HP 4395A Network/Spectrum/Impedance Analyzer Service Manual

SERIAL NUMBERS

This manual applies directly to instruments with serial number prefix JP1KE00276 or above. For additional important information about serial numbers, read "Serial Number" in Appendix A.

HP Part No. 04395-90110 Printed in Japan September 1998

Second Edition

Notice

The information contained in this document is subject to change without notice.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of the Hewlett-Packard Company.

Hewlett-Packard Japan, LTD. Kobe Instrument Division 1-3-2, Murotani, Nishi-Ku, Kobe-shi, Hyogo, 651-2241 Japan

Manual Printing History

The manual's printing date and part number indicate its current edition. The printing date changes when a new edition is printed. (Minor corrections and updates that are incorporated at reprint do not cause the date to change.) The manual part number changes when extensive technical changes are incorporated.

February 1998	First Edition
September 1998Se	econd Edition

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific *WARNINGS* elsewhere in this manual may impair the protection provided by the equipment. In addition it violates safety standards of design, manufacture, and intended use of the instrument.

The Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

Note	HP 4395A comply with INSTALLATION CATEGORY II and POLLUTION DEGREE 2 in IEC1010-1. HP 4395A are INDOOR USE product.
Note	LEDs in HP 4395A are Class 1 in accordance with IEC825-1. CLASS 1 LED PRODUCT

Ground The Instrument

To avoid electric shock hazard, the instrument chassis and cabinet must be connected to a safety earth ground by the supplied power cable with earth blade.

DO NOT Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with the power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute parts or perform unauthorized modifications to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

Safety Symbols

General definitions of safety symbols used on equipment or in manuals are listed below.

\wedge	Instruction manual symbol: the product is marked with this symbol when it is necessary for the user to refer to the instruction manual.
\sim	Alternating current.
===	Direct current.
I	On (Supply).
0	Off (Supply).
Д	In position of push-button switch.
Π	Out position of push-button switch.
<i>.</i>	Frame (or chassis) terminal. A connection to the frame (chassis) of the equipment which normally include all exposed metal structures.
Warning	This Warning sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.
Caution	This Caution sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.
Note	This Note sigh denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight.
ice _	Affixed to product containing static sensitive devices use anti-static handling procedures to prevent electrostatic discharge damage to component.

Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institution's calibration facility, or to the calibration facilities of other International Standards Organization members.

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from the date of shipment, except that in the case of certain components listed in *General Information* of this manual, the warranty shall be for the specified period. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instruction when property installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

Limitation Of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside the environmental specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer's sole and exclusive remedies. HP shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

Typeface Conventions

Bold	Boldface type is used when a term is defined. For example: icons are symbols.
Italics	Italic type is used for emphasis and for titles of manuals and other publications.
	Italic type is also used for keyboard entries when a name or a variable must be typed in place of the words in italics. For example: copy <i>filename</i> means to type the word copy, to type a space, and then to type the name of a file such as file1.
Computer	Computer font is used for on-screen prompts and messages.
(HARDKEYS)	Labeled keys on the instrument front panel are enclosed in \bigcirc .
SOFTKEYS	Softkeys located to the right of the CRT are enclosed in

Documentation Map

The following manuals are available for the analyzer.

Operation Manual (HP Part Number 04395-90000)

The Operation Manual describes all function accessed from the front panel keys and softkeys. It also provides information on options and accessories available, specifications, system performance, and some topics about the analyzer's features.

Programming Manual (HP Part Number 04395-90001)

The Programming Manual shows how to write and use BASIC program to control the analyzer and describes how HP Instrument BASIC works with the analyzer.

HP Instrument BASIC Users Handbook (HP Part Number E2083-90005)

The HP Instrument BASIC User's Handbook introduces you to the HP Instrument BASIC programming language, provide some helpful hints on getting the most use from it, and provide a general programming reference. It is divided into three books, *HP Instrument BASIC Programming Techniques*, *HP Instrument BASIC Interface Techniques*, and *HP Instrument BASIC Language Reference*.

Service Manual (Option 0BW only), (HP Part Number 04395-90110)

The Service Manual explains how to adjust, troubleshoot, and repair the instrument. This manual is option 0BW only.

Contents

1.	General Information	
	INTRODUCTION	1-1
	ORGANIZATION OF SERVICE MANUAL	1-1
	PERFORMANCE TESTS	1 - 3
	CALIBRATION CYCLE	1-4
	CALCULATION SHEET AND PERFORMANCE TEST RECORD	1-4
	Calculation Sheet	1-4
	Performance Test Record	1-4
	How to Use	1-4
	RECOMMENDED TEST EQUIPMENT	1-5
	Calibration Data Required for Step Attenuator	1-6
2 .	Performance Tests	
	INTRODUCTION	2-1
	1. FREQUENCY ACCURACY TEST (NA)	2-2
	Description	2-2
	Specification	2-2
	Test Equipment	2-2
	Procedure	2-2
	2. SOURCE LEVEL ACCURACY/FLATNESS TEST (NA)	2-4
	Description	2-4
	Specification	2-4
	Test Equipment	2-4
	Procedure	2-4
	3. NON-SWEEP POWER LINEARITY TEST (NA)	2-8
	Description	2-8
	Specification	2-8
	Test Equipment	2-8
	Procedure	2-8
	4. POWER SWEEP LINEARITY TEST (NA)	2 - 11
	Description	2 - 11
	Specification	2 - 11
	Test Equipment	2 - 11
	Procedure	2 - 11
	5. HARMONICS/NON-HARMONIC SPURIOUS TEST (NA)	2 - 14
	Description	2 - 14
	Specification	2 - 14
	Test Equipment	2 - 14
	Procedure	2 - 14
	6. DC BIAS TEST (NA) (Option 001)	2-17
	Description	2 - 17
	Specification	2 - 17
	Test Equipment	2 - 17
	Procedure	2-17
	7. RECEIVER NOISE LEVEL TEST (NA)	2-20
	Description	2-20

Specification	2-20
Test Equipment	2-20
Procedure	2 - 20
8. INPUT CROSSTALK TEST (NA)	$\frac{1}{2}$ -23
Description	$\frac{2}{2-23}$
Specification	2-23 2-23
Specification	2-23 2-23
Test Equipment	
Procedure	2-23
9. INPUT IMPEDANCE TEST (NA)	2-25
Description	2-25
Specification	2-25
Test Equipment	2-25
Procedure	2-25
10. ABSOLUTE AMPLITUDE ACCURACY TEST (NA)	2-29
Description	2-29
Specification	$\frac{1}{2}$ -29
Test Equipment	$\frac{2}{2}$ -29
Procedure	2-29 2-29
11. MAGNITUDE RATIO/PHASE DYNAMIC ACCURACY TEST (NA)	$\frac{2-29}{2-34}$
Description	2-34
Specification	2-34
Test Equipment	2-34
Procedure	2-35
12. MAGNITUDE RATIO/PHASE FREQUENCY RESPONSE TEST (NA)	2-42
Description	2-42
Specification	2-42
Test Equipment	2-42
Procedure	2-42
13. DISPLAYED AVERAGE NOISE LEVEL TEST (SA)	$\frac{2}{2}.47$
	2-47
	2-47 2-47
Specification	
Test Equipment	2-47
Procedure	2-47
14. AMPLITUDE FIDELITY TEST (SA)	2-50
Description	2-50
Specification	2-50
Test Equipment	2-50
Procedure	2-51
15. INPUT ATTENUATOR SWITCHING UNCERTAINTY TEST (SA)	2-54
Description	2-54
Specification	2-54
Test Equipment	2-54
Procedure	$\frac{2}{2}.54$
16. NOISE SIDEBANDS TEST (SA)	$\frac{2}{2}.57$
	$\frac{2-57}{2-57}$
Description	
Specification	2-57
Test Equipment	2-57
Procedure	2-57
17. AMPLITUDE ACCURACY/FREQUENCY RESPONSE TEST (SA)	2-61
Description	2-61
Specification	2-61
Test Equipment	2-61
Procedure	2-61
18. SECOND HARMONIC DISTORTION TEST (SA)	$\frac{-}{2-67}$
Description	$\frac{2}{2-67}$
2 computer in the transmission of transmission of the transmission of transmission	<u> </u>

	Specification	2-67
	Test Equipment	2-67
	Procedure	2-67
	19. THIRD ORDER INTERMODULATION DISTORTION TEST (SA)	2-69
	Description	2-69
	Specification	2-69
	Test Equipment	$\frac{1}{2}$ -69
	Procedure	$\frac{2}{2}-69$
	20. OTHER SPURIOUS (SA)	$\frac{2}{2}.72$
	Description	2-72
	Specification	2-72
		2-72
	Test Equipment	$\frac{2-72}{2-72}$
	Procedure	2-72 2-75
	21. RESIDUAL RESPONSE TEST (SA)	
	Description	2-75
	Specification	2-75
	Test Equipment	2-75
	Procedure	2-75
~		
3.	Calculation Sheet	
	INTRODUCTION	3-1
	2. SOURCE LEVEL ACCURACY/FLATNESS TEST	3-1
	Level Accuracy	3-1
	Level Flatness	3-2
	3. NON-SWEEP POWER LINEARITY TEST	3-3
	Reference (0 dBm)	3-3
	Non-Sweep Power Linearity	3-3
	4. POWER SWEEP LINEARITY TEST	3-4
	6. DC BIAS TEST (Option 001)	3-5
	DC Bias Voltage Level Accuracy	3-5
	DC Bias Current Level Accuracy	3-5
	7. RECEIVER NOISE LEVEL TEST	3-6
	8. INPUT CROSSTALK TEST	3-7
	$10 \text{ Hz} \ge \text{Freq.} > 1 \text{ kHz} \ldots \ldots$	3-7
	$1 \text{ kHz} \ge \text{Freq.} > 100 \text{ kHz}$	3-7
	$100 \text{ kHz} \ge \overline{\text{Freq.}} \ge 500 \text{ kHz}$	3-7
	10. ABSOLUTE AMPLITUDE ACCURACY TEST	3-8
	Input R	3-8
	Input A	3-9
	Input B	3-10
	11. MAGNITUDE RATIO/PHASE DYNAMIC ACCURACY TEST	3-11
	Step Attenuator Calibration Value at 50 MHz	3-11
	A/R Measurement	3-11
	B/R Measurement	3-11
	13. DISPLAYED AVERAGE NOISE LEVEL TEST	3-12
		3-12
		3-12
		3-12
	14. AMPLITUDE FIDELITY	3-13 3-14
	Step Attenuator Calibration Value at 50 MHz	3-14 3-14
		3-14 3-14
	Amplitude Fidelity	3-14 3-14
	Input R	3-14 3-14
	Input A	
	Input B	3-15
	Input R	3 - 15

	Input A	
	Input B	. 3-15
	15. INPUT ATTENUATOR SWITCHING UNCERTAINTY TEST	
	Step Attenuator Calibration Value at 50 MHz	
	Input Attenuator Switching Uncertainty	
	Input R	
	Input A	
	Input B	
	17. AMPLITUDE ACCURACY/FREQUENCY RESPONSE TEST	. 3-18
	Input R	. 3-18
	Reference at 50 MHz	
	At Frequencies ≥ 1 MHz \ldots	
	At Frequencies < 1 MHz	. 3-20
	Input A	
	Reference at 50 MHz	
	At Frequencies ≥ 1 MHz \ldots	
	At Frequencies < 1 MHz	
	Input B	
	Reference at 50 MHz	
	At Frequencies ≥ 1 MHz \ldots	
	At Frequencies $\overline{< 1}$ MHz	
	18. THIRD ORDER HARMONIC DISTORTION TEST	. 3-24
4.	Performance Test Record	
	1. FREQUENCY ACCURACY TEST	. 4-1
	without Option 1D5	
	with Option 1D5	4-1
	2. SOURCE LEVEL ACCURACY/FLATNESS TEST	-
	Level Accuracy	
	Level Flatness	
	3. NON SWEEP POWER LINEARITY TEST	
	4. POWER SWEEP LINEARITY TEST	
	5. HARMONICS/NON-HARMONIC SPURIOUS TEST	. 4-4
	Harmonics	
	Non-Harmonic Spurious	
	6. DC BIAS ACCURACY TEST	-
	7. RECEIVER NOISE LEVEL TEST	
	8. INPUT CROSSTALK TEST	
	$10 \text{ Hz} \le \text{Freq.} < 1 \text{ kHz}$	
	$1 \text{ kHz} \leq \text{Freq.} < 100 \text{ kHz}$	
	100 kHz < Freq. < 500 MHz	
	9. INPUT IMPEDANCE TEST \ldots	
	$100 \text{ kHz} \leq \text{Freq.} \leq 100 \text{ MHz}$	
	100 MHz < Freq. < 500 MHz	
	10. ABSOLUTE AMPLITUDE ACCURACY TEST	
	11. MAGNITUDE RATIO/PHASE DYNAMIC ACCURACY TEST	
	A/R Measurement	
	B/R Measurement	
	12. MAGNITUDE RATIO/PHASE FREQUENCY RESPONSE TEST	
	A/R Measurement	
	B/R Measurement	
	13. DISPLAYED AVERAGE NOISE LEVEL TEST	
		. ч -то

	Input R	4-13
	Input A	4-14
	Input B	4-14
	14. AMPLITUDE FIDELITY TEST	4-14
	Input R	4 - 15
	Input A	4 - 15
	Input B	4-15
	15. INPUT ATTENUATOR SWITCHING UNCERTAINTY TEST	4-16
	Input R	4-16
	Input A	4-16
	Input B	4-16
	16. NOISE SIDEBANDS TEST	4-17
	Input R	4-17
	17. AMPLITUDE ACCURACY/FREQUENCY RESPONSE TEST	4-18
		4-18
	Level Accuracy	4-18
	Frequency Response	4-18
		4-19
	Level Accuracy	4-19
	Frequency Response	4-19
		4-20
	Input B	4-21
	Level Accuracy	4-21
	Frequency Response	
	18. SECOND HARMONIC DISTORTION TEST	4-23
	19. THIRD ORDER INTERMODULATION DISTORTION TEST	4-23
	20. OTHER SPURIOUS TEST	4-24
	21. RESIDUAL RESPONSE TEST	4-24
F	Adinaturanta	
5.	Adjustments Introduction	5-1
		5-1 5-1
	Safety Considerations	-
	Required Controller	5-2
	Windows NT PC (Personal Computer)	5-2
	Software Requirements	5-2
	Required Test Equipment	5-3
	Order of Adjustments	5-3
	Performing Adjustments	5-4
	Setting Up the System	5-4
	Preparation for Using the Adjustment Program	5-6
	Installing an HP-IB Card (HP 82340 or HP 82341)	5-6
	Installing HP VEE for Windows NT	5-6
	Installing Adjustment Program into Your PC	5-6
	Installing Adjustment Program into Your PC	5-6 5-6
	Installing Adjustment Program into Your PC	5-6 5-6 5-8
	Installing Adjustment Program into Your PC	5-6 5-6 5-8
	Installing Adjustment Program into Your PC	$5-6 \\ 5-6$
	Installing Adjustment Program into Your PC	5-6 5-6 5-8 5-8
	Installing Adjustment Program into Your PC	5-6 5-6 5-8 5-8 5-8
	Installing Adjustment Program into Your PC	5-6 5-8 5-8 5-8 5-8 5-10 5-10
	Installing Adjustment Program into Your PC	5-6 5-8 5-8 5-8 5-10 5-10 5-10
	Installing Adjustment Program into Your PC	5-6 5-6 5-8 5-8 5-8 5-10 5-10 5-10 5-10 5-10
	Installing Adjustment Program into Your PC	5-6 5-6 5-8 5-8 5-10 5-10 5-10 5-10 5-10 5-10
	Installing Adjustment Program into Your PCGetting Started1. Frequency Reference AdjustmentRequired EquipmentProcedure2. Oven Reference Adjustment (Option 1D5)Required EquipmentProcedureRequired EquipmentRequired EquipmentProcedureStartedAdjustmentStarted <td< td=""><td>5-6 5-8 5-8 5-8 5-10 5-10 5-10 5-10 5-10 5-10 5-10 5-10</td></td<>	5-6 5-8 5-8 5-8 5-10 5-10 5-10 5-10 5-10 5-10 5-10 5-10
	Installing Adjustment Program into Your PCGetting Started1. Frequency Reference AdjustmentRequired EquipmentProcedure2. Oven Reference Adjustment (Option 1D5)Required EquipmentProcedureProcedureProcedureStarted<	5-6 5-8 5-8 5-8 5-10 5-10 5-10 5-10 5-10 5-10 5-10 5-13 5-13
	Installing Adjustment Program into Your PCGetting Started1. Frequency Reference AdjustmentRequired EquipmentProcedure2. Oven Reference Adjustment (Option 1D5)Required EquipmentProcedureRequired EquipmentRequired EquipmentProcedureStartedAdjustmentStarted <td< td=""><td>5-6 5-6 5-8 5-8 5-8 5-10</td></td<>	5-6 5-6 5-8 5-8 5-8 5-10

	Required Equipment	. 5-14
	Procedure	. 5-14
	5. Source Flatness Adjustment	. 5-15
	Required Equipment	. 5-15
	Procedure	
	6. Input DC Offset Adjustment	5.00 ± 5.16
	Required Equipment	5^{-10} . 5-16
	Required Equipment	. 0-10 5.16
	Procedure	
	7. Input Local Null Adjustment	
	Required Equipment	. 5-18
	Procedure	
	8. IF 24 dB Gain/Phase Adjustment	
	Required Equipment	. 5-20
	Procedure	. 5-20
	9. Receiver Gain Adjustment	. 5-22
	Required Equipment	
	Procedure	. 5-22
	10. IF 8 dB/16 dB Gain Adjustment	. 5-25
	Required Equipment	
	Procedure	. 5-25
	11 Tomporature Adjustment	520. 526
	11. Temperature Adjustment	
	Required Equipment	. 0-40 5.96
	Procedure	. 5-26
	12. Receiver Flatness Adjustment	
	Required Equipment	. 5-27
	Procedure	. 5-27
	13. Receiver Attenuator Adjustment	
	Required Equipment	
	Procedure	. 5-29
	14. IF BPF Flatness Adjustment	. 5-30
	Required Equipment	
	Procedure	
	15. DC Bias Adjustment (Option 010)	. 5-31
	Required Equipment	
	Procedure	
		. 001
6.	Troubleshooting	
υ.	INTRODUCTION	. 6-1
	TROUBLESHOOTING SUMMARY	
	START HERE	
	INSPECT THE POWER ON SEQUENCE	
	Check the Fan	
	Check the Front Panel LEDs and Displays	
	Check Error Message	
	INSPECT THE REAR PANEL FEATURE	
	Check the HP-IB Interface	
	Check the Parallel Interface	. 6-5
	Check the mini DIN Keyboard Connector	. 6-5
	Internal Tests Failure Troubleshooting	6-6
	Check the Power-On Selftest	
	Execute All Internal Tests	
	Execute the Individual Test	
	External Tests Failure Troubleshooting	
	Performance Tests Failure Troubleshooting	
	Perform Adjustments and Correction Constants	
	renorm Aujustments and Correction Constants	. 0-9

7.		F 1
	INTRODUCTION	7-1
	START HERE	7-3
	1. Check the Fan is Rotating	7-3
	2. Check the A50 SHUTDOWN LED	7-3
	A50 Shutdown LED	7-3
	3. Check the A1 +5 VD LED	7-4
	Measure the A1 +5 VD Voltage \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	7-4
	FIND OUT WHY THE FAN IS NOT ROTATING	7-5
	1. Check the Line Voltage, Selector Switch Setting, and Fuse	7-5
	2. Check the A50 SHUTDOWN LED	7-5
	FIND OUT WHY THE A50 SHUTDOWN LED IS OFF	7-6
	1. Disconnect the Cable from the A1J10	7-6
	2. Remove Assemblies	7-6
	3. Disconnect the Cable from the A9J2	7-6
	FIND OUT WHY THE A1 +5 VD LED IS NOT ON STEADILY	7-8
	1. Check the A40 Pre-Regulator	7-8
	2. Check the A50 DC-DC Converter	7-8
	3. Disconnect Cables on the A1 CPU	7-9
	4. Remove Assemblies	7-10
	5. Remove Assemblies	7-10
	TROUBLESHOOT THE FAN AND THE A50 DC-DC CONVERTER	7-11
	1. Troubleshoot the Fan	7-11
	2. Troubleshoot the A50 DC-DC Converter	7-12
8.	Digital Control Troubleshooting INTRODUCTION	8-1
	A1 CPU Replacement	8-3
	FIRMWARE INSTALLATION	8-4
	Ordering the Firmware Diskette	8-4
	Installing the Firmware	8-4
	START HERE	8-6
	1. Check the Power-On Sequence	8-6
	Check the (Ch_1) and (Ch_2) Operations	8-6
	Check the A1 Eight LEDs	8-6
	2. Check Error Messages	8-7
	3. Check the A1 DRAM and Flash Memory	8-7
	4. Check the A1 Volatile Memory	8-8
	5. Check the A30 Front Keyboard	8-9
	6. Check the A53 FDD	8-9
	7. Check the A32 I-BASIC Interface and the mini DIN Keyboard	8-9
	8. Check the A33 EXT I/O Interface	8-9
	TROUBLESHOOT THE A51 GSP and A52 LCD	8-11
	1. Run the Internal Test 3: A51 GSP.	8-11
	2. Check the A52 LCD(Liquid Crystal Display)	8-11
	- encounterior hereing and encountering and the second sec	0 11

9.	Accessories Troubleshooting	9-1
	VERIFY OPERATIONS	9^{-1} 9-2
	Using 75 Ω Connectors with 50 Ω Connectors	9^{-2} 9-2
		9^{-2} 9-2
	Large Spurious Signals in the Spectrum Measurement	9-2 9-2
	Odd Appearing Opens and Shorts in the Network Measurement	-
	INSPECT THE CONNECTORS	9-3
	INSPECT THE ACCESSORIES	9-4
	Verify the Probe Power	9-4
	Inspect the Test Set	9-5
	Inspect the Calibration Kit	9-5
	Verify Shorts and Opens	9-5
10.	Replaceable Parts	
	Introduction	10-1
	Ordering Information	10-1
	Direct Mail Order System	10-1
	Exchange Assemblies	10-2
	Replaceable Parts List	10-2
11.	Post Repair ProceduresINTRODUCTIONPOST REPAIR PROCEDURES	11-1 11-1
А.	Manual Changes	
	Introduction	A-1
	Manual Changes	A-1
	Change 1	A-2
	Serial Number	A-6
_		
В.	Power Requirement	
	Replacing Fuse	B-1
	Fuse Selection	B-1
	Power Requirements	B-2
	Power Cable	B-2
	Messages	
	Error Messages in Alphabetical Order	ges-1
	Error Messages in Numerical Order	

Index

Figures

0.1		0.0
2-1.	Frequency Accuracy Test Setup	2-3
2-2.	Source Level Accuracy Test Setup	2-5
	Source Level Flatness Test Setup	2-6
	Non-sweep Power Linearity Test Setup	2-9
	1 0 1	2 - 12
2-6.	Harmonics Test Setup	2-14
2-7.	DC Bias Voltage Level Test Setup	2-17
2-8.	DC Bias Current Level Test Setup	2-18
	1	2-20
	1	2-23
	1 1	2-26
		2-30
		2-30 2-32
		2-35
	\mathbf{v}	
	\mathbf{v}	2-37
	0 V	2-39
	\mathbf{v}	2-40
		2-43
		2-44
		2-47
2-21.	Amplitude Fidelity Test Setup 1	2-51
2-22.		2-55
		2-58
		2-62
		2-64
		2-65
		2-68
		2-70
		2-73
	rr	2-75
	Adjustment Hardware Setup	5-5
		5-5 5-7
	List Box	5-7 5-8
	Frequency Reference Adjustment Setup	9-8 5-9
	Frequency Reference Adjustment Location	
		5-11
		5-11
	$\mathbf{T}_{\mathbf{r}} = \mathbf{T}_{\mathbf{r}} = $	5-14
		5-17
	1 0	5 - 19
5-10.	IF 24 dB Gain/Phase Adjustment Setup	5 - 20
5-11.	IF 24 dB Gain/Phase Adjustment Location	5-21
5-12.	Receiver Gain Adjustment Setup	5-23
		5-24
		5-25
		5-27
		5-28

	Receiver Attenuator Adjustment Setup	5-29
5-18.	IF BPF Flatness Adjustment Setup	5-30
5-19.	DC Bias Adjustment Setup 1	5-31
5-20.	DC Bias Adjustment Setup 2	5-32
6-1.	Troubleshooting Organization	6-2
7-1.	Power Supply Lines Simplified Block Diagram	7-2
(-2.	A50 SHUTDOWN LED Location	7-3
7-3.	A1 +5 VD LED Location \ldots	7-4
7-4.	Removing Line Fuse	7-5
	A1 CPU Connector Locations	7-7
	A40J1 Output Voltage	7-8
	A1 CPU Connector Locations	7-9
	Fan Troubleshooting Setup	7-11
	A50 DC-DC Converter Troubleshooting Setup	7-12
	Digital Control Group Simplified Block Diagram	8-2
8-2.	A1 EEPROM Location	8-3
8-3.	Firmware Revision Label	8-4
8-4.	Bootloader Menu Display	8-5
8-5.	A1 Eight LEDs' Pattern	8-6
8-6.	Bootloader Display	8-8
9-1.	Probe Power Connector Voltages	9-5
10-1.	Top View (Major Assemblies)	10-4
	Bottom View (Major Assemblies)	10-5
	Angle Assembly Parts 1/5	10-6
	Angle Assembly Parts 2/5	10-7
	Angle Assembly Parts (Opt. 001) 3/5	10-8
	Angle Assembly Parts 4/5	10-9
	Angle Assembly Parts 5/5	10-10
	Front Assembly Parts 1/8	10 - 11
	Front Assembly Parts 2/8	10-12
	Front Assembly Parts 3/8	10 - 13
	Front Assembly Parts 4/8	10-14
10-12.	Front Assembly Parts 5/8	10 - 15
10-13.	Front Assembly Parts 6/8	10-16
	Front Assembly Parts 7/8	10-17
	Front Assembly Parts 8/8	10-18
	Rear Assembly Parts 1/8	10 - 19
10-17.	Rear Assembly Parts 2/8	10 - 20
	Rear Assembly Parts 3/8	10-21
	Rear Assembly Parts 4/8	10-22
	Rear Assembly Parts 5/8	10-23
	Rear Assembly Parts (Opt. 1D5) 6/8	10-24
	Rear Assembly Parts 7/8	10-25
	Rear Assembly Parts 8/8	10-26
	Main Frame Assembly Parts 1/23	10-27
	Main Frame Assembly Parts 2/23	10-28
10-26.	Main Frame Assembly Parts (FDD Assembly) 3/23	10-29
10-27.	Main Frame Assembly Parts (FDD Assembly) 4/23	10-30
10-28.	Main Frame Assembly Parts 5/23	10-31
	Main Frame Assembly Parts 6/23	10-32
	Main Frame Assembly Parts (A20 Motherboard Assembly) 7/23	10-33
	Main Frame Assembly Parts 8/23	10-34
	Main Frame Assembly Parts 9/23	10-35
	Main Frame Assembly Parts (A1 CPU Board Assembly) 10/23	10-36
10-34.	Main Frame Assembly Parts 11/23	10-37

10-35.	Main Frame Assembly	Parts 12/23	10-38
10-36.	Main Frame Assembly	Parts (A9 Input Multiplexer Assembly) 13/23	10-39
10-37.	Main Frame Assembly	Parts 14/23	10-40
10-38.	Main Frame Assembly	Parts 15/23	10-41
10-39.	Main Frame Assembly	Parts (Pre-regulator Assembly) 16/23	10-42
10-40.	Main Frame Assembly	Parts (A50 DC-DC Converter Assembly) 17/23	10-43
10-41.	Main Frame Assembly	Parts (A5 and A7 Assemblies) 18/23	10-44
10-42.	Main Frame Assembly	Parts (A2 DC Bias Assembly) 19/23	10-45
10-43.	Main Frame Assembly	Parts (YTO Assembly) 20/23	10-46
		Parts (YTO Assembly) 21/23	10-47
10-45.	Main Frame Assembly	Parts (YTO Assembly) 22/23	10-48
10-46.	Main Frame Assembly	Parts 23/23	10-49
A-1.	Front Assembly Parts	3/7	A-2
A-2.	Front Assembly Parts -	4/7	A-3
A-3.	Front Assembly Parts	5/7	A-4
A-4.	Front Assembly Parts	3/7	A-5
A-5.	Serial Number Plate .		A-6
			B-3

Tables

		-3
		-5
		-7
		-6
		-7
		-9
	Power Sweep Linearity Test Settings 1	
	Power Sweep Linearity Test Settings 2	
2-6.	Harmonics Test Settings	
2-7.	Non-Harmonics Test Settings	
2-8.	DC Bias Level Test Settings	8
2-9.	DC Bias Current Level Test Settings	9
2-10.	Receiver Noise Test Settings	21
2-11.	Input Crosstalk Test Test Settings	24
	Absolute Amplitude Accuracy Test Settings 1	31
	Absolute Amplitude Accuracy Test Settings 2	33
	A/R Dynamic Accuracy Test Settings 1	36
	A/R Dynamic Accuracy Test Settings 2	38
	B/R Dynamic Accuracy Test Settings 1	40
	B/R Dynamic Accuracy Test Settings 2	41
	Displayed Average Noise Level Test Settings	48
	Amplitude Fidelity Test Settings 2-5	52
	Input Attenuator Switching Uncertainty Test Settings	
	Noise Sideband Test Settings	
$\frac{-2}{2}$	Frequency Response Test Settings 1	
$\frac{1}{2}$ $\frac{1}{2}$	Frequency Response Test Settings 2	
	Other Spurious Test Settings	
	Residual Response Test Settings 2-7	
	\mathbf{F}	-3
		-4
	Troubleshooting Information for Internal Test Failure	
	Troubleshooting Information for External Test Failure	-
	Troubleshooting Information for Performance Test Failure 1	
	Troubleshooting Information for Performance Test Failure 2 6-1	-
	A50 Power Supplies	
	Manufacturers Code List	
	List of Abbreviations	
	Top View (Major Assemblies) 10 Detterm View (Major Assemblies) 10	
	Bottom View (Major Assemblies)	
	Angle Assembly Parts 1/5 10 Angle Assembly Parts 2/5 10	
	Angle Assembly Parts $2/5$	
	Angle Assembly Parts (Opt. 001) $3/5$	
	Angle Assembly Parts $4/5$	
	Angle Assembly Parts 5/5	
	Front Assembly Parts 1/8	
10-11.	Front Assembly Parts 2/8	12

	10 19
10-12. Front Assembly Parts 3/8	
10-13. Front Assembly Parts 4/8	
10-14. Front Assembly Parts 5/8	
10-15. Front Assembly Parts 6/8	
10-16. Front Assembly Parts 7/8	
10-17. Front Assembly Parts 8/8	
10-18. Rear Assembly Parts 1/8	
10-19. Rear Assembly Parts 2/8	
10-20. Rear Assembly Parts 3/8	
10-21. Rear Assembly Parts 4/8	
10-22. Rear Assembly Parts 5/8	
10-23. Rear Assembly Parts (Opt. 1D5) 6/8	
10-24. Rear Assembly Parts 7/8	
10-25. Rear Assembly Parts 8/8	
10-26. Main Frame Assembly Parts 1/23	
10-27. Main Frame Assembly Parts 2/23	
10-28. Main Frame Assembly Parts (FDD Assembly) 3/23	
10-29. Main Frame Assembly Parts (FDD Assembly) 4/23	
10-30. Main Frame Assembly Parts 5/23	
10-31. Main Frame Assembly Parts 6/23	
10-32. Main Frame Assembly Parts (A20 Motherboard Assembly) 7/23	
10-33. Main Frame Assembly Parts 8/23	
10-34. Main Frame Assembly Parts 9/23	
10-35. Main Frame Assembly Parts (A1 CPU Board Assembly) 10/23	
10-36. Main Frame Assembly Parts 11/23	10-37
10-37. Main Frame Assembly Parts 12/23	10-38
10-38. Main Frame Assembly Parts (A9 Input Multiplexer Assembly) 13/23	10-39
10-39. Main Frame Assembly Parts 14/23	10-40
10-40. Main Frame Assembly Parts 15/23	10-41
10-41. Main Frame Assembly Parts (Pre-regulator Assembly) 16/23	10-42
10-42. Main Frame Assembly Parts (A50 DC-DC Converter Assembly) 17/23	10-43
10-43. Main Frame Assembly Parts (A5 and A7 Assemblies) 18/23	10-44
10-44. Main Frame Assembly Parts (A2 DC Bias Assembly) 19/23	10-45
10-45. Main Frame Assembly Parts (YTO Assembly) 20/23	10-46
10-46. Main Frame Assembly Parts (YTO Assembly) 21/23	
10-47. Main Frame Assembly Parts (YTO Assembly) 22/23	10-48
10-48. Main Frame Assembly Parts 23/23	10-49
11-1. Post Repair Procedures	11 - 1
A-1. Manual Changes by Serial Number	A-1
A-2. Manual Changes by Firmware Version	A-1
A-3. Front Assembly Parts 3/7	
A-4. Front Assembly Parts 4/7	
A-5. Front Assembly Parts 5/7	A-4
A-6. Front Assembly Parts 6/7	A-5
B-1. Fuse Selection	B-1

General Information

INTRODUCTION

This *Service Manual* is a guide to servicing the HP 4395A Network/Spectrum/Impedance Analyzer. This manual provides information about performance test, adjustment, troubleshooting and repairing the analyzer.

ORGANIZATION OF SERVICE MANUAL

This manual consists of major chapters listed below. The chapters are divided by tabs. This section describes the names of the tabs and the content of each chapter.

- *Perfomance Test* provides the procedures required for performance test of the analyzer.
- *Calculation Sheet* provides a calculation sheet for those perfomance tests that require additional calculation to determine the final test results.
- *Performance Test Record* provides a performance test record. The record sheets provides for all test items.
- *Adjustments* provides procedures for adjusting the analyzer after repair or replacement of an assembly. Some of the adjustments updates correction constants stored into the Flash ROM on the A1 CPU board. The correction constants is updated by using the adjustment program (PN 04395-18004).

The next four, four chapters are the core troubleshooting chapters.

Note

- *Troubleshooting*. The troubleshooting strategy is to systematically verify portions of the analyzer, and thus narrow down the cause of a problem to the defective assembly. This chapter is the first of a series of troubleshooting procedures. It checks the operation of the analyzer independent of system peripherals, and suggests how to remedy system problems.
- Power Supply Troubleshooting
- Digital Control Troubleshooting
- Accessories Troubleshooting

Each of the five functional group chapters above verifies its constituent assemblies until the faulty assembly is identified. *Accessories Troubleshooting* verifies external RF cables and calibration kit devices. *Accessories Troubleshooting* is the last of the gray-tabbed troubleshooting chapters.

Note

The following chapters are, for the most part, reference material.

- *Replaceable Parts* provides part numbers and illustrations of the replaceable assemblies and miscellaneous chassis parts, together with ordering information.
- *Post-Repair Procedures* contains the table of related service procedures. It is a table of adjustments and verification procedures to be performed after repair or replacement of each assembly.
- *Appendices* contains the manual changes information (required to make this manual compatible with earlier shipment configurations of the analyzer), the motherboard pin assignment list, and the power requirement.
- *Messages* contains the service related error message list.

PERFORMANCE TESTS

The analyzer's performance tests consist of the 21 tests listed in Table 1-1. These tests verify that the analyzer's performance meets the guaranteed specifications. See the *Operation Manual* for the specifications.

The analyzer's performance is categorized into two groups; performance in the network analyzer mode and performance in the spectrum analyzer mode. The third column in Table 1-1 indicates to which group the listed performance test belongs.

All tests can be performed without access to the interior of the instrument. The performance tests can be used to perform incoming inspection, and to verify that the analyzer meets performance specifications after repair.

Test Number	Test Name	$Category^1$
1	Frequency Accuracy Test	NA
2	Source Level Accuracy/Flatness Test	NA
3	Non-sweep Linearity Test	NA
4	Power Sweep Linearity Test	NA
5	Harmonics/Non-harmonic Test	NA
6	DC Bias Test (Option 001)	NA
7	Receiver Noise Level Test	NA
8	Input Crosstalk Test	NA
9	Input Impedance Test	NA
10	Absolute Amplitude Accuracy Test	NA
11	Magnitude Ratio/Phase Dynamic Accuracy Test	NA
12	Magnitude Ratio/Phase Frequency Response Test	NA
13	Displayed Average Noise Level Test	\mathbf{SA}
14	Amplitude Fidelity Test	\mathbf{SA}
15	Input Attenuator Switching Uncertainty Test	\mathbf{SA}
16	Noise Sidebands Test	\mathbf{SA}
17	Amplitude Accuracy/Frequency Response Test	\mathbf{SA}
18	Second Harmonic Distortion Test	SA
19	Third Order Intermodulation Distortion Test	SA
20	Other Spurious Test	\mathbf{SA}
21	Residual Response Test	SA

Table 1-1. Performance Tests

 $1\,:\,{\rm NA}:$ Network Analyzer Mode, SA: Spectrum Analyzer Mode

The test numbers in Table 1-1 are numbered according to the recommended sequence of performing tests. When performing more than one performance test, perform them in the order listed in Table 1-1. The first failed test indicates the problem you should troubleshoot first.

If the performance tests indicate that the analyzer is not operating within the specified limits, check the test setup. If the test setup is correct, see the *Adjustments* chapter or the *Troubleshooting* chapter for corrective action.

	Allow the analyzer to warm up for at least 30 minutes before you execute any of the performance tests.
45	Perform all performance tests in an ambient temperature of $23 \pm 5^{\circ}$ C.

CALIBRATION CYCLE

The analyzer requires periodic performance verification to remain in calibration. The frequency of performance verification depends on the operating and environmental conditions under which the analyzer is used. Verify the analyzer's performance at least once a year using the performance tests contained in this manual.

CALCULATION SHEET AND PERFORMANCE TEST RECORD

The Calculation Sheet and Performance Test Record tables are provided in Chapter 3 and Chapter 4.

Calculation Sheet

Use the calculation sheet as an aid for recording raw measurement data and calculating the performance test results. Calculation sheet entries are provided only for performance tests in which calculations are required to obtain the test results.

Performance Test Record

The performance test record lists all test points, acceptable test limits, and measurement uncertainties (if applicable). The measurement uncertainty shows how accurately the analyzer's specifications are measured and depends on the test equipment used. The listed measurement uncertainties are valid only when the recommended equipment is used.

How to Use

The following procedure is recommended when using the calculation sheet and the performance test record:

- 1. Make extra copies of the calculation sheet and the performance test record.
- 2. Follow the performance test procedure and record the measured data in the specified column in the calculation sheet. For tests where no calculation sheet entry spaces are provided, record the measured values directly in the performance test record.
- 3. Calculate the test result using the appropriate equation given in the calculation sheet. Record the test results in the Test Result column in the calculation sheet.
- 4. When appropriate, copy the test results from the calculation sheet to the performance test record.
- 5. Keep the performance test record for tracking gradual changes in test results over long periods of time.

RECOMMENDED TEST EQUIPMENT

Table 1-2 lists the equipment required for performance testing the analyzer. Other equipment may be substituted if the equipment meets or exceeds the critical specifications given in Table 1-2.

Equipment	Critical Specifications	Recommended Model/ HP Part Number	Qty
Frequency Counter	Frequency Range: 500 MHz,Time Base Error: $\leq \pm 1.9 \times 10^{-7}$ /year	$HP 5334B^1$	1
Frequency Standard ²	Frequency: 10 MHz,Time Base Error: ≤ ±1×10 ⁻¹⁰ /year	HP 5061B	1
Spectrum Analyzer	Frequency Range: 100 Hz to 1.5 GHz	HP 8566A/B	1
Network Analyzer	Frequency Range: 300 kHz to 500 MHz	HP 8753C/D	1
Power Meter	No substitute	HP 436A Opt. 022, HP 437B, or HP 438A	1
Power Sensor	Frequency Range : 1 MHz to 500 MHz,Power: -26 dBm to 0 dBm	HP 8482A	1
Power Sensor	Frequency Range : 1 MHz to 500 MHz,Power: -60 dBm to -35 dBm	HP 8481D	1
Function Genarator	Frequency Range : 10 Hz to 500 kHz, Level Accuracy: ±0.2 dB,Return loss: > 20 dB	HP 3325A/B	1
Multimeter	No substitute	HP 3458A	1
Signal Generator	Frequency Range : 1 MHz to 500 MHz, SSB Phase Noise at 100 Hz offset: < -112 dBc/Hz, SSB Phase Noise at 1 kHz offset: < -121 dBc/Hz	HP 8663A	1
Signal Generator	Frequency Range : 50 MHz to 100.2 MHz, SSB Phase Noise at 100 Hz offset: < -112 dBc/Hz, SSB Phase Noise at 1 kHz offset: < -121 dBc/Hz	HP 8642B	1
Step Attenuator ³	Attenuation Range : 0 dB to 100 dB, Step: 10 dB,VSWR: ≤ 1.02	HP 8496G Opt. 001 and $\rm H60^4$	1
Attenuator/Switch Driver	No substitute	HP 11713A ⁵	1
50Ω Type-N Calibration Kit	No substitute	HP 85032B	1
T/R Test Sets	Frequency Range: 300 kHz to 500 MHz, Directivity: \geq 40 dB	HP 85044A	1
50 MHz Low Pass Filter	Rejection at 75 MHz: \geq 60 dB	PN 0955-0306	1
50 Ω Feedthrough	Rejection at 75 MHz: \geq 60 dB	PN 04192-61002	1
Termination	50 Ω Termination, type-N(m)	HP 909C Opt. 012 or part of HP 85032B $^{\rm 6}$	3

Table 1-2. Recommended Test Equipment

Equipment	Critical Specifications	Recommended Model/ HP Part Number	Qty
6 dB Fixed Attenuation	50 Ω, N(m)-N(f)	HP 8491A Opt. 006	2
6 dB Fixed Attenuation	50 Ω , N(m)-N(f), VSWR ≤ 1.015	HP 8491A Opt. 006 & Opt. H60 ⁷	2
10 dB Fixed Attenuation	50 Ω , N(m)-N(f), VSWR ≤ 1.015	HP 8491A Opt. 010 & Opt. H60 ⁸	1
Two-Way Power Splitter	Frequency Range: 100 kHz to 500 MHz, Output Tracking: ≤ 0.15 dB	HP 11667A	1
Cables	Type-N cable, 50 Ω	HP 11500B or part of HP 11851B ⁹	4
	BNC cable, 61 cm, 50 Ω	PN 8120-1839	2
	BNC cable, 122 cm, 50 Ω	PN 8120-1840	2
Adapters	BNC(f)-BNC(f) adapter, 50 Ω	PN 1250-0080	1
	Tee BNC(m)-(f)-(f) adapter, 50 Ω	PN 1250-0781	1
	BNC(f)-Dual Banana Plug Adapter, 50 Ω	PN 1251-2277	1
	N(m)-N(m) adapter, 50 Ω	PN 1250-1475	1
	N(m)-BNC(f) adapter, 50 Ω	PN 1250-0780	2
	APC7.5-N(f) adapter, 50 Ω	HP 11524A or part of HP 85032B ¹⁰	1

Table 1-2. Recommended Test Equipment (continued)

- 1: Option 001 (optional time base) is not required, when a frequency standard in Table 1-2 is available.
- 2: Required for testing an analyzer equipped with Option 1D5 (High Stability Frequency Reference).
- 3: Calibration values at 50 MHz are required in the tests. See the Calibration Data Required for Step Attenuators later in this chapter.
- 4: An HP 8496G step attenuator with required low VSWR (≤ 1.02) can be purchased by specifying option H60.
- 5: Required when an HP 8496G step attenuator is used in the tests.
- 6: The HP 85032B includes a type-N(m) 50 Ω termination.
- 7: An HP 8491A Opt. 006 fixed attenuator with required low VSWR (≤ 1.015) can be purchased by specifying Opt. H60.
- 8: An HP 8491A Opt. 010 fixed attenuator with required low VSWR (\leq 1.015) can be purchased by specifying Opt. H60.
- 9: The HP 11851B includes three N(m)-N(m) cables of 61 cm and a N(m)-N(m) cable of 88 cm.
- 10: The HP 85032B includes two APC7.5-N(f) adapters.

Calibration Data Required for Step Attenuator

The four performance tests listed below measure the analyzer's performance against a known standard (the attenuation values at a frequency 50 MHz of the HP 8496G Opt. 001 and H60 step attenuators).

- 3. Non-Sweep Power Linearity Test
- 11. Magnitude Ratio/Phase Dynamic Accuracy Test
- 14. Amplitude Fidelity Test
- 15. Input Attenuator Switching Uncertainty Test

These tests require the calibrated values of the attenuators listed in Table 1-3. The attenuation values (referenced to 0 dB setting) are required in the calculation sheet. The attenuation values used in the tests are listed in each calculation sheet.

