
Programmer’s Guide

Publication number 16500-97018
First edition, December 1996

For Safety information, Warranties, and Regulatory

information, see the pages behind the Index

 Copyright Hewlett-Packard Company 1987, 1990, 1993, 1994, 1996
All Rights Reserved

HP 16500C/16501A
Logic Analysis System

ii

In This Book

This programmer’s guide contains general
information, mainframe level commands,
and programming examples for
programming the HP 16500C/16501A
Logic Analysis System. This guide
focuses on how to program the system
over the HP-IB interface, but also briefly
explains how to use the RS-232-C and
LAN interfaces. The Logic Analysis
System cannot be programmed over the
16505 interface.

This guide provides a complete set of
programming information for your system.

Organization

When you received your HP 16500C
Programmer’s Guide you received two
binders, Volume 1 and Volume 2. The
Volume 2 binder gives you a place to
insert the module programmer’s guides
when the Volume 1 binder is full.

As you purchase additional measurement
modules, insert their programmer’s
guides in the back of this binder or in the
second binder.

What is in the HP 16500C/16500A

Programmer’s Guide?

The HP 16500C/16501A Programmer’s

Guide is organized in three parts.

Introduction to Programming1

Programming Over HP-IB2

Programming Over RS-232-C3

Programming Over LAN4

Programming and
Documentation Conventions5

Message Communication
and System Functions6

Status Reporting7

Error Messages8

Common Commands9

Mainframe Commands10

SYSTem Subsystem11

MMEMory Subsystem12

INTermodule Subsystem13

TGTctrl Subsystem14

Programming Examples15

iii

Part 1 Part 1 consists of chapters 1 through 8 and contains general
information about programming basics, HP-IB, RS-232-C, and LAN
interface requirements, documentation conventions, status reporting,
and error messages. If you are already familiar with IEEE 488.2
programming and HP-IB or RS-232-C, you may want to just scan these
chapters. If you are new to programming logic analyzers you should read
part 1.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument," concentrates on program syntax, and the second section,
"Receiving Information from the Instrument," discusses how to send queries
and how to retrieve query results from the instrument.

Read either chapter 2, "Programming Over HP-IB," chapter 3, "Programming
Over RS-232-C," or chapter 4, "Programming over LAN" for information
concerning the physical connection between the HP 16500C/16501A Logic
Analysis System and your controller.

Chapter 5, "Programming and Documentation Conventions," gives an
overview of all instructions and also explains the notation conventions used
in the syntax definitions and examples.

Chapter 6, "Message Communication and System Functions," provides an
overview of the operation of instruments that operate in compliance with the
IEEE 488.2 standard.

Chapter 7 explains status reporting and how it can be used to monitor the
flow of your programs and measurement process.

Chapter 8 contains error message descriptions.

Part 2 Part 2, chapters 9 through 14, explain each command in the
command set for the mainframe. These chapters are organized in
subsystems with each subsystem representing a menu.

The commands explained in this part give you access to common commands,
mainframe commands, system level commands, disk commands, intermodule
measurement, and target control commands. This part is designed to provide
a concise description of each command.

Part 3 Part 3, chapter 15, contains program examples of actual tasks
that show you how to get started in programming the HP 16500C/
16501A Logic Analysis System at the mainframe level. The complexity of
your programs and the tasks they accomplish are limited only by your
imagination. These examples are written in HP BASIC 6.2; however, the
program concepts can be used in any other popular programming
language that allows communications over HP-IB, RS-232-C, or LAN.

iv

Contents

Part 1 General Information

1 Introduction to Programming

Introduction 1–2

Talking to the Logic Analysis System 1–3

Talking to Individual System Modules 1–4
Initialization 1–4
Instruction Syntax 1–6
Output Command 1–6
Device Address 1–7
Instructions 1–7
Instruction Terminator 1–8
Header Types 1–9
Duplicate Keywords 1–10
Query Usage 1–11
Program Header Options 1–12
Parameter Data Types 1–13
Selecting Multiple Subsystems 1–15

Receiving Information from the Logic Analysis System 1–16

Response Header Options 1–17
Response Data Formats 1–18
String Variables 1–19
Numeric Base 1–20
Numeric Variables 1–20
Definite-Length Block Response Data 1–21
Multiple Queries 1–22
System Status 1–23

Contents–1

2 Programming Over HP-IB

Interface Capabilities 2–3
Command and Data Concepts 2–3
Talk/Listen Addressing 2–3
HP-IB Bus Addressing 2–4
Local, Remote, and Local Lockout 2–5
Bus Commands 2–6

3 Programming Over RS-232-C

Interface Operation 3–3
RS-232-C Cables 3–3
Minimum Three-Wire Interface with Software Protocol 3–4
Extended Interface with Hardware Handshake 3–5
Cable Examples 3–6
Configuring the Logic Analysis System Interface 3–7
Interface Capabilities 3–8
RS-232-C Bus Addressing 3–9
Lockout Command 3–10

4 Programming Over LAN

Communicating with the HP 16500C 4–3
LAN Addressing 4–3
Password Protection and File Protection 4–4
Permission Levels: Control and Data 4–4
Controlling the HP 16500C 4–5
Echoing Commands 4–6
Copying Command Files 4–7
Writing to \system\program from a Program 4–8
Sending Commands to the HP 16500C Socket 4–11
Lockout Command 4–13

Contents

Contents–2

5 Programming and Documentation Conventions

Truncation Rule 5–3
Infinity Representation 5–4
Sequential and Overlapped Commands 5–4
Response Generation 5–4
Syntax Diagrams 5–4
Notation Conventions and Definitions 5–5
The Command Tree 5–6
Tree Traversal Rules 5–8
Command Set Organization 5–10
Subsystems 5–10
Program Examples 5–12

6 Message Communication and System Functions

Protocols 6–3
Syntax Diagrams 6–5
Syntax Overview 6–7

7 Status Reporting

Event Status Register 7–4
Service Request Enable Register 7–4
Bit Definitions 7–4
Key Features 7–6
Serial Poll 7–8
Parallel Poll 7–9
Polling HP-IB Devices 7–11
Configuring Parallel Poll Responses 7–11
Conducting a Parallel Poll 7–12
Disabling Parallel Poll Responses 7–13
HP-IB Commands 7–13

Contents

Contents–3

8 Error Messages

Device Dependent Errors 8–3
Command Errors 8–3
Execution Errors 8–4
Internal Errors 8–4
Query Errors 8–5

