 2200-0105 4 1 CONNECTOR POE DIODE 6.CONTROW 1-ROZ 28480 1251-3811 A2H2 1251-3811 1 1 CONNECTOR PC EDGE 6.CONTROW 1-ROZ 28480 1251-3811 A2L1 1251-3811 8 1 CONNECTOR PC EDGE 6.CONTROW 1-ROZ 28480 1251-3811 A2MP1 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1251-3811 A2MP2 1400-0482 3 2 CABLE TIE .082-3 DIA .14±WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .082-3 DIA .14±WD NYL 28480 1500-0482 A2CQ 1853-0371 8 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2R1 0757-0442 9 3 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0443 01 RESISTOR 75K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 75K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 75K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0442 9 RESISTOR 15K 1% .125W FTC-0+-100 24546 CT4-1/8-TO-1002-F CT | | | | 1 | | 14433 | 1N4004G | | 2110-0234 8 FUSE (INCH) .1A 250V TD FE UL LIST 28480 2110-0234 2200-0105 4 1 SCREW-MACH 4-40 .312-IN LG PAN-HD POZI 00000 ORDER BY DESCRIPTION 000000 0000000 ORDER BY DESCRIPTION 000000 ORDER BY DESCRIPTION 000000 ORDER BY DESCRIPTION 000000 ORDER 0000000 ORDER 000000 ORDER 0000000 ORDER 000000 ORDER 0000000 ORDER 000000 ORDER 000000 ORDER 000000 ORDER | A2F2 2110-0234 8 FUSE (INCH) - 1A 250V TD FE UL LIST 28480 2110-0234 A2H1 2200-0105 4 1 SCREW-MACH 4-40 .312-IN LG PAN-HD POZI 00000 ORDER BY DESCRIF 00000 ORDER BY DESCRIF 000000 00000000 ORDER BY DESCRIF 0000000 ORDER BY DESCRIF 000000 00000 ORDER BY DESCRIF 000000 DESCRIP 00000 ORDER ORDER 00000 ORDER 000000 | | | | 1 | 1 | | 1 | | 2110-0234 8 FUSE (INCH) .1A 250V TD FE UL LIST 28480 2110-0234 2200-0105 4 1 SCREW-MACH 4-40 .312-IN LG PAN-HD POZI 00000 ORDER BY DESCRIPTION 000000 0000000 ORDER BY DESCRIPTION 000000 ORDER BY DESCRIPTION 000000 ORDER BY DESCRIPTION 000000 ORDER 0000000 ORDER 000000 ORDER 0000000 ORDER 000000 ORDER 0000000 ORDER 000000 ORDER 000000 ORDER 000000 ORDER | A2F2 2110-0234 8 FUSE (INCH) - 1A 250V TD FE UL LIST 28480 2110-0234 A2H1 2200-0105 4 1 SCREW-MACH 4-40 .312-IN LG PAN-HD POZI 00000 ORDER BY DESCRIF 00000 ORDER BY DESCRIF 000000 00000000000 ORDER BY DESCRIF 000000000000000000000000000000000000 | [| | | | ELICE (INCH) 14 CEON TO EE IN LIST | 28480 | 2110-0234 | | 2200-0105 | A2H1 | | | | 2 | | | | | 2260-0009 3 1 NUT-HEX W/LKWR 4-40-THD :094-IN-THK 00000 ORDER BY DESCRIPTION 1251-3811 1 1 1 CONNECTOR PC EDGE 6-CONT/ROW 1-RO2 28480 1251-3811 1251-4741 8 1 1 CONNECTOR-AC POST-TYPE 9-CONT 28480 1251-4743 1251-4743 11051-4741 8 1 1 CONNECTOR-AC POST-TYPE 9-CONT 28480 1251-4743 1251-4743 11051-47 | A2H2 2260-0009 3 1 NUT-HEX WILKWR 4-40-THD .094-IN-THK 00000 ORDER BY DESCRIF A2J1 1251-3811 1 1 1 CONNECTOR PC EDGE 6-CONT/ROW 1-RO2 28480 1251-3811 A2J2 1251-4741 8 1 1 CONNECTOR PC EDGE 6-CONT/ROW 1-RO2 28480 1251-3811 A2MP1 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1205-0350 A2MP2 1400-0482 3 2 CABLE TIE .082-3 DIA .14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .082-3 DIA .14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .082-3 DIA .14-WD NYL 28480 1500-0482 A2O1 1854-0477 7 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2R1 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R2 0757-0443 0 1 RESISTOR TIK 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R4 0757-0443 0 1 RESISTOR TIK 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R4 0757-0283 6 2 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1001-F A2R6 0698-3437 2 1 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1001-F A2R7 0757-0242 9 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1001-F A2R8 0757-0283 6 2 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1001-F A2R8 0757-0283 6 2 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1001-F A2R9 0757-0283 6 2 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R8 0757-0242 9 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R9 0757-0242 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R9 0757-0243 6 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R9 0757-0244 0 1 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R9 0757-0245 6 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R9 0757-0246 0 1 RESISTOR X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R9 0757-0249 1 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 24546 CT4-1/8-TO-1002-F A2R1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 A2V1 1826-0344 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 27014 LMSSEN A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 | | | | | | | ODDED BY DECODIDED | | 1251-3811 1 1 1 CONNECTOR PC EDGE G-CONT/ROW 1-RO2 28480 1251-3811 1251-4741 8 1 1 CONNECTOR-AC POST-TYPE 9-CONT 28480 1251-3811 1251-3811 1251-4743 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1205-0350 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1500-0482 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482
1500-0482 15 | A2J1 1251-3811 1 1 1 CONNECTOR PC EDGE 6-CONT/ROW 1-RO2 28480 1251-3811 A2J2 1251-4741 8 1 1 CONNECTOR PC EDGE 6-CONT/ROW 1-RO2 28480 1251-4743 A2MP1 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1205-0350 A2MP2 1400-0482 3 2 CABLE TIE .062-3 DIA .14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .062-3 DIA .14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .062-3 DIA .14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .062-3 DIA .14-WD NYL 28480 1500-0482 A2MP3 1853-0371 8 1 TRANSISTOR NPP 2NG2022ASI TO-18 PD=500MW 3L585 2NG107 A2Q2 1853-0371 8 1 TRANSISTOR NPP 2NG107 SI PD=1.8W 3L585 CT4-1/8-TO-1002-F A2P2 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2P3 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2P3 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2P3 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2P3 0757-0442 9 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2P3 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2P3 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RES | | | | | | II | **** | | 1251-4741 8 1 CONNECTOR-AC POST-TYPE 9-CONT 28480 1251-4743 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1500-0482 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1854-0477 7 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N5107 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-T0-1002-F CT4-1/8-T0-7502-F CT4-1/8-T0-7502-F CT4-1/8-T0-7502-F CT4-1/8-T0-1002-F CT4-1/8-T0-1002-F CT4-1/8-T0-1002-F CT4-1/8-T0-7501-F CT4-1/8-T0-1002-F CT4-1/8-T0-100-F CT4-1/8-T0-1002-F CT4-1/8-T0-1002-F CT4-1/8-T0-1002-F CT4-1 | AZIZ 1251-4741 8 1 CONNECTOR-AC POST-TYPE 9-CONT 28480 1251-4743 A2MP1 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1205-0350 A2MP2 1400-0482 3 2 CABLE TIE. 062-3 DIA. 14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE. 062-3 DIA. 14-WD NYL 28480 1500-0482 A2MP3 1854-0477 7 1 TRANSITOR NPD 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2Q2 1853-0371 8 1 TRANSITOR NPD 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2R1 0757-0442 9 3 RESISTOR PNT 2N6222ASI TO-18 PD=100 24546 CT4-1/8-TO-1002-F A2R2 0757-0462 3 1 RESISTOR PNT 18-10-100 24546 CT4-1/8-TO-1002-F A2R3 0757-0443 0 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R4 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R5 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R5 0757-0442 9 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F A2R6 0698-3437 2 1 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-002-F TC=0+-10 | A2H2 | 2260-0009 | 3 | 1 | NUT-HEX W/LKWR 4-40-THD .094-IN-THK | 00000 | OHDER BY DESCRIPTION | | 1251-4741 | A2JZ 1251-4741 8 1 CONNECTOR-AC POST-TYPE 9-CONT 28480 1251-4743 A2MP1 1205-0350 0 1 HEAT SINK SGL PLASTIC POWER CS 28480 1205-0350 A2MP2 1400-0482 3 2 CABLE TIE. 062-3 DIA. 14-WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE. 062-3 DIA. 14-WD NYL 28480 1500-0482 A2Q1 1854-0477 7 1 TRANSITOR NPN 2N22222ASI TO-18 PD=500MW 04713 2N2222A A2Q2 1853-0371 8 1 TRANSISTOR PNP 2N6107 SI PD=1.8W 3LSE5 2N6107 A2R1 0757-0442 9 3 RESISTOR 10K 1%. 125W F TC=0+100 24546 CT4-1/8-TO-1002-F A2R2 0757-0442 9 3 RESISTOR 10K 1%. 125W F TC=0+100 24546 CT4-1/8-TO-1002-F A2R3 0757-0443 0 1 RESISTOR 75K 1%. 125W F TC=0+100 24546 CT4-1/8-TO-1002-F A2R4 0757-0440 7 1 RESISTOR 10K 1%. 125W F TC=0+100 24546 | A2J1 | 1251-3811 | 1 | 1 | | II | | | 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 15 | A2MP2 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 A2MP3 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 A2Q1 1854-0477 7 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 04713 2N2222A 2N6107 A2Q2 1853-0371 8 1 TRANSISTOR PNP 2N6107 SI PD=1.8W 3L585 2N6107 A2R1 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R2 0757-0462 3 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2R3 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2R3 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2R5 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7501-F A2R5 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F A2R6 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TO-0201-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1032-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1032-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1032-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 2 | | | 1 1 | l . | CONNECTOR-AC POST-TYPE 9-CONT | 28480 | 1251-4743 | | 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482
