OPERATING AND SERVICE MANUAL

MEASURING SYSTEM

5300B AND BATTERY PACK 5310A

5300B SERIAL PREFIX 1704A 5310A SERIAL PREFIX 1312A

This manual applies directly to HP Model 5300B Measuring System Mainframes having serial prefix 1704A and to HP Model 5310A Battery Packs having serial prefix number 1312A.

SERIAL PREFIXES NOT LISTED

For serial prefixes above those given above, a "Manual Changes" sheet should be included with this manual. If the change sheet is missing request one from the nearest Hewlett-Packard Sales and Service Office. Offices are listed at the end of this manual. For instrument with serial prefixes below those listed above see Section VII.

CopyrightHEWLETT-PACKARD COMPANY19735301 STEVENS CREEK BLVD., SANTA CLARA, CALIF. 95050

Printed: MAY 1977

MANUAL PART NO. 05300-90035 MICROFICHE PART NO. 05300-90036 Manual Change Page Revision No. 3 Revised: May 1, 1977 PRINTED IN U.S.A.

SAFETY CONSIDERATIONS

GENERAL

This is a Safety Class I instrument. This instrument has been designed and tested according to IEC Publication 348, "Safety Requirements for Electronic Measuring Apparatus", and has been supplied in safe condition.

This operating and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to retain the instrument in safe condition.

WARNINGS

SAFETY

If this instrument is to be energized via an autotransformer for voltage reduction, make sure the common terminal is connected to the earthed pole of the power source.

BEFORE SWITCHING ON THIS INSTRUMENT, the protective earth terminals of this instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding).

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Whenever it is likely that the protection offered by fuses has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

GROUNDING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal is likely to make this instrument dangerous. Intentional interruption is prohibited.

HIGH VOLTAGE

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled, qualified person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Adjustments and service described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

CAUTIONS

LINE VOLTAGE SELECTION

BEFORE SWITCHING ON THIS INSTRUMENT, make sure the instrument is set to the voltage of the power source. Verify that the power transformer primary is matched to the available line voltage. Verify that the correct fuse is installed. (See Section II).

GROUNDING

BEFORE SWITCHING ON THIS INSTRUMENT, ensure that all devices connected to this instrument are connected to the protective (earth) ground.

BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient.)

This symbol: $\angle \underline{\square}$, which appears on the 5300B instrument means: Read the instruction manual before operating the instrument. The first three sections of the manual are particularly important. If the instrument is operated without reading the instructions, it may not operate correctly.

Figure 1-1. Model 5300B Measuring System Mainframe and 5310A Battery Pack

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual describes the Hewlett-Packard Model 5300B Measuring System Mainframe and 5310A Battery Pack. Section I is General Information. Section II is Installation. Section III is Operation. Section IV is Theory of Operation. Section V is Maintenance. Section VI is Replaceable Parts. Section VII is Manual Changes and Options. Section VIII is Schematic Diagrams.

1-3. Description

1-4. The Hewlett-Packard Model 5300B Measuring System Mainframe is a rugged, compact, all solid state measuring instrument that is used with a variety of plug-on modules to measure a wide range of parameters. The system has an eight-digit light-emittingdiode (LED) display assembly. The plug-on feature enables the user to select plug-ons which will provide him with a maximum measurement capability for a particular need. The electrical and mechanical specifications for the 5300B Measuring System and 5310A Battery Pack are listed in Tables 1-3 and 1-4, respectively. Several plug-ons are available for the Measuring System, some of these are shown in Figure 1-2.

a. HP Model 5301A 10 MHz Counter. When combined with the 5300B, frequency measurements to 10 MHz can be made.

b. HP Model 5302A 50 MHz Universal Counter. When combined with the 5300B, Frequency, Period, Period Average, Time Interval, Ratio, and Totalizing measurements can be made.

c. HP Model 5303B 525 MHz Counter. When combined with the 5300B, frequency measurements to 525 MHz can be made.

d. HP Model 5304A Timer/Counter. When combined with the 5300B, frequency measurements to 10 MHz and time interval measurements to 500 nsec can be made.

e. HP Model 5305A 1100 MHz Counter. When combined with the 5300B, frequency measurements to 1100 MHz can be made.

f. HP Model 5306A Multimeter/Counter. When combined the the 5300B, ac and dc voltages, resistance, and frequency to 10 MHz can be measured.

g. HP Model 5307A High Resolution Counter. When combined with the 5300B, frequencies from 5 Hz to 2 MHz (or pulses from 50 counts per minute to 10,000,000 counts per minute) can be measured and displayed with six digits of resolution.

h. HP Model 5308A Universal Timer-Counter. When combined with the 5300B, frequency measurements to 75 MHz can be made in the A and B input channel. Period can be measured in Channel B. Period Average can be measured in Channel B. Time Interval can be measured with one or two inputs (A/B or B). Time Interval Average can be measured with one or two inputs. Events can be totalized.

i. HP Model 5310A Battery Pack (available accessory). When installed between the 5300B and a plug-on, a completely portable instrument is available with 3 to 8 hours of operating time.

j. HP Model 5311B Digital-Analog Converter. When installed between the 5300B and a measurement plug-on, any three, or the least significant two, display digits can be converted to an analog signal.

k. Model 5312A HP-IB Interface. When installed between the 5300B and a compatible plug-on, it provides an interface to the Hewlett-Packard Interface Bus. Compatible plug-ons include the 5301A, 5302A, 5303B, 5304A, 5305A, 5306A, 5307A, and 5308A.

1-5. Purpose and Use of Manual

1-6. This manual provides operating and service instructions for the 5300B Measuring System. When the information package which is included with the associated plug-on is inserted into Section IX, the manual becomes an operating and service manual for the 5300B Measuring System and its respective plug-ons. The 5300B Mainframe and the 5310A Battery Pack are covered completely in this manual.

1-7. The manual is intended to familiarize the user with his unit. Included are operation, theory, maintenance information, schematic diagrams, component locators, and parts lists.

1-8. APPLICATIONS

1-9. The 5300B Measuring System can be used in airborne and ground radio communications and radar servicing, industrial electronics servicing, and various other electronics-related fields. The Battery Pack

(HP 5310A) enables the Measuring System to be used in field-service situations where ac power is not available or in applications which require isolation from power lines.

1-10. INSTRUMENT IDENTIFICATION

1-11. Hewlett-Packard uses a two-section nine-digit serial number (0000A00000), on the back panel, to identify the instrument.

1-12. The first four digits specify the serial prefix and the last five digits refer to the specific instrument. If the serial prefix on your instrument differs from that listed on the title page of the manual, there are differences between the manual and your instrument.

1-13. Lower serial prefixes are documented in Section VII and higher serial prefixes are covered by a manual change sheet included with the manual.

1-14. MANUAL CHANGES AND OPTIONS

1-15. The title page lists the serial prefix number to which this manual directly applies. If the serial prefix number is different from the one listed, a manual

change sheet is included, describing the required changes. If the change sheet is missing, the information can be supplied by a Hewlett-Packard Sales and Service Office listed in Section VIII of this manual. Options are listed in Section VII of this manual.

1-16. EQUIPMENT SUPPLIED AND ACCESSORIES AVAILABLE

1-17. Table 1-1 lists equipment supplied with the 5300B and Table 1-2 lists accessories available.

Гable 1-1.	Equipment	Supplied
------------	-----------	----------

DESCRIPTION	HP PART NO.
Detachable Power Cord (I.E.C. type approved)	8120-1378

1-18. MANUAL MICROFICHE

1-19. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4x6-inch microfilm transparencies of the manual. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

DESCRIPTION	HP PART NO.
Service Support Package (see Section V for items and description)	10547A
Diagnostic Cards (see Section V for items and description)	10548A
Battery Pack: 12 Vdc, 4-8 hours operating time	5310A
Digital-to-Analog Converter	5311A
HP-IB Interface	5312A
Rack Mount Kits:	
For 5300 and one plug-on	10851A
For Two 5300's with two plug-ons	10852A
For 5300, plug-on, and plug-between	10853A
For Two 5300's, two plug-ons, and two plug-betweens	10854A

m 1 1

Figure 1-2. Available Plug-Ons

Table 1-3. Specifications when used with Available Plug-Ons

TIME BASE

FREQUENCY: 10 MHz.

STABILITY:

Aging Rate: <3 parts in 10⁷/mo. Temperature: <±5 parts in 10⁶, 0°C to 50°C. Typically: <±2 parts in 10⁶, 15°C to 40°C. Line Voltage: <±1 part in 10⁷ for 10% line variation.

- **OSCILLATOR OUTPUT:** 10 MHz, approximately 1V rms at rear BNC, 100Ω source impedance.
- **EXTERNAL INPUT:** 1 MHz to 10 MHz, 1V rms into 500Ω.

NOTE

The external input must be 10 MHz for a correct display. For example, with 1 MHz input the display will be 10 times greater than with 10 MHz input.

OPTION 001: HIGH STABILITY TIME BASE

FREQUENCY: 10 MHz.

STABILITY:

Aging Rate:<2 parts in 107/mo initially, <1 part in
107/mo after 2 months.Temperature:<±5 parts in 107, 0 to 50°C.</td>Line Voltage:<±5 parts in 108 for 10% line variation.</td>

- **OSCILLATOR OUTPUT:** 10 MHz, approximately 1V rms at rear panel BNC, 200Ω source impedance.
- EXTERNAL INPUT: 1 to 10 MHz, 1V rms into 500Ω.

GENERAL

- **DISPLAY:** 8-Digit, 7-Segment Matrix. Solid state LED display (Gallium Arsenide Phosphide Light Emitting Diodes) including decimal point and annunciator units.
- **OVERFLOW:** LED light indicates when display range is exceeded.

DISPLAY STORAGE: Holds reading between samples

SAMPLE RATE: Sample rate control adjusts the delay from the end of the one measurement to the start of a new measurement. Continuously variable from less than 50 msec to greater than 5 seconds.

GENERAL (Continued)

HOLD POSITION: Display can be held indefinitely.

PUSH TO RESET: Front panel pushbutton switch resets all registers and initiates a new measurement. Pressing this switch also test lights all the display LED seven segments, five decimal points and the overflow indicator. The LED digits show $\int - \int$.

OPERATING TEMPERATURE: 0°C to 50°C.

POWER REQUIREMENTS: 115 to 230V +13 to -17%, 48 to 440 Hz, 25 Va maximum (depends on plug-on module). Mainframe power without plug-on nominally 5 watts. Battery operation: with 5310A rechargeable battery pack see 5310A specifications).

WEIGHT: Net 1.5 kg (3-1/3 lb), shipping 2.5 kg (5-1/2 lb).

DIMENSIONS (with snap-on module): Height, 89 mm (3-1/2"), Width, 160 mm (6-1/4"), Depth, 248 mm (9-1/4").

Table 1-4. Accessory Battery Pack Specifications

5310A BATTERY PACK

Provides battery power to 5300 mainframe and plug-on modules from rechargeable Nickel-Cadminum cells.

Battery Voltage: 12 Vdc.

Battery Capacity: Nominal 48-watt hours.

Operating Time: Minimum of 3 hours operation (typically 5 hours) at 20°C to 30°C (operating and charging temperatures, depending on plug-on used).

Recharging Power: Provided by 5300 mainframe. 18 hours recharge time from minimum level (indicated by LOW BATTERY indicator) to full charge.

CAUTION

MAXIMUM RECHARGE TIME IS 24 HOURS. MORE THAN 24 HOURS OF CHARGING MAY DAMAGE BATTERIES (REFER TO SECTION V).

Low Voltage Indicator: Solid state warning light begins to glow when battery voltage drops below minimum level (approximaely 10% remaining charge).

Line Failure Protection: Allows instrument to be operated in LINE position with automatic switch-over to batteries if line voltage fails.

Operating Temperature: Operating 0°C to 50°C. Charging 0°C to 40°C, mainframe not operating.

Power Requirements: Charging power via 5300 mainframe nominal 7.5 watts.

Weight: Net 5 lbs. (2.3 kg). Shipping 6-1/4 lbs. (2.9 kg).

Dimensions: When battery pack is installed between 5300 mainframe and plug-on module. Overall height is increased by 1.5 inches (38.4 mm).

WARRANTY: BATTERIES ARE NOT WARRANTED.

SECTION II

INSTALLATION

2-1. INTRODUCTION

2-2. This section provides instructions for unpacking, inspection, preparation for use, storage, and shipment.

2-3. UNPACKING AND INSPECTION

2-4. If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage, such as, scratches, dents, broken knobs, etc. If the instrument is damaged or fails to operate when used with the associated plug-on, notify the carrier and the nearest Hewlett-Packard Sales and Service Office immediately. Operating procedures are located in Section IX and Sales and Service Offices are listed in Section VIII of this manual. Retain the shipping carton and the padding material for the carrier's inspection. The Sales and Service Office will arrange for the repair or replacement of the instrument without waiting for the claim against the carrier to be settled.

2-5. STORAGE AND SHIPMENT

2-6. PACKAGING. To protect valuable electronic equipment during storage or shipment always use the best packaging methods available. Your Hewlett-Packard Sales and Service Office can provide packaging material such as that used for original factory packaging. Contract packaging companies in many cities can provide dependable custom packaging on short notice. Here is one recommended packaging method:

The original container is a corrugrated card-board box with 200 lbs. burst test (HP Part No. 921-1619). The instrument is secured and protected while in the box by a top and bottom molded frame of polystyrene foam (HP Part No. 9220-1545). Also included with the instrument is a plastic dust protection cover (HP Part No. 05300-80004).

2-7. ENVIRONMENT. Conditions during storage and shipment should normally be limited as follows:

- a. Maximum altitude: 25,000 feet.
- b. Minimum temperature: -40° F (-40° C).
- c. Maximum temperature: +167°F (+75°C).

2-8. POWER CONNECTION

(I.E.C. Approved) (International Electrotechnical Commission).

Before plugging instrument into ac power line, be sure the line voltage selector slide switch is properly positioned and the correct fuse is installed.

2-9. LINE VOLTAGE. The counter may be operated from either 95 to 130 or 190 to 260 Vac (48 to 440 Hz). The instrument is supplied with a 115V fuse; be sure to change this fuse for 230V operation (see Table 2–1).

Table 2-1. 115/230 Volt Conversion

	115V (95-130)	230V (190-260)
Slide Switch	115	230
AC Line Fuse	.3 Amp slow- blow (HP 2110- 0044)	.15 Amp slow- blow (HP 2110- 0320)

2-10. The unit is shipped ready for 95 to 130 Vac operation; check the line voltage in use prior to applying ac power to the unit. To change the 115V/230V switch and the fuse proceed as follows:

At rear of unit:

a. Disconnect power cord from unit.

b. Press and turn FUSE knob counterclockwise and remove the fuse.

c. Replace fuse with one of correct rating. (See back panel.)

d. On bottom of unit slide the LINE VOLTAGE selector switch to the correct voltage with a screwdriver in the slot.

If "115" is visible on the LINE VOLTAGE selector switch, 95 to 130 volts line voltage must be used. If "230" is visible, 190 to 260 line voltage must be used.

e. Continue with installation.

2-11. POWER CABLE. The instrument is equipped with a detachable 3-wire power cable. Refer to

CAUTION NOTE in Paragraph 2–8, then install cable as follows:

a. Connect the plug (3-socket connector) to ac line receptacle at the rear of the instrument. Check that fuse and voltage settings are correct.

b. Connect the plug (2-blade with round ground pin) to 3-wire (grounded) power outlet.

NOTE

See alternate power cable description in paragraph 2-20.

2-12. Instrument chassis is grounded through the round pin on the plug; if a two-blade outlet must be used, attach a connector adapter (HP Part No. 1251-0048) to the power cable, then connect the short wire from side of the adapter to the ground.

2-13. INSTALLATION AND REMOVAL OF PLUG-ON MODULES

2-14. The 5300 Measuring System must be used with a mating plug-on before any measurements can be made. To mate the 5300 Measuring System with a plug-on, use Figure 2-1, Steps A and B, and proceed as follows:

a. Disconnect ac power and set the plug-on (on its feet) on a flat surface with the front-panel facing you.

b. Turn the 5300 right-side up with front panel facing you (ON-OFF-SAMPLE RATE on left side) and slide the side-casting latches all the way to the rear of the unit. The latch handles must be pressed gently away from the center of the unit to "unlock" them before sliding them rearward.

c. With latch handles fully extended rearward, mate the 5300 to the plug-on by placing the 5300 on top of the plug-on.

d. With the latches fully extended rearward and the 5300 properly positioned on the plug-on, an equal space should be visible (about 1/8-inch wide) where castings meet.

CAUTION

In the following step, DO NOT force latches forward; if difficulty is encountered, check latches and castings for obstructions.

e. Press down gently on top of 5300 casting and push the left and right latches forward. Castings will be brought together. f. Check the position of the latches to ensure that castings are properly mated and latched. When properly latched, latches should not protrude past rear-edge of casting and there should be a paper-thin space between plug-on and 5300.

g. To separate the 5300 from the plug-on, pull the two-side casting latches fully rearward, (again it is necessary to press the latch handles gently away from the center of the instrument to unlock them).

h. When latches are fully extended rearward, the 5300 and plug-on castings should be separated by about 1/8-inch.

i. Lift 5300 gently away from plug-on.

2-15. PORTABLE OPERATION

2-16. The HP Model 5310A Battery Pack enables the Measuring System to be used in areas removed from ac power sources. The Battery Pack provides up to 8 hours portable operating time before recharging. Tables 1-2 and 1-4 list the HP 5310A Battery Pack as an available accessory. Documentation is also included in Section IV through VIII of this manual.

2-17. To prepare the 5300 for portable operation, turn POWER to OFF (full ccw), disconnect ac power cord, refer to Figure 2-2 and proceed as follows:

a. Set the plug-on, on its feet, on a flat surface with the front-panel facing you.

b. Turn the 5310A Battery Pack right-side up (LOW BATTERY LAMP on the left) with front-panel facing you and slide the side-casting latches all the way to the rear of the unit. The latch handles must be pressed gently away from the center of the unit to "unlock" them before sliding them rearward.

c. With the latches extended rearward, mate the plug-on to the 5310A Battery Pack by placing the 5310A on top of the plug-on.

d. With the 5310A properly positioned on the plug-on and the latches fully extended rearward, an equal space should be visible (about 1/8-inch wide) where castings meet.

e. Press down gently on top of the 5310A and push the left and right latches forward. Castings will be brought together (see CAUTION in Paragraph 2-14).

f. Check the position of the latches to ensure that castings are properly mated and latched. When properly latched, latches should not protrude past rear-edge of casting and there should be a paper-thin space between plug-on and 5310A Battery Pack.

Figure 2-2. Preparing for Portable Operation

g. Turn the 5300 right-side up with front-panel facing you and slide the side-casting latches all the way to the rear of the unit. The latch handles must be pressed gently away from the center of the unit to "unlock" them before sliding them rearward.

h. With latch handles fully extended rearward, mate the 5300 to the Battery Pack by placing the 5300 on top of the Battery Pack.

i. With the latches fully extended rearward and the 5300A properly positioned on the 5310A Battery Pack, an equal space should be visible (about 1/8-inch wide) where castings meet.

j. Press down gently on top of 5300 casting and push the left and right latches forward; castings will be brought together (see CAUTION in Paragraph 2-14).

k. Check the position of the latches to ensure that castings are properly mated and latched. When properly latched, latches should not protrude past rear-edge of casting and there should be a paper-thin space between 5310A Battery Pack and 5300.

l. When the selected plug-on, the 5310A Battery Pack and the 5300 Measuring System are interconnected and securely latched, perform the checkout procedure as follows:

- 1. Set 5310A BATTERY-LINE-CHARGE switch to BATTERY.
- 2. Turn 5300 power on and ensure that 5310A BATTERY LOW lamp is OFF.
- 3. If BATTERY LOW lamp is on, turn 5300 power off, connect ac power to 5300 and set 5310A BATTERY switch to CHARGE for 18 hours minimum. (See Section V, Paragraph 5-60.)

CAUTION

Maximum recharge time is 24 hours. Batteries may be damaged by heat if time limit is exceeded.

- 4. If unit failes to operate, check interconnection of 5300, 5310A, and plug-on in use (if problem persists, refer to Section V, MAINTEN-ANCE.
- 5. Refer to Section IX for the plug-on module used and perform the performance check procedures for that plug-on.

m. To separate the 5300, 5310A, and plug-on, pull the two side-casting latches on the 5300 fully rearward, (again it is necessary to press the latch handles gently away from the center of the unit to "unlock" them).

n. When latches are fully extended rearward, the 5300 and 5310A castings should be separated by about 1/8-inch.

o. Lift the 5300 gently way from the 5310A.

p. To separate the 5310A Battery Pack from the plug-on, repeat steps m, n, and o.

2-18. MAINTENANCE

2-19. All Maintenance information is contained in Section V.

2-20. ALTERNATE POWER CABLES

2-21. To accommodate the different power receptacles used throughout the world, this instrument is supplied with one of the power cables shown in Figure 2-3. The cable supplied for use in the United States meets the specifications established by the International Electrotechnical Commission (IEC). The male connector of this cable is a NEMA type and the female connector is a C.E.E. type.

SECTION III

OPERATION

3-1. INTRODUCTION

3-2. Operation of the 5300B is simplified through the use of only one multiple-function control. By itself, the 5300B is not useable for measurements, therefore refer to the pertinent operating information for the associated plug-on in Section IX.

3-3. ACCURACY

3-4. The basic measuring accuracy is determined by

the plug-on module in use. Refer to Section IX for more information on specific plug-on accuracy.

3-5. FRONT PANEL

3-6. The 5300B front panel (Figure 3-1) contains the SAMPLE RATE control, which incorporates the power on-off (PWR OFF) function, the display-hold (HOLD) function, the LED display digit segments test, and the manual reset function. The eight-digit display and the display annunciators occupy the reminder of the front panel.

3-7. REAR PANEL

3-8. The rear panel (Figure 3-2) contains the ac input power connector, the fuse, the external oscillator jack, and the oscillator frequency adjustment.

3-9. INT-EXT Switch. The INT-EXT switch located near the power transformer allows the use of an external 10 MHz frequency source instead of the internal oscillator.

3-10. 5300B OPERATING PROCEDURES

3-11. The operating procedures for the 5300 Measuring System and its plug-ons are located in the documentation supplied for the respective plug-on in Section IX. For example, the operating information for HP Model 5301A 10 MHz Counter is Section IXA. The operating information for the HP Model 5302A 50 MHz Universal Counter is Section IXB.

3-12. 5310A OPERATING PROCEDURES

3-13. Refer to paragraph 2-15 for 5310A Battery Pack installation and operating instructions.