Part 2 Commands

9 Common Commands

*CLS (Clear Status) 9–5
*ESE (Event Status Enable) 9–6
*ESR (Event Status Register) 9–7
*IDN (Identification Number) 9–9
*IST (Individual Status) 9–9
*OPC (Operation Complete) 9–11
*OPT (Option Identification) 9–12
*PRE (Parallel Poll Enable Register Enable) 9–13
*RST (Reset) 9–14
*SRE (Service Request Enable) 9–15
*STB (Status Byte) 9–16
*TRG (Trigger) 9–17
*TST (Test) 9–18
*WAI (Wait) 9–19

10 Mainframe Commands

BEEPer 10–6
CAPability 10–7
CARDcage 10–8
CESE (Combined Event Status Enable) 10–10
CESR (Combined Event Status Register) 10–11
EOI (End Or Identify) 10–13
LER (LCL Event Register) 10–13
LOCKout 10–14
MENU 10–15

Contents

Contents–4

MESE<N> (Module Event Status Enable) 10–16
MESR<N> (Module Event Status Register) 10–18
RMODe 10–19
RTC (Real-time Clock) 10–20
SELect 10–21
SETColor 10–23
STARt 10–24
STOP 10–25
XWINdow 10–26

11 SYSTem Subsystem

DATA 11–5
DSP (Display) 11–6
ERRor 11–7
HEADer 11–8
LONGform 11–9
PRINt 11–10
SETup 11–12

12 MMEMory Subsystem

AUToload 12–7
CATalog 12–8
CD (Change Directory) 12–9
COPY 12–10
DOWNload 12–11
IDENtify 12–13
INITialize 12–14
LOAD[:CONFig] 12–15
LOAD :IASSembler 12–16
MKDir (Make Directory) 12–17
MSI (Mass Storage Is) 12–18
PACK 12–19
PURGe 12–20
PWD (Present Working Directory) 12–21

Contents

Contents–5

REName 12–22
STORe [:CONFig] 12–23
UPLoad 12–24
VOLume 12–25

13 INTermodule Subsystem

:INTermodule 13–5
DELete 13–6
HTIMe 13–7
INPort 13–8
INSert 13–9
OUTDrive 13–10
OUTPolar 13–10
OUTType 13–11
PORTEDGE 13–12
PORTLEV 13–13
SKEW<N> 13–14
TREE 13–15
TTIMe 13–17

14 TGTctrl Subsystem

:TGTctrl 14–5
ALL 14–6
AVAILable 14–7
BITS 14–8
CURSTate 14–9
DRIVe 14–9
LASTstate 14–10
NAMe 14–11
PULse 14–12
SIGNal 14–12
SIGSTatus 14–13
STATEs 14–14
STEP 14–15
TOGgle 14–15
TYPe 14–16

Contents

Contents–6

Part 3 Programming Examples

15 Programming Examples

Transferring the Mainframe Configuration 15–3
Checking for Intermodule Measurement Completion 15–6
Sending Queries to the Logic Analysis System 15–7
Getting ASCII Data with PRINt? ALL Query 15–9
Reading the disk with the CATalog? ALL query 15–10
Reading the Disk with the CATalog? Query 15–11
Printing to the disk 15–12

Index

Contents

Contents–7

Contents–8

Part 1

1 Introduction to Programming 1-1
2 Programming Over HP-IB 2-1
3 Programming Over RS-232-C 3-1
4 Programming Over LAN 4-1
5 Programming and Documentation Conventions 5-1
6 Message Communication and System Functions 6-1
7 Status Reporting 7-1
8 Error Messages 8-1

General Information

1

Introduction to Programming

Introduction

This chapter introduces you to the basics of remote programming and
is organized in two sections. The first section, "Talking to the Logic
Analysis System," concentrates on initializing the bus, program syntax
and the elements of instruction syntax. The second section,
"Receiving Information from the Logic Analysis System," discusses
how queries are sent and how to retrieve query results from the
system.

The programming instructions explained in this book conform to
IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands." These programming instructions provide a
means of remotely controlling the HP 16500C Logic Analysis System.
There are three general categories of use. You can:

• Set up the system and start measurements

• Retrieve setup information and measurement results from the
measurement modules

• Send measurement data to the measurement modules

The instructions listed in this manual give you access to the functions
of the mainframe. This programming reference is designed to provide
a concise description of each instruction for the mainframe.
Individual module instruction descriptions are in the Programmer’s

Guide for each respective module.

1–2

Talking to the Logic Analysis System

In general, computers acting as controllers communicate with the instrument
by sending and receiving messages over a remote interface, such as HP-IB,
RS-232-C, or Ethernet LAN.

When programming the HP 16500C with the HP 16501A Expansion Frame
connected, most of the remote operation of the expansion frame is
transparent. The only time a programming command is affected by the
presence of the expansion frame is when the number of slots is specified or
returned from a query.

Instructions for programming the system will normally appear as ASCII
character strings embedded inside the output statements of a "host" language
available on your controller. The host language’s input statements are used
to read in responses from the system. For example, HP 9000 Series 300
BASIC uses the OUTPUT statement for sending commands and queries to
the system. After a query is sent, the response can be read in using the
ENTER statement. All programming examples in this manual are presented
in HP BASIC.

Example This BASIC statement sends a command that causes the logic analyzer’s
machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINE1:TYPE STATE" <terminator>

Each part of the above statement is explained in this section.

1–3

Talking to Individual System Modules

Talking to individual system modules within the HP 16500C Logic Analysis
System is done by preceding the module commands with the SELECT
command and the number of the slot in which the desired module is installed.
The mainframe is selected in the same way as an installed module by using
the SELECT 0 command.

Example To select the module in slot 3 use the following:

OUTPUT XXX;":SELECT 3"

See Also Chapter 10, "Mainframe Commands" for more information on the SELECT
command.

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command that clears the interface buffer. If you are using HP-IB,
CLEAR will also reset the parser in the Logic Analysis System. The parser is
the program resident in the Logic Analysis System that reads the instructions
you send to it from the controller.

After clearing the interface, you could, for example, preset the logic analyzer
module to a known state by loading a predefined configuration file from the
disk.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Introduction to Programming
Talking to Individual System Modules

1–4

Example This BASIC statement would load the configuration file "DEFAULT " (if it
exists) into the system.

OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’DEFAULT ’"

Example This program demonstrates a simple HP BASIC command structure used to
program the Logic Analysis System.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;":SYSTEM:HEADER ON" !Turn headers on
30 OUTPUT XXX;":SYSTEM:LONGFORM ON" !Turn long form on
40 DIM Card$[100] !Reserve memory for string variable
50 OUTPUT XXX;":CARDCAGE?" !Verify which modules are loaded
60 ENTER XXX;Card$!Enter result in a string variable
70 PRINT Card$!Print result of query
80 OUTPUT XXX;":MMEM:LOAD:CONFIG ’TEST._E’,5" !Load configuration file
 !into module in slot E
90 OUTPUT XXX;":SELECT 5" !Select module in slot E
100 OUTPUT XXX;":MENU 5,3: !Select menu for module in slot E
110 OUTPUT XXX;":RMODE SINGLE" !Select run mode
120 OUTPUT XXX;":START" !Run the measurement

See Also Chapter 12, "MMEMory Subsystem" for more information on the LOAD
command.

Introduction to Programming
Initialization

1–5

Instruction Syntax

To program the system remotely, you must have an understanding of the
command format and structure. The IEEE 488.2 standard governs syntax
rules pertaining to how individual elements, such as headers, separators,
parameters and terminators, may be grouped together to form complete
instructions. Syntax definitions are also given to show how query responses
will be formatted. Figure 1-1 shows the three main syntactical parts of a
typical program statement: Output Command, Device Address, and
Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

Figure 1-1

Program Message Syntax

Output Command

The output command depends on the language you choose to use.
Throughout this guide, HP 9000 Series 300 BASIC 6.2 is used in the
programming examples, except where noted. If you use another language,
you will need to find the equivalents of BASIC Commands, like OUTPUT,
ENTER and CLEAR in order to convert the examples. The instructions are
always shown between the double quotes.

Introduction to Programming
Instruction Syntax

1–6

Device Address

The location where the device address must be specified also depends on the
host language that you are using. In some languages, this could be specified
outside the output command. In BASIC, this is always specified after the
keyword OUTPUT. The examples in this manual use a generic address of
XXX. When writing programs, the number you use will depend on the
protocol you use, in addition to the actual address. If you are using HP-IB,
see chapter 2, "Programming Over HP-IB." If you are using RS-232-C, see
chapter 3, "Programming Over RS-232-C." If you are using Ethernet LAN, see
chapter 4, "Programming Over LAN."

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies <block_data>. There are just a
few instructions which use block data.

Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use any parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (:). The
command tree for the mainframe in figure 5-1 illustrates how all the
keywords can be joined together to form a complete header (see chapter 5,
"Programming and Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and query forms of an
instruction usually have different parameters.

Introduction to Programming
Device Address

1–7

When you look up a query in this programmer’s reference, you’ll find a
paragraph labeled "Returned Format" under the one labeled "Query." The
syntax definition by "Returned Format" will always show the instruction
header in square brackets, like [:SYSTem:MENU] , which means the text
between the brackets is optional. It is also a quick way to see what the
header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASCII defines a space to be a character, represented by a byte, that has a
decimal value of 32. Tabs can be used only if your controller first converts
them to space characters before sending the string to the system.

Instruction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as whether a function should be on
or off, which waveform is to be displayed, or which pattern is to be looked
for. Each instruction’s syntax definition shows the parameters, as well as the
range of acceptable values they accept. This chapter’s "Parameter Data
Types" section has all of the general rules about acceptable values.

When there is more than one parameter, they are separated by commas (,).
White space surrounding the commas is optional.

Instruction Terminator

An instruction is executed after the instruction terminator is received. The
terminator is the NL (New Line) character. The NL character is an ASCII
linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

Introduction to Programming
Instruction Terminator

1–8

Header Types

There are three types of headers: simple command, compound command,
and common command.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers. The syntax is:
<function><terminator>

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is: <function><white_space><data>
<terminator>

Example :RMODE SINGLE<terminator>

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsystem. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
:<subsystem>:<function><white_space><data><terminator>

Example :SYSTEM:LONGFORM ON

To traverse down one level of a subsystem to execute a subsystem within
that subsystem, use the following:
<subsystem>:<subsystem>:<function><white_space>
<data><terminator>

Example :MMEMORY:LOAD:CONFIG "FILE "

Introduction to Programming
Header Types

1–9

Common Command Header

Common command headers control IEEE 488.2 functions within the logic
analyzer such as clear status. The syntax is:
 *<command header><terminator>

No white space or separator is allowed between the asterisk and the
command header.

Example *CLS

Combined Commands in the Same Subsystem

To execute more than one function within the same subsystem, a semicolon
(;) is used to separate the functions:
:<subsystem>:<function><white space><data>;<function>
<white space><data><terminator>

Example :SYSTEM:LONGFORM ON;HEADER ON

Duplicate Keywords

Identical function keywords can be used for more than one subsystem. For
example, the function keyword MMODE may be used to specify the marker
mode in the subsystem for state listing or the timing waveforms:

• :SLIST:MMODE PATTERN - sets the marker mode to pattern in the state
listing.

• :TWAVEFORM:MMODE TIME - sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors, and they determine which
marker mode is being modified.

Introduction to Programming
Duplicate Keywords

1–10

Query Usage

Logic analysis system instructions that are immediately followed by a
question mark (?) are queries. After receiving a query, the Logic Analysis
System parser places the response in the output buffer. The output message
remains in the buffer until it is read or until another instruction is issued.
When read, the message is transmitted across the bus to the designated
listener (typically a controller).

Query commands are used to find out how the system is currently
configured. They are also used to get results of measurements made by the
modules in the system.

Example This instruction places the current full-screen time for machine 1 of the logic
analyzer module in slot 2 in the output buffer.

:SELECT 2:MACHINE1:TWAVEFORM:RANGE?

In order to prevent the loss of data in the output buffer, the output buffer
must be read before the next program message is sent. Sending another
command before reading the result of the query will cause the output buffer
to be cleared and the current response to be lost. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when you
send the query :SELECT 2:TWAVEFORM:RANGE? you must follow that
with an input statement. In BASIC, this is usually done with an ENTER
statement.

In BASIC, the input statement, ENTER XXX; Range , passes the value
across the bus to the controller and places it in the variable Range.

Additional details on how to use queries is in the next section of this chapter,
"Receiving Information from the Logic Analysis System."

Introduction to Programming
Query Usage

1–11

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. System responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.

Programs written in long form are easily read and are almost self-
documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of I/O activity.

The rules for short form syntax are discussed in chapter 5, "Programming and
Documentation Conventions."

Example Either of the following examples turns on the headers and long form.