Frequency	Attenuation	Uncertainty
50 MHz	0 dB	$\leq 0.0037~\mathrm{dB}$
	10 dB	$\leq 0.0042~\mathrm{dB}$
	20 dB	$\leq 0.0046~\mathrm{dB}$
	30 dB	$\leq 0.0052~\mathrm{dB}$
	40 dB	$\leq 0.0079~\mathrm{dB}$
	50 dB	$\leq 0.0125~\mathrm{dB}$
	60 dB	$\leq 0.0144~\mathrm{dB}$
	70 dB	$\leq 0.0327~\mathrm{dB}$
	80 dB	$\leq 0.0532~\mathrm{dB}$
	90 dB	$\leq 0.0543~\mathrm{dB}$
	100 dB	$\leq 0.0850~\mathrm{dB}$

Table 1-3. Calibration Data Required for HP 8496G Opt. 001 and H60

The calibration uncertainty is the primary source of measurement error in performance tests. The measurement uncertainties listed in the performance test record of Chapter 4 are valid only when the uncertainty of the step attenuation data satisfies that given in the third column of Table 1-3.

The calibration of step attenuators, HP 8496G Opt. 001 and H60, are available at Hewlett-Packard. For information about the calibration and the available uncertainties, contact your nearest Hewlett-Packard service center.

Note

The HP 8496G Opt. 001 and H60 programmable step attenuator has four attenuation segments, 10 dB segment, 20 dB segment, and two 40 dB segments. Each attenuation from 10 dB to 70 dB is obtained by combining these segments. The attenuations from 40 dB to 70 dB depend on the 40 dB segment that is used.

When setting the step attenuator for the calibration, specify one of the 40 dB segments for attenuations from 40 dB to 70 dB. Then use the specified segment in the tests.

Performance Tests

INTRODUCTION

This chapter contains the performance test procedures. The test procedures listed in Table 1-1 are described sequentially in the following pages.

The test name indicates the tested performance and to which performance group the tested performance belongs to. *NA* indicates the performance test belongs to the network analyzer mode performance group. *SA* indicates the performance test belongs to the spectrum analyzer mode performance group.

Each procedure consists of the following parts:

Description: Specification: Test Equipmen Procedure:	 describes the test procedure. describes the performance verified in the test. describes test equipment required in the test. describes the test procedure step by step. 	
Note	Allow the analyzer to warm up for at least 30 minutes before you execute any of the performance tests. Perform all performance tests in an ambient temperature of $23 \pm 5^{\circ}$ C.	
Note	Before performing any tests, make extra copies of the calculation sheet in Chapter 3 and the performance test record in Chapter 4. These are required in the test procedure. For an explanation of how to use these records, see the CALCULATION SHEET AND PERFORMANCE TEST RECORD in Chapter 1.	

1. FREQUENCY ACCURACY TEST (NA)

Description

This test uses a frequency counter and a frequency standard to measure the actual frequency of the HP 4395A RF OUT signal when it is tuned to 100 MHz. This test checks the frequency accuracy of the internal frequency reference (or the high stability frequency reference for Option 1D5).

Specification

Frequency reference accuracy
@23±5°C, referenced to 23°C<±5.5 ppm
Precision frequency reference accuracy (option 1D5)
@0°C to 55°C, referenced to 23°C $\sim \sim \sim$

Test Equipment

For testing a standard HP 4395A (not equipped without Opt. 1D5)

Frequency Counter	HP 5334B
BNC cable, 61 cm	PN 8120-1839
N(m)-BNC(f) adapter	PN 1250-0780

For testing an HP 4395A equipped with Opt. 1D5

Frequency Counter	HP 5334B
Frequency Standard	
BNC cable, 61 cm	. PN 8120-1839
BNC cable, 122 cm	. PN 8120-1840
N(m)-BNC(f) adapter	. PN 1250-0780

1: The HP 5061B can be replaced with any 10 MHz frequency standard with time base error of $< \pm 1 \ge 10^{-10}$ /year.

Procedure

1. Connect the test equipment as shown in Figure 2-1.

For testing a standard HP 4395A (not equipped with Option 1D5), do not connect any cable to the EXT REF Input connector in the HP 4395A rear panel.

For testing an HP 4395A equipped with Option 1D5, connect a BNC(m)-BNC(m) cable between the EXT REF Input connector and the REF OVEN connector on the HP 4395A rear panel.

2. Initialize the frequency counter. Then set the frequency standard is connected)

Controls	Settings
Gate Time	1 sec.
INT/EXT Switch (rear panel)	External(When the frequency standard is connected).

3. Press (Meas), ANALYZER TYPE, NETWORK ANALYZER, Preset to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Center Frequency: 100 MHz	(Center), (1),(0),(M/ μ)
Frequency Span: ZERO	(Span), ZERO SPAN

The source power now is set to 0 dBm (preset value).

- 4. Press (Trigger), SINGLE to make a sweep. Wait for the frequency counter reading to settle.
- 5. Record the frequency counter reading to 1 Hz resolution in the performance test record ("Test Result" column).

2. SOURCE LEVEL ACCURACY/FLATNESS TEST (NA)

Description

This test uses a power meter and a power sensor to measure the actual power level of the RF OUT signal at several frequencies from 10 Hz to 500 MHz when the signal amplitude is set to 0 dBm. The level accuracy is checked at a frequency 50 MHz. The level flatness is calculated as power deviation from the power reading taken at 50 MHz.

Specification

Level accuracy
@23±5°C, 50 MHz, 0 dBm output
Flatness
$@23\pm5^{\circ}C$, relative to 50 MHz, 0 dBm output $\dots \pm 2.0$ dB

Test Equipment

Power Meter HP 436A Opt. 022, HP 437B, or HP 438A	A
Power Sensor	A
Multimeter	ł
50 Ω Feedthrough PN 04192-61002	2
BNC cable, 61 cmPN 8120-183	9
N(m)-BNC(f) adapter PN 1250-078	0
BNC(f)-Dual Banana Plug Adapter PN 1251-227	7

Procedure

- 1. Connect the power sensor to the power meter. Calibrate the power meter for the power sensor.
- 2. Connect the test equipment as shown in Figure 2-2.

Figure 2-2. Source Level Accuracy Test Setup

Control Settings Center Frequency: 50 MHz Frequency Span: 0 Hz Key Strokes (Center), (5), (0), (M/μ) (Span), ZERO SPAN

The source power now is set to 0 dBm (preset value).

4. Source Level Accuracy Test

- a. Wait for the power meter reading to settle.
- b. Record the power meter reading in the performance test record ("Test Result" column for the level accuracy test).

5. Source Level Flatness Test (High Frequencies)

- a. Record the test result of the level accuracy test in the calculation sheet ("Power Meter Reading [ref]" column for the level flatness test).
- b. Press Center, 1, M/μ to change the HP 4395A center frequency to the first flatness test frequency 1 MHz listed in Table 2-1. Table 2-1 lists flatness test points for high frequencies.

HP 4395A
Center Frequency
1 MHz
3 MHz
$10 \mathrm{MHz}$
$45 \mathrm{MHz}$
$75 \mathrm{MHz}$
110 MHz
$140 \mathrm{MHz}$
$190 \mathrm{MHz}$
$235 \mathrm{MHz}$
$290 \mathrm{MHz}$
$345 \mathrm{MHz}$
400 MHz
445 MHz
470 MHz
500 MHz

Table 2-1. Source Level Flatness Test Settings 1

- c. Wait for the power meter reading to settle. Then record the reading in the calculation sheet ("Power Meter Reading" column).
- d. Change the HP 4395A center frequency in accordance with Table 2-1 and repeat step 5-c for each frequency.
- e. Calculate test results using the equation given in the calculation sheet. Record the test results in the performance test record.

6. Source Level Flatness Test (Low Frequencies)

a. Connect the test equipment as shown in Figure 2-3.

Figure 2-3. Source Level Flatness Test Setup

b. Initialize the multimeter. Then set the controls as follows:

Controls	Settings
Measurement Function	AC Volts Mode
Display Reading Value	dBm Reading Value
Measurement Method	Syncronous Sampling Conversion
NPLC	100

c. Press <u>Center</u>, <u>1</u>,<u>0</u>, <u>x1</u> to change the HP 4395A center frequency to the first flatness test frequency 10 Hz listed in Table 2-2. Table 2-2 lists flatness test points for low frequencies.

 Table 2-2. Source Level Flatness Test Settings 2

HP 4395A Center Frequency	y
10 H	
50 H	
500 H 2 kH	
12 kH	
60 kH	z
160 kH	Z
500 kH	Z

- d. Wait for the multimeter reading to settle. Then record the reading in the calculation sheet ("Power Meter Reading" column).
- e. Change the HP 4395A center frequency in accordance with Table 2-2 and repeat step 6-d for each frequency.
- f. Calculate test results using the equation given in the calculation sheet. Record the test results in the performance test record.

3. NON-SWEEP POWER LINEARITY TEST (NA)

Description

This test uses a power meter and a high sensitivity power sensor to measure the actual power of the HP 4395A RF OUT signal at several power settings and then calculates the power linearity. The power linearity is referenced to a power level of 0 dBm.

In this test, the input power to the power sensor is maintained between -60 dBm and -30 dBm using the step attenuator. This reduces measurement uncertainty caused by the power sensor's non-linearity and noise. The actual power of the RF OUT signal is calculated by adding the attenuation used and the power meter reading. Therefore, this test requires the calibrated attenuation values of the step attenuator at 50 MHz.

Specification

Level linearity

Linearity¹
$\pm 1.0 \text{ dB}$ $\pm 1.5 \text{ dB}$

1 : @23±5°C, relative to 0 dBm output

Test Equipment

Power Meter	HP 436A Opt. 022, HP 437B, or HP 438A
Power Sensor	
Type-N Cable, 61 cm	
Step Attenuator ¹ , 10 dB Step, VSWR ≤ 1.02	
Attenuator driver	

1: Calibration values for attenuation settings of 10 dB to 50 dB at 50 MHz are required.

Procedure

- 1. Record the step attenuator 50 MHz calibration values in the calculation sheet ("Calibration Value" column).
- 2. Connect the power sensor to the power meter, and calibrate the power meter for the power sensor.
- 3. Set the step attenuator to 30 dB before connecting the test equipment. This protects the power sensor from excess input.
- 4. Connect the test equipment as shown in Figure 2-4.

Figure 2-4. Non-sweep Power Linearity Test Setup

Control Settings Center Frequency: 50 MHz Frequency Span: 0 Hz Key Strokes (Center), (5), (0), (M/μ) (Span), ZERO SPAN

The source power now is set to 0 dBm (preset value).

- 6. Set the step attenuator to the first setting 30 dB listed in the second column of Table 2-3.
- 7. Wait for the power meter reading to settle.
- 8. Record the power meter reading in the calculation sheet. Use "Power Meter Reading" column of the calculation sheet for the reference 0 dBm.

 Table 2-3. Non-Sweep Power Linearity Test Settings

HP 4395A	Step Attenuator
Source Power	
0 dBm	30 dB
+15 dBm	50 dB
+10 dBm	40 dB
-10 dBm	20 dB
-20 dBm	10 dB
-30 dBm	10 dB
-40 dBm	10 dB
-50 dBm	10 dB

9. Change the source power and the step attenuator setting in accordance with Table 2-3. Record the power meter reading in the calculation sheet. Use "Power Meter Reading" column of the calculation sheet for the non-sweep power linearity test.

- 10. Repeat step 9 for each setting.
- 11. Calculate the test results using the equations given in the calculation sheet. Record the test results in the performance test record.

4. POWER SWEEP LINEARITY TEST (NA)

Description

This test sets the HP 4395A to the power sweep mode and then makes a power sweep from -50 dBm to -30 dBm and -5 dBm to 15 dBm in 5 dB steps. Using a power meter and a high sensitivity power sensor, the actual power of the HP 4395A RF OUT signal at each sweep point is measured. Then the power sweep linearity for a sweep span $\leq +20 \text{ dB}$ is calculated. The power linearity is specified as values relative to the stop power.

This test uses a step attenuator to maintain the power sensor input level ≤ -35 dBm. This reduces the measurement uncertainty caused by the power sensor's linearity error. The actual power of the RF OUT signal is calculated by adding the attenuation used and the power meter reading.

Specification

Sweep range
Sweep linearity
@23 \pm 5°C, 50 MHz, relative to stop power ± 0.5 dB

Test Equipment

Power Meter HP 436A Opt. 022, HP 437B, or HP 436A	38A
Power Sensor	81D
Step Attenuator, 10 dB Step , VSWR ≤ 1.02 HP 8496G Opt. 001 and H	H60
Attenuator driver	13A
Type-N Cable, 61 cm HP 11500B or part of HP 1188	51B

Procedure

- 1. Connect the power sensor to the power meter. Then calibrate the power meter for the power sensor.
- 2. Set the step attenuator to 30 dB before connecting the test equipment. This protects the power sensor from excess input.
- 3. Connect the test equipment as shown in Figure 2-5.

Figure 2-5. Power Sweep Linearity Test Setup

Control Settings	Key Strokes
Power Sweep	(Sweep), SWEEP TYPE MENU, POWER SWEEP
CW Frequency: 50 MHz	(Source), CW FREQ, (5), (0), (M/μ)
Start Power: -50 dBm	(Start), (-), (5), (0), (x1)
Stop Power: -30 dBm	(Stop), (), (3, (), (x1)
Number of Points: 5	(Sweep), NUMBER of POINTS, (5), (x1)
Trigger: Manual	(Trigger), TRIGGER[xxx], MANUAL
Trigger Event:On Point	Trigger), TRIGGER[xxx], TRIG EVENT [ON SWEEP]
	(Then the softkey label changes to
	TRIGGER [ON POINT]

5. Press (Trigger), SINGLE, TRIGGER: [MANUAL], MANUAL to start a power sweep and to set the HP 4395A power to the first sweep point of -50 dBm listed in Table 2-4. Table 2-4 lists test settings. Verify that the step attenuator is set to 10 dB.

 Table 2-4. Power Sweep Linearity Test Settings 1

HP 4395A	Step Attenuator
Source Power	
-50 dBm	10 dB
-45 dBm	10 dB
-40 dBm	10 dB
-35 dBm	10 dB
-30 dBm	10 dB

6. Wait for the power meter reading to settle.

- 7. Record the power meter reading in the calculation sheet ("Power Meter Reading" column).
- 8. Repeat the following steps until a power sweep completed.
 - a. Press MANUAL to set the source power to the next measurement point listed in Table 2-4. The sweep indicator moves to the last measurement point on the sweep. (The sweep indicator indicates the last measurement point on the sweep, not the current point.)
 - b. Wait for the power meter reading to settle.
 - c. Record the power meter reading in the calculation sheet.
- 9. Change the start and stop power of the HP 4395A as follows:.

Key Strokes
(Sweep), SWEEP TYPE MENU, POWER SWEEP
Source, CW FREQ, 5, 0, (M/μ)
(Start), -, (5), (x1)
Stop, 1, 5, x1
Sweep, NUMBER of POINTS, 5, x1
(Trigger), TRIGGER[xxx], MANUAL
(Trigger), TRIGGER[xxx], TRIG EVENT [ON SWEEP]
(Then the softkey label changes to
TRIGGER [ON POINT]

10. Press (Trigger), SINGLE, TRIGGER: [MANUAL], MANUAL to start a power sweep and to set the HP 4395A power to the first sweep point of -5 dBm listed in Table 2-5. Table 2-5 lists test settings. Verify that the step attenuator is set to 50 dB.

HP 4395A	Step Attenuator
Source Power	
−5 dBm	50 dB
0 dBm	50 dB
5 dBm	50 dB
10 dBm	50 dB
15 dBm	50 dB

 Table 2-5. Power Sweep Linearity Test Settings 2

- 11. Wait for the power meter reading to settle.
- 12. Record the power meter reading in the calculation sheet ("Power Meter Reading" column).
- 13. Repeat the following steps until a power sweep completed.
 - a. Press MANUAL to set the source power to the next measurement point listed in Table 2-5. The sweep indicator moves to the last measurement point on the sweep. (The sweep indicator indicates the last measurement point on the sweep, not the current point.)
 - b. Wait for the power meter reading to settle.
 - c. Record the power meter reading in the calculation sheet.
- 14. Calculate the test results using the equation given in the calculation sheet. Record the test results in the performance test record.

5. HARMONICS/NON-HARMONIC SPURIOUS TEST (NA)

Description

This test sets the HP 4395A RF OUT signal power to +10 dBm and uses a spectrum analyzer to measure the RF OUT signal's second, third and non harmonic spurious at several frequencies. The RF OUT signal frequency is set to values where harmonics and non-harmonic spurious are most likely to be observed.

Specification

Spectral Purity Characteristics	
Harmonics	
@+10 dBm output<-30 dl	Bc
Non-harmonics spurious	
@+10 dBm output<-30 dl	Bc

Test Equipment

Spectrum Analyzer	
Type-N Cable, 61 cm	
BNC cable, 122 cm	PN 8120-1840

Procedure

1. Connect the test equipment as shown in Figure 2-6.

Figure 2-6. Harmonics Test Setup

Note

Connect the spectrum analyzer's 10 MHz frequency reference output to the HP 4395A EXT REF Input on the rear panel as shown in Figure 2-6. With this configuration, both the spectrum analyzer and the HP 4395A are phase locked to the same reference frequency to eliminate frequency offset errors.

- 2. Initialize the spectrum analyzer, and perform the FREQ ZERO calibration in accordance with the spectrum analyzer manual.
- 3. On the spectrum analyzer, set the controls as follows:

Controls	Settings
Reference Level	+10 dBm

Control Settings	Key Strokes
Frequency Span: 0 Hz	(Span), ZERO SPAN
Source Power: +10 dBm	(Source), POWER, (1, (0), (x))

5. —Harmonics Test—

a. On the HP 4395A, press Center, 1, 0, k/m to set the center frequency to the first center frequency listed in the first column of Table 2-6. Table 2-6 lists test frequencies.

HP 4395A	Spectrum Analyzer			
Center Frequency	2nd Harmonics	3rd Harmonics	Frequency	RBW
	Frequency	Frequency	Span	
10 kHz	20 kHz	30 kHz	1 kHz	30 Hz
500 kHz	1 MHz	1.5 MHz	1 kHz	30 Hz
10 MHz	20 MHz	30 MHz	1 kHz	30 Hz
100 MHz	200 MHz	300 MHz	1 kHz	30 Hz
250 MHz	$500 \mathrm{MHz}$	750 MHz	1 kHz	30 Hz
500 MHz	1.0 GHz	1.5 GHz	1 kHz	30 Hz

Table 2-6. Harmonics Test Settings

- b. On the spectrum analyzer, perform the following steps to measure the second and third harmonic level of the first test frequency 10 kHz.
 - i. Set the HP 8566A/B center frequency to the same value as the HP 4395A center frequency.
 - ii. Set the HP 8566A/B frequency span and RBW in accordance with Table 2-6.
 - iii. Press (SINGLE) to make a sweep. Wait for the completion of the sweep.
 - iv. Press (PEAK SEARCH), (Δ) to move the marker to the peak of the fundamental signal and to place the delta maker reference at the peak.
 - v. Set the HP 8566A/B center frequency to the second harmonics frequency listed in the second column of Table 2-6.
 - vi. Press (SINGLE) to make a sweep. Wait for the completion of the sweep.
 - vii. Press (PEAK SEARCH) to move the marker to the peak of the second harmonic.
 - viii. Record the delta marker reading in the calculation sheet ("Delta Marker Reading" column).
 - ix. Set the HP 8566A/B center frequency to the third harmonics frequency listed in the third column of Table 2-6.
 - x. Press (SINGLE) to make a sweep. Wait for the completion of the sweep.
 - xi. Press (PEAK SEARCH) to move the marker to the peak of the third harmonic.
 - xii. Record the delta marker reading in the calculation sheet ("Delta Marker Reading" column).
- c. Change the measurement setting in accordance with Table 2-6 and repeat step 5-b for each frequency.

d. Calculate test results using the equation given in the calculation sheet.

6. —Non-Harmonic Spurious Test—

a. On the spectrum analyzer, set the controls as follows:

Controls	Settings
Reference Level	+20 dBm

b. On the HP 4395A, press Center, (1), (0), (x1) to set the center frequency to the first center frequency listed in the first column of Table 2-7. Table 2-7 lists test frequencies.

HP 4395A	Spectrum Analyzer		
Center Frequency	Non-Harmonics Spurious	Frequency	RBW
	Frequency	Span	
10 Hz	830.00001 MHz	10 Hz	$10 \ Hz$
230 MHz	600 MHz	1 kHz	$30~\mathrm{Hz}$
330 MHz	500 MHz	1 kHz	$30~\mathrm{Hz}$
430 MHz	400 MHz	1 kHz	$30~\mathrm{Hz}$
500 MHz	330 MHz	1 kHz	$30~\mathrm{Hz}$

Table 2-7. Non-Harmonics Test Settings

- c. On the spectrum analyzer, perform the following steps to measure the non-harmonic spurious level of the first test frequency 10 Hz.
- d. Perform the following steps to test non-harmonics spurious of HP 4395A.
 - i. Set the HP 8566A/B center frequency to the same value as the HP 4395A center frequency.
 - ii. Set the HP 8566A/B frequency span and RBW in accordance with Table 2-7.
 - iii. Press (SINGLE) to make a sweep. Wait for the completion of the sweep.
 - iv. Press (PEAK SEARCH), \triangle to move the marker to the peak of the fundamental signal and to place the delta maker reference at the peak.
 - v. Set the HP 8566A/B center frequency to the frequency listed in the second column of Table 2-7.
 - vi. Press (SINGLE) to make a sweep. Wait for the completion of the sweep.
 - vii. Press (PEAK SEARCH) to move the marker to the peak of the non-harmonic spurious.
 - viii. Record the delta marker reading in the calculation sheet ("Delta Marker Reading" column).
- e. Change the measurement setting in accordance with Table 2-7 and repeat step 6-d for each frequency.
- f. Calculate test results using the equation given in the calculation sheet.

6. DC BIAS TEST (NA) (Option 001)

Description

This test uses a multimeter to measure thte actual DC dias voltage and currecnt levels of the HP 4395A.

Specification

DC Bias Level Accu	racy
Voltage	
@23±5°C	$\dots \dots $
Current	
@23±5°C	$\pm (0.5\% + 30\mu \mathbf{A} + \mathbf{V} \mathbf{d} \mathbf{c}^2 [\mathbf{V}]/10 [\mathbf{k} \Omega] \mathbf{m} \mathbf{A})$
1: Current at D	C source connector

2: Voltage at DC source connector

Test Equipment

Multimeter	HP 3458A
BNC cable, 61 cm	. PN 8120-1839
N(m)-BNC(f) adapter	PN 1250-0780
BNC(f)-Dual Banana Plug Adapter	PN 1251-2277

Procedure

1. DC Bias Voltage Level Test

a. Connect the test equipment as shown in Figure 2-7.

CCS02011

Figure 2-7. DC Bias Voltage Level Test Setup

- b. Press (Meas), ANALYZER TYPE, NETWORK ANALYZER, (Preset) to initialize the HP 4395A.
- c. Initialize the multimeter. Then set the controls as follows:

Controls	Settings
Measurement Function	DC Volts Mode
Display Reading Value	V Reading Value
Measurement Range	Auto Range
NPLC	100

d. Set the HP 4395A and the multimeter to the first column of Table 2-8

HP 4395A DC Level	HP 4395A DC Current Limit	Multimeter Range (Auto Range)
-40 V	100 mA	100 V
-10 V	100 mA	10 V
-4 V	100 mA	10 V
0 V	100 mA	1 V
4 V	100 mA	10 V
10 V	100 mA	10 V
40 V	100 mA	100 V

Table 2-8. DC Bias Level Test Settings

- e. Wait for the multimeter reading to settle. Then record the reading in the calculation sheet ("Multimeter Reading" column).
- f. Change the setting of the HP 4395A and the multimeter in accordance with Table 2-8 and repeat step 1-e for each setting.
- g. Calculate test results using the equation given in the calculation sheet. Record the test results in the performance test record.

2. DC Bias Current Level Test

a. Connect the test equipment as shown in Figure 2-8.

CCS02037

Figure 2-8. DC Bias Current Level Test Setup

b. Initialize the multimeter. Then set the controls as follows:

mae une munimenen, inch seu u	ie controls as follows.
Controls	Settings
Measurement Function	DC I Mode
Display Reading Value	A Reading Value
Measurement Range	Auto Range
NPLC	100

c. Set the HP 4395A and the multimeter to the first column of Table 2-9 $\,$

HP 4395A DC Level	HP 4395A DC Voltage Limit	Multimeter Range (Auto Range)
-100 mA	20 V	100 mA
-10 mA	20 V	10 mA
-1 mA	20 V	1 mA
$-20 \ \mu A$	20 V	$100 \ \mu A$
$20 \ \mu A$	20 V	$100 \ \mu A$
1 mA	20 V	1 mA
10 mA	20 V	10 mA
100 mA	20 V	100 mA

Table 2-9. DC Bias Current Level Test Settings

- d. Wait for the multimeter reading to settle. Then record the reading in the calculation sheet ("Multimeter Reading" column).
- e. Change the setting of the HP 4395A and the multimeter in accordance with Table 2-9 and repeat step 2-d for each setting.
- f. Calculate test results using the equation given in the calculation sheet. Record the test results in the performance test record.

7. RECEIVER NOISE LEVEL TEST (NA)

Description

This test measures the HP 4395A receiver noise levels (noise floor) in the network analyzer mode at IF BW 10 Hz. This measures the noise level using the marker statistics function (mean) when the inputs are terminated.

In this test, the noise level (trace mean value) is measured in linear format [Unit]. Then the measured values are converted to log magnitude format [dBm]. This is done to avoid skewing the data with the marker statistics function.

Specification

Noise level

Frequency	Noise Level @IFBW = 10 Hz	
$100 \leq \text{freq.} < 100 \text{ kHz}$	<-85 dB	
100 kHz \leq freq.	$<$ [-115 + $f^{4}/100$] dB	

1: f is measurement frequency (MHz).

Test Equipment

50Ω Termination (three required) HP 909C Opt. 012 or part of HP 85032B

Procedure

1. Connect the test equipment as shown in Figure 2-9.

Figure 2-9. Receiver Noise Level Test Setup

Control Settings	Key Strokes
Input Port: R	(Meas), R
Format: LINEAR	(Format), LIN MAG
Scale/Division: 5 μ U	(Scale Ref), SCALE/DIV, (5), (M/μ)
Input Attenuator R: 10 dB	Scale Ref), ATTENUATOR MENU, ATTEN R, 1, 0, XI
Input Port: A	(Meas), A
Format: LINEAR	(Format), LIN MAG
Scale/Division: 5 μ U	Scale Ref), SCALE/DIV, 5, (M/μ)
Input Attenuator A: 10 dB	Scale Ref), ATTENUATOR MENU, ATTEN A, (1), (0), (x1)
Input Port: B	(Meas), B
Format: LINEAR	(Format), LIN MAG
Scale/Division: 5 μ U	Scale Ref), SCALE/DIV, 5, (M/μ)
Input Attenuator B: 10 dB	Scale Ref), ATTENUATOR MENU, ATTEN B, (1, (0, x1)
Source Power: -50 dBm	(Source), POWER, ., (5), (0), (x1)
Frequency Span: 0 Hz	(Span), ZERO SPAN
IF BW: 10 Hz	(Bw/Avg), IF BW, (1, (0), (x1)
Number of Points: 51	Sweep, NUMBER of POINTS 5, 1, x1
Statistics: ON	(Utility), STATISTICS on OFF (Then the softkey label changes to STATISTICS ON off.)

3. Press (Center), (1), (0), (1) to set the HP 4395A center frequency to the first center frequency 100 kHz listed in Table 2-10.

HP 4395A Center Frequency	
100 Hz	
1 kHz	
10 kHz	
100 kHz	
1 MHz	
11 MHz	
101 MHz	
499 MHz	

- 4. Perform the following steps to measure the receiver noise level.
 - a. Press Meas), R to set the HP 4395A input to R input.
 - b. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - c. Record the HP 4395A trace mean value [Unit] in the calculation sheet ("Trace Mean" column). The trace mean value is displayed as a marker statistic (mean) in the upper right-hand corner of the display.

- d. Press (Meas), A to set the HP 4395A to A input.
- e. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- f. Record the HP 4395A trace mean value [Unit] in the calculation sheet ("Trace Mean" column).
- g. Press (Meas), B to set the HP 4395A input to B input.
- h. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- i. Record the HP 4395A trace mean value [Unit] in the calculation sheet ("Trace Mean" column).
- 5. Change the HP 4395A center frequency in accordance with Table 2-10, and repeat step 4 for each setting.
- 6. Convert the unit of the test results from [Unit] to [dBm] using the equation given in the calculation sheet. Record the test results [dBm] in the performance test record.

8. INPUT CROSSTALK TEST (NA)

Description

This test measures the crosstalk (signal leakage interference) between two inputs of the HP 4395A R, A, and B inputs when RF OUT signal is supplied to one input and the other is terminated.

Specification

Input crosstalk

R to A, B(@R port att.=20 dB, 10 dBm input, A & B port att.=0 dB)
freq. < 100 kHz<-100 dB
freq. $\geq 100 \text{ kHz} \dots < -120 \text{ dB}$

Test Equipment

Type-N Cable, 61 cm	
50Ω Termination (two required)	HP 909C Opt. 012 or part of HP 85032B

Procedure

1. Connect the test equipment as shown in Figure 2-10.

CCS02007

Figure 2-10. Input Crosstalk Test Setup

2. Press (Meas), ANALYZER TYPE, NETWORK ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

> **Control Settings** Dual Channel: On

Key Strokes

(Display), DUAL CHAN on OFF (Then the softkey label changes to DUAL CHAN ON off.

Active Channel: CH 1 Input Port: A/R	Ch 1 Meas), A/R
Format: LOG MAG	Format), LOG MAG
Reference Level: -100 dB	Scale Ref), REFERENCE VALUE, $(-)$, (1) , (0) , (0) , $(\times 1)$
Active Channel: CH 2 Input Port: B/R	Ch 2 (Meas), B/R
Format: LOG MAG	Format), LOG MAG
Reference Level: -100 dB	Scale Ref), REFERENCE VALUE, $(-)$, (1) , (0) , (0) , $(x1)$
Source Power: +10 dBm	Source, POWER, (1) , (0) , $(x1)$
Input Attenuator R: 20dB	Scale Ref), ATTENUATOR MENU, ATTEN R, 2, 0, x1
Input Attenuator A: 0dB	Scale Ref), ATTENUATOR MENU, ATTEN A, (0) , $(\times 1)$
Input Attenuator B: 0dB	Scale Ref), ATTENUATOR MENU, ATTEN B, (0) , $(x1)$

- 3. Press <u>Start</u>, (1, (0), <u>x1</u> to set the start frequency to the first test setting 10 Hz listed in Table 2-11
- Press Stop, 1, k/m to set the stop frequency to the first test setting 10 kHz listed in Table 2-11
- 5. Press (Bw/Avg), IF BW, (2), (x1) to set the IF Bandwidth to the first test setting 2 Hz listed in Table 2-11
- 6. Press <u>Sweep</u>, <u>NUMBER of POINTS</u>, 1, 1, x1 to set the number of points to the first test setting 11 listed in Table 2-11

Start	Stop	IF BW	Number of
Frequency	Frequency		Points
10 Hz	1 kHz	2 Hz	11
1 kHz	100 kHz	30 Hz	101
100 kHz	500 MHz	30 Hz	201

Table 2-11. Input Crosstalk Test Test Settings

- 7. Perform the following steps to test the input crosstalk of the HP 4395A.
 - a. Press (Sweep), COUPLED CH on OFF
 - b. Press (Ch1), (Trigger), SINGLE to make a sweep on channel 1. Wait for the completion of the sweep.
 - c. Press (Search), MAX to move the channel 1 marker to the maximum point on the trace (A/R).
 - d. Record the marker reading in the calculation sheet ("Maker Reading" column for R into A crosstalk).
 - e. Press (Ch2), (Trigger), SINGLE to make a sweep on channel 2. Wait for the completion of the sweep.
 - f. Press (Search), MAX to move the channel 2 marker to the maximum point on the trace (B/R).
 - g. Record the marker reading in the calculation sheet ("Maker Reading" column for R into B crosstalk).
- 8. Press (Sweep), COUPLED CH ON off, change the HP 4395A test settings in accordance with the Table 2-11, and repeat step 7 for each setting.

2.24 Performance Tests

9. INPUT IMPEDANCE TEST (NA)

Description

This test uses a network analyzer and a T/R test set to measure the return losses of the HP 4395A R, A, and B inputs. One-port full calibration is performed to measured the return loss accurately.

The HP 4395A has no capability for making an A/B measurement. The HP 4395A can measure the return loss of the B (or A) input using A/R (or B/R) measurement capability of the HP 4395A. However, it cannot measure the R input's return loss. Therefore, a network analyzer is used in this test.

Specification

Return Loss (@att. = 10 dB)

	Return Loss	
Frequency	@att. = 10 dB	
100 kHz \leq freq. \leq 100 MHz	$\geq 25 \text{ dB}$	
100 MHz < freq.	$\geq 15 \text{ dB}$	

Test Equipment

Network Analyzer	
T/R Test Sets	HP 85044A
50Ω Type-N Calibration Kit	$\dots \dots $
APC7.5-N(f) adapter	HP 11524A or part of HP 85032B
Type-N Cable, 61 cm (four required)	HP 11500B or part of HP 11851B

1: This calibration kit includes several terminations and adapters. This test requires the OPEN(f), SHORT(f), LOAD(f) in the calibration kit HP 85032B.

Procedure

1. Connect the test equipment as shown in Figure 2-11. Don't connect anything to the end of the test port cable.

Figure 2-11. Impedance Test Setup

Control Settings	Key Strokes	
Input Attenuator R: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, 1), (), (x1)
Input Attenuator A: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN A, (1), (), (x1)
Input Attenuator B: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN B, (1), (), (<u>x1</u>

- 3. On the network analyzer, perform the following steps to set the network analyzer controls to measure the return loss from 300 kHz to 100 MHz.
 - a. Press (Preset) to initialize the network analyzer.
 - b. Press (Start), (3), (0), (k/m).
 - c. Press (Stop), (1), (0), (M/μ).
 - d. Press (Menu), SWEEP TYPE MENU, LOG FREQ
 - e. Press (Avg), IF BW, (1, (0, (0, x1).
 - f. Press (CAL), CAL KIT [7mm], N 50Ω, RETURN, CALIBRATION MENU, S11 1-PORT to initiate a calibration.
 - g. Connect a type N(f) open to the end of the test port cable.
 - h. Press (S11): OPENS, OPEN (M). Wait until a beep sounds. Then press DONE: OPENS.
 - i. Remove the open from the test port cable and connect a type N(f) short to the test port cable.
 - j. Press SHORTS, SHORT (M). Wait until a beep sounds. Then press DONE:SHORTS.

- k. Remove the short from the test port cable and connect a type N(f) 50 Ω load to the test port cable.
- l. Press LOAD. Wait until a beep sounds.
- $^{m.}$ Press <code>DONE:1-PORT CAL</code> to complete the calibration sequence.
- n. Remove the type N(f) 50 Ω load from the test port cable
- 4. Connect the test port cable to the HP 4395A R input.
- 5. On the network analyzer, press (MENU), TRIGGER MENU, SINGLE to make a sweep. Wait for the completion of the sweep.
- 6. On the network analyzer, press (MKR FCTN), MKR SEARCH [OFF], MAX to move the marker to the maximum point on the trace.
- 7. Record the network analyzer's marker reading (with an opposite sign) in the performance test record ("Test Result" column).
- 8. Remove the test port cable from the HP 4395A R input and connect it to the A input.
- 9. On the network analyzer, press (MENU), TRIGGER MENU, SINGLE to make a sweep. Wait for the completion of the sweep.
- 10. On the network analyzer, press (MKR FCTN), MKR SEARCH [OFF], MAX to move the marker to the maximum point on the trace.
- 11. Record the network analyzer's marker reading (with an opposite sign) in the performance test record ("Test Result" column).
- 12. Remove the test port cable from the HP 4395A A input and connect it to the B input.
- 13. On the network analyzer, press (MENU), TRIGGER MENU, SINGLE to make a sweep. Wait for the completion of the sweep.
- 14. On the network analyzer, press ($\underline{MKR FCTN}$), MKR SEARCH [OFF], MAX to move the marker to the maximum point on the trace.
- 15. Record the network analyzer's marker reading (with an opposite sign) in the performance test record ("Test Result" column).
- 16. On the network analyzer, perform the following steps to set the network analyzer controls to measure the return loss from 100 MHz to 500 MHz.
 - a. Press (Preset) to initialize the network analyzer.
 - b. Press $(\overline{\text{Start}}, 1, 0, 0, M/\mu)$.
 - c. Press (Stop), 5, 0, 0, (M/μ) .
 - d. Press (Menu), SWEEP TYPE MENU, LOG FREQ
 - e. Press (Avg), IF BW, (1, 0), (0, x1).
 - f. Press (CAL), CAL KIT [7mm], N 50Ω, RETURN, CALIBRATION MENU, S11 1-PORT to initiate a calibration.
 - g. Connect a type N(f) open to the end of the test port cable.
 - h. Press (S11): OPENS, OPEN (M). Wait until a beep sounds. Then press DONE: OPENS.
 - i. Remove the open from the test port cable and connect a type N(f) short to the test port cable.
 - j. Press SHORTS, SHORT (M). Wait until a beep sounds. Then press DONE: SHORTS.
 - k. Remove the short from the test port cable and connect a type N(f) 50 Ω load to the test port cable.
 - l. Press LOAD. Wait until a beep sounds.

- m. Press DONE:1-PORT CAL to complete the calibration sequence.
- n. Remove the type N(f) 50 Ω load from the test port cable
- 17. Connect the test port cable to the HP 4395A R input.
- 18. On the network analyzer, press (\underline{MENU}) , TRIGGER MENU, SINGLE to make a sweep. Wait for the completion of the sweep.
- 19. On the network analyzer, press ($\underline{MKR FCTN}$), MKR SEARCH [OFF], MAX to move the marker to the maximum point on the trace.
- 20. Record the network analyzer's marker reading (with an opposite sign) in the performance test record ("Test Result" column).
- 21. Remove the test port cable from the HP 4395A R input and connect it to the A input.
- 22. On the network analyzer, press (MENU), TRIGGER MENU, SINGLE to make a sweep. Wait for the completion of the sweep.
- 23. On the network analyzer, press (<u>MKR FCTN</u>), MKR SEARCH [OFF], MAX to move the marker to the maximum point on the trace.
- 24. Record the network analyzer's marker reading (with an opposite sign) in the performance test record ("Test Result" column).
- 25. Remove the test port cable from the HP 4395A A input and connect it to the B input.
- 26. On the network analyzer, press (MENU), TRIGGER MENU, SINGLE to make a sweep. Wait for the completion of the sweep.
- 27. On the network analyzer, press (<u>MKR FCTN</u>), MKR SEARCH [OFF], MAX to move the marker to the maximum point on the trace.
- 28. Record the network analyzer's marker reading (with an opposite sign) in the performance test record ("Test Result" column).

10. ABSOLUTE AMPLITUDE ACCURACY TEST (NA)

Description

This test measures a test signal amplitude using the HP 4395A absolute amplitude measurement function in the network analyzer mode and using a power meter, a power sensor and a multimeter. Then it compares the HP 4395A reading with the reading of the power meter or the multimeter. The accuracy of the absolute amplitude measurement is verified over the entire frequency range.

In this test, the HP 4395A RF OUT signal is used as the test signal. The RF OUT signal is divided through a two-way power splitter and applied to an HP 4395A input and the power sensor input or the multimeter.

Specification

Absolute amplitude accuracy (R, A, B)
$@-10 \text{ dBm}$ input, input att. = 10 dB, $23\pm5^{\circ}\text{C}$
freq. ≥ 100 Hz, IFBW ≤ 3 kHz

Test Equipment

Power Meter HP 436A Opt. 022, HP 437B, or HP 438A
Power Sensor
Multimeter
Two-Way Power Splitter
50 Ω Feedthrough PN 04192-61002
Type-N Cable, 61 cm HP 11500B or part of HP 11851B
BNC cable, 61 cmPN 8120-1839
N(m)-BNC(f) adapter PN 1250-0780
N(m)-N(m) adapter
BNC(f)-Dual Banana Plug Adapter PN 1251-2277

Procedure

1. For testing low frequencies

a. Connect the test equipment as shown in Figure 2-12.

Figure 2-12. Absolute Amplitude Accuracy Test Setup 1

b. Initialize the multimeter. Then set the controls as follows:

Controls	Settings
Measurement Function	AC Volts Mode
Display Reading Value	dBm Reading Value
Measurement Method	Syncronous Sampling Conversion
Measurement Method NPLC	Syncronous Sampling Conversion 100

c. Press (Meas), ANALYZER TYPE, NETWORK ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Source Power: -4 dBm	(Source), POWER, $(-)$, (4) , $(x1)$
Input Attenuator R: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, (1, (0, (x1
Input Attenuator A: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN A, (1, (0, (x1)
Input Attenuator B: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN B, (1, (0, (x1)
Number of Points: 11	Sweep, NUMBER of POINTS, 1, 1, 1
Frequency Span: 0 Hz	(Span), ZERO SPAN
Statistics: ON	(Utility), STATISTICS on OFF (Then the softkey
	label changes to STATISTICS ON off.)

d. Press (Meas), R to set the HP 4395A to the R input.

e. Perform the following steps to test the absolute amplitude accuracy at the R input.

- i. Press Center, 1, 0, 0, x1 to set the HP 4395A center frequency to the first test frequency 100 kHz listed in Table 2-12. Table 2-12 lists test frequencies.
- ii. Press (Bw/Avg), IF BW, (1, (0), (x1) to set the HP 4395A IF Bandwidth to the first test IF Bandwidth 10 Hz listed in Table 2-12.

HP 4395A	IF BW
Center Frequency	
100 Hz	10 Hz
200 Hz	10 Hz
500 Hz	10 Hz
1 kHz	$100~\mathrm{Hz}$
2 kHz	$100 \ Hz$
5 kHz	$100~\mathrm{Hz}$
10 kHz	$100~\mathrm{Hz}$
20 kHz	$100~\mathrm{Hz}$
50 kHz	$100 \ \mathrm{Hz}$
100 kHz	$100~\mathrm{Hz}$
200 kHz	$100 \ \mathrm{Hz}$
500 kHz	100 Hz

 Table 2-12. Absolute Amplitude Accuracy Test Settings 1

- iii. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- iv. Record the trace mean value and the multimeter reading in the calculation sheet ("HP 4395A Reading" column and "Meter Reading" column, respectively). The trace mean value is displayed as a marker statistic (mean) in the upper right-hand corner of the display.
- v. Change the HP 4395A center frequency and IF Bandwidth in accordance with Table 2-12, and repeat steps 1-e-iii and 1-e-iv for each center frequency.
- f. Remove the power splitter from the R input, and connect it directly to the A input.
- g. Press Meas), A to set the HP 4395A to the A input.
- h. Repeat step 1-e to test the absolute amplitude accuracy at the HP 4395A A input.
- i. Remove the power splitter from the A input, and connect it directly to the B input.
- j. Press Meas B to set the HP 4395A to the B input.
- k. Repeat step 1-e to test the absolute amplitude accuracy at the B input.
- 1. Calculate the test results using the equation given in the calculation sheet. Record the test results in the performance test record.

2. For testing high frequencies

- a. Connect the power sensor to the power meter. Calibrate the power meter for the power sensor.
- b. Connect the test equipment as shown in Figure 2-13.

Figure 2-13. Absolute Amplitude Accuracy Test Setup 2

Control Settings	Key Strokes
Source Power: -4 dBm	(Source), POWER,, (4), (x1)
IF BW: 100 Hz	$(\underline{Bw}/Avg), \text{ IF } \mathbb{BW}, (1), (0), (x1)$
Input Attenuator R: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, 1, 0, (1)
Input Attenuator A: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN A, (1, (0, X1)
Input Attenuator B: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN B, (1, (0, (x1)
Number of Points: 11	Sweep, NUMBER of POINTS, 1, 1, 1, 1
Frequency Span: 0 Hz	(Span), ZERO SPAN
Statistics: ON	(Utility), STATISTICS on OFF (Then the softkey
	label changes to STATISTICS ON off .)

- d. Press (Meas), R to set the HP 4395A to the R input.
- e. Perform the following steps to test the absolute amplitude accuracy at the R input.
 - i. Press (Center), 1), (M/μ) to set the HP 4395A center frequency to the first test frequency 1 MHz listed in Table 2-13. Table 2-13 lists test frequencies.

HP 4395A
Center Frequency
1 MHz
2 MHz
$5 \mathrm{~MHz}$
8 MHz
10 MHz
$20 \mathrm{~MHz}$
$50 \mathrm{~MHz}$
100 MHz
$125 \mathrm{~MHz}$
$175 \mathrm{~MHz}$
200 MHz
$225 \mathrm{~MHz}$
$275 \mathrm{MHz}$
300 MHz
325 MHz
$375 \mathrm{~MHz}$
400 MHz
$425 \mathrm{~MHz}$
$475 \mathrm{~MHz}$
500 MHz

Table 2-13. Absolute Amplitude Accuracy Test Settings 2

- ii. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- iii. Record the trace mean value and the power meter reading in the calculation sheet ("HP 4395A Reading" column and "Meter Reading" column, respectively). The trace mean value is displayed as a marker statistic (mean) in the upper right-hand corner of the display.
- iv. Change the HP 4395A center frequency in accordance with Table 2-13, and repeat steps 2-e-ii. and 2-e-iii. for each center frequency.
- f. Remove the power splitter from the R input, and connect it directly to the A input.
- g. Press Meas), A to set the HP 4395A to the A input.
- h. Repeat step 2-e to test the absolute amplitude accuracy at the HP 4395A A input.
- i. Remove the power splitter from the A input, and connect it directly to the B input.
- J. Press (Meas), B to set the HP 4395A to the B input.
- k. Repeat step 2-e to test the absolute amplitude accuracy at the B input.
- 1. Calculate the test results using the equation given in the calculation sheet. Record the test results in the performance test record.