1500-0482 1500-0482 1500-0482 1500-0482 1500-0482 15 | A2MP2 A2MP3 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1500-0482 1500-0482 28480 1500-0482 1500-0482 28480 1500-0482 28480 1500-0482 1500 | AOMBS | 1205_0350 | | 1 | HEAT SINK SGL PLASTIC POWER CS | 28480 | 1205-0350 | | 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 1854-0477 7 1 TRANSITOR NPN 2N22222ASI TO-18 PD=500MW 3L585 2N6107 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-1102-F CT4-1/8-TO-100-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 2 | A2MP3 1400-0482 3 2 CABLE TIE .062-3 DIA .14=WD NYL 28480 1500-0482 A2Q1 1854-0477 7 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2Q2 1853-0371 8 1 TRANSISTOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2R1 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R2 0757-0482 3 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2R3 0757-0443 0 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2R4 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F A2R5 0757-0243 6 2 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1022-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1022-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1022-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F | | | | | 1 | | | | 1854-0477 7 1 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N6107 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7502-F CT4-1/8-TO-1102-F RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 12K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 20K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 20K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 20K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 20K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 20K 1% .105W 1% .10 | A2Q1 1854-Q477 7 1 1 TRANSITOR NPN 2N2222ASI TO-18 PD=500MW 3L585 2N6107 A2R1 0757-Q442 9 3 RESISTOR 10K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 75K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-7502-F RESISTOR 75K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 11K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 11K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 11K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1102-F RESISTOR 12K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 133 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% :125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 2K CT4-1/8-TO-2001-F RES | | | | | | | | | 1853-0371 8 1 TRANSISTOR PNP 2N6107 SI PD=1.8W 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0442 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0698-3437 2 1 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-133R-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 RESI | A202 1853-0371 8 1 TRANSISTOR PNP 2N6107 SI PD=1.8W 3L585 2N6107 A2R1 0757-0442 9 3 RESISTOR 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1002-F A2R2 0757-0462 3 1 RESISTOR 75K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-7502-F A2R3 0757-0443 0 1 RESISTOR 11K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1102-F A2R4 0757-0440 7 1 RESISTOR 7.5K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1102-F A2R5 0757-0283 6 2 RESISTOR 2K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-2001-F A2R5 0698-3437 2 1 RESISTOR 133 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-103R-F A2R7 0757-0442 9 RESISTOR 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 10K 1%. 125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K | MEINIFO | 1400-0402 | | ' | | | | | 0757-0442 9 3 1 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F C757-0443 0 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F C757-0440 7 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F C757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7501-F C757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-1002-F CT4-1/8-T | A2R1 0757-0442 9 3 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1002-F RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-7502-F RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-7502-F RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-7502-F RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1102-F RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-7501-F RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-7501-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-2001-F RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/B-TO-133R-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1002-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1002-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-1002-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/B-TO-2001-F .12 | | | | | | | | | 0757-0482 3 1 RESISTOR 75K 1% .125W F TC=0+100 24546 CT4-1/8-TC-7502-F 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+100 24546 CT4-1/8-TC-1102-F 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+100 24546 CT4-1/8-TC-7501-F 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TC-2001-F 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TC-133R-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-1002-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-1002-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 24546 CT4-1/8-TC-0201-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 | A2R2 | A2Q2 | 1853-0371 | 8 | 1 | THANSISTOR PNP
2N6107 SI PD=1.8W | 31.585 | 2110107 | | 0757-0462 3 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-7502-F 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-7501-F 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-7501-F 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-0201-F 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TC-133R-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-1002-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-0201-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 27014 LM | A2R2 0757-0462 3 1 RESISTOR 75K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-7502-F A2R3 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-7501-F A2R4 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-7501-F A2R5 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-0201-F A2R6 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TC-133R-F A2R7 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-1002-F A2R9 0757-0283 6 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TC-1002-F A2S1 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 A2T1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 3101-2299 A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG | A2R1 | 0757-0442 | 9 | 3 | RESISTOR 10K 1% .125W F TC=0+-100 | | | | 0757-0443 0 1 RESISTOR 11K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1102-F CT57-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7501-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F RESISTOR 13X 1% .125W F TC=0+-100 24546 CT4-1/8-TO-133R-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-1002 | A2R3 | | | | 1 | RESISTOR 75K 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-7502-F | | 0757-0440 7 1 RESISTOR 7.5K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-7501-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F | A2R4 A2R4 A2R4 A2R4 A2R5 A2R6 A2R6 A2R6 A2R6 A2R7 A2R7 A2R7 A2R7 A2R7 A2R8 A2R7 A2R7 A2R8 A2R7 A2R8 A2R9 A2R9 A2R9 A2R9 A2R9 A2R9 A2R9 A2R1 A2R1 A2R1 A2R1 A2R1 A2R1 A2R2 A2R2 | | | | | | 24546 | CT4-1/8-TO-1102-F | | 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TO-133R-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0283 6 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 2110-0269 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2R5 0757-0283 6 2 RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-133R-F A2R6 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+100 24546 CT4-1/8-TO-133R-F A2R7 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F A2R8 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F A2R9 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-2001-F A2S1 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 A2T1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 A2U2 1826-0346 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | | | | | | | CT4-1/8-TO-7501-F | | 0698-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 CT4-1/8-TO-133R-F 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 0757-0283 6 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 2110-0269 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2R6 | | | | | | 1 | • | | 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT57-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT57-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-2001-F CT4-1/8-TO-1002-F CT4-1/8-TO-1002- | A2R7 A2R8 A2R7 A2R8 O757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F RESISTOR 10K 1% .125W F TC=0+-100 A2R9 O757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-1 | | | | | DECISTOR 122 19/ 105W E TO A: 100 | 24546 | CT4-1/8-TO-133P-F | | 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+100 24546 CT4-1/8-TO-1002-F 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-2001-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2RB 0757-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-F RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-1002-F CT4-1002-F CT4-1002-F CT4-1 | | | | 1 | | | | | 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-2001-F 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2R9 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+100 24546 CT4-1/8-TO-2001-F A2S1 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 A2T1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 A2U2 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2R7 | 0757-0442 | 9 | | | | , | | 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2R9 0757-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 CT4-1/8-TO-2001-P A2S1 3101-2299 2 1 SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG 28480 3101-2299 A2T1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 A2U2 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2R8 | 0757-0442 | 9 | | | | 1 | | 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2T1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 A2U2 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE
28480 2110-0269 | A2R9 | 0757-0283 | 6 | | RESISTOR 2K 1% .125W F TC=0+-100 | 24546 | CT4-1/8-TO-2001-F | | 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2T1 9100-4129 5 1 TRANSFORMER-POWER 86/86V 48-60 HZ 28480 9100-4129 A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 A2U2 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2S1 | 3101-2299 | 2 | 1 | SWITCH-SLIDE DPDT STD 5A 250VAC SLDR LUG | 28480 | 3101-2299 | | 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2U1 1826-0544 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 1826-0544 LM358N A2U2 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | | | | | TRANSFORMED POWED RESERVABE OF UZ | 20490 | 9100-4129 | | 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2U2 1826-0346 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 LM358N A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2T1 | 9100-4129 | 5 | ' | I I UND 100 40-00 HZ | 20400 | 3100-7123 | | 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2XA4 0380-0906 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0380-0906 A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | | | | | | | I . | | 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2XF1 2110-0269 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 2110-0269 | A2U2 | 1826-0346 | 0 | 1 1 | IC OP AMP GP DUAL 8-DIP-P PKG | 2/014 | LMJOBN | | 2110-0209 | A2XF1 2110-0209 0 4 100E10E10 110 110 110 110 110 110 110 1 | A2XA4 | 0380-0906 | 1 | 2 | STANDOFF RIVET-ON .1-IN-LG 6-32-THD | 28480 | 0380-0906 | | 2110-0209 | A2AF1 2110-0269 01 7 705 050 51105 | ASYE | 2110-0269 | _ | 4 | FUSEHOLDER CLIP-TYPE .25D FUSE | 28480 | 2110-0269 | | | | | | | - | 4 · | 1 | | | | | A2T1 A2U1 A2U2 A2XA4 A2XF1 | 1826-0544
1826-0346
0380-0906
2110-0269 | | 0 0 1 0 | 0 1 1 1 2 0 4 | 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE | 0 1 IC V RGLTR V-REF FXD 2.5V 8-DIP C PKG 28480 0 1 IC OP AMP GP DUAL 8-DIP-P PKG 27014 1 2 STANDOFF RIVET-ON .1-IN-LG 6-32-THD 28480 0 4 FUSEHOLDER CLIP-TYPE .25D FUSE 28480 | 4-60003 | 1 1 2 1 1 1 5 5 | OPTION 002 BATTERY WITH BUILT-IN CHARGER BATTERY PACK BOARD ASSEMBLY (SERIES 2036) BATTERY 6V 5A-HR PB-ACID Q-DISC CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +20% 100VDC CER DIODE-SCHOTTKY 1N5821 30V 3A DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI NUT-HEX W/LKWR 4-40 THD .094-THK | 28480
041417
28480
28480
28480
04713
9N171
9N171
9N171
9N171
9N171
03508
9N171
75915 | 05314-60003
0800-0011
0160-2055
0160-2055
0160-23879
1N5821
1N5817 (RELAXED)
1N4148
1N4148
1N4148
1N4148
1N4148
312003 | |--|---|---|--
--| | 0-0253 8 0-2055 9 0-2055 9 0-2055 9 0-3879 7 1-0782 8 1-1080 1 1-10040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 | 1 2 1 1 5 5 1 1 1 1 1 1 | BATTERY 6V 5A-HR PB-ACID Q-DISC CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +20% 100VDC CER DIODE-SCHOTTKY 1N5821 30V 3A DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 041417 28480 28480 28480 04713 04713 9N171 9N171 9N171 9N171 03508 9N171 75915 | 0800-0011
0160-2055
0160-23879
1N5821
1N5817 (RELAXED)
1N4148
1N4148
1N4148
1N4148
STB523-A
1N4148
312003 | | 0-2055 9 0-2055 9 0-2055 9 1-0782 8 1-1080 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 7 1-0040 7 1-0040 7 1-0040 7 1-0040 7 1-0040 7 1-00003 0 1-00003 0 1-00003 7 | 2 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +20% 100VDC CER DIODE-SCHOTTKY 1N5821 30V 3A DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 28480
28480
28480
04713
04713
9N171
9N171
9N171
9N171
03508
9N171 | 0160-2055
0160-2055
0160-23879
1N5821
1N5817 (RELAXED)
1N4148
1N4148
1N4148
1N4148
STB523-A
1N4148
312003 | | 0-2055 9 0-3879 7 1-0782 8 1-1080 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 | 1 1 5 1 1 1 1 | CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +20% 100VDC CER DIODE-SCHOTTKY 1N5821 30V 3A DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 28480
28480
28480
04713
04713
9N171
9N171
9N171
9N171
03508
9N171 | 0160-2055
0160-2055
0160-23879
1N5821
1N5817 (RELAXED)
1N4148
1N4148
1N4148
1N4148
STB523-A
1N4148
312003 | | 0-2055 9 0-3879 7 1-0782 8 1-1080 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 | 1 1 5 1 1 1 1 | CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +20% 100VDC CER DIODE-SCHOTTKY 1N5821 30V 3A DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 PIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 28480
28480
04713
04713
9N171
9N171
9N171
9N171
03508
9N171
75915 | 0160-2055
0160-23879
1N5821
1N5817 (RELAXED)
1N4148
1N4148
1N4148
1N4148
STB523-A
1N4148
312003 | | 0-3879 7 1-0782 8 1-1080 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 | 1 1 1 1 1 1 | CAPACITOR-FXD .01UF +-20% 100VDC CER DIODE-SCHOTTKY 1N5821 30V 3A DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 28480
04713
04713
9N171
9N171
9N171
9N171
03508
9N171 | 0160-23879 1N5821 1N5817 (RELAXED) 1N4148 1N4148 1N4148 1N4148 STB523-A 1N4148 312003 | | 1-1080 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 4-00002 7 | 1 1 1 1 1 | DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 04713
9N171
9N171
9N171
9N171
9N171
03508
9N171 | 1N5817 (RELAXED) 1N4148 1N4148 1N4148 1N4148 STB523-A 1N4148 312003 | | 1-1080 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 4-00002 7 | 1 1 1 1 1 | DIODE-SCHOTTKY 20V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 04713
9N171
9N171
9N171
9N171
9N171
03508
9N171 | 1N5817 (RELAXED) 1N4148 1N4148 1N4148 1N4148 STB523-A 1N4148 312003 | | 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 1-0040 1 0-0003 0 0-0105 4 0-0009 3 | 1 1 1 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 9N171
9N171
9N171
9N171
9N171
03508
9N171
75915 | 1N4148
1N4148
1N4148
1N4148
STB523-A
1N4148 | | 1-0040 1
1-0040 1
1-0040 1
1-0460 9
1-0040 1
1-0040 1
0-0003 0
0-0105 4
0-0009 3
4-00002 7 | 1 1 1 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 9N171
9N171
9N171
9N171
03508
9N171
75915 | 1N4148
1N4148
1N4148
STB523-A
1N4148
312003 | | 1-0040 1
1-0040 1
1-0460 9
1-0040 1
1
0-0003 0
0-0105 4
0-0009 3 | 1 1 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 9N171
9N171
03508
9N171
75915 | 1N4148
1N4148
STB523-A
1N4148
312003 | | 1-0040 1
1-0460 9
1-0040 1
0-0003 0
0-0105 4
0-0009 3
4-00002 7 | 1 1 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 9N171
03508
9N171
75915 | 1N4148
STB523-A
1N4148
312003 | | 1-0460 9
1-0040 1
0-0003 0
0-0105 4
0-0009 3
4-00002 7 | 1 1 1 | DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 03508
9N171
75915 | STB523-A
1N4148
312003 | | 1-0040 1
0-0003 0
0-0105 4
0-0009 3
4-00002 7 | 1 1 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35 FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 9N171
75915 | 1N4148
312003 | | 0-0003 0
0-0105 4
0-0009 3
4-00002 7 | 1 1 | FUSE 3A 250V NTD 1.25X.25UL SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | 75915 | 312003 | | 0-0105 4
0-0009 3
4-00002 7 | 1 1 | SCREW-MACH 4-40 .312-IN-LG PAN-HD POZI | | | | 0-0009 3
4-00002 7 | 1 | | 00000 | ODDED SYSTEM | | 4-00002 7 | İ | I NUT-HEX W/I KWR 4-40 THD 094-THK | | ORDER BY DESCRIPTION | | | | The tribute of the last trib | 00000 | ORDER BY DESCRIPTION | | 3-0016 8 | 1 | BRACKET, BATTERY K=0229N | 28480 | 05314-00002 | | | 2 | TRANSISTOR PNP SI TO-92 PD=300MW | 28480 | 1853-0016 | | 3-0016 8 | 1 | TRANSISTOR PNP SI TO-92 PD=300MW | 28480 | 1 | | 3-0371 8 | 1 1 | TRANSISTOR PNP SN6107 SI PD=1.8W | 3 | 1853-0016 | | 4-0477 7 | 1 | TRANSISTOR PNP SN0107 SI PD=1.6W TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW | 3L585
04713 | 2N6107
2N2222A | | 7 0207 | ١. | RESISTANCE OF LINE ASSEMBLY OF A LOS | | | | | | | | CT4-1/8-TO-684R1-F | | | | |
l l | CT4-1/8-TO-1002-F | | | 1 4 | | l l | CT4-1/8-TO-2001-F | | | 1 | RESISTOR 133 1% .125W F TC=0+100 | 24546
24546 | CT4-1/8-TO-2001-F
CT4-1/8-TO-133R-F | | 7.0202 | | PECICTOR OF 197 10514 F TO 0. 100 | 245.42 | | | | | | | CT4-1/8-TO-2001-F | | | | | | CT4-1/8-TO-2001-F | | | 1 . | | | CT4-1/8-TO-1002-F | | | 1 | RESISTOR 100K 1% .125W F TC=0+-100 | 24546
24546 | CT4-1/8-TO-8251-F
CT4-1/8-TO-1003-F | | 7.0420 | 1. | DESIGNOR S SALVASY ASSISTED S ASSISTED | | | | The state of s | | | | CT4-1/8-TO-6811-F | | | ; | RESISTOR-1 HMH 2K 10% C TOP-ADJ 1-1 HN RESISTOR .1 5% 2W PW TC=0+-800 | I | 2100-0567