Long form:

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Short form:

OUTPUT XXX;":SYST:HEAD ON;LONG ON"

Introduction to Programming
Program Header Options

1–12

Parameter Data Types

There are three main types of data which are used in parameters. The types
are numeric, string, and keyword. A fourth type, block data, is used only for a
few instructions: the DATA and SETup instructions in the SYSTem subsystem
(see chapter 11); the CATalog , UPLoad, and DOWNload instructions in the
MMEMory subsystem (see chapter 12). These syntax rules also show how
data may be formatted when sent back from the system as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
around the commas, but it is not mandatory.

Numeric data

For numeric data, you have the option of using exponential notation or using
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Do not combine an exponent
with a unit.

See Also Tables 6-1 and 6-2 in chapter 6, "Message Communications and System
Functions," list all available suffixes.

Example The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K.

The system will recognize binary, octal, and hexadecimal base numbers. The
base of a number is specified with a prefix. The recognized prefixes are #B
for binary, #Q for octal, and #H for hexadecimal. The absence of a prefix
indicates the number is decimal which is the default base.

Example The following numbers are all equal:

#B11100 = #Q34 = #H1C = 28

Introduction to Programming
Parameter Data Types

1–13

You may not specify a base in conjunction with either exponents or unit
suffixes. Additionally, negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters that accept fractional values are
called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 0011 1001 in binary). A three-digit number,
like 102, will take up three bytes (ASCII codes 49, 48 and 50). This is taken
care of automatically when you include the entire instruction in a string.

String data

String data may be delimited with either single (’) or double (") quotes.
String parameters representing labels are case-sensitive. For instance, the
labels "Bus A" and "bus a" are unique and can not be used interchangeably.
Also pay attention to the presence of spaces, because they act as legal
characters just like any other. So, the labels "In" and " In" are also two
different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction’s syntax definition. When sending
commands, either the long form or short form (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, uppercase letters will be used exclusively. The use of long form
or short form in a response depends on the setting you last specified via the
:SYSTem:LONGform command.

Introduction to Programming
Parameter Data Types

1–14

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems within the same selected module on the same line by separating
each command with a semicolon. The colon following the semicolon enables
you to enter a new subsystem. <instruction header><data>;
:<instruction header><data><terminator>

Multiple commands may be any combination of simple, compound and
common commands.

Example :SELECT 2;:MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Introduction to Programming
Selecting Multiple Subsystems

1–15

Receiving Information from the Logic Analysis
System

After receiving a query (logic analysis system instruction followed by
a question mark), the system interrogates the requested function and
places the answer in its output queue. The answer remains in the
output queue until it is read or until another command is issued.
When read, the message is transmitted across the bus to the
designated listener (typically a controller). The input statement for
receiving a response message from the system’s output queue usually
has two parameters: the device address and a format specification for
handling the response message.

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the
query :SYSTEM:LONGFORM?, you must follow that query with an
input statement. In BASIC, this is usually done with an ENTER
statement and in C with a read command.

The format for handling the response messages is dependent on both
the controller and the programming language.

Example To read the result of the query command :SYSTEM:LONGFORM? you
can execute this BASIC statement to enter the current setting for the
long form command in the numeric variable Setting.

ENTER XXX; Setting

1–16

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM commands. The general format is
<instruction_header><space><data><terminator>

The header identifies the data that follows (the parameters) and is controlled
by issuing a :SYSTEM:HEADER ON/OFF command. If the state of the
header command is OFF, only the data is returned by the query.

The format of the header is controlled by the :SYSTEM:LONGFORM
command. If long form is OFF , the header will be in its short form and the
header will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
combination of long form and short form. The HEADER and LONGFORM
commands only control the format of the returned data and they have no
affect on the way commands are sent.

Example The following examples show some possible responses for a
:SELECT 2:MACHINE1:SFORMAT:THRESHOLD2? query:

with HEADER OFF:

<data><terminator>

with HEADER ON and LONGFORM OFF:

:SEL 2:MACH1:SFOR:THR2<white_space><data><terminator>

with HEADER ON and LONGFORM ON:

:SELECT 2:MACHINE1:SFORMAT:THRESHOLD2<white_space>
<data><terminator>

See Also Chapter 11, "SYSTem Subsystem" for information on turning the HEADER
and LONGFORM commands on and off.

Introduction to Programming
Response Header Options

1–17

Response Data Formats

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in the
same format as the header, as specified by the LONGform command. Like
the headers, the keywords will always be in uppercase.

Example The following are possible responses to the :SELECT 2:MACHINE1:
TFORMAT: LAB? ’ADDR’ query.

Header on; Longform on

:SELECT 2:MACHINE1:TFORMAT:LABEL "ADDR ",19,
POSITIVE<terminator>

Header on;Longform off

:SEL 2:MACH1:TFOR:LAB "ADDR ",19,POS<terminator>

Header off; Longform on

"ADDR ",19,POSITIVE<terminator>

Header off; Longform off

"ADDR ",19,POS<terminator>

See Also The individual commands in Part 2 of this guide contain information on the
format (string or numeric) of the data returned from each query.

Introduction to Programming
Response Data Formats

1–18

String Variables

Because there are so many ways to code numbers, the HP 16500C Logic
Analysis System handles almost all data as ASCII strings. Depending on your
host language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the system, such as including the headers with a query
response.

Example This example combines variables and constants in order to make it easier to
switch from MACHINE1 to MACHINE2 in slot 3. In BASIC, the & operator is
used for string concatenation.

10 LET Machine$ = ":SELECT 3:MACHINE2" !Send all instructions to machine 2 in
!slot 3

20 OUTPUT XXX; Machine$ & ":TYPE STATE" !Make machine a state analyzer
30 ! Assign all labels to be positive
40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 1’, POS"
50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 2’, POS"
60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’OUT’, POS"
99 END

If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires little
attention to formatting.

Example This command line places the output of the query in the string variable
Result$.

ENTER XXX;Result$

The output of the system may be numeric or character data depending on
what is queried. Refer to the specific commands in Part 2 of this guide for
the formats and types of data returned from queries.

Introduction to Programming
String Variables

1–19

Example The following example shows logic analyzer module data being returned to a
string variable with headers off:
10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 DIM Rang$[30]
30 OUTPUT XXX;":SELECT 2:MACHINE1:TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$
50 PRINT Rang$
60 END

After running this program, the controller displays: +1.00000E-05

Numeric Base

Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If no
prefix precedes the returned numeric data, then the value is in the decimal
base.