11. MAGNITUDE RATIO/PHASE DYNAMIC ACCURACY TEST (NA)

Description

Dynamic accuracy is a measure of how well a receiver measures the magnitude and phase components of a signal as that signal varies in amplitude over a specified dynamic range.

To measure the dynamic accuracy, this test applies a fixed level signal of -20 dBm to the HP 4395A R input (reference input). At the same time, it applies a signal that varies from -10 dBm (full scale input level) to -110 dBm to one of the HP 4395A's A or B inputs (test input). It then measures the magnitude ratio from -10 dB to -100 dB and the phase of the signals.

The signal amplitude at the test input is varied by inserting known attenuation values. The measured magnitude ratio values are then compared to the inserted attenuation's calibrated values.

The phase dynamic accuracy is measured at 3 MHz (where the phase error contribution by the individual attenuator segments is small when compared to the test limits).

In this test, a step attenuator with its VSWR ≤ 1.02 and two 6 dB fixed attenuators with a VSWR ≤ 1.015 are used. Using these attenuators reduces the measurement uncertainties caused by mismatch error. When they are used, the measurement uncertainties listed in the performance test record are valid.

Specification

Magnitude ratio/phase dynamic accuracy (A/R, B/R)

Input Level (relative to full scale input level – 10 dB)	Magnitude Ratio Dynamic Accuracy ¹	Phase Dynamic Accuracy ¹
$0 \text{ dB} \ge \text{Input Level} > -10 \text{dB}$	$<\pm0.4$ dB	$<\pm 3 \deg$
$-10 \text{ dB} \ge \text{Input Level} \ge -60 \text{ dB}$	$<\pm0.05$ dB	$<\pm 0.3 \deg$
$-60 \text{ dB} > \text{Input Level} \ge -80 \text{ dB}$	$<\pm 0.3$ dB	$<\pm1.8$ deg
$-80 \text{ dB} > \text{Input Level} \ge -100 \text{ dB}$	$<\pm 3$ dB	$<\pm 18 \deg$

1: R input level (B input level for A/B) – full scale input level – 10 dB, IFBW – 10 Hz, $23\pm5^{\circ}$ C, At the following points, measurement error may exceed the specifications: 124.0 MHz, 136.0 MHz, 415.0 MHz

Test Equipment

Two-Way Power Splitter	HP 11667A
Step Attenuator ¹ , 10 dB Step, VSWR ≤ 1.02	. HP 8496G Opt. 001 and H60
Attenuator driver	HP 11713A
6 dB Fixed Attenuation (two required)	
6 dB Fixed Attenuation, $VSWR \le 1.015$ (two required) HP	P 8491A Opt. 006 & Opt. H60
Type-N Cable, 61 cm (three required)	11500B or part of HP 11851B
N(m)-N(m) adapter	PN 1250-1475

1: Calibration values for attenuation settings of 10 dB to 100 dB at 50 MHz are required.

Procedure

- 1. Record the step attenuator 50 MHz calibration values in the calculation sheet ("Calibration Value" column).
- 2. Press (Meas), ANALYZER TYPE, NETWORK ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes	
Dual Channel: On	(Display), DUAL CHAN on OFF (Then the softkey label	
	changes to DUAL CHAN ON off.	
Marker: DISCRETE	[Marker], MKR [CONT] (Then the softkey label changes	
	to MKR [DISCRETE].)	
Start Frequency: 3 MHz	$(Start), (3), (M/\mu)$	
Stop Frequency: 50.1 MHz	$(Stop), (5), (0), (.), (1), (M/\mu)$	
IF BW: 10 Hz	(Bw/Avg), IF BW, (1, (0), (x1)	
Number of Points: 2	Sweep, NUMBER of POINTS, 2, X1	

3. —A/R Dynamic Accuracy Test (Magnitude Ratio at 50 MHz and Phase at 3 MHz)—

a. Connect the test equipment as shown in Figure 2-14.

Figure 2-14. A/R Magnitude Ratio/Phase Dynamic Accuracy Test Setup 1

b. On the HP 4395A, set the controls as follows:

Control Settings Key Strokes

Source Power: -2 dBm	$(\overline{\text{Source}})$, POWER, $(-)$, (2) , $(\times 1)$	
Active Channel: CH 1 Input Port: A/P		
Input Port: A/R	(Meas), A/R	
Format: LOG MAG	(Format), LOG MAG	
Averaging Factor: 4	(Bw/Avg), AVERAGING FACTOR , (4), (x1)	
Averaging: ON	(Bw/Avg), AVERAGING on OFF (Then the softkey	
	label changes to AVERAGING ON off.)	
Input Attenuator R: 0dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, $(0, \times)$	
Input Attenuator A: 0dB	(Scale Ref), ATTENUATOR MENU, ATTEN A, (1), $(\times 1)$	
Active Channel: CH 2	(<u>Ch 2</u>)	
Input Port: A/R	(Meas), A/R	
Format: PHASE	(Format), PHASE	
Averaging Factor: 4	(Bw/Avg), AVERAGING FACTOR , (4), (x1)	
Averaging: ON	AVERAGING on OFF (Then the softkey label	
	changes to AVERAGING ON off.)	

- c. Set the step attenuator to 0 dB.
- d. Press Ca), CALIBRATE MENU, RESPONSE, THRU to perform the response (THRU) calibration. Wait for the completion of the sweep. Then press DONE: RESPONSE.
- e. Set the step attenuator to the first setting 10 dB in the second column of Table 2-14.

HP 4395A Input Level	Step Attenuator	HP 4395A Source Power
0 dB	10 dB	8 dBm

Table 2-14. A/R Dynamic Accuracy Test Settings 1

- f. On the HP 4395A, press (Source), POWER, (8), (x1) to set the source power to the first setting in the third columns of Table 2-14.
- g. Perform the following steps to measure the dynamic accuracy.
 - i. Press (Trigger), NUMBER OF GROUPS, (5), (x1) to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Marker), (\uparrow) to move the channel 1 marker to 50.1 MHz.
 - iii. Record the channel 1 marker reading in the calculation sheet for the magnitude ratio dynamic accuracy. Use the HP 4395A reading column corresponding to the input level in the first column of Table 2-14.
 - iv. Press () to move the channel 2 marker to 3 MHz.
 - v. Record the channel 2 marker reading directly in the performance test record. Use the test result column of the phase measurement corresponding to the input level in the first column of Table 2-14.
- h. Change the cable connection as shown in Figure 2-15.

Figure 2-15. A/R Magnitude Ratio/Phase Dynamic Accuracy Test Setup 2

i. On the HP 4395A, set the controls as follows:

- j. Set the step attenuator to 10 dB.
- k. Press Cal, CALIBRATE MENU, RESPONSE, THRU to perform the response (THRU) calibration. Wait for the completion of the sweep. Then press DONE:RESPONSE.

1. Set the step attenuator to the first setting 20dB in the second colum of Table 2-15.

HP 4395A	Step Attenuator
Input Level	
-20 dB	20 dB
-30 dB	30 dB
-40 dB	40 dB
-50 dB	50 dB
-60 dB	60 dB
-70 dB	70 dB
-80 dB	80 dB
-90 dB	90 dB
-100 dB	100 dB

 Table 2-15. A/R Dynamic Accuracy Test Settings 2

- m. Perform the following steps to measure the dynamic accuracy.
 - i. Press (Trigger), NUMBER OF GROUPS, (5), (x1) to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Marker), (\uparrow) to move the channel 1 marker to 50.1 MHz.
 - iii. Record the channel 1 marker reading in the calculation sheet for the magnitude ratio dynamic accuracy. Use the HP 4395A reading column corresponding to the input level in the first column of Table 2-15.
 - iv. Press (I) to move the channel 2 marker to 3 MHz.
 - v. Record the channel 2 marker reading directly in the performance test record. Use the test result column of the phase measurement corresponding to the input level in the first column of Table 2-15.
- n. Change the step attenuator setting in accordance with the second column of Table 2-15, and perform step 3-m for each setting.

4. —B/R Dynamic Accuracy Test (Magnitude Ratio at 50 MHz and Phase at 3 MHz)—

a. Connect the test equipment as shown in Figure 2-16.

Figure 2-16. B/R Magnitude Ratio/Phase Dynamic Accuracy Test Setup 1

b. On the HP 4395A, set the controls as follows:

Control Settings	Key Strokes		
Source Power: –2 dBm	Source, POWER, ., (2), (x1		
Active Channel: CH 1	(Ch 1)		
Input Port: B/R	Meas), B/R		
Format: LOG MAG	(Format), LOG MAG		
Averaging Factor: 4	(Bw/Avg), AVERAGING FACTOR, (4), (x1)		
Averaging: ON	(Bw/Avg), AVERAGING on OFF (Then the softkey		
	label changes to AVERAGING ON off.)		
Input Attenuator R: 0dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, O, (x_1)		
Input Attenuator B: 0dB	(Scale Ref), ATTENUATOR MENU, ATTEN B, O, X1		
Active Channel: CH 2	Ch 2		
Input Port: B/R	(Meas), B/R		
Format: PHASE	(Format), PHASE		
Averaging Factor: 4	(Bw/Avg), AVERAGING FACTOR, (4), (x1)		
Averaging: ON	AVERAGING on OFF (Then the softkey label		
	changes to AVERAGING ON off.)		

c. Set the step attenuator to 0 dB.

d. Press Ca), CALIBRATE MENU, RESPONSE, THRU to perform the response (THRU) calibration. Wait for the completion of the sweep. Then press DONE: RESPONSE.

e. Set the step attenuator to the first setting 10 dB in the second column of Table 2-16.

HP 4395A Input Level	Step Attenuator	HP 4395A Source Power
0 dB	10 dB	8 dBm

Table 2-16. B/R Dynamic Accuracy Test Settings 1

- f. On the HP 4395A, press (Source), POWER, (8), (x1) to set the source power to the first setting in the third columns of Table 2-14.
- g. Perform the following steps to measure the dynamic accuracy.
 - i. Press $(\underline{Trigger})$, NUMBER OF GROUPS, (5), $(\underline{x1})$ to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Marker), (f) to move the channel 1 marker to 50.1 MHz.
 - iii. Record the channel 1 marker reading in the calculation sheet for the magnitude ratio dynamic accuracy. Use the HP 4395A reading column corresponding to the input level in the first column of Table 2-16.
 - iv. Press \bigoplus to move the channel 2 marker to 3 MHz.
 - v. Record the channel 2 marker reading directly in the performance test record. Use the test result column of the phase measurement corresponding to the input level in the first column of Table 2-16.
- h. Change the cable connection as shown in Figure 2-17.

Figure 2-17. B/R Magnitude Ratio/Phase Dynamic Accuracy Test Setup 2
i. On the HP 4395A, set the controls as follows:

Control Settings	Key Strokes
Source Power: 8 dBm	Source, POWER, (8), (x1)
Active Channel: CH 1	Ch 1
Averaging Factor: 4	(Bw/Avg), AVERAGING FACTOR, (4), (x1)
Active Channel: CH 2	Ch 2
Averaging Factor: 4	(Bw/Avg), AVERAGING FACTOR, (4), (x1)
Input Attenuator R: 10dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, 1, 0,
	xl
Input Attenuator B: 0dB	(Scale Ref), ATTENUATOR MENU, ATTEN B, (0), (x1)

- j. Set the step attenuator to 10 dB.
- k. Press (Ca), CALIBRATE MENU, RESPONSE, THRU to perform the response (THRU) calibration. Wait for the completion of the sweep. Then press DONE: RESPONSE.
- 1. Set the step attenuator to the first setting 20dB in the second colum of Table 2-17.

 Table 2-17. B/R Dynamic Accuracy Test Settings 2

HP 4395A Input Level	Step Attenuator
-20 dB	20 dB
-30 dB	30 dB
-40 dB	40 dB
-50 dB	50 dB
-60 dB	60 dB
-70 dB	70 dB
-80 dB	80 dB
-90 dB	90 dB
-100 dB	100 dB

- m. Perform the following steps to measure the dynamic accuracy.
 - i. Press (Trigger), NUMBER OF GROUPS , (5), (x1) to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Marker), (\uparrow) to move the channel 1 marker to 50.1 MHz.
 - iii. Record the channel 1 marker reading in the calculation sheet for the magnitude ratio dynamic accuracy. Use the HP 4395A reading column corresponding to the input level in the first column of Table 2-17.
 - iv. Press \bigoplus to move the channel 2 marker to 3 MHz.
 - v. Record the channel 2 marker reading directly in the performance test record. Use the test result column of the phase measurement corresponding to the input level in the first column of Table 2-17.
- n. Change the step attenuator setting in accordance with the second column of Table 2-17, and perform step 4-m for each setting.

12. MAGNITUDE RATIO/PHASE FREQUENCY RESPONSE TEST (NA)

Description

This test applies the RF OUT signal to the HP 4395A R input and either the A or B input through a power splitter. It then measures the magnitude ratio and phase of the A/R and B/R measurements. The magnitude ratio frequency response is measured as the deviation from the ideal magnitude ratio value of 0 dB. The phase frequency response is measured as the deviation from linear phase.

Specification

Magnitude ratio accuracy (A/R, B/R)
$@-10 \text{ dBm input,input att.} = 10 \text{ dB,Freq.} \ge 100 \text{ Hz,IF BW} \le 3 \text{ kHz}, 23\pm5^{\circ}\text{C} \dots \ll \pm 2 \text{ dB}$
Phase frequency response (Deviation from Linear Phase) (A/R, B/R)
@-10 dBm input,input att.= 10 dB,Freq. \geq 100 Hz,IF BW \leq 3 kHz, 23 \pm 5°C $< \pm$ 12°

Test Equipment

Two-Way Power Splitter	HP 11667A
Type N Cable, 61 cm (two required)	
N(m)-N(m) adapter	PN 1250-1475

Procedure

1. Press (Meas), ANALYZER TYPE, NETWORK ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Statistics: ON	Utility), STATISTICS on OFF (Then the softkey label
	changes to STATISTICS ON off.)
Dual Channel: On	(Display), DUAL CHAN on OFF (Then the softkey label
	changes to DUAL CHAN ON off.
Source Power: -4 dBm	Source, POWER, ., 4, X1
IF BW: 1 kHz	(Bw/Avg), IF BW, (1), (k/m)
Input Attenuator R: 10 dB	Scale Ref), ATTENUATOR MENU, ATTEN R 1, 0, X1
Input Attenuator A: 10 dB	Scale Ref), ATTENUATOR MENU, ATTEN A (1), (0), X1
Input Attenuator B: 10 dB	Scale Ref), ATTENUATOR MENU, ATTEN B (1), (0), (x1)

2. —A/R Magnitude Ratio/Phase Frequency Response Test—

a. Connect the test equipment as shown in setup 1 of Figure 2-18.

b. Set the HP 4395A controls as follows:

Control Settings	Key Strokes
Active Channel: CH 1	(Ch 1)
Input Port: A/R	Meas), A/R
Format: LOG MAG	Format), LOG MAG
Active Channel: CH 2	(Ch 2)
Input Port: A/R	Meas), A/R
Format: PHASE	(Format), PHASE
Start Frequency: 1 MHz	$(Start), (1), (M/\mu)$
Stop Frequency: 500 MHz	$\overline{\text{Stop}}, \overline{5}, \overline{0}, \overline{0}, \overline{0}, \overline{M/\mu}$
Number of Points: 500	Sweep, NUMBER of POINTS, (5, (0, (0, x1)

- ^{c.} Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- d. Set the HP 4395A controls as follows:

Control Settings	Key Strokes
Active Channel: CH 1	Ch 1
Data→Memory	$(\underline{Display}, \mathtt{DATA} \rightarrow \mathtt{MEMORY})$
Active Channel: CH 2	Ch 2
Data→Memory	$(\underline{Display}), DATA \rightarrow MEMORY$

- e. Reverse the cable connections of the HP 4395A A and R inputs as shown in setup 2 of Figure 2-18.
- f. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- g. Set the HP 4395A controls as follows:

Control Settings	Key Strokes
Active Channel: CH 1	(Ch 1)

Data Math: DATA + MEM	(Display), DATA MATH [xxx] , DATA+MEM ,	GAIN,	(),
Auto Scale	5, (x1) (Scale Ref), AUTO SCALE		
Active Channel: CH 2 Data Math: DATA+MEM	Ch 2 (Display), DATA MATH [xxx], DATA+MEM,	GAIN,	(),
Auto Scale	5, (x1) (Scale Ref), AUTO SCALE		

- h. Press (<u>Ch 1</u>), (<u>Search</u>), MAX and (<u>Search</u>), MIN to move the channel 1 marker to the maximum and minimum points on the trace. Compare the absolute values at the maximum and minimum points.
- i. Record the larger value in the performance test record ("Test Result" column for A/R magnitude ratio).
- j. Press (Ch 2), (Marker→), MKR→STOP, (Cal), MORE, ELECTRICAL DELAY MENU, MKR→DELAY, ELECTRICAL DELAY. Then press (↑) or (↓) and turn the RPG knob to vary the electrical delay until the trace is in the most horizontal position.
- k. Press PHASE OFFSET and enter the trace mean value using numeric keys. The trace mean value is displayed as a marker statistic (mean) in the upper right-hand corner of the display.
- 1. Press (Search), MAX and (Search), MIN to move the channel 2 marker to the maximum and minimum points on the trace. Compare the absolute values at the maximum and minimum points.
- m. Record the larger value in the performance test record ("Test Result" column for A/R phase).

* —B/R Magnitude Ratio/Phase Frequency Response Test—

• Connect the test equipment as shown in setup 1 of Figure 2-19.

Figure 2-19. B/R Magnitude Ratio/Phase Frequency Response Test Setup

■ Set the HP 4395A controls as follows:

Control Settings	Key Strokes
Active Channel: CH 1 Input Port: B/R	(Lh 1)
Format: LOG MAG	(Meas), B/R
Active Channel: CH 2	(Format), LUG MAG
Input Port: B/R	(Meas), B/R
Format: PHASE	(Format), PHASE
Start Frequency: 1 MHz	$\overline{(\text{Start})}, 1, (M/\mu)$
Stop Frequency: 500 MHz	$(Stop), (5, 0), (0), (M/\mu)$
Number of Points: 500	(Sweep), NUMBER of POINTS, (5), (0), (x1)

- Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- Set the HP 4395A controls as follows:

Control Settings	Key Strokes
Active Channel: CH 1	Ch 1
Data→Memory	$\overline{(\text{Display})}, \text{ DATA} \rightarrow \text{MEMORY}$
Active Channel: CH 2	(Ch 2)
Data→Memory	$(\underline{Display}, \mathtt{DATA} \rightarrow \mathtt{MEMORY})$

- Reverse the cable connections of the HP 4395A A and R inputs as shown in setup 2 of Figure 2-18.
- Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- Set the HP 4395A controls as follows:

Control Settings Active Channel: CH 1	Key Strokes
Data Math: DATA+MEM	(Display), DATA MATH [xxx], DATA+MEM, GAIN, (), (5,
Auto Scale	(Scale Ref), AUTO SCALE
Active Channel: CH 2	Ch 2
Data Math: DATA + MEM	(Display), DATA MATH [xxx], DATA+MEM, GAIN, (), (5,
Auto Scale	(x1) (Scale Ref), AUTO SCALE

- Press (Ch 1), (Search), MAX and (Search), MIN to move the channel 1 marker to the maximum and minimum points on the trace. Compare the absolute values at the maximum and minimum points.
- Record the larger value in the performance test record ("Test Result" column for A/R magnitude ratio).
- Press (Ch 2), (Marker→), MKR→STOP, (Cal), MORE, ELECTRICAL DELAY MENU, MKR→DELAY, ELECTRICAL DELAY. Then press (↑) or (↓) and turn the RPG knob to vary the electrical delay until the trace is in the most horizontal position.
- Press PHASE OFFSET and enter the trace mean value using numeric keys. The trace mean value is displayed as a marker statistic (mean) in the upper right-hand corner of the display.

- Press Search, MAX and Search, MIN to move the channel 2 marker to the maximum and minimum points on the trace. Compare the absolute values at the maximum and minimum points.
- Record the larger value in the performance test record ("Test Result" column for A/R phase).

13. DISPLAYED AVERAGE NOISE LEVEL TEST (SA)

Description

This test uses the HP 4395A marker statistics function to measure the displayed average noise level in the HP 4395A spectrum analyzer mode.

In this test, the noise level (trace mean value) is measured in linear format [Watt]. Then the measured values are converted to log magnitude format [dBm]. This is done to avoid skewing the data with the marker statistics function.

Specification

Displayed average noise level

freq. $\geq 1 \text{ kH}$	iz, ref. level \leq	$\leq -40 \text{ dBm}, \text{ att.}=0 \text{ dB} \dots$		$\ldots < -120 \text{ dBm/Hz}$
freq. ≥ 100 l	kHz, ref. leve	$l \leq -40 \text{ dBm}, \text{ att.}=0 \text{ dB}$		$\ldots < -133 \text{ dBm/Hz}$
freq. ≥ 10 M	fHz, ref. level	≤ -40 dBm, att.=0 dB	<[-14	$45 + f^1/100$] dBm/Hz

1: f is measurement frequency (MHz).

Test Equipment

50Ω Termination (three required) HP 909C Opt. 012 or part of HP 85032B

Procedure

1. Connect the test equipment as shown in Figure 2-20.

Figure 2-20. Average Noise Level Test Setup

2. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Reference Level: -40 dBm	(Scale Ref), REFERENCE VALUE (-), (4), (0), (x1)
Input Attenuator R: 0 dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, (0) , $(x1)$
Input Attenuator A: 0 dB	Scale Ref), ATTENUATOR MENU, ATTEN A, O, X1
Input Attenuator B: 0 dB	(Scale Ref), ATTENUATOR MENU, ATTEN B, (0), (x1)
UNIT: WATT	(Format), WATT
Statistics: ON	Utility, STATISTICS on OFF (Then the softkey label
	changes to STATISTICS ON off.)
Detection: Sample	(Meas), DETECTION[xxx], SAMPLE

- ^{3.} Press M_{eas} , R to set the HP 4395A to the R input.
- 4. Perform the following steps to test the displayed average noise level at the HP 4395A R input.
 - a. Set the controls as follows. (This sets the center frequency, RBW and frequency span to the first settings listed in Table 2-18).

Control Settings	Key Strokes
Center Frequency: 1 kHz	$\overline{\text{Center}}, 1, \overline{k/m}$
RBW: 3 Hz	(Bw/Avg), RES BW, 3, (x1)
Frequency Span: 30 Hz	(Span), (3), (0), (x1)

Table 2-18. Displayed Average Noise Level Test Settings

HI	• 4395 A	A
Center Frequency	RBW	Frequency Span
1 kHz	3 Hz	30 Hz
10 kHz	$10 \mathrm{~Hz}$	100 Hz
100 kHz	$10 \mathrm{~Hz}$	100 Hz
1 MHz	1 kHz	10 kHz
11 MHz	1 kHz	10 kHz
20 MHz	1 kHz	10 kHz
101 MHz	1 kHz	10 kHz
201 MHz	1 kHz	10 kHz
499 MHz	1 kHz	10 kHz

- b. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- c. Record the HP 4395A trace mean value [Unit] in the calculation sheet ("Trace Mean [Unit]" column). The trace mean value is displayed as a marker statistic (mean) in the upper right-hand corner of the display.
- d. Change the center frequency, frequency span, and RBW settings in accordance with Table 2-18. Then repeat steps 4-b and 4-c for each setting.
- 5. Press (Meas), A to set the HP 4395A to the A input.
- 6. Repeat step 4 to test the displayed average noise level at the HP 4395A A input.
- 7. Press (Meas), B to set the HP 4395A to the B input.

- 8. Repeat step 4 to test the displayed average noise level at the HP 4395A B input.
- 9. Convert the unit of the test results from [Watt] to [dBm] using the equation given in the calculation sheet. Record the test results [dBm] in the performance test record.

14. AMPLITUDE FIDELITY TEST (SA)

Description

This test checks the HP 4395A amplitude fidelity at RBW of 10 kHz. A 50.1 MHz CW signal is applied to the HP 4395A R input through a step attenuator. The signal amplitude is varied by inserting known attenuation values. Each signal amplitude [dB] is measured to a reference value at the attenuator setting of 10 dB. Then the measured values are compared with to the inserted attenuation's calibrated values.

The amplitude fidelity performance at RBWs ≤ 3 kHz are not tested in this test. The error sources at RBW ≤ 3 kHz are exactly same as those of the magnitude ratio dynamic accuracy in the HP 4395A network analyzer mode. Because the dynamic accuracy is tested in the *Magnitude Ratio/Phase Dynamic Accuracy Test*, the fidelity test at the RBW ≤ 3 kHz is omitted.

The amplitude fidelity performance at low signal levels are not tested in this test. That is, the fidelity is not checked at signal levels ≤ -60 dB (from the reference level) at an RBW of 10 kHz and at signal levels ≤ -50 dB (from the reference level) at an RBW of 1 MHz. These tests are not necessary because the fidelity performance at these levels are theoretically determined by the fidelity at higher signal levels and the fidelity at an RBW of ≤ 3 kHz.

6 and 10 dB fixed attenuators with a VSWR of \leq 1.015 are connected to the signal generator output connector and the HP 4395A S input, respectively. These fixed attenuators are used to reduce the measurement uncertainties caused by mismatch error. When they are used, the measurement uncertainties listed in the performance test record are valid.

Specification

Amplitude fidelity Log scale

Range (relative to full scale input level)	Amplitude Fidelity ¹
$0 \text{ dB} \ge \text{range} > -30 \text{ dB}$	$\pm 0.05 \text{ dB}$
-30 dB > range $\ge -40 \text{ dB}$	$\pm 0.07 \text{ dB}$
$-40 \text{ dB} > \text{range} \ge -50 \text{ dB}$	± 0.15 dB
$-50 \text{ dB} > \text{range} \ge -60 \text{ dB}$	$\pm 0.35 \text{ dB}$
$-60 \text{ dB} > \text{range} \ge -70 \text{ dB}$	± 0.8 dB
$-70 \text{ dB} > \text{range} \ge -80 \text{ dB}$	$\pm 1.8 \mathrm{dB}$

1 @23±5°C, RBW = 10 Hz, -20 dBm \geq ref. value \geq +30 dBm, ref. input level = full scale input level-10 dB

Test Equipment

Signal Generator	HP 8663A
Step Attenuator ¹ , 10 dB step, VSWR ≤ 1.02	HP 8496G Opt. 001 and H60
Attenuator Driver	HP 11713A
Type-N Cable, 61 cm (two required)	HP 11500B or part of HP 11851B
BNC cable, 122 cm	PN 8120-1840
6 dB Fixed Attenuation, $VSWR \le 1.015$	HP 8491A Opt. 006 & Opt. H60
10 dB Fixed Attenuation, $VSWR \le 1.015$	HP 8491A Opt. 010 & Opt. H60

1: Calibration values for attenuation settings of 10 dB to 60 dB at 50 MHz are required.

Procedure

- 1. Record the step attenuator 50 MHz calibration values in the calculation sheet ("Calibration Value" column).
- 2. Connect the test equipment as shown in Figure 2-21.

NoteConnect the signal generator's 10 MHz frequency reference output to the
HP 4395A EXT REF Input on the rear panel as shown in Figure 2-21. With this
configuration, both the signal generator and the HP 4395A are phase locked to
the same reference frequency to obtain a stable measurement.

CCS02019

Figure 2-21. Amplitude Fidelity Test Setup 1

3. Initialize the signal generator. Then set the controls as follows:

Controls	Settings
Frequency	$50.1 \mathrm{MHz}$
Amplitude	6 dBm

4. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, Preset to initialize the HP 4395A. Then set the controls as follows

Control Settings	Key Strokes
Center Frequency: 50.1 MHz	Center, 5, 0, $($, 1, (M/μ)
Frequency Span: 120 Hz	(Span, 1, 2, 0, x1)
RBW: 10 Hz	(Bw/Avg), RES BW, 1, 0, $(x1)$
Video BW: 10 Hz	(Bw/Avg), VIDEO BW, (1), (0), (x1)

^{5.} Press (Meas), **R** to set the HP 4395A to the R input.

- 6. Press (Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATTEN R, (1), (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 7. Set the step attenuator to 10 dB.

- 8. Perform the following steps to measure the amplitude fidelity.
 - a. On the HP 4395A, press (Search), MAX to move the marker to the peak of the carrier.
 - b. On the signal generator, adjust the amplitude until the HP 4395A marker reads $-20 \text{ dB} \pm 0.1 \text{ dB}$.
 - c. On the HP 4395A, press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - d. Press (Search), MAX, (Marker), ΔMODE MENU, FIXED ΔMKR to place the delta reference marker on the peak of the carrier (reference level of the amplitude fidelity).
 - e. Set the step attenuator to the first setting 20 dB in the second column of Table 2-19.

dB from	Step Attenuator
Reference Input Level	
-10 dB	20 dB
-20 dB	30 dB
-30 dB	40 dB
-40 dB	50 dB
-50 dB	60 dB
-60 dB	70 dB
-70 dB	80 dB

Table 2-19. Amplitude Fidelity Test Settings

- f. Perform the following steps to measure the amplitude fidelity.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), MAX .
 - iii. Record the delta marker reading in the calculation sheet for the amplitude fidelity. Use the "HP 4395A Reading" column corresponding to the dB from the reference level in the first column of Table 2-19.
- g. Change the step attenuator setting in accordance with the second column of Table 2-19. Then perform step 8-f for each setting.
- 9. Remove the fixed attenuation from the R input, and connect it to the A input.
- ^{10.} Press (Meas), A to set the HP 4395A to the A input.
- 11. Press (Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATTEN A, (1), (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 12. Set the step attenuator to 10 dB.
- 13. Repeat step 8 to measure the amplitude fidelity at the HP 4395A A input.
- 14. Remove the fixed attenuation from the A input, and connect it to the B input.
- 15. Press (Meas), B to set the HP 4395A to the B input.
- 16. Press (Scale Ref), REFERENCE VALUE, ., (1, (0), (x1), (Scale Ref), ATTENUATOR MENU, ATTEN B, (1), (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 17. Set the step attenuator to 10 dB.
- 18. Repeat step 8 to measure the amplitude fidelity at the HP 4395A B input.
- 19. Calculate the test results using the equations given in the calculation sheet. Record the test results in the performance test record.

20. Initialize the signal generator. Then set the controls as follows:

Controls	Settings
Frequency	50.1 MHz
Amplitude	6 dBm

21. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, Preset to initialize the HP 4395A. Then set the controls as follows

Control Settings	Key Strokes
Center Frequency: 50.1 MHz	Center, $(5, 0, (), (1, M/\mu)$
Frequency Span: 120 Hz	$\overline{\text{Span}}, 1, 2, 0, x1$
RBW: 10 Hz	(Bw/Avg), RES BW, 1, 0, $(x1)$
Video BW: 10 Hz	(Bw/Avg), VIDEO BW, 1, 0, X1

^{22.} Press (Meas), **R** to set the HP 4395A to the R input.

- 23. Press (Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATT R, (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 24. Set the step attenuator to 20 dB.
- 25. Perform the following steps to measure the amplitude fidelity.
 - a. On the HP 4395A, press (Search), MAX to move the marker to the peak of the carrier.
 - b. On the signal generator, adjust the amplitude until the HP 4395A marker reads $-30 \text{ dB} \pm 0.1 \text{ dB}$.
 - c. On the HP 4395A, press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - d. Press <u>Search</u>, MAX, <u>Marker</u>, ΔMODE MENU, FIXED ΔMKR to place the delta reference marker on the peak of the carrier (reference level of the amplitude fidelity).
 - e. Set the step attenuator to 10 dB.
 - f. Perform the following steps to measure the amplitude fidelity.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), MAX .
 - iii. Record the delta marker reading in the calculation sheet for the amplitude fidelity.
- 26. Remove the fixed attenuation from the R input, and connect it to the A input.
- 27. Press (Meas), A to set the HP 4395A to the A input.
- 28. Press (Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATT A, (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 29. Set the step attenuator to 20 dB.
- 30. Repeat step 25 to measure the amplitude fidelity at the HP 4395A A input.
- 31. Remove the fixed attenuation from the A input, and connect it to the B input.
- 32. Press (Meas), B to set the HP 4395A to the B input.
- 33. Press (Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATT B, (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 34. Set the step attenuator to 20 dB.
- 35. Repeat step 25 to measure the amplitude fidelity at the HP 4395A B input.

15. INPUT ATTENUATOR SWITCHING UNCERTAINTY TEST (SA)

Description

This test measures the HP 4395A input attenuator switching uncertainty over the entire range from 0 dB to 50 dB. The switching uncertainty is referenced to the 10 dB attenuator setting.

In this test, a 50.1 MHz CW signal is applied to the HP 4395A input through a step attenuator. The signal amplitude is measured at each HP 4395A input attenuator setting. At each measurement, the other measurement conditions are kept constant to measure the switching uncertainty exclusively. The applied signal level is controlled using the step attenuator so as to keep the signal level input to the first mixer (the internal circuit stage following the input attenuator) constant. For example, the step attenuator is decreased by 10 dB, when the HP 4395A input attenuator is increased by 10 dB. The HP 4395A reference level is set to the value of the input attenuator setting -40 dB. This keeps the HP 4395A internal IF gain constant.

Specification

A input attenuator switching uncertainty				
@0 dB to 30 dB, referenced to 10 dB	$\ldots < \pm 1.0 \text{ dB}$			
@40 dB to 50 dB, referenced to 10 dB	$\ldots < \pm 1.5 \text{ dB}$			

Test Equipment

Signal Generator
Step Attenuator ¹ , 10 dB step, VSWR ≤ 1.02 HP 8496G Opt. 001 and H60
Attenuator driver ² HP 11713A
Type-N Cable, 61 cm (two required)HP 11500B or part of HP 11851B
BNC cable, 122 cm PN 8120-1840
6 dB Fixed Attenuation, VSWR ≤ 1.015 (two required) HP 8491A Opt. 006 & Opt. H60

1: Calibration values for attenuation settings of 10 dB to 50 dB at 50 MHz are required.

Procedure

- 1. Record the step attenuator 50 MHz calibration values in the calculation sheet ("Calibration Value" column).
- 2. Set the step attenuator to 40 dB.
- 3. On the signal generator, initialize the signal generator. Then set the controls as follows:

Controls	Settings
Frequency	$50.1 \mathrm{~MHz}$
Amplitude	+12 dBm

4. Connect the test equipment as shown in Figure 2-22.

No	te

Connect the signal generator's 10 MHz frequency reference output to the HP 4395A EXT REF Input on the rear panel as shown in Figure 2-22. With this configuration, both the signal generator and the HP 4395A are phase locked to the same reference frequency to obtain a stable measurement.

Figure 2-22. Input Attenuator Accuracy Test Setup

5. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, Preset to initialize the HP 4395A. Then set the controls as follows:

Control Settings

Center Frequency: 50.1 MHz Frequency Span: 120 Hz RBW: 10 Hz Scale/Division: 5 dB/Div

Key Strokes
Center, $(5, 0, (1, 1), M/\mu)$
(Span, 1, 2, 0, x1)
(Bw/Avg), RES BW , 1, 0, $(x1)$
Scale Ref), SCALE/DIV, (5), (x1)

- 6. Press (Meas), R to set the HP 4395A to the R input.
- 7. Press (Scale Ref), REFERENCE VALUE, (-), (3), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATTEN R, (1), (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 8. Perform the following steps to measure the input attenuator switching uncertainly.
 - a. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - b. Press (Search), MAX, (Marker), ΔMODE MENU, FIXED ΔMKR to place the delta reference marker on the peak of the carrier.
 - c. Set the HP 4395A controls as follows. This sets the input attenuator and reference level to the first settings listed in Table 2-20.

Control Settings	Key Strokes
Input Attenuator R: 0 dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, (0), (x1)
Reference Level: -40 dBm	Scale Ref), REFERENCE VALUE, ., (4), (0), (1)

HP 4395A		Step Attenuator
Input Attenuator	Reference Level	
0 dB	-40 dBm	50 dB
20 dB	-20 dBm	30 dB
30 dB	-10 dBm	20 dB
40 dB	0 dBm	10 dB
50 dB	10 dBm	0 dB

 Table 2-20. Input Attenuator Switching Uncertainty Test Settings

- d. Set the step attenuator to the first setting 50 dB listed in the third column of Table 2-20. e. Perform the following steps.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), MAX.
 - iii. Record the delta marker reading in the calculation sheet ("HP 4395A Reading" column).
- f. Change the HP 4395A input attenuator setting, the reference level setting, and the step attenuator setting in accordance with Table 2-20. Repeat step 8-e for each setting.
- 9. Remove the fixed attenuation from the R input, and connect it to the A input.
- 10. Press (Meas), A to set the HP 4395A to the A input.
- 11. Press (Scale Ref), REFERENCE VALUE, (-), (3), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATTEN A, (1), (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 12. Repeat step 8 to measure the input attenuator switching uncertainly at the HP 4395A A input.
- 13. Remove the fixed attenuation from the A input, and connect it to the B input.
- 14. Press (Meas), B to set the HP 4395A to the B input.
- 15. Press (Scale Ref), REFERENCE VALUE, (-), (3), (0), (x1), (Scale Ref), ATTENUATOR MENU, ATTEN B, (1), (0), (x1), to set the HP 4395A controls to the reference setting for the test.
- 16. Repeat step 8 to measure the input attenuator switching uncertainly at the HP 4395A A input.
- 17. Calculate the test results using the equation given in the calculation sheet. Record the test results in the performance test record.

16. NOISE SIDEBANDS TEST (SA)

Description

This test applies 10 MHz, 100 MHz, and 500 MHz CW frequency signals to the HP 4395A R input. Then this measures noise sidebands at offsets 1 kHz, 10 kHz, 100 kHz and 1 MHz from each carrier using a HP 4395A NOISE FORM function. Using the noise form function and the delta marker mode, the noise sidebands level is displayed directly in [dBc/Hz].

Specification

Noise sidebands

Offset from Carrier	Noise Sidebands
$\ge 1 \text{ kHz}$	<-97 dBc/Hz
$\ge 100 \text{ kHz}$	<-110 dBc/Hz

Test Equipment

Signal Generator	HP 8663A
Type-N Cable, 61 cm	
BNC cable, 122 cm	PN 8120-1840

Procedure

1. Initialize the signal generator. Then set the amplitude to 0 dBm.

2. Connect the test equipment as shown in Figure 2-23.

Connect the signal generator's 10 MHz frequency reference output to the HP 4395A EXT REF Input on the rear panel as shown in Figure 2-23. With this configuration, both the signal generator and the HP 4395A are phase locked to the same reference frequency to obtain a stable measurement.

3. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings Input Port: R	Key Strokes
Reference Level: 0 dBm	(<u>Meas</u>) R (Scale Ref), REFERENCE VALUE , (0), (x1)
Noise Form: ON	(Utility), NOISE FORM on OFF (Then the softkey label
	changes to NOISE FORM ON off.)
Input Attenuator: Auto	(Scale Ref), ATTENUATOR MENU, ATTEN auto MAN
	(Then the softkey label changes to
	ATTEN AUTO man).

4. On the signal generator, set the frequency to the first carrier frequency 10 MHz in Table 2-21.

Signal Generator	HP 4395A			Offset	
Carrier Frequency	Center	RBW	VBW	Frequency Span	from Carrier
	Frequency				
10 MHz	10 MHz	100 Hz	1 Hz	2.5 kHz	$\pm 1 \mathrm{kHz}$
		1 kHz	$3~\mathrm{Hz}$	25 kHz	$\pm 10 \text{ kHz}$
		1 kHz	10 Hz	250 kHz	$\pm 100 \text{ kHz}$
		10 kHz	100 Hz	2.5 MHz	$\pm 1 \mathrm{MHz}$
100 MHz	100 MHz	100 Hz	1 Hz	2.5 kHz	$\pm 1 \mathrm{kHz}$
		1 kHz	$3~\mathrm{Hz}$	25 kHz	$\pm 10 \text{ kHz}$
		1 kHz	$10~\mathrm{Hz}$	250 kHz	$\pm 100 \text{ kHz}$
		10 kHz	100 Hz	2.5 MHz	$\pm 1 \mathrm{MHz}$
500 MHz	500 MHz	100 Hz	1 Hz	2.5 kHz	$\pm 1 \mathrm{kHz}$
		1 kHz	$3~\mathrm{Hz}$	25 kHz	$\pm 10 \text{ kHz}$
		1 kHz	$10~\mathrm{Hz}$	250 kHz	$\pm 100 \text{ kHz}$
		10 kHz	$100 \ Hz$	2.5 MHz	$\pm 1 \mathrm{MHz}$

Table 2-21. Noise Sideband Test Settings

5. On the HP 4395A, press (Center), (1), (0), (M/μ) to set the center frequency to 10 MHz.

6. Perform the following steps to measure the noise sideband level at each offset value.

a. On the HP 4395A, set the controls as follows:

Control Settings	Key Strokes
RBW: 100 Hz	(Bw/Avg), RES BW, 1, 0, 0, $(x1)$
Video BW: 1 Hz	(Bw/Avg), VIDEO BW, (1, (x1)
Frequency Span: 2.5 kHz	(Span), (2), (1), (5), (k/m)

- b. Perform the following steps to measure the noise sideband level at ± 1 kHz offset from the carrier.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), MAX, (Marker), Δ MODE MENU, Δ MKR to place the delta marker reference at the peak of the carrier.
 - iii. Press (-), (1), (k/m) to move the delta marker to an offset of -1 kHz from the carrier.
 - iv. Record the delta marker reading in the performance test record.
 - v. Press (1), (k/m) to move the delta marker to an offset of +1 kHz from the carrier.
 - vi. Record the delta marker reading in the performance test record.
- c. On the HP 4395A, set the controls as follows:

Control Settings	Key Strokes
RBW: 1 kHz	(Bw/Avg), RES B₩, 1), (k/m)
Video BW: 3 Hz	(Bw/Avg), VIDE0 BW, (3), (x1)
Frequency Span: 25 kHz	(Span), (2), (5), (k/m)

- d. Perform the following steps to measure the noise sideband level at ± 10 kHz offset from the carrier.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), MAX, (Marker), ΔMODE MENU, ΔMKR to place the delta marker reference at the peak of the carrier.
 - iii. Press (−), (1), (0), (k/m) to move the delta marker to an offset of −10 kHz from the carrier.
 - iv. Record the delta marker reading in the performance test record.
 - v. Press (1), (0), (k/m) to move the delta marker to an offset of +10 kHz from the carrier.

- vi. Record the delta marker reading in the performance test record.
- e. On the HP 4395A, set the controls as follows:

Control	Setti	ngs
Video BV	W: 10	Hz

Frequency Span: 2

	Key Strokes
	Bw/Avg, VIDEO BW, 1, 0, x1
50 kHz	(Span), (2), (5), (0), (k/m)

- 2), (5), (0), (k/m) f. Perform the following steps to measure the noise sideband level at +100 kHz offset from the carrier.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ^{11.} Press (Search), MAX, (Marker), Δ MODE MENU, Δ MKR to place the delta marker reference at the peak of the carrier.
 - iii. Press (-), (1), (0), (0), (k/m) to move the delta marker to an offset of -100 kHz from the carrier.
 - iv. Record the delta marker reading in the performance test record.
 - v. Press (1), (0), (k/m) to move the delta marker to an offset of +100 kHz from the carrier.
 - vi. Record the delta marker reading in the performance test record.
- g. On the HP 4395A, set the controls as follows:

Control Settings	Key Strokes
RBW: 10 kHz	(Bw/Avg), RES BW , 1, 0, k/m
Video BW: 100 Hz	Bw/Avg, VIDE0 BW, 1, 0, 0, x1
Frequency Span: 2.5 MHz	$(Span), (2), (1), (5), (M/\mu)$

- $(Span), (2), (3), (5), (M/\mu)$ h. Perform the following steps to measure the noise sideband level at +1 MHz offset from the carrier. uutmkrmaxkey
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), MAX, (Marker), Δ MODE MENU, Δ MKR to place the delta marker reference at the peak of the carrier.
 - iii. Press (-), (i), (M/μ) to move the delta marker to an offset of -1 MHz from the carrier.
 - iv. Record the delta marker reading in the performance test record.
 - v. Press (1), (M/μ) to move the delta marker to an offset of +1 MHz from the carrier.
 - vi. Record the delta marker reading in the performance test record.
- 7. On the signal generator, set the frequency to the next center frequency 100 MHz in Table 2-21.
- 8. On the HP 4395A, press (Center), (1), (0), (M/μ) to set the center frequency to 100 MHz.
- 9. Repeat step 6 to measure the noise sideband level from the carrier of 100 MHz.
- 10. On the signal generator, set the frequency to the next center frequency 500 MHz in Table 2-21.
- 11. On the HP 4395A, press (Center), (5), (0), (M/μ) to set the center frequency to 500 MHz.
- 12. Repeat step 6 to measure the noise sideband level from the carrier of 500 MHz.