0811-3290 | | 7-0159 5 | 1 | THERMISTOR 33K-OHM TC-+ 7%/C-DEG | | TM1/8 333K | | | 1 | | | | | 5-0346 | 1 | I IC OP AMP GP DUAL 8-DIP-P PKG | 27014 | LM358N | | | 1 1 | CABLE ASSEMBLY, POSITIVE LEAD CABLE ASSEMBLY, NEGATIVE LEAD | 28480
28480 | 05315-60102
05315-60103 | | 1 | | | 1 | 1 | | . 0250 | 1. | | | | | | 1 1 | HEAT SINK SGL PLASTIC-POWER CS FUSEHOLDER-CLIP TYPE .25D-FUSE | 28480
28480 | 1205-0350
2110-0269 | | 5-0350 | , . | | | | | | 1 | CLIP-HDR-CABLE TIE | | | | | 7-0283 6 7-0283 6 7-0283 6 7-0283 6 7-0442 9 7-0441 8 7-0465 6 6 7-0439 4 0-0567 0 1-3290 7 7-0159 5 6-0346 0 5-60102 5 5-60103 6 6 5-0350 0 5-0350 0 | 7-0442 9 2 7-0283 6 4 7-0283 6 8 8-3437 2 1 7-0283 6 7-0283 6 7-0283 6 7-0283 6 7-0442 9 7-0441 8 1 7-0465 6 1 1 7-0465 6 1 1 7-0439 4 1 10-0567 0 1 1-3290 7 1 1 7-0159 5 1 1 5-0346 0 1 1 5-60102 5 1 5-60103 6 1 1 5-0350 0 1 1 5-0350 0 1 | 7-0442 9 2 RESISTOR 10K 1% .125W F TC=0+100 7-0283 6 4 RESISTOR 2K 1% .125W F TC=0+100 RESISTOR 2K 1% .125W F TC=0+100 RESISTOR 2K 1% .125W F TC=0+100 RESISTOR 133 1% .125W F TC=0+100 RESISTOR 133 1% .125W F TC=0+100 RESISTOR 2K 1% .125W F TC=0+100 RESISTOR 2K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+100 RESISTOR 6.81K 1% .125W F TC=0+100 RESISTOR 6.81K 1% .125W F TC=0+100 RESISTOR 10K | 7-0442 9 2 RESISTOR 10K 1% .125W F TC=0+-100 24546 7-0283 6 4 RESISTOR 2K 1% .125W F TC=0+-100 24546 7-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 8-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 8-3437 2 1 RESISTOR 133 1% .125W F TC=0+-100 24546 7-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 7-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 7-0283 6 RESISTOR 2K 1% .125W F TC=0+-100 24546 7-0283 6 RESISTOR 10K 1% .125W F TC=0+-100 24546 7-0442 9 RESISTOR 10K 1% .125W F TC=0+-100 24546 7-0441 8 1 RESISTOR 8.25K 1% .125W F TC=0+-100 24546 7-0465 6 1 RESISTOR 100K 1% .125W F TC=0+-100 24546 7-0439 4 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 4 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0439 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESISTOR 6.81K 1% .125W F TC=0+-100 24546 7-0450 7 1 RESIST | Table 6-2. Replaceable Parts (Continued) | Reference
Designation | HP Part
Number | по | Qty | Description | Mfr
Code | Mfr Part Number | |--------------------------|------------------------|-----|-----|--|----------------|--| | | | | | OPTION 001 HIGH STABILITY TIMEBASE (TCXO) | | | | A4 | 05314-60004 | 5 | 1 | TCXO BOARD ASSEMBLY | | | | A4C1
A4C2 | 0160-4554
0160-4554 | 7 7 | 2 | CAPACITOR-FXD .01UF +-20% 50VDC CER
CAPACITOR-FXD .01UF +-20% 50VDC CER | 28480
28480 | 0160-4554
0160-4554 | | | | | | | 1 | | | A4R1
A4R2 | 0757-0444
0757-0441 | 1 8 | 1 | RESISTOR 12.1K 1% .125W F TC=0+-100
RESISTOR 8.25K 1% .125W F TC=0+-100 | 24546
24546 | CT4-1/8-TO-1212-F
CT4-1/8-TO-8251-F | | ARR3 | 0698-3444 | 1 1 | 1 | RESISTOR 316 1% .125W F TC=0=-100 | 24546 | CT4-1/8-TO-316R-F | | A4R4 | 0757-0441 | 8 | | RESISTOR 8.25K 1% .125W F TC=0+-100 | ′ 24546 | CT4-1/8-TO-8251-F | | A4W1 | 05314-60102 | 4 | 1 | CABLE, COAX | 28480 | 05314-60102 | | A4Y1 | 0960-0612 | 6 | 1 | CRYSTAL OSCILLATOR 10.0 MHZ; 0-55 DEG C | 28480 | 0960-0612 | | | 1400-0957 | 7 | 1 | A4 MISCELLANEOUS PARTS
BRACKET-RTANG .475-LG X .183-LG .25-WD | 28480 | 1400-0957 | 1 | <u> </u> | ļ | | | | | | | | İ | D-4 | Table 6-2. Replaceable Parts (Continued) | | | | | | | |--------------------------|--|--------|-----|---|----------------|---|--| | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | | | | | | | CHASSIS AND MISCELLANEOUS PARTS | | | | | · A3BT1 | 1420-0253 | 8 | 1 | BATTERY, 6V 5A-HR PB ACID QDISC (OPT 002) | 28480 | 1420-0253 | | | A3MP1 | 05314-00002 | 7 | 1 | BRACKET-BATTERY (OPEION 002) | | | | | A4H1 | 0380-0013 | 1 , 1 | 1 | SPACER RND 1-IN-LG .18-IN-ID (OPT 001) | | | | | A4H2 | 2360-0115 | 4 | 1 | SCREW-MACH 6-32 .312-IN LG PAN-HD-POZI (OPT 001) | 28480
00000 | 0380-0013 | | | A4H3 | 2360-0219 | 9 | 1 | SCREW-MACH 6-32 1.375-IN-LG PAN-HD-POZI (OPT 001) | 00000 | ORDER BY DESCRIPTION ORDER BY DESCRIPTION | | | MP1 | 4040-1126 | 3 | 1 | SHELL, TOP | 28480 | 4040-1126 | | | MP2
MP3 | 4040-1463 | 1 1 | 1 | SHELL, BOTTOM | 28480 | 4040-1463 | | | MP4 | 5040-8058
5040-8044 | 5 9 | 1 | HANDLE | 28480 | 5040-8058 | | | MP5 | 05314-40003 | 2 | 4 | SPACER | 28480 | 5040-8044` | | | | | 1 1 | | WINDOW, RED | 28480 | 05314-40003 | | | MP6
MP7 | 05314-00001
5040-7223 | 6 4 | 1 2 | PANEL, FRONT
FOOT | 28480 | 05314-00001 | | | ļ | | | - | | 28480 | 5040-7223 | | | | 0370-1005 | 2 | 2 | MISCELLANOUS PARTS | | | | | | 3050-0020 | 4 | 2 | KNOB-BASE PTR 3/B JGK .125-IN-ID
WASHER FL NM 5/16-IN .375-IN-ID | 28480 | 0370-1005 | | | 1 | 7120-4369 | 5 | 1 | LABEL, WARNING - FUSE | 00000 | ORDER BY DESCRIPTION | | | 1 | 7120-4835 | ŏ | i | LABEL, CANADIAN STDS ASSOC. | 28480 | 7120-4369 | | | | 7120-5370 | 0 | 1 | LABEL, HANDLE | 28480
28480 | 7120-4369
7120-5370 | | | | 7121-0270 | 1 | 1 | LABEL, VDE | 28480 | 7121-0270 | | | 1 | 8120-1378 | 1 | 1 | CABLE, POWER | 28480 | 8120-1378 | | | ĺ | ĺ | | - 1 | | | | | | | | - 1 | ĺ | | | | | | |] | | | | Į | <u> </u> | | | | 1 | ŀ | - 1 | | İ |] | | | | l | ļ | i | | 1 |] | | | | į | | l | | 1 | | | | | | - 1 |] | | 1 | | | | į | | - 1 | l | | } | j i | | | ı | i | - 1 | - 1 | | | | | | i | ! | | | | | l | | | | | | | | | | | | | 1 | | - 1 | | | | | | | | | - 1 | | | | | | | j | | - 1 | | | | | | ł | İ | | | | | | | | | | | | | | | | | 1 | j | | - 1 | | | | | | ĺ | | | | | l | j | | | 1 | | | - 1 | | | , | | | į | | | | | | | | | | 1 | | - 1 | | ļ | 1 | | | | ĺ | | - 1 | | ĺ | ·] | | | } | İ | | - 1 | | 1 | | | | | j | | i | | | | | | Í | ĺ | | - 1 | | Ĭ | } | | | ļ | ł | - 1 | | | | | | | | | | I | | [| 1 | | | İ | | | - 1 | | ſ | } | | | 1 | | | | | | | | | | | | | | | ļ | | | 1 | ļ | İ | | | | | | | 1 | | - | | 1 | | | | | ĺ | | | | | | | | | 1 | | | | | | | | | | | 1 | | 1 | - | | | | | | | | | l | | | Figure 6-1. Mechanical Parts Layout Table 6-3. Manufacturers Code List | MFR
CODE | MANUFACTURER NAME | ADDI | ADDRESS | | | | |-------------|---------------------------------|---------------|---------|----|-------|--| | D2540 | VALVO GMBH | HAMBURG | | GM | 2000 | | | 00000 | ANY SATISFACTORY SUPPLIER | EL PASO | тх | US | 80035 | | | 01295 | TEXAS INSTRUMENTS | DALLAS | TX | US | 79935 | | | 01417 | CHRYSLER CORP DEFENSE OPN DIV | DETROIT | МІ | US | 48203 | | | 03508 | GE CO SEMICONDUCTOR PROD DEPT | AUBURN | NY | US | 13201 | | | 04713 | MOTOROLA INC SEMI-COND PROD | PHOENIX | AZ | US | 85008 | | | 11236 | CTS CORP BERNE DIV | BERNE | IN | US | 46711 | | | 14433 | ITT SEMICONDUCTORS DIV | TUSTIN | CA | US | 92680 | | | 24546 | CORNING ELECTRONICS | SANTA CLARA | CA | US | 95050 | | | 27014 | NATIONAL SEMICONDUCTOR CORP | SANTA CLARA | CA | US | 95052 | | | 28480 | HEWLETT-PACKARD CO CORPORATE HQ | PALO ALTO | CA | US | 94304 | | | 3L585 | RCA CORP SOLID STATE DIV | SOMERVILLE | NJ | US | 08876 | | | 32293 | INTERSIL INC | CUPERTINO | CA | US | 95014 | | | 51642 | CENTRE ENGINEERING INC | STATE COLLEGE | PA | US | 16801 | | | 56289 | SPRAGUE ELECTRIC CO | NORTH ADAMS | MA | US | 01247 | | | 75915 | LITTLEFUSE INCORPORATED | DES
PLAINES | IL | US | 60016 | | | 9N171 | UNITRODE CORPORATION | LEXINGTON | MA | US | 02173 | | | | 1 | | | | | | # SECTION VII MANUAL CHANGES # 7-1. INTRODUCTION 7-2. This section contains information for adapting this manual to instruments with serial prefixes other than that listed on the title page. Refer to Section 1 for additional important information about serial number coverage. # 7-3. MANUAL CHANGES # 7-4. Newer Instruments 7-5. Instruments having serial number prefixes higher than those listed on the title page of this manual are covered with a "Manual Changes" sheet included with this manual. If this change sheet is missing the information can be supplied by any Hewlett-Packard Sales and Service Office listed at the back of this manual. ## 7-6. Older Instruments 7-7. If your instrument's serial number prefix is lower than that listed in this manual, this manual must be modified to correctly apply to your instrument. To determine which changes must be made to this manual, locate your instrument's serial number prefix in *Table 7-1* Manual Backdating, then make the indicated changes. Table 7-1. Manual Backdating | IF YOUR HP 5314A HAS SERIAL PREFIX | THEN MAKE THE FOLLOWING CHANGES TO THIS MANUAL | | | |--|--|--|--| | 2714A | 1 | | | | 2604A | 2 | | | | 2538A & Instrument Serial Numbers
2536A12971 & above | 3 | | | | 2536A | 1, through 4 | | | | 2036A& Instrument Serial # 2036A07961 & above | 1 through 5 | | | | 2036A & Instrument Serial Numbers
2036A07721 & above | 1 through 6 | | | | 2032A | 1 through 7 | | | | 2024A | 1 through 8 | | | | 2016A | 1 through 9 | | | | 1908A | 1 through 10 | | | | Instrument Serial Numbers 1884A00701