- 1. **Fuse.** Use a Listed 0.3 Amp slow-blow fuse for 115 Vac or a Listed 0.15 Amp slow-blow fuse for 230 Vac.
- 2. Ac Power Connector. Connect the source of ac power to the rear-panel ac power connector.
- 3. **OSC Jack.** When INT-EXT switch located near the power transformer is in INT, the instrument uses its internal 10 MHz Oscillator, and a 10 MHz signal, 1V rms into 100 ohms,

is available at the BNC jack. When the switch is in EXT, the internal oscillator is disabled and an external 1 MHz to 10 MHz, 1V rms into 500 ohms frequency source can be used.

4. **OSC ADJ.** Adjust internal 10 MHz oscillator frequency. (With Option 001 Units, the adjustment is inside the instrument.) Refer to the adjustments in Section V for procedures.

Figure 3-2. Rear Panel Connectors

SECTION IV THEORY OF OPERATION

4-1. INTRODUCTION

4-2. This section describes the theory of circuit operation from an overall viewpoint, then describes, in detail, the operation of the separate circuits. Each of the large-scale integrated circuits are described, and separate block diagrams are included to clarify their operation.

4-3. OVERALL CIRCUIT OPERATION

4-4. Figure 4-1 is an overall block diagram of the Measuring System and a typical plug-on (5301A Plug-On). The Measuring System mainframe contains the major counting, timing, and display circuitry that is the basis of all measurements made with a mainframe/plug-on combination.

4-5. The functional modules of the mainframe are shown in the simplified block diagram of Figure 4-1. These are:

- a. Display an eight-digit strobed solid-state LED display with required decoding and driving circuits.
- b. Counter six-digit 10 MHz counting and storage register in one integrated circuit, and a separate decade counter, storage latch, and associated multiplexing circuits.
- c. Data Control Read-Only-Memory (ROM) (A1U5)
 controls data multiplexing from the counters to the display.
- d. Time Base (A1U2) an eight-decade 10 MHz, automatic time-base divider.
- e. Control (A1U9) provide the basic control functions and gating for counting and timing measurement cycles, including auto-ranging, transfer, reset, and sample rate control.
- f. Time Base Reference Oscillator 10 MHz crystal-controlled oscillator which provides the basic frequency and time references for the system.
- g. Power Supply provides regulated voltages to the mainframe and all plug-on modules and charging power to the optional battery pack module. Power supply input can be 115 Vac or 230 Vac line voltage or dc power from the battery pack.

4-6. These functional blocks of the mainframe may be interconnected in several ways to provide different measurement capabilities. A typical system interconnected for frequency measurement is shown in the block diagram, Figure 4-1. The major signal and control lines are all routed through the plug-on connector, to the plug-on module, which determines measurement function as well as providing the input signal interfaces.

4-7. The four-wire data bus carries the system data between modules in a binary-coded-decimal, digit-serial format. Data can flow from the decade counters to the display and to the plug-on module, or from the plug-on module to the display. The transfer of data to the display is controlled by a 3-bit binary code (Digit Address) which is generated by the display scan circuits. A 3-bit code (Digit Select) controls the data output from the counter. With most plug-on modules the displayed information is the stored contents of the counter (A1U1, U3, and U6). In these modules, the digit address lines are wired directly to the digit select lines within the modules. If an HP 5306 Multimeter Counter is used with the mainframe (in any mode except the frequency mode), the Data Control Read-Only-Memory (ROM) alters the digit select code so that the least significant decade counter/latch (A1U3, A1U6) is not used. This forces a six-digit display, which is the maximum display possible using the multimeter/counter in the stated operating modes.

4-8. The A1U2 time base is also programmed by a 3-bit time base code which can select any time base division factor in powers of 10, from 10^1 to 10^8 . The time base output may also be selected automatically over the same range. In the auto-ranging mode the range is indicated by the number of exponent pulses generated by the time base and the control module. These pulses are counted, stored, and decoded by an exponent register in the plugon module, which then provides the drive to the appropriate decimal point and units indicators in the mainframe.

4-9. The input signals to the counter and the time base are routed through the control circuit. For a typical frequency measurement, as shown in the block diagram, the F1 input to the counter is derived from the input amplifier of the plug-on module; and the time base input F2 is the reference frequency from the crystal oscillator. In a period average measurement, which is the reciprocal of frequency, these signals are reversed. In addition to the F2 input, a 1 MHz input to the time base is provided which bypasses the first time base decade and the control module and allows auto-ranging down to a single cycle of the input signal.

4-10. DETAILED CIRCUIT OPERATION

4-11. The following paragraphs describe detailed operation of each of the functional circuit segments in the mainframe.

Models 5300B and 5310A Theory of Operation

4-12. Eight-Digit Display

4-13. The display is an 8-digit, scanned, LED display. Each digit is formed from seven diode segments, which emit red light when forward current passes through the diodes.

4-14. In operation, the scan oscillator (three inverters in integrated circuit A1U12) generates a scan rate signal with a frequency of approximately 8 kHz. This signal is counted by 4-bit counter A1U8. The three most significant output bits of A1U8 (Digit Address X, Y, and Z) are decoded into eight separate drive lines by A1U7 decoder. Each drive line enables one of the eight display digits. With an 8 kHz scan oscillator frequency, the complete display is scanned, one digit after another, in approximately two milliseconds.

4-15. The Digit Address X, Y, and Z lines are also sent to the accessory measurement plug-on and return to the mainframe as the Digit Select X, Y, and Z lines. After modification by A1U5 Data Control ROM (see following paragraphs for detailed operation), these lines control the multiplexing of data onto the data bus, the Data A,B,C, and D lines. The BCD-to-Seven Segment Decoder A1U14 converts the BCD data from the counters to the seven-segment code necessary to drive the display. Data is supplied to all eight display digits at once, but the outputs of A1U7 decoder enable only the single display position that corresponds to the four bits of data on the data lines at a given time.

4-16. The decimal point multiplexer, A1U13, accepts inputs from each decimal point drive line, from the MGFF signal line (which is used to light the front-panel "C" annunciator), and from the counter overflow line. The multiplexer output drives all the decimal points and the C (gate) lamp simultaneously, but each indicator is enabled separately at the time that the corresponding display digit is enabled. For example, if the DP2 (decimal point 2) drive line from the plug-on is low, the A1U13 multiplexer output will go low at digit address code 2 (L H L for DA Z, Y, and X lines, respectively). At the same time, A1U7 decoder enables display digit DS6 via A1Q7. Although all decimal points are driven together by the single multiplexer output line, only decimal point 2 (associated with display digit DS6) is enabled at this time in the scan cycle.

4-17. When an HP 5306 Multimeter/Counter measures negative dc voltages, the data code for a minus sign (H H L L for Data D, C, B, and A respectively) appears on the data lines when the digit address code is five (H L H on the DA Z, Y, and X lines, respectively). The minus sign detector (A1U15 A, B, and C) detects the code for a minus sign and, via transistor A1Q15, pulls pin 14 of A1U14 low. This places a minus sign (segment g illuminated) in the third most significant display position, DS3.

4-18. Counter

4-19. The counter consists of A1U1 hex-decade counter circuit, A1U6 single decade counter, A1U3 latch, and A1U10B which functions as a multiplexer.

CAUTION

The A1U1 counter is a large-scale MOS integrated circuit. Its inputs are susceptible to damage by high voltages (+5.6 volts) and static charges. Particular care should be exercised when servicing this circuit or handling it under conditions where static charges can build up.

4-20. The A1U1 counter consists of six decadecounting elements, an overflow register, a 25-bit latch, and output multiplexing circuits. Figure 4-2 is a basic block diagram of A1U1. The counter can accumulate and store up to 1 million pulses at its input. The input triggers on the positive-going edge of the input pulse, which is derived from the control circuit, A1U9. The A1U9 input signal is the F1 signal from the plug-on. The TRANSFER input at A1U1(4) transfers data from the decade counters to the latch circuits when the TRANSFER line is low. When the TRANSFER line is high, data is stored in the latch circuits. The RESET input at pin 11 resets the decades when the RESET signal is high. One million or more input counts into the counter sets the overflow register, which causes the OVERFLOW output at pin 7 to go high following a TRANSFER signal.

4-21. The counter output is available one-digit at a time as a four-bit, binary-coded-decimal signal (logical 1 is high). The digit selected at the output is determined by the binary-coded X, Y, and Z lines at pins 8, 9, and 10. Binary 0 (all low) selects the least significant decade. Binary 5 selects the most significant decade in the register. A code of binary 6 or 7 will set all outputs high which allows other data from the plug-on or from highspeed decade A1U6 to be inserted in place of the counter data. If no other data is presented, the display remains blank. When a count of 90,000 has been registered in the counter (decades 0 to 4), the output labelled "9" goes low. This signal is used during auto-ranging, to register a reading of 9% or greater of full scale.

4-22. The high-speed decade counter, A1U6, normally divides the measured signal before the signal is applied to A1U1 counter circuit. An exception is when the measurement plug-on is an HP 5306 Multimeter/Counter operating in certain modes. See the following paragraphs for information about how the ROM outputs control the counter address lines and the A1U3 latch control lines.

Figure 4-2. A1U1 6-Decade Counter Block Diagram

4-23. Data Control ROM

4-24. The data control ROM, A1U5, performs three basic functions: (1) alters the digit select codes from a measurement plug-on, and therefore, controls the multiplexing of data from the counter circuits to the display circuits, (2) supplies control signals to A1U3 latch and A1U10B multiplexer, and (3) generates a minus sign control signal when a 5306 Multimeter/Counter is used to measure negative dc voltages. The following paragraphs and Tables 4-1, 4-2, 4-3, and 4-4 describe each of these functions.

4-25. The digit select code from the plug-on supplies three of the five A1U5 ROM address bits (inputs D, C, and B). With all plug-ons except the 5306 Multimeter/Counter, address bit A is high, and address bit E is high except when the digit address code is five. Under these operating conditions, the ROM decrements the digit select code by one and supplies the resulting X, Y and Z code (outputs Y2, Y3, and Y6, respectively) to the data counter address inputs. ROM output Y7 enables the outputs of latch A1U3 when the digit select code is zero except when a 5306 is used to measure ohms or volts. The X, Y, and Z ROM outputs supply a code of seven at this time, which causes all data outputs of A1U1 hex-decade counter to be high, and allows the A1U3 latch outputs to control the data bus. When the digit select code increments to one, the X, Y, and Z ROM outputs supply a code of zero to the hex-decade counter, and the Y7 ROM output disables the A1U3 latch outputs. The next five digit select codes multiplex data from the hex-decade counter to the display circuits.

4-26. If a 5306 Multimeter/Counter is used in ohms or volts modes, the ROM does not decrement the digit select code by one. The presence of a 5306 is detected by the ROM because the 5306 is the only plug-on that supplies a digit select code of six or seven to the mainframe when the digit address code to the plug-on is five. When this occurs, the A input line to the ROM goes low, and, consequently, a new set of ROM locations are addressed. Tables 4-1 through 4-4 will clarify operation for any given plug-on or operating circumstances.

4-27. Time Base

CAUTION

The time base is a large-scale MOS integrated circuit. Its inputs are susceptible to damage by high voltages and static charges. Particular care should be exercised when servicing this circuit or handling it under conditions where static charges can build up.

				iħ	IPUTS			OUTPUTS								
PI	N #	14	13	12	11	10	15	9	7	6	5	4	3	2	1	
LABEL		E	D	c	B	A	Enable	¥8	¥7	¥6	¥5	¥4	¥3	¥2	¥1	
FUNC	TION	DIG 5	DS X	DSY	DS Z	5306	Reset	5306	LE	z	U6	· U6	Y	X	Minus	
	0	L	L	L	L	L	L	L	Н	L	L	Н	L.	L	ΓL	
		L		L	L.	H	L	H	Le	H	Н	L	H	H	Н	
	2	L	L	L	н	1.	L	L	Н	Н	L	H	Ĺ	L	L	
	3	L	1,	L	Н	н	L	Н	H	L	н	L.	н	Н	l H	
	4	L	L.	H	L	L.	L	L	Н	L	L	H	Н	L	L	
	5	L	L	Н	L	H	L	Н	H	L	В	L	L.	Н	H	
	6	L	.1	Н	Н	1	L	L	Н	H	L	н	H	L	Н	
	7	L	L	Н	н	H	L	L	H	н	H	L	L.	Н	Н	
	8	L	H	L	L	1.	L	L	H	L.	L	H	L	н	L	
	9	L	H	L	L.	H	L.	н	H	L	н	L	L	L	н	
	10	L	H	L	Н	L	L	L	Н	H	L	н	L	H	L	
	11	L	H	L	Н	H	L	H	H	H	H	Ŀ	L	L,	H	
	12	L	H	H	L	L,	L	<u>، ا</u>	H	L	L	н	Н	H	L	
W	13	L	Н	н	L	H	L	H	H	Ĺ	Н	L	H	L	н	
o	14	L	H	H	Н	L	L	L	Н	Н	L	H	н	н	Н	
	15	<u> </u>	н	H	н	H	L	L,	H	H	н	L	Н	L	H	
R	16	Н	L	L	L	L	L	L	Н	L	L	Н	L	L	L	
D	17	H	L	L	L	H	Ŀ	H	L	H	H	L.	H	H	н	
	18	Н	L	L	H	L.	L	L	Н	H	L	H	L	L	L	
	19	H		L	H	H	L	Н	H		н	L	H	H	H	
	20	H	L.	H	ا .	J.	L	L	H	L.	L	H	Н	L	L	
	21	H	L	H	L	H	L	H	H		H	L	L	н	H	
	22	H	L	H	H	L	1.	L	H	H	L	H	H	L	L	
	23	H	L	H .	H	H	Ŀ	H	H	H H	H	L	L	н	H	
	24	H	H H	1.	1.	L.	L	L	H	L	L	H	L	H	L	
	25	EI	H	L	L.	H	L	H	н	L	H	L	L	L	H	
	26	H	H	L.	H	L	l.	L	H	H	L	H	L	Н	L	
	27	H	H	L	H	H	L	H	11	H	H	L	L	L	Н	
	28	H	H	H	J. Strengt store	[, tr	L	L	H	L	L	H	H	H	L	
	29	H	H	H	E.	H	te de la com	H	H		H	L	H	L	H	
	30	Н	H	H	H	I.	L .	L	H	H	L	H	Н	H	.l	
	31	H	H	H	H	H	L	H	Н	H	H	L	Н	L	Н	
	ALL	X	Х	X	X	Х	H	н	н	H	H	Н	н	H	H	

Table 4-1. A1U5 Data Control ROM Listing

NOTE: Nonshaded ROM Words are used only with 5306 in voltage or resistance measurement modes.

SIGNAL FUNCTIONS AND CONDITIONS:

INPUT A.	High during normal operation, low when 5306 plug-on is used (except frequency mode). Controlled by Y8 output.
INPUT B, C, and D.	Driven by Digit Select Z, Y, and X, respectively (from plug-on).
INPUT E.	High during digit address zero through four and six and seven; low during digit address five.
ENABLE INPUT.	Normally low; goes high briefly during reset cycle (while digit 5 is displayed) and sets all ROM outputs high.
OUTPUT Y1.	Y1 stays high with most plug-on units. With the 5306 in any mode except FREQ Y1 is normally low, and it goes high only at Digit Address 5. The high at Digit Address 5 enables the minus sign to be displayed.
OUTPUT Y2, Y3, and Y6.	Supplies X, Y, and Z address lines, respectively, to data counter address inputs.
OUTPUT Y4 and Y5.	Control multiplexer A1U10B. Normally Y4 is low, Y5 is high and measured signal is first counted in A1U6 decade counter. The output of A1U6 is applied to A1U1 hex-decade counter. When 5306 is used in any mode except frequency, Y4 is high, Y5 is low and A1U10B multiplexer routes measured signal directly to A1U1 hex-decade counter (Y4 = Y5).
OUTPUT Y7.	Goes low at digit select code zero (except when 5306 is used in volts or ohms modes) to allow output of A1U3 latch to be placed on data lines.
OUTPUT Y8.	Drives address input A. Normally high, but goes low when 5306 is used in any mode except frequency.

Table 4-2. ROM Sequences for 5301A, 5302A, 5304A, 5306A (Frequency Measurements),	
and 5307A Plug-Ons	

				OUTPUTS												
PIN #		14	13	12	11	10	15	9	7	6	5	4	3	2	1	ENABLE
		E	D	C	B	A	Enable	¥8	¥7	¥6	Y5	¥4	Y3	¥2	Y1	DISPLAY
FUNC	TION	DIG 5	DS X	DSY	DS Z	5306	Reset	5306	LE	Z	U6	Ū6	Y	X	Minus	DIGIT
	17	H	L	L	L	Н	L	н	L	н	н	L	н	Н	н	0 (LSD)
₩	25	Н	н	L	L	Н	L	Н	н	L	Н	L	L	L	н	1
ο	21	н	L	н	r L	H	L	Н	н	L	H	L	L	н	Н	2
Ū.	29	Н	н	Н	L	Н	L	Н	H	L	н	L	Н	L	н	3
R	19	н	L	L	H	Н	L	Н	Н	L	Н	L	Н	н	н	4
D	11	L	Н	L	Н	Н	L	Н	Н	н	Н	L	L	L	H	5
-	23	Н	L	Н	H	H	L	Н	Н	н	Н	L	L	Н	н	6
	31	H	Н	н	H	H	L	Н	Н	н	Н	L	Н	L	Н	7 (MSD)
	D 2) The	inary dig	it select ed decad	the dig code cor le in the	it select responds	code fro directly	m the plug to the digi (6) always s	-on is the t being d	same isplayed	as the d l.	igit add	ress cod	e sent te	the plu	ug-on. Tł	ierefore,

		Ļ		11	IPUTS				OUTPUTS							
Pin	1 #	14	13	12	11	10	15	9	7	7 6	5	4	3	3 2 1 Y3 Y2 Y1		ENABLED
LAE	EL	E	Q	c	B	A	Enable	¥8	¥7	Y6	Y5	Y4	¥3			DISPLAY
FUNC	TION	DIG 5	DS X	DS Y	DS Z	5306	Reset	5306	LE	z	U6	Ū6	Y	x	Minus	DIGIT
	31	Н	H	H	н	Н	L	н	н	Н	н	L	н	L	Н	0 (LSD)
w	17	Н	L	L	L	Н	L	Н	L	Н	Н	L	н	н	н	1
	25	н	н	L	L	Н	L	н	Н	L	н	L	L	L	Н	2
0	21	Н	L	Н	L	Н	L	н	Н	L	Н	L	L	н	Н	3
R	29	н	Н	н	L	H	L	H	н	L	Н	L	Н	L	Н	4
_	3	L	L	L	н	Н	L	Н	н	L	н	L	н	н	Н	5
D	27	Н	н	L	н	Н	I.,	н	Н	н	н	L	L	L	н	6
	23	Н	L	Н	н	Н	L	н	Н	н	н	L	L	н	Н	7 (MSD)

NOTES: 1) These plug-ons subtract one from the digit address code and supply the resulting digit select code to the mainframe. The ROM subtracts one more unit from the digit select code and uses the resulting binary code (X, Y, and Z) to address the decade data counters. This allows one decimal display digit to be supplied from the plug-on (displayed in display digit θ), the high-speed mainframe decade (A1U6) to be displayed in display digit 1, and the six-decade counter (A1U1) to be displayed in display digits 2 through 7.

Table 4-4. ROM Sequence for 5306A Plug-On (Volt and Ohm Measurements)

				IN	PUTS		'				OUTF	UTS				
Pił	d #	14	13	12	11	10	15	9	7	6	5	4	3	2	1	ENABLEE
LAE	BEL	E	D	С	₿	A	Enable	¥8	¥7	¥6	¥5	¥4	¥3	¥2	¥1	DISPLAY
FUNC	TION	DIG 5	DS X	DSY	DS Z	5306	Reset	5306	ΤĒ	Z	U6	Ũ6	Y	X	Minus	DIGIT
	16	Н	L	L	L	L	L	L	н	L	L	н	L	L	L	0 (LSD)
w	24	Н	Н	L	L	L	L	L	Н	L	L	н	L	н	L	1
	20	н	L	H	L	L	L	L	н	L	L	Н	Н	L	L	2
0	28	Н	н	Н	L	L	L	L	н	L	L	н	н	н	L	3
R	18	Н	L	L	Н	L	L	L	н	н	L	Н	L	L	L	4
~	14	L	Н	Н	Н	L	L	L	Н	н	L	Н	Н	Н	н	5
D	22	Н	L	Н	Н	L	·L	L	н	н	L	н	Н	L	L	6
	30	Н	н	н	Н	L	L	L	н	н	L	Н	Н	н	L	7 (MSD)
											A		••••••••••••••••••••••••••••••••••••••		l	/
A)		-				r	JTTON IS	·····		τ. Ι	r.	н	Ť.	н		
A]	24	н	Н	L	L	L	L	L	Н	L T.		H	L	H		0 (LSD)
A) 	24 20	H H	H L	L H	L L	L L	L L	L L	H H	L	L	Н	Н	L	L	0 (LSD) 1
	24	н	H L H	L	L L L	L L L		L L L	H H H	L L	L L	H H	H H	L H	L L	0 (LSD) 1 2
W	24 20 28 18	H H H	H L	L H H	L L L H	L L L L	L L L L		H H H	L L H	L L L	H H H	H H L	L H L	L L L	0 (LSD) 1 2 3
W	24 20 28	H H H H	H L H L	L H H L	L L L	L L L	L L L L L	L L L	H H H	L L	L L	H H	H H	L H	L L L L	0 (LSD) 1 2 3 4
w	24 20 28 18 26	H H H H	H L H L H	L H L L	L L L H H	L L L L L	L L L L	L L L L	H H H H	L L H H	L L L L	H H H H	H H L L	L H L H	L L L	0 (LSD) 1 2 3

ABOVE SEQUENCE OCCURS WHEN "FAST" BUTTON IS NOT DEPRESSED

NOTES: 1) With these operating conditions, the ROM X, Y, and Z outputs are the same as the digit select code from the plug-on.

2) The ROM detects a 5306 plug-on in these operating modes, because the plug-on responds to a digit address code of 5 (A1U5, pin 14 goes low at this time) with a returned digit select code of binary 6 or 7. This causes output Y8 (A1U5, pin 9) to go low and latches the ROM into the sequences shown above.