17. AMPLITUDE ACCURACY/FREQUENCY RESPONSE TEST (SA)

Description

This test measures the amplitude measurement accuracy of the HP 4395A spectrum measurement over the entire frequency range. The frequency response is calculated as the accuracy deviation from the absolute amplitude accuracy at a frequency of 50 MHz.

At frequency ranges ≥ 1 MHz, this test applies a CW signal to the HP 4395A input and power meter through a power splitter. The signal level is measured by doing a HP 4395A spectrum measurement using a power meter and a power sensor. Then the HP 4395A reading is compared with the reading of the power meter to obtain the absolute amplitude accuracy. These tests are performed twice while reversing connections of the power splitter's two output ports. This is done to remove the frequency tracking between two output ports of the power splitter.

At low frequencies (< 1 MHz), this test measures the CW signal level of the function generator using the HP 4395A spectrum measurement. The function generator's output level is used as the measurement standard.

Specification

Amplitude accuracy
@-20 dBm input, 50 MHz, input att.= 10 dB, 23±5°C<
Frequency response
$@-20$ dBm input, input att. = 10dB, referenced to level at 50 MHz, $23\pm5^{\circ}C$
frequency $\geq 100 \text{ Hz} \dots \ll \pm 1.3 \text{ dB}$
frequency < 100 Hz \ldots <±3.0 dB

Test Equipment

Power Meter HP 436A Opt. 022, HP 437B, or HP 438A	١
Power Sensor	ł
Signal Generator	L
Function Genarator	3
Two-Way Power Splitter	L
Type-N Cable, 61 cm HP 11500B or part of HP 11851B	3
BNC cable, 61 cmPN 8120-1839)
BNC cable, 122 cm PN 8120-1840)
N(m)-N(m) adapter	5
N(m)-BNC(f) adapter PN 1250-0780)

Procedure

1. For testing high frequencies

- a. Connect the power sensor to the power meter. Calibrate the power meter for the power sensor.
- b. Connect the test equipment as shown in Figure 2-24.

Note

Connect the signal generator's 10 MHz frequency reference output to the HP 4395A EXT REF Input on the rear panel as shown in Figure 2-24. With this configuration, both the signal generator and the HP 4395A are phase locked to the same reference frequency to obtain a stable measurement.

Figure 2-24. Frequency Response Test Setup 1

- c. Initialize the signal generator. Then set the amplitude to -14 dBm.
- d. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, Preset to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Frequency Span: 1 kHz	(Span), (1), (k/m)
Reference Level: -10 dBm	(Scale Ref), REFERENCE VALUE, -, 1, 0, x1
Scale/Division: 1 dB/Div	(Scale Ref), SCALE/DIV, (1), (x1)

- e. Press (Meas), R to set the HP 4395A to the R input.
- f. Press (Scale Ref), ATTENUATOR MENU, ATTEN R, (1, (0), (x1) to set the input attenuator to 10 dB.
- g. Press (Bw/Avg), RES BW, (3), (0), (k/m) in the first column of Table 2-22. Table 2-22 lists the test settings at frequencies ≥ 1 MHz.
- h. On the signal generator, set the frequency to the first frequency 50 MHz in the first column of Table 2-22.

Signal Generator	HP 4395A	
Frequency	Center Frequency	RBW
50 MHz	50 MHz	300 kHz
1 MHz	1 MHz	100 Hz
2 MHz	2 MHz	100 Hz
5 MHz	5 MHz	100 Hz
8 MHz	8 MHz	100 Hz
10 MHz	10 MHz	100 Hz
20 MHz	20 MHz	100 Hz
100 MHz	100 MHz	100 Hz
125 MHz	$125 \mathrm{~MHz}$	100 Hz
150 MHz	150 MHz	100 Hz
175 MHz	175 MHz	100 Hz
200 MHz	200 MHz	100 Hz
225 MHz	$225 \mathrm{~MHz}$	100 Hz
250 MHz	250 MHz	100 Hz
275 MHz	275 MHz	100 Hz
300 MHz	300 MHz	100 Hz
325 MHz	325 MHz	100 Hz
375 MHz	375 MHz	100 Hz
400 MHz	400 MHz	100 Hz
425 MHz	$425 \mathrm{~MHz}$	100 Hz
450 MHz	450 MHz	100 Hz
475 MHz	475 MHz	100 Hz
500 MHz	500 MHz	100 Hz

Table 2-22. Frequency Response Test Settings 1

- i. On the HP 4395A, press Center, 5, 0, (M/μ) to set the center frequency to the first setting 50 MHz in Table 2-22.
- j. Perform the following steps to measure the frequency response.
 - i. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - ii. Press (Search), SEARCH: PEAK to place the marker at the peak of the carrier.
 - iii. Record the HP 4395A marker reading and power meter reading in the "HP 4395A Reading 1" and "Power Meter Reading 1" columns of the calculation sheet for the 50 MHz reference.
- k. Change the signal generator frequency, the HP 4395A center frequency and RBW in accordance with Table 2-22. Then repeat step 1-j for each setting. Record the HP 4395A marker reading and power meter reading in the "HP 4395A Reading 1" and "Power Meter Reading 1" columns of the calculation sheet for frequencies ≥ 1 MHz.
- 1. Reverse the power splitter output connections as shown in Figure 2-25.

Figure 2-25. Frequency Response Test Setup 2

- m. Repeat steps 1-g through 1-k to remove the power splitter tracking characteristic. Record the HP 4395A marker reading and power meter reading in the in "HP 4395A Reading 2" and "Power Meter Reading 2" columns of the calculation sheet.
- n. Remove the power splitter from the R input, and connect it directly to the A input.
- ⁰· Press (Meas), A to set the HP 4395A to the A input.
- p. Press (Scale Ref), ATTENUATOR MENU, ATTEN A, (1), (0), (x1) to set the input attenuator to 10 dB.
- q. Press (Bw/Avg), RES BW, (3), (0), (k/m) in the first column of Table 2-22. Table 2-22 lists the test settings at frequencies ≥ 1 MHz.
- r. Repeat steps 1-h through 1-m to remove the power splitter tracking characteristic. Record the HP 4395A marker reading and power meter reading in the in "HP 4395A Reading 2" and "Power Meter Reading 2" columns of the calculation sheet.
- s. Remove the power splitter from the A input, and connect it directly to the B input.
- t. Press (Meas), B to set the HP 4395A to the B input.
- u. Press (Scale Ref), ATTENUATOR MENU, ATTEN B, (1), (0), (x1) to set the input attenuator to 10 dB.
- v. Press (Bw/Avg), RES BW, (3), (0), (k/m) in the first column of Table 2-22. Table 2-22 lists the test settings at frequencies ≥ 1 MHz.

- w. Repeat steps 1-h through 1-m to remove the power splitter tracking characteristic. Record the HP 4395A marker reading and power meter reading in the in "HP 4395A Reading 2" and "Power Meter Reading 2" columns of the calculation sheet.
- x. Change the test equipment setup as shown in Figure 2-26.

Figure 2-26. Frequency Response Test Setup 3

• For testing low frequencies

- 1. Initialize the function generator. Then set the amplitude to -20 dBm.
- 2. On the function generator, set the frequency to the first test frequency 10 Hz in the first column of Table 2-23. Table 2-23 lists the test settings at frequencies < 1 MHz.

Function Generator	HP	9 4395A	
Frequency	Center Frequency	Frequency Span	RBW
10 Hz	10 Hz	15 Hz	1 Hz
15 Hz	15 Hz	15 Hz	$1 \mathrm{Hz}$
25 Hz	25 Hz	15 Hz	$1 \mathrm{Hz}$
40 Hz	40 Hz	15 Hz	1 Hz
80 Hz	80 Hz	15 Hz	1 Hz
100 Hz	100 Hz	150 Hz	$10~\mathrm{Hz}$
200 Hz	200 Hz	150 Hz	$10 \ \mathrm{Hz}$
500 Hz	500 Hz	150 Hz	$10~\mathrm{Hz}$
1 kHz	1 kHz	150 Hz	$10 \ \mathrm{Hz}$
2 kHz	2 kHz	150 Hz	$10 \ \mathrm{Hz}$
5 kHz	5 kHz	150 Hz	$10~\mathrm{Hz}$
10 kHz	10 kHz	150 Hz	$10 \ \mathrm{Hz}$
20 kHz	20 kHz	150 Hz	$10~\mathrm{Hz}$
50 kHz	50 kHz	150 Hz	$10~\mathrm{Hz}$
100 kHz	100 kHz	150 Hz	$10~\mathrm{Hz}$
200 kHz	200 kHz	150 Hz	$10~\mathrm{Hz}$
500 kHz	500 kHz	150 Hz	10 Hz

 Table 2-23. Frequency Response Test Settings 2

3. On the HP 4395A, set the controls as follows (the first setting in Table 2-23):

Control Settings
Center Frequency: 10 Hz
Frequency Span: 10 Hz
RBW: 1 Hz

4. Perform the following steps to measure the frequency response at frequencies < 1 MHz.

 $\underbrace{ \begin{array}{c} \text{Center} \\ \text{Span} \end{array}, (1), (0), (x1) \\ \text{Span}, (1), (0), (x1) \end{array} } \\ \end{array}$

(Bw/Avg), RES BW, (1), (x1)

- a. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- b. Press (Search), SEARCH: PEAK to place the marker at the peak of the carrier.
- c. Record the marker reading in the calculation sheet for frequencies < 1 MHz.
- 5. Change the function generator frequency, HP 4395A center frequency, span frequency and RBW in accordance with Table 2-23. Repeat step 4 for each setting:
- 6. Remove the BNC cable from the R input, and connect it to the A input.
- 7. Press Meas), A to set the HP 4395A to the A input.
- 8. Repeat steps 4 through 5 to measure the amplitude frequency response at the A input.
- 9. Remove the BNC cable from the A input, and connect it to the B input.
- 10. Press (Meas), B to set the HP 4395A to the B input.
- 11. Repeat steps 4 through 5 to measure the amplitude frequency response at the A input.
- 12. Calculate the test results using the equation given in the calculation sheet. Record the test results in the performance test record.

18. SECOND HARMONIC DISTORTION TEST (SA)

Description

This test measures the second harmonics level generated within the HP 4395A at a frequency of 50.1 MHz in the HP 4395A spectrum analyzer mode.

This test applies a 50.1 MHz CW frequency signal to the HP 4395A R input through a 50 MHz low pass filter (LPF). The LPF removes the second harmonics included in the applied signal. This ensures that the harmonics read by the HP 4395A are internally generated and not coming from the external signal source.

Specification

Second harmonic distortion	
@input signal freq. $\geq 100 \text{ kHz}^1$	

1: single tone input with full scale input-10 dB

Test Equipment

Signal Generator
Power Meter HP 436A Opt. 022, HP 437B, or HP 438A
Power Sensor
50 MHz Low Pass Filter PN 0955-0306
Two-Way Power Splitter HP 11667A
BNC cable, 61 cm (two required)PN 8120-1839
BNC cable, 122 cm PN 8120-1839
BNC(f)-BNC(f) adapter PN 1250-0080
N(m)-N(m) adapter PN 1250-1475
N(m)-BNC(f) adapter (two required) PN 1250-0780

Procedure

1. Initialize the signal generator. Then set the signal generator controls as follows:

Controls	Settings
Frequency	50.1 MHz
Amplitude	-14 dBm

2. Connect the test equipment as shown in Figure 2-27.

Figure 2-27. Second Harmonics Distortion Test Setup

3. Press Meas, ANALYZER TYPE, SPECTRUM ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Input Port: R	(Meas) R
Center Frequency: 50.1 MHz	Center), (5), (0), (1), (M/μ)
Frequency Span: 17.935 kHz	Span, $1, (7,, 9, 3, 5, k/m)$
RBW: 30 Hz	(Bw/Avg), RES BW, 3, 0, (x1)
Reference Level: -10 dBm	Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1)
Input Attenuator R: 10 dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, (1), (0), (x1)

- 4. On the signal generator, adjust the amplitude until the power meter reads -20 ± 0.1 dBm.
- 5. On the HP 4395A, press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- 6. Press Search, MAX, (Marker), Δ MODE MENU, FIXED Δ MKR to place the delta marker reference at the peak of the carrier.
- 7. Press Center, 1, 0, 0, , 2, M/μ to set the HP 4395A center frequency to 100.2 MHz.
- 8. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- 9. Press (Search), MAX to move the delta marker to the peak of the second harmonic distortion. Record the delta marker reading in the performance test record ("Test Result" column).

19. THIRD ORDER INTERMODULATION DISTORTION TEST (SA)

Description

This test measures the spurious level generated by the HP 4395A's third order intermodulation distortion at 100.2 MHz.

In this test, two signals are combined in the directional bridge and applied to the HP 4395A's R input. A T/R test set is used as the directional bridge. The frequency of one signal is separated from the other with 200 kHz. This test measures the level of the spurious products that appear at a 200 kHz offset from the signals. The power level of the two signals is adjusted to -26 dBm. Therefore, each signal at the specified power level of -36 dBm is applied to the input mixer through the HP 4395A's 10 dB input attenuator.

Specification

Third order inter-modu	lation distortion
$@$ sparation ≥ 100 kHz ¹	

1: two tones input with full scall input level-16 dB,

Test Equipment

Signal Generator
Power Meter HP 436A Opt. 022, HP 437B, or HP 438A
Power Sensor
Two-Way Power Splitter
T/R Test Sets HP 85044A
50Ω Termination HP 909C Opt. 012 or part of HP 85032B
Type-N Cable, 61 cm (three required) HP 11500B or part of HP 11851B
BNC cable, 122 cm (two required) PN 8120-1840
N(m)-N(m) adapter PN 1250-1475
APC7.5-N(f) adapter HP 11524A or part of HP 85032B
Tee BNC(m)-(f)-(f) adapterPN 1250-0781

Procedure

1. Connect the test equipment as shown in Figure 2-28.

Note

Connect the signal generator's 10 MHz frequency reference output to the HP 4395A EXT REF Input on the rear panel as shown in Figure 2-28. With this configuration, both the signal generator and the HP 4395A are phase locked to the same reference frequency to obtain a stable measurement.

Figure 2-28. Third Order Intermodulation Distortion Test Setup

2. Initialize both signal generators. Then set their controls as follows:

Controls	Settings
Modulation	OFF
Amplitude	−10 dBm
RF Signal	OFF

3. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Input Port: R	(Meas) R
Center Frequency: 100.25 MHz	Center (1), (0), (0), (), (2), (5), (M/μ)
Frequency Span: 400 kHz	(Span), (4), (0), (0), (k/m)
RBW: 1 kHz	(Bw/Avg), RES BW, 1, k/m
Video BW: 1 kHz	(Bw/Avg), VIDEO BW, (1, (k/m)
Reference Level: -10 dBm	Scale Ref), REFERENCE VALUE, (-), (1), (0), (x1)
Input Attenuator R: 10 dB	(Scale Ref), ATTENUATOR MENU, ATTEN R, (1), (0), (x1)

4. On signal generator 1, set the frequency to 100.2 MHz.

5. On signal generator 2, set the frequency to 100.3 MHz.

- 6. On signal generators 1 and 2, perform the following steps to adjust each generator's signal amplitude to -20 dBm.
 - a. On signal generator 1, turn the RF signal on and adjust the amplitude until the power meter reads $-26~\rm dBm\pm0.1~\rm dB.$
 - b. On signal generator 1, turn the RF signal off.
 - c. On signal generator 2, turn the RF signal on and adjust the amplitude until the power meter reads $-26~\rm dBm\pm0.1~\rm dB.$
 - d. On signal generator 1, turn the RF signal on.
- 7. On the HP 4395A, perform the following steps to measure the third order intermodulation distortion product.
 - a. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - b. Press (Marker), 1, (0, (0), (), (2), (M/µ) to move the marker to peak of the signal generator 1's signal.
 - C. Press (Marker), ΔMODE MENU, FIXED ΔMKR to place the delta marker reference at the peak of one carrier.
 - d. Press (Marker), -), (1), (0), (0), (k/m) to move the marker to the third order intermodulation distortion products at the lower frequency.
 - e. Record the marker reading in the calculation sheet ("Lower Frequency" column).
 - f. Press Marker, 2, 0, 0, (k/m) to move the marker to the third order intermodulation distortion product at the upper frequency.
 - g. Record the marker reading in the calculation sheet ("Upper Frequency" column).
 - h. Press (Marker), ΔΜΟDE MENU, ΔΜΟDE OFF.
- 8. Compare the two marker readings at the lower and upper frequencies in the calculation sheet. Record the larger value in the performance test record ("Test Result" column).

20. OTHER SPURIOUS (SA)

Description

This test measures the level of spurious signals generated by causes other than the second harmonic distortion and the third order intermodulation distortion.

This test applies several CW frequency signals to the HP 4395A R input and then measures the spurious signal level at a frequency range where the spurious signal is most likely to be observed.

Specification

Other spurious

oner spurious			
@input signal freq.	$\leq 500 \text{ MHz}$	·	$\sim \sim $

1: single tone input with full scale input-10 dB, RBW \leq 100 kHz, 1 kH \leq freq. offset \leq 300 MHz

Test Equipment

Signal Generator	HP 8663A
Type-N Cable, 61 cmHP 1	1500B or part of HP 11851B
BNC cable, 122 cm	PN 8120-1840

Procedure

1. Connect the test equipment as shown in Figure 2-29.

Connect the signal generator's 10 MHz frequency reference output to the HP 4395A EXT REF Input on the rear panel as shown in Figure 2-29. With this configuration, both the signal generator and the HP 4395A are phase locked to the same reference frequency to obtain a stable measurement.

Figure 2-29. Other Spurious Test Setup

- 2. Press (Meas), ANALYZER TYPE, SPECTRUM ANALYZER, (Preset), (Meas) R to initialize the HP 4395A.
- 3. Initialize the signal generator. Then set the controls as follows.

Controls	Settings
Power	-30 dBm

4. On the signal generator, set the frequency to 276.86666667 MHz (the first column of Table 2-24).

Signal Generator			HP 43	395A		
Frequency	Center	Frequency	RBW	VBW	Spurious	Reference
	Frequency	Span			Frequency	Value
276.8666667 MHz	300 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	300 MHz	-30 dBm
416.3 MHz	1 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	1 MHz	-30 dBm
16.3 MHz	1 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	1 MHz	-30 dBm
212.8 MHz	210 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	210 MHz	-30 dBm
205.9 MHz	210 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	210 MHz	-30 dBm
213.7333333 MHz	210 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	210 MHz	-30 dBm
209.1333333 MHz	210 MHz	17.95 kHz	$100 \ Hz$	$100 \ Hz$	210 MHz	-30 dBm
6.897 MHz	6.897 MHz	17.94 kHz	$30~\mathrm{Hz}$	$30~\mathrm{Hz}$	6.900 MHz	-30 dBm
6.897 MHz	$6.897 \; \mathrm{MHz}$	17.94 kHz	$30~\mathrm{Hz}$	$30~\mathrm{Hz}$	6.903 MHz	-30 dBm
256.897 MHz	256.897 MHz	17.94 kHz	$30~\mathrm{Hz}$	$30~\mathrm{Hz}$	$256.900~\mathrm{MHz}$	-30 dBm
256.897 MHz	256.897 MHz	17.94 kHz	$30~\mathrm{Hz}$	$30~\mathrm{Hz}$	$256.903~\mathrm{MHz}$	-30 dBm
494.397 MHz	494.397 MHz	17.94 kHz	$30~\mathrm{Hz}$	$30~\mathrm{Hz}$	494.400 MHz	-30 dBm
494.397 MHz	494.397 MHz	17.94 kHz	30 Hz	30 Hz	494.403 MHz	-30 dBm

Table 2-24. Other Spurious Test Settings

- 5. On the HP 4395A, perform the following steps to measure the spurious level. In each step, the carrier level is measured first. Then the spurious level is measured.
 - a. Set the controls as follows to measure the carries level:

Control Settings	Key Strokes
Center Frequency:	Center, 2, 7, 6, ., 8, 6, 6, 6, 6, 6, 7,
276.8666667 MHz	
Frequency Span: 1 MHz	$\overline{(\text{Span})}, (1), (M/\mu)$
RBW: 3 kHz	$(\overline{Bw/Avg}), RES BW, (3), (k/m)$

The center frequency is set to the frequency of the signal generator.

- b. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- C. Press <u>Search</u>, MAX, <u>(Marker</u>), ΔMODE MENU, FIXED ΔMKR to place the delta marker reference at the peak of the carrier.
- d. Set the following controls to the settings listed in Table 2-24 (from the second to the fifth columns):

Control Settings	Key Strokes
Center Frequency: 300 MHz	$(Center), (3), (0), (M/\mu)$
Frequency Span: 17.95 kHz	(Span, 1, 7,, 9, 5, k/m)
RBW: 100 Hz	(Bw/Avg), RES BW, (1), (0), (x1)
Video BW: 100 Hz	(Bw/Avg), VIDEO BW, (1, (0, (0, (x1)

- e. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
- f. Press (Marker), Δ MODE MENU, Δ MKR SWP PARAM, (3), (0), (M/ μ) to move the delta reference marker to the spurious frequency in the seventh column of Table 2-24.
- g. Press (Marker), (0), (x1), to move the delta marker to the spurious frequency.
- h. Record the HP 4395A marker reading in the performance test record ("Test Result" column).
- 6. Change the signal generator and HP 4395A controls in accordance with Table 2-24. Then repeat step 4 and 5 for each setting.

21. RESIDUAL RESPONSE TEST (SA)

Description

This test connects a 50 Ω terminator to the HP 4395A R input and measures the HP 4395A residual response at several frequencies where the response is most likely to be observed.

The residual response is any internally generated by mixing the harmonics of the first/second local phase-lock-loop oscillators and the related reference signal.

Specification

Residual response

@reference value setting ≤ -40 dBm, input att.= auto or 0 dB
<-108 dBm

Test Equipment

50Ω termination HP 909C Opt. 012 or part of HP 85032B

Procedure

1. Connect the test equipment as shown in Figure 2-30.

CCS02026

Figure 2-30. Residual Response Test Setup

2. Press Meas), ANALYZER TYPE, SPECTRUM ANALYZER, (Preset) to initialize the HP 4395A. Then set the controls as follows:

Control Settings	Key Strokes
Input Port: R	Meas R
Frequency Span: 2.24 kHz	Span, $(2, (.), (2), (4), (k/m)$
RBW: 3 Hz	(Bw/Avg), RES BW, (3, x1)
Reference Level: -50 dBm	Scale Ref), REFERENCE VALUE, (-), (5), (0), (x1)
Input Attenuator R: 0 dB;	(Scale Ref), ATTENUATOR MENU, ATTEN R, (0), (x1)

3. Set the center frequency to the first frequency 100.18333 MHz in Table 2-25.

Table 2-25.	Residual	Response	Test Settings

HP 4395A **Center Frequency** 100.18333 MHz 166.85 MHz 233.5166667 MHz 366.85 MHz $433.5166667 \ MHz$ 161.75 MHz 361.75 MHz 377.05 MHz 177.05 MHz $438.6166667 \ MHz$ 371.95 MHz 238.6166667 MHz 171.95 MHz 105.2833333 MHz

- 4. Perform the following steps to measure the residual response.
 - a. Press (Trigger), SINGLE to make a sweep. Wait for the completion of the sweep.
 - b. Press (Search), MAX to move the marker to the maximum point on the trace.
 - c. Record the marker reading in the performance test record "Test Result" column).
- 5. Change the HP 4395A center frequency in accordance with Table 2-25. Repeat step 4 for each setting.
Calculation Sheet

INTRODUCTION

This chapter contains calculation sheets for each performance test that requires additional calculations to determine the final test result.

Use the calculation sheet in this chapter as an aid for recording raw measurement data and calculating the performance test results.

Calculation sheet entries are provided only for performance tests in which calculations are required to obtain the test results.

2. SOURCE LEVEL ACCURACY/FLATNESS TEST

Level Accuracy

Frequency	Power Meter Reading [ref ¹]
$50 \mathrm{MHz}$	dBm
1	er meter reading of the accuracy test.

Level Flatness

Frequency	Power Meter Reading [a]	Test Result [a–ref]
10 Hz	dBm	dB
$50~\mathrm{Hz}$	dBm	dB
500 Hz	dBm	dB
2 kHz	dBm	dB
12 kHz	dBm	dB
60 kHz	dBm	dB
150 kHz	dBm	dB
1 MHz	dBm	dB
3 MHz	dBm	dB
10 MHz	dBm	dB
45 MHz	dBm	dB
$75~\mathrm{MHz}$	dBm	dB
110 MHz	dBm	dB
140 MHz	dBm	dB
190 MHz	dBm	dB
235 MHz	dBm	dB
290 MHz	dBm	dB
$345 \mathrm{~MHz}$	dBm	dB
400 MHz	dBm	dB
$445 \ \mathrm{MHz}$	dBm	dB
470 MHz	dBm	dB
500 MHz	dBm	dB

3. NON-SWEEP POWER LINEARITY TEST

	10 dB $a1 = -$	dB	
	20 dB a2 = _	dB	
	30 dB a3 = _	dB	
	40 dB a4 = _	dB	
	50 dB a5 = _	dB	
	1 : Incremental attenuation dB setting.	n referenced to 0	
Reference (0 dBm)			
HP 4395.	A Power Meter Readin	-	
Source Pov	wer [b]	[ref]	
0 dBm	dBm	[ref] b+a3 =dBm	
0 dBm Non-Sweep Power L HP 4395A	inearity Power Meter Reading		
0 dBm Non-Sweep Power L	inearity Power Meter Reading	b+a3 = dBm	
0 dBm Non-Sweep Power L HP 4395A	inearity Power Meter Reading [b]	b+a3 = dBm	
0 dBm Non-Sweep Power L HP 4395A Source Power	dBm inearity Power Meter Reading [b] dBm t	b+a3 = dBm Test Result	dB
0 dBm Non-Sweep Power L HP 4395A Source Power 15 dBm	dBm inearity Power Meter Reading [b] dBm t	$b + a3 = \ dBm$ Test Result $b + a5 - ref - 15 = \$	dB dB
0 dBm Non-Sweep Power L HP 4395A Source Power 15 dBm 10 dBm	dBm inearity Power Meter Reading [b] dBm t dBm t dBm b	$b + a3 = _ dBm$ Test Result $b + a5 - ref - 15 = _ b + a4 - ref - 10 = _ b + a4 - re$	dB dB dB
0 dBm Non-Sweep Power L HP 4395A Source Power 15 dBm 10 dBm -10 dBm	dBm inearity Power Meter Reading [b] dBm t dBm t dBm b dBm b	$b + a3 = \ dBm$ Test Result $b + a5 - ref - 15 = \ b + a4 - ref - 10 = \ b + a2 - ref + 10 = \$	dB dB dB dB
0 dBm Non-Sweep Power L HP 4395A Source Power 15 dBm 10 dBm -10 dBm -20 dBm	dBm inearity Power Meter Reading [b] dBm t dBm t dBm b dBm b dBm b	$b+a3 = \ dBm$ Test Result $b+a5-ref-15 = \ b+a4-ref-10 = \ b+a2-ref+10 = \ b+a1-ref+20 = \$	dB dB dB dB dB

Attenuation Calibration Value¹

Note

Calculate **ref** in the calculation sheet for the reference (0 dBm) first. Then calculate test results using the equation and the value of **ref**.

4. POWER SWEEP LINEARITY TEST

HP 4395A Source Power	Power Meter R	eading
-50 dBm	a1 =	dBm
$-45~\mathrm{dBm}$	a2 =	dBm
-40 dBm	a3 =	dBm
-35 dBm	a 4 =	dBm
-30 dBm	a5 =	dBm
-5 dBm	b1 =	dBm
0 dBm	b2 =	dBm
5 dBm	b3 =	dBm
10 dBm	b4 =	dBm
15 dBm	b5 =	dBm

Stop Power Source Power

Test Result

-30 dBm	$-35~\mathrm{dBm}$	a4-(a5-5) =	dB
	$-40~\mathrm{dBm}$	a3-(a5-10) =	dB
	$-45~\mathrm{dBm}$	a2-(a5-15) =	dB
	$-50~\mathrm{dBm}$	a1-(a5-20) =	dB
15 dBm	10 dBm	b4-(b5-5) =	dB
	5 dBm	b3-(b5-10) =	dB
	0 dBm	b2 - (b5 - 15) =	dB
	$-5~\mathrm{dBm}$	b1 - (b5 - 20) =	dB

6. DC BIAS TEST (Option 001)

DC Bias Voltage Level Accuracy

HP 4395A DC Voltage	Multimeter Reading	Test Result
	[a]	
-40 V	V	a + 40 = V
-10 V	V	a + 10 = V
-4 V	V	a + 4 = V
0 V	V	a + 0 = V
4 V	V	a -4 = V
10 V	V	a -10 = V
40 V	V	a-40 = V

DC Bias Current Level Accuracy

HP 4395A DC Current	Multimeter Reading	Tes	t Result
	[a]		
-100 mA	mA	a + 100 =	mA
-10 mA	mA	a + 10 =	mA
-1 mA	mA	a + 1 =	mA
$-20 \ \mu A$	μΑ	$\mathbf{a} + 20 =$	mA
$20 \ \mu A$	μΑ	a-20 =	mA
1 mA	mA	a-1 =	mA
10 mA	mA	a-10 =	mA
100 mA	mA	$a{-}100 =$	mA

7. RECEIVER NOISE LEVEL TEST

Frequency	Input	Trace Mean [a]	Test Result [20×log(a)]
100 Hz	R	Unit _	dBm
	А	Unit _	dBm
	В	Unit	dBm
1 kHz	R	Unit	dBm
	А	Unit	dBm
	В	Unit	dBm
10 kHz	R	Unit	dBm
	А	Unit	dBm
	В	Unit	dBm
100 kHz	R	Unit	dBm
	А	Unit	dBm
	В	Unit	dBm
1 MHz	R	Unit	dBm
	А	Unit .	dBm
	В	Unit .	dBm
11 MHz	R	Unit .	dBm
	А	Unit _	dBm
	В	Unit _	dBm
101 MHz	R	Unit .	dBm
	А	Unit	dBm
	В	Unit	dBm
499 MHz	R	Unit	dBm
	А	Unit	dBm
	В	Unit .	dBm

8. INPUT CROSSTALK TEST

10 Hz \geq Freq. > 1 kHz

Measurement	Marker Reading	Test Result	
	[a]		
R into A Crosstalk	dBm	a -10 dE	3
R into B Crosstalk	dBm	a -10 dH	3

1 kHz \geq Freq. > 100 kHz

Measurement	Marker Reading	Test Result
	[a]	
R into A Crosstalk	dBm	a -10 dB
R into B Crosstalk	dBm	a -10 dB

100 kHz \geq Freq. \geq 500 kHz

Measurement	Marker Reading	Test Result
	[a]	
R into A Crosstalk	dBm	a -10 dB
R into B Crosstalk	dBm	a -10 dB

10. ABSOLUTE AMPLITUDE ACCURACY TEST

Input R

Frequency	HP 4395A Reading	Meter Reading	Test Result
	[a]	[b]	[a-b]
100 Hz	dBm		dB
200 Hz	dBm	dBm	dB
500 Hz	dBm	dBm	dB
1 kHz	dBm	dBm	dB
2 kHz	dBm	dBm	dB
5 kHz	dBm	dBm	dB
10 kHz	dBm	dBm	dB
20 kHz	dBm	dBm	dB
50 kHz	dBm	dBm	dB
100 kHz	dBm	dBm	dB
200 kHz	dBm	dBm	dB
500 kHz	dBm	dBm	dB
1 MHz	dBm	dBm	dB
$2 \mathrm{MHz}$	dBm	dBm	dB
5 MHz	dBm	dBm	dB
8 MHz	dBm	dBm	dB
10 MHz	dBm	dBm	dB
20 MHz	dBm	dBm	dB
50 MHz	dBm	dBm	dB
100 MHz	dBm	dBm	dB
125 MHz	dBm	dBm	dB
175 MHz	dBm	dBm	dB
200 MHz	dBm	dBm	dB
225 MHz	dBm		dB
275 MHz	dBm	dBm	dB
300 MHz	dBm	dBm	dB
325 MHz	dBm		dB
375 MHz	dBm	dBm	dB
400 MHz	dBm	dBm	dB
425 MHz	dBm	dBm	dB
$475 \mathrm{MHz}$	dBm	dBm	dB
500 MHz	dBm	dBm	dB

Input A

Frequency	HP 4395A Reading	Meter Reading	Test Result
	[a]	[b]	[a -b]
100 Hz	dBm	dBm _	dB
200 Hz	dBm	dBm _	dB
500 Hz	dBm	dBm _	dB
1 kHz	dBm	dBm _	dB
2 kHz	dBm	dBm _	dB
5 kHz	dBm	dBm _	dB
10 kHz	dBm	01	dB
20 kHz	dBm	dBm _	dB
50 kHz	dBm	dBm _	dB
100 kHz	dBm	dBm _	dB
200 kHz	dBm	dBm _	dB
500 kHz	dBm	dBm _	dB
1 MHz	dBm	dBm _	dB
$2 \mathrm{MHz}$	dBm	dBm _	dB
$5 \mathrm{MHz}$	dBm	dBm _	dB
8 MHz	dBm	dBm _	dB
10 MHz	dBm	dBm _	dB
20 MHz	dBm	dBm _	dB
$50 \mathrm{MHz}$	dBm	dBm _	dB
100 MHz	dBm	dBm _	dB
$125 \mathrm{MHz}$	dBm	dBm _	dB
175 MHz	dBm	dBm _	dB
200 MHz	dBm	dBm _	dB
225 MHz	dBm	dBm _	dB
275 MHz	dBm	dBm _	dB
300 MHz	dBm	dBm _	dB
325 MHz	dBm	dBm _	dB
$375 \mathrm{MHz}$	dBm	dBm _	dB
400 MHz	dBm	dBm _	dB
$425 \mathrm{MHz}$	dBm	dBm _	dB
$475 \mathrm{MHz}$	dBm		dB
500 MHz	dBm	dBm _	dB

Input B

Frequency	HP 4395A Reading	-	
	[a]	[b]	[a-b]
100 Hz	dBm		dB
200 Hz	dBm		dB
500 Hz	dBm	dBm	dB
1 kHz	dBm	dBm	dB
2 kHz	dBm	dBm	dB
5 kHz	dBm		dB
10 kHz	dBm	0.2.11	dB
20 kHz	dBm		dB
50 kHz	dBm		dB
100 kHz	dBm		dB
200 kHz	dBm	dBm	dB
500 kHz	dBm	dBm	dB
1 MHz	dBm	dBm _	dB
$2 \mathrm{MHz}$	dBm	dBm _	dB
5 MHz	dBm	dBm	dB
8 MHz	dBm	dBm	dB
10 MHz	dBm	dBm	dB
20 MHz	dBm	dBm	dB
50 MHz	dBm	dBm	dB
100 MHz	dBm	dBm	dB
125 MHz	dBm	dBm	dB
175 MHz	dBm	dBm	dB
200 MHz	dBm	dBm	dB
225 MHz	dBm	dBm	dB
275 MHz	dBm	dBm	dB
300 MHz	dBm	dBm	dB
325 MHz	dBm	dBm	dB
375 MHz	dBm	dBm	dB
400 MHz	dBm	dBm	dB
425 MHz	dBm	dBm	dB
475 MHz	dBm	dBm	dB
500 MHz	dBm	dBm _	dB

11. MAGNITUDE RATIO/PHASE DYNAMIC ACCURACY TEST

Step Attenuator Calibration Value at 50 MHz

Attenuationg	Calibrati	on Value ¹
10 dB	a1 =	dB
20 dB	a2 =	dB
30 dB	a3 =	dB
40 dB	a4 =	dB
50 dB	a5 =	dB
60 dB	a6 =	dB
70 dB	a7 =	dB
80 dB	a8 =	dB
90 dB	a9 =	dB
100 dB	a10 =	dB

1 : Incremental attenuation referenced to 0 dB setting.

A/R Measurement

Input Level HP 4395A Reading

Test Result

	[b]		
0 dB	dB	b-a1 =	dB
-20 dB	dB	b + a2 - a1 =	dB
-30 dB	dB	b + a3 - a1 =	dB
-40 dB	dB	b + a4 - a1 =	dB
-50 dB	dB	b + a5 - a1 =	dB
-60 dB	dB	b + a6 - a1 =	dB
-70 dB	dB	b + a7 - a1 =	dB
-80 dB	dB	b + a8 - a1 =	dB
-90 dB	dB	b + a9 - a1 =	dB
-100 dB	dB	b + a10 - a1 =	dB

B/R Measurement

Input Level	HP 4395A Reading [b]	Test Result
0 dB	dB	b - a 1 = dB
-20 dB	dB	b + a 2- a 1 = dB
-30 dB	dB	b+a3-a1 = dB
-40 dB	dB	b+a4-a1 = dB
-50 dB	dB	b+a5-a1 = dB
-60 dB	dB	b+a6-a1 = dB
-70 dB	dB	b+a7-a1 = dB
-80 dB	dB	b + a 8- a 1 = dB
-90 dB	dB	b + a 9- a 1 = dB
-100 dB	dB	b + a10-a1 = dB

13. DISPLAYED AVERAGE NOISE LEVEL TEST

Input R

Center Frequency	Trace Mean [a]	Test Result
1 kHz _	Watt	$10 \times log(a/0.001) - 4.8 dB^1 = \ dBm/Hz$
10 kHz _	Watt	$10 \times log(a/0.001) - 10dB^2 = \ dBm/Hz$
$100~\mathrm{kHz}$ _	Watt	$10 \times log(a/0.001) - 10dB^2 = \ dBm/Hz$
$1~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$11~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$20~\mathrm{MHz}$ _	Watt	10×log(a/0.001)–30dB ³ = dBm/Hz
101 MHz _	Watt	10×log(a/0.001)–30dB ³ = dBm/Hz
$201~\mathrm{MHz}$ _	Watt	10×log(a/0.001)–30dB ³ = dBm/Hz
499 MHz $_$	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
1 : 10×LOG(RB)	W 3 Hz /RBW 1 Hz)	

2 : 10 × LOG(RBW 10 Hz /RBW 1 Hz)

3 : 10×LOG(RBW 1 kHz /RBW 1 Hz)

Input A

Center Frequency	Trace Mean [a]	Test Result
1 kHz _	Watt	$10 \times log(a/0.001) - 4.8 dB^1 = \ dBm/Hz$
10 kHz _	Watt	$10 \times log(a/0.001) - 10dB^2 = \ dBm/Hz$
100 kHz _	Watt	$10 \times log(a/0.001) - 10dB^2 = \ dBm/Hz$
1 MHz _	Watt	$10 \times log(a/0.001) - 30dB^3 = _ dBm/Hz$
11 MHz _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
20 MHz _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
101 MHz _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
201 MHz _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
499 MHz _	Watt	$10 \times log(a/0.001) - 30dB^3 = $ dBm/Hz

1 : 10×LOG(RBW 3 Hz /RBW 1 Hz)

2 : 10×LOG(RBW 10 Hz /RBW 1 Hz)

3 : 10×LOG(RBW 1 kHz /RBW 1 Hz)

Input B

Center Frequency	Trace Mean [a]	Test Result
1 kHz _	Watt	$10 \times log(a/0.001) - 4.8 dB^1 = \ dBm/Hz$
10 kHz _	Watt	$10 \times log(a/0.001) - 10dB^2 = \ dBm/Hz$
$100~{\rm kHz}$ _	Watt	$10 \times log(a/0.001) - 10dB^2 = \ dBm/Hz$
$1~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$11~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$20~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$101~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$201~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$
$499~\mathrm{MHz}$ _	Watt	$10 \times log(a/0.001) - 30dB^3 = \ dBm/Hz$

1 : 10×LOG(RBW 3 Hz /RBW 1 Hz)

2 : $10 \times \text{LOG}(\text{RBW} 10 \text{ Hz} / \text{RBW} 1 \text{ Hz})$

3 : $10 \times \text{LOG}(\text{RBW 1 kHz} / \text{RBW 1 Hz})$

14. AMPLITUDE FIDELITY

Step Attenuator Calibration Value at 50 MHz

Attenuation	Calibration Value 1	
10 dB	a1 =	dB
20 dB	a 2 =	dB
30 dB	a3 =	dB
40 dB	a4 =	dB
50 dB	a5 =	dB
60 dB	a6 =	dB
70 dB	a7 =	dB
80 dB	a8 =	dB

1 : Incremental attenuation referenced to 0 dB setting.

Amplitude Fidelity

Input R

dB from Reference Input Level	HP 4395A Reading [b]	Test Result
-10 dB	dB	$b + a^2 - a^1 = $
-20 dB	dB	b + a3 - a1 =
-30 dB	dB	b + a4 - a1 =
-40 dB	dB	b + a5 - a1 =
-50 dB	dB	b + a6 - a1 =
-60 dB	dB	b + a7 - a1 =
-70 dB	dB	b + a8 - a1 =

Input A

dB from Reference Input Level	HP 4395A Reading [b]	Test Result
-10 dB	dB	$b + a^2 - a^1 = $
-20 dB	dB	b+a3-a1 =
-30 dB	dB	b+a4-a1 =
-40 dB	dB	b+a5-a1 =
-50 dB	dB	b + a6 - a1 =
-60 dB	dB	b + a7 - a1 =
-70 dB	dB	b+a8-a1 =

Input B

dB from Reference Input Level	HP 4395A Reading [b]	Test Result
-10 dB	dB	$b + a^2 - a^1 = $
-20 dB	dB	b + a3 - a1 =
-30 dB	dB	b + a4 - a1 =
-40 dB	dB	b + a5 - a1 =
-50 dB	dB	b + a6 - a1 =
-60 dB	dB	b+a7-a1 =
-70 dB	dB	b + a8 - a1 =

Input R

dB from	HP 4395A Reading	Test Result
Reference Input Level	[b]	
10 dB	dB	b + a1 - a2 =

Input A

dB from Reference Input Level	HP 4395A Reading [b]	Test Result
10 dB	dB	b+a1-a2 =

Input B

dB from Reference Input Level	HP 4395A Reading [b]	Test Result	
10 dB	dB	b+a1-a2 =	

15. INPUT ATTENUATOR SWITCHING UNCERTAINTY TEST

Step Attenuator Calibration Value at 50 MHz

Attenuation	Calib	oration Value 1
10 dB	a1 =	dB
20 dB	a2 =	dB
30 dB	a3 =	dB
40 dB	a 4 =	dB
50 dB	a5 =	dB
1 : Incremental	attenuati	on referenced to 0

dB setting.

Input Attenuator Switching Uncertainty

Input R

HP 4395A Input Attenuation	HP 4395A Reading [b]	Test Result
0 dB	dB	b-a4+a5 =
20 dB	dB	b-a4+a3 =
30 dB	dB	b-a4+a2 =
40 dB	dB	b-a4+a1 =
50 dB	dB	b-a4 =

Input A

HP 4395A Input Attenuation	HP 4395A Reading [b]	Test Result
0 dB	dB	$\mathbf{b} - \mathbf{a}4 + \mathbf{a}5 = \underline{\qquad}$
20 dB	dB	b-a4+a3 =
30 dB	dB	b-a4+a2 =
40 dB	dB	b-a4+a1 =
50 dB	dB	b-a4 =

Input B

HP 4395A Input Attenuation	HP 4395A Reading [b]	Test Result
0 dB	dB	b-a4+a5 =
20 dB	dB	b-a4+a3 =
30 dB	dB	b-a4+a2 =
40 dB	dB	b-a4+a1 =
50 dB	dB	b-a4 =

17. AMPLITUDE ACCURACY/FREQUENCY RESPONSE TEST

NoteCalculate ref first in the table for the reference at 50 MHz. Then calculate test
results using the equation and the value of ref.

Input R

Reference at 50 MHz

HP 4395A	HP 4395A	Power Meter	HP 4395A	Power Meter	Test Result
Frequency	Reading 1	Reading 1	Reading 2	Reading 2	[ref]
	[r1]	[r2]	[r3]	[r4]	[(r1-r2+r3-r4)/2]
50 MHz	dBm	dBm _	dBm	dBm	dB

At Frequencies ≥ 1 MHz

HP 4395A Frequency		Power Meter Reading 1		Power Meter Reading 2	Test Result
Ĩ	[a1]	[b1]	[a2]	[b2]	[(a1-b1+a2-b2)/2-ref]
1 MHz	dBm	dBm _	dBm	dBm	dB
2 MHz	dBm	dBm _	dBm	dBm	dB
5 MHz	dBm	dBm _	dBm	dBm	dB
8 MHz	dBm	dBm _	dBm	dBm	dB
10 MHz	dBm	dBm _	dBm	dBm	dB
20 MHz	dBm	dBm _	dBm	dBm	dB
100 MHz	dBm	dBm _	dBm	dBm	dB
125 MHz	dBm	dBm _	dBm	dBm	dB
150 MHz	dBm	dBm _	dBm	dBm	dB
175 MHz	dBm	dBm _	dBm	dBm	dB
200 MHz _	dBm	dBm _	dBm	dBm	dB
225 MHz _	dBm	dBm _	dBm	dBm	dB
250 MHz	dBm	dBm _	dBm	dBm	dB
275 MHz _	dBm	dBm _	dBm	dBm	dB
300 MHz	dBm	dBm _	dBm	dBm	dB
325 MHz	dBm	dBm _	dBm	dBm	dB
350 MHz	dBm	dBm _	dBm	dBm	dB
375 MHz	dBm	dBm _	dBm	dBm	dB
400 MHz	dBm	dBm _	dBm	dBm	dB
425 MHz	dBm	dBm _	dBm	dBm	dB
450 MHz	dBm	dBm _	dBm	dBm	dB
475 MHz	dBm	dBm _	dBm	dBm	dB
500 MHz	dBm	dBm _	dBm	dBm	dB

At Frequencies < 1 MHz

Frequency	HP 4395A Reading [c]	Test Result [c+20 dBm ¹ -ref]
10 Hz	dBm	dB
$15~\mathrm{Hz}$	dBm	dB
$25~\mathrm{Hz}$	dBm	dB
$40~\mathrm{Hz}$	dBm	dB
80 Hz	dBm	dB
$100 \ \mathrm{Hz}$	dBm	dB
200 Hz	dBm	dB
500 Hz	dBm	dB
1 kHz	dBm	dB
2 kHz	dBm	dB
5 kHz	dBm	dB
10 kHz	dBm	dB
20 kHz	dBm	dB
50 kHz	dBm	dB
100 kHz	dBm	dB
200 kHz	dBm	dB
500 kHz	dBm	dB

 $1\,$: is -(-20 dBm). -20 dBm is the output level of the function generator.