Numeric Variables

If your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turning off the response headers will help you
avoid accidentally trying to convert the header into a number.

Introduction to Programming
Numeric Base

1–20

Example The following example shows logic analyzer module data being returned to a
numeric variable.
10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 OUTPUT XXX;":SELECT 2:MACHINE1:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang
40 PRINT Rang
50 END

This time the format of the number (whether or not exponential notation is
used) is dependent upon your host language. In BASIC, the output will look
like: 1.E-5

Definite-Length Block Response Data

Definite-length block response data, also referred to as block data, allows any
type of device-dependent data to be transmitted over the system interface as
a series of data bytes. Definite-length block data is particularly useful for
sending large quantities of data or for sending 8-bit extended ASCII codes.
The syntax is a pound sign (#) followed by a non-zero digit representing the
number of digits in the decimal integer. Following the non-zero digit is the
decimal integer that states the number of 8-bit data bytes to follow. This
number is followed by the actual data.

Indefinite-length block data is not supported on the HP16500C Logic Analysis
System.

Introduction to Programming
Definite-Length Block Response Data

1–21

For example, for transmitting 80 bytes of data, the syntax would be:

Figure 1-2

Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted, which is 80.

Multiple Queries

You can send multiple queries to the system within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable
or into multiple numeric variables.

Example You can read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the BASIC command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

Introduction to Programming
Multiple Queries

1–22

Example The response of the query :SYSTEM:HEADER?:LONGFORM? with HEADER
and LONGFORM turned on is:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may cause misinterpretation of returned data.

Example The following program message in HP BASIC is used to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Result1, Result2

System Status

Status registers track the current status of the mainframe and the installed
modules. By checking the system status, you can find out whether an
operation has been completed, whether a module is receiving triggers, and
more.

See Also Chapter 7, "Status Reporting," explains how to check the status of the system
and the installed modules.

Introduction to Programming
System Status

1–23

1–24

2

Programming Over HP-IB

Introduction

This section describes the interface functions and some general
concepts of HP-IB. In general, these functions are defined by IEEE
488.1 (HP-IB standard). They deal with general bus management
issues, as well as messages which can be sent over the bus as bus
commands.

2–2

Interface Capabilities

The interface capabilities of the HP 16500C, as defined by IEEE 488.1 are
SH1, AH1, T5, TE0, L3, LE0, SR1, RL1, PP0, DC1, DT1, C0, and E2.

Command and Data Concepts

The HP-IB has two modes of operation: command mode and data mode. The
bus is in command mode when the ATN line is true. The command mode is
used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET). The bus is in the data mode when the ATN line
is false. The data mode is used to convey device-dependent messages across
the bus. These device-dependent messages include all of the commands and
responses found in chapters 10 through 14 of this guide for the mainframe
and the respective Programmer’s Guides for each module installed in the
mainframe.

Talk/Listen Addressing

By using the touchscreen fields in the System Configuration menu, the HP-IB
interface can be placed in talk-only mode by connecting to the printer or in
addressed talk/listen mode by connecting to the controller.

See Also Chapter 3, "Configuring Communications" in the HP 16500C User’s

Reference

Talk-only mode must be used when you want the system to talk directly to a
printer without the aid of a controller. Addressed talk/listen mode is used
when the system will operate in conjunction with a controller. When the
system is in the addressed talk/listen mode, the following is true:

• Each device on the HP-IB resides at a particular address ranging from 0 to
30.

• The active controller specifies which devices will talk and which will listen.

Programming Over HP-IB
Interface Capabilities

2–3

• An instrument, therefore, may be talk-addressed, listen-addressed, or
unaddressed by the controller.

If the controller addresses the instrument to talk, it will remain configured to
talk until it receives:

• an interface clear message (IFC)

• another instrument’s talk address (OTA)

• its own listen address (MLA)

• a universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain configured
to listen until it receives:

• an interface clear message (IFC)

• its own talk address (MTA)

• a universal unlisten (UNL) command.

HP-IB Bus Addressing

Because HP-IB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct instrument address, but also the correct interface code.

Interface Select Code (Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for HP-IB controllers.

Instrument Address (Selects the Instrument)

Each instrument on the HP-IB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.

Programming Over HP-IB
HP-IB Bus Addressing

2–4

Example For example, if the instrument address is 4 and the interface select code is 7,
the instruction will cause an action in the instrument at device address 704.
DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument
Address)

Local, Remote, and Local Lockout

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analysis system will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 16500C is in remote
mode, the system will go from remote to local with any touchscreen, mouse,
or keyboard activity. In remote with local lockout mode, all controls (except
the power switch) are entirely locked out. Local control can only be restored
by the controller.

Hint Cycling the power will also restore local control, but this will also reset
certain HP-IB states. It also resets the system to the power-on defaults and
purges any acquired data in the acquisition memory of all the installed
modules.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (LLO) command. The instrument can be returned to local mode by
either setting the REN line false, or sending the instrument the go to local
(GTL) command.

See Also :SYSTem:LOCKout in chapter 10, "Mainframe Commands"

Programming Over HP-IB
Local, Remote, and Local Lockout

2–5

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the system.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, clear any pending commands, and
clear the Request-OPC flag.

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity. This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to the
system controller.

Programming Over HP-IB
Bus Commands

2–6

3

Programming Over RS-232-C

Introduction

This chapter describes the interface functions and some general
concepts of RS-232-C. The RS-232-C interface on this instrument
is Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232-C, Interface Between Data Terminal Equipment and Data

Communications Equipment Employing Serial Binary Data

Interchange. With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subsequent data
characters. Each character is sent as a complete entity without
relationship to other events.

3–2

Interface Operation

The HP 16500C Logic Analysis System can be programmed by a controller
over RS-232-C using either a minimum three-wire or extended hardwire
interface. The operation and exact connections for these interfaces are
described in more detail in the following sections. When you are controlling
an HP 16500C Logic Analysis System over RS-232-C, you are normally
operating directly between two DTE (Data Terminal Equipment) devices as
compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire interface, XON/XOFF must be
used to handle protocol between the devices. For an extended hardwire
interface, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the RS-232-C link. In all cases, the
DCD and DSR lines to the Logic Analysis System must remain high for proper
operation.

With extended hardwire operation, a high on the CTS line allows the Logic
Analysis System to send data, and a low prevents the Logic Analysis System
from transmitting data. Likewise, a high on the RTS line allows the controller
to send data, and a low signals a request for the controller to disable data
transmission. Because a three-wire interface has no control over the CTS
line, internal pull-up resistors in the Logic Analysis System assure that this
line remains high for proper three-wire operation.