through 1884A00900 | 1 through 11 | | | | 1884A | 1 through 12 | | | | 1836A | 1 through 13 | | | | 1828A | 1 through 14 | | | | 1816A | 1 through 15 | | | ### **CHANGE 1 Series 2714A** Section 6, Table 6-2. A1 Main Board Assembly Replaceable Parts: Change A1C31 - C33 from 0160-4822 (1000PF) to 0160-4040 CAPACITOR-FXD 1000PF ±5% 100VDC CER. Delete A1MP7, CONNECTOR-SINGLE CONT. Delete A1MP4 through MP6, TUBING-FLEX. ### **CHANGE 2 Series 2604A** Page 6-4/6-6, Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1C31 - C33 from 0160-4040 (1000PF) to 0160-4822 CAPACITOR-FXD 1000PF +- 5% 100VDC CER, 28480, 0160-4822. Add A1MP4 – MP6, 0890-0324, Qty 3, TUBING-FLEX .032-ID TFT .012-WALL, 28480, 0160-4822. Add A1MP7, 1251-4707, Qty 1, CONNECTOR-SGL CONT PIN .031-IN-BSC-SZ, 28480, 1251-4707. ### **CHANGE 3 Series 2538A** Page 6-7. Table 6-2. A4 Option 001 TCXO Board Replaceable Parts. Delete resistor A4R3. Page 8-27. Figure 8-10. A3 Battery Charger Assembly, Option 002 A4 TCXO Assy, Option 004. Delete A4R3. Replace A4 component locator with the component locator shown in Figure 7-5. ### CHANGE 4 Series 2536A & Instrument Serial Numbers 2536Al2971 and Above Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1 (05314-60008) series to 2536A. Delete A1C31 - C33. Delete MP4 - MP7. Page 8-23. Figure 8-8. A1 Counter Assembly Schematic Diagram Change A1 (05314-60008) Schematic Diagram to series 2536A. Delete C31 - C33. Change C1 – C33 to C1 – C28 on Reference Designations Table. # CHANGE 5 Series 2036A and Instrument Serial Numbers 2036A07961 and Above Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts. Change A1Q8 and A1Q10 to 1853-0015, TRANSISTOR PNP. Change A1U4 to 1820-1211, IC TTL EXCLUSIVE OR, QUAD 2-INPUT. Page 8-24. Part of Figure 8-9. A2 Power Supply Assembly Component Locator. Replace the component locator with the one shown in Figure 7-4. # CHANGE 6 Series 2036A and Instrument Serial Numbers 2036A07721 and Above Page 6-7. Table 6-2. A4 Option 001 TCXO Board Replaceable Parts Change A4 (05314-60004) to series 2032A. Change A4C1 to 0160-2055, .01 uF. Delete A4C2, A4R1, A4R2. Page 8-27. Figure 8-10. Option 001 A4 TCXO Assembly Delete C2,. R1, R2. ### **CHANGE 7 Series 2032A** Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1 (05314-60005) series to 2032A. Change A1DS8 to 1990-0486 Yellow LED. Change A1DS1 through A1DS7 to 1990-0658 Yellow LED. Delete XU4, 14 pin Socket. Page 6-6. Table 6-2. A2 Power Supply Board Replaceable Parts Change A2U1 to 1826-0467. ### **CHANGE 8 Series 2024A** Page 6-6. Table 6-2. Option 002 A3 Battery Pack Board Assembly Replaceable Parts Change A3 (05314-60003) Series to 2024A. Delete A3C3. Page 6-7. Table 6-2. Option 001 TCXO A4 Board Assembly Replaceable Parts Change A4 (05314-60004) Series to 2024A. Change A4Y1 to 0960-0394. Page 8-27. Figure 8-10. A3 Battery Charger Assembly Option 002 Change A3 (05314-60003) Series to 2024A. Delete C3. Change A4 (05314-60004) Series to 2024A. ## **CHANGE 9 Series 2016A** Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1 (05314-60005) to Series 2016A. Change A1C10 to 0180-0210, 3.3 UF. Delete asterisk from A1R20. Page 8-23. Figure 8-8. A1 Counter Assembly Schematic Change A1 (05314-60005) to Series to 2016A. Change C10 to 3.3 UF. Delete asterisk from R20. ### **CHANGE 10 Series 1908A** Page 6-7. Table 6-2. Option 001 TCXO A4 Board Replaceable Parts Change A4 (05314-60004) to Series 1908A. Delete A4RI. Page 8-27. Figure 8-10. Option 001. TCXO A4 Assembly Change A4 (05314-60004) Series to 1908A. Delete R1. # CHANGE 11 Instrument Serial Numbers 1884A00710 through 1884A00900 Page 6-6. Table 6-2. Option 002 A3 Battery Pack Board Replaceable Parts Change A3CR1 to 1901-0676. ### **CHANGE 12 Series 1884A** Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1 (05314-60005) to Series 1884A. Delete A1R42. Page 8-23. Figure 8-8. A1 Counter Assembly Schematic Diagram Change A1 (05314-60005) to Series 1844A. ### **CHANGE 13 Series 1836A** Delete R42. Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1 (05314-60005) to Series 1836A. Change A1R29 and A1R38 to 2100-3471. # **CHANGE 14 Series 1828A** Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1(05314-60005) to Series 1828A. Add A1CR4,1901-0040. Change A1R1 to 2k ohms, 0757-0283 Page 6-5. Table 6-2. A2 Power Supply Board Replaceable Parts Change A2 (05314-60006) to 05314-60002 Series 1828A. Change A2T1 to 9100-4103. Page 8-23. Figure 8-8. A1 Counter Assembly Schematic Diagram Change A1 (05314-60005) to Series 1828A. Change R1 to 2k ohms. Add A1CR4 between U2 pin 1 and U2 pin 30. Page 8-24. Part of Figure 8-9. A2 Power Supply Assembly Component Locator. Replace the component locator with the one shown in Figure 7-3. Page 8-25. Figure 8-9. A2 Power Supply Schematic Diagram Change A2 (05314-60006) to 05314-60001 Series 1828A. Change A2T1 pin 7 to pin 8, pin8 to pin 7, and pin 9 to pin 8 Add pin 6 to grounded center tap on A2T1 secondary adjacent to polarity dot. # **CHANGE 15 Series 1816A** Page 6-4. Table 6-2. A1 Main Board Assembly Replaceable Parts Change A1 (05314-60005) to 05314-60001 Series 1816A. Page 6-7. Table 6-2. Miscellaneous Parts Change MP5 to 05314-60001. Page 8-22. Figure 8-8. A1 Schematic Diagram Replace A1 component locator with the one shown in Figure 7-1. Figure 7-1. A1 Component Locator Series 1816A Figure 7-2. A1 Assembly Component Locator Series 1828A Figure 7-3. A2 Power Supply Assembly Component Locator Series 1828A Figure 7-4. A2 Power Supply Assembly Component Locator Series 1836A Figure 7-5. A4 TCXO Assembly Component Locator Series 1828A # SECTION VIII SERVICE #### WARNING LINE VOLTAGE IS EXPOSED WITHIN THE HP 5314A EVEN WHEN THE POWER SWITCH IS IN THE STBY POSITION. REMOVAL OF THE POWER CORD IS REQUIRED TO FULLY UNPOWER THE INSTRUMENT. ### 8-1. INTRODUCTION 8-2. This section contains information needed to service the HP Model 5314A. The information includes: theory of operation, troubleshooting, recommended test equipment, schematic diagram notes, safety considerations, fuse replacement, block diagram theory, detailed circuit theory, service aids, block diagrams, component locators, and schematic diagrams. ## 8-3. THEORY OF OPERATION 8-4. There are two theorys of operation. The first is a block theory. That is, an overview of the HP 5314A is presented. The block theory is assembled to follow the block diagrams in *Figures 8-2* through 8-5. The second is a detailed theory. It describes in detail, the circuit operation of all assemblies, both standard and optional. All reference is made to the schematic diagrams in *Figures 8-8* through 8-10. # 8-5. TROUBLESHOOTING 8-6. Troubleshooting for the HP 5314A is performed by selectively isolating and verifying the proper operation of the various circuit sections. This is accomplished in an indicated sequence, through a series of five test procedures, keyed to the troubleshooting block diagram in Figure 8-6. # 8-7. RECOMMENDED TEST EQUIPMENT 8-8. Test equipment and test equipment accessories required to maintain the HP 5314A are listed in *Table 1-3*. Equipment other than that listed may be used if it meets the listed critical specifications. # 8-9. SCHEMATIC DIAGRAM NOTES 8-10. Figure 8-1 shows the symbols used on the schematic diagrams. Figure 8-1 also shows the method of assigning reference designators, assembly numbers, and subassembly numbers. # 8-11. Reference Designations 8-12. Assemblies such as printed circuit boards are assigned numbers in sequence, A1, A2, etc., as shown in *Table 8-1*. As shown in *Figure 8-1*, subassemblies within an assembly are given a subordinate A number. For example, rectifier subassembly A1, has the complete designator A25A1. For individual components, the complete designator is determined by adding the assembly number and subassembly number, if any. For example, CR1 on the rectifier assembly is designated A25A1CR1. Table 8-1. Assembly Designations | Reference Designations | Description | HP Part Number | | |------------------------|---------------------------------------|----------------|--| | A1 | Counter Assembly |
05314-60008 | | | A2 | Power Supply Assembly | 05314-60006 | | | A3 | Battery Charger Assembly (Option 002) | 05314-60003 | | | A4 | TCXO Assembly (Option 001) | 05314-60004 | | # 8-13. Identification Markings on Printed Circuit Boards 8-14. HP printed circuit boards (see Figure 8-1) have four identification numbers; an assembly part number, a series number, a revision letter, and a production code. The assembly part number has 10 digits (such as 05314-60005) and is the primary identification. All assemblies with the same part number are interchangeable. When a production change is made on an assembly that makes it incompatible with previous assemblies, a change in part number is required. The series number (such as 1828A) is used to document minor electrical changes. As changes are made, the series number is incremented. When replacement boards are ordered, you may receive a replacement with a different series number. If there is a difference between the series number marked on the board and the schematic in this manual, a minor electrical difference exists. If the number on the printed circuit board is lower than that on the schematic, refer to Section VII for backdating information. If it is higher, refer to the yellow looseleaf manual change sheets for this manual. If the manual change sheets are missing, contact your local HP Sales and Service Office. See the listing on the back cover of this manual. 