Input A

Reference at 50 MHz

HP 4395A	HP 4395A	Power Meter	HP 4395A	Power Meter	Test Result
Frequency	Reading 1	Reading 1	Reading 2	Reading 2	[ref]
	[r1]	[r2]	[r3]	[r4]	$[(r1{-}r2+r3{-}r4)/2]$
50 MHz	dBm	dBm _	dBm	dBm	dB

At Frequencies ≥ 1 MHz

HP 4395A Frequency		Power Meter Reading 1		Power Meter Reading 2	Test Result
Ĩ	[a1]	[b1]	[a2]	[b2]	[(a1-b1+a2-b2)/2-ref]
1 MHz	dBm	dBm _	dBm	dBm	dB
2 MHz	dBm	dBm _	dBm	dBm	dB
5 MHz	dBm	dBm _	dBm	dBm	dB
8 MHz	dBm	dBm _	dBm	dBm	dB
10 MHz	dBm	dBm _	dBm	dBm	dB
20 MHz	dBm	dBm _	dBm	dBm	dB
100 MHz	dBm	dBm _	dBm	dBm	dB
125 MHz	dBm	dBm _	dBm	dBm	dB
150 MHz	dBm	dBm _	dBm	dBm	dB
175 MHz	dBm	dBm _	dBm	dBm	dB
200 MHz _	dBm	dBm _	dBm	dBm	dB
225 MHz	dBm	dBm _	dBm	dBm	dB
250 MHz	dBm	dBm _	dBm	dBm	dB
275 MHz _	dBm	dBm _	dBm	dBm	dB
300 MHz	dBm	dBm _	dBm	dBm	dB
325 MHz	dBm	dBm _	dBm	dBm	dB
350 MHz	dBm	dBm _	dBm	dBm	dB
375 MHz	dBm	dBm _	dBm	dBm	dB
400 MHz	dBm	dBm _	dBm	dBm	dB
425 MHz	dBm	dBm _	dBm	dBm	dB
450 MHz	dBm	dBm _	dBm	dBm	dB
475 MHz	dBm	dBm _	dBm	dBm	dB
500 MHz	dBm	dBm _	dBm	dBm	dB

At Frequencies < 1 MHz

Frequency	HP 4395A Reading [c]	Test Result [c+20 dBm ¹ -ref]
10 Hz	dBm	dB
$15~\mathrm{Hz}$	dBm	dB
$25~\mathrm{Hz}$	dBm	dB
$40~\mathrm{Hz}$	dBm	dB
$80~\mathrm{Hz}$	dBm	dB
$100 \ \mathrm{Hz}$	dBm	dB
200 Hz	dBm	dB
500 Hz	dBm	dB
1 kHz	dBm	dB
2 kHz	dBm	dB
5 kHz	dBm	dB
10 kHz	dBm	dB
20 kHz	dBm	dB
50 kHz	dBm	dB
100 kHz	dBm	dB
200 kHz	dBm	dB
500 kHz	dBm	dB

 $1\,$: is -(-20 dBm). -20 dBm is the output level of the function generator.

Input B

Reference at 50 MHz

HP 4395A	HP 4395A	Power Meter	HP 4395A	Power Meter	Test Result
Frequency	Reading 1	Reading 1	Reading 2	Reading 2	[ref]
	[r1]	[r2]	[r3]	[r4]	[(r1-r2+r3-r4)/2]
50 MHz	dBm	dBm _	dBm	dBm	dB

At Frequencies ≥ 1 MHz

HP 4395A Frequency		Power Meter Reading 1		Power Meter Reading 2	Test Result
Ĩ	[a1]	[b1]	[a2]	[b2]	[(a1-b1+a2-b2)/2-ref]
1 MHz	dBm	dBm _	dBm	dBm	dB
2 MHz	dBm	dBm _	dBm	dBm	dB
5 MHz	dBm	dBm _	dBm	dBm	dB
8 MHz	dBm	dBm _	dBm	dBm	dB
10 MHz	dBm	dBm _	dBm	dBm	dB
20 MHz	dBm	dBm _	dBm	dBm	dB
100 MHz	dBm	dBm _	dBm	dBm	dB
125 MHz	dBm	dBm _	dBm	dBm	dB
150 MHz	dBm	dBm _	dBm	dBm	dB
175 MHz	dBm	dBm _	dBm	dBm	dB
200 MHz _	dBm	dBm _	dBm	dBm	dB
225 MHz _	dBm	dBm _	dBm	dBm	dB
250 MHz	dBm	dBm _	dBm	dBm	dB
275 MHz _	dBm	dBm _	dBm	dBm	dB
300 MHz	dBm	dBm _	dBm	dBm	dB
325 MHz	dBm	dBm _	dBm	dBm	dB
350 MHz	dBm	dBm _	dBm	dBm	dB
375 MHz	dBm	dBm _	dBm	dBm	dB
400 MHz	dBm	dBm _	dBm	dBm	dB
425 MHz	dBm	dBm _	dBm	dBm	dB
450 MHz	dBm	dBm _	dBm	dBm	dB
475 MHz	dBm	dBm _	dBm	dBm	dB
500 MHz	dBm	dBm _	dBm	dBm	dB

At Frequencies < 1 MHz

Frequency	HP 4395A Reading [c]	Test Result [c+20 dBm ¹ -ref]
10 Hz	dBm	dB
$15~\mathrm{Hz}$	dBm	dB
$25~\mathrm{Hz}$	dBm	dB
$40~\mathrm{Hz}$	dBm	dB
80 Hz	dBm	dB
100 Hz	dBm	dB
200 Hz	dBm	dB
500 Hz	dBm	dB
1 kHz	dBm	dB
2 kHz	dBm	dB
5 kHz	dBm	dB
10 kHz	dBm	dB
20 kHz	dBm	dB
50 kHz	dBm	dB
100 kHz	dBm	dB
200 kHz	dBm	dB
500 kHz	dBm	dB

 $1\,$: is –(–20 dBm). –20 dBm is the output level of the function generator.

18. THIRD ORDER HARMONIC DISTORTION TEST

Frequency	HP 4395A Ma	Test Result	
	Lower Frequency	Upper Frequency	
	[a]	[b]	[larger of a and b]
100.2 MHz	dBc	dBc	dBc

Performance Test Record

Hewlett-Packard 4395A NETWORK/SPECTRUM/IMPEDANCE ANALYZER

Date:	
Temperature:	
Humidity:	
Serial No.:	
Tested by:	

1. FREQUENCY ACCURACY TEST

without Option 1D5

Frequency	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
100 MHz	$-550~\mathrm{Hz}$		$550~\mathrm{Hz}$	$\pm 34.6~\mathrm{Hz}$

with Option 1D5

Frequency	Minimum Limit	Test Result		Measurement Uncertainty
100 MHz	−13 Hz		13 Hz	$\pm 0.5~\mathrm{Hz}$

2. SOURCE LEVEL ACCURACY/FLATNESS TEST

Level Accuracy

Minimum Limit	Test Result	Maximum Limit	
			Uncertainty
-1.0 dB		1.0 dB	± 0.12 dB

Level Flatness

Frequency	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
10 Hz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
50 Hz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
500 Hz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
2 kHz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
12 kHz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
60 kHz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
160 kHz	-2.0 dB		2.0 dB	$\pm 0.12 \text{ dB}$
500 kHz	-2.0 dB		2.0 dB	$\pm 0.13 \text{ dB}$
1 MHz	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
3 MHz	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
10 MHz	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
$45 \mathrm{~MHz}$	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
$75 \mathrm{~MHz}$	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
110 MHz	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
140 MHz	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
190 MHz	-2.0 dB		2.0 dB	$\pm 0.15 \text{ dB}$
235 MHz	-2.0 dB		2.0 dB	$\pm 0.37~\mathrm{dB}$
290 MHz	-2.0 dB		2.0 dB	$\pm 0.37~\mathrm{dB}$
$345 \mathrm{~MHz}$	-2.0 dB		2.0 dB	$\pm 0.37 \text{ dB}$
$400 \ \mathrm{MHz}$	-2.0 dB		2.0 dB	$\pm 0.37 \text{ dB}$
$445 \mathrm{~MHz}$	-2.0 dB		2.0 dB	$\pm 0.37~\mathrm{dB}$
470 MHz	-2.0 dB		2.0 dB	$\pm 0.37~\mathrm{dB}$
500 MHz	-2.0 dB		2.0 dB	$\pm 0.37~\mathrm{dB}$

3. NON SWEEP POWER LINEARITY TEST

Power Setting	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
15 dBm	-1.0 dB		1.0 dB	$\pm 0.056~\mathrm{dB}$
10 dBm	-1.0 dB		1.0 dB	$\pm 0.056~\mathrm{dB}$
-10 dBm	-1.0 dB		1.0 dB	$\pm 0.057~\mathrm{dB}$
-20 dBm	-1.0 dB		1.0 dB	$\pm 0.065~\mathrm{dB}$
-30 dBm	-1.0 dB		1.0 dB	$\pm 0.078~\mathrm{dB}$
-40 dBm	-1.0 dB		1.0 dB	$\pm 0.078~\mathrm{dB}$
-50 dBm	-1.5 dB		1.5 dB	$\pm 0.082 \text{ dB}$

4. POWER SWEEP LINEARITY TEST

STOP Power			Test Result		Measurement Uncertainty
-30 dBm	$-35~\mathrm{dBm}$	$-0.5~\mathrm{dB}$		0.5 dB	$\pm 0.095~\mathrm{dB}$
	$-40~\mathrm{dBm}$	$-0.5~\mathrm{dB}$		0.5 dB	$\pm 0.095~\mathrm{dB}$
	$-45~\mathrm{dBm}$	-0.5 dB		0.5 dB	$\pm 0.095~\mathrm{dB}$
	$-50~\mathrm{dBm}$	-0.5 dB		0.5 dB	$\pm 0.095~\mathrm{dB}$
15 dBm	10 dBm	$-0.5~\mathrm{dB}$		0.5 dB	$\pm 0.071~\mathrm{dB}$
	$5~\mathrm{dBm}$	$-0.5~\mathrm{dB}$		0.5 dB	$\pm 0.071~\mathrm{dB}$
	0 dBm	-0.5 dB		0.5 dB	$\pm 0.071~\mathrm{dB}$
	-5 dBm	-0.5 dB		0.5 dB	$\pm 0.071~\mathrm{dB}$

5. HARMONICS/NON-HARMONIC SPURIOUS TEST

Harmonics

Frequency	Harmonics Frequency	Test Result	Test Limit	Measurement Uncertainty
10 kHz	20 kHz		< -30 dBc	$\pm 1.68~\mathrm{dB}$
	30 kHz		$<-30~\mathrm{dBc}$	± 1.66 dB
500 kHz	1 MHz		$<-30~\mathrm{dBc}$	$\pm 1.68~\mathrm{dB}$
	1.5 MHz		$<-30~\mathrm{dBc}$	$\pm 1.66~\mathrm{dB}$
10 MHz	$20 \mathrm{MHz}$		$<-30~\mathrm{dBc}$	$\pm 1.65~\mathrm{dB}$
	30 MHz		< -30 dBc	$\pm 1.65~\mathrm{dB}$
100 MHz	200 MHz		< -30 dBc	$\pm 1.65~\mathrm{dB}$
	300 MHz		< -30 dBc	$\pm 1.65 \text{ dB}$
250 MHz	500 MHz		< -30 dBc	$\pm 3.53~\mathrm{dB}$
	750 MHz		< -30 dBc	$\pm 3.53~\mathrm{dB}$
500 MHz	1 GHz		< -30 dBc	$\pm 3.53~\mathrm{dB}$
	$1.5~\mathrm{GHz}$		$< -30~\mathrm{dBc}$	$\pm 3.53~\mathrm{dB}$

Non-Harmonic Spurious

Frequency	Non-Harmonic Frequency	Test Result	Test Limit	Measurement Uncertainty
$10 \ \mathrm{Hz}$	830.00001 MHz		$<-30~\mathrm{dBc}$	$\pm 3.53~\mathrm{dB}$
$230 \mathrm{~MHz}$	600 MHz		$<-30~\mathrm{dBc}$	$\pm 3.53~\mathrm{dB}$
$330 \mathrm{~MHz}$	500 MHz		$<-30~\mathrm{dBc}$	$\pm 3.53~\mathrm{dB}$
$430 \mathrm{~MHz}$	400 MHz		$<-30~\mathrm{dBc}$	$\pm 3.53~\mathrm{dB}$
500 MHz	330 MHz		$<-30~\mathrm{dBc}$	$\pm 3.53 \text{ dB}$

6. DC BIAS ACCURACY TEST

DC Bias	Test Result	Test Limit	Measurement Uncertainty
-40 V		$<\pm44~\text{mV}$	± 0.853 mV
-10 V		$<\pm 14\ mV$	± 0.378 mV
-4 V		$<\pm 8\ mV$	± 0.056 mV
0 V		$<\pm 4\ mV$	± 0.023 mV
4 V		$<\pm 8\ mV$	± 0.056 mV
10 V		$<\pm 14\ \text{mV}$	± 0.378 mV
40 V		$<\pm44~\text{mV}$	± 0.853 mV

DC Bias	Test Result	Test Limit	Measurement Uncertainty
-100 mA		$<\pm 0.530$ mA	$\pm 0.163 \text{ mA}$
-10 mA		$<\pm0.080$ mA	$\pm 1.63~\mu {\rm A}$
$-1 \ mA$		$<\pm0.035$ mA	$\pm 0.163~\mu\mathrm{A}$
$-20~\mu A$		$<\pm0.035$ mA	$\pm 0.072~\mu\mathrm{A}$
$20~\mu {\rm A}$		$<\pm 0.035~\mathrm{mA}$	$\pm 0.072~\mu\mathrm{A}$
1 mA		$<\pm0.035$ mA	$\pm 0.163~\mu\mathrm{A}$
10 mA		$<\pm0.080$ mA	$\pm 1.63~\mu {\rm A}$
100 mA		$<\pm 0.530~\mathrm{mA}$	$\pm 0.163 \text{ mA}$

7. RECEIVER NOISE LEVEL TEST

Frequency	Input	Test Result	Test Limit
100 Hz	R		$< -85 \mathrm{~dBm}$
	А		< -85 dBm
	В		< -85 dBm
1 kHz	R		< -85 dBm
	А		$< -85 \mathrm{~dBm}$
	В		$< -85 \mathrm{~dBm}$
10 kHz	R		< -85 dBm
	А		$< -85 \mathrm{~dBm}$
	В		$< -85 \mathrm{~dBm}$
100 kHz	R		< -115.0 dBm
	А		< -115.0 dBm
	В		$< -115.0 \mathrm{~dBm}$
1 MHz	R		$< -115.0 \mathrm{~dBm}$
	А		$< -115.0 \mathrm{~dBm}$
	В		$< -115.0 \mathrm{~dBm}$
11 MHz	R		$<-114.9 \ \mathrm{dBm}$
	А		$<-114.9 \ \mathrm{dBm}$
	В		$<-114.9 \ \mathrm{dBm}$
101 MHz	R		$<-114.0 \ \mathrm{dBm}$
	А		$<-114.0 \ \mathrm{dBm}$
	В		$<-114.0 \ \mathrm{dBm}$
499 MHz	R		$<-110.5~\mathrm{dBm}$
	А		$<-110.5~\mathrm{dBm}$
	В		$<-110.5~\mathrm{dBm}$

8. INPUT CROSSTALK TEST

10 Hz \leq Freq. < 1 kHz

Measurement	Test Result	Test Limit
R into A Crosstalk		$< -100 \ \mathrm{dB}$
R into B Crosstalk		$< -100~\mathrm{dB}$

1 kHz \leq Freq. < 100 kHz

Measurement	Test Result	Test Limit
R into A Crosstalk		$< -100 \ \mathrm{dB}$
R into B Crosstalk		$< -100 \ \mathrm{dB}$

100 kHz \leq Freq. \leq 500 MHz

	Measurement	Test Result	Test Limit
R	into A Crosstalk		$< -120~\mathrm{dB}$
R	into B Crosstalk		$<-120~\mathrm{dB}$

9. INPUT IMPEDANCE TEST

100 kHz \leq Freq. \leq 100 MHz

Measurement	Test Result	Test Limit	Measurement Uncertainty
R Return Loss		$<-25~\mathrm{dB}$	\pm 3.16 dB
A Return Loss		$<-25~\mathrm{dB}$	\pm 3.16 dB
B Return Loss		$<-25~\mathrm{dB}$	\pm 3.16 dB

100 MHz < Freq. \leq 500 MHz

Measurement	Test Result	Test Limit	Measurement Uncertainty
R Return Loss		< -25 dB	\pm 3.16 dB
A Return Loss		< -25 dB	\pm 3.16 dB
B Return Loss		< -25 dB	\pm 3.16 dB

10. ABSOLUTE AMPLITUDE ACCURACY TEST

Input R

Frequency	Mimimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
$100 \ \mathrm{Hz}$	$-1.5~\mathrm{dB}$		1.5 dB	$\pm 0.17~\mathrm{dB}$
200 Hz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
$500 \ \mathrm{Hz}$	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
1 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
2 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
$5 \mathrm{kHz}$	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
10 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
20 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
50 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
100 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
200 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
500 kHz	-1.5 dB		1.5 dB	$\pm 0.18 \text{ dB}$
1 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$2 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$5 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
8 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
10 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
20 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$50 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
100 MHz	-1.5 dB		1.5 dB	$\pm 0.21 \text{ dB}$
$125 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
175 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
200 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$225 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$275 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
300 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$325 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
375 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
400 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$425 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$475 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
500 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$

Input A

Frequency	Mimimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
100 Hz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
200 Hz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
500 Hz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
1 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
2 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
5 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
10 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
20 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
50 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
100 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
200 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
500 kHz	-1.5 dB		1.5 dB	$\pm 0.18 \text{ dB}$
1 MHz	-1.5 dB		1.5 dB	$\pm 0.20~\mathrm{dB}$
$2 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$5 \mathrm{~MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
8 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
10 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
20 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$50 \mathrm{~MHz}$	$-1.5~\mathrm{dB}$		1.5 dB	$\pm 0.20 \text{ dB}$
100 MHz	-1.5 dB		1.5 dB	$\pm 0.21 \text{ dB}$
125 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$175 \ \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23~\mathrm{dB}$
200 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$225 \mathrm{MHz}$	$-1.5~\mathrm{dB}$		1.5 dB	$\pm 0.23 \text{ dB}$
$275 \ \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23~\mathrm{dB}$
300 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$325 \mathrm{~MHz}$	-1.5 dB		1.5 dB	$\pm 0.23~\mathrm{dB}$
$375 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
400 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$425~\mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23~\mathrm{dB}$
$475 \mathrm{~MHz}$	$-1.5~\mathrm{dB}$		1.5 dB	$\pm 0.23 \text{ dB}$
500 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$

Input B

Frequency	Mimimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
100 Hz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
200 Hz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
$500 \ \mathrm{Hz}$	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
1 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
2 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
$5 \mathrm{kHz}$	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
10 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
20 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
50 kHz	-1.5 dB		1.5 dB	$\pm 0.17 \text{ dB}$
100 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
200 kHz	-1.5 dB		1.5 dB	$\pm 0.17~\mathrm{dB}$
500 kHz	-1.5 dB		1.5 dB	$\pm 0.18 \text{ dB}$
1 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
2 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$5 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
8 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
10 MHz	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$20 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
$50 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.20 \text{ dB}$
100 MHz	-1.5 dB		1.5 dB	$\pm 0.21 \text{ dB}$
$125 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$175 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
200 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$225 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$275 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
300 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$325 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$375 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
400 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$425 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
$475 \mathrm{MHz}$	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$
500 MHz	-1.5 dB		1.5 dB	$\pm 0.23 \text{ dB}$

11. MAGNITUDE RATIO/PHASE DYNAMIC ACCURACY TEST

A/R Measurement

Input Level ¹	Measurement	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
0 dB	Magnitude Ratio	-0.40 dB		0.40 dB	$\pm 0.0120 \text{ dB}$
	Phase	-3.0°		3.0°	$\pm 0.0665^{\circ}$
-20 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0100 \text{ dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
-30 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0101 \text{ dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
-40 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0109 \text{ dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
-50 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0127~\mathrm{dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
-60 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0135~\mathrm{dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
-70 dB	Magnitude Ratio	-0.3 dB		0.3 dB	± 0.0238 dB
	Phase	-1.8°		1.8°	$\pm 0.0664^{\circ}$
-80 dB	Magnitude Ratio	-0.3 dB		0.3 dB	$\pm 0.0178~\mathrm{dB}$
	Phase	-1.8°		1.8°	$\pm 0.0664^{\circ}$
-90 dB	Magnitude Ratio	-3.0 dB		3.0 dB	$\pm 0.0374~\mathrm{dB}$
	Phase	-18°		18°	$\pm 0.0664^{\circ}$
-100 dB	Magnitude Ratio	-3.0 dB		3.0 dB	$\pm 0.0575~\mathrm{dB}$
	Phase	-18°		18°	$\pm 0.0664^{\circ}$

1 Relative to full scale input level

B/R Measurement

Input Level ¹	Measurement	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
0 dB	Magnitude Ratio	-0.40 dB		0.40 dB	$\pm 0.0120 \text{ dB}$
	Phase	-3.0°		3.0°	$\pm 0.0665^{\circ}$
-20 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0100 \text{ dB}$
	Phase	-0.3°	·	0.3°	$\pm 0.0664^{\circ}$
-30 dB	Magnitude Ratio	-0.05 dB		0.05 dB	$\pm 0.0101 \text{ dB}$
	Phase	-0.3°	·	0.3°	$\pm 0.0664^{\circ}$
$-40~\mathrm{dB}$	Magnitude Ratio	-0.05 dB		$0.05 \ \mathrm{dB}$	$\pm 0.0109 \text{ dB}$
	Phase	-0.3°	·	0.3°	$\pm 0.0664^{\circ}$
$-50~\mathrm{dB}$	Magnitude Ratio	-0.05 dB	·	0.05 dB	$\pm 0.0127~\mathrm{dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
-60 dB	Magnitude Ratio	-0.05 dB	·	0.05 dB	$\pm 0.0135 \text{ dB}$
	Phase	-0.3°		0.3°	$\pm 0.0664^{\circ}$
$-70 \mathrm{dB}$	Magnitude Ratio	-0.3 dB		0.3 dB	± 0.0238 dB
	Phase	-1.8°		1.8°	$\pm 0.0664^{\circ}$
$-80 \mathrm{~dB}$	Magnitude Ratio	-0.3 dB		0.3 dB	$\pm 0.0178~\mathrm{dB}$
	Phase	-1.8°	·	1.8°	$\pm 0.0664^{\circ}$
-90 dB	Magnitude Ratio	-3.0 dB		3.0 dB	$\pm 0.0374~\mathrm{dB}$
	Phase	-18°		18°	$\pm 0.0664^{\circ}$
-100 dB	Magnitude Ratio	-3.0 dB		3.0 dB	$\pm 0.0575~\mathrm{dB}$
	Phase	-18°		18°	$\pm 0.0664^{\circ}$

1 Relative to full scale input level
12. MAGNITUDE RATIO/PHASE FREQUENCY RESPONSE TEST

A/R Measurement

Measurement	Minimum Limit	Test Result	Maximum Limit
Magnitude Ratio	-2 dB		2 dB
Phase	-12°		12°

B/R Measurement

Measurement	Minimum Limit	Test Result	Maximum Limit
Magnitude Ratio	-2 dB		2 dB
Phase	-12°		12°

13. DISPLAYED AVERAGE NOISE LEVEL TEST

Input **R**

Frequency Test Result Test Limit

- $1~{\rm kHz}$ _____ $< -120~{\rm dBm/Hz}$
- $10~\mathrm{kHz}$ _____ $< -120~\mathrm{dBm/Hz}$
- 100 kHz _____ < -133 dBm/Hz
- 1 MHz _____ < -133 dBm/Hz
- 11 MHz _____ < -145 dBm/Hz
- $20~\mathrm{MHz}$ _____ $< -145~\mathrm{dBm/Hz}$
- 101 MHz _____ < -144~dBm/Hz
- 201 MHz _____ $< -143~\mathrm{dBm/Hz}$
- 499 MHz _____ < $-140~\mathrm{dBm/Hz}$

Input A

Frequency	Test Result	Test Limit
1 kHz		< -120 dBm/Hz
10 kHz		< -120 dBm/Hz
100 kHz		< -133 dBm/Hz
1 MHz		< -133 dBm/Hz
11 MHz		< -145 dBm/Hz
$20 \mathrm{MHz}$		< -145 dBm/Hz
101 MHz		< -144 dBm/Hz
201 MHz		< -143 dBm/Hz
499 MHz		< -140 dBm/Hz

Input B

Frequency	Test Result	Test Limit
1 kHz		< -120 dBm/Hz
10 kHz	. <u> </u>	< -120 dBm/Hz
100 kHz		< -133 dBm/Hz
1 MHz		< -133 dBm/Hz
11 MHz		< -145 dBm/Hz
$20 \mathrm{MHz}$		< -145 dBm/Hz
101 MHz		$< -144 \ dBm/Hz$
201 MHz		< -143 dBm/Hz
499 MHz		< -140 dBm/Hz

14. AMPLITUDE FIDELITY TEST

Input R

dB from Reference Input Level	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
10 dB	-0.05 dB		0.05 dB	$\pm 0.011 \text{ dB}$
-10 dB	-0.05 dB		0.05 dB	$\pm 0.011 \text{ dB}$
-20 dB	-0.05 dB		0.05 dB	$\pm 0.012 \text{ dB}$
-30 dB	-0.07 dB		0.07 dB	$\pm 0.012 \text{ dB}$
-40 dB	-0.15 dB		0.15 dB	$\pm 0.014 \text{ dB}$
-50 dB	-0.35 dB		0.35 dB	$\pm 0.015~\mathrm{dB}$
-60 dB	-0.8 dB		0.8 dB	± 0.024 dB
-70 dB	-1.8 dB		1.8 dB	$\pm 0.037~\mathrm{dB}$

Input A

dB from Reference Input Level	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
10 dB	-0.05 dB		0.05 dB	$\pm 0.011 \text{ dB}$
-10 dB	-0.05 dB		0.05 dB	$\pm 0.011 \text{ dB}$
-20 dB	-0.05 dB		0.05 dB	± 0.012 dB
-30 dB	-0.07 dB		0.07 dB	± 0.012 dB
-40 dB	-0.15 dB		0.15 dB	$\pm 0.014 \text{ dB}$
-50 dB	$-0.35~\mathrm{dB}$		0.35 dB	$\pm 0.015~\mathrm{dB}$
-60 dB	-0.8 dB		0.8 dB	$\pm 0.024 \text{ dB}$
-70 dB	-1.8 dB		1.8 dB	$\pm 0.037~\mathrm{dB}$

Input B

dB from Reference Input Level	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
10 dB	-0.05 dB		0.05 dB	$\pm 0.011 \text{ dB}$
-10 dB	-0.05 dB		0.05 dB	$\pm 0.011 \text{ dB}$
-20 dB	-0.05 dB		0.05 dB	± 0.012 dB
-30 dB	-0.07 dB		0.07 dB	$\pm 0.012 \text{ dB}$
-40 dB	-0.15 dB		0.15 dB	$\pm 0.014 \text{ dB}$
-50 dB	$-0.35~\mathrm{dB}$		0.35 dB	$\pm 0.015 \text{ dB}$
-60 dB	-0.8 dB		0.8 dB	$\pm 0.024 \text{ dB}$
-70 dB	-1.8 dB		1.8 dB	± 0.037 dB

15. INPUT ATTENUATOR SWITCHING UNCERTAINTY TEST

Input R

Input Attenuation	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
0 dB	-1 dB		1 dB	$\pm 0.017~\mathrm{dB}$
20 dB	-1 dB		1 dB	$\pm 0.016 \text{ dB}$
30 dB	-1 dB		1 dB	$\pm 0.016 \text{ dB}$
40 dB	-1.5 dB		1.5 dB	$\pm 0.016 \text{ dB}$
50 dB	-1.5 dB		1.5 dB	$\pm 0.024 \text{ dB}$

Input A

Input Attenuation	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
0 dB	-1 dB		1 dB	$\pm 0.017~\mathrm{dB}$
20 dB	-1 dB		1 dB	$\pm 0.016 \text{ dB}$
30 dB	-1 dB		1 dB	$\pm 0.016 \text{ dB}$
40 dB	-1.5 dB		1.5 dB	$\pm 0.016 \text{ dB}$
50 dB	-1.5 dB		1.5 dB	$\pm 0.024 \text{ dB}$

Input B

Input Attenuation	Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
0 dB	-1 dB		1 dB	$\pm 0.017~\mathrm{dB}$
20 dB	-1 dB		1 dB	$\pm 0.016~\mathrm{dB}$
30 dB	-1 dB		1 dB	± 0.016 dB
40 dB	-1.5 dB		1.5 dB	$\pm 0.016~\mathrm{dB}$
50 dB	-1.5 dB		1.5 dB	$\pm 0.024 \text{ dB}$

16. NOISE SIDEBANDS TEST

Input R

Frequency	Offset from Carrier	Test Result	Test Limit	Measurement Uncertainty
$10 \mathrm{MHz}$	$-1 \mathrm{kHz}$		$<-97~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	+1 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	-10 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 0.98~\mathrm{dB}$
	+10 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 0.98~\mathrm{dB}$
	-100 kHz		$< -110 \ dBc/Hz$	$\pm 2.14 \text{ dB}$
	+100 kHz		$< -110 \ dBc/Hz$	$\pm 2.14 \text{ dB}$
	$-1 \mathrm{MHz}$		<-110~dBc/Hz	$\pm 0.98~\mathrm{dB}$
	+1 MHz		<-110~dBc/Hz	$\pm 0.98~\mathrm{dB}$
100 MHz	−1 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	+1 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	-10 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 0.98~\mathrm{dB}$
	+10 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 0.98~\mathrm{dB}$
	-100 kHz		$< -110 \ dBc/Hz$	$\pm 2.14 \text{ dB}$
	+100 kHz		<-110~dBc/Hz	$\pm 2.14 \text{ dB}$
	$-1 \mathrm{MHz}$		<-110~dBc/Hz	$\pm 0.98~\mathrm{dB}$
	+1 MHz		<-110~dBc/Hz	$\pm 0.98~\mathrm{dB}$
500 MHz	$-1 \mathrm{kHz}$		$<-97~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	+1 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	-10 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 0.98~\mathrm{dB}$
	+10 kHz		$<-97~\mathrm{dBc/Hz}$	$\pm 0.98~\mathrm{dB}$
	-100 kHz		<-110~dBc/Hz	$\pm 2.14 \text{ dB}$
	+100 kHz		$<-110~\mathrm{dBc/Hz}$	$\pm 2.14 \text{ dB}$
	-1 MHz		< -110 dBc/Hz	$\pm 0.98 \text{ dB}$
	+1 MHz		< -110 dBc/Hz	$\pm 0.98 \text{ dB}$

17. AMPLITUDE ACCURACY/FREQUENCY RESPONSE TEST

Input R

Level Accuracy

Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
-0.8 dB		0.8 dB	$\pm 0.112 \text{ dB}$

Frequency Response

Frequency	Minimum Limit	Test Result	Test Limit	Measurement Uncertainty
$10~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$15~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$25~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$40~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$80~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$100 \ \mathrm{Hz}$	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
200 Hz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
$500~{\rm Hz}$	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
1 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
2 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
5 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
10 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
20 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
50 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
100 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
200 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
500 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
1 MHz	-1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
$2 \mathrm{MHz}$	-1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
$5 \mathrm{MHz}$	-1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
8 MHz	-1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$
10 MHz	-1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$
$20 \mathrm{MHz}$	-1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$

			Uncertainty
100 MHz	-1.3 dB	 1.3 dB	$\pm 0.093 \text{ dB}$
125 MHz	-1.3 dB	 1.3 dB	$\pm 0.093 \text{ dB}$
$150 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.093 \text{ dB}$
$175 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
200 MHz	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$225 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$250 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$275 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
300 MHz	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$325 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$350~\mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$375 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$400 \ \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$425 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$450 \mathrm{~MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$475 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$500 \ \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$

Frequency Minimum Limit Test Result Test Limit Measurement Uncertainty

Input A

Level Accuracy

Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
-0.8 dB		0.8 dB	$\pm 0.112 \text{ dB}$

Frequency Response

equency		lest nesult	lest Limit	Uncertainty
$10~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$15~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$25~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$40~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$80~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$100~{\rm Hz}$	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
$200~{\rm Hz}$	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
500 Hz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
1 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
2 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
5 kHz	-1.3 dB		1.3 dB	$\pm 0.264 \text{ dB}$
10 kHz	-1.3 dB		1.3 dB	$\pm 0.264 \text{ dB}$
20 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
50 kHz	−1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
100 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
$200 \ \rm kHz$	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
500 kHz	−1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
1 MHz	-1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
2 MHz	−1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
5 MHz	−1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
8 MHz	−1.3 dB		1.3 dB	$\pm 0.081~\mathrm{dB}$
10 MHz	-1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$
20 MHz	−1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$

Frequency Minimum Limit Test Result Test Limit Measurement Uncertainty

			Uncertainty
100 MHz	-1.3 dB	 1.3 dB	$\pm 0.093 \text{ dB}$
125 MHz	-1.3 dB	 1.3 dB	$\pm 0.093 \text{ dB}$
150 MHz	-1.3 dB	 1.3 dB	$\pm 0.093 \text{ dB}$
175 MHz	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
200 MHz	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$225 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$250 \mathrm{~MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$275 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
300 MHz	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$325 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$350~\mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$375 \mathrm{~MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$400 \ \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$425 \mathrm{~MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$450 \mathrm{~MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$475 \mathrm{MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$500 \mathrm{~MHz}$	-1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$

Frequency Minimum Limit Test Result Test Limit Measurement Uncertainty

Input B

Level Accuracy

Minimum Limit	Test Result	Maximum Limit	Measurement Uncertainty
-0.8 dB		0.8 dB	$\pm 0.112 \text{ dB}$

Frequency Response

equency		lest nesuit	lest Limit	Uncertainty
$10~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264 \text{ dB}$
$15~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$25~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
40 Hz	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$80~\mathrm{Hz}$	-3.0 dB		3.0 dB	$\pm 0.264~\mathrm{dB}$
$100~{\rm Hz}$	-1.3 dB	·	1.3 dB	$\pm 0.264~\mathrm{dB}$
$200~{\rm Hz}$	-1.3 dB	·	1.3 dB	$\pm 0.264~\mathrm{dB}$
$500~{\rm Hz}$	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
1 kHz	-1.3 dB	·	1.3 dB	$\pm 0.264~\mathrm{dB}$
2 kHz	-1.3 dB		1.3 dB	$\pm 0.264 \text{ dB}$
5 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
10 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
20 kHz	-1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
50 kHz	−1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
100 kHz	−1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
$200 \ \rm kHz$	−1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
500 kHz	−1.3 dB		1.3 dB	$\pm 0.264~\mathrm{dB}$
1 MHz	−1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
2 MHz	−1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
5 MHz	−1.3 dB		1.3 dB	$\pm 0.077~\mathrm{dB}$
8 MHz	-1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$
10 MHz	−1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$
20 MHz	−1.3 dB		1.3 dB	$\pm 0.081 \text{ dB}$

Frequency Minimum Limit Test Result Test Limit Measurement Uncertainty

			Uncertainty
$100 \ \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.093~\mathrm{dB}$
$125 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.093~\mathrm{dB}$
150 MHz	−1.3 dB	 1.3 dB	$\pm 0.093~\mathrm{dB}$
$175 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
200 MHz	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$225 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$250 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$275 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
300 MHz	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$325 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$350 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$375 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$400 \ \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$425 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$450 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
$475 \mathrm{MHz}$	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$
500 MHz	−1.3 dB	 1.3 dB	$\pm 0.110 \text{ dB}$

Frequency Minimum Limit Test Result Test Limit Measurement Uncertainty

18. SECOND HARMONIC DISTORTION TEST

Frequency Test Result Test Limit Measurement Uncertainty

50.1 MHz _____ < -70 dBc ± 2.65 dB

19. THIRD ORDER INTERMODULATION DISTORTION TEST

Frequency Test Result Test Limit Measurement Uncertainty

100.2 MHz _____ < -70 dBc $\pm 4.3 \text{ dB}$

20. OTHER SPURIOUS TEST

Input Frequency	Spurious Frequency	Test Result	Test Limit	Measurement Uncertainty
276.8666667 MHz	300 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
416.3 MHz	1 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
16.3 MHz	1 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
212.8 MHz	210 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
205.9 MHz	210 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
213.7333333 MHz	210 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
209.1333333 MHz	210 MHz		$<-70~\mathrm{dBc}$	$\pm 2.52 \text{ dB}$
6.897 MHz	6.900 MHz		$<-70~\mathrm{dBc}$	$\pm 2.14 \text{ dB}$
6.897 MHz	6.903 MHz		$<-70~\mathrm{dBc}$	$\pm 2.14 \text{ dB}$
256.897 MHz	256.900 MHz		$<-70~\mathrm{dBc}$	$\pm 2.14 \text{ dB}$
256.897 MHz	256.903 MHz		$<-70~\mathrm{dBc}$	$\pm 2.14 \text{ dB}$
494.397 MHz	494.400 MHz		$<-70~\mathrm{dBc}$	$\pm 2.14 \text{ dB}$
494.397 MHz	494.403 MHz		$<-70~\mathrm{dBc}$	$\pm 2.14 \text{ dB}$

21. RESIDUAL RESPONSE TEST

Frequency	Test Result	Test Limit
100.18333 MHz	. <u> </u>	< -108 dBm
166.85 MHz	. <u> </u>	< -108 dBm
233.5166667 MHz	. <u> </u>	< -108 dBm
366.85 MHz	. <u> </u>	< -108 dBm
433.5166667 MHz		< -108 dBm
161.75 MHz	. <u> </u>	< -108 dBm
361.75 MHz		< -108 dBm
377.05 MHz		< -108 dBm
177.05 MHz		< -108 dBm
438.6166667 MHz		< -108 dBm
371.95 MHz	. <u> </u>	< -108 dBm
238.6166667 MHz		< -108 dBm
171.95 MHz		$< -108 \ \mathrm{dBm}$
105.2833333 MHz		< -108 dBm

Adjustments

Introduction

This section describes the Adjustments required for the HP 4395A to operate within its specifications. These adjustments should be performed along with periodic maintenance to keep the HP 4395A in optimum operating condition. The recommended calibration period is 12 months. If proper performance cannot be achieved after the Adjustments, see the Troubleshooting chapter.

Note

To ensure proper results and correct instrument operation, Hewlett-Packard suggests a 30 minute warm-up and stabilization period before performing any of the following Adjustments.

Safety Considerations

This manual contains NOTEs, CAUTIONs, and WARNINGs which must be followed to ensure the safety of the operator and to keep the instrument in a safe and serviceable condition. The adjustments must be performed by qualified service personnel.

Warning

Any interruption of the protective ground conductor (inside or outside the instrument) or disconnection of the protective ground terminal can make the instrument dangerous. Intentional interruption of the protective ground system for any reason is prohibited.

Remember that the capacitors in the analyzer can remain charged for several minutes, even through you have turned the analyzer OFF and unplugged it.

Warning

The adjustments described in this chapter are performed with power applied and the protective covers removed. Dangerous voltage levels exist at many points and can result in serious personal injury or death if you come into contact with them.

Required Controller

Performing adjustments requires the following controller:

Windows NT PC (Personal Computer)

Microprocessor	Minimum: 80486, 33 MHz or faster.
RAM	Minimum: 24 MB.
Mass Strage	A 3.5-inch (1.44 MB) floppy disk drive, and a hard disk drive with at least 30 MB of free disk space.
Display System	Ultra VGA (1024-by-768).
HP-IB Card	HP 82340 or HP 82341
OS	Microsoft $^{\textcircled{B}}$ Windows NT (version 3.51 or later),
	and HP VEE for Windows (version 3.2)

Software Requirements

The adjustments require the HP 4395A Adjustment Program. HP part number for the HP 4395A Adjustment Program for HP VEE/Windows is 04395-18004.

Required Test Equipment

Required equipment for performing the adjustments is listed in Table 5-1. Use only calibrated test equipment when adjusting the HP 4395A.

Equipment	Critical Specifications	Model	Qty
Multimeter	No substitute	HP 3458A	1
Frequency Counter	Frequency Range: 500 MHz,Time Base Error: $\leq \pm 1.9 \times 10^{-7}$ /year	HP 5334B	1
Frequency Standard	Frequency: 10 MHz, Time Base Error: $\leq \pm 1 \times 10^{-10}$ /year	HP 5061B	1
Signal Generator	Frequency Range : 1 MHz to 500 MHz, SSB Phase Noise at 100 Hz offset: < -112 dBc/Hz, SSB Phase Noise at 1 kHz offset: < -121 dBc/Hz	HP 8642B/8644B/8663A	1
Power Meter	No substitute	HP 436A Opt. 022, HP 437B, or HP 438A	1
Power Sensor	Frequency Range : 1 MHz to 500 MHz,Power: -26 dBm to 0 dBm	HP 8482A	1
Two-Way Power Splitter	Frequency Range: 100 kHz to 500 MHz, Output Tracking: ≤ 0.15 dB	HP 11667A	1
Cables	Type-N cable, 50 Ω	HP 11500B or part of HP 11851B	1
	BNC cable, 61 cm, 50 Ω	PN 8120-1839	1
	BNC cable, 122 cm, 50 Ω	PN 8120-1840	1
Adapters	$N(m)$ - $N(m)$ adapter, 50 Ω	PN 1250-1475	1
	BNC(f)-Dual Banana Plug Adapter, 50 Ω	PN 1251-2277	1
	N(m)-BNC(f) adapter, 50 Ω	PN 1250-0780	1
50 Ω Feedthrough	Rejection at 75 MHz: $\geq 60 \text{ dB}$	PN 04192-61002	1

Table 5-1. Required Test Equipment for Adjustments

Order of Adjustments

When performing more than one Adjustments or Correction Constants procedure, perform them in the order they appear in this chapter. The procedures are presented in the following order:

Adjustments and Correction Constants	HP VEE
Frequency Reference Adjustment	
Oven Reference Adjustment (Option 1D5)	
Local DAC Adjustment	\checkmark
Source Power Adjustment	\checkmark
Source Flatness Adjustment	\checkmark
Input DC Offset Adjustment	
Input Local Null Adjustment	
IF 24 dB Gain/Phase Adjustment	\checkmark
Receiver Gain Adjustment	
IF 8 dB/16 dB Gain Adjustment	\checkmark
Temprature Adjustment	\checkmark
Receiver Flatness Adjustment	\checkmark
Receiver Attnuator Adjustment	\checkmark
IF BPF Flatness Adjustment	\checkmark
DC Bias Adjustment (Option 010)	\checkmark

Table 5-2. Adjustment and Correction Constants Items

Note

IŖ

The adjustments without the check in the Table 5-2 does not require the HP VEE Adjustment Program to perform the adjustment. You should perform them manually or use the intenal adjustment tests.

Performing Adjustments

The adjustments are empirically derived data that is stored in memory and then recalled to refine the HP 4395A's measurement and to define its operation.

Setting Up the System

Performing adjustments requires the system described in this section.

The Hardware Setup is shown in Figure 5-1.

Figure 5-1. Adjustment Hardware Setup

Preparation for Using the Adjustment Program

To use the HP 4395A adjustment program, it is first necessary to install an HP-IB Card. This section describes how to install it.

Installing an HP-IB Card (HP 82340 or HP 82341)

Install an HP-IB Card in your computer (see the HP-IB Card manual). The select code of the HP-IB Card should be set to "7". The HP-IB Card should be the HP 82340 or HP 84321. Other HP-IB Cards can not be used in the Windows NT environment.

Installing HP VEE for Windows NT

Install the HP VEE for Windows NT in your computer (see the HP VEE for Windows NT manual).

After installing HP VEE for Windows NT, run the *Configure I/O* utility in the *HP VEE for Windows NT* group by double-clicking on its icon to check that the HP-IB Interface Board is correctly installed.