RS-232-C Cables

The correct cable for the RS-232-C interface depends on your specific
application and whether you use software or hardware handshake protocol.
The following paragraphs describe which lines of the HP 16500C Logic
Analysis System are used to control the handshake operation of RS-232-C
relative to the system. To locate the proper cable for your application, refer
to the reference manual for your computer or controller. It should describe
the exact handshake protocol your controller can use to operate over an
RS-232-C bus. In this chapter you will also find HP cable recommendations
for hardware handshake.

Programming Over RS-232-C
Interface Operation

3–3

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the Logic Analysis System and the
controller. Because the three-wire interface provides no hardware means to
control data flow between the controller and the Logic Analysis System, only
XON/OFF can control this data flow. The three-wire interface provides a
much simpler connection between devices since you can ignore hardware
handshake requirements.

The communications software you are using in your computer/controller must
be capable of using XON/XOFF exclusively in order to use three-wire interface
cables. For example, some communications software packages can use
XON/XOFF but also depend on the CTS and DSR lines being true to
communicate.

The Logic Analysis System uses the following connections on its RS-232-C
interface for three-wire communication:

• Pin 5 SGND (Signal Ground)

• Pin 3 TD (Transmit Data from Logic Analysis System)

• Pin 2 RD (Receive Data into Logic Analysis System)

The TD (Transmit Data) line from the Logic Analysis System must connect to
the RD (Receive Data) line on the controller. Likewise, the RD line from the
Logic Analysis System must connect to the TD line on the controller.
Internal pull-up resistors in the Logic Analysis System assure the DCD, DSR,
and CTS lines remain high when you are using a three-wire interface.

Programming Over RS-232-C
Minimum Three-Wire Interface with Software Protocol

3–4

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the Logic Analysis System and the controller. The
Logic Analysis System uses the following connections on its RS-232-C
interface for extended interface communication:

• Pin 5 SGND (Signal Ground)

• Pin 3 TD (Transmit Data from Logic Analysis System)

• Pin 2 RD (Receive Data into Logic Analysis System)

The additional lines you use depends on your controller’s implementation of
the extended hardwire interface.

• Pin 7 RTS (Request To Send) is an output from the Logic Analysis
System which can be used to control incoming data flow.

• Pin 8 CTS (Clear To Send) is an input to the Logic Analysis System
which controls data flow from the Logic Analysis System.

• Pin 6 DSR (Data Set Ready) is an input to the Logic Analysis System
which controls data flow from the Logic Analysis System within two bytes.

• Pin 1 DCD (Data Carrier Detect) is an input to the Logic Analysis
System which controls data flow from the Logic Analysis System within
two bytes.

• Pin 4 DTR (Data Terminal Ready) is an output from the Logic Analysis
System which is enabled as long as the Logic Analysis System is turned on.

The TD (Transmit Data) line from the Logic Analysis System must connect to
the RD (Receive Data) line on the controller. Likewise, the RD line from the
Logic Analysis System must connect to the TD line on the controller.

The RTS (Request To Send) is an output from the Logic Analysis System
which can be used to control incoming data flow. A true on the RTS line
allows the controller to send data and a false signals a request for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the Logic Analysis System, which control data flow
from the Logic Analysis System. Internal pull-up resistors in the Logic
Analysis System assure the DCD and DSR lines remain high when they are
not connected. If DCD or DSR are connected to the controller, the controller
must keep these lines along with the CTS line high to enable the Logic
Analysis System to send data to the controller. A low on any one of these

Programming Over RS-232-C
Extended Interface with Hardware Handshake

3–5

lines will disable the Logic Analysis System data transmission. Pulling the
CTS line low during data transmission will stop Logic Analysis System data
transmission immediately. Pulling either the DSR or DCD line low during
data transmission will stop Logic Analysis System data transmission, but as
many as two additional bytes may be transmitted from the Logic Analysis
System.

Cable Examples

HP 9000 Series 300

Figure 3-1 is an example of how to connect the HP 16500C Logic Analysis
System to the HP 98628A Interface card of an HP 9000 series 300 controller.
For more information on cabling, refer to the reference manual for your
specific controller.

Because this example does not have the correct connections for hardware
handshake, you must use the XON/XOFF protocol when connecting the Logic
Analysis System.

Figure 3-1

Cable Example

Programming Over RS-232-C
Cable Examples

3–6

HP Vectra Personal Computers and Compatibles

Figure 3-2 gives an example of a cable that will work for the extended
interface with hardware handshake. Keep in mind that this cable should
work if your computer’s serial interface supports the four common RS-232-C
handshake signals as defined by the RS-232-C standard. The four common
handshake signals are Data Carrier Detect (DCD), Data Terminal Ready
(DTR), Clear to Send (CTS), and Ready to Send (RTS).

Figure 3-2 shows the schematic of a 9-pin female to 25-pin male cable. The
following HP cables support this configuration:

• HP 24542G, DB-9(F) to DB-25(M), 3 meter

• HP 24542H, DB-9(F) to DB-25(M), 3 meter, shielded

• HP 45911-60009, DB-9(F) to DB-25(M), 1.5 meter

Figure 3-2

9-pin (F) to 25-pin (M) Cable

Configuring the Logic Analysis System Interface

The RS-232 Settings field in the System Configuration Menu allows you
access to the RS-232 Settings menu where the RS-232-C interface is
configured. If you are not familiar with how to configure the RS-232-C
interface, refer to chapter 3, "Configuring Communications," in the
HP 16500C Logic Analysis System User’s Reference.

Programming Over RS-232-C
Configuring the Logic Analysis System Interface

3–7

Interface Capabilities

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the Logic Analysis System to
properly communicate over the RS-232-C bus. The RS-232-C interface
capabilities of the HP 16500C Logic Analysis System are listed below:

• Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k

• Stop Bits: 1, 1.5, or 2

• Parity: None, Odd, or Even

• Protocol: None or XON/XOFF

• Data Bits: 8

Protocol

NONE With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, the hardware signals control
data flow.

XON/XOFF XON/XOFF stands for Transmit On/Transmit Off. With this
mode, the receiver (controller or Logic Analysis System) controls
data flow and can request that the sender (Logic Analysis System or
controller) stop data flow. By sending XOFF (ASCII 19) over its transmit
data line, the receiver requests that the sender disables data
transmission. A subsequent XON (ASCII 17) allows the sending device
to resume data transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7 or
8 bits, depending on the application. The HP 16500C Logic Analysis System
supports 8-bit only.