Figure 4-3. A1U2 Time Base Block Diagram

4-28. The A1U2 Time Base is a large scale integrated circuit containing eight decade-divider elements. Figure 4-3 shows a basic block diagram. It accepts a maximum input frequency of 10 MHz which gives an output of one pulse every 10 seconds from the last decade-divider. The outputs of all decade dividers are multiplexed into a single time-base output line at A1U2(11). The number of stages used to divide the input signal is determined by a 3-bit binary-coded select code (pins 7, 8, and 9). Division factors of 10¹ through 10⁸ can be selected. The first decade stage may be bypassed by a second input whose maximum frequency is 1 MHz. This input can be divided by scaling factors of 1 through 107. The precision timing and auto-ranging required for frequency and period average measurements is provided by the LOG output at pin 1. During the first 10 seconds of a frequency measurement following reset this output provides only 9 pulses. The first pulse triggers the gate opening at time 0, thereafter pulses are obtained at 1, 10, and $100 \mu sec$, 1, 10, and 100 msec, 1 sec, and 10 sec. During auto-ranging,

one of these pulses is automatically selected to trigger the gate closing. After the measurement is in progress, each pulse is precisely referenced to the Start Pulse at time 0, which enables the Stop Pulse to be selected. The time base can be cleared to zero by a positive reset pulse at pin 14.

TIME BASE CODE/U2

GATE TIME	ТВС	TBB	ТВА
$1 \mu s$	0	0	0
$10 \ \mu s$	0	0	1
$.1 \mathrm{ms}$	0	1	0
1 ms	0	1	
10 ms	1	0	Ō
.1 S	1	0	1
$1 \mathrm{S}$	1	1	Ô
$10 \mathrm{S}$	1	1	1
		-	-4.

Figure 4-4. A1U9 Control Block Diagram

4-29. A1U9 Control

4-30. The signal gating and measurement cycle control for the measuring system is provided by A1U9 Control integrated circuit. Figure 4-4 shows a basic block diagram. The functions provided are: gating of signals to the counter and time base, sample rate control, and provision for RESET and TRANSFER signals.

4-31. The F1 and F2 inputs are shaped by Schmitt-

triggers and then gated to pins 5 and 20 as the TIME BASE INPUT and COUNTER INPUT signals. To maintain optimum drive to the MOS circuits, these outputs are not routed through the plug-on. During reset, F1 remains at a high state until the opening of the gates.

NOTE

Particular care should be taken during servicing to avoid excessive capacitive loading of these outputs with probes.

4-32. The Main Gate flip-flop controls gating of the counted signals. The flip-flop can be set or reset by low signals at the \overrightarrow{OPEN} (pin 16) or \overrightarrow{CLOSE} (pin 15) inputs, or can be triggered by a positive-going edge at the \overrightarrow{LOG} input (pin 14) which comes from the time base. Following reset, the first \overrightarrow{LOG} input pulse opens the gate. Subsequent \overrightarrow{LOG} inputs will not affect the flip-flop until the D input is driven from an enabling flip-flop which is set by the low signal at either the "9" input or the \overrightarrow{MAX} TIME input. Setting this flip-flop enables the next \overrightarrow{LOG} pulse to close the Main Gate and terminate the measurement.

4-33. During manual operation, the $\overline{\text{MAX TIME}}$ signal enables the closing of the gate at the predetermined gate time. During automatic operation after the counter has reached 9% of full scale, the "9" input enables the closing of the gate on the following $\overline{\text{LOG}}$ pulse, which always occurs before 90% full scale is reached. The number of $\overline{\text{LOG}}$ pulses occurring while the main gate is open appears at the $\overline{\text{EXP}}$ output (pin 12). This number of pulses indicates the number of ranges through which the time base has automatically stepped and is used to determine the correct decimal point and units indication.

4-34. As soon as the main gate closes, a Transfer flipflop triggers to provide a low output to transfer data from the counter to the display. The display cycle is initiated by the rising edge at the MAX TIME input which triggers the Sample Rate M.V. The sample rate capacitor begins charging through the front-panel SAMPLE RATE control. At a point approximately halfway up the charging curve, the TRANSFER signal is removed. When the peak charging voltage is reached, the Reset flip-flop triggers, providing a high signal at the RESET output. At this point the discharge of the sample rate capacitor is initiated. The discharge time is a few milliseconds. At a point halfway down the discharge curve, the RESET signal is removed.

4-35. At the beginning of the display cycle, the time base input is gated off by an Inhibit flip-flop. The INHIBIT signal is removed at the end of the capacitor discharge. The time base input is then gated on, beginning a new measurement cycle. An INHIBIT signal is available to the plug-on, providing a low signal during the display cycle. The displayed information may be displayed indefinitely by switching to the HOLD position on the front panel. This opens the charging potentiometer circuits to the sample rate capacitor and prevents the capacitor from charging up. The frontpanel PUSH to RESET switch supplies a low MANUAL RESET signal to clear the display.

4-36. Time Base Reference Oscillator

4-37. Gate A1U4B, crystal A1Y1, and associated components operate as a 10 MHz oscillator. Minor frequency adjustments are made by adjusting capacitor

A1C10 and A1C11. The oscillator output passes through buffer gate A1U4A, whose complementary outputs drive differential transistor pair A1Q10 and A1Q11. The differential pair converts the ECL logic levels of the oscillator to levels suitable to drive following TTL circuits; the duty cycle of the resulting signal is set by resistor A1R25. After being buffered by the inverters within A1U11, the 10 MHz signal is supplied to the rearpanel OSC connector and to A1J1, the plug-on attaching connector. An external oscillator signal may be connected to the rear-panel connector, and after being buffered by A1U11 it is applied, in place of the internal oscillator, to the plug-on.

4-38. Power Supply

4-39. The power supply is a small, high efficiency power converter capable of supplying the necessary output voltages for the analog circuits, Light-Emitting-Diode (LED) Display, and digital circuits (see Figure 4-5). The unit will operate from 115 Vac or 230 Vac, 50 to 400 Hz or from an accessory battery pack, such as the HP 5310A, which has nominal output voltage of 12V.

4-40. Input power, 115 Vac or 230 Vac, is stepped down by T1 and rectified by bridge rectifiers A1CR1, CR5, CR6, and CR7. Capacitor A1C5 protects these rectifiers from high voltage transients in T1, and A1R8 prevents A1C5 from charging to an excessively high voltage. The dc output voltage from the bridge rectifiers is nominally +22 volts, when fully loaded by the mainframe dc-to-ac converter and the battery pack under CHARGE conditions.

4-41. The dc-to-ac converter is a blocking oscillator converter using a single switching transistor, A1Q17, with the dc input voltage available across A1C6. Resistor A1R35 supplies initial start current into the base of A1Q17 to start oscillations. Diode A1CR9 allows base current to flow to A1Q17 during normal operation with capacitor A1C23 as an ac bypass. Printed circuit wiring is such that no drive voltage is applied to A1Q17 if A2 Regulator Assembly is removed from its socket. During normal operation A1Q17 alternately switches on into saturation and then off. With A1Q17 "on", an increasing current flows through A1T1 and the primary of A1T2.

4-42. The polarity of the rectifiers on the secondary of A1T2 is such that when A1Q17 is turned on, they do not conduct. Thus, the dc input voltage sees only the primary inductances of A1T1 and A1T2. A1T1 is a small current transformer and drops very little voltage across primary pins 1 and 3. A1Q17 collector current builds up linearly when it is turned on. The impedance of A1T1 is such that about 1/15th the A1Q17 collector current flows into the base of A1Q17. This is sufficient to keep it in saturation. After a period of time, designated time T1 and controlled by the rest of the circuit (Figures 4-5 and 4-6), A1Q17 switches off. The magnetic energy stored in

Figure 4-5. Power Supply Block Diagram

the core of A1T2 transfers into the secondaries and current flows through each of the rectifiers, A1CR2, 3, 4, 11, and 12, until the magnetic flux in the core of A1T2 is zero. This defines the end of time T2. Time T1 is the time A1Q17 is turned on and time T2 is the time A1Q17 is turned off. During time T1, energy builds up in the core of transformer A1T2. Time T2 is determined by the amount of time it takes the flux in transformer A1T2 to reach zero and is a function of the transformer and load only.

4-43. Time T1 is varied by the regulating circuit to provide the proper amount of energy storage so that secondary voltages are regulated at their proper value. The secondary voltages are all held in fixed ratios with respect to one another and are determined by the turns ratios of the secondary windings. The +5V is compared to a reference voltage on regulator board A2 and regulated to $+5V \pm .1$ volts. This regulates the other voltages to their correct values. The -15V bias for the MOS circuits is provided by resistor A1R34 and zener diode A1CR8. Diodes A2CR5, 6, 7, and 8 provide overvoltage protection for the +5-volt, -5-volt, +17-volt, and -17-volt lines, respectively.

4-44. The regulation circuit must generate time T1 to properly regulate output voltages, and it must sense the end of time T2 so that a new cycle may be initiated.

Figure 4-6. Power Supply Waveforms

4-45. A2CR4 generates the reference voltage which is compared with the +5V supply. The comparison takes place in the differential current source A2Q4 and A2Q5. Resistors A2R12, A2R8, and capacitor A2C5 provide a frequency-selective compensation network to ensure fast regulator response and prevent oscillation of the feedback loop. Resistor A2R7 biases zener diode A2CR4 from the +17V supply, and A2R5 supplies a relatively constant current to the differential pair, A2Q4 and A2Q5. Resistor A2R11 helps keep the output voltages constant as the input voltage varies over a wide range. A2C4 and A2R13 provide instantaneous voltage compensation to minimize 120 Hz ripple on the regulated output voltages.

4-46. The collector of A2Q4 supplies a current to unijunction transistor A2Q3 and capacitor A2C2. This current varies depending on the difference between the regulated +5V and the reference voltage from A2CR4.

4-47. A2Q1 is a series-gating transistor for unijunction transistor A2Q3. Its base is driven through resistor A2R4 which goes to the secondary of transformer A1T2. Diode A2CR1 protects the baseemitter junction of A2Q1 from excessive reverse bias. The phasing of the signal from transformer A1T2 to A2Q1 is such that UJT A2Q3 has a voltage from B1 to B2 during the time A1Q17 is turned on (Time T1).

4-48. During time T2, A2C2 cannot charge, since current flows through the diode junction of A2Q3 from the emitter to base 1. During time T1, A2C2 starts to charge at a rate determined by the current from the collector of A2Q4. If the regulated +5V is high, A2Q4 collector current is also high. This causes the charging rate of A2C2 to be relatively high. When the voltage across A2C2 reaches about 12V, A2Q3 fires and generates a 6V, 1-microsecond pulse at base 1 of A2Q3 to terminate time T1. The greater the +5V is, relative to the reference, the faster A2C2 charges and the sooner this pulse occurs. This shortens time T1 which serves to reduce the output voltages and, thus, regulation is achieved. This pulse is coupled through capacitor A2C1 and diode A2CR2 to the base of A2Q2. This turns A2Q2 on and turns A1Q16 on, pulling the A1Q16 collector low. This negative excursion is coupled through capacitor A1C29 which turns the switching transistor Q17 off and ends time T1. As A1Q17 turns off, all secondary voltages of A1T2 reverse. The voltage at A2R2 is in such a direction that A2Q2 is turned on through A2R2, after the initial pulse that was coupled through A2CR2. It is necessary to keep A2Q2 and A1Q16 conducting during the entire period of time T2.

4-49. At the end of time T2, when the flux in the core of transformer A1T2 is zero, the secondary voltages automatically reverse. This voltage again is coupled through A2R2 and turns A2Q2 off, which allows A1Q17 to turn on again, continuing the cycle. Diode A2CR3 prevents excessive reverse bias across the base-emitter junction of A1Q17. To ensure that A2Q3 is definitely off, A2C3 couples a negative spike to its emitter at the beginning of time T1.

4-50. A1J1 CONNECTOR

4-51. Inputs to the measuring system mainframe and programing of its functions are provided from the plugon module through a 50-pin connector (A1J1) in the center of the instrument. The connector signals are as listed in Table 4-5.

4-52. 5310A BATTERY PACK

4-53. The 5310A Battery Pack is an accessory for the 5300 Measuring System. It connects between the 5300 Measuring System mainframe and any of the 5300 series plug-ons. The batteries are sealed Nickel Cadmium tspe which provide about 48-watt hours capacity with a normal output voltage of 12 volts. When the battery pack is locked between the two halves of the system, all connections are made to charge the batteries or supply power to the instrument.

4-54. Typically, a battery use-time greater than four hours-per-charge can be expected, depending on the particular plug-on used. Recharge time for completely discharged batteries is 18 hours. However, to achieve full charge in this time the batteries must be recharged with the mainframe power switch set to PWR OFF. The 5300 mainframe must be plugged into an ac source and the battery pack switch set to CHARGE.

4-55. A light-emitting diode on the battery pack frontpanel glows when batteries are nearing the end of discharge.

4-56. When the batteries are fully charged they should not be left charging while operating the mainframe. For optimum long-term battery life the instrument should not be used for more than 10 minutes after the LOW BATTERY lamp begins to glow.

4-57. The three-position slide switch on the front panel has the following functions:

- a. BATTERY. The instrument gets its power from the internal batteries whether the ac line cord is plugged in or not.
- b. CHARGE. The batteries are being charged when the line cord is plugged in.
- c. LINE. The batteries are charged at a tricklecharge rate. This is the normal position when the batteries are fully charged.

4-58. In either the LINE or CHARGE position, with the line cord plugged in, a power failure switches operation to the battery pack automatically. Battery life will be approximately 10% shorter than it would be if the front-panel switch were in BATTERY position. The three positions of the front-panel switch are used as follows:

a. BATTERY. When instrument is used away from ac line power.

Models 5300B and 5310A Theory of Operation

Table 4-5. A1J1 Signals

1000

5 6 7 8 9 10 11 11 12 13 14	+5 V -5 V -17 V GROUND F1 ''9'' F2 INHIBIT OPEN CLOSE	Circuit operating voltages Ground Signal to be accumulated in the counter after gating by the control circuit. Goes low when the counter reaches 9% full scale. Input signal to the time base gated by the control circuit. High during the measurement cycle, low during the display cycle. Low signal forces the main gate flip-flop to the open position.
2 3 4 5 6 7 8 9 10 11 12 13 14	-17 V GROUND F1 ''9'' F2 INHIBIT OPEN CLOSE	GroundSignal to be accumulated in the counter after gating by the control circuit.Goes low when the counter reaches 9% full scale.Input signal to the time base gated by the control circuit.High during the measurement cycle, low during the display cycle.Low signal forces the main gate flip-flop to the open position.
4 5 6 7 8 9 10 11 11 12 13 14	GROUND F1 	GroundSignal to be accumulated in the counter after gating by the control circuit.Goes low when the counter reaches 9% full scale.Input signal to the time base gated by the control circuit.High during the measurement cycle, low during the display cycle.Low signal forces the main gate flip-flop to the open position.
5 6 7 8 9 10 11 12 13 14	F1 ,' <u>9</u> '' F2 INHIBIT OPEN CLOSE	Signal to be accumulated in the counter after gating by the control circuit.Goes low when the counter reaches 9% full scale.Input signal to the time base gated by the control circuit.High during the measurement cycle, low during the display cycle.Low signal forces the main gate flip-flop to the open position.
6 7 8 9 10 11 12 13 14	''9'' F2 INHIBIT OPEN CLOSE	control circuit.Goes low when the counter reaches 9% full scale.Input signal to the time base gated by the control circuit.High during the measurement cycle, low during the display cycle.Low signal forces the main gate flip-flop to the open position.
7 8 9 10 11 12 13 14	F2 INHIBIT OPEN CLOSE	Input signal to the time base gated by the control circuit. High during the measurement cycle, low during the display cycle. Low signal forces the main gate flip-flop to the open position.
8 9 10 11 12 13 14	INHIBIT OPEN CLOSE	High during the measurement cycle, low during the display cycle. Low signal forces the main gate flip-flop to the open position.
9 10 11 12 13 14	OPEN CLOSE	cycle. Low signal forces the main gate flip-flop to the open position.
10 11 12 13 14	CLOSE	
11 12 13 14		
12 13 14	LA	Low signal forces the main gate flip-flop to the closed position.
13 14	LOG	Logarithmic output pulse train from time base triggers main gate flip-flop on rising edge.
14	MGFF	Main gate flip-flop signal is low when gate is open.
	EXPONENT	Inverted log pulses while main gate is open indicates number of auto-ranging steps.
15	NO CONNECTION	
15	RESET	High signal resets all registers.
16	CLOCK	10 MHz reference signal from crystal oscillator.
17	MAX TIME	Low signal enables closing of the gate on next log pulse. Rising edge initiates display cycle.
18	TIME BASE OUTPUT	Output from the time base decade position selected by the time base select code on pins 22, 23, and 24.
19	PRINT	Low signal provides print command to rear panel connector.
20	TRANSFER	Low signal transfers data to display. High signal stores data.
21	1 MHz TIME BASE INPUT	Input direct from plug-on bypasses control circuit.
22	TIME BASE SELECT A	
23	TIME BASE SELECT B	Time base select code A, B, and C selects the time base division factor of the signal at the time base output at pin 18.
24	TIME BASE SELECT C	division factor of the signal at the time subo output at pin 10.
25	+22 V	Full wave rectified voltage from the power transformer secondary. Provides power to charge the battery pack. If no battery pack is used, pin 25 is connected via the plug-on to pin 50 (DC-IN).
26	+17 V	
27 28 29 30 31	$ \frac{\overline{Hz}}{\overline{M}} \frac{\overline{S}}{\overline{K}} \overline{\mu} $	Pins 27 through 31 provide the drive to the annunciator lights on the front panel. A low signal lights the corresponding indicator.
32	NAANITAT DUOLOG	Low signal from front panel pushbutton switch on rear panel input clears the system to zero.
33	MANUAL RESET	mpar crears are system to zero.

PIN NO.	SIGNAL NAME	DESCRIPTION	
34	DP2	Low signal activates decimal point 2.	
35	RIGHT/LEFT	Code indicating half character which is being addressed. High when right-hand of character is displayed.	
36	DIGIT ADDRESS X \setminus	Digit address code X X 7 from the display grapher	
37	DIGIT SELECT X	Digit address code X, Y, Z from the display scanner indicates a digit being displayed.	
38	DIGIT ADDRESS Y	Digit colort and Y. Y. Z in the company office and a which	
39	DIGIT SELECT Y	Digit select code X, Y, Z is the corresponding code which selects the digit at the output of the counter. If the main-	
40	DIGIT ADDRESS Z	frame counter is displayed directly the corresponding lines	
41	DIGIT SELECT Z	of the digit address code and the digit select code are con- connected together.	
42	DATA "D"		
43	DATA "C"	The data code A, B, C, D represents the digit to be displayed in binary coded decimal form. Data lines can carry the counter output information to the plug-on as well as to the display or can bypass the counter and bring plug-on data to the display.	
44	DATA "B"		
45	DATA ''A'')		
46	DP3	Low signal activates decimal point 3.	
47	$\overline{\mathrm{DP4}}$	Low signal activates decimal point 4.	
48	DP5	Low signal activates decimal point 5.	
49	GROUND	Ground	
50	DC IN	DC power to power supply from battery pack or from 22 volt input power from pin 25.	

Table 4-5. A1J1 Signals (Continued)

- b. CHARGE. When instrument batteries are to be charged, regardless of whether the mainframe is used or not.
- c. LINE. For normal operation from the ac power line.
- 4-59. The 5310A circuitry can be divided into two parts.
 - a. The current regulator for charging the battery.
 - b. The circuit to indicate when the battery voltage is low.

4-60. Transistors A2Q1, A2Q2, and A2Q3 in combination with A2R2, A2R1 perform the function of a current regulator. Unregulated voltage from the 5300 mainframe, which is present whenever the line cord is plugged in, is applied to TOP connector A1P1(25). In the CHARGE position this voltage is applied to the current regulator. Normal voltage is about +22 volts; the battery voltage in CHARGE position is typically +14 volts. The current regulator supplies a constant current of about .3 Ampere, independent of line voltage to the batteries when the switch is in CHARGE position. A2R2 is the current sample resistor. A2CR1 prevents base-toemitter breakdown of A1Q1 due to current flowing out of the battery backwards through A1Q1, when the line power is turned off.

4-61. A trickle-current of about 10 milliamperes is supplied to the battery through A2R4 when the front-

panel switch is set to LINE. Diodes A2CR4, A2CR3, and light-emitting diode DS1, with resistors A2R3, A2R5 and transistor A2Q4, indicate when battery voltage is getting low and nearing the end of discharge. A regulated +5.0 volts from the mainframe is supplied to the emitter of A2Q4. Battery voltage is sent, through A2CR2 and A2CR3, to A2Q4 base. When battery voltage becomes low, A2Q4 turns on through A2R3 and A2CR3. Diode A2CR3 protects A2Q4 from base-to-emitter reverse breakdown when the battery voltage is high.

4-62. When the battery voltage drops below $11\frac{1}{2}$ to 12 volts, A2Q4 turns on. This completes a path for the +5 volts from the mainframe, through A2R5, and the lightemitting diode glows. Normally, this occurs for a few minutes at the beginning of a charge cycle. Fuse F1 is in series with the battery to prevent damage from accidental shorts. A2CR4 allows current to flow from the battery into the mainframe if line power fails. A2C2 is in parallel with the filter capacitor on the unregulated 22V line from the 5300 mainframe. It provides additional filtering for the additional current drawn by the batteries when the battery pack is being used. For longest life it is recommended that the batteries not be continuously overcharged for long periods. Discharging far past the time when the front-panel LOW BATTERY light comes on is also undesirable.

SECTION V

MAINTENANCE

5-1. INTRODUCTION

5-2. This section contains maintenance and service information for Model 5300B Measuring System. Included are adjustment procedures, tests, troubleshooting tables and diagrams to localize, isolate, and locate defective components. Performance check procedures are not included, since a plug-on must be used. These procedures are included with the respective plug-on.

5-3. RECOMMENDED TEST EQUIPMENT

5-4. Test equipment recommended for maintaining, troubleshooting, and servicing the 5300B Measuring System is listed in Table 5-1. Test equipment with equivalent characteristics may be substituted for equipment listed.

5-5. INSTRUMENT ACCESS

5-6. For access to mainframe assembly, separate the 5300B from plug-on used as follows:

a. Turn ac power OFF and disconnect power cord.

b. Pull the two side casting latches fully rearward (it is necessary to press the latch handles gently away from the center of the instrument to unlock them).

c. When latches are fully extended rearward, the 5300B and plug-on castings should be separated by about $\frac{1}{-1000}$ -inch

d. Lift the 5300B gently away from the plug-on.