Installing Adjustment Program into Your PC

Make a directory named 4395A on the C drive and copy the HP 4395A adjustment program under the created directory.

Getting Started

- 1. Start the HP VEE by clicking the HP VEE icon on your PC.
- 2. Load the adjustment program file into the HP VEE as follows:
 - a. Pull down the File menu from the HP VEE window and select File Open.
 - b. Select the file C:\4395A\ADJUST.VEE.
 - c. Press OK.

Note

You may be asked HP-IB addresses of the test equipment during the program loading. Enter the address for each equipment. Enter 0 as the address for the equipment which are not used for the adjustment test.

- 3. Press Start button on the Adjustment Program screen.
- 4. In the "Setup" window, modify the settings if required.
- 5. Press OK.
- 6. Modify the calibration factor of the HP 8482A in the window.
- 7. Press OK.
- ^{8.} Select the model number and press OK.
- 9. Enter the serial number of the HP 4395A exactly. For example,

JP1E00123

- 10. Mark installed options of the HP 4395A. The installed options can be confirmed on the rear pannel of the HP 4395A, or when you turn the HP 4395A ON, you can see the installed options before the HP 4395A starts measurement.
- 11. Press NEXT STEP.

Li:	st Box
WRITE_ID	
INIT_CAL	
CC_LocalDac	
CC_Source	
CC_Source_FLAT	
CC_IFgain_8_16	
CC_RCVR_FLAT	
CC_RCVR_ATT	
CC_IF_BFF_FLAT	
CC_TEMP	
	[
OK Cancel	Select All Clear All

CCS05002

Figure 5-2. List Box

Note

"WRITE_ID" is used to write required identification data into the internal memory of the HP 4395A. "INIT_CAL" is used to delete correction constants. See *Post Repair Procedure* for details.

1. Frequency Reference Adjustment

The purpose of this procedure is to adjust the 10 MHz reference clock in the HP 4395A.

NoteHP VEE Adjustment Program is not required in this adjustment. Follow the
procedures below and adjust proper item manually.

Required Equipment

Frequency Counter	? 5334B
BNC cable, 61 cmPN 81	20 - 1839

Procedure

- 1. Turn the HP 4395A OFF.
- 2. To gain access to the adjustment components, remove the top cover of the HP 4395A.
- 3. Remove the BNC-BNC adapter from 10 MHz INT REF Output and REF OVEN connecters.
- 4. Connect the test equipment as shown in Figure 5-3 to monitor the 10 MHz reference clock.

Figure 5-3. Frequency Reference Adjustment Setup

5. Turn the HP 4395A ON.

6. Adjust "A7 Freq. Adj" until the frequency counter reads 10 MHz \pm 5 Hz.

Figure 5-4. Frequency Reference Adjustment Location

- 7. Turn the HP 4395A OFF.
- 8. Reconnect the BNC-BNC adapter and install the top cover.

2. Oven Reference Adjustment (Option 1D5)

The purpose of this procedure is to adjust the 10 MHz oven reference clock.

Required Equipment

Frequency Counter	HP 5334B
Frequency Standard	\dots HP 5061B 1
BNC cable, 61 cm	PN 8120-1839
BNC cable, 122 cm	PN 8120-1840
N(m)-BNC(f) adapter	PN 1250-0780

Procedure

Note	HP VEE Adjustment Program is not required in this adjustment. Follow the
us	procedures below and adjust proper item manually.

Required Equipment

Frequency Counter	IP 5334B
BNC cable, 61 cmPN 8	120-1839

- 1. Turn the HP 4395A OFF.
- 2. To gain access to the adjustment components, remove the top cover of the HP 4395A.
- 3. Remove the BNC-BNC adapter from 10 MHz INT REF Output and REF OVEN connecters.
- 4. Connect the test equipments as shown in Figure 5-5 to monitor the 10 MHz reference clock.

Figure 5-5. Oven Reference Adjustment Setup

5. Remove the screw on the TIME BASE ADJ on the rear panel.

Figure 5-6. Location of the OVEN FREQ ADJ.

- 6. Turn the HP 4395A ON.
- 7. Adjust "OVEN-FREQ-ADJ" on the rear panel until the frequency counter reads 10 MHz ± 0.1 Hz.
- 8. Turn the HP 4395A OFF.
- 9. Install the screw on the TIME BASE ADJ. on th rear panel.
- 10. Reconnect the BNC-BNC adapter and install the top cover.

3. Local DAC Adjustment

The purpose of this procedure is to adjust the Local Pretune DAC.

Required Equipment

None

- 1. Run the Adjustment Program
- $2\cdot$ Select the "CC_LocalDac" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

4. Source Power Adjustment

The purpose of this procedure is to adjust level vernier of the Network Analysis source.

Required Equipment

Power Meter	. HP 436A Opt.	022, HP 437B, or HP 438A
Power Sensor		HP 8482A

- 1. Run the Adjustment Program
- 2. Select the "CC_Source" and press <code>OK</code> in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

Figure 5-7. Source Power Adjustment Setup

5. Source Flatness Adjustment

The purpose of this procedure is to adjust the source flatness.

Required Equipment

None

- 1. Run the Adjustment Program
- $2\cdot$ Select the "CC_Source_FLAT" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

6. Input DC Offset Adjustment

The purpose of this procedure is to adjust the DC Bias offset value.

Note

HP VEE Adjustment Program is not required in this adjustment. Follow the procedures below and adjust proper item using the internal adjustment test.

Required Equipment

None

- 1. Turn the HP 4395A OFF.
- 2. To gain access to the adjustment components, remove the bottom cover of the HP 4395A.
- 3. Turn the HP 4395A ON.
- 4. Press (System), MORE, SERVICE TESTS, ADJUSTMENT TESTS to display the internal adjustment tests menu.
- 5. Press (6), (0) or use (1)/(II) to select the internal adjustment test 60: A9 A ON ADJ.
- 6. Press EXECUTE TEST to run the test.
- 7. Adjust "ADJ-A-ON" on the A9 Input Multiplexer Board until pass is displayed on the screen.
- 8. Press CONT to exit the adjustment.
- 9. Press 6), 1 or use (f) to select the internal adjustment test 61: A9 B ON ADJ.
- 10. Press EXECUTE TEST to run the test.
- 11. Adjust "ADJ-B-ON" on the A9 Input Multiplexer Board until pass is displayed on the screen.
- 12. Press CONT to exit the adjustment.
- 13. Press 6), 2) or use (1) to select the internal adjustment test 62: A9 R OFF ADJ.
- ^{14.} Press EXECUTE TEST to run the test.
- 15. Adjust "ADJ-R-OFF" on the A9 Input Multiplexer Board until pass is displayed on the screen.
- 16. Press CONT to exit the adjustment.
- 17. Press 6, 3 or use f to select the internal adjustment test 63: A9 A OFF ADJ.
- ^{18.} Press EXECUTE TEST to run the test.
- 19. Adjust "ADJ-A-OFF" on the A9 Input Multiplexer Board until pass is displayed on the screen.
- 20. Press CONT to exit the adjustment.
- 21. Press 6, 4 or use 1 to select the internal adjustment test 64: A9 B OFF ADJ.

- $22. \ \mbox{Press EXECUTE TEST}$ to run the test.
- 23. Adjust "ADJ-B-OFF" on the A9 Input Multiplexer Board until pass is displayed on the screen.
- 24. Press CONT to exit the adjustment.
- 25. Turn the HP 4395A OFF and install the bottom cover.

Figure 5-8. Input DC Offset Adjustment Location

7. Input Local Null Adjustment

The purpose of this procedure is to minimize the first local leakage.

Note HP VEE Adjustment Program is not required in this adjustment. Follow the procedures below and adjust proper item using the internal adjustment test.

Required Equipment

None

- 1. Turn the HP 4395A OFF.
- 2. To gain access to the adjustment components, remove the top and bottom covers of the HP 4395A.
- 3. Turn the HP 4395A ON.
- 4. Press (System), SERVICE TESTS, ADJUSTMENT TESTS to display the internal adjustment tests menu.
- 5. Press 6), (5) or use (1)/(1) to select the internal adjustment test 65: A9 LO ADJ.
- 6. Press EXECUTE TEST to run the test.
- 7. Adjust "ADJ-LO-A" and "ADJ-LO-B" on the A9 Input Multiplexer Board until pass is displayed on the screen.

Figure 5-9. Input Local Null Adjustment Location

- 8. Press CONT to exit the adjustment.
- 9. Turn the HP 4395A OFF and install the bottom cover.

8. IF 24 dB Gain/Phase Adjustment

The purpose of this procedure is to adjust the gain/phase of third IF.

Note HP VEE Adjustment Program is not required in this adjustment. Follow the procedures below and adjust proper item using the internal adjustment test.

Required Equipment

Type-N Cable, 61 cm HP 11500B or part of HP 11851B

- 1. Turn the HP 4395A OFF.
- 2. To gain access to the adjustment components, remove the right side cover of the HP 4395A.
- 3. Turn the HP 4395A ON.
- 4. Press (System), MORE, SERVICE TESTS, ADJUSTMENT TESTS to display the internal adjustment tests menu.
- 5. Press 6), 6) or use m/ (II) to select the internal adjustment test 66: A8 GAIN/PHASE ADJ.
- 6. Press EXECUTE TEST to run the test.
- 7. Connect the test equipment as shown in the Figure 5-10.

Figure 5-10. IF 24 dB Gain/Phase Adjustment Setup

- 8. Press CONT to continue the adjustment.
- 9. Adjust "A8 GAIN ADJ" and "A8 PHASE ADJ" on the A8 Digital IF Board until pass is displayed on the screen.

Figure 5-11. IF 24 dB Gain/Phase Adjustment Location

- 10. Press CONT to exit the adjustment.
- 11. Turn the HP 4395A OFF and install the side cover.

9. Receiver Gain Adjustment

The purpose of this procedure is to adjust the total gain of the receiver.

HP VEE Adjustment Program is not required in this adjustment. Follow the procedures below and adjust proper item using the internal adjustment test.

Required Equipment

Signal Generator	33A
Power Meter HP 436A Opt. 022, HP 437B, or HP 43	38A
Power Sensor	32A
Two-Way Power Splitter	37A
Type-N Cable, 61 cm HP 11500B or part of HP 118	51B
N(m)-N(m) adapter PN 1250-1	475

- 1. Turn the HP 4395A OFF.
- 2. To gain access to the adjustment components, remove the top cover of the HP 4395A.
- 3. Turn the HP 4395A ON.
- 4. Press (System), SERVICE TESTS, ADJUSTMENT TESTS to display the internal adjustment tests menu.
- 5. Press 6), 7) or use (1)/(1) to select the internal adjustment test 67: A7 GAIN ADJ.
- 6. Press EXECUTE TEST to run the test.
- 7. Connect the test equipment as shown in the Figure 5-12.

Figure 5-12. Receiver Gain Adjustment Setup

8. Initialize the signal generator. Then set the control as follows:

Controls	Settings
Frequency	16 MHz
Amplitude	6 dBm

- 9. On the signal generator, adjust the amplitude until the power meter' reads 0 ± 0.05 dBm.
- 10. Adjust "A7 GAIN ADJ" until pass is displayed on the screen.

Figure 5-13. Receiver Gain Adjustment Location
10. IF 8 dB/16 dB Gain Adjustment

The purpose of this procedure is to generate the correction constants for the 8 dB/16 dB amplifier on the A/D converter assy.

Required Equipment

Power Meter HP 4	36A Opt. 022, HP 437B, or HP 438A
Power Sensor	
Signal Generator	HP 8642B/8644B/8663A
Multimeter	HP 3458A
Two-Way Power Splitter	HP 11667A
Type-N Cable, 61 cm	HP 11500B or part of HP 11851B
N(m)-N(m) adapter	PN 1250-1475
BNC cable, 122 cm	PN 8120-1840

- 1. Run the Adjustment Program
- $2\cdot$ Select the "CC_IFgain_8_16" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

CCS05006

Figure 5-14. IF 8 dB/16 dB Gain Adjustment Setup

11. Temperature Adjustment

The purpose of this procedure is to record the temperature during adjustments.

Required Equipment

None

- 1. Run the Adjustment Program
- 2. Select the "CC_TEMP" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

12. Receiver Flatness Adjustment

The purpose of this procedure is to obtain the correction constants that correct the receiver flatness.

Required Equipment

Power Meter HP 436A	Opt. 022, HP 437B, or HP 438A
Power Sensor	HP 8482A
Multimeter	HP 3458A
Two-Way Power Splitter	HP 11667A
Type-N Cable, 61 cml	HP 11500B or part of HP 11851B
N(m)-N(m) adapter	PN 1250-1475
N(m)-BNC(f) adapter	PN 1250-0780
BNC cable, 61 cm	PN 8120-1839
50 Ω Feedthrough	PN 04192-61002
BNC(f)-Dual Banana Plug Adapter	PN 1251-2277

Procedure

- 1. Run the Adjustment Program
- 2. Select the "CC_RCVR_FLAT" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

CCS05007

Figure 5-15. Receiver Flatness Adjustment Setup (< 1 MHz)

Figure 5-16. Receiver Flatness Adjustment Setup (\geq 1 MHz)

13. Receiver Attenuator Adjustment

The purpose of this procedure is to obtain the correction constants to correct the receiver.

Required Equipment

Type-N Cable, 61 cm HP 11500B or part of HP 11851B

- 1. Run the Adjustment Program
- 2. Select the "CC_RCVR_ATT" and press ${\tt OK}$ in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

Figure 5-17. Receiver Attenuator Adjustment Setup

14. IF BPF Flatness Adjustment

The purpose of this procedure is to adjust the IF Band Pass Filter.

Required Equipment

Power Meter	HP 436A Opt. 022, HP 437B, or HP 438A
Power Sensor	
Signal Generator	HP 8642B/8644B/8663A
Multimeter	HP 3458A
Two-Way Power Splitter	HP 11667A
Type-N Cable, 61 cm	
N(m)-N(m) adapter	PN 1250-1475
BNC cable, 122 cm	DN 0100 1040

- 1. Run the Adjustment Program
- $2\cdot$ Select the "CC_IF_BPF_FLAT" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

Figure 5-18. IF BPF Flatness Adjustment Setup

15. DC Bias Adjustment (Option 010)

The purpose of this procedure is to adjust the DC Bias source.

Required Equipment

Multimeter	3458A
BNC cable, 61 cmPN 812	20-1839
BNC(f)-Dual Banana Plug AdapterPN 125	51 - 2277

- 1. Run the Adjustment Program
- 2. Select the "CC_DcBias" and press OK in the list box.
- 3. Following the Adjustment Program instructions, complete this procedure.

Figure 5-19. DC Bias Adjustment Setup 1

Figure 5-20. DC Bias Adjustment Setup 2

Troubleshooting

INTRODUCTION

This chapter describes troubleshooting flow and provides the procedure to determine which group or an assembly is faulty and should be checked.

TROUBLESHOOTING SUMMARY

The troubleshooting strategy of this manual is based on a verification (rather than symptomatic) approach. This chapter describes typical troubleshooting procedure step by step and you can identify a faulty assembly or a faulty group by following the trobleshooting steps sequentially.

And if you could identify only the faulty group, refer to the appropriate chapter following this chapter. Each of following three chapters verifies, one at a time, the assemblies within a group until the faulty assembly is identified. These chapters employ more lengthy, complicated procedures. The three functional groups are power supply, digital control and accessories.

Figure 6-1 diagrams the troubleshooting organization.

Post-Repair Procedures, is the last chapter of the troubleshooting portion of the manual. *Post-Repair Procedures* is organized by assembly and notes what adjustment to perform and how to verify proper instrument operation following the replacement of an assembly.

Figure 6-1. Troubleshooting Organization

START HERE

This chapter contains following troubleshooting procedures. By performing them in the order listed below, you can identify the faulty assembly or the faulty group efficiently.

- 1. Disconnect everything from the analyzer: All test set interconnect, HP-IB cable, probe power, and RF cables.
- 2. Perform the INSPECT THE POWER-ON SEQUENCE in this chapter.
- 3. Perform the INSPECT THE REAR PANEL FEATURE in this chapter.
- 4. Perform the INTERNAL TESTS FAILURE TROUBLESHOOTING in this chapter.
- 5. Perform the EXTERNAL TESTS FAILURE TROUBLESHOOTING in this chapter.
- 6. Perform the performance tests in the *Performance Test* chapter and refer to *PERFORMANCE TEST FAILURE TROUBLESHOOTING* in this chapter.

If the analyzer has passed all of the checks but it still making incorrect measurements or unexpected operations, suspect the accessories. Accessories such as RF or interconnect cables, calibration and verification kit devices, test set can all induce system problems.

Configure the system as it is normally used and reconfirm the problem. Continue with the *Accessories Troubleshooting* chapter.

INSPECT THE POWER ON SEQUENCE

Check the Fan

Turn the analyzer power on. Inspect the fan on the rear panel.

■ The fan should be rotating and audible.

If case of unexpected results, check AC line power to the analyzer. Check the fuse (rating listed on the rear panel). Check the line voltage setting. For setting the line voltage, see the *Power Requirements* in Appendix C.

If the problem persists, continue with the Power Supply Troubleshooting chapter.

Check the Front Panel LEDs and Displays

Turn on the analyzer and watch for the following events in this order:

- 1. Beep is sounding.
- 2. The (<u>Ch 1</u>) LED turns on and the analyzer displays Internal Test In Progress for several seconds.
- 3. The analyzer displays the graticule.

If case of unexpected results, continue with Digital Control Troubleshooting chapter.

Check Error Message

Turn the analyzer power on. Inspect the LCD. No error message should be displayed.

If the following status annotation appears on the LCD, the A1 CPU is suspected. Continue with the *Digital Control Troubleshooting* chapter.

■ Svc (Status annotation)

If the following error message appears on the LCD, continue with the *INTERNAL TESTS* FAILURE TROUBLESHOOTING in this chapter.

POWER ON TEST FAILED

These error messages indicate that one of power-on self tests fails. If an other error message appears, refer to the *Error Messages* in Messages.

If the response of front panel, HP-IB commands, or built-in FDD is unexpected, continue with the *Digital Control Troubleshooting* chapter.

INSPECT THE REAR PANEL FEATURE

If the analyzer is operating unexpectedly after these checks are verified, continue with Digital Control Troubleshooting chapter.

Check the HP-IB Interface

If the unexpected operations appear when controlling the analyzer with an external controller, perform the following checks to verify the problem is not with the controller.

- HP-IB interface hardware must be installed in the controller, see the manuals of the controller and the BASIC system.
- I/O and HP-IB binaries loaded, see the manuals of the BASIC system.
- Select code, see the manuals of the BASIC system.
- HP-IB cables, see the manuals of the BASIC system.
- Programming syntax, see the manuals of the BASIC system.

Check the Parallel Interface

See the To Print section at the Chapter 8, Analyzing the Measurement Results, of the HP 4395A User's Guide, and make a hardcopy of the display.

Check the mini DIN Keyboard Connector

See the Connecting a Keyboard at the Chapter 1, Installation Guide, of the HP 4395A User's Guide.

Internal Tests Failure Troubleshooting

Check the Power-On Selftest

The analyzer performs the power-on selftest every time when the analyzer is turned on. In the power-on selftest, some built-in internal tests are executed sequentially. The first failed test indicates the most probable faulty assembly and you should be replaced.

If the power-on selftest fails and "POWER ON TEST FAILED" message is displayed, execute all internal tests to identify the first failed test. Refer to the following steps to execute all internal tests. Then refer to the Table 6-1 to know what assembly you should replace.

Execute All Internal Tests

If the power-on self test fails and "POWER ON TEST FAILED" message is displayed, you should execute the all internal tests and identify the first failed test. To execute all internal tests, you should specify test number as 0 in the HP 4395A service tests mode.

- a. Press (PRESET), (SYSTEM), SERVICE TESTS, (0), and (x1) to access the internal test 0: ALL INT.
- b. Press EXECUTE TEST to execute the ALL INT test.
- c. Wait until the test result, PASS or FAIL, is displayed.
- d. Press the (f), (I) keys to find the first occurrence of a FAIL message.

Execute the Individual Test

If you would like to perform the internal test individually, you should specify internal test number in the HP 4395A service tests mode.

- a. Press (PRESET), (SYSTEM), SERVICE TESTS. Pressing INTERNAL TESTS jumps to the first test internal test, test:0 ALL INT.
- b. Select the test using the RPG knob, (A), (D) keys or ENTRY keys.
- c. Press EXECUTE TEST to execute the specifyed test.
- d. Wait until the test result, PASS or FAIL, is displayed.
- Note

Internal test 1, 2, 3, 7, 17, 18, 38 and 39 are not executed in the power-on selftest. You should perform these tests by specifying test number or by executing all internal tests.

Test	First Failed Test	Probable Faulty Assembly													
No.		A1	A20	A30	A32	A33	A40	A50	A51	A2	A3	A5	A7	A8	A9
1	A1 CPU	†††													
2	A1 Volatile Memory	†††													
3	A51 GSP								†††						
4	A2 12 V Supply		t				t	t		†††			t	t	
5	A2 Reference Monitor		t				t	t		†††			t	t	
6	A2 Board ID	†	t							†††					
7	A3 DAC Output Voltage		t				t	t			†††		†	†	
8	A3 +5 V Supply		t				t	t			†††		t	t	
9	A3 – 5 V Supply		t				t	t			†††		t	t	
10	A3 + 15 V Supply		t				t	t			†††		t	t	
11	A3 – 15 V Supply		t				t	t			†††		†	†	
12	A3 Board ID	†	†								†††				
13	A5 15 V Supply		†				t	t				t t t	†	t	
14	A5 +5 V Supply		t				t	†				†††	t	t	
15	A5 YTO Power Supply		t				t	t				†††	t	t	
16	A5 YTO Control Voltage - Reference						t	t				†††	t	t	
17	A5 YTO Control Voltage - Start						t	t				t t t	†	t	
18	A5 YTO Control Voltage - Span						t	t				t t t	†	†	
19	A5 Temprature Monitor						t	t				t † †	t	t	
20	A5 25 MHz Clock	†					t	t				t t t		†	
21	A5 Board ID	†	t									t t t			
22	A7 +5 VD Supply		t				t	t					t t t	†	
23	A7 +5 V Supply		t				t	t					t t t	†	
24	A7 -5 V Supply		t				t	t					t t t	†	
25	A7 + 12 V Supply		†				t	t					t t t	t	
26	A7 – 15 V Supply		†				t	t					t t t	t	
27	A7 25 MHz Local Level		t				t	t					t t t	†	
28	A7 25 MHz Freq.	†					t	t					t t t		
29	A7 Board ID	†	†										t t t		
30	A8 ADC Check						t	t					†	†††	
31	A8 + 24 V Supply						t	t					t	††	
32	A8 +5 VD Supply						t	t					t	††	
33	A8 ±5 V Supply						t	t					t	††	
34	$A8 \pm 15$ V Supply						t	t					t	††	
35	A8 + 3.3 V Supply						t	t					†	††	
36	A8 ADC Reference Voltage						t	t					†	††	
37	A8 25 MHz Clock	t					t	t					††	††	
38	A8 Decimated Clock	†					t	t					††	††	
39	A8 Dither		t				t	t					†	††	
40	A8 Board ID	t	t											†††	
41	A9 +5 V Supply		t				t	t					t	t	††
42	A9 - 5 V Supply		t				t	t					t	t	††
43	A9 + 15 V Supply		t				t	t					t	t	††
44	A9 – 15 V Supply		t				t	t					t	t	††
45	A9 Board ID	t	t												<u>†</u> ††

Table 6-1. Troubleshooting Information for Internal Test Failure

- $\dagger\dagger\dagger:$ Most suspicious assembly and should be checked repalced.
- ††: Suspicious assembly and should be checked.
- †: There is some possibility of a fault.

External Tests Failure Troubleshooting

If you can't identify the faulty assembly using the internal tests, you can execute the external tests in addition to the internal tests. These external tests are also built-in tests and 10 tests are available in the HP 4395A service mode. Refer to the Table 6-2 to know which assembly is probable faulty and should be replaced.

To execute the external tests, perform the following procedures.

- a. Press (PRESET), (SYSTEM), SERVICE TESTS. Pressing EXTERNAL TESTS jumps to the first test external test, test:50 FRONT PANEL DIAG.
- b. Select the test using the RPG knob, (1), (1) keys or ENTRY keys.
- ^c. Press EXECUTE TEST to execute the specifyed test.
- d. Wait until the test result, PASS or FAIL, is displayed.

Table 6-2. Troubleshooting Information for External Test Failure

Test	Failed Test	Probable Faulty Assembly													
No.		Al	A20	A30	A32	A33	A40	A5 0	A5 1	A2	A3	A5	A7	A8	A9
50	FRONT PANEL DIAG	††					t		t						
51	DSK DR FAULT ISOL'N	††					t		t						
52	24 BIT I/O PORT	††					t		t						
53	NA SRC TO R						t		t		††	t	††	††	††
54	NA SRC TO A						t		t		††	t	††	††	††
55	NA AR RATIO						t		t		††	t	††	††	††
56	NA SRC TO B						t		t		††	t	††	††	††
57	NA BR RATIO						t		t		††	t	††	††	††
58	SA LEVEL						t		t			t	††	††	††
59	SA PHASE NOISE						t		t			<u>††</u>	†	†	1

††: Most suspicious assembly and should be replaced.

†: Suspicious assembly and should be checked.

Performance Tests Failure Troubleshooting

Perform the following procedure sequentially when any of performance tests fail.

Perform Adjustments and Correction Constants

Table 6-3 gives the recommended adjustments and correction constants when a performance test fails. If a performance test fails, you should perform the corresponding adjustments or correction constants function as shown in Table 6-3. If the tests still fail, refer to Table 6-4 and replace the assembly.

Note that this table lists some typical cases. In a few cases, other assembly may actually be faulty.

Test	Failed Test					Adju	stmen	t Test 1	Numbe	r						
No.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Frequency Accuracy Test	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			\checkmark	
2	Source Level Accuracy/Flatness Test	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			\checkmark	
3	Non-sweep Linearity Test	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			\checkmark	
4	Power Sweep Linearity Test	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			\checkmark	
5	Harmonics/Non-harmonic Test	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			\checkmark	
6	DC Bias Test															\checkmark
7	Receiver Noise Level Test	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
8	Input Crosstalk Test				\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		
9	Input Impedance Test				\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		
10	Absolute Amplitude Accuracy Test	\checkmark		\checkmark			\checkmark									
11	Magnitude Ratio/Phase Dynamic Accuracy Test	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
12	Magnitude Ratio/Phase Frequency Response Test	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
13	Displayed Average Noise Level Test	\checkmark		\checkmark			\checkmark									
14	Amplitude Fidelity Test	\checkmark					\checkmark									
15	Input Attenuator Switching Uncertainty Test						\checkmark	\checkmark					\checkmark	\checkmark		
16	Noise Sidebands Test	\checkmark		\checkmark					\checkmark	\checkmark	\checkmark	\checkmark				
17	Amplitude Accuracy/Frequency Response Test	\checkmark					\checkmark									
18	Second Harmonic Distortion Test			\checkmark			\checkmark	\checkmark					\checkmark	\checkmark		
19	Third Order Intermodulation Distortion Test	\checkmark		\checkmark			\checkmark									
20	Other Spurious Test	\checkmark		\checkmark			\checkmark									
21	Residual Response Test	\checkmark		\checkmark			\checkmark		\checkmark							

 Table 6-3. Troubleshooting Information for Performance Test Failure 1

Test	Failed Test	Probable Faulty Assembly													
No.		Al	A20	A30	A32	A33	A40	A5 0	A5 1	A2	A3	A5	A7	A8	A9
1	Frequency Accuracy Test	t	t				††	††			t t t	††	††		
2	Source Level Accuracy/Flatness Test	t	t				††	††			†††	††	††		
3	Non-sweep Linearity Test	t	†				††	††			t††	††	††		
4	Power Sweep Linearity Test	†	†				††	††			ttt	††	††		
5	Harmonics/Non-harmonic Test	t	†				††	††			t††	††	††		
6	DC Bias Test	t	†				††			†††					
7	Receiver Noise Level Test	t	†				††	††				†	††	††	††
8	Input Crosstalk Test	t	†				††	††			t††	t			t††
9	Input Impedance Test										ttt				t††
10	Absolute Amplitude Accuracy Test	†	t				††	††				†††	†††	†††	†††
11	Magnitude Ratio/Phase Dynamic Accuracy Test	†	t				††	††				t	††	†††	††
12	Magnitude Ratio/Phase Frequency Response Test	†	t				††	††				t	††	†††	††
13	Displayed Average Noise Level Test	†	t				††	††				††	†††	†††	†††
14	Amplitude Fidelity Test	t	t				††	††				††	t t t	t t t	†††
15	Input Attenuator Switching Uncertainty Test	†	t				††	††				t	t	t	†††
16	Noise Sidebands Test	t	t				††	††				t t t	t t t	t t t	
17	Amplitude Accuracy/Frequency Response Test	†	t				††	††				††	†††	†††	†††
18	Second Harmonic Distortion Test	t	t				††	††				††			<u>†</u> ††
19	Third Order Intermodulation Distortion Test	t	t				††	††				††	†††	†††	††
20	Other Spurious Test	t	t				††	††				††	†††	†††	††
21	Residual Response Test	t	t				<u>†</u> †	††				<u>+</u> ++	<u>†</u> ††	<u>†</u> †	††

Table 6-4. Troubleshooting Information for Performance Test Failure 2

†††: Most suspicious assembly and should be replaced.

††: Suspicious assembly and should be checked.

†: There is some possibility of a fault.

Power Supply Troubleshooting

INTRODUCTION

Use this procedure only if you have read *Troubleshooting*, and you believe the problem is in the power supply. The procedure is designed to let you identify the bad assembly within the power supply functional group in the shortest possible time.

The power supply functional group consists of:

- A40 Pre-Regulator
- A50 DC-DC Converter

All assemblies, however, are related to the power supply functional group because power is supplied to each assembly. Figure 7-1 shows all power lines in simplified block diagram form.

If an assembly is replaced, see *Post Repair Procedures* in the *Post Repair Procedures* chapter in this manual. It tells what additional tests or adjustments need to be done after replacing any assembly.

CCS07016

Figure 7-1. Power Supply Lines Simplified Block Diagram

START HERE

1. Check the Fan is Rotating

Look at the fan on the rear panel. Check the fan is rotating.

- If the fan is not rotating, continue with the *FIND OUT WHY THE FAN IS NOT ROTATING* in this chapter.
- If the fan is rotating, continue with the next *Check the A50 SHUTDOWN LED*.

2. Check the A50 SHUTDOWN LED

There is a LED, SHUTDOWN LED, on the A50 DC-DC Converter. Perform the following procedure to check it. The SHUTDOWN LED is described in the next A50 SHUTDOWN LED .

- a. Turn the analyzer power off.
- b. Remove the analyzer's top cover and shield plate.
- c. Turn the analyzer power on.
- d. Look at the A50 SHUTDOWN LED. The LED is normally on. The SHUTDOWN LED location on A50 DC-DC Converter is shown in Figure 7-2.
 - If the A50 SHUTDOWN LED is off, continue with the *FIND OUT WHY THE A50* SHUTDOWN LED IS OFF in this chapter.
 - If the A50 SHUTDOWN LED is on, continue with the *Check the A1 +5 VD LED* in this procedure.

Figure 7-2. A50 SHUTDOWN LED Location

A 50 Shutdown LED

The A50 SHUTDOWN LED turning off indicates some of A50 power supply is shut down by the A50 shutdown circuitry.

There are two FAN conditions, rotating and not rotating when the SHUTDOWN LED turns off. When the fan is rotating, the shutdown circuit is probably activated by the over current

condition on the power lines in the A50 DC-DC Convereter. In this condition, though the A50 power supplies, +24 V, +5 VD, +18 V, +7.8 V, -7.8 V, and -18 V are shut down, the Fan Power +24 V is still supplied to the fan. When the fan is not rotating, the shutdown circuit is probably activated by the FAN LOCK signal missing.

NoteOnce the A50 shutdown circuit is activated, the only way to reset the circuit is
turning the analyzer power off. Wait a minute after turning the analyzer off.
Then turn it on.

3. Check the A1 +5 VD LED

- a. Remove the analyzer's bottom cover.
- b. Turn the analyzer power on.
- c. Look at the +5 VD LED. The +5 VD LED location on A1 CPU is shown in Figure 7-3. The LED is normally on.
 - If the +5 VD LED is off, continue with the *FIND OUT WHY THE A1 +5 VD LED IS NOT ON STEADILY* in this chapter.
 - If the +5 VD LED is on, the +5 VD power supply is verified with 95% confidence level. If you want to confirm the last 5% uncertainty, perform steps in the next *Measure the A1 +5 VD Voltage*.

Figure 7-3. A1 +5 VD LED Location

Measure the A1 + 5 VD Voltage

Measure the DC voltage on a test point A1TP8 (+5 VD) using a voltmeter. Check the voltmeter reading is within 4.59 V to 5.61 V.

- If the voltmeter reading is out of the limits, continue with the FIND OUT WHY THE A1 LED IS NOT ON STEADILY.
- If the voltmeter reading is within the limits, continue with the next step.

FIND OUT WHY THE FAN IS NOT ROTATING

If the fan is not rotating, the problem may be in the A40 pre-regulator, the A50 DC-DC Converter or the fan.

1. Check the Line Voltage, Selector Switch Setting, and Fuse

Check the main power line cord, line fuse, and actual line voltage to see that they are all correct. Figure 7-4 shows how to remove the line fuse, using a small flat-bladed screwdriver to pry off the fuse holder. For more information about the line cord and line fuse, see the *Power Requirements* in Appendix C.

Figure 7-4. Removing Line Fuse

2. Check the A50 SHUTDOWN LED

When the fan stops, the A50 SHUTDOWN LED is off. The fan generates a FAN LOCK signal. The signal is fed into the FAN LOCK SENSE circuit in the A50 DC-DC converter. If the FAN stops, the FAN LOCK signal is missing. Then the FAN LOCK SENSE circuit activates the A50 shutdown circuitry, resulting the SHUTDOWN LED turned off.

Perform the following procedure to check the A50 SHUTDOWN LED on.

- a. Remove the analyzer's top cover and shield plate.
- b. Turn the analyzer power on.
- c. Look at the A50 SHUTDOWN LED. The LED location is shown in Figure 7-2.
 - If the SHUTDOWN LED is on, replace the A50 DC-DC Converter.
 - If the SHUTDOWN LED is off, continue with the *TROUBLESHOOT THE FAN AND THE* A50 DC-DC Converter in this chapter.

FIND OUT WHY THE A50 SHUTDOWN LED IS OFF

Use this procedure when the fan is rotating. If the fan is not rotating, see the *FIND OUT WHY THE FAN IS NOT ROTATING*.

If the fan is rotating and the A50 SHUTDOWN LED is off, the problem may be in the A50 DC-DC Converter and any of assemblies obtaining the power from +5 VD supply and the higher power supplies.

1. Disconnect the Cable from the A1J10

Turn the analyzer power off. Disconnect the cable from A1J10. Turn the analyzer power on.

- If the A50 SHUTDOWN LED goes on, replace the A1 CPU.
- If the A50 SHUTDOWN LED is still off, the A1 CPU is verified. Turn the analyzer power off and reconnect the cable to the A1J10. Continue with the next *Remove Assemblies*.

2. Remove Assemblies

- a. Turn the analyzer power off.
- b. Remove the assemblies, A2, A3, A5, A7, A8 and A51.
- c. Turn the analyzer power on.
 - If the A50 SHUTDOWN LED is still off, inspect the A20 motherboard for soldering bridges and shorted traces on the FAN POWER and the FAN LOCK signal paths.
 - If the A50 SHUTDOWN LED goes on, the A20 motherboard are verified. Continue with the next step.
- d. Reinstall each assembly one at a time. Turn the analyzer power on after each is installed. The assembly that causes the A50 SHUTDOWN LED to go off is the most probable faulty assembly. Replace the assembly. If no assembly makes the A50 SHUTDOWN LED off, continue with the next *Disconnect the Cable from the A9J2*.

3. Disconnect the Cable from the A9J2

Turn the analyzer power off and reinstall all of assemblies. Disconnect the cable from the A9J2 and turn the analyzer power on. The location of the A9J2 is shown in the Figure 7-5.

■ If the A50 SHUTDOWN LED goes off, the A9 is faulty. Replace the A9 assembly.

CCS07022

Figure 7-5. A1 CPU Connector Locations

FIND OUT WHY THE A1 + 5 VD LED IS NOT ON STEADILY

If the +5 VD LED is not on steadily, the +5 VD line voltage is missing or is not enough to power the analyzer. The problem may be in the A40 pre-regulator, the A50 DC-DC Converter, the A1 CPU, and any of assemblies obtaining the power from +5 VD supply.

1. Check the A40 Pre-Regulator

- a. Turn the analyzer power off.
- b. Disconnect a cable form the A50J1. The A50J1 location is shown in Figure 7-6.
- c. Turn the analyzer power on.
- d. Check the voltage between the pin 1 and pin 6(GND) of the cable within +22.0 V to +27.0 V using a voltmeter with a small probe.
 - If the voltmeter reading is out of the limits, replace the A40 pre-regulator.
 - If the voltmeter reading is within the limits, the A40 pre-regulator is verified. Turn the analyzer power off and reconnect the cable to the A50J1. Then continue with the next *Check the A50 DC-DC Converter* section.

Figure 7-6. A40J1 Output Voltage

2. Check the A50 DC-DC Converter

- a. Turn the analyzer power off.
- b. Disconnect a cable form the A50J3. The A50J3 location is shown in Figure 7-6.
- c. Turn the analyzer power on.
- d. Check the voltage between the A50J3 pin 1 and pin 6(GND) within +4.59 V to +5.61 V using a voltmeter with a small probe.
 - If the voltmeter reading is out of the limits, replace the A50 DC-DC Converter.

• If the voltmeter reading is within the limits, the A50 + 5 VD power supply is verified. Turn the analyzer power off and reconnect the cable to the A50J3. Then continue with the next *Disconnect Cables on the A1 CPU* section.

3. Disconnect Cables on the A1 CPU

- a. Turn the analyzer power off.
- b. Disconnect cables from the A1 CPU's connectors, J10, J11, J12, J13, J14, J15, and J17. The connector locations are shown in Figure 7-7

Figure 7-7. A1 CPU Connector Locations

- c. Turn the analyzer power on. Look at the A1 ± 5 VD LED.
 - If the LED is still off, the A1 CPU is probably faulty. Replace the A1 CPU.
 - If the LED goes on, the A1 CPU is verified. Continue with the next step.
- d. Turn the analyzer power off. Reconnect the cable to the A1J10. Turn the analyzer power on. Look at the A1 +5 VD LED.
 - If the +5 VD LED goes out, the problem may be in the analog assemblies. Continue with the next *Remove Assemblies*.
 - If the + 5 VD LED is still on, continue with the next step.
- e. Reconnect one of the disconnected cables to its connector at a time. Turn the analyzer power on after each cable is connected. The assembly related with the cable turning the ± 5 VD LED off is probably faulty. Replace the assembly.

4. Remove Assemblies

- a. Turn the analyzer power off. Remove the assemblies, A2, A3, A5, A7, A8 and A51.
- b. Turn the analyzer power on. Look at the A1 +5 VD LED.
 - If the LED is still off, inspect the A20 motherboard.
 - If the LED goes on, the A20 motherboard are verified. Continue with the next step.
- c. Reinstall one of the removed assemblies at a time. Turn the analyzer power on after each is installed. The assembly that turns the A1 +5 VD LED on is the most probable faulty assembly. Replace the assembly.

5. Remove Assemblies

- a. Turn the analyzer power off. Remove the assemblies, A2, A3, A5, A7, A8, A51 and A9J2.
- b. Turn the analyzer power on. Look at the A1 +5 VD LED.
 - If the LED is still off, inspect the A20 motherboard.
 - If the LED goes on, the A20 motherboard are verified. Continue with the next step.
- c. Reinstall one of the removed assemblies at a time. Turn the analyzer power on after each is installed. The assembly that turns the A1 +5 VD LED on is the most probable faulty assembly. Replace the assembly.

TROUBLESHOOT THE FAN AND THE A50 DC-DC CONVERTER

Perform the following procedure to troubleshoot the fan and the A50 DC-DC Converter.

1. Troubleshoot the Fan

- a. Turn the analyzer power off.
- b. Disassemble the rear panel.
- c. Remove the fan power cable from the Motherboard A20J18.
- d. Connect a DC power supply, a 10 k Ω resistance, and a oscilloscope to the fan power cable using appropriate wires as shown in Figure 7-8.

Figure 7-8. Fan Troubleshooting Setup

- e. Turn the DC power supply on. Adjust the output voltage to +24 V.
- f. Check the fan is rotating. Check the FAN LOCK signal is as shown in Figure 7-8.
 - If the fan is not rotating or the FAN LOCK signal is unexpected, replace the fan.
 - If these are good, the fan is verified.
 - Reconnect the fan power cable to the Motherboard A20J18.

2. Troubleshoot the A50 DC-DC Converter

Figure 7-9. A50 DC-DC Converter Troubleshooting Setup

- a. Turn the analyzer power off.
- b. Disconnect cables from the A50J3. The connector locations are shown in Figure 7-9
- c. Connect the pulse generator to the A50J2 as shown in Figure 7-9. The pulse generator is used to feed the substitute of the FAN LOCK signal to the A50 DC-DC converter. This purposes not to shut down the A50 DC-DC converter.
- d. Turn the pulse generator power on. Set the controls as follows:

Wave Form	Square
Frequency	Approximately 30 Hz
Amplitude	+7.8 V

- e. Connect a resister (appoximately 680ohms, 125mW) between the A50J2 pin 5 (+7.8 V) and pin 4(GND) as shown in Figure 7-9.
- f. Turn the analyzer power on.
- g. Measure all power supply voltages on A50J2 and A50J3 using a voltmeter with a small probe. See the Table 7-1 for power lines, connector pins, and limits.

Supply	Connector Pin	GND Connector Pin	Range
+5 VD	A50J3 Pin 1, 2, and 3	A50J3 Pin 4, 5, and 6	+4.6 V to $+5.7$ V
-18 V	A50J2 Pin 1	A50J2 Pin 3 and 4	-14.0 V to -27.0 V
+18 V	A50J2 Pin 2	A50J2 Pin 3 and 4	14.0 V to 27.0 V
+7.8 V	A50J2 Pin 5	A50J2 Pin 3 and 4	7.0 V to 9.0 V
-7.8 V	A50J2 Pin 6	A50J2 Pin 3 and 4	-6.0 V to -12.0 V
+24 V	A50J2 Pin 8	A50J2 Pin 10	22.0 V to 27.0 V

Table 7-1. A50 Power Supplies

■ If any of the power supply voltages are out of the limits, replace the A50 DC-DC Converter.

■ If all A50 power supply voltages are good, the A50 pre-regulator is verified.

Digital Control Troubleshooting

INTRODUCTION

Use this procedure only if you have followed the procedures in the *Troubleshooting* chapter, and believe the problem to be in the digital control group. This procedure is designed to let you identify the bad assembly within the digital control group in the shortest possible time. Whenever an assembly is replaced in this procedure, refer to the *Table of Related Service Procedures* in the *Post-Repair Procedures* chapter in this manual.

Figure 8-1 shows the digital control group in simplified block diagram form. The following assemblies make up the digital control group:

- A1 CPU
- A30 Front Keyboard
- A32 I-BASIC Interface
- A33 EXT I/O Interface
- A51 GSP
- A52 LCD (Liquid Crystal Display)
- A53 FDD

Figure 8-1. Digital Control Group Simplified Block Diagram

A1 CPU Replacement

When you replace a faulty A1 CPU with a new one, remove the EEPROM from the faulty A1 and mount the EEPROM on the replacement A1.

In the EEPROM, the correction constants data is stored after performing the Adjustment and Correction Constants procedures described in the chapter 5. The data may be valid for the new A1 CPU.

Figure 8-2. A1 EEPROM Location

FIRMWARE INSTALLATION

No firmware is installed in new A1 CPU assembly. When you replace a faulty A1 CPU with a new one, perform the following steps to install the firmware into the A1 CPU.

Ordering the Firmware Diskette

A firmware diskette (3.5 inch) that contains the analyzer's firmware is required for the firmware installation. If you do not have a firmware diskette, you must order one. For ordering information, contact your nearest Hewlett-Packard service center and provide the revision of the analyzer's firmware. The part number of the firmware diskette depends on the firmware revision. The firmware revision of the analyzer is indicated on the revision label attached on the rear panel as shown in Figure 8-3.

Figure 8-3. Firmware Revision Label

Installing the Firmware

Perform the following procedure to install the firmware into the analyzer.

- 1. Turn the analyzer power off.
- 2. Press both the (Start) and (Preset) keys. While pressing both keys, turn the analyzer power on.
- 3. Wait until the bootloader menu appears on the LCD as shown in Figure 8-4.

Figure 8-4. Bootloader Menu Display

- 4. Insert the firmware diskette into the floppy disk drive on the front panel.
- 5. Press SYSTEM UPDATE and CONTINUE. The analyzer displays "Loading From Disk" and starts the firmware installation.
- 6. Wait until the analyzer displays "Update Complete."
- 7. Press **REBOOT** or turn the analyzer power off and on. The analyzer starts the operation using the installed firmware.
- 8. Verify that no error message is displayed and that the revision displayed is that of the revision label.
 - In case of unexpected results, inspect the firmware diskette for any damage. Clean the built-in FDD and retry the procedure.