8-Bit Mode Information is usually stored in bytes (8 bits at a time).
With 8-bit mode, you can send and receive data just as it is stored,
without the need to convert the data.

Programming Over RS-232-C
Interface Capabilities

3–8

The controller and the HP 16500C Logic Analysis System must be in the
same bit mode to properly communicate over the RS-232-C. This means that
the controller must have the capability to send and receive 8-bit data.

See Also For more information on the RS-232-C interface, refer to the HP 16500C

Logic Analysis System User’s Reference. For information on RS-232-C
voltage levels and connector pinouts, refer to the HP 16500C Logic Analysis

System Service Guide.

RS-232-C Bus Addressing

The RS-232-C address you must use is dependent on the computer or
controller you are using to communicate with the Logic Analysis System.

HP Vectra Personal Computers or compatibles

If you are using an HP Vectra Personal Computer or compatible, it must have
an unused serial port to which you connect the Logic Analysis System’s
RS-232-C port. The proper address for the serial port is dependent on the
hardware configuration of your computer. Additionally, your
communications software must be configured to address the proper serial
port. Refer to your computer and communications software manuals for
more information on setting up your serial port address.

HP 9000 Series 300 Controllers

Each RS-232-C interface card for the HP 9000 Series 300 Controller has its
own interface select code. This code is used by the controller for directing
commands and communications to the proper interface by specifying the
correct interface code for the device address.

Generally, the interface select code can be any decimal value between 0 and
31, except for those interface codes which are reserved by the controller for
internal peripherals and other internal interfaces. This value can be selected
through switches on the interface card. For example, if your RS-232-C
interface select code is 9, the device address required to communicate over
the RS-232-C bus is 9. For more information, refer to the reference manual
for your interface card or controller.

Programming Over RS-232-C
RS-232-C Bus Addressing

3–9

Lockout Command

To lockout the front-panel controls, use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the :LOCKout
OFF command.

Hint Cycling the power will also restore local control, but this will also reset
certain RS-232-C states. It also resets the Logic Analysis System to the
power-on defaults and purges any acquired data in the acquisition memory of
all the installed modules.

See Also For more information on this command see chapter 11, "SYSTem Subsystem."

Programming Over RS-232-C
Lockout Command

3–10

4

Programming Over LAN

Introduction

This chapter describes different ways you can program your logic
analysis system over a LAN. There are no commands needed for
controlling the connection, and no special cabling issues. This
chapter assumes you have already set up your LAN, and concentrates
on how to control the HP 16500C from a host computer.

4–2

Communicating with the HP 16500C

You can communicate with the HP 16500C in several ways. If you NFS
mount your logic analysis system, it behaves like a disk drive on your LAN
and programs control it by writing to the \system\program file. The other
common way to control the instrument is through telnet or another
socket-style connection.

The HP 16500C must be turned on and completely booted up before you can
mount the system to your network. Once power is applied to the system and the
System Configuration menu is displayed, allow an additional 15 seconds before
attempting to connect to the system.

The LAN connection does not provide real-time programming control. Due
to the message handling protocol of Ethernet LAN, messages take an
indeterminate amount of time to reach their destinations. There can be no
guarantee that commands sent from your computer will reach the HP 16500C
in a timely way, although the majority of messages do.

LAN Addressing

All devices on an Ethernet LAN are uniquely identified by their Ethernet
address. The Ethernet address is set in the hardware of any Ethernet-
capable device.

However, the utilities you use to communicate with the HP 16500 Logic
Analysis System follow the TCP/IP protocol. This protocol assigns unique IP
addresses in software. When you connected your logic analysis system to
your LAN, you or your system administrator assigned an IP address to the
HP 16500C. Use this address to communicate with the HP 16500C. You can
check the address by selecting LAN Settings in the System Configuration
menu.

Programming Over LAN
Communicating with the HP 16500C

4–3

Password Protection and File Protection

There is no protection or security built into the HP 16500C. If you attempt to
connect to the logic analysis system via FTP, and you are prompted for a
password, leave the password field blank.

The operating system files, which are stored in the \system directory, are
also not protected against accidental deletion. If these files are deleted, the
HP 16500C will not operate the next time it is rebooted. If you do delete any
of these files, copy them from the flexible disks labeled "16500 Operating
System" back onto the hard disk, into the \system directory.

Permission Levels: Control and Data

The HP 16500C system can be mounted on your network with two different
levels of access, "control" or "data." When you mount the HP 16500 system,
you specify the type of access. The general syntax for mounting is:

UNIX mount [host or IP address]:/[control|data] /[drive name]

DOS net use [drive name] [host or IP address]:/[control|data]
net use [drive name] \\[host or IP address]\[control|data]

There are two differences between control and data permissions. First, the
control level provides read and write access to all files. The data level
provides write access only for the disk drives, and read access for all other
files. Second, control allows you to send programming commands to the
HP 16500C system, and data level does not.

You must be connected as the control user to program the HP 16500C.

The HP 16500C will accommodate one data and one control user at a time.
There can be only one control user at any time through any of the connection
methods – NFS mount, ftp, telnet, or using a socket. For example, if you ftp
to the HP 16500C as control, no one else can program it through any of the
other methods.

Programming Over LAN
Password Protection and File Protection

4–4

Controlling the HP 16500C

To control the HP 16500C Logic Analysis System with programming
commands, you can either write the commands to \system\program , or
open a socket in a C program. Either way, the controller in the System
Configuration menu must be set to LAN.

In order to send programming commands to the HP 16500C \system\program
file, the system must be connected to the LAN and you must be connected to
the system as the control user.

The \system\program file

Once the logic analysis system is connected to your network, you can send
commands to the system by sending them as text strings to the file location
\system\program . You can send the strings using a variety of methods:

• echo a string from the command line to \system\program

• copy an ASCII file containing a series of commands to \system\program

• from within a C or BASIC program, open the file \system\program and
write the commands to it using "fwrite" or "output".

Sockets

If you are programming in C or another language that supports sockets, you
can write strings directly to the HP 16500C system. Socket connections are
automatically control users, so if someone else is already connected to the
logic analysis system as control user you will not be able to connect. You can
also directly connect to the parser socket using telnet, and send commands
interactively. All socket connections, including telnet, need to specify port or
address 5025.