8-15. Revision letters (A, B, etc.) denote changes in printed circuit layout. For example, if a capacitor type is changed (electrical value may remain the same) and requires different spacing for its leads, the printed circuit board layout is changed and the revision letter is incremented to the next letter. When a revision letter changes, the series number is also usually changed. The production code is the four-digit, seven-segment number used for production purposes. # 8-16. SAFETY CONSIDERATIONS 8-17. Although the HP 5314A has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to insure safe operation and to retain the HP 5314A in safe operating condition (also see Sections II, III, V). Service and adjustments should be performed only by qualified service personnel. ### WARNING ANY INTERRUPTION OF THE PROTECTIVE (GROUNDING) CONDUCTOR (INSIDE OR OUTSIDE THE UNIT) OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO MAKE THE UNIT DANGEROUS. 8-18. Any adjustment, maintenance, and repair of the opened HP 5314A under voltage should be avoided as much as possible, and when inevitable, should be carried out only by a skilled person who is aware of the hazard involved. Capacitors inside the HP 5314A may still be charged even if the unit has been disconnected from its source of power. ### **WARNING** # LINE VOLTAGE IS EXPOSED WITHIN THE HP 5314A EVEN WHEN THE POWER SWITCH IS IN STBY. REMOVAL OF THE POWER CORD IS NECESSARY TO FULLY UNPOWER THE UNIT. 8-19. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided. Whenever it is likely that this protection has been impaired, the HP 5314A must be made inoperative and be secured against any unintended operation. ### 8-20. FUSE REPLACEMENT 8-21. There are two fuses in the standard HP 5314A. These are the line input fuses located on the A2 power supply assembly. There is an additional third fuse in the HP 5314A with Option 002. This fuse is located on the Option 002 A3 assembly. Instructions for changing these three fuses are given in the following paragraphs. ### 8-22. Line Input Fuse Replacement ### **CAUTION** Make sure that only fuses with the required rate current and of the fast-blow type are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided. - 8-23. The following instructions are given for line fuse replacement: - 1. Turn the HP 5314A OFF and remove the line input power cord. - 2. Turn the HP 5314A upside down and remove the four screws near the corners of the cabinet bottom. - 3. Holding the top and bottom covers together, turn the HP 5314A right-side up and carefully lift the top cover. This exposes the two line input fuses located on the A2 assembly (assembly in the rear of the instrument). - 4. Remove and replace the defective fuse with a 0.06 Amp fast-blow type fuse. - 5. Replace the top cover and carefully turn the unit upside down. Replace and tighten the four screws, one in each corner of the cabinet bottom. ### 8-24. Option 002 Fuse Replacement - 8-25. HP 5314A instruments with Option 002 contain a 3 Amp fuse in addition to the two line input fuses. This fuse is located on the Option 002 A3 assembly. This fuse protects the battery pack from damage in case of a possible short-circuit. The following instructions are given for Option 002 fuse replacement: - Turn the HP 5314A OFF and remove the line input power cord. - 2. Turn the HP 5314A upside down and remove the four screws from the cabinet bottom. - 3. Holding the top and bottom covers together, turn the HP 5314A right-side up and carefully lift the top cover. This exposes the Option 002 A3 assembly. - 4. Remove and replace the defective fuse with a 3 Amp fast-blow type fuse. - 5. Replace the top cover and carefully turn the unit upside down. Replace and tighten the four screws, one in each corner of the cabinet bottom. Figure 8-1. Schematic Diagram Notes ## 8-26. THEORY OF OPERATION ### 8-27. Introduction 8-28. The HP 5314A is a multifunction counter using a single LSI integrated circuit. The theory of operation is organized such that a block diagram is shown along with the block theory, immediately followed by the detailed theory. The block theory is structured to follow the block diagram. The detailed theory is referenced to the schematic diagrams found at the end of this section. There are four block diagrams, shown in Figure 8-2 through 8-5, as follows: - 1. The HP 5314A overall block diagram. - 2. The LSI counter chip (A1U2). - 3. The power supply. - 4. The optional battery pack charger. # 8-29. HP 5314A Overall Block Theory of Operation 8-30. The A and B input amplifiers condition the measured input signals and insure the subsequent digital circuits receive pulses of uniform rise and fall time. The signal on Channel B is applied directly to the counter IC. Channel A is similar to Channel B except a signal path through a ÷10 prescaler is also provided. The output of the counter drives the display through segment and digit drive lines. The digit drive lines are also used in conjunction with the front panel switches to select the proper function, range, and decimal point location. The power supply delivers +5 volts to the circuits and provides unregulated voltage to the battery charger connector for use with Option 002. # 8-31. Detailed A1 Assembly Theory - 8-32. INPUT AMPLIFIERS. The signal is applied through a BNC input connector (J1) through coupling capacitor C19. The compensated attenuator is made of R27, R25, and C18, and allows selection of X1 or X20 through the use of switch SW10. The network made up of R22, R23, C16, and diodes CR7 and CR6 make up the protection circuitry. The high input impedance is accomplished by the impedance converter made up of Q7 and Q8, and their associated biasing resistors. The signal is now amplified to an acceptable level by the first two stages of U5. The first stage provides a trigger level adjustment by allowing the reference level input to be shifted by approximately ±400 mV using R29. The second stage of U5 provides some peaking at high frequencies to compensate for the roll off at the input impedance converter. The final stage of U5 is a Schmitt trigger which takes the amplified analog signal and digitizes it. The signal out of the impedance converter of Channel A goes to the amplifier U5, and can be switched into Channel B by using SW11 the SEP/COM A (separate/common A) switch. - 8-33. Channel B is similar to Channel A with a few exceptions. A signal applied to Channel B is supplied with no attenuation through the protection circuitry made of R36, R35, C26, CR9, and CR8. The impedance converter is made up of Q9 and Q10 and their associated bias resistors. The Channel B signal is then amplified by the 3 stages of U6. The first stage provides an adjustable trigger level by setting R38. The second stage, rather than being peaked, is rolled off above 10 MHz as the Channel B is usable only to 2.5 MHz. The last stage is the Schmitt trigger without the high frequency compensation. The digital signal out of the Schmitt trigger must be translated to be compatible with TTL circuitry which follows. This is done by Q4 and Q3. The slope selection is done by U4C in conjunction with switch SW12. The Channel B signal is then applied to U2. - 8-34. CHANNEL A PRESCALE SELECT CIRCUIT. The output of the Channel A amplifier goes to the input of U2 by taking one of two paths selected by the front panel switches. The first path is through the level translator Q5 and Q6. The multiplexer (U1C) selects the input on pin 13. The slope selection is made in U4 in conjunction with switch SW9. The signal is then applied to U2. - 8-35. This is the normal signal path for most functions. When frequency A is selected and the 100 MHz/10 Hz max frequency/resolution button is pushed, then the multiplexer (U1) directs the signal on pin 14 through the slope select logic and on to U2. This signal has come from amplifier U5 through a ÷10 prescale decade and a level translator Q1 and Q2. Therefore any time the FREQ A button is pushed in conjunction with the 100 MHz/10 MHz button, the prescaler will be switched. The other sections of the U1 multiplexer provides proper location of the decimal point when in the prescale mode. - 8-36. LSI COUNTER CHIP. Integrated circuit A1U2