START HERE

1. Check the Power-On Sequence

See the INSPECT THE POWER-ON SEQUENCE in the chapter 6 for checking the Power-On Sequence.

Check the Ch 1 and Ch 2 Operations

a. Press (Ch 1) and (Ch 2) alternately.

b. Check that the two LEDs alternately light each time you press the keys.

- If both LEDs would not light, continue with the next *Check the A1 Eight LEDs*.
- If the two LEDs do not alternately light (the <u>Ch 1</u> LED is still lit even if pressing the <u>Ch 2</u>), the A1 CPU is probably faulty. Replace the A1 CPU.
- If the two LEDs alternately light each time you press the keys, the A1 CPU is probably working properly. Continue with the *TROUBLESHOOT THE A51 GSP AND A52 LCD* in this chapter.

Check the A1 Eight LEDs

There are eight LEDs on the A1 CPU. These LEDs should be in the pattern shown in Figure 8-5 at the end of the power on sequence. Perform the following procedure to check the A1 eight LEDs.

- a. Turn the analyzer turn off.
- b. Remove the bottom cover of the analyzer.
- c. Turn the analyzer power on.
- d. Look at the A1 eight LEDs. Some of the LEDs light during the power on sequence. At the end of the power on sequence, the LEDs should stay in the pattern shown in Figure 8-5. If the LEDs stay in the other pattern, the A1 CPU is probably faulty. Replace the A1 CPU.

CCS08014

Figure 8-5. A1 Eight LEDs' Pattern

2. Check Error Messages

Turn the analyzer power on. Check no error message appears on the LCD,

- If no error message is displayed, continue with the *Check A1 DRAM and Flash Memory* in this *START HERE*.
- If one of error messages listed below is displayed, follow the instruction described below. For the other message, see the *Error Messages* in Messages.

Error Messages	Instruction
POWER ON TEST FAILED	This indicates the power on selftest failed. Continue with the next <i>Check Power On Selftest</i> in the chapter 6.
EEPROM CHECK SUM ERROR	This indicates that the correction constants stored in the EEPROM on the A1 CPU are invalid or the EEPROM is faulty. Rewrite all correction constants into the EEPROM. For the detailed procedure, See the <i>Adjustments</i> chapter in this manual. If the rewriting is not successfully performed, replace the EEPROM and then rewrite the all correction constants into the new EEPROM.
Svc (Status Annotation)	This indicates that the correction constants stored in the EEPROM on the A1 CPU are invalid or the EEPROM is faulty. See the instruction of the EEPROM CHECK SUM ERROR message.
POWER FAILED ON	One or some of A2 power supplies, $+15$ V, $+8.5$ V, $+5.3$ V, $+5$ V, -5 V, -15 V are displayed in $ -$ of the message. The displayed power supplies are shut down due to the trouble on the A2 post-regulator. Continue with the <i>Power Supply Troubleshooting</i> chapter.
POWER FAILED ON PostRegHot	This indicates A2 power supplies, $+15$ V, $+8.5$ V, $+5.3$ V, $+5$ V, -5 V, -15 V, are shut down due to too hot heat sink on A2 post-regulator. Cool down the analyzer for about 30 minutes. Then turn the analyzer power on. If this message is still displayed, replace A2 post-regulator.
PHASE LOCK LOOP UNLOCKED	This indicates one or some of PLLs (phase lock loops) in the oscillators is not working properly. These oscillators are checked in the internal test 0: ALL INT. Continue with the next <i>Check the Power On Selftest</i> in where the ALL INT test is executed.

3. Check the A1 DRAM and Flash Memory

The A1 DRAM and flash memory are tested on the sequence to access the bootloader menu.

Perform the following procedure to verify the A1 DRAM and flash memory.

- a. Turn the analyzer power off.
- b. Push two keys (Start) and (Preset). With keeping the two keys pushed down, turn the analyzer power on.
- c. Wait for the display shown in Figure 8-6 appears on the LCD.
- d. Check no error message displayed on the LCD.
 - If no error message is displayed, the A1 DRAM and flash memories are verified. Continue with the next *Check the A1 Volatile Memory*.

■ If an error message is displayed or the display shown in Figure 8-6 does not appear, the A1 CPU is probably faulty. Replace the A1 CPU.

Figure 8-6. Bootloader Display

4. Check the A1 Volatile Memory

- a. Turn the analyzer power on.
- b. Press (System), SERVICE MENU, TESTS, (2), (x1), EXECUTE TEST to run the internal test 2: A1 VOLATILE MEMORY.
- c. Check no error message displayed. At the end of this test, the analyzer returns the control settings to the default values (power on reset). If the test fails, the analyzer displays an error messages for a few second before returning to the defaults.
 - If no error message is displayed, the A1 volatile memories are verified. Continue with the next *Check the A30 Front Keyboard*.
 - If one of error messages listed below is displayed, the A1 CPU is faulty. Replace the A1 CPU.

CPU INTERNAL SRAM R/W ERROR DSP SRAM R/W ERROR DUAL PORT SRAM R/W ERROR CPU BACKUP SRAM R/W ERROR

5. Check the A30 Front Keyboard

The A30 front keyboard can be checked using the external test 50: FRONT PANEL DIAG.

- a. Press (PRESET), (SYSTEM), SERVICE MENU, TESTS, (5), (0), (x1), EXECUTE TEST to run the external test 17.
- b. Press all of the front panel keys. The pressed abbreviated key name should be displayed at a key pressed. When you rotate the RPG knob, the RPG tuned direction (CW or CCW) and its response speed (SLOW, MID, FAST) should be displayed. So you can check every key on the A30 Keyboard except for (PRESET). (If you want to exit this test, press (PRESET).)
 - If one or more keys seems to be defective, replace the A30 front keyboard.
 - If all keys seem to be good, the A30 front keyboard is verified. Continue with the next *Check the A53 FDD*.

6. Check the A53 FDD

The A53 FDD (Flexible Disk Drive) can be checked using the external test 51: DSK DR FALUT ISOL'N.

- a. Press (PRESET), (SYSTEM), SERVICE MENU, TESTS, (5), (1), (x1), EXECUTE TEST to run the external test 51.
- b. As the analyzer instructs, insert a flexible disk into FDD. Use a formatted but blank flexible disk, otherwise the data on the disk will be overwritten by this test. Then press CONT.
- c. Check the test result, PASS or FAIL, that is displayed at the end of the test.
 - If this test fails, replace the A53 FDD.

7. Check the A32 I-BASIC Interface and the mini DIN Keyboard

The mini DIN external keyboard is connected to the A32 I-BASIC I/O connector, and is used to develop programs.

If the external keyboard of the I-Basic is not working, perform the following procedure to verify the keyboard.

Press (PRESET), (SYSTEM), SERVICE MENU, TESTS, (1), (x1), EXECUTE TEST to run the internal test 1: A1 CPU.

- If the internal test 1 passes, the HP driver circuit on the A1 CPU is probably working. Inspect cables between the external keyboard and the A1 CPU through the A32 I-BASIC interface. If the cable is good, replace the external keyboard.
- If the internal test 1 fails, replace the A1 CPU.

8. Check the A33 EXT I/O Interface

The A33 EXT I/O interface is used to control the external instrument like the printer/scanner/handler.

If the external instrument is not working, perform the following procedure to verify the EXT I/O interface.

Press (PRESET), (SYSTEM), SERVICE MENU, TESTS, (5), (2), (x1), EXECUTE TEST to run the internal test 52: 24 BIT I/O PORT.

- If the internal test 52 passes, the A33 EXT I/O interface board is probably working. Inspect cables between the A1 CPU and the A33 EXT I/O interface. If the cable is good, check the external instrument.
- If the internal test 52 fails, replace the A33 EXT I/O interface board.

TROUBLESHOOT THE A51 GSP and A52 LCD

Use this procedure when the LCD(Liquid Crystal Display) is unacceptable, or not being bright.

1. Run the Internal Test 3: A51 GSP.

The A51 GSP can be checked using the internal test 3: A51 GSP, if the test fails, the Ch 1 and Ch 2 LEDs blink several time and a few beeps sound at the end of the test. Then the analyzer returns the control settings to the power-on default setting values.

- a. Press (PRESET), (SYSTEM), SERVICE MENU, TESTS, (3), (x1), EXECUTE TEST to run the internal test 3. When this test starts, (Ch 1) LED and (Ch 2) LED are turned off.
- b. Check the (Ch 1) and (Ch 2) LEDs and the beeps at the end of the test.
 - If no beep sound and the LEDs don't blink, the A51 GSP is probably working. Continue with the next *Check the Two LEDs on A51 GSP*.
 - If a beep sounds and the LEDs blink one time, the A51 GSP chip is faulty. Replace the A51 GSP.
 - If two beep sound and the LED blinks two time, the A51 GSP's DRAM is faulty. Replace the A51 GSP.
 - If three beep sound and the LED blinks three time, the A51 GSP's VRAM is faulty. Replace the A51 GSP.

2. Check the A52 LCD(Liquid Crystal Display)

The A52 LCD can be tested using the internal test 70 to 74.

- a. Press (PRESET), (SYSTEM), SERVICE MENU, TESTS, (7), (0), (x1), EXECUTE TEST CONTINUE to run the internal test 70, and run the other tests with the same manner.
- b. If any defects on the LCD, replace the LCD.
- c. If no correct patterns are displayed, check the A54 Inverter.

Accessories Troubleshooting

INTRODUCTION

Use these procedures only if you have followed the troubleshooting procedures and believe the problem is one of the accessories. Reconfigure the system as it is normally used and reconfirm the measurement problem. The measurement problem must be caused by a failure outside of the analyzer (that is, by one of the accessories).

Suspect the following typical problems:

- Operation Errors (for example, too high an input level in the spectrum measurement or improper calibration techniques in the network measurement.
- Faulty Accessories (for example, damaged adapters and RF cables in the spectrum and network measurements, a faulty power splitter, T/R test set, or S-Parameter Test Set in the network measurement).

This chapter consists of the following procedures. Perform these procedures sequentially.

VERIFY OPERATIONS INSPECT CONNECTORS INSPECT ACCESSORIES

VERIFY OPERATIONS

The measurement problem can be caused by improper operation. Confirm that all operations, connections and control settings, etc., are properly made during the measurement. For detailed information about proper operations, see the following manuals:

Operation Manual (p/n 04395-90000) Programming Manual (p/n 04395-90000)

Some examples of the typical operation errors are shown in the following paragraph.

Using 75 Ω Connectors with 50 Ω Connectors

Do not use 50 Ω connectors with 75 Ω connectors; their center conductors are different diameters. Using a 50 Ω male connector with a 75 Ω female connector will destroy the female connector.

Large Spurious Signals in the Spectrum Measurement

Large spurious signals around the fundamental signal can be caused by an input signal level that is higher than the reference level. Reducing the input signal level or setting the reference level higher can solve the spurious signal problem.

Odd Appearing Opens and Shorts in the Network Measurement

Opens and shorts can appear as short lines (rather than the expected points) on a Smith Chart. This is a result of some shorts and opens being offset. See the calibration kit manual to determine the offset. To verify the opens and shorts, see *Verify Shorts and Opens* in the *Inspect the Calibration Kit* procedure later in this chapter.

INSPECT THE CONNECTORS

Check the physical condition of the analyzer front-panel connectors, the calibration kit devices, and the test set connectors.

1. Inspect the front panel connectors on the analyzer. Check for bent or broken center pins and loose connector bulkheads.

Gage the connectors. (Gage kit is HP part number 85054-80011.) The specified front-panel type-N connector center pin **protrusion** is 0.201 to 0.207 inch.

If the center pin protrusion is incorrect, replace the entire connector assembly or A9 input multiplexer. See the *Replaceable Parts* chapter.

2. Inspect the calibration kit devices for bent or broken center conductors and other physical damage. Gage each device. The mechanical specifications for each device are given in the calibration kit manual.

If any calibration device is out of mechanical tolerance, replace the device.

3. Inspect and the gage test set and the power splitter connectors as described in steps 1 and 2.

INSPECT THE ACCESSORIES

Measurement problems can be caused by faulty accessories or faulty devices between the accessories and the analyzer. For example, the RF cables, the probe power connector, the TEST SET-I/O INTERCONNECT connector, and the interconnect cable can cause problems.

Some recommended accessories used with the analyzer are listed below.

- Test Sets (for example, the HP 85046A/B S Parameter Test Set).
- Active Probes (for example, the HP 41800A Active Probe).
- Preamplifier (for example, the HP 19855A Broadband Preamplifier).
- Power Splitter and Directional Bridges (for example, the HP 11850C/D Three-way Power Splitter).
- Calibration Kits (for example, the HP 85032B 50 Ω Type-N Calibration Kit).

Inspect the cables for any damage. Verify the probe power connector and the TEST SET-I/O INTERCONNECT connector (if they are used). Then inspect and verify the accessories that are used in the measurement.

This inspection consists of the following procedures:

Verify the Probe Power Inspect the Test Set Inspect the Calibration Kit

Verify the Probe Power

Perform the following procedure to verify the front-panel probe power connector:

- 1. Turn the analyzer power off.
- 2. Remove the power cable of the accessory from the probe power connector.
- 3. Turn the analyzer power on.
- 4. Measure the power voltages (+15 V and -12.6 V) at the probe power connector using a voltmeter with a small probe. See Figure 9-1 for the voltages and pins on the probe power connector.
 - If the voltages are within the limits, the analyzer's probe power is verified. Suspect a faulty accessory. Verify the accessory used in the measurement problem in accordance with its manual.
 - If the voltages are out of the limits, see the *Power Supply Troubleshooting* chapter in this manual to troubleshoot the power lines (+15 V(AUX) and -12.6 V) of the probe power.

CCS09001

Figure 9-1. Probe Power Connector Voltages

Inspect the Test Set

This procedure checks the operation of the RF transfer switch in the HP 85046A/B test set.

- 1. Turn the analyzer power off.
- 2. Connect the test set to the analyzer.
- 3. Turn the analyzer power on.
- 4. Press (PRESET), (Meas), ANALYZER TYPE, NETWORK ANALYZER, Refl: REV S22(B/R). Then check that the S22 S12 indicator LED lits.
- 5. Press Refl: FWD S11 (A/R). Check that the S11 S21 indicator LED lits.
 - If the LED operations are not expected, inspect the cable between the analyzer and the test set. If the cable seems good, verify the test set in accordance with its manual.
 - If the LED operations are correct, continue with this chapter unless a test set failure is suspected. To troubleshoot test set failures, see the test set manual.

Inspect the Calibration Kit

Inspect all of the terminations (load, open, and short) for any damage. If no damage is found, perform the following procedure to verify the short and open. If any damage is found, replace the termination with a good one.

Verify Shorts and Opens

Substitute a known good short and open of the same connector type as the terminations in question. If the devices are not from a standard calibration kit, see *Modifying Calibration Kits* in the *Function Reference* to use the MODIFY [CAL KIT] function. Set aside the short and open that could be causing the problem.

1. Perform an S11 1-port calibration on a port using the good short and open. Then press (Format), SMITH CHART to view the devices in Smith chart format.

2. Connect the good short to the calibrated port. Press (Scale Ref), ELEC DELAY MENU, ELECTRICAL DELAY and turn the RPG to enter enough electrical delay so that the trace appears as a dot at the left side of the circle.

Replace the good short with the questionable short at the port. The trace of the questionable short should appear very similar to the known good short.

3. Connect the good open to the calibrated port. Press (Scale Ref), ELEC DELAY MENU, ELECTRICAL DELAY and turn the RPG to enter enough electrical delay so that the trace appears as a dot at the right side of the circle.

Replace the good open with the questionable open at the port. The trace of the questionable open should appear very similar to the known good open.

Replaceable Parts

Introduction

This chapter lists the analyzer's replaceable parts. How to order the parts is also described.

Ordering Information

To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with a check digit), indicate the quantity required, and address the order to the nearest Hewlett-Packard office. The check digit will ensure accurate and timely processing of the order.

To order a part not listed in the replaceable parts table, include the instrument model number, the description and function of the part, and the quantity of parts required. Address the order to the nearest Hewlett-Packard office.

Direct Mail Order System

Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using this system are:

- 1. Direct ordering and shipment from the Hewlett-Packard Parts Center in Mountain View, California.
- 2. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local Hewlett-Packard office when the orders require billing and invoicing).
- 3. Prepaid transportation (there is a small handling charge for each order).
- 4. No invoices.
- To provide these advantages, a check or money order must accompany each order.

Mail order forms and specific ordering information are available through your local Hewlett-Packard office, addresses and phone numbers are located at the back of this manual.

Exchange Assemblies

Under the rebuilt-exchange assembly program, certain factory-repaired and tested assemblies are available on a trade-in basis. These assemblies are offered at lower cost than a new assembly while meeting all of the factory specifications required of a new assembly.

Replaceable Parts List

Replaceable parts tables list the following information for each part.

- 1 Hewlett-Packard part number.
- 2 Part number check digit (CD).
- 3 Part quantity as shown in the corresponding figure. There may or may not be more of the same part located elsewhere in the instrument.
- 4 Part description, using abbreviations (see Table 10-2).
- 5 A typical manufacturer of the part in a five-digit code (see Table 10-1).
- 6 The manufacturer's part number.

Mfr #	Name	Location	Zipcode
00779	AMP INC	HARRISBURG PA US	17111
06369	HIROSE ELECTRIC CO	JP	
06691	HOUSE OF METRICS LTD	SPRING VALLEY NY US	10977
08747	KITAGAWA KOGYO	ТОКҮО ЈР	
09635	TAJIMI MUSEN	ТОКҮО ЈР	
10572	XICOR INC	MILPITAS CA	
12085	SCHLEGEL CORP	ROCHESTER NY US	14692
13160	TEAC OF AMERICA INC	MONTEBELLO CA US	90640
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO CA US	94304
28520	HEYCO MOLDED PRODUCTS	KENTWORTH NJ US	07033
73734	FEDERAL SCREW PRODUCTS CO	CHICAGO IL US	60618
76381	3M CO	ST PAUL MN US	55144
78189	ILLINOIS TOOL WORKS INC SHAKEPROOF	ELGIN IL US	60126

Table 10-1. Manufacturers Code List

Table 10-2. List of Abbreviations

А	: amperes	N/C	: normally closed
A.F.C.	: automatic frequency control	NE	: neon
AMPL	: amplifier	NI PL	: nickel plate
B.F.O	: beat frequency oscillator	N/O	: normally open
BE CU	: beryllium copper	NPO	: negative positive zero (zero temperature coefficient)
BH	: binder head	NPN	: negative-positive-negative
BP	: bandpass	NRFR	: not recommended for field replacement
BRS	: brass	NSR	: not separately replaceable
BWO	: backward wave oscillator	OBD	: order by description
CCW	: counter-clockwise	OH	: oval head
CER	: ceramic	OX	: oxide
CMO	: cabinet mount only	P	: peak
COEF	: coefficient	PC	: printed circuit
COM	: common		: pico
COMP	: composition	p PH BRZ	: phosphor bronze
COMPL	-	PHL	: Philips
COMPL	: complete	PIV	
CONN	: connector	PNP	: peak inverse voltage
	: cadmium plate		: positive-negative-positive
CRT	: cathode-ray tube	P/O POLV	: part of
CW	: clockwise	POLY	: polystyrene
DE PC	: deposited carbon	PORC	: porcelain
DR	: drive	POS	: position(s)
ELECT	: electrolytic	POT	: potentiometer
ENCAP	: encapsulated	PP	: peak to peak
EXT	: external	PT	: point
F	: farads	PWV	: peak working voltage
f	: femto	RECT	: rectifier
FH	: flat head	RF	: radio frequency
FIL H	: fillister head	RH	: round head or right hand
FXD	: fixed	RMO	: rack mount only
G	: giga	RMS	: root-mean square
GE	germanium	RWV	: reverse working voltage
GL	: glass	S-B	: slow-blow
GRD	: ground(ed)	SCR	: screw
Н	: henries	SE	: selenium
HEX	: hexagonal	SECT	: $section(s)$
HG	: mercury	SEMICON	: semiconductor
HR	: hour(s)	SI	: silicon
Hz	: hertz	SIL	: silver
IF	: intermediate freq.	$^{\rm SL}$: slide
IMPG	: impregnated	\mathbf{SPG}	: spring
INCD	: incandescent	SPL	: special
INCL	: include(s)	SST	: stainless steel
INS	: insulation(ed)	\mathbf{SR}	: split ring
INT	: internal	STL	: steel
k	: kilo	ТА	: tantalum
LH	: left hand	TD	: time delay
LIN	: linear taper	TGL	: toggle
LK WASH	: lock washer	THD	: thread
LOG	: logarithmic taper	TI	: titanium
LPF	: low pass filter	TOL	: tolerance
m	: milli	TRIM	: trimmer
М	: meg	TWT	: traveling wave tube
MET FLM	: metal film	μ	: micro
MET OX	: metallic oxide	VAR	: variable
MFR	: manufacturer	VDCW	: dc working volts
MINAT	: miniature	W/	: with
MOM	: momentary	W	: watts
MTG	: mounting	WIV	: working inverse voltage
	5		
MY	: "mylar"	WW	: wirewound

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
A2	E4970-66502	9	1	DC BIAS (Opt. 001)	28480	E4970-66502
A3	E4970-66503	0	1	TRACKING SOURCE	28480	E4970-66503
	E4970-69503		1	TRACKING SOURCE	28480	E4970-69503
				(rebuilt-exchange)		
A5	E4970-66505	2	1	LOCAL SYNTHESIZER	28480	E4970-66505
	E4970-69505			LOCAL SYNTHESIZER	28480	E4970-69505
				(rebuilt-exchange)		
A7	E4970-66507	4	1	FREQ. CONVERTER	28480	E4970-66507
	E4970-69507			FREQ. CONVERTER	28480	E4970-69507
				(rebuilt-exchange)		
A8	E4970-66508	5	1	DIGITAL IF	28480	E4970-66508
	E4970-69508			DIGITAL IF	28480	E4970-69508
				(rebuilt-exchange)		
A40	0950 - 3246	7	1	PRE-REGULATOR	28480	0950 - 3246
A50	E4970-66550	7	1	DC-DC CONVERTER	28480	E4970-66550
A51	E4970-66551	8	1	GSP	28480	E4970-66551

Table 10-3. Top View (Major Assemblies)

Figure 10-2. Bottom View (Major Assemblies)

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
A1	E4970-66501	8	1	CPU Board	28480	E4970-66501
A9	E4970-66509	6	1	INPUT MULTIPLEXER	28480	E4970-66509
	E4970-69509			INPUT MULTIPLEXER	28480	E4970-69509
				(rebuilt-exchange)		
A20	E4970-66520	1	1	MOTHER BOARD	28480	E4970-66520
A53	0950 - 3334	1	1	FDD	28480	0950-3334

Table 10-4. Bottom View (Major Assemblies)	Table	10-4.	Bottom	View	(Major	Assemblies)
--	-------	-------	--------	------	--------	-------------

Table 10	-5. Angle	Assembly	Parts	1/5
----------	-----------	----------	-------	-----

Ref		C	Qty.	Description	Mfr	Mfr Part
Desig	g. Number	D			Code	Number
1	E4970-01203	1	1	ANGLE B	28480	E4970-01203
2	1250-2312	3	1	ADPT-RF N-SMA	28480	1250-2312
3	2190-0104	0	1	WSHR-LK INTL T	28480	2190-0104
4	2950-0132	6	1	NUT-HEX-DUB-CHAM	28480	2950-0132

Table 10-6	Angle	Assembly	Parts	2/5
------------	-------	----------	-------	-----

Re	ef.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Des	sig.	Number	D			Code	Number
1	L	1252 - 4294	8	2	CONN CIR 3M GRY	28480	1252 - 4294
2	2	04396 - 25003	6	2	SPACER	28480	04396 - 25003
9	3	2190-0016	3	2	WSHR-LK INTL T	28480	2190-0016
4	1	2950-0144	0	2	NUT-HEX-DBL-CHAM	28480	2950-0144

Figure 10-5. Angle Assembly Parts (Opt. 001) 3/5

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	1250-0252	6	1	CONN-RF BNC	28480	1250-0252
2	2190-0102	8	1	WSHR-LK INTL T	28480	2190-0102
3	2950-0035	8	1	NUT-HEX-DBL-CHAM	28480	2950-0035
4	04396 - 61631	2	1	RF CABL ASSY (Opt. 001)	28480	04396 - 61631

Table 10-7. Angle Assembly Parts (Opt. 001) 3/5

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-61641	7	1	WIRE ASSY	28480	E4970-61641
2	0890-1480	9	9	TUB-HEAT SHRK	28480	0890-1480

Table	10-8.	Angle	Assembly	Parts	4/5
	1 0 0.		110001	10105	A/0/

Figure 1	0-7.	Angle	Assembly	Parts	5/5
----------	------	-------	----------	-------	-----

Table	10-9.	Angle	Assembly	Parts	5/5
-------	-------	-------	----------	-------	-----

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	6960 - 0150	3	1	PLUG-HOLE	28480	6960-0150
2	8160-0619	5	0	SHIELD GASKET	28480	8160-0619

Figure 10-8. Front Assembly Parts 1/8

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E4970-00202	8	1	PANEL SUB	28480	E4970-00202
2	E4970-25001	7	1	FILTER	28480	E4970-25001
3	04396 - 40071	0	1	BEZEL BACK	28480	04396 - 40071
4	3050-0891	7	2	WASHER M3	28480	3050-0891
5	0515 - 1550	0	3	SCR M3-L 8 P-H	28480	0515-1550

Table 10-10.	Front	Assembly	Parts	1/8
Labic IV IV.	I I OIIU	1135CHOLY	10103	1/0

Figure 10-9. Front Assembly Parts 2/8

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	04396-40003	8	1	GUIDE	28480	04396-40003
2	04396 - 25051	4	1	KEYPAD RUBBER	28480	04396 - 25051
3	04396 - 66530	0	1	A30 FRONT KEYBOARD	28480	04396-66530
4	0515-1550	0	16	SCR M3-L 8 P-H	28480	0515-1550

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-04002	3	1	Cover	28480	E4970-04002
2	E4970-25002	8	1	Insulator	28480	E4970-25002
3	0950 - 2924	6	1	A54 Inverter Board	28480	0950 - 2924
4	0515 - 0977	3	2	SCR-MACH M2X0.4	28480	0515 - 0977
5	04396 - 61709	5	1	Cable Assy	28480	04396 - 61709
6	0400-0010	2	1	Gromet	28480	0400-0010

CDS11006

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	2090-0574	7	1	A52 LCD	28480	2090-0574
2	04396 - 25071	8	1	Gasket	28480	04396 - 25071

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-66539	2	1	LCD MINI-BD	28480	E4970-66539
2	0515 - 1550	0	4	SCR M3-L 8 P-H	28480	0515-1550

Table 10-15. Front Assembly Parts 6/8	
---------------------------------------	--

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0515-1550	0	1	SCR M3-L 8 P-H	28480	0515-1550
2	E4970-61651	9	1	FLAT CBL FFC	28480	E4970-61651

Table	10-16.	Front	Assembly	Parts	7/8
Labre	10 10.	I I OIIU	1135CHOLY	10103	1/0

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0515-1550	0	2	SCR M3-L 8 P-H	28480	0515-1550

CCS06029

Table	10-17.	Front	Assembly	Parts	8/8
Lavie	IV II.	TIONG	rissembly	10103	0/0

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0363 - 0170	5	0	RFI GASKET	28480	0363-0170

Figure 10-16. Rear Assembly Parts 1/8

Ref.	HP Part	C	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E4970-00203	9	1	PANEL REAR	28480	E4970-00203
2	1250-0252	6	3	CONN-RF BNC	28480	1250-0252
3	2190-0102	8	3	WSHR-LK INTL T	28480	2190-0102
4	2950-0035	8	3	NUT-HEX-DBL-CHAM	28480	2950-0035

Table 10-18. Rear Assembly Parts 1/8

CCS06031

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E4970-61621	3	1	RF CBL ASSY	28480	E4970-61621
2	E4970-61622	4	1	RF CBL ASSY	28480	E4970-61622
3	E4970-61627	9	1	RF CBL ASSY "V" (Opt. 1D5)	28480	E4970-61627
4	04396 - 61635	6	1	RF CBL ASSY	28480	04396 - 61635
5	04396 - 61637	8	1	RF CBL ASSY "T" (Opt. 1D6)	28480	$04396 {\ -} 61637$

Table 10-19. Rear Assembly Parts 2/8

Ref.	HP Part	C	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	04396 - 61001	0	1	FAN ASSY	28480	04396-61001
2	0515 - 1598	6	4	SCR SKT-HEAD	28480	0515 - 1598
3	2190-0586	2	4	WSHR-LK HLCL	28480	2190-0586
4	3050-0893	9	4	WSHR-FL	28480	3050-0893

		_		_	
Table	10-20.	Rear	Assembly	Parts	3/8

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-66533	6	1	A33 EXT I/O	28480	E4970-66533
2	1251-7812	0	8	JACKSCREW	28480	1251-7812
3	0380-0644	4	2	STDF-HEX-M/FEM	28480	0380-0644
4	2190-0577	1	2	WSHR-LK HLCL	28480	2190-0577

Table	10-21.	Rear	Assembly	Parts	4/8
Lanc	10-21.	mai	ASSUMPTY	rarus	T/O

Figure	10-20.	Rear	Assembly	Parts	5/8
riguit	10-20.	ncai	mosting	rarus	0/0

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E4970-66532	5	1	A32 IBASIC I/F	28480	E4970-66532
2	3050 - 1546	1	1	WASHER FLAT NM	28480	3050 - 1546
3	2190-0054	9	1	WSHR-LK INTL T	28480	2190-0054
4	2950-0054	1	1	NUT-HEX-DBL-CHAM	28480	2950-0054
5	1251-7812	0	8	JACKSCREW	28480	1251-7812

Table 10-22. Rear Assembly Parts 5/8

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	04395 - 61060	0	1	OVEN XTAL (Opt. 1D5)	28480	04395 - 61060
2	0515-1550	0	41	SCR M3-L 8 P-H	28480	0515-1550

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	1252-6951	8	1	AC INLET	28480	1252-6951
1	2110-0030	3	1	FUSE 5A 250V	28480	2110-0030
1	2110-1134	0	1	FUSE DRAWER	28480	2110-1134
2	6960-0027	3	1	PLUG-HOLE	28480	6960-0027
3	1252 - 4690	8	1	DUST COVER	28480	1252 - 4690
4	04396 - 87111	7	1	LABEL	28480	04396-87111
5	6960-0041	1	2	PLUG HOLE	28480	6960-0041

Table	10-24.	Rear	Assembly	Parts	7/8
Table	10-21.	ncai	resculuty	rarus	1/0

Figure 10-23. Rear Assembly Parts 8/8

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E5100-61640	6	3	WIRE ASSY GND	28480	E5100-61640
2	04396 - 61706	2	1	CABLE ASSY	28480	04396 - 61706
3	1400-0611	0	1	CLAMP-CABLE	28480	1400-0611
4	1400 - 1334	6	1	CLAMP CABLE	28480	1400 - 1334

Figure 10-24. Main Frame Assembly Parts 1/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-60001	1	1	CHASSIS ASSY	28480	E4970-60001
2	5022 - 1190	4	1	FRONT FRAME221.5	28480	5022-1190
3	5021 - 5808	7	1	RR-FR 221.5XFM	28480	5021-5808
4	5021 - 5837	2	4	STRUT COR 497.8D	28480	5021 - 5837
5	0515 - 1719	3	25	SCR M4X10	28480	0515 - 1719
6	0515-1668	1	16	SCR-MTRC SPCLY	28480	0515-1668

 Table 10-26. Main Frame Assembly Parts 1/23

Figure 10-25. Main Frame Assembly Parts 2/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	5021 - 5837	2	4	STRUT COR 497.8D	28480	5021 - 5837
2	0515 - 1719	3	25	SCR M4X10	28480	0515 - 1719
3	0515 - 1668	1	16	SCR-MTRC SPCLY	28480	0515-1668

 Table 10-27. Main Frame Assembly Parts 2/23

Figure 10-26. Main Frame Assembly Parts (FDD Assembly) 3/23

Ref.	HP Part	C	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	04396 - 01275	4	3	ANGLE	28480	04396 - 01275
2	04396 - 25004	7	1	SPONGE	28480	04396 - 25004
3	0950 - 3208	1	1	FDD 3.5 2MODE	28480	0950 - 3208
4	04396 - 61651	6	1	FLAT CBL ASSY	28480	04396 - 61651
5	04396 - 61672	1	1	WIRE ASSY	28480	04396-61672
6	0515 - 0914	8	31	SCR-MACH M3X0.5	28480	0515-0914

Table 10-28.	Main Frame	Assembly Parts	(FDD	Assembly) 3/23
Table 10-20.	main riame	most indig raits	(I'DD	133Cmory) 0/20

CCS06041

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0535-0031	2	4	NUT-HEX W/LOCKER	28480	0535-0031
2	1400 - 1334	6	4	CLAMP CABLE	28480	1400 - 1334

Table	10-29.	Main	Frame	Assembly	Parts	(FDD	Assembly) 4/23
Lavic	10-20.	TATCULL	rranne	maschiory	rarus	(I'DD	133Cmory = 20

Figure 10-28. Main Frame Assembly Parts 5/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	04396 - 61701	7	1	CABLE ASSY	28480	04396-61701
2	04396 - 01274	3	1	HOLDER	28480	04396 - 01274
3	0515 - 0999	9	2	M2.5X0.45 L=6 FL	28480	0515 - 0999
4	5041 - 0564	4	1	KEY-Q-CORP WHT	28480	5041 - 0564

Table 10-30	. Main	Frame	Assembly	Parts	5/23
-------------	--------	-------	----------	-------	------

CCS06043

Figure 10-29. Main Frame Assembly Parts 6/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0515 - 1718	2	1	SCR M4X12	28480	0515 - 1718

Table 10-31. Main Frame Assembly Parts 6/23

Figure 10-30. Main Frame Assembly Parts (A20 Motherboard Assembly) 7/23

Table 10-32.
Main Frame Assembly Parts (A20 Motherboard Assembly) 7/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-66520	1	1	A20 MOTHERBOARD	28480	E4970-66520
2	04396 - 61661	8	2	CA-ASSY FLAT 100	28480	04396 - 61661
3	0515-1550	0	41	SCR M3-L 8 P-H	28480	0515-1550

Figure 10-31. Main Frame Assembly Parts 8/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-00103	8	1	DECK	28480	E4970-00103
2	0515 - 0914	8	31	SCR-MACH M3X0.5	28480	0515 - 0914
3	0515 - 1550	0	41	SCR M3-L 8 P-H	28480	0515-1550

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-64903	0	1	ANGLE ASSY	28480	E4970-64903
2	0515-1011	8	4	SCR FL M4L6	28480	0515-1011
3	1400-1334	6	4	CLAMP CABLE	28480	1400-1334

Figure 10-33. Main Frame Assembly Parts (A1 CPU Board Assembly) 10/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-66501	8	1	A1 CPU BOARD	28480	E4970-66501
2	0515-1550	0	41	SCR M3-L 8 P-H	28480	0515-1550
3	1818-6574	1	2	FLASH ROM	28480	1818-6574

Table 10-35.Main Frame Assembly Parts (A1 CPU Board Assembly) 10/23

Figure 10-34. Main Frame Assembly Parts 11/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	04396-61663	0	3	CA-ASSY FLAT 40	28480	04396-61663
2	04396 - 61661	8	2	CA-ASSY FLAT 100	28480	04396-61661
3	04396 - 61707	3	1	CABLE ASSY	28480	04396 - 61707
4	04396 - 61671	0	2	WIRE ASSY	28480	04396-61671

Table 10-36. Main Frame Assembly Parts 11/23

CCS06049

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	04396 - 61662	9	1	CA-ASSY FLAT 40	28480	04396-61662
2	1400-0611	0	2	CLAMP-CABLE	28480	1400-0611

Table 10-37. Main Frame Assembly Parts 12/23	Table	10-37.	Main	Frame	Assembly	Parts	12/23
--	-------	--------	------	-------	----------	-------	-------

CCS06050

Figure 10-36. Main Frame Assembly Parts (A9 Input Multiplexer Assembly) 13/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	8160-0619	5	0	SHIELD GASKET	28480	8160-0619
2	E4970-66509	6	1	A9 INPUT MULTIPLEXER	28480	E4970-66509
	E4970-69509			A9 INPUT MULTIPLEXER	28480	E4970-69509
				(rebuilt-exchange)		
3	04396 - 61663	0	3	CA-ASSY FLAT 40	28480	04396-61663
4	0515-1550	0	41	SCR M3-L 8 P-H	28480	0515-1550

Table 10-38.Main Frame Assembly Parts (A9 Input Multiplexer Assembly) 13/23

CCS06051

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	1400 - 1334	6	4	CLAMP CABLE	28480	1400 - 1334
2	0400 - 0276	2	1	GROM RND	28480	0400-0276

Figure 10-38. Main Frame Assembly Parts 15/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	1400 - 2198	2	3	SADDLE-EDGE	28480	1400 - 2198
2	1400-1048	9	4	SADDLE-EDGE	28480	1400-1048

Figure 10-39. Main Frame Assembly Parts (Pre-regulator Assembly) 16/23

Table 10-41.
Main Frame Assembly Parts (Pre-regulator Assembly) 16/23

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	0950 - 3246	7	1	A40 PRE-REGULATOR	28480	0950 - 3246
2	04396 - 61671	0	2	WIRE ASSY	28480	04396 - 61671
3	0515 - 1719	3	25	SCR M4X10	28480	0515-1719

Figure 10-40. Main Frame Assembly Parts (A50 DC-DC Converter Assembly) 17/23

Table 10-42.	
Main Frame Assembly Parts (A50 DC-DC Converter Assembly) 17/23	

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-66550	7	1	A50 DC-DC CONVERTER	28480	E4970-66550
2	1400-1391	5	4	CLAMP CABLE	28480	1400-1391

Figure 10-41. Main Frame Assembly Parts (A5 and A7 Assemblies) 18/23

Ref.	HP Part	C	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E4970-66503	0	1	TRACKING SOURCE	28480	E4970-66503
2	E4970-66505	2	1	A5 LOCAL SYNTHESIZER	28480	E4970-66505
	E4970-69505			A5 LOCAL SYNTHESIZER	28480	E4970-69505
				(rebuilt-exchange)		
3	E4970-61615	5	1	RF CBL ASSY	28480	E4970-61615
4	E4970-66507	4	1	A7 FREQ. CONVERTER	28480	E4970-66507
	E4970-69507			A7 FREQ. CONVERTER	28480	E4970-69507
				(rebuilt-exchange)		
5	E4970-66508	5	1	DIGITAL IF	28480	E4970-66508

Table	10-43.	Main Frame	Assembly Parts	(A5 and A7	Assemblies'	18/23
AUVIC	10 10	main riunic	issociation and the	(ILU UIIU ILI	11000 montes	10/20

Figure 10-42. Main Frame Assembly Parts (A2 DC Bias Assembly) 19/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-66502	9		A2 DC BIAS ASSY (Opt. 001)	28480	E4970-66502

Table 10-44.	Main Frame	Assembly Parts	(A2 DC Bias	Assembly) 19/23
LADIC IV II.	main riant	instanti in anto	(III DO DIAS	1133C111013/10/20

Figure 10-43. Main Frame Assembly Parts (YTO Assembly) 20/23

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	0955 - 0777	3	1	YTO 3-6GHZ	28480	0955 - 0777
2	E4970-61613	3	1	RF CBL ASSY	28480	E4970-61613
3	08590 - 60035	2	1	CABLE ASSY	28480	08590-60035
4	E4970-00626	0	1	CASE SHIELD	28480	E4970-00626
5	2200-0101	0	2	SCR-MACH 4-40	28480	2200-0101

Figure 10-44. Main Frame Assembly Parts (YTO Assembly) 21/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	E4970-00625	9	1	CASE SHIELD	28480	E4970-00625
2	0515 - 1550	0	41	SCR M3-L 8 P-H	28480	0515-1550

Figure 10-45. Main Frame Assembly Parts (YTO Assembly) 22/23

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0515-1550	0	16	SCR M3-L 8 P-H	28480	0515-1550
2	1400 - 1391	5	4	CLAMP CABLE	28480	1400 - 1391

Table 10-47.	Main Frame	Assembly	Parts (YTO	Assembly) 22/23
LADIC IV TI	main rianic	113SCHIDIY	Larts (TIO	1133Cillory) 22/20

Figure 10-46. Main Frame Assembly Parts 23/23

Ref.	HP Part	С	Qty.	Description	Mfr	Mfr Part
Desig.	Number	D			Code	Number
1	E4970-61616	6	1	RF CBL ASSY	28480	E4970-61616
2	E4970-61614	4	1	RF CBL ASSY	28480	E4970-61614
3	E4970-61612	2	1	RF CBL ASSY	28480	E4970-61612
4	E4970-61611	1	1	RF CBL ASSY	28480	E4970-61611

 Table 10-48. Main Frame Assembly Parts 23/23

Post Repair Procedures

INTRODUCTION

This chapter lists the procedures required to verify the analyzer operation after an assembly is replaced with a new one.

POST REPAIR PROCEDURES

Table 11-1 *Post Repair Procedures* lists the required procedures that must be performed after the replacement of an assembly or the EEPROM. These are the recommended minimum procedures to ensure that the analyzer is working properly following the replacement.

When you replace an assembly or the EEPROM on the A1 CPU, perform the adjustments and updating correction constants listed in Table 11-1. Then perform the operational verifications and performance verifications listed in Table 11-1.

For the detailed procedure of the adjustments and updating correction constants, see the *Adjustments* chapter. For the detailed operational verification procedures, see this manual's chapter specified in Table 11-1. For the detailed performance verification procedures, see the *Performance Tests* chapter.

Replaced Assembly or Part	Adjustments Correction Constants	Verification
A1 CPU	Firmware Installation. ¹	INSPECT THE POWER ON SEQUENCE ² Internal Test 2: A1 VOLATILE MEMORY ²
A1 EEPROM	Local DAC Adjustment	INSPECT THE POWER ON SEQUENCE ²
	Source Power Adjustment	All Performance Test Items
	Source Flatness Adjustment	
	IF 8 dB/16 dB Gain Adjustment	
	IF Gain Error CC	
	Temprature Adjustment	
	Receiver Flatness Adjustment	
	Receiver Attnuator Adjustment	
	IF BPF Flatness Adjustment	
	DC Bias Adjustment	

Table	11-1.	Post	Repair	Procedures
-------	-------	------	--------	-------------------

1 See the Digital Control Troubleshooting chapter.

2 See the $\mathit{Troubleshooting}\,$ chapter.

Replaced Assembly or Part	Adjustments Correction Constants	Verification		
A2 DC Bias	DC Bias Adjustment	INSPECT THE POWER ON SEQUENCE ¹		
		DC Bias Test		
A3 Tracking Source	Local DAC Adjustment	INSPECT THE POWER ON SEQUENCE ¹		
	Source Flatness Adjustment	Frequency Accuracy		
		Source Level/Flatness		
		Non-sweep Linearity		
		Power Sweep Linearity		
		Harmonics/Non-harmonic		
		Input Crosstalk		
		Input Impedance		
A5 Local Synthesizer	Local DAC Adjustment	INSPECT THE POWER ON SEQUENCE ¹		
	Source Power Adjustment	Frequency Accuracy		
	Source Flatness Adjustment	Source Level/Flatness		
	Input Local Null Adjustment	Non-sweep Linearity		
	Receiver Gain Adjustment	Power Sweep Linearity		
	IF 8 dB/16 dB Gain Adjustment	Harmonics/Non-harmonic		
	Temprature Adjustment	Receiver Noise Level		
	Receiver Flatness Adjustment	Input Crosstalk		
	Receiver Attnuator Adjustment	Absolute Amplitude Accuracy		
	IF BPF Flatness Adjustment	Magnitude Ratio/Phase Dynamic Accuracy		
		Magnitude Ratio/Phase Frequency Response		
		Displayed Average Noise Level		
		Amplitude Fidelity		
		Input Attenuator Switching Uncertainty		
		Noise Sidebands Test		
		Amplitude Accuracy/Frequency Response		
		Second Harmonic Distortion		
		Third Order Intermodulation Distortion		
		Other Spurious		
		Residual Response		

 Table 11-1. Post Repair Procedures (continued)

1 See the $\mathit{Troubleshooting}\,$ chapter.

Replaced Assembly or Part	Adjustments Correction Constants	Verification		
A7 Freq. Converter	Frequency Reference Adjustment	INSPECT THE POWER ON SEQUENCE 1		
	Source Power Adjustment	Frequency Accuracy		
	Source Flatness Adjustment	Source Level/Flatness		
	Receiver Gain Adjustment	Non-sweep Linearity		
	IF 8 dB/16 dB Gain Adjustment	Power Sweep Linearity		
	Receiver Flatness Adjustment	Harmonics/Non-harmonic		
	Receiver Attnuator Adjustment	Receiver Noise Level		
	IF BPF Flatness Adjustment	Absolute Amplitude Accuracy		
		Magnitude Ratio/Phase Dynamic Accuracy		
		Magnitude Ratio/Phase Frequency Response		
		Displayed Average Noise Level		
		Amplitude Fidelity		
		Input Attenuator Switching Uncertainty		
		Noise Sidebands Test		
		Amplitude Accuracy/Frequency Response		
		Second Harmonic Distortion		
		Third Order Intermodulation Distortion		
		Other Spurious		
		Residual Response		
A8 Digital IF	IF 24 dB Gain/Phase Adjustment	INSPECT THE POWER ON SEQUENCE ¹		
	Receiver Gain Adjustment	Receiver Noise Level		
	IF 8 dB/16 dB Gain Adjustment	Absolute Amplitude Accuracy		
	Receiver Flatness Adjustment	Magnitude Ratio/Phase Dynamic Accuracy		
	Receiver Attnuator Adjustment	Magnitude Ratio/Phase Frequency Response		
	IF BPF Flatness Adjustment	Displayed Average Noise Level		
		Amplitude Fidelity		
		Input Attenuator Switching Uncertainty		
		Noise Sidebands Test		
		Amplitude Accuracy/Frequency Response		
		Third Order Intermodulation Distortion		
		Other Spurious		
		Residual Response		

1 See the $\mathit{Troubleshooting}\$ chapter.

Replaced	Adjustments	Verification
Assembly or Part	Correction Constants	
A9 Input Multiplexer	Input DC Offset Adjustment	INSPECT THE POWER ON SEQUENCE ¹
	Input Local Null Adjustment	Receiver Noise Level
	Receiver Gain Adjustment	Input Crosstalk
	IF 8 dB/16 dB Gain Adjustment	Input Impedance
	Receiver Flatness Adjustment	Absolute Amplitude Accuracy
	Receiver Attnuator Adjustment	Magnitude Ratio/Phase Dynamic Accuracy
	IF BPF Flatness Adjustment	Magnitude Ratio/Phase Frequency Response
		Displayed Average Noise Level
		Amplitude Fidelity
		Input Attenuator Switching Uncertainty
		Amplitude Accuracy/Frequency Response
		Second Harmonic Distortion
		Third Order Intermodulation Distortion
		Other Spurious
		Residual Response
A20 Mother Board	None	INSPECT THE POWER ON SEQUENCE ¹
A30 Front Keyboard None INSPECT		INSPECT THE POWER ON SEQUENCE ¹
		External Test 50: FRONT PANEL DIAG ²
A32 IBASIC I/F	None	INSPECT THE POWER ON SEQUENCE ¹
		Check the A32 I-BASIC Interface and the mini DIN Keyboard ²
A33 EXT I/O	None	INSPECT THE POWER ON SEQUENCE ¹
		External Test 52: 24 BIT I/O PORT ²
A40 Pre-Regulator	DC Bias Adjustment	INSPECT THE POWER ON SEQUENCE ¹
A50 DC-DC Converter	None	INSPECT THE POWER ON SEQUENCE ¹
A51 GSP	None	INSPECT THE POWER ON SEQUENCE ¹
A52 LCD	None	INSPECT THE POWER ON SEQUENCE ¹
A53 FDD	None	INSPECT THE POWER ON SEQUENCE ¹
		External Test 51: DSK DR FAULTY ISOLN ²

Table 11-1. Post Repair Procedures (continued)

1 See the $\mathit{Troubleshooting}\,$ chapter.

2 See the Digital Control Troubleshooting chapter.

Manual Changes

Introduction

This appendix contains the information required to adapt this manual to earlier versions or configurations of the analyzer than the current printing date of this manual. The information in this manual applies directly to the HP 4395A Network/Spectrum/Impedance Analyzer serial number prefix listed on the title page of this manual.