EQUIPMENT TYPE	CHARACTERISTICS	RECOMMENDED INSTRUMENT
Oscilloscope	50 MHz Band Width 5 mV cm	HP 180A/HP 1801A/HP 1820A
Test Oscillator	Range: 10 Hz to 10 MHz Output: 5V p-p into 50-Ohm	HP 651B
Feed-thru Termination	50-Ohm male to femal BNC connectors	HP 11048B
Pulse Generator	Repetition Rate: 10 Hz to 10 MHz Peak Voltage: 10V into 50-Ohn Pulse Width: 30 nsec to 5 msec Pulse Polarity: + or -	HP 222A
Integrated Circuit Logic State Display	Displays Logic State of 14 & 16 pin Integrated Circuit	HP 10528A
Logic Probe	Indicate logic levels	HP 10525 T
Electronic Counter	.1 Hz to 10 MHz frequency measurements	HP 5245L/M or 5345A
DC Voltmeter	0 to 200 Vdc, 1% accuracy	HP 412A, 5306A
DC Power Supply	0 to 20V at 1.5 AMP	HP 6200B
50-pin Female Connector	50-pin Female blue-ribbon connector	HP Part Number 1251-0101 (CINCH 57-20500-375)
HP Model 10548A Diagnostic Service Kit consisting of:		
Shorting Plug	Implements codes on Diagnostic Cards	HP 5080-0058, 2 ea.
Diagnostic Interface Connector	Interface between 50-pin connector and 44- pin connector.	HP 05300-60004, 1 ea.
Diagnostic Card "A" Diagnostic Card "B" Diagnostic Card "C" Diagnostic Card "D"	Provides fixed tests to check 5300 circuits, including the display.	HP 05300-20011 HP 05300-20012 HP 05300-20013 HP 05300-20014

Table 5-1. Recommended Test Equipment

e. Separate 5300B Logic Board Assembly from 5300B casting as follows:

- 1. Remove retaining screw located near power transformer.
- 2. Press rear, plastic-nylon retaining clips on each side of the 5300B casting and lift the rear of the Logic Board Assembly to release it from the casting.
- 3. Press front plastic-nylon retaining clips on each side of 5300B casting and lift the front of the Logic Board Assembly to release it from the casting.

f. Mate the 5300B Logic Board Assembly to the plug-on used and reapply ac power.

5-7. PERIODIC MAINTENANCE

5-8. To determine if the 5300B is operating within specifications, perform the In-Cabinet Performance Checks listed in the documentation for the specific plug-on used and the troubleshooting methods and procedures listed in Paragraph 5-13.

5-9. MAINTENANCE AND REPAIR

CAUTION

A1U1, A1U2 are large-scale MOS integrated circuits whose inputs are susceptible to damage from high voltage and static charges. Particular care should be taken to avoid excessive capacitive loading with probes or when handling under conditions where static charges can build up.

5-10. BOARD REMOVAL. When removing the printed circuit board for replacement, repair, or servicing, always remove ac power and separate the board from the casting using steps a to e of Paragraph 5-6.

5-11. COMPONENT REPLACEMENT. When replacing a circuit board component use a low heat soldering iron. Heat must be used sparingly as damage to the circuit foil may result. Mounting holes may be cleaned out with a toothpick while heat is applied. Connection should be cleaned with a cleaning solution after component removal and replacement. 5-12. INTEGRATED CIRCUIT REPLACEMENT. Two methods are recommended for removing integrated circuits.

a. Solder Gobbler. Solder is removed from board by a soldering iron with a hollow tip connected to a vacuum source. The IC is removed intact so it may be reinstalled if diagnosis is wrong.

b. Clip Out. This method is used when an IC is proven defective. Clip leads close to case, apply heat and remove leads with long nose pliers. Clean board holes with toothpick and cleaning solution.

5-13. INSTRUMENT TROUBLESHOOTING

5-14. GENERAL. Trouble isolation can best be accomplished by first obtaining all possible information from controls, connectors, and indicators, then logically using this information to locate the defective component.

5-15. MODULE SUBSTITUTION. Maintenance procedures in the 5300B may be simplified by isolating the problem to one or a group of the Integrated Circuits and replacing the suspected bad IC's with known good spares. A recommended selection of spare IC's is noted in the parts list of Section VI.

5-16. TROUBLESHOOTING. Three methods of troubleshooting are available. These are:

a. 5300B mated to the plug-on in use. Tests located in Paragraph 5-20 and Figure 5-1 and 5-2 can be performed with plug-on mated to the mainframe. Additional tests can be performed with a plug-on, using performance and maintenance checks in the plug-on section.

b. Diagnostic Test Cards. Test Cards 05300-20011, 20012, 20013, and 20014, and Diagnostic Interface card 05300-60004 are factory available cards which have fixed programs used in exercising the 5300B circuits. This is the preferred and recommended method. This method enables the user to troubleshoot the 5300B without a plug-on.

NOTE

Tests performed with the "Test Cards" can be related to tests on Pages 5-4 to 5-10. If a failure occurs when using the "test cards," use the description listed on Pages 5-4 to 5-10 in conjunction with the "test cards" to determine which program lines are faulty.

Figure 5-1. 5300B Power Supply Checks

c. Alternate Method. This is the second preferred method. The user can hard wire certain connections on the 5300B 50-pin connector and can troubleshoot the 5300B without having a plug-on connected. Refer to paragraph 5-48.

5-17. The following paragraphs and tables are procedures and tests designed to exercise the various circuits in the 5300B mainframe and to logically isolate the defective component(s) or assembly. The tests are also designed to be performed using a 5300B mainframe by itself. Equipment required for these tests is listed in Table 5-1.

5-18. Subsequent tests are made using Diagnostic Test Cards A through D. These cards are mated to a Diagnostic Interface extender card. When a malfunction is suspected or failure occurs, separate the 5300B mainframe from the plug-on, and remove the casting as instructed in Paragraph 5-5.

5-19. Power Supply Checks. Power Supply voltages may be checked by connecting pins 50 and 25 together. The preferred method, however, is to use the Diagnostic Interface Card, and Diagnostic Test Card "B," Test 7. Perform Power Supply Checks and oscillator checks using Figure 5-1 troubleshooting chart as an aid. Voltages should be:

+5.2 Vdc ±.25V at A1J1(1) -5 Vdc ±.25V at A1J1(2) -17.5 Vdc ±1.7V at A1J1(3) +17.5 Vdc ±1.7V at A1J1(26) +24 Vdc ±2V at A1J1(25, 50)

5-20. DIAGNOSTIC TEST CARDS. Diagnostic Test Card "A," tests 1 through 4, check out the display circuitry. Circuits tested are:

a. U7 and U8 circuits; the LED display anode drivers Q2 through Q8; digit address lines X, Y, Z, DP (decimal point) line; and R/L (right-left) control lines.

b. U14 BCD-to-seven segment decoder and cathodes of LED display.

5-21. Diagnostic Test Card "B" tests 5, 6, and 7 check out the majority of inputs and outputs to U1, U2, and U5 for the various modes of operation that can be performed with a plug-on. Test number 8 checks out the Annunciators and Decimal Point lines of the Display Assembly.

5-22. Diagnostic Test Card "C" tests 9 through 12 and Diagnostic Test Card "D" tests 13 through 16 check out the MOS Time Base Circuitry and the MOS Decade Counter. By varying the input and outputs on U1 and U2 with a fixed program, the special circuits are exercised.

5-23. Diagnostic Test Card "A"

5-24. To use the Diagnostic Test Card "A," connect this card through the Interface Card, HP Part No. 05300-60004, to 5300 A1J1 mainframe connector. Prior to each test, press RESET and refer to Figure 5-2. Insert side of card marked "Test 1."

5-25. Test 2. Tests the remaining numerical digits. Display should read 987610 only. If display is 107610, check DATA D line for a low level. Replace U1 to repair.

5-26. Test 3. Tests the remaining character codes. Display should read $\square \neg \neg \neg \square \blacksquare \square \square \square \square \square$. Refer to Figure 5-3.

5-27. Test 4. Tests U14, U1, F1 input to U9, and A1A1DS1-8 to display 8 digits simultaneously and to cycle them 8 at a time) from 0 to 9. Refer to Figure 5-4, Test 4, "C" lamp is on all the time.

5-28. Diagnostic Test Card "B"

5-29. To use Diagnostic Test Card "B," connect this card through the interface card, HP Part No. 05300-60004, to 5300B mainframe A1J1 connector. Prior to each test, press RESET.

5-30. Test 5 and press "PUSH TO RESET" knob. Checks U1, U2, U9. Display should be € 888888888 (* = overflow). "C" lamp and overflow should cycle once.

5-31. Test 6. Checks U3, U4, U5. Refer to Figure 5-5. Display should read at turn on 0000007, 1 second later 0000008, and about 10 seconds later 0000009.

5-32. Test 7. Checks U1, U2, U9. Refer to Figure 5-6. Turn sample rate $\frac{1}{2}$ cw. Display should be 010.0000 MHz ±1 count. "C" lamp cycling.

5-33. Test 8. Checks Annunciators and Decimal Points 1 through 5. Display should be 755432 10 "C" lamp cycling. See Figure 5-6.

5-34. Use a shorting plug (HP Part No. 5080-0058) to connect points on test card B, Test 8, to check the Annunciators (Hz, M, S, K, μ) and decimal points 1 through 5. To light a particular annunciator or decimal point, plug shorting bar into the corresponding holes for that annunciator or decimal point. The "C" lamp off.

5-35. Diagnostic Test Card "C"

5-36. Tests 9-12. To use Diagnostic Test Card "C," connect this card through the interface card, HP Part No. 05300-60004, to 5300B mainframe A1J1 connector. Prior to each test, press RESET.

TEST CARD A, TEST 1 LOGIC LEVELS

The patterns below labelled with A1 integrated circuit numbers show the correct logic levels for those integrated circuits with diagnostic test card A and test 1. Either an HP Model 10528A Logic Clip or a Model 10525T Logic Probe can be used to check for these patterns. Dark pattern indicates a logic high. If different levels are detected it indicates where further troubleshooting should be started.

14 Pin

14 Pin

Models 5300B and 5310A Maintenance

Figure 5-3. Display Checks

Models 5300B and 5310A Maintenance

Figure 5-4. Display Checks

5-37. These tests check U1 and U2 by programming the Time Base input codes to provide Time Base output signals in decade steps.

5-38. Test 9. Fixed program tests the 10-second Time Base output. Display should accumulate one count every 10 seconds starting with digit 0, least-significant digit. "C" lamp on.

5-39. Test 10. Fixed program tests the 1-second Time Base output. Display should accumulate one count every second starting with digit 0, least-significant digit. "C" lamp on.

5-40. Test 11. Fixed program tests the .1-second Time Base output. Display should accumulate one count every second in digit 1 (second from the right). "C" lamp on.

5-41. Test 12. Fixed program tests the 10 msec Time Base output. Display should accumulate one count

every second in digit 2 (third from the right). "C" lamp on.

5-42. Diagnostic Test Card "D"

5-43. Tests 13-16. To use Diagnostic Test Card "D," connect the card through the interface card, HP Part No. 05300-60004, to 5300B mainframe A1J1 connector. Prior to each test, press RESET. These tests check U1 and U2 by programming the time base input codes to provide Time Base output signals in decade steps.

5-44. Test 13. Fixed program tests the 1 msec Time Base output. Display should accumulate one count every second in digit 3 (fourth from the right). "C" lamp on.

5-45. Test 14. Fixed program tests the .1 msec Time Base output. Display should accumulate one count every second in digit 4 (fifth from the right). "C" lamp on. (Overflow lamp should be on after 1000 seconds.)

TEST CARD A, TEST 4 LOGIC LEVELS

The patterns below labelled with A1 integrated circuit numbers show the correct logic levels for those integrated circuits with diagnostic test card A and test 4. Either an HP Model 10528A Logic Clip or a Model 10525T Logic Probe can be used to check for these patterns. A dark pattern indicates a logic high. If different levels are detected it indicates where further troubleshooting should start.

(*) Cycle with Display (pins 3, 4, 5 and 6) When Manual Reset is pushed (pins 1, 2, 7 and 16) are lit; all others blank.

14 Pin

When Manual Reset is pushed, pins 2, 5, 6, 10 and 14 are blank.

14 Pin

14 Pin

14 Pin When Manual Reset is pushed, 2, 5 and 10 are blank.

When Manual Reset is pushed, pin 1 lits and 14 blanks.

(*) Cycle with Display (pins 1, 2, 6, 7, 9, 10, 11, 12, 13, 14). When Manual Reset is pushed, pins 4, 5 and 16 are lit.

14 Pin (Pins 1-5 should be cycling) *Pins 3, 15-16 stay on when Manual Reset is pushed.

Figure 5-5. A1U1 Counter, A1U2 Time Base, and A1U9 Control Checks

5-46. Test 15. Fixed program tests the 10 μ sec Time Base output. Display should accumulate one count every second in digit 5 (sixth from the right). "C" lamp on. (* = overflow lamp on after 100 seconds.)

5-47. Test 16. Fixed program tests the 1 μ sec Time Base output. (*Overflow lamp should light* and remain on after 10 seconds. "C" lamp on.) Display should accumulate one count each second in digit 6 (seventh from right).

5-48. ALTERNATE METHOD OF TROUBLE ISOLATION

5-49. Obtain a female 50-pin connector, HP Part No. 1251-0101 (CINCH 57-20500-375), and hard-wire the following listed programs by soldering short pieces of wire to the selected pins.

5-50. Tables 5-2, 5-3, and 5-4 list the wired connections and correct displays.

CAUTION

During soldering and use, do not short adjacent pins to each other or to the connector case. Damage to the 5300B may result.

5-51. OSCILLATOR ADJUSTMENT

5-52. Two methods of oscillator adjustment are available:

a. Using an electronic counter to measure the 5300B 10 MHz oscillator frequency at the 5300B rearpanel OSC jack.

b. Using the oscilloscope-drift method to compare the 5300B oscillator drift against a reference or "house" standard.

5-53. STANDARD OSCILLATOR DIRECT COUNT MEASUREMENT AND ADJUSTMENT

5-54. The 5300B oscillator can be measured by connecting an electronic counter, whose time base oscillator stability is at least 10 times better than the 5300B oscillator, to the 5300B rear-panel OSC jack. To measure the 5300B oscillator frequency proceed as follows:

a. Obtain an HP Model 5345A or 5245L/M Counter and connect the 5300B OSC jack to the 5245L/M input.

NOTE

The internal oscillator can be pulled off frequency by excessive loading at rear-panel OSC jack J2. Use no less than a 100 ohm load (200 Ω for Option 001) when measuring oscillator frequency at J2.

b. Set 5345A or 5245L/M controls for a minimum 7-digit stable display. Use "1M Ω " input to 5345A counter.

(Continued on page 5-14)

	TE	ST 1 (SAME AS DIAGNOSTIC CARD NO. A)	
Pin No.	Connected To Pin No.	Description (Lines Connected Together)	Display Should Be
(4)	——— > (42)	Gnd/Data "D"	
(36)	- (45)	Digit Address "X"/Data "A"	
(38)	(44)	Digit Address ''Y''/Data ''B''	1654 <i>32 I</i> D
(40)	→ (43)	Digit Address ''Z''/Data ''C''	
(50)	——— (25)	DC-IN (+22 V)	
(36)	► (45)	ST 2 (SAME AS DIAGNOSTIC CARD NO. A) Digit Address "X"/Data "A"	
(38)	(43) (44)	Digit Address "Y"/Data "B", "C"	88 9875 13
(40)	———— (42)	Digit Address ''Z''/Data ''D''	
(50)	——— > (25)	DC-IN (+22 V)	
	TE	ST 3 (SAME AS DIAGNOSTIC CARD NO. A)	
(36)	(43)	Digit Address ''X''/Data ''C''	
(38)	——— (44)	Digit Address ''Y''/Data ''B''	
(40)	(45)	Digit Address ''Z''/Data ''A''	
(50)	——— (25)	DC-IN (+22 V)	
	TE	ST 4 (SAME AS DIAGNOSTIC CARD NO. A)	
(4)		Gnd/Open, Digit Select "Z", Print and Transfer	
	(41) (20), (1	9)	0000000
(38)	<u>→</u> (5)	Digit Address "Y"/F ₁	cycle to
		1	93999999
(50)	(25)	DC-IN (+22 V)	
			PUSH "RESET"
			88982828 c
			(DISPLAY)
			(LED TEST)

*

Table 5-2. Tests 1, 2, 3, and 4

Pin No.	Connected To Pin No.	Description (Lines Connected Together)	Display Should Be
(4)		Gnd/Open, Print and Transfer, 19)	At turn on:
(5)	(13)	F ₁ /Exponent	רססססססם 1 sec after turn on:
(7)		F ₂ /Clock	# CCCCC288
(36)		Digit Address "X"/Digit Select "X"	Adjust Sample Rate 1/2 cw
(38)		Digit Address "Y"/Digit Select "Y"	10 sec after turn on
(40)	(41)	Digit Address "Z"/Digit Select "Z"	B 0000003
(50)	<u> </u>	DC-IN (+22 V)	
	TEST 7	SELF-CHECK (SAME AS DIAGNOSTIC CARD NO.	B)
(1)	─── (6)	+5 V/9	
(4)	(27) (28) (22) (23) (47)	Gnd/TBS "A", "B", Hz, M, DP4	
(5)	─────────────────────────────────────	F_1/F_2 , Clock	
(17)	(18)	MAXTIME/Time Base Output	
(36)	─── (37)	Digit Address "X"/Digit Select "X"	(+1 Count)
(38)	► (39)	Digit Address "Y"/Digit Select "Y"	
(40)	─── ► (41)	Digit Address ''Z''/Digit Select ''Z''	
(50)	<u>→</u> (25)	DC-IN (+22 V)	
	т	EST 8 (SAME AS DIAGNOSTIC CARD NO. B)	
(4)	———————————————————————————————————(42)	Gnd/Data "D"	
(36)	——— (45)	Digit Address ''X''/Data ''A''	
(38)	————— (44)	Digit Address ''Y''/Data ''B''	765432 10
(40)	→ (43)	Digit Address ''Z''/Data ''C''	
(50)	► (25)	DC-IN (+22 V)	
(4)	→ (27)	$\begin{array}{c} \text{Pins on Card} \\ \text{Gnd (4)} \begin{array}{c} \text{Output} \\ \text{Output} \\$	Hz
ſ	(28)	ϕ o $\overline{\mathbf{M}}$	M
	(29)	\circ \circ \overline{s}	S
	(30)	o K	K
	(31)	ϕ ϕ μ	
	(33)	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \qquad$	μ 765432 (C)
	(34)		
	(46)		765432.0
	(40)		765432 KG
1	(11)	o DP4	765K32 10

Table 5-3. Tests 6, 7, and 8

Pin No.	Connected To	Pin No.	Description (Lines Connected Togeth	er) Display Should Be
(4)	••••	► (9) (20), (19	Gnd/Open, Print and Transfer	
(5)		 (18)	$F_1^{/Time Base Output}$	
(7)		→ (16)	F ₂ /Clock	
(36)		► (37)	Digit Address ''X''/Digit Select ''X''	Accumulate one digit per
(38)		→ (39)	Digit Address "Y"/Digit Select "Y"	10 seconds
(40)		→ (41)	Digit Address "Z"/Digit Select "Z"	
(50)		► (25)	DC-IN (+22 V)	
			FIC CARD NO. C) or Test 9, and conne 22, Time Base Select "A".	ct pins
			FIC CARD NO. C) or Test 9, and conne 23, Time Base Select "B".	Accumulate one digit per second
			FIC CARD NO. C) or Test 9, and conn- s 22 and 23, Time Base Select "A", "B	
			FIC CARD NO. D) or Test 9, and connection 24, Time Base Select "C".	Accumulate one digit per second
TEST 1_{i}	4 (SAME AS D	IE AS DIAGNOSTIC CARD NO. D) or Test 9, and connect pins		
			s 22 and 24, Time Base Select "A", "C	
		E AS DIAGNOSTIC CARD NO. D) or Test 9, and connect pins 9 and ground pins 23 and 24, Time Base Select "B", "C".		
nsteu in	reor a sud g	rouna pin	s 20 and 24, Thile Dase Select B, "C	Accumulate one digit pe second
TEST 16			FIC CARD NO. D) or Test 9, and connect pins	
	TEST 9 and g	round pin	s 22, 23, and 24, Time Base Select "A"	"B", "C".
	****** * * ***** <u>*</u>			Accumulate one digit per second

OSCILLATOR ADJUSTMENT (Continued)

c. The 5345A or 5245L/M display should read 10.00000 MHz ± 1 count.

d. If the 5345A or 5245L/M does not indicate this frequency, adjust the 5300B OSC adjustment until the display is correct. Adjust for square wave output signal as explained in NOTE 3 and/or 5 on schematic diagrams.

5-55. The Standard 5300B 10 MHz oscillator can be adjusted through the rear panel access hole. Adjustment should be made with the 5300B mated to a plugon as part of a periodic maintenance cycle.

5-56. Standard Oscillator Measured by Oscilloscope-Drift Method

5-57. The 5300B oscillator may be adjusted against a reference or "house" standard using the oscilloscopedrift method. With this method, drift in "parts in 10^{87} can be monitored. To adjust the oscillator proceed as follows:

a. Connect 5300B rear panel OSC jack to oscilloscope vertical input.

b. Connect the Standard Reference 5 MHz source to the oscilloscope external horizontal input jack.

c. Set the oscilloscope time/cm to its fastest sweep time. Set the oscilloscope triggering to external.

d. Adjust the oscilloscope vertical amplifier controls and the time base controls until the oscilloscope display is exactly 10 cycles of the oscillator waveforms.

e. The oscilloscope display should be a stationary pattern. Unless the 5300B oscillator frequency and reference standard frequency are identical, the display on the oscilloscope will drift left or right. A left drift indicates the counter oscillator frequency is higher than the standard frequency. A right drift indicates the counter oscillator frequency is lower than the standard frequency. The rate of movement is related to the frequency difference between the 5300B oscillator and the standard frequency as shown in the following example.

Example. A 5 MHz frequency is used to trigger the oscilloscope sweep; the oscilloscope vertical amplifier signal is the 5300B oscillator frequency. The time required for the pattern to drift the width of one cycle for the display is (in this example) 10 seconds. The frequency error is:

 $\frac{\Delta f}{f} = \frac{\Delta t}{t} = \frac{2 x 10^{-7}}{1 x 10} = 2 x 10^{-8} = 2 \text{ parts in } 10^8 \text{ error.}$

f. Longer measurement periods are required to observe smaller frequency differences.

g. If frequency difference (drift) is excessive adjust 5300B rear-panel OSC ADJ. Adjust for square wave output as explained in NOTE 3 and/or 5 on schematic diagrams.