provides the circuitry to implement a full universal counter. The functions that can be performed are FREQUENCY, PERIOD, TIME INTERVAL, START A (TOTALIZE), RATIO A/B and CHECK. U2 also contains the logic to strobe the data into the display. - 8-37. Function, Range, Control Inputs. In order to set the proper function and range, it is necessary to connect the proper digit drive line to the function or range input of U2. Since the digit drive lines are strobed consecutively starting from the most significant digit to the least significant digit, it is where the pulse occurs in time, which determines what function or range the instrument is in. As an example, connecting digit driver DØ to the function input causes U2 to be set up to measure frequency on Channel A. Connecting the same digit drive line to the range input sets the gate time to 0.01 seconds. A third input to U2 is called control and selects additional modes of operation. The operation of the function, range, and control inputs are shown in Table 8-2. - 8-38. <u>Display Strobe</u>. The display consist of seven 7-segment common anode display digits with an overflow LED indicator. Each digit has a decimal point with the most significant digit's decimal point used as a gate indicator. - 8-39. In order to light a particular digit it is necessary to pull the anode of the digit high and sink current in the appropriate cathodes to light the desired number in that digit. Therefore, it is possible to tie all the corresponding segments (cathodes) together as the anode determines which digit is being addressed. U2 first addresses the most significant digit and strobes in the proper number, then the next MSD will be addressed and the proper number strobed in and so on. A complete display strobe cycle is executed in 2 milliseconds or at a 500 Hz rate. The overflow is driven from the eighth unused digit. Table 8-2. Function/Range versus Digit Drive | Digit | Function | Range Gate Time/N | Control | |-------|---------------|------------------------|------------------------| | DØ | FREQUENCY | 0.01 s/1 | EXT OSC Enable | | D1 | RATIO A/B | 0.1 s/10 | 1 MHz REF Select | | D2 | CHECK | 1 s/100 | EXT Decimal Pt. Enable | | D3 | START A | 10 s/1000 | BLANK Display | | D4 | TIME INTERVAL | EXT Range Input Enable | Test | | D5 | _ | | | | D6 | | _ | | | D7 | PERIOD | | DISPLAY | Figure 8-3. LSI Counter (A1U2) Block Diagram - 8-40. <u>Decimal Point Control.</u> The circuitry in U2 determines the function, range, and control status and automatically positions the decimal point. The decimal point is strobed in exactly the same manner as the segments of the digits. When the prescaler decade is switched in, by selecting FREQ A and 100 MHz/10 Hz max. frequency/resolution, it is necessary to move the decimal point one-digit to the right. This is done by connecting digit D2 (EXT decimal point enable) to the control input through multiplexer U1. This allows pin 20 (EXT decimal point input) to be used to strobe the decimal point into the proper position. - 8-41. REFERENCE OSCILLATOR. The oscillator is made up of the 10 MHz crystal Y1 and the trimmer capacitors C2, C4, and C5, and bias resistor R6. The active elements are internal to U2. The buffered oscillator is brought out on pin 38 and is connected to the EXT OSC input on pin 33. It is therefore necessary to program the control input to the EXT oscillator input mode by connecting DØ to the control input. This is done through isolation diode CR4. If the temperature compensated crystal oscillator is used, the jumper between pins 33 and 38 is removed and the TCXO output is connected between ground and pin 33, EXT OSC input. - 8-42. GATE LAMP. The gate lamp is used to give an indication that the counter is in the process of making a measurement. The gate lamp is on whenever the gate is open and the counting decades are accumulating pulses. When making measurements where the gate is only open for a short time such as time interval or single-shot period measurements, the gate signal is not on long enough to light the gate indicator. Therefore, the reset pulse is also connected to the gate indicator to provide an indication that measurements are being made. The reset pulse occurs about 140 milliseconds after the measurement is over. - 8-43. POWER, HOLD, FUNCTION, AND RANGE SWITCHES. Switch SW1 connects unregulated voltage from the power supply board back to the regulator on the power supply board. Switch SW2 in the normal (NORM) position applies ground to the hold input pin 39 of U2. When SW2 is depressed, a positive voltage generated by CR3 and C1 is applied to the hold input. This terminates any measurement in progress and holds the previous reading in the display. Upon releasing the hold button, a new measurement will begin. Switches SW3, 4, and 5 connect the proper digit drive lines to the function input. Switch SW5 acts like a shift key allowing switches SW3 and SW4 to select two functions. When both SW3 and SW4 are in or out the functions CHECK or RATIO A/B are respectively selected. In this situation the shift key SW5 has no affect. - 8-44. Switches SW6, 7, and 8 select the proper digit drive line to be connected to the range input. SW8 provides the special function of connecting ground to U3 (÷10 prescaler) only when SW3 is also in. This same line is also applied to the multiplexers as the control signal. Switches SW6, 7, and 8 are connected to provide more range positions than those shown on the front panel. The useful switch positions are shown below in *Table 8-3*. | Switch Position | Prescale | Freq Gate Time | Freq. Res. | No. of Avg. | | |-----------------|----------|----------------|------------|-------------|--| | SW6 SW7 SW8 | | · | | | | | | OFF | 10 s | 0.1 Hz | N=1000 | | | | OFF | . 1 s | 1 Hz | N=100 | | | | OFF | 0.1 s | 10 Hz | N=10 | | | | ON | 1 s | 10 Hz | n=1 | | 0.1 s 0.01 s 100 Hz 1 kHz n=1 n=1 ON ON Table 8-3 Useful Resolution Switch Positions (Shaded buttons indicate button IN) Figure 8-4. HP 5314A Power Supply Block Diagram ### 8-45. Power Supply Block Theory 8-46. The power supply contains circuitry to operate the instrument when the front panel STBY switch is pushed to ON, or charge the battery when in standby (STBY) if Option 002 is installed. Input line voltages can range from 86 to 126 volts in the 115V position of the power selector switch and 172V to 252 in the 230-volt position. The outputs provided by the power supply are regulated +5 volts at 0.5 amps, unregulated +8 to +10 volts for charging the battery and +2.5V reference to be used by the battery charger (Option 002). #### 8-47. Detailed A2 Assembly Theory 8-48. Line power is applied to the primary side of T1 power transformer through the line selector switch and fuses F1 and F2. The line selector switch configures the dual primary for 115-volt or 230-volt operation by connecting the windings in parallel or series, respectively. The fuses need not be changed when the line voltage selector switch is changed. The secondary of the power transformer contains a full wave rectifier and filter made up of CR2, CR1, and C1. The unregulated dc at this point is supplied to the battery charger board. The dc also passes through two isolation diodes CR5 and CR6. 8-49. These diodes keep current from coming back out of the battery and into the charger circuitry. The dc line is broken at this point by the standby (STBY) switch located on the A1 assembly. When the switch is ON, power is supplied to the 2.5 volt regulator U1, the output regulator driver and series pass transistor, and the low voltage detector. The regulated +5 volts output is generated using a conventional series pass linear regulator. The output voltage is divided-by-2 using R7 and R8. Under normal conditions this will produce 2.5 volts at the output of the divider which is applied to an operational amplifier U2 pin 2. This voltage is compared with the 2.5 volts generated by the reference U1. The output of the opamp will control the current in Q1 which controls the series pass transistor Q2. The other half of U2 is used as a low battery detector. When the HP 5314A is operating under battery power, an attenuated version of the battery voltage is present on U2 pin 6. This voltage is compared with the 2.5 volt reference which is applied to pin 5 of U2. When the battery voltage is high, the output of U2 is low and CR4 is reversed biased. When the battery voltage gets low, indicating low capacity, pin 7 of U2 will go high. This pulls pin 2 of U2 high and turns off the output transistor Q2. Positive feedback is applied around the low battery detector to provide hysteresis. This ensures that once the detector has shut the HP 5314A off, it will stay off. Capacitor C5 delays the 2.5-volt reference on pin 5 ensuring that when the instrument is turned on, it comes on then shuts down if necessary. ### 8-50. Option 002 Battery Charger Block Theory 8-51. The battery charger has circuitry that supplies 10 mA to the battery whenever the instrument has line power coming in. If the instrument is in the standby position, the battery is charged at a 0.5 amp rate until it is fully charged. When the battery is fully charged, a circuit detects this and discontinues the 0.5 amp current and resumes the 10 mA float current. See Table 8-4 for power switch operation in an HP 5314A with Option 002. | AC Line Cord | Power Switch | Battery-Pack Operation | | | | | | |--------------|--------------|---|--|--|--|--|--| | Connected | STBY | Two-step battery charging cycle active. | | | | | | | Connected | ON | Counter operates from ac power; charge circuitry provides a 10 mA trickle charge to battery to maintain charge level. | | | | | | | Disconnected | STBY | None. | | | | | | | Disconnected | ON | Counter operates from battery power; Auto-Shut Down circuitry operative. | | |