Manual Changes

To adapt this manual to your HP 4395A, see Table A-1 and Table A-2, and make all the manual changes listed opposite your instrument's serial number and firmware version.

Instruments manufactured after the printing of this manual may be different from those documented in this manual. Later instrument versions will be documented in a manual changes supplement that will accompany the manual shipped with that instrument. If your instrument's serial number is not listed on the title page of this manual or in Table A-1, it may be documented in a *yellow MANUAL CHANGES* supplement.

In additions to change information, the supplement may contain information for correcting errors (Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest *MANUAL CHANGES* supplement.

For information concerning serial number prefixes not listed on the title page or in the *MANUAL CHANGE* supplement, contact the nearest Hewlett-Packard office.

Turn on the line switch or execute the ***IDN**? command by HP-IB to confirm the firmware version. See the *HP-IB Command Reference* manual for information on the ***IDN**? command.

Serial Prefix or Number	Make Manual Changes
JPIKE00275 or below	Change 1

Table A-1. Manual Changes by Serial Number

Table A-2.	Manual	Changes	by	Firmware	Version
------------	--------	---------	----	----------	---------

Version	Make Manual Changes			

Change 1

Change the Replaceable Parts as following.

Figure A-1. Front Assembly Parts 3/7

Ref. Desig.	HP Part Number	C	Qty.	Description	Mfr Code	Mfr Part Number
Desig.	Number				Code	Number
1	E4970-04001	3	1	COVER	28480	E4970-04001
2	E4970-25001	7	1	FILTER	28480	E4970-25001
3	0950 - 2924	6	1	A54 INVERTER CCFT	28480	0950 - 2924
4	0515 - 0977	3	2	SCR-MACH M2X0.4	28480	0515 - 0977

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	2090-0534	8	1	A52 LCD 8.5IN	28480	2090-0534
2	04396 - 25071	8	1	GASKET	28480	04396 - 25071

Figure	A-3.	Front	Assembly	Parts	5/7
- 18 - 1	TT () (110110	110000111019	A UL U	

Table A-	5. Front	Assembly	Parts	5/7
----------	----------	----------	-------	-----

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	04396 - 61708	4	1	FLEX PCBD ASSY	28480	04396-61708
2	04396 - 61709	5	1	CABLE ASSY	28480	04396-61709
3	0515-1550	0	16	SCR M3-L 8 P-H	28480	0515-1550

Table	A-6	Front	Assembly	Parts	6/7
Lanc	11-0.	TIONU	ASSUMPTY	rarus	0/1

Ref. Desig.	HP Part Number	C D	Qty.	Description	Mfr Code	Mfr Part Number
1	0515-1550	0	3	SCR M3-L 8 P-H	28480	0515-1550

Serial Number

Hewlett-Packard uses a two-part, nine-character serial number that is stamped on the serial number plate (see Figure A-5) attached to the rear panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix.

Figure A-5. Serial Number Plate

Power Requirement

AReplacing Fuse

Fuse Selection

Select proper fuse according to the Table B-1.

Table	B-1.	Fuse	Selection
-------	------	------	-----------

Fuse Rating/Type	Fuse Part Number
5A 250Vac	
UL/CSA type	2110-0030
Time Delay	

For ordering the fuse, contact your nearest Hewlett-Packard Sales and Service Office.

Open the cover of AC line receptacle on the rear panel using a small minus screwdriver.

To check or replace the fuse, pull the fuse holder and remove the fuse. To reinstall the fuse, insert a fuse with the proper rating into the fuse holder.

Power Requirements

The HP 4395A requires the following power source:

Voltage : 90 to 132 Vac, 198 to 264 Vac

Frequency: 47 to 63 Hz

Power: 300 VA maximum

Power Cable

In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate ac power outlet, this cable grounds the instrument frame.

The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure B-1 for the part numbers of the power cables available.

Warning

For protection from electrical shock, the power cable ground must not be defeated.

The power plug must be plugged into an outlet that provides a protective earth ground connection.

Figure B-1. Power Cable Supplied

Error Messages

This section lists the error messages that are displayed on the analyzer display or transmitted by the instrument over HP-IB. Each error message is accompanied by an explanation, and suggestions are provided to help in solving the problem. Where applicable, references are provided to the related chapter of the appropriate manual.

When displayed, error messages are preceded with the word "CAUTION:." That part of the error message has been omitted here for the sake or brevity. Some messages without the "CAUTION:" are for information only, and do not indicate an error condition. The messages are listed first in alphabetical order because the displayed messages do not contain the message number. The messages are then listed in numerical order to make them easier to find if they are read over the HP-IB.

In addition to error messages, The analyzer's status is indicated by status notations in the left margin of the display. Examples are *, Cor, and Avg. Sometimes these appear together with error messages.

Error Messages in Alphabetical Order

A

10 ADDITIONAL STANDARDS NEEDED

Error correction for the selected calibration class cannot be computed until all the necessary standards have been measured.

84 ANALYZER TYPE MISMATCH

The analyzer receives a command that is not available for the current analyzer type. Please confirm HP-IB command or change analyzer type before sending the command.

B

17 BACKUP DATA LOST

Data checksum error on the battery backup memory has occurred. The battery is recharged for approximately 10 minutes after power was turned on.

-160 Block data error

This error, as well as errors -161 and -168, are generated when analyzing the syntax of a block data element. This particular error message is used if the analyzer cannot detect a more specific error.

-168 Block data not allowed

A legal block data element was encountered but was not allowed by the analyzer at this point in parsing.

С

13 CALIBRATION ABORTED

The calibration in progress was terminated due to a change of the active channel or stimulus parameters.

11 CALIBRATION REQUIRED

No valid calibration coefficients were found when you attempted to turn calibration on.

126 CAN'T CHANGE NUMBER OF POINTS

The number of points of the spectrum analyzer mode cannot be to change manually, except in zero span.

133 CAN'T CHANGE ON LIST SWEEP

When list sweep is selected, the following parameters are not allowed to be changed:

- CENTER, SPAN, START, STOP
- NOP
- IFBW or RBW
- POWER
- DC SOURCE

Modify the list table to change these parameters in the list sweep.

97 CAN'T CHANGE WHILE DATA MATH ON

The setting cannot be changed when the data math function is used.

99 CAN'T CHANGE WHILE DUAL CHAN OFF

The Cross channel cannot be turned on when dual channel is off. Turn on the dual channel before the cross channel is turned on.

82 CAN'T CHANGE- ANOTHER CONTROLLER ON BUS

The analyzer cannot assume the mode of system controller until the active controller is removed from the bus or relinquishes the bus. See *Programming Manual*.

134 CAN'T COUPLE IN CURRENT INPUTS

When one channel measures a ratio measurement, and the other one measures an absolute measurement (for example: A/R and B), COUPLED CH can not be turned on.

114 CAN'T SAVE GRAPHICS WHEN COPY IN PROGRESS

If you attempt to save graphics when a print is in progress, this error message is displayed.

1 CAN'T SET RBW AUTO IN ZERO SPAN

The RBW AUTO mode cannot be selected in the zero span. The RBW must be specified manually in the zero span. (spectrum analyzer mode only).

127 CAN'T SET SWEEP TIME AUTO IN ZERO SPAN

The automatic sweep time cannot be in zero span of the spectrum analyzer mode. (The network analyzer mode allows that the automatic sweep time is turned on.)

-281 **Cannot create program**

Indicates that an attempt to create a program was unsuccessful. A reason for the failure might include not enough memory.

-140 **Character data error**

This error, as well as errors -141 through -148, are generated when analyzing the syntax of a character data element. This particular error message is used if the analyzer cannot detect a more specific error.

-148 **Character data not allowed**

A legal character data element was encountered where prohibited by the analyzer.

-144 Character data too long

The character data element contains more than twelve characters (see IEEE 488.2, 7.7.1.4).

-100 **Command error**

This is a generic syntax error that the analyzer cannot detect more specific errors. This code indicates only that a command error, as defined in IEEE 488.2, 11.5.1.1.4, has occurred.

-110 **Command header error**

An error was detected in the header. This error message is used when the analyzer cannot detect the more specific errors described for errors -111 through -119.

75 COMMAND IGNORED - SEGMENT NOT DONE YET

The HP-IB command the analyzer received is ignored, because the segment is editing (*HP-IB* only). Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. (See *Programming Manual*.)

269 COMPENSATION ABORTED

Compensation data acquisition process is aborted.

267 COMPENSTATION REQUIRED

Compensation is required. Perform compansation to obtain compensation data.

50 CONT SWITCHING MAY DAMAGE MECH SW

RF output power switch, input attenuator switch at input R/A/B, or internal mechanical switch in the S-parameter test set is switching sweep by sweep, because RF power level or the input attenuator setting is different between two channels and the dual channel is turn on, or continuous trigger mode is selected after full 2-port calibration is performed when HP 4395A is used with the S-parameter test set. To avoid premature wearing out of the output power switch, input attenuator switch, or internal switch of the S-parameter test set, change trigger type to HOLD, SINGLE, or NUMBER of GROUP to hold sweep after measurement required. Or, for example, turn off the dual channel, or set the power level and the input attenuator of both channels to the same setting.

135 COUPLED CHAN - BETWEEN NA&NA OR ZA&ZA

The analyzer types of both channels must be the network analyzer mode or impedance analyzer mode when the coupled channel is turned on. It is not possible to turn the coupled channel on in spectrum analyzer mode.

74 CURRENT EDITING SEGMENT SCRATCHED

The current editing segment for the list table and the limit line is scratched when the following cases occur (HP-IB only):

- When EDITLIST (edit list table) command is received while editing a segment for the list table.
- When EDITLIML (edit limit line) command is received while editing a segment for the limit line.

Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment.

16 CURRENT PARAMETER NOT IN CAL SET

HP-IB only. Correction is not valid for the selected measurement parameter.

D

-230 Data corrupt or stale

Possibly invalid data. New reading started but not completed since last access.

-225 Data out of memory

The analyzer has insufficient memory to perform the requested operation.

-222 Data out of range

A legal program data element was parsed but could not be executed because the interpreted value was outside the legal range as defined by the analyzer (see IEEE 488.2, 11.5.1.1.5).

-231 Data questionable

Indicates that measurement accuracy is suspect.

-104 **Data type error**

The parser recognized an unallowed data element. For example, numeric or string data was expected but block data was encountered.

137 DC CURRENT LIMIT OCCURED

The output current at DC SOURCE port is reached to an upper limit and the output voltage is reduced so that the current does not exceed the upper limit. This message appears when the DC SOURCE port is used in voltage control mode.

136 DC SOURCE OVERLOAD

The DC SOURCE output is overloded.

138 **DC VOLTAGE LIMIT OCCURED**

The output voltage at DC SOURCE port is reached to an upper limit and the output current is reduced so that the voltage does not exceed the upper limit. This message appears when the DC SOURCE port is used in current control mode.

37 **DISPLAY BUFFER IS FULL**

The display buffer is filled with the overlay traces or traces drawn by IBASIC DRAW/MOVE commands, etc.

117 **DUPLICATE FILE EXTENSION**

The extension name entered is already used for other file types. Use other extension name.

Е

15 EXCEEDED 7 STANDARDS PER CLASS

A maximum of seven standards can be defined for any class.

-200 **Execution error**

This is the generic syntax error that the analyzer cannot detect more specific errors. This code indicates only that an execution error as defined in IEEE 488.2, 11.5.1.1.5 has occurred.

-123 **Exponent too large**

The magnitude of the exponent was larger than 32000 (see IEEE 488.2, 7.7.2.4.1).

\mathbf{F}

-257 **File name error**

Indicates that a legal program command or query could not be executed because the file name on the device media was in error. For example, an attempt was made to copy to a duplicate file name. The definition of what constitutes a file name error is device-specific.

-256 **File name not found**

A legal program command could not be executed because the file name on the device media was not found: for example, an attempt was made to read or copy a nonexistent file.

143 FLOATING POINT ERROR OCCURED

Indicate that a floating point error occured in the analyzer. Data processing may not be correct. This error message is used when an internal application was executed for illegal data sent from an external device, or when an internal software bug was detected. Contact your nearest Hewlett-Packard office.

83 FORMAT NOT VALID FOR MEASUREMENT

The conversion function except the 1/S and the multiple phase modes is not valid for the Smith, admittance, and SWR formats.

131 FREQUENCY SWEEP ONLY

The sweep type must be frequency sweep when the center step size is set.

G

-105 **GET not allowed**

A Group Execute Trigger (GET) was received within a program message (see IEEE 488.2, 7.7).

H

-240 Hardware error

Indicates that a legal program command or query could not be executed because of a hardware problem in the analyzer. Definition of what constitutes a hard ware problem is completely device-specific. This error message is used when the analyzer cannot detect the more specific errors described for errors -241 through -249.

-241 Hardware missing

A legal program command or query could not be executed because of missing analyzer hardware. For example, an option was not installed.

-111 Header separator error

A character that is not a legal header separator was encountered while parsing the header. For example, no white space followed the header, thus *SRE4 is an error.

-114 Header Suffix out of range

The value of a numeric suffix attached to a program mnemonic makes the header invalid.

Ι

-224 Illegal parameter value

Used where exact value, from a list of possibilities, was expected.

-282 Illegal program name

The name used to reference a program was invalid. For example, redefining an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program.

-283 Illegal variable name

An attempt was made to reference a nonexistent variable in a program.

-213 Init ignored

A request for a measurement initiation was ignored as another measurement was already in progress.

141 **INSUFFICIENT MEMORY**

If a lot of tasks is executed at same time, memory might be insufficient for a while. (For example, running HP Instrument BASIC program, printing a screen, and sending or receiving data array by HP-IB are required at same time.) Please wait until finishing some tasks then execute the next task.

-161 Invalid block data

A block data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.6.2). For example, an END message was received before the length was satisfied.

-141 Invalid character data

Either the character data element contains an invalid character or the particular element received is not valid for the header.

-121 Invalid character in number

An invalid character for the data type being parsed was encountered. For example, an alpha character in a decimal numeric or a "9" in octal data.

-101 **Invalid character**

A syntax element contains a character that is invalid for that type. For example, a header containing an ampersand (SENSE&).

154 INVALID DATE

The date entered to set the real time clock is invalid. Reenter correct date.

112 INVALID FILE NAME

HP-IB only. The file name for the RECALL, PURGE, or RE-SAVE function must have a "_D" or "_S" extension for LIF format.

-103 Invalid separator

The parser was expecting a separator and encountered an illegal character. For example, the semicolon was omitted after a program message unit, *RST:TRIG.

-151 Invalid string data

A string data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.5.2). For example, an END message was received before the terminal quote character.

-131 Invalid suffix

The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the suffix is inappropriate for the analyzer.

L

115 LIF-DOS COPY NOT ALLOWED

If you try to copy a file between the memory disk and the flexible disk when the format of the memory disk is different from the format of the flexible disk, this message is displayed.

124 LIST TABLE EMPTY OR INSUFFICIENT TABLE

The frequency list is empty. To implement the list frequency mode, add segments to the list table.

М

-250 Mass storage error

Indicates that a mass storage error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -257.

-311 **Memory error**

An error was detected in the analyzer's memory.

-109 Missing parameter

Fewer parameters were received than required for the header. For example, the *SRE command requires one parameter, so receiving only *SRE is not allowed.

Ν

98 NO ACTIVE MARKER

The marker \rightarrow command cannot be execute when no marker is displayed on the screen. Turn on the marker before executing the marker \rightarrow commands.

12 NO CALIBRATION CURRENTLY IN PROGRESS

The RESUME CAL SEQUENCE softkey is not valid unless a calibration is in progress. Start a new calibration.

268 NO COMPENSATION CURRENTLY IN PROGRESS

No compensation is currently in progress.

119 NO DATA TRACE DISPLAYED

The SCALE FOR [DATA] is selected when the data trace is not displayed.

93 NO DATA TRACE

The MARKER ON [DATA] is selected when the data trace is not displayed.

+0 No error

The error queue is empty. Every error in the queue has been read (OUTPERRO? query) or the queue was cleared by power-on or the *CLS command.

100 NO FIXED DELTA MARKER

The FIXED Δ MKR VALUE and FIXED Δ MKR AUX VALUE softkey requires that fixed delta marker is turned on.

96 NO MARKER DELTA - RANGE NOT SET

The MKR $\Delta \rightarrow$ SEARCH RNG softkey requires that delta marker is turned on.

95 NO MARKER DELTA - SPAN NOT SET

The MKR $\Delta \rightarrow$ SPAN softkey requires that delta marker mode be turned on.

120 NO MEMORY TRACE DISPLAYED

The SCALE FOR [MEMORY] is selected when the memory trace is not displayed.

94 NO MEMORY TRACE

The MARKER ON [MEMORY] is selected when the memory trace is not displayed.

113 NO STATE/DATA FILES ON DISK

There are no files on the flexible disk with extensions, "_D" or "_S" for LIF format, or "STA" or ".DTA" for DOS format.

116 NO STATE/DATA FILES ON MEMORY

There are no files on the memory disk with extensions, "_D" or "_S" for LIF format, or ".STA" or ".DTA" for DOS format.

184 NOT ALLOWED IN SVC MODE

The operation is not allowed in service mode.

55 NOT ENOUGH DATA

The amount of data sent to the analyzer is less than that expected (*HP-IB only*).

14 NOT VALID FOR PRESENT TEST SET

The calibration requested is inconsistent with the test set present. This message occurs in the following situations:

- A full 2-port calibration is requested with a test set other than an S-parameter test set.
- A one-path 2-port calibration is requested with an S-parameter test set (this procedure is typically used with a transmission/reflection test set).

34 NO VALID MEMORY TRACE

If a memory trace is to be displayed or otherwise used, a data trace must first be stored to memory.

-120 Numeric data error

This error, as well as errors -121 through -129, are generated when parsing a data element that appears to be numeric, including the nondecimal numeric types. This particular error message is used if the analyzer cannot detect a more specific error.

-128 Numeric data not allowed

A legal numeric data element was received, but the analyzer does not accept it in this position for a header.

0

146 ON POINT NOT ALLOWD FOR THE CURRENT TRIG

The trigger event mode cannot be changed to the ON POINT mode because the current trigger source setting does not allow the ON POINT mode. The ON POINT mode is available for only MANUAL, EXTERNAL, and BUS trigger sources of the network analyzer mode.

56 **OPTION NOT INSTALLED**

This error occurs when an HP-IB command which is optional command is sent and the analyzer is not installed the option (*HP-IB only*). Please confirm options installed to the analyzer using *OPT? command (see *Programming Manual*.)

45 **OVERLOAD ON INPUT A**

The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

44 **OVERLOAD ON INPUT B**

The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

46 **OVERLOAD ON INPUT R**

The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

-220 **Parameter error**

Indicates that a program data element related error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -221 through -229.

Р

-108 **Parameter not allowed**

More parameters were received than expected for the header. For example, the *SRE command only accepts one parameter, so receiving *SRE 4,16 is not allowed.

48 **PHASE LOCK LOOP UNLOCKED**

EXT REF Input of 10 MHz is not proper, or the instrument is needed to adjust or repair. Check the external reference signal first. Contact your nearest Hewlett-Packard office for adjustment or repair.

193 **POWER ON TEST FAILED**

Power on test failed. Contact your nearest Hewlett-Packard office.

26 **PRINTER: not on, not connected, out of paper**

The printer does not respond to control. Check the supply to the printer, online status, sheets, and so on.

-284 **Program currently running**

Certain operations dealing with programs may be illegal while the program is running. For example, deleting a running program might not be possible.

-280 **Program error**

Indicates that a downloaded program-related execution error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -281 through -289.

-112 **Program mnemonic too long**

The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1).

-286 **Program runtime error**

A program runtime error of the HP Instrument BASIC has occurred. To get a more specific error information, use the ERRM\$ or ERRN command of the HP Instrument BASIC.

-285 **Program syntax error**

Indicates that a syntax error appears in a downloaded program. The syntax used when parsing the downloaded program is device-specific.

Q

-400 **Query errors**

This is the generic query error that the analyzer cannot detect more specific errors. This code indicates only that a query error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred.

-410 **Query INTERRUPTED**

A condition causing an interrupted query error occurred (see IEEE 488.2, 6.3.2.3). For example, a query followed by DAB or GET before a response was completely sent.

-420 **Query UNTERMINATED**

A condition causing an unterminated query error occurred (see IEEE 488.2, 6.3.2.2). For example, the analyzer was addressed to talk and an incomplete program message was received by the controller.

-350 **Queue overflow**

A specific code entered into the queue in lieu of the code that caused the error. This code indicates that there is no room in the queue and an error occurred but was not recorded.

R

111 **RECALL ERROR: INSTR STATE PRESET**

A serious error, for example corrupted data, is detected on recalling a file, and this forced the analyzer to be PRESET.

\mathbf{S}

110 SAVE ERROR

A serious error, for example physically damaged disk surface, is detected on saving a file.

76 SEGMENT START/STOP OVERLAPPED

Segments are not allowed to be overlapped. Reenter appropriate value for start or stop value of segments to avoid that segment is not overlapped.

-330 Self-test failed

A self-test failed. Contact your nearest Hewlett-Packard office or see the *Service Manual* for troubleshooting.

-221 Settings conflict

A legal program data element was parsed but could not be executed due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5).

128 **SPAN = 0 ONLY**

The setup must be zero span and spectrum analyzer mode when turning on the RF OUTPUT.

-150 String data error

This error, as well as errors -151 and -158, are generated when analyzing the syntax of a string data element. This particular error message is used if the analyzer cannot detect a more specific error.

-158 String data not allowed

A string data element was encountered but was not allowed by the analyzer at this point in parsing.

-130 Suffix error

This error, as well as errors -131 through -139, are generated when parsing a suffix. This particular error message is used if the analyzer cannot detect a more specific error.

-138 **Suffix not allowed**

A suffix was encountered after a numeric element that does not allow suffixes.

-134 Suffix too long

The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).

-102 Syntax error

An unrecognized command or data type was encountered. For example, a string was received when the analyzer was not expecting to receive a string.

-310 **System error**

Some error, termed "system error" by the analyzer, has occurred.

Т

-124 **Too many digits**

The mantissa of a decimal numeric data element contains more than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).

77 TOO MANY SEGMENTS OR POINTS

Frequency list mode is limited to 31 segments or 801 points.

64 TOO MANY SEGMENTS

The maximum number of segments for the limit line table is 18.

-223 **Too much data**

A legal program data element of block, expression, or string type was received that contained more data than the analyzer could handle due to memory or related device-specific requirements.

54 TOO MUCH DATA

Either there is too much binary data to send to the analyzer when the data transfer format is FORM 2, FORM 3 or FORM 5, or the amount of data is greater than the number of points.

78 TOO SMALL POINTS OR TOO LARGE STOP

STOP+SPAN/(NOP-1) is out of sweep range. Increase NOP or change STOP value to lower frequency to avoid this error.

-210 **Trigger error**

A trigger related error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -211 through -219.

-211 **Trigger ignored**

A GET, *TRG, or triggering signal was received and recognized by the analyzer but was ignored because of analyzer timing considerations. For example, the analyzer was not ready to respond.

U

-113 Undefined header

The header is syntactically correct, but it is undefined for the analyzer. For example, *XYZ is not defined for the analyzer.

19 UNEXPECTED DATA DETECTED: CAL ABORTED

The signal measured for the level cal is not adequate for the calibration signal. (spectrum analyzer mode only.)

0 - 100

+0 No error

The error queue is empty. Every error in the queue has been read (OUTPERRO? query) or the queue was cleared by power-on or the *CLS command.

1 CAN'T SET RBW AUTO IN ZERO SPAN

The RBW AUTO mode cannot be selected in the zero span. The RBW must be specified manually in the zero span. (spectrum analyzer mode only).

10 ADDITIONAL STANDARDS NEEDED

Error correction for the selected calibration class cannot be computed until all the necessary standards have been measured.

11 CALIBRATION REQUIRED

No valid calibration coefficients were found when you attempted to turn calibration on.

12 NO CALIBRATION CURRENTLY IN PROGRESS

The RESUME CAL SEQUENCE softkey is not valid unless a calibration is in progress. Start a new calibration.

13 CALIBRATION ABORTED

The calibration in progress was terminated due to a change of the active channel or stimulus parameters.

14 NOT VALID FOR PRESENT TEST SET

The calibration requested is inconsistent with the test set present. This message occurs in the following situations:

- A full 2-port calibration is requested with a test set other than an S-parameter test set.
- A one-path 2-port calibration is requested with an S-parameter test set (this procedure is typically used with a transmission/reflection test set).

15 EXCEEDED 7 STANDARDS PER CLASS

A maximum of seven standards can be defined for any class.

16 CURRENT PARAMETER NOT IN CAL SET

HP-IB only. Correction is not valid for the selected measurement parameter.

17 BACKUP DATA LOST

Data checksum error on the battery backup memory has occurred. The battery is recharged for approximately 10 minutes after power was turned on.

19 UNEXPECTED DATA DETECTED: CAL ABORTED

The signal measured for the level cal is not adequate for the calibration signal. (spectrum analyzer mode only.)

26 **PRINTER:not on, not connect, wrong address**

The printer does not respond to control. Check the supply to the printer, online status, sheets, and so on.

34 NO VALID MEMORY TRACE

If a memory trace is to be displayed or otherwise used, a data trace must first be stored to memory.

37 **DISPLAY BUFFER IS FULL**

The display buffer is filled with the overlay traces or traces drawn by IBASIC DRAW/MOVE commands, etc.

44 **OVERLOAD ON INPUT B**

The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

45 **OVERLOAD ON INPUT A**

The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

46 **OVERLOAD ON INPUT R**

The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level.

48 PHASE LOCK LOOP UNLOCKED

EXT REF Input of 10 MHz is not proper, or the instrument is needed to adjust or repair. Check the external reference signal first. Contact your nearest Hewlett-Packard office for adjustment or repair.

50 CONT SWITCHING MAY DAMAGE MECH SW

RF output power switch, input attenuator switch at input R/A/B, or internal mechanical switch in the S-parameter test set is switching sweep by sweep, because RF power level or the input attenuator setting is different between two channels and the dual channel is turn on, or continuous trigger mode is selected after full 2-port calibration is performed when HP 4395A is used with the S-parameter test set. To avoid premature wearing out of the output power switch, input attenuator switch, or internal switch of the S-parameter test set, change trigger type to HOLD, SINGLE, or NUMBER of GROUP to hold sweep after measurement required. Or, for example, turn off the dual channel, or set the power level and the input attenuator of both channels to the same setting.

54 TOO MUCH DATA

Either there is too much binary data to send to the analyzer when the data transfer format is FORM 2, FORM 3 or FORM 5, or the amount of data is greater than the number of points.

55 NOT ENOUGH DATA

The amount of data sent to the analyzer is less than that expected (*HP-IB only*).

56 **OPTION NOT INSTALLED**

This error occurs when an HP-IB command which is optional command is sent and the analyzer is not installed the option (*HP-IB only*). Please confirm options installed to the analyzer using *OPT? command (see *Programming Manual*.)

64 TOO MANY SEGMENTS

The maximum number of segments for the limit line table is 18.

74 CURRENT EDITING SEGMENT SCRATCHED

The current editing segment for the list table and the limit line is scratched when the following cases occur (*HP-IB only*) :

- When EDITLIST (edit list table) command is received while editing a segment for the list table.
- When EDITLIML (edit limit line) command is received while editing a segment for the limit line.

Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment.

75 COMMAND IGNORED - SEGMENT NOT DONE YET

The HP-IB command the analyzer received is ignored, because the segment is editing (*HP-IB* only). Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. (See *Programming Manual*.)

76 SEGMENT START/STOP OVERLAPPED

Segments are not allowed to be overlapped. Reenter appropriate value for start or stop value of segments to avoid that segment is not overlapped.

77 TOO MANY SEGMENTS OR POINTS

Frequency list mode is limited to 31 segments or 801 points.

78 TOO SMALL POINTS OR TOO LARGE STOP

STOP + SPAN/(NOP-1) is out of sweep range. Increase NOP or change STOP value to lower frequency to avoid this error.

82 CAN'T CHANGE- ANOTHER CONTROLLER ON BUS

The analyzer cannot assume the mode of system controller until the active controller is removed from the bus or relinquishes the bus. See *Programming Manual*.

83 FORMAT NOT VALID FOR MEASUREMENT

The conversion function except the 1/S and the multiple phase modes is not valid for the Smith, admittance, and SWR formats.

84 ANALYZER TYPE MISMATCH

The analyzer receives a command that is not available for the current analyzer type. Please confirm HP-IB command or change analyzer type before sending the command.

93 NO DATA TRACE

The MARKER ON [DATA] is selected when the data trace is not displayed.

94 NO MEMORY TRACE

The MARKER ON [MEMORY] is selected when the memory trace is not displayed.

95 NO MARKER DELTA - SPAN NOT SET

The MKR $\Delta \rightarrow$ SPAN softkey requires that delta marker mode be turned on.

96 NO MARKER DELTA - RANGE NOT SET

The MKR $\Delta \rightarrow$ SEARCH RNG softkey requires that delta marker is turned on.

97 CAN'T CHANGE WHILE DATA MATH ON

The setting cannot be changed when the data math function is used.

98 NO ACTIVE MARKER

The marker \rightarrow command cannot be execute when no marker is displayed on the screen. Turn on the marker before executing the marker \rightarrow commands.

99 CAN'T CHANGE WHILE DUAL CHAN OFF

The Cross channel cannot be turned on when dual channel is off. Turn on the dual channel before the cross channel is turned on.

100 NO FIXED DELTA MARKER

The FIXED Δ MKR VALUE and FIXED Δ MKR AUX VALUE softkey requires that fixed delta marker is turned on.

101 - 200

110 SAVE ERROR

A serious error, for example physically damaged disk surface, is detected on saving a file.

111 RECALL ERROR: INSTR STATE PRESET

A serious error, for example corrupted data, is detected on recalling a file, and this forced the analyzer to be PRESET.

112 **INVALID FILE NAME**

HP-IB only. The file name for the RECALL, PURGE, or RE-SAVE function must have a "_D" or "_S" extension for LIF format.

113 NO STATE/DATA FILES ON DISK

There are no files on the flexible disk with extensions, " $_D$ " or " $_S$ " for LIF format, or "STA" or ".DTA" for DOS format.

114 CAN'T SAVE GRAPHICS WHEN COPY IN PROGRESS

If you attempt to save graphics when a print is in progress, this error message is displayed.

115 LIF-DOS COPY NOT ALLOWED

If you try to copy a file between the memory disk and the flexible disk when the format of the memory disk is different from the format of the flexible disk, this message is displayed.

116 NO STATE/DATA FILES ON MEMORY

There are no files on the memory disk with extensions, "_D" or "_S" for LIF format, or ".STA" or ".DTA" for DOS format.

117 **DUPLICATE FILE EXTENSION**

The extension name entered is already used for other file types. Use other extension name.

119 NO DATA TRACE DISPLAYED

The SCALE FOR [DATA] is selected when the data trace is not displayed.

120 NO MEMORY TRACE DISPLAYED

The SCALE FOR [MEMORY] is selected when the memory trace is not displayed.

124 LIST TABLE EMPTY OR INSUFFICIENT TABLE

The frequency list is empty. To implement the list frequency mode, add segments to the list table.

126 CAN'T CHANGE NUMBER OF POINTS

The number of points of the spectrum analyzer mode cannot be to change manually, except in zero span.

127 CAN'T SET SWEEP TIME AUTO IN ZERO SPAN

The automatic sweep time cannot be in zero span of the spectrum analyzer mode. (The network analyzer mode allows that the automatic sweep time is turned on.)

128 **SPAN = 0 ONLY**

The setup must be zero span and spectrum analyzer mode when turning on the RF OUTPUT.

131 FREQUENCY SWEEP ONLY

The sweep type must be frequency sweep when the center step size is set.

133 CAN'T CHANGE ON LIST SWEEP

When list sweep is selected, the following parameters are not allowed to be changed:

- CENTER, SPAN, START, STOP
- NOP
- IFBW or RBW
- POWER
- DC SOURCE

Modify the list table to change these parameters in the list sweep.

134 CAN'T COUPLE IN CURRENT INPUTS

When one channel measures a ratio measurement, and the other one measures an absolute measurement (for example: A/R and B), COUPLED CH can not be turned on.

135 COUPLED CHAN - BETWEEN NA&NA OR ZA&ZA

The analyzer types of both channels must be the network analyzer mode or impedance analyzer mode when the coupled channel is turned on. It is not possible to turn the coupled channel on in spectrum analyzer mode.

136 DC SOURCE OVERLOAD

The DC SOURCE output is overloded.

137 DC CURRENT LIMIT OCCURED

The output current at DC SOURCE port is reached to an upper limit and the output voltage is reduced so that the current does not exceed the upper limit. This message appears when the DC SOURCE port is used in voltage control mode.

138 DC VOLTAGE LIMIT OCCURED

The output voltage at DC SOURCE port is reached to an upper limit and the output current is reduced so that the voltage does not exceed the upper limit. This message appears when the DC SOURCE port is used in current control mode.

141 INSUFFICIENT MEMORY

If a lot of tasks is executed at same time, memory might be insufficient for a while. (For example, running HP Instrument BASIC program, printing a screen, and sending or receiving data array by HP-IB are required at same time.) Please wait until finishing some tasks then execute the next task.

143 **FLOATING POINT ERROR OCCURED**

Indicate that a floating point error occured in the analyzer. Data processing may not be correct. This error message is used when an internal application was executed for illegal data sent from an external device, or when an internal software bug was detected. Contact your nearest Hewlett-Packard office.

146 ON POINT NOT ALLOWD FOR THE CURRENT TRIG

The trigger event mode cannot be changed to the ON POINT mode because the current trigger source setting does not allow the ON POINT mode. The ON POINT mode is available for only MANUAL, EXTERNAL, and BUS trigger sources of the network analyzer mode.

154 INVALID DATE

The date entered to set the real time clock is invalid. Reenter correct date.

184 NOT ALLOWED IN SVC MODE

The operation is not allowed in service mode.

193 **POWER ON TEST FAILED**

Power on test failed. Contact your nearest Hewlett-Packard office.

201 - 300

267 COMPENSITATION REQUIRED

Compensation is required. Perform compansation to obtain compensation data.

268 NO COMPENSATION CURRENTLY IN PROGRESS

No compensation is currently in progress.

269 COMPENSATION ABORTED

Compensation data acquisition process is aborted.

270 **COMPENSATION STD LIST UNDEFINED**

Compensation standard list is undefined.

-1 - 100

-100 **Command error**

This is a generic syntax error that the analyzer cannot detect more specific errors. This code indicates only that a command error, as defined in IEEE 488.2, 11.5.1.1.4, has occurred.

-101 - 200

-101 Invalid character

A syntax element contains a character that is invalid for that type. For example, a header containing an ampersand (SENSE&).

-102 Syntax error

An unrecognized command or data type was encountered. For example, a string was received when the analyzer was not expecting to receive a string.

-103 Invalid separator

The parser was expecting a separator and encountered an illegal character. For example, the semicolon was omitted after a program message unit, *RST:TRIG.

-104 **Data type error**

The parser recognized an unallowed data element. For example, numeric or string data was expected but block data was encountered.

-105 **GET not allowed**

A Group Execute Trigger (GET) was received within a program message (see IEEE 488.2, 7.7).

-108 **Parameter not allowed**

More parameters were received than expected for the header. For example, the *SRE command only accepts one parameter, so receiving *SRE 4,16 is not allowed.

-109 Missing parameter

Fewer parameters were received than required for the header. For example, the *SRE command requires one parameter, so receiving only *SRE is not allowed.

-110 **Command header error**

An error was detected in the header. This error message is used when the analyzer cannot detect the more specific errors described for errors -111 through -119.

-111 Header separator error

A character that is not a legal header separator was encountered while parsing the header. For example, no white space followed the header, thus *SRE4 is an error.

-112 **Program mnemonic too long**

The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1).

-113 **Undefined header**

The header is syntactically correct, but it is undefined for the analyzer. For example, *****XYZ is not defined for the analyzer.

-114 Header Suffix out of range

The value of a numeric suffix attached to a program mnemonic makes the header invalid.

-120 Numeric data error

This error, as well as errors -121 through -129, are generated when parsing a data element that appears to be numeric, including the nondecimal numeric types. This particular error message is used if the analyzer cannot detect a more specific error.

-121 Invalid character in number

An invalid character for the data type being parsed was encountered. For example, an alpha character in a decimal numeric or a "9" in octal data.

-123 Exponent too large

The magnitude of the exponent was larger than 32000 (see IEEE 488.2, 7.7.2.4.1).

-124 **Too many digits**

The mantissa of a decimal numeric data element contains more than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).

-128 Numeric data not allowed

A legal numeric data element was received, but the analyzer does not accept it in this position for a header.

-130 Suffix error

This error, as well as errors -131 through -139, are generated when parsing a suffix. This particular error message is used if the analyzer cannot detect a more specific error.

-131 Invalid suffix

The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the suffix is inappropriate for the analyzer.

-134 Suffix too long

The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).

-138 Suffix not allowed

A suffix was encountered after a numeric element that does not allow suffixes.

-140 **Character data error**

This error, as well as errors -141 through -148, are generated when analyzing the syntax of a character data element. This particular error message is used if the analyzer cannot detect a more specific error.

-141 Invalid character data

Either the character data element contains an invalid character or the particular element received is not valid for the header.

-144 Character data too long

The character data element contains more than twelve characters (see IEEE 488.2, 7.7.1.4).

-148 **Character data not allowed**

A legal character data element was encountered where prohibited by the analyzer.

-150 String data error

This error, as well as errors -151 and -158, are generated when analyzing the syntax of a string data element. This particular error message is used if the analyzer cannot detect a more specific error.

-151 Invalid string data

A string data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.5.2). For example, an END message was received before the terminal quote character.

-158 String data not allowed

A string data element was encountered but was not allowed by the analyzer at this point in parsing.

-160 Block data error

This error, as well as errors -161 and -168, are generated when analyzing the syntax of a block data element. This particular error message is used if the analyzer cannot detect a more specific error.

-161 Invalid block data

A block data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.6.2). For example, an END message was received before the length was satisfied.

-168 Block data not allowed

A legal block data element was encountered but was not allowed by the analyzer at this point in parsing.

-200 **Execution error**

This is the generic syntax error that the analyzer cannot detect more specific errors. This code indicates only that an execution error as defined in IEEE 488.2, 11.5.1.1.5 has occurred.

-201 - -300

-210 **Trigger error**

A trigger related error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -211 through -219.

-211 **Trigger ignored**

A GET, *TRG, or triggering signal was received and recognized by the analyzer but was ignored because of analyzer timing considerations. For example, the analyzer was not ready to respond.

-213 Init ignored

A request for a measurement initiation was ignored as another measurement was already in progress.

-220 **Parameter error**

Indicates that a program data element related error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -221 through -229.

-221 Settings conflict

A legal program data element was parsed but could not be executed due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5).

-222 **Data out of range**

A legal program data element was parsed but could not be executed because the interpreted value was outside the legal range as defined by the analyzer (see IEEE 488.2, 11.5.1.1.5).

-223 **Too much data**

A legal program data element of block, expression, or string type was received that contained more data than the analyzer could handle due to memory or related device-specific requirements.

-224 Illegal parameter value

Used where exact value, from a list of possibilities, was expected.

-225 Data out of memory

The analyzer has insufficient memory to perform the requested operation.

-230 Data corrupt or stale

Possibly invalid data. New reading started but not completed since last access.

-231 Data questionable

Indicates that measurement accuracy is suspect.

-240 Hardware error

Indicates that a legal program command or query could not be executed because of a hardware problem in the analyzer. Definition of what constitutes a hard ware problem is completely device-specific. This error message is used when the analyzer cannot detect the more specific errors described for errors -241 through -249.

-241 Hardware missing

A legal program command or query could not be executed because of missing analyzer hardware. For example, an option was not installed.

-250 Mass storage error

Indicates that a mass storage error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -257.

-256 **File name not found**

A legal program command could not be executed because the file name on the device media was not found: for example, an attempt was made to read or copy a nonexistent file.

-257 **File name error**

Indicates that a legal program command or query could not be executed because the file name on the device media was in error. For example, an attempt was made to copy to a duplicate file name. The definition of what constitutes a file name error is device-specific.

-280 **Program error**

Indicates that a downloaded program-related execution error occurred. This error message is used when the analyzer cannot detect the more specific errors described for errors -281 through -289.

-281 **Cannot create program**

Indicates that an attempt to create a program was unsuccessful. A reason for the failure might include not enough memory.

-282 Illegal program name

The name used to reference a program was invalid. For example, redefining an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program.

-283 Illegal variable name

An attempt was made to reference a nonexistent variable in a program.

-284 **Program currently running**

Certain operations dealing with programs may be illegal while the program is running. For example, deleting a running program might not be possible.

-285 **Program syntax error**

Indicates that a syntax error appears in a downloaded program. The syntax used when parsing the downloaded program is device-specific.

-286 **Program runtime error**

A program runtime error of the HP Instrument BASIC has occurred. To get a more specific error information, use the ERRM\$ or ERRN command of the HP Instrument BASIC.

-301 - 400

-310 System error

Some error, termed "system error" by the analyzer, has occurred.

-311 **Memory error**

An error was detected in the analyzer's memory.

-330 Self-test failed

A self-test failed. Contact your nearest Hewlett-Packard office or see the *Service Manual* for troubleshooting.

-350 **Queue overflow**

A specific code entered into the queue in lieu of the code that caused the error. This code indicates that there is no room in the queue and an error occurred but was not recorded.

-400 **Query errors**

This is the generic query error that the analyzer cannot detect more specific errors. This code indicates only that a query error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred.

-401 - 500

-410 **Query INTERRUPTED**

A condition causing an interrupted query error occurred (see IEEE 488.2, 6.3.2.3). For example, a query followed by DAB or GET before a response was completely sent.

-420 **Query UNTERMINATED**

A condition causing an unterminated query error occurred (see IEEE 488.2, 6.3.2.2). For example, the analyzer was addressed to talk and an incomplete program message was received by the controller.