5-58. Option 001 High Stability Time Base (TCXO) Measurement and Adjustment

5-59. Measurement and adjustment of the Option 001 High Stability Time Base (TCXO) is similar to measurement and adjustment of the standard time base oscillator. Use the standard oscillator measurement and adjustment procedures with the following two exceptions.

a. Adjustment must be made with an ambient temperature of 25° C. See Figure 7-1 or 8-4 for information applicable to instruments with different serial prefixes. Loading at OSC jack J2 must be 200 Ω or higher.

Figure 5-6. A1U1 Counter, A1U2 Time Base, and A1U9 Control Checks (Continued on next page)

Continued

Figure 5-6. A1U1 Counter, A1U2 Time Base, and A1U9 Control Checks (Continued)

Figure 5-6. A1U1 Counter, A1U2 Time Base, and A1U9 Control Checks (Continued)

b. Access to adjustment of the 5300B Option 001 TCXO is inside the top cover of the 5300B. (Refer to Paragraph 5-5 for cover removal instructions.) A small screw covers the TCXO adjustment access in the TCXO unit. See the Option 001 component locator figure in Section VIII.

5-60. HP 5310A BATTERY PACK

5-61. Battery Capacity Check

CAUTION

Maximum battery recharge time is 24 hours. Batteries may be damanged by heat if limit is exceeded.

5-62. The condition of the batteries in Model 5310A Battery Pack can be checked using equipment listed in Table 5-1 as follows:

a. Mate the 5310A Battery Pack to the 5300B Measuring System mainframe and the plug-on in use using procedure in Paragraphs 2-15, 2-16, and 2-17.

b. Unplug the 5300B ac line cord and set 5310A switch to BATTERY so that the battery pack is operating with normal load and supplying power to the Measuring System/Plug-on combination. c. If the LOW BATTERY lamp starts to glow or if short battery life has been experienced, the Battery Pack should be recharged as follows:

- 1. Connect ac line power to 5300B. (Note: it is not necessary to have plug-on connected to charge batteries.
- 2. Set panel switch to CHARGE for 18 hours.
- 3. After 18 hours, disconnect ac power and set panel switch to LINE.

d. Ensure that the panel switch is set to LINE, then separate the Battery Pack from the 5300B and plug-on combination.

e. Connect a load across Battery Pack as follows:

- 1. Remove the Battery Pack top cover by removing the six attaching screws.
- Obtain a 10-ohm, 25 W resistor and a 50pin, female connector, HP Part No. 1251-0101 (CINCH 57-20500-375).
- 3. Solder the resistor between pins 25 and 49 of this connector.

Figure 5-7. Battery Removal

- 4. Connect the loaded female connector to the Battery Pack bottom connector, A1J1.
- f. Set Battery Pack switch to BATTERY.

g. Check the voltage conditions of each of the five batteries with a dc voltmeter. The normal voltage for each battery should be greater than 2 volts (about 2.3 to 2.8V depending on time since charge) and each battery should be nearly the same level. A difference in voltage level between batteries is an indication that the lower voltage batteries are faulty and should be replaced.

h. Following an 18-hour charge, the Battery Pack should operate with a 10-ohm load for about 2.5 hours. The total battery voltage after this time should be greater than \pm 10 volts dc.

i. If above tests indicate that battery capacity is lower than normal, full capacity can sometimes be regained by exercising the batteries through several charge-discharge cycles. Batteries may be loaded separately with 10-ohm, 25-watt resistors, for various lengths of time, until the capacities of all batteries are the same (all batteries measure 1.5 volts under load, for example). In some cases, full capacity may be obtained after charging the entire Battery Pack for 18 hours in the normal manner.

j. The battery pack should be checked and recharged every 30 days as part of a regular maintenance cycle.

k. On days when the Battery Pack is used continuously for 3 to 8 hours (depending on plug-on used), it should be recharged over night.

5-63. Replacing Internal Battery Supply (see Figure 5-7)

5-64. If the procedure of Paragraph 5-61 establishes that the 5310A internal batteries do not provide power for the normal operating time, replace the batteries. The batteries must be replaced with power removed and battery pack separated from the 5300B and plug-on used. Hewlett-Packard recommends replacing all five batteries. Installing only one new battery may result in decreased operating life of the older batteries or the newer replacement due to differences in battery capacity with age. If single battery replacement is attempted, however, batteries from different manufacturers must not be intermixed. This unit contains one of the following battery types:

HP Part No.	Manufacturer	Mfg. No.
1420-0084 (no identifying numbers on battery)	Union Carbide Corp. Elect. Div.	Y 5816
1420-0209 (Part Number	Gould-National Batteries, Inc.	

Replace batteries as follows:

located on battery)

WHILE PERFORMING THE FOLLOWING STEPS, ENSURE THAT THE BATTERY LEADS ARE NOT SHORTED TO EACH OTHER OR TO THE INSTRUMENT CHASSIS. INJURY TO PERSONNEL AND/OR DAMAGE TO EQUIPMENT MAY OTHERWISE OCCUR.

a. Remove fuse F1 (located on A1 Assembly at front of 5310A) using a nonconductive tool.

b. Remove six screws in top cover plate and lift off plate to expose the five batteries.

c. Unsolder WHT-BLK-RED wire, at BT1A(+), which leads from A2(H) to BT1A(+).

d. Unsolder WHT wire at BT1D(-). Four batteries, BT1A, B, C, and D will be free for removal.

e. Unsolder WHT wire at BT1E(+) and BLK wire at BT1E(-). The last section of the battery will be free for removal.

f. Interconnections between the four sections of BT1A, B, C, and D can be made with the batteries out of the casting.

g. The battery sections can be reinstalled by reversing steps a through e.

h. When the five sections of BT1 have been installed, the plate removed in step b can be replaced and the six screws installed.

i. Mate the 5310A Battery Pack to the 5300B and the plug-on used as in Paragraph 2-15.

5-65. Removing A2 Power Supply Board

5-66. To remove the A2 Power Supply Board, remove the batteries using procedures in Paragraph 5-64, steps a to e. Remove the A2 board as follows:

a. Unsolder the BLK wire connected to A2(A).

b. Unsolder the WHT-BLK-ORN wire connected to A2(C).

c. Unsolder the BLK wire from LOW BATTERY lamp connected to A2(D) and the GRN wire connected to A2(E).

d. Unsolder WHT-RED wire connected to A2(F).

e. Unsolder the WHT-BRN-RED wire connected to A2(G).

f. Unsolder the WHT-BLK-RED wire connected to A2(H).

g. Unsolder the BLK wire connected to A2(B).

h. Using an offset cross-type screwdriver, remove the three screws securing A2. Loosen screw securing the plastic power transistor.

i. The A2 Assembly should now be free for removal.

j. To install A2 Assembly, reverse the procedures of steps a to i.

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering replacement parts. Tables 6-1 and 6-2 list parts used in the HP 5300B, and 5310A. The table lists parts in alphanumeric order of their reference designations and provides the following information on each part:

a. Hewlett-Packard part number.

b. Description of part (see abbreviations below).

c. Total quantity used in the instrument (the first time that the part appears in the list, the total quantity of that part number is printed).

d. Typical manufacturer of the part in a five-digit code (see list of manufacturers in Table 6-3).

e. Manufacturer's part number.

6-3. Miscellaneous parts are listed at the end of Table 6-1 and 6-2.

6-4. ORDERING INFORMATION

6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Sales and Service Office (see lists at rear of this Section for addresses). Identify parts by their Hewlett-Packard part number. To obtain a part that is not listed, include:

- a. Instrument model number.
- b. Instrument serial number.
- c. Description of the part.
- d. Function and location of the part.

REFERENCE DESIGNATIONS

А	= assembly	Е	= miscellaneous elec-	Р	= electrical connector	U	= integrated circuit;
AT	= attenuator; isolator;		trical part		(movable portion);		microcircuit
	termination	F	= fuse		plug	V	= electron tube
в	= fan; motor	FL.	= filter	Q	= transistor; SCR;	VR	= voltage regulator;
BT	= battery	н	= hardware		triode thyristor	***	breakdown diode
С	= capacitor	HY	= circulator	R	= resistor	W	= cable; transmission
CP	≃ coupler	1	= electrical connector	RT	= thermistor	•	path; wire
CR	= diode; diode		(stationary portion);	8	= switch	X	= socket
	thyristor; varactor		jack	T	= transformer	Y	= crystal unit-piezo-
DC	= directional coupler	к	= relay	TB	= terminal board	**	electric
ÐL	= delay line	L	= coil; inductor	TC	= thermocouple	Z	= tuned cavity; tuned
\mathbf{DS}	= annunciator; signal-	M	= meter	TP	= test point		eircuit
	ing device (audible	MP	= miscellaneous				
	or visual); lamp;		mechanical part				
	LED						
			ABBRE	VIATION	5		
А	= ampere	avg	= average	CHAN	= channel	dc	= direct current
ac	= alternating current	AWG	= American wire	em	= centimeter	deg	= degree (temperature
ACCESS	= accessory		gauge	CMO	= cabinet mount only		interval or
ADJ	= adjustment	BAL	= balance	COAX	= coaxial		difference)
A/D	= analog-to-digital	BCD	= hinary coded	COEF	= coefficient	°	= degree (plane angle)
AF	= audio frequency		decimal	COM	= common	°C	= degree Celsius
AFC	= automatic fre-	BD	= board	COMP	= composition		(centigrade)
	quency control	BE CU	= beryllium coppe r	COMPL	= complete	°F	= degree Fahrenheit
AGC	= automatic gain	BFO	= beat frequency	CONN	= connector	°К	= degree Kelvin
	control		oscillator	CP	= cadmium plate	DEPC	= deposited carbon
AL.	= aluminum	BH	= binder head	CRT	= cathode-ray tube	DET	= detector
ALC	= automatic level	BKDN	= hreakdown	CTL.	= complementary	diam	= diameter
	control	BP	= bandpass		transistor logic	DIA	= diameter (used in
AM	- amplitude modula-	BPF	= bandpass filter	CW	= continuous wave		parts list)
	tion	BRS	= brass	cw	= clockwise	DIFF	
AMPL	= amplifier	BWO	= backward-wave	cm	= centimeter	AMPL.	= differential amplifier
APC	= automatic phase		oscillator	D/A	= digital-to-analog	div	= division
	control	CAL	= calibrate	dB	= decibel	DPDT	= double-pole, double-
ASSY	= assembly	ccw	= counterclockwise	dBm	= decibel referred to		throw
AUX	= auxiliary	CER	= ceramic		1 mW	DR	= drive

ABBREVIATIONS

SSB SST STL. SQ SWR SYNC т ${}^{\mathrm{TA}}_{\mathrm{TC}}$

. negative

DSB	= double sideband	MFR
DTL	= diode transistor logic	mg
DVM EXCL	= digital voltmeter	MH2
ECL EMF	= emitter coupled logic = electromotive force	m H mho
EDP	= electronic data	MIN
	processing	min
ELECT	= electrolytic	
ENCAP	= encapsulated	MINAT
EXT F	= external = farad	mm MOD
FET	= field-effect tran-	MOM
	sistor	MOS
F/F	= flip-flop	
FH FIL H	= flat head = fillister head	ms
FILE	 frequency modula- 	MTG MTR
	tion	
FP	= front panel	mV
FREQ	= frequency	mVac
FXD g	= fixed = gram	mVde Vali
GE	- gran - germanium	mVpk mVp-p
GH7	= gigahertz	
GL.	= glass	mVrms
GND H	= ground(ed)	mW
n h	= henry = hour	MUX MY
HET	= heterodyne	μΛ
HEX	= hexagonal	μF
HD	= head	μH
HDW	= hardware	μmho
HF HG	= high frequency = mercury	μs μV
HI	= high	μv µVac
HP	= Hewlett-Packard	μVde
HPF	= high pass filter	$\mu V p k$
HR	= hour (used in parts list)	μVp-p
НV	= high voltage	μVrms
Hz	= Hertz	μW
IC	= integrated circuit	nA
ID ID	= inside diameter	NC
IF	= intermediate fre-	N/C
IMPG	quency = impregnated	NE NEG
in	= inch	nF
INCD	= incandescent	NI PL
INCL	= include(s)	N/O
INP INS	= input = insulation	NOM NORM
INT	= internal	NPN
kg	= kilogram	
kHz	= kilohertz	NPO
kΩ kV	= kilohm = kilovolt	
кv lb	= pound	NRFR
IC .	= inductance-	NALA
	capacitance	NSR
LED	= light-emitting diode	
LF LG	= low frequency = long	ns
LH	= left hand	n₩ OBD
LIM	= limit	OD
LIN	= linear taper (used in	OH
	parts list)	OP AMPL
lin LK	= linear	OPT
WASH	= lock washer	OSC OX
LO	= low: local oscillator	07
LOG	= logarithmic taper	Ω
	(used in parts list)	Р
log LPF	= logarithm(ic)	DAM
LV	= low pass filter = low voltage	PAM
m	= meter (distance)	PC
mA	= milliampere	PCM
MAX	* maximum	
MΩ MEG	= megohm = meg (10 ⁶) (used in	PDM
01177	- meg (10°) (used in parts list)	£ 171¥1
MET FLM	= metal film	pF
MET OX	+ metal oxide	PH BRZ
MF	= medium frequency;	PHL
	microfarad (used in parts list)	PIN

= manufacturer
= milligram
= megahertz
= millihenry
= mho
= minimum
= minute (time)
= minute (plane angle)
• miniature
= millimeter
≃ modulator
= momentary
= metal-oxide semi-
conductor
= millisecond
= mounting
= meter (indicating
device)
= millivolt
= millivelt, ac
≃ millivolt, de
= millivolt, peak
= millivolt, peak-to-
peak
= millivolt, rms
= milliwatt
= multiplex
- mylar
= microampere
= microfarad
= microhenry
= micromhe
= microsecond
= microvolt
= microvolt, ac
= microvolt, dç
= microvolt, peak
= microvolt, peak-to-
peak
 microvolt, rms
= microwatt
= nanoampere
= no connection
= normally closed
* neon
= negative
= nanofarad
= nickel plate
= nickel plate
= nickel plate = normally open
= nickel plate = normally open = nominal
= nickel plate = normally open = nominal = normal
= nickel plate = normally open = nominal = normal = negative-positive-
 nickel plate normally open normal normal negative-positive- negative
 nickel plate normally open nominal normal negative-positive- negative negative-positive
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera-
 nickel plate normally open nominal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient)
 nickel plate normally open nominal normal negative-positive- negative-positive- negative-positive negative-positive zero (zero tempera- ture coefficient) not recommended
 nickel plate normally open nominal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient)
 nickel plate normally open nominal normal negative-positive- negative-positive- negative-positive negative-positive zero (zero tempera- ture coefficient) not recommended
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable
 nickel plate normally open nominal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description
 nickel plate normally open normally open normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement nanosecond nanowatt order by description outside diameter oval head
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanoseatt order by description outside diameter oval head operational amplifier
 nickel plate normally open normally open normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description outside diameter operational amplifier option
 nickel plate normally open normal normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oval head operational amplifier oscillator
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description outside diameter oval head operational amplifier oxilde
 nickel plate normally open normal normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oval head operational amplifier oscillator
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description outside diameter oyal head operational amplifier option oscillator oute
 nickel plate normally open normally open normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description outside diameter oyal head operational amplifier opscillator oxide ounce ohm
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oyal head operational amplifier oxide oxide oxide ounce ohm peak (used in parts
 nickel plate normally open normally open normal negative-positive- negative-positive negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description outside diameter operational amplifier option oscillator oxide ounce ohm peak (used in parts list)
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable anaosecond anaowatt order by description outside diameter oyal head operational amplifier option oscillator osuide aoure ohm peak (used in parts list) pulse-amplitude
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oval head operational amplifier oscillator ostide ontenee owate ist) puse-amplitude modulation
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter operational amplifier option oscillator oxide ounce ohm peak-amplitude modulation printed circuit
 nickel plate normally open normal normal negative-positive- negative-positive negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond nanowatt order by description outside diameter opational amplifier option oscillator oxide ounce ohm peak (used in parts list) pulse-amplitude modulation printed circuit pulse-code modula-
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond anaosecond anaosecond outside diameter oval head operational amplifier option oscillator oscillator oscide ounce ohm peak (used in parts list) pulse-camplude pulse-code modula- tion; pulse-count
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oyal head operational amplifier oxide ounce ohm peak (used in parts list) pulse-amplitude modulation printed circuit pulse-count modulation
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond anaosecond anaosecond outside diameter oval head operational amplifier option oscillator oscillator oscide ounce ohm peak (used in parts list) pulse-camplude pulse-code modula- tion; pulse-count
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oyal head operational amplifier oxide ounce ohm peak (used in parts list) pulse-amplitude modulation printed circuit pulse-count modulation
 nickel plate normally open normal normal negative-positive- negative negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanosecond anaosecond anaowatt order by description outside diameter oyal head operational amplifier option oscillator oscillator oondre pulse-amplitude modulation pulse-count modulation pulse-count modulation pulse-duration
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter oytal head operational amplifier otscillator oxide ounce ohand peak (used in parts list) pulse-compliation pulse-cont modulation pulse-cont modulation pulse-cont modulation pulse-duration modulation picofarad
 nickel plate normally open normal normal negative-positive- negative-positive- zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter operational amplifier option oscillator oxide ounce ohm peake-amplitude modulation pulse-count modulation pulse-duration modulation picofarad phosphor bronze
 nickel plate normally open normal normal negative-positive- negative-positive zero (zero tempera- ture coefficient) not recommended for field replacement not separately replaceable nanowatt order by description outside diameter operational amplifier option oxillator oxillator oxide ounce ohm pulse-amplitude modulation pulse-code modula- tion; pulse-count modulation pulse-duration modulation picofarad picofarad phosphor bronze

PIV	= peak inverse voltage	TFT
pk	= peak	TGL
PL.	= phase lock	THD
PLO D	= phase lock oscillator	THRU
PM PNP	* phase modulation	TI
1 (11	= positive-negative- positive	TOL TRIM
P O	= part of	TSTR
POLY	= polystyrene	TTI.
PORC	= porcelain	
POS	= positive; position(s) (used in posts Viet)	TV TVI
POSN	(used in parts list) = position	TWT
POT	= potentiometer	U, U
p-p	= peak-to-peak	
PP	= peak-to-peak (used	$_{\rm UF}$
PPM	in parts list)	111172
1 1 /01	= pulse-position modulation	UHF UNRE
PREAMP		V
PRF	= pulse-repetition	VA
5 855	frequency	Vac
PRR ps	= pulse repetition rate = picosecond	VAR
PT	= point	VCO
PTM	= pulse-time modula-	Vdc
	tion	VDCW
PWM	= pulse-width	
PWV	modulation	V(F)
RC	= peak working voltage = resistance	VFO
	capacitance	VHF
RECT	= rectifier	Vpk
REF	= reference	Vp-p
REG REPL	= regulated	Vrms
RF	= replaceable = radio frequency	VSWR
RFI	= radio frequency	VTO
	interference	
RH	= round head; right	VTVM
RLC	hand	
U1Y	= resistance- inductance-	V(X) W
	capacitance	w ·
RMO	= rack mount only	wiv
rms	= root-mean-square	
RND ROM	≃ round	WW
R&P	= read-only memory = rack and panel	₩/O YIG
RWV	= reverse working	Zo
	voltage	
s	= scattering parameter	
s 	= second (time)	
S-B	= second (plane angle) = slow-blow (fuse)	
	(used in parts list)	
SCR	= silicon controlled	
an	rectifier; screw	All al
SE	= selenium	All al- list will
SECT SEMICON	= sections = semiconductor	Het will
SHF	= superhigh fre-	
	quency	
81	= silicon	
SH. SL	= silver	
SNR	≈ slide ≃ signal-to-noise ratio	
SPDT	= signarar-indise ratio	A
	throw	
SPG	= spring	
SR	= split ring	Abbrev
SPST	= single-pole, single-	
SSB	throw = single sideband	
SST	= stainless steel	(
STL	= steel	i i
SQ	= square	}
SWR	= standing-wave ratio	c
SYNC T	= synchronize = timed (slow-blow	(
•	- umed (slow-olow fuse)	כ ד
ТА	= fantalum	T F
TC	= temperature	r r
371.)	compensating	F
TD TERM	= time delay = terminal	f
• **\$1/1	() E E E E E E E E E	()

= thin-film transistor = toggle = thread = through IRU = titanium = tolerance = trimmer = transistor = transistor-transistor logic television = television interference = traveling wave tube = micro (10⁻⁶) (used in parts list) = microfarad (used in parts list) = ultrahigh frequency IREG = unregulated = volt ≃ voltampere = volts, ac = variable voltage-controlled oscillator = volts, dc сw = volts, dc. working (used in parts list) = volts. filtered = variable-frequency oscillator = very-high frequency = volts, peak volts, peak-to-peak
volts, rms
voltage standing wave ratio = voltage-tuned oscillator /M = vacuum-tube voltmeter = volts, switched = watt = with = working inverse voltage = wirewound = without » yttrium-iron-garnet = characteristic impedance NOTE

abbreviations in the parts will be in upper case.