| | | Table 8-4. Option 002 Power Switch Operation Figure 8-5. HP 5314A Optional Battery Pack Block Diagram ### 8-52. Detailed Option 002 A3 Assembly Theory - 8-53. Power comes on to this board at pin 1. The components R1, R2, Q1, and Q2 provide continuous 10 mA to the battery from the collector of Q1. R13 is the current sensor and R4 is used to isolate the sensor from pin 2 of the IC. The 2.5-volt reference comes on to the board at pin 5 and is divided down to 50 mV by R10 and R6 (50 mV is the voltage developed by the current sensor). The OP amp (consisting of pins 1, 2, and 3), in conjunction with Q3, Q4, R3, and R5, is used to control the 0.5 amp used to charge the battery. - 8-54. CR2 is used so the battery does not power this circuitry when the instrument is unplugged. CR1 is used so that power only leaves the board at pin 2. When the instrument is on, pin 3 goes high which discontinues the 0.5 amp current used to charge the battery. In the standard HP 5314A, the 2.5-volt reference is turned off when the switch is in STBY, so power is provided through CR4 to the reference input at pin 4 needed for Option 002. - 8-55. The remaining components comprise the circuit to shut off the 0.5 amp current when the battery has a full charge. R9 and R11 and the 2 K Ω potentiometer (R12) comprise the voltage divider to determine the correct voltage where the 0.5 amps should be discontinued. CR7 and the 33 K Ω thermistor are used to track the temperature changes inside the instrument. R7 pulls pin 7 to approximately 60 mV above ground when the opamp goes low. When the battery is not fully charged, pin 7 will be low (because the voltage at pin 5 will be less than 2.5-volt reference at pin 6). The 2 K Ω pot is adjusted so that the full charge cutoff happens when there is 7.5 volts across the battery at room temperature. Now the thermistor and CR8 are out of the circuit, which causes pin 5 to go even higher. Pin 7 will not go low now until pin 5 goes below 2.5 volts. This will happen when approximately 7.05 volts is across the battery. CR5, CR6, and R8 are used to insure that the previously described circuitry has no affect on pin 2 of the IC. (Recall that pin 2 is sensing 50 mV and pin 7 goes down to 60 mV.) ### 8-56. TROUBLESHOOTING TEST PROCEDURES - 8-57. The following test procedures are designed to effectively verify the proper opration of isolated subsections of the HP 5314A. Refer to the troubleshooting block diagram in *Figure 8-6* to determine the circuits tested by each procedure. Although each procedure may be performed independently, it is recommended that they be performed in the numerical sequence as given in *Table 8-5*. - 8-58. Throughout the five troubleshooting test procedures, alphabetical test points from D to S are referenced. These test points appear on the A1 schematic diagram in *Figure 8-8*. They are enveloped within black circles located at various points throughout the schematic diagram. *Table 8-5* lists the test points and the signals present at each. | Figure 8-6 | Test Procedure | | | | | | | | | | |---------------------|----------------|---|---|---|---|--|--|--|--|--| | Figure 8-6 Sections | 1 | 2 | 3 | 4 | 5 | | | | | | | Α | Х | х | х | х | х | | | | | | | В | | x | | x | x | | | | | | | С | | | x | | x | | | | | | | | 1 | | | | | | | | | | Table 8-5. Block Diagram Sections versus Test Procedures Table 8-6. A1 Test Point Signal Descriptions | Test Point | Description | |------------|---| | TPD: | Channel A Input to wideband amplifier-collector of A1Q7 | | TP E&F: | Channel A Schmitt trigger outputs A1U5(15, 14) | | TP G: | Channel A Input to Counter-in-a-chip A1U2(40) | | TP H: | Channel B Input to wideband amplifier-collector of A1Q9 | | TP J&K: | Channel B Schmitt trigger outputs A1U6(15, 14) | | TP L: | Channel B Input to Counter-in-a-chip A1U2(2) | | TP M: | "FUNCTION" input to A1U2(4) | | TP N: | "TIME BASE" input to A1U2(21) | | TP P: | "EXT OSC INPUT" A1U2(33) | | TP Q: | "CONTROL" input A1U2(1) | | TP R: | "OVFL" output A1U2(22) | | TP S: | +5 Volts | | TP T: | ↓ (GND) | | | | | L | L | ## 8-59. Procedure #1: Testing of 5314A Power Supply 8-60. To verify proper operation of the HP 5314A power supply, check Test Point S on the A1 motherboard. It should be $\pm 5V \pm 75$ mV. This is the only supply voltage in the HP 5314A, and it is not adjustable. # 8-61. Procedure #2: Testing of 5314A Reference Oscillator 8-62. Check for the presence of the 10 MHz Reference Oscillator at Test Point P, A1U2(33); see following figure for a typical waveform: If the 10 MHz reference oscillator is not present, check A1Y1, R6, C2, C5, and U2. ## 8-63. Procedure #3: Testing Input Channels 8-64. To verify proper operation of the HP 5314A input channels, apply a 10 MHz signal at 100 mV rms (~280 mV p-p) to INPUT A, then to INPUT B. Check that the proper waveform exists at TP G [A1U4(6)] and at TP L [A1U4(8)]. If they are not present, trace back the signal. The following eight photographs show the signal which should be present at the corresponding test points. # 8-65. Procedure #4: Testing of ICM 7226 [Counter-in-a-Chip] and Display 8-66. To verify the proper operation of A1U2 (counter-in-a-chip) and the displays and the front panel switches, set the 5314A to SELF-CHECK mode; set resolution to 10 Hz (N=10). The display should be as follows: with "GATE" light blinking. If the counter fails to pass this test, check the DIGIT DRIVER lines from A1U2; connect A1U2(22) (TP R) to oscilloscope Channel A input. Adjust oscilloscope time base vernier so that the total period of pulses occupy 8 centimeters of the oscilloscope screen. The Digit Driver displayed is D7 in Channel A. Connect to oscilloscope Channel B Digit Drivers DØ to D6 and the corresponding pulses should coincide with the positions as illustrated in the figure below (see *Table 8-7*). To verify that proper time base pulse has been selected per front panel switches, connect oscilloscope's Channel B to A1U1(4) or A1U2(20) (see *Table 8-7*). | | Function | Digit | |-----------------------|------------------------|---------------------| | FUNCTION INPUT | | | | | FREQUENCY | D ₀ | | | PERIOD | D ₇ | | | RATIO | D ₁ | | | TIME INTERVAL | D ₄ | | | UNIT COUNTER | D ₃ | | • | OSCILLATOR FREQUENCY | D ₂ | | RANGE INPUT | | | | (Time Base Selection) | 100 Hz 0.01 s/1 CYCLE | D ₀ | | | 10 Hz 0.1 s/10 CYCLES | D ₁ | | | 1 Hz 1 s/100 CYCLES | D ₂ | | | 0.1 Hz 10 s/1K CYCLES | D ₃ | | | EXTERNAL RANGE | D ₄ | | | INPUT ENABLED | | | CONTROL INPUT | | | | | BLANK DISPLAY | D ₃ HOLD | | | DISPLAY TEST | D ₇ | | | 1 MHz SELECT | D ₁ | | | EXTERNAL OSCILLATOR | D ₀ | | | INPUT ENABLE | | | | EXTERNAL DECIMAL POINT | D ₂ | | | INPUT ENABLE | | | | TEST | D4 | Table 8-7. Multiplexed Digit Driver Output ### 8-67. Procedure #5: 20 MHz Mode 8-68. Apply a 20 MHz signal at 100 mV rms (\sim 280 mV p-p) to the HP 5314A INPUT A with a 50-ohm feedthrough. Set the HP 5314A to FREQ A mode, with a resolution of 10 Hz (N=1), ATTN X1/X20 in X1, and LEVEL A about midrange. Verify that counter counts 20 MHz \pm 1 count. Figure 8-7. Top Internal View | Figure 8-8. A1 Counter Assembly | 8-23 | |---------------------------------|------| | | | | | | | AN COUNTRA ASSEMBLY WISH LAGOOD) The state of | | |---|--|
---|--| REFERENCE DESIGNATIONS AICT -C30 AICT -C30 CR1 -CR9 DS1 -DS8 II -12 Q1 -Q10 R1 -R43 S1 - S12 UI - U6 WII - U6 I. REFERENCE DESIGNATIONS WITHIN THIS ASSEMBLY ARE ABBREVIATED. ADD ASSEMBLY NUMBER TO ABBREVIATION FOR COMPLETE DESCRIPTION. 2. UNLESS OTHERWISE INDICATED: RESISTANCE IN OHMS; CAPACITANCE IN FARADS; INDUCTANCE IN HENRIES NOTES 3. ASTERISK(*) INDICATES SELECTED COMPONENT, AVERAGE VALUES SHOWN | MFG PART | NUMBER | 1901-0050 | 1990-0730 | 1990-0486 | 1853-0015 | 1853-0354 | 1855-0267 | 1853-0015 | 1855-0267 | SN74LS157N | ICM7226A | MC10138L | SN74S86N | MC10216P | 0410-1188 | |-----------|--------------|-------------------|----------------------------|--------------------------------------|--------------------------------------|--|--|---|---|--|--|---|--|--|---| | HP PART | NUMBER | 1901-0050 | 1990-0730 | 1990-0486 | 1853-0015 | 1853-0354 | 1855-0267 | 1853-0015 | 1855-0267 | 1820-1470 | 1820-2187 | 1820-1383 | 1820-0694 | 1820-1224 | 0410-1188 | | REFERENCE | DESIGNATIONS | CR1 -CR9 | DS1 -DS7 | DS8 | 41-96 | 64 | స | సి | Q10 | 5 | nz | co
Co | 2 | US - U6 | 7 | | | HP PART | HP PART
NUMBER | HP PART A NUMBER 1901-0050 | HP PART NUMBER 1901-0050 1990-0730 1 | HP PART NUMBER 1901-0050 1990-0486 1 | HP PART NUMBER 1901-0050 1990-0486 1853-0015 1 | HP PART NUMBER 1901-0050 1990-0486 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853-0015 1853- | HP PART NUMBER NUMBER 1901-0050 1900-0486 1853-0015 1855-0267 | HP PART NUMBER NUMBER 1901-0050 1990-0730 1990-0486 1853-0015 1853-0015 1853-0015 | HP PART NUMBER NUMBER 1901-0050 1990-0486 1853-0015 1855-0057 1855-0015 1855-0267 1855 | HP PART NUMBER 1901-0050 1990-0730 1990-0486 1853-0015 1855-0267 1825-0267 1826-1470 | HP PART NUMBER 1901-0050 1990-0730 1990-0730 1853-0354 1855-0267 1855-0267 1850-187 | HP PART NUMBER 1901-0050 1990-0730 1990-0486 1853-0015 1855-0267 1855-0267 1855-0267 1850-1470 1820-1470 1820-1470 | HP PART NUMBER 1901-0050 1990-0730 1990-0730 1855-0015 1855-0015 1855-0016 1855-0016 1850-1470 1820-1470 1820-1383 | HP PART NUMBER 1901-0550 1900-0730 1990-0730 1990-0736 1853-0015 1855-0267 1855-0267 1855-0267 1820-1470 1820-187 1820-187 1820-187 | Part of Figure 8-9. A2 Power Supply Assembly Component Locator 8-25 Figure 8-9. A2 Power Supply Assembly MP1 RECHARGEABLE BATTERY SEE SERVICE MANUAL FOR BATTERY OPTION OPERATION TEST AND CALIBRATION PROCEOURE CAUTION -DO NOT SHORT CIRCUIT BATTERY -DO NOT STORE BATTERY IN LOW CHARGE STATE FOR MAXIMUM BATTERY LIFE - AVOID PARTIAL RECHARGE -RECHARGE BATTLRY AS SOON AS POSSIBLE AFTER FULL DISCHARGE POS NEG **R6 R7** BT1 Part of Figure 8-10. A3 Battery Charger, Option 002 Component Locator Figure 8-10. A3 Battery Charger Assembly, Option 002 A4 TCXO Assembly, Option 001 8-27 Manual Part Number: 05314-90015 Printed SEPTEMBER 1993 Printed In U.S.A.