MULTIPLIERS

, single-	Abbreviation	Prefix	Multiple
band	r	tera	1012
teel	Ġ	giga	108
	M	mega	106
	k	kilo	103
vave ratio	da	deka	10
ze	d	deci	10-1
v-blow	c	centi	10-2
	ជា	milli	10-3
	μ	micro	10-6
re -	n	nano	10-*
ing	р	pico	10-13
	f	femto	10-15
	a	atto	10****

Table 6–1A. 5300E	Standard	Instrument,	Replaceable Parts
-------------------	----------	-------------	--------------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1 41C1 41C2 A1C3 A1C4 A1C5	05300-60017 0180-0229 0150-0050 0150-0071 0150-0075 0150-0075	1	BOARD ASSY, LOGIC (SERIES 1704) CAPACITOR-FXD; 330F+-10% 10V0C TA-SOLID CAPACITOR-FXD 1000PF +80-20% 1000WVDC CAPACITOR-FXD 400PF +-5% 1000WVDC CER CAPACITOR-FXD 4700PF +100-20% 500WVDC CAPACITOR-FXD 4700PF +100-20% 500WVDC	28480 56289 23480 28480 28480 28480 28480	05300-60017 15003363701082 0150-0050 0150-0071 0150-0075 0150-0075
A1C6 A1C7 A1C8 A1C9 A1C10	0180-2357 0160-2055 0160-0161 0150-0096 0121-0061	1 2 1 1 1	C:FXD TA 950 UF 90VDCW CAPACITOR-FXD .01UF +80-20% 100NVDC CER CAPACITOR-FXD .01UF →-10% 200NVDC POLYE CAPACITOR-FXD .05UF +80-20% 100NVDC CER CAPACITOR: VAR; TRMR; CER; 5.5/18PF	28480 28480 56289 28480 73899	0180-2357 0160-2355 292910392 0150-0096 DV11PS188
A1C11 A1C12 A1C13 A1C14 A1C15	0121-0059 0160-2257 0160-3879 0150-0071 0160-2055	1 1 1	CAPACITOR; VAR; TRMR; CER; 2/8PF CAPACITOR-FXD 10PF +-5% 500WVDC CER CAPACITOR-FXD •01UF +-20% 100WVDC CER CAPACITOR-FXD •01UF +-5% 1000WVDC CER CAPACITOR-FXD •01UF +80-20% 100WVDC CER	73899 28480 28480 28480 28480 28480	DV11PR8A 0160-2257 0160-3879 0150-0071 0160-2055
A1C16 A1C17 A1C18 A1C19 A1C20	0180-1773 0180-0428 0180-0557 0180-0554 0180-0551	1 2 1 2	CAPACITOR-FXD: 68 UF +-5% 35VDC TA CAPACITOR-FXD; 68UF+-20% 6VDC TA-SOLID CAPACITOR-FXD 150UF +100-10% 6VDC AL CAPACITOR-FXD 150UF +20% 6VDC TA-SOLID CAPACITOR-FXD 35UF +100-10% 25VDC AL	56289 28480 90201 28480 90201	150D684X5035A2 0130-0423 MTV150CD6 0180-0554 MTV35C825
A 1C 21 A 1C 22 A 1C 23 A 1C 24 A 1C 25	0180-0551 0180-0557 0180-0373 0180-0552 0180-0552	1 2	CAPACITOR-FXD 35UF +100-10% 25V0C AL CAPACITOR-FXD 150UF +100-10% 6V0C AL *CAPACITOR-FXD; 68UF+-20% 35VDC TA CAPACITOR-FXD; 220UF+-20% 10V0C TA CAPACITOR-FXD; 220UF+-20% 10V0C TA	90201 90201 56289 28480 28480	MTV35C825 MTV150C06 150D684X9035A2 0180-9552 0180-0552
A1C26 A1C27 A1C28 A1C29 A1C30	0180-0428 0180-0553 0180-0553 0180-0553 0130-0161 0160-2204	2 1 1	CAPACITOR-FXD; 680F+-20% 6VDC TA-SOLID CAPACITOR-FXD; 220F+-20% 25VDC TA-SOLID CAPACITOR-FXD; 220F+-20% 25VDC TA-SOLIO CAPACITOR-FXD; 3-30F+-20% 35VDC TA CAPACITOR-FXD 100PF +-5% 300NVDC MICA	28480 28480 28480 56289 28480	0180-0623 0180-0553 0180-0553 1500335X303582 0160-2204
AICRI AICR2 AICR3 AICR4 AICR5	1901-0028 1901-1081 1901-0028 1901-0028 1901-1081 1901-0028	72	010DE-PWR RECT 400V 750MA 010DE-PWR RECT 100V 3A 010DE-PWR RECT 400V 750MA 010DE-PWR RECT 100V 3A D10DE-PWR RECT 100V 3A	04713 28480 04713 28480 04713	SR1358-9 1901-1081 SR1358-9 1901-1081 SR1358-9
AICR6 AICR7 AICR8 AICR9 AICR9 AICR10	1901-0028 1901-0028 1902-3205 1902-0050 1902-3381	1 1 1	DIODE-PWR RECT 400V 750MA DIODE-PWR RECT 400V 750MA DIODE-PWR RECT 400V 750MA DIODE-INR 15V 5% DD-7 PD=.4W TC≃+.057% DIODE-SWITCHING 2NS BOV 200MA DIODE-INR 68.1V 5% DD-7 PD=.4W	04713 04713 04713 28480 04713	SR1358-9 SR1358-9 SZ 10939-233 1901-0050 SZ 10939-422
AICR11 AICR12	1901-0028 1901-0028		DIODE-PWR RECT 400V 750MA DIODE-PWR RECT 400V 750MA	04713 04713	SR1358-9 SR1358-9
A1J1 FOR A1J1	1251-2564 0905-0479	1	CONNECTOR, 50-CONT, MALE, MICRO RIBBON GASKET, TEFLON	71785 28480	57-10500-27 0905-0479
A1L1 A1L2 A1L3 A1L4 A1L5	9100-3139 9100-3139 9100-3139 9100-3139 9100-3139 9100-3139	5	COIL:75 UH COIL:75 UH COIL:75 UH COIL:75 UH COIL:75 UH	28480 28480 28490 28480 28480 28480	9100-3139 9100-3139 9100-3139 9100-3139 9100-3139
A1L6	9140-0210	1	COIL; FXD; MOLDED RF CHOKE; 1000H 5%	24226	15/103
A1Q1 A1Q2 A1Q3 A1Q4 A1Q5	1854-0215 1853-0318 1853-0318 1853-0318 1853-0318 1853-0318	2	TRANSISTOR NPN SI PD=310MH FT=300MHZ TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=500MW	04713 29480 28480 28480 28480 28480	SPS 3611 1853-0318 1853-0318 1853-0318 1853-0318
A1Q6 A1Q7 A1Q8 A1Q9 A1Q10	1853-0318 1853-0318 1853-0318 1853-0318 1853-0318 1853-0318	2	TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD=200MW	28480 28480 28480 28480 28480 28480	1853-0318 1853-0318 1853-0318 1853-0318 1853-0318 1853-0015
AlQ11 AlQ12 AlQ13 AlQ14 AlQ15	1853-0015 1853-0036 1853-0036 1853-0036 1853-0036 1854-0215	3	TRANSISTOR PNP SI CHIP PD=200MW TRANSISTOR PNP SI CHIP PD=310MW TRANSISTOR PNP SI CHIP PD=310MW TRANSISTOR PNP SI CHIP PD=310MW TRANSISTOR NPN SI PD=310MW FT=300MHZ	28480 28480 28480 28480 28480 04713	1853-0015 1853-0036 1853-0036 1853-0036 5P5 3611
A1Q16	1854-0492	1	TRANSISTOR NPN SI PD=350MW FT=250MHZ	28480	1854-0492
A1R1 A1R2 A1R3 A1R4 A1R5	0683-2025 0683-6215 0683-3915 0683-1035 1810-0055	3 2 1 4 2	RESISTOR 2K 5% .25W CC TUBULAR RESISTOR 620 OHM 5% .25W CC TUBULAR RESISTOR 390 OHM 5% .25W CC TUBULAR RESISTOR 10K 5% .25W CC TUBULAR NETWORK-RES 9-PIN SIP .15-PIN-SPCG	01121 01121 01121 01121 01121 28480	C82025 C86215 C83915 C81035 1810-0055

*FACTORY SELECTED VALUE

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 1 R 6 A 1 R 7 A 1 R 9 A 1 R 9 A 1 R 10	0683-1035 0683-1035 0683-1055 0683-1525 0693-4037	1 5 1	RESISTOR 10K 5% -25W CC TUBULAR RESISTOR 10K 5% -25W CC TUBULAR RESISTOR 1M 5% -25W CC TUBULAR RESISTOR 1-5K 5% -25W CC TUBULAR RESISTOR 46+4 0HM 1% -125W F TUBULAR	01121 01121 01121 01121 01121 16299	C81035 C81035 C81055 C81525 C4-1/8-T0-\$6R4-F
A1R11 A1R12 A1R13 A1R14 A1R15	0683-1025 0683-1525 0683-1525 0683-1525 0683-1035 1810-0055	4	RESISTOR 1K 5% .25% CC TUBULAR RESISTOR 1.5K 5% .25% CC TUBULAR RESISTOR 1.5K 5% .25% CC TUBULAR PESISTOR 10K 5% .25% CC TUBULAR NETWORK-RES 9-PIN SIP .15-PIN-SPCG	01121 01121 01121 01121 01121 28480	C81025 C81525 C81525 C81525 C81035 1810-0055
A1R16 A1917 A1818 A1F19 A1F20	0683-7515 0683-2015 0683-2015 0683-2015 0683-2015 0683-2015	28	RESISTOR 750 DHM 5% -25W CC TUBULAR RESISTOR 200 DHM 5% -25W CC TUBULAR	01121 01121 01121 01121 01121 01121	C87515 C82015 C82015 C82015 C82015 C82015
A1R 21 A1R 22 A1R 23 A1R 24 A1R 25	0683-7515 0683-6805 0683-1525 0683-1525	1	RESISTOR 750 DHM 5% .25W CC TUBULAR RESISTOR 68 OHM 5% .25W CC TUBULAR RESISTOR 1.5K 5% .25W CC TUBULAP RESISTOR 1.5K 5% .25W CC TUBULAR NOT ASSIGNED	01121 01121 01121 01121 01121	C87515 C86805 C81525 C81525
A 18 26 A 18 27 A 18 28 A 18 29 A 18 30	0683-2715 0683-8215 0683-2015	2	RESISTOR 270 OHM 5% -25W CC TUBULAR RESISTOR 820 OHM 5% -25W CC TUBULAR NOT ASSIGNED NOT ASSIGNED RESISTOR 200 OHM ER 25N CC TUBULAR	01121 01121	CB2715 CB8215
A1R 31 A1R 32 A1R 33 A1R 34 A1R 35	0683-2015 0683-2015 0683-2015 0683-1025 0683-1025 0683-2035	L	RESISTOR 200 DHM 5% .25W CC TUBULAR RESISTOR 1K 5% .25W CC TUBULAR RESISTOR 20K 5% .25W CC TUBULAR	01121 01121 01121 01121 01121 01121 01121	C82015 C82015 C82015 C82015 C81025 C81025 C82035
A1R 36 A1P 37 A1R 38 A1R 39 A1R 39 A1F 40	0683-1015 0683-2025 0683-1025 0683-1025 0683-2715 0683-1505	1	RESISTOR 100 OHM 5% .25W CC TUBULAR RESISTOR 2K 5% .25W CC TUBULAR RESISTOR 1K 5% .25W CC TUBULAR RESISTOR 270 OHM 5% .25W CC TUBULAR RESISTOR 15 OHM 5% .25W CC TUBULAR	01121 01121 01121 01121 01121 01121	CB1015 CB2025 CB1025 CB2715 CB1505
41841 41842 41843 41844 41845	0683-3305 0693-3305 0683-3305 0693-3305 0693-3305 0683-3305	7	RESISTOR 33 OHM 58 .25W CC TUBULAR RESISTOR 33 OHM 58 .25W CC TUBULAR	01121 01121 01121 01121 01121 01121	C83305 C83305 C83305 C83305 C83305 C83305
A 1 R 46 A 1 R 47 A 1 R 48 A 1 R 49 A 1 R 50	0633-3305 0693-3305 0683-1005 0683-2025 2100-3416	1	RESISTOR 33 OHM 5% .25W CC TUBULAR RESISTOR 33 OHM 5% .25W CC TUBULAR RESISTOR 10 OHM 5% .25W CC TUBULAR RESISTOR 2K 5% .25W CC TUBULAR RESISTOR, VAR 25OK OHM (INCLUDESSIA, B, C)	01121 01121 01121 01121 01121 28480	C83305 C83305 C81005 C82025 2100-3416
Al ^{2,5} 1 AlR52 AlR53 AlR54 AlR55 AlR56 AlS1	0683-5125 0683-5125 0683-5125 0683-1025 2100-1738	3	RESISTOR 5.1K 5% .25W CC TUBULAR RESISTOR 5.1K 5% .25W CC TUBULAR RESISTOR 5.1K 5% .25W CC TUBULAR RESISTOR 1K 5% .25W CC TUBULAR RESISTOR: VAR: TRMR: 10K OHM 10% C NOT ASSIGNED PART OF AIR50: NSR	01121 01121 01121 01121 19701	C85125 C85125 C85125 C81025 C81025 ET50W103
A152 A171	3101-0684 9100-3012	1	SHITCH; SL; DPDT NS; 1A 125VAC TRANSFORMER:DRIVER	28480 28480	3101-0684 9100-3012
A1T2 A1U1 A1U2 A1U3 A1U4 A1U5	9100-3011 1820-0634 1920-0633 1820-1166 1820-0806 1816-0412	1 1 1 1 1	TPANSFORMER IC DOTL COUNTER IC:M-D-S- TIME BASE IC DOTL DM85L 5IN FLIP-FLOP IC DOTL MCIDIO9L GATE IC DGTL MEMORY	28480 28480 28480 27014 04713 28480	9100-3011 1820-0634 1820-0633 DM85L51N MC10109P 1816-0412
4106 A107 A108 A109 A1010 A1011 A1012 A1013 A1013 A1014 A1015	1 820-1251 1 820-0214 1 820-0632 or 1 820-1790 1 820-377 1 820-377 1 820-377 1 820-377 1 820-0578 1 820-0658 1 820-1037 1 820-0585	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IC DGTL SN74LS196 N COUNTER IC 2GTL SN74 42 N DECODER IC DGTL SN74 93 N COUNTER IC:LIS CONTROL IC DGTL SN74H 50 N GATE IC DGTL SN74H 50 N GATE IC,TTL,SCHMITT, HEX INVERTER IC 2GTL MULTIPLEXER IC DGTL SN74 46AN DECODER IC DGTL SN74 66AN DECODER IC DGTL SN74 03N GATE	01 295 01 295 01 295 28480 01 295 01 295 01 295 07 26 3 01 295 27 01 4	SN74LS196N SN7442N SN7493N 1820-0632 or 1820-1790 SN74H50N SN74H50N 74LS14N 93L12DC SN7445AN DM74L03N
A1XA2 A1XU5 A1XU9 A1Y1	1251-3506 1200-0473 1200-0525 0410-0423	1	CONNECTOR; 12-CONT; FEM; POST TYPE SOCKET; ELEC; IC 16-CONT DIP SLOR TERM SOCKET; ELEC; IC 20-CONT DBL STRP PKG CRYSTAL: QUARTZ	28480 28480 00779 28480	1251-3596 1200-0473 583640-2 0410-0423

Table 6-1A. 5300B Standard Instrument, Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1A1 A1A1DS1-A1A1DS8	05300-60018 1 99 0- 04 69 1 99 0- 04 70 1 99 0- 04 71	8	BOARD ASSY, DISPLAY LED (C) OR LED (C) OR LED (E) THREE BRIGHTNESS LEVELS ARE AVAILABLE; GROER SAME NO. AS ORIGINAL. IF LED IS MARKED WITH PART NO. 5082-7731. A SINGLF LETTER CODE(C,D, OR E) IS STAMPED BE- NEATH THE PART NUMBER. THESE LETTER CODES ARE LISTED ABOVE IN THE DESCRIP- ION COLUMN; ORDER THE CORRESPONDING	28480 28480 23480 28480 28480	05300-60018 1990-0469 1990-0470 1990-0471
AIAIDS9 AIAIDS10 AIAIDS11	1990-0325 1990-0325 1990-0325	6	PART NO. LISTED ABOVE. LED-VISIBLE LED-VISIBLE LED-VISIBLE	28480 28480 28480	1990-0325 1990-0325 1990-0325
A1A1DS12 A1A1DS13 A1A1DS14	1990-0325 1990-0325 1990-0325		LED-VISIBLE LED-VISIBLE LED-VISIBLE	28480 28480 28480	1990-0325 1990-0325 1990-0325
A1A1E1- A1A1E33	05300-20007	1	PINS, CONNECTOP (STRIP OF 33)	28480	05300-20007
A 1A 1R 1 A 1A 1R 2	0683-3305 0683-3305		RESISTOR 33 OHM 5% -25W CC TUBULAR RESISTOR 33 OHM 5% -25W CC TUBULAR	01121 01121	CB3305 CB3305
A1A1XDS1 A1A1XDS2 A1A1XDS3 A1A1XDS4 A1A1XDS5	1 200-0424 1 200-0424 1 200-0424 1 200-0424 1 200-0424 1 200-0424	8	SOCKET:IC BLK 14 CONTACT SOCKET:IC BLK 14 CONTACT SOCKET:IC BLK 14 CONTACT SOCKET:IC BLK 14 CONTACT SOCKET:IC BLK 14 CONTACT	23880 23880 23880 23880 23880 23880	CSA 2900 - 1 43 CSA 2900 - 1 43
A1A1X0S6 A1A1XDS7 A1A1XD58	1200-0424 1200-0424 1200-0424		SOCKET:IC BLK 14 CONTACT SOCKET:IC BLK 14 CONTACT SOCKET:IC BLK 14 CONTACT	23880 23880 23880	CSA 2900-143 CSA 2900-143 CSA 2900-143
٨2	05300-60019	t	BOARD ASSY, POWER SUPPLY	28480	05300-60019
A 2C 1 A 2C 2 A 2C 3 A 2C 4 A 2C 4 A 2C 5	0160-0155 0160-0299 0140-0149 0160-0180 0180-2355	1 1 1 1	CAPACITOR-FX0 3300 PF +-10% 200WVDC PCLYE CAPACITOR-FX0 1800 PF +-10% 200WVDC POLYE CAPACITOR-FX0 470 PF +-5% 300WVDC MICA CAPACITOR-FX0 033 UF +-5% 200WVDC POLYE CAPACITOR-FXD; 7.5 UF +-5% 200VDC TA-SOLID	56289 56289 72136 56289 56289	292P33292 292P1B292 DM15F471J0300#V1C3 292P33552 1509755X502032
A 2C R 1 A 2C R 2 A 2C R 3 A 2C R 4 A 2C R 5	1901-0040 1901-0040 1901-0050 1902-0689 1902-3110	2 1 2	0100E-SWITCHING 2NS 30V 50MA DIDDE-SWITCHING 2NS 30V 50MA DIDDE-SWITCHING 2NS 80V 200MA DIDDE BKEAKDOWN DIDDE CNR 5.9V 2% DD-7 PD≖.4W TC=+.017%	28480 28480 28480 28480 28480 04713	1901-0040 1901-0040 1901-0050 1902-0639 SZ 10939-117
A 2CR6 A 2CR7 A 2CR8	1902-3110 1902-0556 1902-0556	2	DIGDE-ZNR 5.9V 2% DO-7 PD=.4W TC=+.017% DIDDE; ZENER; 20V VZ; IW MAX PD DIDDE; ZENER; 20V VZ; IW MAX PD	04713 04713 04713	SZ 10939-117 SZ 11213-227 SZ 11213-227
A 2E 1- A 2E 12	1251-3788	12	"F" POST-ZIP STP	00 77 9	1-380953-0
A 2Q1 A 2Q2 A 2Q3 A 2Q4 A 2Q5	1853-0020 1854-0023 1855-0367 1853-0086 1853-0086	1 1 2	TRANSISTOR PNP SI CHIP PD=300MW TRANSISTOR NPN SI TD-18 PD=360MW TRANSISTOR; UNIJUNCTION; P ON N TRANSISTOR PNP SI CHIP PD=310MW TRANSISTOR PNP SI CHIP PD=310MW	28480 28480 28480 28480 28480 28480	1853-0020 1854-0323 1855-0357 1853-0086 1853-0086
A 2R 1 A 2R 2 A 2R 3 A 2R 3 A 2R 4 A 2R 5	0633-1535 0683-1535 0683-2025 0683-2015 0698-0085	2	RESISTUR 15K 5% -25W CC TUBULAR RESISTOR 15K 5% -25W CC TUBULAR RESISTOR 2K 5% -25W CC TUBULAR RESISTOR 200 0HM 5% -25B CC TUBULAR RESISTOR 2-61K 1% -125W F TUBULAR	01121 01121 01121 01121 16299	C81535 C81535 C82025 C82015 C4-1/8-T0-2511-F
A2R 6 A2R 7 A2R 8 A2R 9 A2R 9 A2R 10	0683-7505 0757-0444 0757-0420 0683-3605 0683-5635	1 2 1 1	RESISTOR 75 OHM 5% .25W CC TUBULAR RESISTOR 12.1K 1% .125W F TUBULAR RESISTOR 750 OHM 1% .125W F TUBULAR RESISTOR 36 OHM 5% .25W CC TUBULAR RESISTOR 36 05% .25W CC TUBULAR	01121 24546 24546 01121 01121	C87505 C4-178-T0-1212-F C4-178-T0-751-F C83605 C85635
A 2R 11 A 2R 12 A 2R 13 A 2R 14	0698-3456 0757-0420 0698-3515 0683-1015	1	RESISTOR 287K 1% .125W F TUBULAR RESISTOR 750 0HM 1% .125W F TUBULAR RESISTOR 5.9K 1% .125W F TUBULAR RESISTOR 100 0HM 5% .25W CC TUBULAR CHASSIS PARTS	15299 24546 16299 01121	C4-1/8-T0-2873-F C4-1/8-T0-751-F C4-1/8-TO-5901-F CB1015
Cl	0160-3333		CAPACITOR-FXD 5000 PF +-20% 250WVAC CER	28480	0160-3333
C2 F1	0160-3333 2110-0044	1	CAPACITOR-FXD 5000 PF +-20% 250HVAC CER FUSE .3A 250V SLO-BLO	28480 75915	0160-3333 313.2505
F1	2110-0320		FUSE -15A 250V SLO-BLO	71400	MDL 15/100

Table 6–1A.	5300B Standard	Instrument,	Replaceable 1	Parts ((Cont'd)
-------------	----------------	-------------	---------------	---------	----------

Models 5300B and 5310A Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
J 1 J 2	1 251-3546 1 250-0083	1 1	CONNECTOR, AC POWER,FLANGED MALE RECPT CONNECTOR-COAX: BNC; 50 OHM FEMALE	00180 24931	6062-3 28JR-130-1
L1 L2	9140-0098 9140-0098	2	COIL; FXD; MOLDED RF CHOKE; 2.2UH 10% COIL; FXD; MOLDED RF CHOKE; 2.2UH 10%	24226 24226	15/221 15/221
MP1 MP2 MP3 MP4 MP5	05300-80002 5040-6000 05300-00005 05300-40007 05300-20010	1 1 1 1	MASK, ANNUNCIATOR, UPPER CATCH, SLIDE LEFT HAND PANEL, REAR WINDOW CASE	28480 28480 28480 28480 28480 28480	05300-80002 5040-6000 05300-00005 05300-40007 05300-20010
MP6 MP7 MP8 MP9 MP10 MP11	05300-40002 05300-40003 05300-40004 5040-7001 05300-80003 7120-4250	2 4 1 1	BLOCK, ANNUNCIATOR SUPPORT, BOARD GUIDE, SLIDE CATCH, SLIDE PIGHT HAND MASK, ANNUNCIATOR, LOWER LABEL-FRONT PANEL IDENTIFICATION	28480 29480 28480 28480 28480 28480 28480	05300-40002 05300-40003 05300-40004 5040-7001 05300-80003 9120-4250
Q17 F OR Q17	18540487 03400765	1 1	TRANSISTOR, SI: NPN INSULATOR, TRANSISTOR	28480 28480	1854–0487 0340–0765
S1	3101-1234	F	SWITCH; SL; DPDT NS; 6A 250VAC	82389	11A-1242A
Τ1	9100-3013		TRANSFORMER: POWER	28480	9100-3013
	0370-2632 0590-0127 2110-0464 2110-0465 2950-0054	2 1 1	MISCELLANEOUS PARTS KNOB NUT-SHEETMETAL-U 4-40 THD .25-WD STL FUSEHOLDER; EXTR POST; BAY CAP; 20A FUSEHOLDER, CAP- FOR 3-AG FUSES NUT-HEX-DBL CHAM 1/2-28-THD .125-THK	28480 78553 75915 75915 28480	0370-2632 0991-440-24 345002-010 345002-020 2950-0054
	.8120-1378 05300-00006 05300-80004	1 2 1	CORD SET 3-COND 18AWG GRAY CLIP: RFI COVER, PROTECT	28480 28480 28480	8120–1378 05300–00006 05300–90015

Table 6-1A. 5300B Standard Instrument, Replaceable Parts (Cont'd)

Table 6-1B.	5300B	Option	001, Replaceable Parts
-------------	-------	--------	------------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			OPTION 001		
Al	05300-60020	1	BOARD ASSY, LOGIC (SERIES 1704)	28480	05300-60020
A1C1 A1C2 A1C3 A1C4 A1C5	0180-0229 0150-0050 0150-0071 0150-0075 0150-0075	1 2 2	CAPACITOR-FXD; 33UF+-10% 10VDC TA-SOLID CAPACITOR-FXD 1000PF +80-20% 1000WVDC CAPACITOR-FXD 400PF +-5% 1000WVDC CER CAPACITOR-FXD 4700PF +100-20% 500WVDC CAPACITOR-FXD 4700PF +100-20% 500WVDC	56289 28480 28480 28480 28480 28480	1500336X901082 0150-0050 0150-0071 0150-0075 0150-0075
A1C6	0180-2357	1	C:FXD TA 950 UF 90VDCW NCT ASSIGNED	28480	0180-2357
A1C7 A1C8 A1C9 A1C10	0150-0096	1	NOT ASSIGNED CAPACITOR-FXD +05UF +80-20% 100WVOC CER NOT ASSIGNED	28480	0150-0096
A 1C 11 A 1C 12 A 1C 13 A 1C 14 A 1C 15	0160	1	NOT ASSIGNED NOT ASSIGNED CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 400PF +-5% 1000WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER	28480 28480 28480 28480	0160-3879 0150-0071 0160-2055
A 1C 16 A 1C 17 A 1C 18 A 1C 19 A 1C 20	0130-1743 0180-0428 0180-0557 0180-0554 0180-0551	1 3 2 1 2	CAPACITOR-FXD: .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD: 68UF+-20% 6VDC TA-SOLID CAPACITOR-FXD 150UF +100-10% 6VDC AL CAPACITOR-FXD 150UF+-20% 6VDC TA-SOLID CAPACITOR-FXD 35UF +100-10% 25VDC AL	56289 28480 90201 28480 90201	1500104X903542 0180-0428 MTV150CD5 0180-0554 MTV35CB25
A 1C 21 A 1C 22 A 1C 23 A 1C 24 A 1C 25	0180~0551 0180~0557 0180-0373 0180-0552 0180~0552	1	CAPACITOR-FXD 35UF +100-10% 25VDC AL CAPACITOR-FXD 150UF +100-10% 6VDC AL *CAPACITOR-FXD; 68UF+-10% 35VDC TA CAPACITOR-FXD; 220UF+-20% 10VDC TA CAPACITOR-FXD; 220UF+-20% 10VDC TA	90201 90201 56289 28480 28480	MTV35CB25 MTV150C05 150D684x9035A2 0180-0552 0180-0552
A1C26 A1C27 A1C28 A1C29 A1C30	0180-0428 0180-0553 0180-0553 0180-0161 0160-2204	2 1 1	CAPACITOR-FXD: 68UF+-20% 6VDC TA-SOLID CAPACITOR-FXD: 22UF+-20% 25VDC TA-SOLID CAPACITOR-FXD: 22UF+-20% 25VDC TA-SOLID CAPACITOR-FXD: 3-3UF+-20% 35VDC TA CAPACITOR-FXD 100PF +-5% 300WVDC MICA	28480 28480 28480 56289 28480	0180-0428 0180-0553 0180-0553 1500335X003582 0160-2204
A1C31	0180-0428		CAPACITOR-FXD; 688F++208 6VDC TA-SOLID	28480	0180-0428
A1CR1 A1CR2 A1CR3 A1CR4 A1CR5	1901-0028 1901-1031 1901-0028 1901-1081 1901-0028	7 2	DIODE-PWR RECT 400V 750MÅ DIODE-PWR RECT 100V 3Å DIODE-PWR RECT 400V 750MÅ DIODE-PWR RECT 100V 3Å DIODE-PWR RECT 400V 750MÅ	04713 28480 04713 28480 04713	SR1358-9 1901-1081 SR1358-9 1901-1081 SR1358-9
A1CR6 A1CR7 A1CR8 A1CR9 A1CR9 A1CR10	1901~0028 1901~0028 1902~3205 1901~0050 1902~3381	1	DIODE-PWR RECT 400V 750MA DIODE-PWR RECT 400V 750MA DIODE-INR 15V 5% DD-7 PD=.4W TC=+.057% DIODE-INR 15V 5% DD-7 PD=.4W DIODE-INR 68.1V 5% DD-7 PD=.4W	04713 04713 04713 28480 04713	SR1358-9 SR1358-9 SZ 10939-233 1901-0050 SZ 10939-422
A1CR11 A1CR12	1901-0028 1901-0028		DIDDE-PWR RECT 400V 750MA DIDDE-PWR RECT 400V 750MA	04713 04713	SR1358-9 SR1358-9
A1J1 FOR A1J1	1251-2564 0905-0479	1 1	CONNECTOR, 50-CONT, MALE, MICRO RIBBON GASKET, TEFLON	71785 28480	57-10500-27 0905-0479
A 11.1 A 11.2 A 11.3 A 11.4 A 11.5	9100-3139 9100-3139 9100-3139 9100-3139 9100-3139 9100-3139	5	COIL:75 UH COIL:75 UH COIL:75 UH COIL:75 UH COIL:75 UH	28480 28490 28480 28480 28480 28430	9100-3139 9130-3139 9130-3139 9130-3139 9100-3139
A1L6 A1L7	9140-0210 9140-0210	2	COIL: FXD: MOLDED RF CHDKE: 100UH 5% COIL: FXD: MOLDED RF CHOKE: 100UH 5%	24225 24226	15/103 15/103
A 101 A 102 A 103 A 104 A 105	1854-0215 1853-0313 1853-0318 1853-0318 1853-0318	2 8	TRANSISTOR NPN SI PD=310MW FT=300MHZ TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=500MW	04713 28480 28480 28480 28480 28480	SPS 3611 1853-0318 1853-0318 1853-0318 1853-0318
A106 A107 A108 A109 A109	1853-0318 1853-0318 1853-0318 1853-0318 1853-0318		TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD∞500MH TRANSISTOR PNP SI CHIP PD=500MH TRANSISTOR PNP SI CHIP PD=500MH NOT ASSIGNED	28480 28480 28480 28480 28480	1953-0318 1853-0318 1853-0318 1853-0318 1853-0318
A1011 A1012 A1013 A1014 A1015	1853-0036 1853-0036 1853-0036 1854-0215	3	NCT ASSIGNED TRANSISTOR PNP SI CHIP PO=310MH TRANSISTOR PNP SI CHIP PO=310MH TRANSISTOR PNP SI CHIP PD=310MH TRANSISTOR NPN SI PD=310MH FT=300MHZ	28480 28480 28480 28480 04713	1853-0036 1853-0036 1853-0036 SPS 3611

*FACTORY SELECTED VALUE See introduction to this section for ordering information Models 5300B and 5310A Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1Q16	1854-0492	1	TRANSISTOR NPN SI PD#350MW FT=250MHZ	28480	1854-0492
A I R I A I R 2 A I R 3 A I R 4 A I R 5	0683-2025 0683-6215 0683-3915 0683-1035 1810-0055	3 2 1 4 2	RESISTOR 2K 5% .25W CC TUBULAR RESISTOR 620 0HM 5% .25W CC TUBULAR RESISTOR 390 0HM 5% .25W CC TUBULAR RESISTOR 10K 5% .25M CC TUBULAR NFTWORK-RES 9-PIN SIP .15-PIN-SPCG	01121 01121 01121 01121 01121 28480	CB2025 CB6215 CB3915 CB1035 1810-0055
A1R6 A1R7 A1R8 A1R9 A1R10	0683-1035 0683-1035 0683-1055	1	RÉSISTOR 10K 5% -25W CC TUBULAR RESISTOR 10K 5% -25W CC TUBULAR RESISTOR 1M 5% -25W CC TUBULAR NOT ASSIGNED NOT ASSIGNED	01121 01121 01121	CB1035 CB1035 CB1035 CB1055
A1R11 A1R12 AIR13 A1R14 A1R15	0683-1525 0683-1035 1810-0055 🖋	I	NOT ASSIGNED NOT ASSIGNED RESISTOR 1.5K 5% .25N CC TUBULAR RESISTOR 10K 5% .25N CC TUBULAR NETWORK-RES 9-PIN SIP .15-PIN-SPCG	01121 01121 28430	CB1525 CB1035 1810-0055
A1R16 A1F17 A1R18 A1R19 A1R20	0683-7515 0683-2015 0683-2015 0683-2015 0683-2015 0683-2015	2 B	RESISTOR 750 0HM 5% .25W CC TUBULAR RESISTOR 200 0HM 5% .25W CC TUBULAR	01121 01121 01121 01121 01121 01121	CR7515 CR7015 CR2015 CR2015 CR2015 CR2015
A 1 R 21 A 1 R 22 A 1 R 23 A 1 F 24 A 1 R 25	0683 -7 515		RESISTOR 750 OHM 5% -25H CC TUBULAR NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	01121	CB7515
A1826 A1827 A1828 A1829 A1830	0683-8215 068 3-201 5		NOT ASSIGNED RESISTOR 820 OHM 5% +25W CC TUBULAR NOT ASSIGNED NOT ASSIGNED RESISTOR 200 OHM 5% +25W CC TUBULAR	01121	CB8215
A 18 31 A 18 32 A 18 33 A 18 33 A 18 35	0683-2015 0683-2015 0683-2015 0683-2015 0683-1025 0683-2035	3	RESISTOR 200 0HM 5% -25W CC TUBULAR RESISTOR 200 0HM 5% -25W CC TUBULAR RESISTOR 200 0HM 5% -25W CC TUBULAR RESISTOR 1K 5% -25W CC TUBULAR RESISTOR 20K 5% -25W CC TUBULAR	01121 01121 01121 01121 01121 01121	CR2015 CR2015 CR2015 CB2015 CB1025 CR2035
A 1R 36 A 1R 37 A 1R 38 A 1R 39 A 1R 40	0683-1015 0683-2025 0683-1025 0683-2715 0683-1505	2 1 1	RESISTOR 100 0HM 5% -25W CC TUBULAR RESISTOR 2K 5% -25W CC TUBULAR RESISTOR 1K 5% -25W CC TUBULAR RESISTOR 270 0HM 5% -25W CC TUBULAR RESISTOR 15 0HM 5% -25W CC TUBULAR	01121 01121 01121 01121 01121 01121	CB1015 CB2025 CB1025 CB1025 CB2715 CB1505
A LR 41 A LR 42 A LP 43 A LP 44 A LR 45	0683-3305 0683-3305 0683-3305 0683-3305 0683-3305 0683-3305	7	RESISTOR 33 OHM 5% -25W CC TUBULAR RESISTOR 33 OHM 5% -25W CC TUBULAR	01121 01121 01121 01121 01121 01121	C83305 C93305 C83305 C83305 C83305 C83305
A1R46 A1F47 A1F48 A1F49 A1F50	0683-3305 0683-3305 0683-1005 0683-2025 2100-3416	1	RESISTOR 33 OHM 5% -25W CC TUBULAR RESISTOR 33 OHM 5% -25W CC TUBULAR RESISTOR 10 OHM 5% -25W CC TUBULAR RESISTOR 2K 5% -25W CC TUBULAR RESISTOR, VAR 250K OHM	01121 01121 01121 01121 01121 28480	C83305 C83305 C81005 C82025 C82025 2100-3416
A1R51 AIR52 AIR53 A1R54 A1R55 A1R66m A1R66m A1R51	0683-5125 0683-5125 0683-5125 0683-1025 2100-1738 0683-1015	3	(INCLUDES SIA, B, C) RESISTOR 5-1K 5% -25W CC TUBULAR RESISTOR 5-1K 5% -25W CC TUBULAR RESISTOR 5-1K 5% -25W CC TUBULAR RESISTOR 1K 5% -25W CC TUBULAR RESISTOR; VAR; TRMR; 10K0HM 10% C RESISTOR; 100 OHM 5% .25W CC TUBULAR PART OF A1R50: NSR	01121 01121 01121 01121 19701 01121	C85125 C85125 C85125 C81025 ET50M103 CB1015
A152 A171	3101-0684 9100-3012	1	SWITCH; SL; OPDT NS: 1A 125VAC TRANSFORMER:DRIVER	28480	3101-0684
A1T2 Alui	9100-3011	1	TRANSFORMER	28480 28480	9100-3012 9100-3011
A1U2 A1U3 A1U4 A1U5	1820-0633 1820-1166 1816-0412	1 1 1	IC DGTL COUNTER IC:M.O.S. TIME BASE IC DGTL DMB5L 51N FLIP-FLOP NOT ASSIGNED IC DGTL MEMORY	28480 28480 27014 28480	1820-0634 1820-0533 DM85L51N 1816-0412
A1U6 A1U7 A1U8 A1U9 A1U10 'A1U11 A1U12 A1U12 A1U13 A1U14 A1U15 A1U15 A1U15 A1U16 A1XA2 A1XU5 A1XU9	1 820-1251 1 820-0214 1 820-0214 1 820-0632 or 1 820-0370 1 820-0370 1 820-0370 1 820-1370 1 820-0370 1 820-0585 1 820-0318 1 251-3506 1 200-0473 1 200-0625		IC DGTL SN74LS196 N COUNTER IC DGTL SN74 42 N DECODER IC DGTL SN74 93 N COUNTER IC LISI CONTROL IC DGTL SN74H 50 N GATE IC DGTL SN74H 50 N GATE IC DGTL SN74H 70 N GATE IC DGTL SN74H 70 N GATE IC DGTL SN74H 71, HEX INVERTER IC DGTL SN74 46AN DECODER IC DGTL DM74L 03N GATE CNYSTAL OSCILLATOR CONNECTOR: 12-CONT; FEM: POST TYPE SOCKET: ELEC: IC 16-CONT DIP SUDR TERM SOCKET: ELEC: IC 20-CONT DBL STRP PKG	01295 01295 01295 28480 01295 01295 01295 07263 01295 27014 28480 28480 28480 00779	SN74LS196N SN7442N SN7493N 1820-052 or 1820-1790 SN74H50N SN74H50N SN74H50N SN74H00N 74LS14N 93L12DC SN746AN DM74L03N 0960-0318 1251-3506 1200-0473 583640-2

Table 6-1B. 5300B Option 001, Replaceable Parts (Cont'd)

NOT USED IN SERIES 1452A INSTRUMENTS WITH OPTION 001.

Table 6-2. Replaceable Parts for 5310A

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A1	05310-60002	1	BOARD ASSY: INTERCONNECT	28480	05310-60002
111	1251-0099	L	CONNECTOR:R & P 50 CONTACT (Male, Bottom)	02660	57-10500-375
A1P1	1251-0101	1	CONNECTOR:R & P 50 CONTACT (Female, Top)	02660	57-20500-375
A2	05310-60001	1	BOARD ASSY:POWER SUPPLY	28480	05310-60001
A 2C 2 A 2C 8 1	0180-2373 1901-0028	2 2	C:FXD AL ELECT 580 UF ∻150-10% 35¥0C₩ DI0DE:SILICON 0.75A 400PIV	90201 04713	TT581H035P3E1N SR1358-9
A 2C R 2 A 2C R 3 A 2C R 4 A 2D S 1 A 2F 1	1902-0693 1901-0044 1901-0028 1990-0325 2110-0332	1 1 1	DIODE BREAKDOWN DIODE:SILICON 20MA/1¥ DIODE:SILICON 0.75A 400PIV DIODE:VISIBLE LIGHT EMITTER (L.E.D.) FUSE:3A	28480 28480 04713 28480 71400	1902-0693 1901-0044 SR1358-9 1990-0325 GMW 3
A2J1 A2J2 A2Q1 A2Q2 A2Q2	1251-1636 1251-1636 1853-0866 1853-0086 1853-0086	2 3	CONNECTOR:SINGLE MALE CONTACT CONNECTOR:SINGLE MALE CONTACT TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP	28486 28486 80131 80131 80131	1251-1636 1251-1636 2N5087 2N5087 2N5087 2N5087
A 2R1 A 2R2 A 2R3 A 2R4 A 2R5	0683-2745 0813-0034 0683-3935 0761-3015 0683-3315	1 1 1 1	R:FXD COMP 270K 0HM 5% 1/4W R:FXD WW 1.8 0HM 3% 1W R:FXD COMP 39K 0HM 5% 1/4W R:FXD COMP 39K 0HM 5% 1W R:FXD COMP 330 0HM 5% 1/4W	01121 28480 01121 28480 01121	C8 2745 081 3- CC34 C8 3935 0761-C015 C8 3315
A2R6 A2R7 A2R8 A2R8 A2R8 A2R8	0693-3547 0683-5115 0683-2015 0550-0051 2200-0103	1 1 2 14	R:FXD COMP 1 OHM 5% 1/2W R:FXD COMP 510 OHM 5% 1/4W R:FXD COMP 200 OHM 5% 1/4W SCREW:PAN HO POZI OR 3-48 X 0.375" LG SCREW:SST PHH POZI OR 4-40 X 1/4"W/LK	01121 01121 01121 0000C 0000C	EB 1065 CB 5115 CB 2015 D80 OB0
A2R8 A2R8 A2R8 A2R8 A2R8 A2S1	2200-0107 2200-0164 2360-0113 2360-0117 3101-0543	5 12 3 6 1	SCREW:POZI OR 4-40 X 3/8 W/LOCK SCREW:FLAT HO POZI 4-40 X 3/16 SCREW:PAN HD POZI 6-32 X 1/4 W/LK SCREW:PAN HD POZI 6-32 X 3/8 W/LK SWITCH:SLIDE DP3T MINIATURE	00000 00000 00000 00000 78488	060 080 080 080 080 S S - 93
			CHASSIS AND MISCELLANEOUS PARTS		
8T1 MP1 MP2 MP3 MP4 MP4	1420-0084 OR 1420-0209 1440-0075 1440-0096 1440-0397 5040-6600 05300-80004	5 5 1 1 2 2	BATTERY:2.50V BATTERY:2.50V CARRY STRAP HANDLE:STRAP HANDLE:SHOULDER CATCH:LEFT SIDE COVER:PLASTIC PROTECTIVE	05397 28480 28480 2848C 2848C 2848C 2848C 2848C	Y5916 1420-0209 1440-6075 1440-0096 1440-0097 5640-6000 05300-80004
нр5 Мр6 Мр7 Мр8 Nр9	504C-7001 0531C-00001 0531C-0002 05310-00011 05310-00004	2 1 1 1 1	CATCH:RIGHT SIDE PANEL:FRONT PANEL:REAR PANEL:SUB BRACKET:LEFT	28480 28480 28480 28480 28480 28480	5040-7001 05310-00001 05310-00002 05310-00002 05310-00004
MP10 MP11 MP12 MP13 MP14	65310-00005 65310-00006 65310-00007 05310-00008 05310-40001	1 1 1 4	CASE:BATTERY HOLDER:BATTERY COVER:BATTERY BRACKET:RIGHT GUIDE:SLIDE	28480 28480 28480 28480 28480 28480	05310-00005 05310-06006 05310-00007 05310-00008 05310-40061
MP15 MP16 MP17 MP18 MP19 MP20 Q3	05310-20005 0340-0765 1400-0808 3050-0791 05310-00012 1460-1312 1854-0420 1400-0665	2 1 1 1 1 1	FRAME:SIDE INSULATOR:TRANSISTOR MOUNTING CLIP WASHER:SHOULDER 0.115" ID, NYLON PANEL:SUB SPRING:LEAF TSTR:SINPN CLIP, LED MTG	28480 61295 28480 28480 28480 28480 28480 28480 28480	05310-20005 A-0340-0765-1 1400-0808 3050-0791 05310-00012 1460-1312 1854-0420 1400-0665

See introduction to this section for ordering information

ø

Mfr. No. Manufacturer Name, Address, and Zip Code 00000 U.S.A. Common, Any Supplier of U.S.A. 00779 Amp Inc., (Aircraft Marine Prod.), Harrisburg, Pa. 17101 01121Allen Bradley Co., Milwaukee, Wis. 53204 01295Texas Instruments, Inc., Semiconductor Components Div., Dallas, Tex. 75231 02660 Amphenol Corp., Broadview, Ill. 60153 04713 Motorola Semiconductor Prod. Inc., Phoenix, Ariz. 85008 05397 Union Carbide Corp. Elect. Div., New York, N.Y. 10017 05574Viking Ind. Inc., Chatsworth, Calif. 91311 05820 Wakefield Engineering Inc., Wakefield, Mass. 01880 07263 Fairchild Camera and Inst. Corp. Semiconductor Div., Mountain View, Ca. 94040 12040National Semiconductor Corp., Danbury, Conn. 06810 16299 Corning GL WK Elec. Component Div., Raleigh, N.C. 27604 19701 Mepco/Electric Corp., Mineral Wells, Tex. 76067 23880 Stanford Applied Engrg., Santa Clara, Calif. 95050 24226 Gowanda Electronics Corp., Gowanda, N.Y. 14070 24546 Corning Glass Works, Bradford, Pa. 16701 24931Specialty Connector Co. Inc., Indianapolis, In. 46227 27014 National Semiconductor Corp., Santa Clara, Ca 95051 28480 Hewlett-Packard Co., Corporate Hq., Your Nearest HP Office 56289 Sprague Electric Co., N. Adams, Mass. 01247 70903 Belden Corp., Chicago, Ill. 60644 70998 Bird Electronics Corp., Cleveland, Ohio 44139 71400 Bussmann Mfg. Div. McGraw-Edison Co., St. Louis, Mo. 63017 71616 Commercial Plastics Co., Mundelein, Ill. 60060 71785Cinch Mfg. Co. Div. TRW Inc., Elk Grove Village, Ill. 72136Electro Motive Mfg. Co. Inc., Willimantic, Conn. 06226 72982 Erie Technological Prod. Inc., Erie, Pa. 16512 73899 JFD Electronics Corp., Brooklyn, N.Y. 11219 74868 Amphenol Corp. RF Div., Danbury, Conn. 06810 75915 Littlefuse Inc., Des Plaines, Il. 60016 78488 Stackpole Carbon Co., St. Marys, Pa. 15857 78553 Tinnerman Products Inc., Cleveland, Oh. 44129 80131 Electronic Industries Association, Washington, D.C. 20006 82389 Switchcraft Inc., Chicago, Ill. 60630 90201 Mallory Capacitor Co., Indianapolis, Ind. 46206 96733 San Fernando Elect. Mfg. Co., San Fernando, Calif. 91341

Table 6-3. Code List of Manufacturers

Figure 6-1. 5300B Mainframe Mechanical Parts

Figure 6-2. 5310A Battery Pack Mechanical Parts

SECTION VII

MANUAL CHANGES AND OPTIONS

7-1. INTRODUCTION

7-2. This section contains information necessary to adapt this manual to apply to older instruments. Also included is information regarding available options.

7-3. 5300A MEASURING SYSTEM

7-4. The 5300A Measuring System is completely described in a separate manual.

7-5. OPTIONS

7-6. One option is available for the 5300B: Option 001 High Stability Time Base (temperature compensated crystal oscillator — TCXO). See Table 1-3 for specifications.

7-7. FIELD INSTALLATION OF OPTION 001

7-8. Option 001, TCXO, field installation procedure is given in the following steps:

a. Disconnect the power cable from the 5300B. (Safety precaution.)

b. Refer to INSTRUMENT ACCESS paragraph in Section V and perform steps a through e-3.

CAUTION

Refer to the MAINTENANCE AND RE-PAIR paragraphs in Section V for instructions about component removal and replacement.

c. Refer to Figure 7-1 or 8-4, depending upon instrument serial prefix number, and remove and install components indicated on figure.

d. Reverse the procedure steps a and b to make the 5300B ready to be used after installation of the TCXO.

7-9. MANUAL CHANGES

7-10. This manual applies directly to Model 5300B Measuring Systems with serial number prefix 1452A or 1636A and to Model 5310A Battery Packs with serial number prefix 1312A. For information about manual changes for newer or older units, refer to the following paragraphs.

7-11. Newer Instruments

7-12. As engineering changes are made, newer instruments may have serial prefix numbers higher than those listed on the title page of this manual. The manuals for these instruments will be supplied with "manual changes" sheets containing the required information. Replace affected pages or modify existing manual information as directed in the "manual changes" pages. Contact the nearest Hewlett-Packard Sales and Service Office if the change information is missing.

7-13. Older Instruments (5310A Battery Packs)

7-14. The following paragraphs list the manual changes required to backdate this manual to cover Model 5310A Battery Packs with lower serial number prefixes than those listed on the title page of this manual. Make the manual changes given in the paragraph that corresponds to the serial number prefix of your instrument.

7-15. 5310A, serial prefix 1232A. On Page 6-7, Table 6-2, delete the entries for MP8 and MP19; add the following: "MP8 05310-00003, 1, PANEL:SUB, 28480, 05310-00003".

7-16. 5310A, serial prefix 1128A. Make the changes given in Paragraph 7-9. On these and older instruments two-piece catch-slides were used in place of the newer one-piece parts listed on Page 6-7, Table 6-2 (MP4 and MP5). The newer parts (part numbers 5040-6000 and 5040-7001) should be used, however, if replacement is required.

7-17. Older Instruments (5300B)

7-18. Table 7-1 lists changes required to backdate this manual to cover Model 5300B's with lower serial number prefixes than those listed on the title page of this manual. Make the manual changes given in Table 7-1 that correspond to the serial prefix of your instrument.

Table 7-1. 5300B Backdating

lf your 5300B has Serial Prefix	Make the following changes to your Manual
1420A or 1428A	1
1452A or 1636A	2 (See Note 7 on Figure 8-8)

CHANGE 1

Replace Table 6-1A and B with Table 7-2. Replace Figure 8-4 with Figure 7-1. Replace Figure 8-6 with Figure 7-2. Replace Figure 8-7 with Figure 7-3.

CHANGE 2

Pages 6-3 and 6-7, Tables 6-1A and 6-1B, Replaceable Parts:

Change series number for A1 assemblies (05300-60017 and 05300-60020) to SERIES 1524A or 1636A.

CHANGE 2 (Cont'd)

Pages 6-3 and 6-7, Tables 6-1A and 6-1B, Replaceable Parts (Cont'd):

Change A1R27 on both assemblies from 0683-8215 (820 Ω) to 0683-6215; RESISTOR 620 OHM 5% .25W CC TUBULAR; 01121; CB6215.

Page 8-9, Figure 8-8, Schematic Diagram: Change both series number for A1 (05300-60017 and 05300-60020) to "1452A or 1636A".

Change A1R27 from 820 to 620 ohms.

Models 5300B and 5310A Manual Changes and Options

Table 7-2. 5300B Replaceable Parts (A1 Series 1420A and 1428A)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
***************************************			STANDARD OSCILIATOR		
1	05300-60017	1	BOARD ASSY, LOGIC (SERIES 1420A OR 1428A)	28480	05300-60017
101	0180-0229 0150-0050	1 1	CAPACITOR-FXD: 330F+-10% 10VDC TA-SOLID CAPACITOR-FXD 1000PF +80-20% 1000WVDC		150D336X9010B2 0150-0050
A1C3	0150-0071	2	CAPACITOR-FXD 400PF +-5% 1000WVDC CER CAPACITOR-FXD 4700PF +100-20% 500WVDC		0150-0071 0150-0075
A1C4 A1C5	0150-0075 0150-0075	2	CAPACITOR-FXD 4700PF +100-20% 500WVDC		0150-0075
A1C6	0180-2357	1 2	CSFXD TA 950 UF 90 VDCW CAPACITOR-FXD.01 #F 100V	26480 26480	0180-2357 0160-2055
A1C7 ** A1C8 **	0160-2055 0160-0161	1	CAPACITOR-FXD .DIUF +-10% 200WVDC POLYE	56289 28480	292P10392 0150-0096
A1C9 A1C10++	0150-0096 0121-0061	1 1	CAPACITOR-FXD .05UF +80-203 100WVDC CER CAPACTOR; VAR; TRMR; CER; 5.5/18PF	28480	0121-0061
A1C11**	0121-0059	1	CAPACITOR: VAR: TRMR; CER: 2/8PF	73899 28480	DV11PRBA 0160-2257
A1C12** A1C13	0160-2257	1	CAPACITOR-FXD 10PF +-5% 500WVDC CER CAPACITOR-FXD -01UF +-20% 1004VDC CER	28480	0160-3879
A 1C 14 A 1C 15	0150-0071 0160-2055		CAPACITOR-FXD 400PF +-5% 1000WVDC CER CAPACITOR-FXD 01 µF 100V	23480 28480	0150-0071 0160-2055
A1C16	0180-1773	1	CAPACITOR-FXD; .68UF 4-5% 35VDC TA	56289	150D684X5035A2-DYS
A1C17	0180-0428 0180-0557	2	CAPACITOR-FXD: 68UF+-20% 6VDC TA-SOLID CAPACITOR-FXD 150UF +100-10% 6VDC AL	28480 90201	0180-0428 MTV150CD6
A1C18 A1C19	0180-0554	1 2	CAPACITOR-FXD; 150 UF +- 20% 6VDC TA-SOL ID CAPACITOR-FXD 35 UF +100-10% 25 VDC AL	28480 90201	0180-0554 MTV35CB25
A 1C 20	0180-0551		CAPACITOR-FXD 350F +100-108 25VDC AL	90 20 1	MTV35C825
A 1C 21 A 1C 22	0180-0551 0180-0557		CAPACITOR-FXD 1500 + 100-10% 4VDC AL CAPACITOR-FXD 1500F + 100-10% 4VDC AL CAPACITOR-FXD: .330F+-20% 35VDC TA	90201 56239	MTV1 500 06 1 500 334 X003 542
A1C23 A1C24	0180-0195 0180-0552	1 2	CAPACITOR-FXD: 220UF+-20% LOVDC TA	28480 28480	0180-0552 0180-0552
A1C25	0180-0552	4	CAPACITOR-FXD: 220UF+-20% 10VDC TA	28480	0180-0428
A1C26 A1C27	0180-0428 0180-0553	2	CAPACITOR-FX0; 680F+-20% 6VDC TA-SOLID CAPACITOR-FXD; 220F+-20% 25VDC TA-SOLID	28480	0180-0553
A1C28 A1C29	0180-0553 0180-0161	1	CAPACITOR-FXD: 22UF+-20% 25VDC TA-SOLID CAPACITOR-FXD: 3.3UF+-20% 35VDC TA	28480 56289	0180-0553 150D335X0035B2
A1C30			NOT ASSIGNED		
ALCRI	1901-0028	7	DIODE-PWR RECT 400V 750MA	04713	SR1358-9
A1CR2	1901-1081 1901-0028	2	DIODE-PWR RECT 100V 3A DIODE-PWR RECT 400V 750MA	28480 04713	1901-1381 SR1358-9
A1CR3 A1CR4	1901-1081 1901-0028		DIODE-PWR RECT 100V 3A DIODE-PWR RECT 400V 750MA	28480 04713	1901-1081 SR1358-9
A1CR5			DIDDE-PWR RECT 400V 750MA	04713	SR1358-9
ALCR6 ALCR7	1901-0028 1901-0028		DIODE-PWR RECT 400V 750MA DIODE-ZNR 15V 5% 00-7 PD=.4W TC=+.057%	04713 04713	SR1358-9 SZ 10939-233
A1CR8 A1CR9	1902-3205 1901-0050	1 2	DIODE-SNITCHING 2NS 80V 200MA DIODE-ZNR 68.1V 5% DG-7 PD=-4W	28480 04713	1901-0050 SZ 10939-422
AICRIO	1902-3381	1		04713	\$R1358-9
A1CR11 A1CR12	1901-0028		DIODE-PWR RECT 400V 750MA DIODE-PWR RECT 400V 750MA	04713	\$R1358-9
A1CR13 A1J1	1251-2564	1 1	NOT ASSIGNED CONNECTOR, 50-CONT, MALE, MICRO RIBBON	71785	57-10500-27
A1L1	9100-3139	5	COIL:75 UH	29480	9100-3139 9100-3139
A1L2 A1L3	9 100-31 39 9 100-31 39		COIL:75 UH COIL:75 UH	28480 28480	9100-3139
A1L4 A1L5	9 100-31 39 9 100-31 39	5	COIL:75 UH COIL:75 UH	28480 28480	9100-3139 9100-3139
A1L6	9140-0210	1	COIL; FXD; MOLDED RF CHOKE; 1000H 5%	24226	15/103
A1Q1	1854-0215	2	TRANSISTOR NPN SI PD=310MW FT=300MHZ	04713	SPS 3611
A192	1853-0318 1853-0318	8	TRANSISTER PNP SI CHIP PD=500MW TRANSISTER PNP SI CHIP PD=500MW	28480 28480	1853-0318 1853-0318
A103 A104	1853-0318 1853-0318 1853-0318	1	TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=500MW	28480 28480	1853-0318 1853-0318
A1Q5			TRANSISTOR PNP SI CHIP PD=500MW	28480	1853-0318
A196 A197	1853-0318 1853-0318		TRANSISTOR PNP SI CHIP PO=500MW TRANSISTOR PNP SI CHIP PO=500MW	28480 28480	1853-0318 1853-0318
A108 A109	1853-0318 1853-0318		TRANSISTOR PNP SI CHIP PD=500MW TRANSISTOR PNP SI CHIP PD=200MW	28480 28480	1853-0318 1853-0015
A1Q10 **	1853-0015	2		28480	1853-0015
A1Q11 ** A1Q12	1853-0015 1853-0036	3	TRANSISTOR PNP SI CHIP PD=200MW TRANSISTOR PNP SI CHIP PD=310MW	28480	1853-0036 1853-0036
A1Q13 A1Q14	1853-0036 1853-0036		TRANSISTOR PNP SI CHIP PD=310MW TRANSISTOR PNP SI CHIP PD=310MW	28480	1853-0036 SP\$ 3611
A1015	1854-0215		TRANSISTOR NPN SI PD=310MW FT=300MHZ	04713	
A1016 A1017	1854-0492 1854-0437	1	TRANSISTOR NPN SI PD=350MW FT=250MHZ TSTR:SI NPN	28480 28480	1854-0492 1854-0487
A1017 A1017 A1R1	0340-0765 0683-2025	3	INSULATOR-XSTR RESISTOR 2K 5% .25% CC TUBULAR	28480 01121	0340-0765 C82025
A1R2	0683-6215 0683-3915	1	RESISTOR 620 OHM 5% +25W CC YUBULAR RESISTOR 390 OHM 5% +25W CC YUBULAR	01121 01121	C86215 C83915
AlR3 AlR4	0683-1035	4	RESISTOR LOK 5% 2.25W CC TUBULAR CIRCUIT; PSIV: NON-RPRABLE IN	01121 28480	C81035 1810-0055
AIRS	1810-0055	1 -	Same and a local state of the second state of the		

**NOT INCLUDED IN OPTION 001

Models 5300B and 5310A Manual Changes and Options

Table 7-2. 5300B Replaceable Parts (A1 Series 1420A and 1428A) (Cont'd)

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1R6 AIR7 A1R8 A1R9 ** A1R10 **	0683-1035 0683-1035 0683-1055 0683-1555 0683-1525 0698-4037	1 5 1	RESISTOR 10K 5% -25W CC TUBULAR RESISTOR 10K 5% -25W CC TUBULAR RESISTOR 1M 5% -25W CC TUBULAR RESISTOR 1.5K 5% -25W CC TUBULAR RESISTOR 1.5K 5% -25W CC TUBULAR RESISTOR 46.4 0HM 1% -125W F TUBULAR	01 121 01 121 01 121 01 121 01 121 16 29 9	CB1035 CB1035 CB1055 CB1055 CB1525 C4−1/9−T0−\$68\$-F
A1R11 ** A1R12 ** A1R13 A1R14 A1R15	0683-1025 0683-1525 0683-1525 0683-1035 1810-0055	4	RESISTOR 1K 5% .25W CC TUBULAR RESISTOR 1.5K 5% .25W CC TUBULAR RESISTOR 1.5K 5% .25W CC TUBULAR RESISTOR 10K 5% .25W CC TUBULAR CIRCUIT; PSIV; NON-RPRABLE IN	01121 01121 01121 01121 01121 28480	C81025 C81525 C81525 C81035 C81035 L810-0055
A1R16 A1R17 A1R18 A1R19 A1R19 A1R20	0683~7515 0683~2015 0683-2015 0683~2015 0683~2015 0683~2015	2 8	RESISTOR 750 OHM 5% .25W CC TUBULAR RESISTOR 200 OHM 5% .25W CC TUBULAR	01121 01121 01121 01121 01121 01121	C87515 C82015 C82015 C82015 C82015
A1R21 A1R22 A1R23 ** A1R24 ** A1R25 **	0683-7515 0683-1525 0683-1525 2100-2061	-	RESISTOR 750 GHM 53 .25W CC TUBULAR NOT ASSIGNED RESISTOR 1.5K 53 .25W CC TUBULAR RESISTOR 1.5K 53 .25W CC TUBULAR RESISTOR, VAR 200 GHM	01121 01121 01121 28480	C87515 C81525 C81525 2100-2061
A1R26 ** A1R27 A1R28 A1R29 A1R30	0663-2715 0683-5115 0683-1025 0683-2035 0683-2015	2 1 2	RESISTOR 270 OHM 5% "25W CC TUBULAR RESISTOR 510 OHM 5% "25W CC TUBULAR RESISTOR 1K 5% "25W CC TUBULAR RESISTOR 20K 5% "25W CC TUBULAR RESISTOR 200 OHM 5% "25W CC TUBULAR	01 121 01 121 01 121 01 121 01 121 01 121	C82715 C85115 C81025 C82035 C82015
A 1R 31 A 1R 32 A 1R 33 A 1R 34 A 1R 35	0683-2015 0683-2015 0683-2015 0683-2015 0683-1025 0683-2035		RESISTOR 200 OHM 5% •25W CC TUBULAR RESISTOR 200 OHM 5% •25W CC TUBULAR RESISTOR 200 OHM 5% •25W CC TUBULAR RESISTOR 1K 5% •25W CC TUBULAR RESISTOR 20K 5% •25W CC TUBULAR	01121 01121 01121 01121 01121 01121	CB2015 CB2015 CB2015 CB2015 CB1025 CB1025 CB2035
A1R 36 * A1R 37 A1R 38 A1R 39 A 1R 40	0684-0271 0533-2025 0683-1025 0683-2715 0683-1505		RESISTOR 2.7 OHM 10%.25W CC TUBULAR RESISTOR 2K 5%.25W CC TUBULAR RESISTOR 1K 5%.25W CC TUBULAR RESISTOR 270 OHM 5%.25W CC TUBULAR RESISTOR 15 OHM 5%.25W CC TUBULAR	01121 01121 01121 01121 01121 01121	CB27G1 CB2025 CB1025 CB1025 CB2715 CB2715 CB1505
A1R41 A1R42 A1R43 A1R44 A1R45	0683-3305 0683-3305 0683-3305 0683-3305 0683-3305 0683-3305		RESISTOR 33 OHM 5% -25H CC TUBULAR RESISTOR 33 OHM 5% -25W CC TUBULAR	01121	C83305 C83305 C83305 C83305 C83305 C83305
A 1R 46 A 1R 47 A 1R 48 A 1R 49 A 1R 50	0683-3305 0683-3305 0683-1005 0683-2025 2100-3416	1	RESISTOR 33 OHM 5% -25W CC TUBULAR RESISTOR 33 OHM 5% -25W CC TUBULAR RESISTOR 10 OHM 5% -25W CC TUBULAR RESISTOR 2K 5% -25W CC TUBULAR RESISTOR, VAR 250K OHM (INCLUDES SIA,8,C)	01121 01121	C83305 C83305 C81005 C82025 2100-3416
A1S1 A1S2	3101-0684		PART OF A1R50: NSR Switch; SL; DPDT NS; 1A 125VAC	28480	3101~0684
A171 A172	9100-3012 9100-3011	1	TRANSFORMER: ORIVER	28480	9100-3012 9100-3011
A1U2 RS A1U3 RS	1820-0634 1820-0633 1820-1166 1820-0806 1816-0412	1 1 1	IC DGTL CDUNTER IC:M.J.S. TIME BASE IC DGTL DM85L 51N FLIP-FLDP IC DGTL MC10109L GATE	28480 28480 27014 04713	1820-0634 1820-0633 DM95L51N MC10109P 1816-0612
A1U6 RS A1U7 RS A1U3 RS A1U9 RS A1U9 RS A1U10	1820-1251 1820-0214 1820-0099 1820-0632 1820-0377	1	IC DGIL SN74 42 N DECODER IC DGIL SN74 93 N COUNTER IC:LSI CONTROL	01295 01295 28480	74L S1 96N SN7442N SN7493N 1820-06 32 SN74H50N
A1U11 A1U12 A1U13 RS A1U14 RS A1U15	1820-0370 1820-0586 1820-0658 1820-1037 1820-0585		IC DGTL DM74L 04N INVERTER IC DGTL MULTIPLEXER IC DGTL SN74 46AN DECODER	27014 07263 01295	SN 74H OON DM 74L O4N 931 I 20C SN 744 6AN M 74L 03N
A1XU5	1 25 1-3506 1200-0473 1 200-0525		COCKET: ELEC: IC 16-CONT DOUBLE STRIPPKG		1251-3506 821-20012-164
41Y1 **	0410-0423		DVCTAL AGUADT 2		583640-2 0410-0423
	0905-0479	1 G	ASKET TEPLON, (AA IA MICH -		9905-0479
141	05300-60018	1 8	DARD ASSY, DISPLAY	28480 (95300-60018
RS = RECOMMENDED SPARE PART					

*FACTORY SELECTED PART (Replace with original value) *NOT INCLUDED IN OPTION 601

FIELD CONVERSION FOR ADDING OPTION 001 (Series 1420A and 1428A)

The following parts are required for field conversion of series 1420A or 1428A Part No. 05300-60017 circuit boards into Part No. 05300-60020 circuit boards with Option 001:

A1C30	0140 - 0192	C: fxd 68 pF 5% 300 Vdcw
A1C31	0180 - 0428	C: fxd 68 µF 20% 6 Vdcw solid tantalum
A1CR13	1901-0040	Diode, Si: switching
A1R36	0683-2015	R: fxd comp 200 ohm 5% 1/4W
A1L7	9140-0210	Coil: fxd molded 100 µH 5%
A1U16	0960-0318	Oscillator Assembly: TCXO

- 1. Remove components C7, C8, C10, C11, C12, R9, R10, R11, R12, R23, R24, R25, R26, R36, Q10, Q11, Y1, and U4 shown in above figure.
- 2. Install A1C30 (0140-0192) in holes adjacent to R37.
- 3. Add capacitor A1C31 (0180-0428) and A1L7 choke in holes provided near the edge of the circuit board.
- 4. Add diode A1CR13 and 200 ohm resistor for A1R36.
- 5. Add A1U16 Oscillator Assembly in area shown by dashed lines in the above illustration.
- 6. Change circuit board Part No. 05300-60017 to 05300-60020.

7. Check and adjust frequency of A1U16 oscillator assembly. Use the procedure given in paragraph 5-53. Set the oscillator to the frequency indicated by the marking on the case. When making frequency adjustments, be sure the ambient temperature is maintained as closely as possible to 25°C (77°F). Deviation in ambient temperature can cause the oscillator drift characteristics to exceed the specifications given in Table 1-4. Allow a warm-up time of at least one hour before making adjustments.