Programming Over LAN
Controlling the HP 16500C

4–5

Echoing Commands

To send a command directly from the command line or prompt of your PC or
workstation to the HP 16500C system, echo a text string containing the
command to the file location \system\program .

In order to send commands to the HP 16500C system parser, you must be
connected to the system as the control user.

Example To run the logic analyzer and acquire data, at the DOS prompt enter:

c:>echo :START > L:\system\program

If you are using a UNIX system, you can use the UNIX echo command.

Example An HP 16550A state/timing analyzer is installed in slot C (slot 3) of your
HP 16500C mainframe. To clear the trigger set-up on the HP 16550A, at the
DOS prompt enter:

c:>echo :SELECT 3 > L:\system\program
c:>echo :MACHINE1:STRIGGER:CLEAR ALL > L:\system\program

If you are using a UNIX system, you can use the UNIX echo command. The
first command selects the state/timing analyzer in slot C. The second
command clears the trigger.

Programming Over LAN
Echoing Commands

4–6

Copying Command Files

To control the HP 16500C system with longer sets of commands, you can first
type the commands into an ASCII file. You then copy the file to the HP 16500
program file, at location \system\program . Files copied to this file location
are passed on to the HP 16500C system’s command parser.

Example An HP 16550A state/timing analyzer is installed in slot C (slot 3) of your
HP 16500C mainframe. To clear the format and trigger set-ups on the
HP 16550A, using a program file, first type the commands into an ASCII text
file.

File clear.txt:

:SELECT 3
:MACHINE1:SFORMAT:REMOVE ALL
:MACHINE1:STRIGGER:CLEAR ALL

The first command selects the state/timing analyzer in slot C to receive
programming commands. The second command clears the format set-up.
The third command clears the trigger set-up.

Now copy the file to the HP 16500 system. At the DOS prompt enter:

copy clear.txt L:\system\program

If you are using a UNIX system, you might use the cp command. In an
MS-Windows environment, you can use File Manager.

Programming Over LAN
Copying Command Files

4–7

Writing to \system\program from a Program

You can send commands to the HP 16500C program file from a program
running on your PC or workstation. The basic procedure is to open the
program file and send text strings containing the commands to the file. In C,
you can use the fwrite or putstr commands to write text strings to the
program file.

Your operating system may buffer the commands before sending them to the
HP 16500C system. To prevent this, you may need to empty the buffer after
each command. In C, you can use the flush command to empty the buffer.

Queries

Responses to queries appear as text strings in \system\program . To
retrieve information from queries, create a text buffer, open the program file
and read the contents of the file into the buffer. In C you can use the fread
or getstr commands to read the contents of the file into the buffer.
Whenever you send queries to the HP 16500 system, you will need to pause
your program for a short time, to allow the system to process the query
before you attempt to read the response. A time equal to or slightly greater
than the file timeout is sufficient.

Resetting the File Pointer

Whenever you change from reading \system\program to writing to it, or
from writing to reading, you will need to reset the file pointer to the
beginning of the file. In C, you can use the rewind command to reset the
pointer, or you can close the program file, then immediately re-open it.

Programming Over LAN
Writing to \system\program from a Program

4–8

Example The following example in C opens the \system\program file and sends
several commands and queries. Responses to queries appear as text strings
in \system\program . The HP 16500C has been NFS-mounted in the \users
directory.

#include <stdio.h>
#include <unistd.h>

#define STR_LEN 80

void putstr(FILE *file, char *str)
{
 fwrite(str, strlen(str), 1, file);
}

int getstr(FILE *file, char* str)
{
 return(fread(str, 1, STR_LEN, file));
}

void main()
{
 FILE *file;
 int num;
 char receive_str[STR_LEN];

/* Send a query and retrieve and print the response*/
 file = fopen("/users/system/program", "r");
 while (getstr(file, receive_str) != 0);
 fclose(file);
 file = fopen("/users/system/program", "w");
 putstr(file, "*idn?\n");
 fclose(file);
 sleep(1);
 file = fopen("/users/system/program", "r");
 while (getstr(file, receive_str) == 0);
 fclose(file);
 printf("%s\n", receive_str);

Programming Over LAN
Writing to \system\program from a Program

4–9

/*Send command strings to the HP16500*/
 file = fopen("/users/system/program", "w");
 putstr(file, "*rst\n");
 putstr(file, ":sel 4\n");
 putstr(file, ":mach1:twav:range 1 s\n");
 putstr(file, ":start\n");
 putstr(file, ":mach1:twav:range 100 ns\n");
 fclose(file);
 sleep(2);
 file = fopen("/users/system/program", "r");
 while (getstr(file, receive_str) == 0);
 fclose(file);
 printf("%s\n", receive_str);
}

Programming Over LAN
Writing to \system\program from a Program

4–10

Sending Commands to the HP 16500C Socket

If you are programming in C, you can use a socket to communicate with the
HP 16500 system. By opening a socket connection, you can send program
commands directly to the command parser. The HP 16500C system socket
port identification number is 5025.

You can also connect directly to the parser socket and type commands
directly to the HP 16500. The second example uses telnet to connect to the
parser socket.

Example The following C program opens a socket and sends a query to request the
instrument’s identity. If someone else is already connected as control user,
the socket will eventually close without receiving a response.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

typedef struct sockaddr_in tdSOCKET_ADDR;

#define PARSER_PORT 5025
#define SERV_HOST_ADDR "15.10.96.12"
#define PARSER_BUFFER_SIZE 100

char receiveBuffer[PARSER_BUFFER_SIZE],
 *cmdString = { "*IDN?\r\n" };

main ()
{
 int sockfd,
 port;
 tdSOCKET_ADDR serv_addr;
 char *addr;

/* Initialize a server socket */
 port = PARSER_PORT;
 addr = SERV_HOST_ADDR ;
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = inet_addr (addr);
 serv_addr.sin_port = htons (port);

Programming Over LAN
Sending Commands to the HP 16500C Socket

4–11

 /* Create an endpoint for communication */
 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 /* Initiate a connection on the created socket */
 connect(sockfd, (tdSOCKET_ADDR *)&serv_addr,
 sizeof (serv_addr));

 /* Send a message from the created socket */
 send (sockfd, cmdString, strlen (cmdString), 0);

/* Receive a message from the 16500 socket */
 recv (sockfd, receiveBuffer, sizeof(receiveBuffer),0);
 printf ("%s\n", receiveBuffer);
 close (sockfd);
}

Example This example uses telnet to connect directly to the HP 16500 parser socket.
To remotely interact with the logic analyzer, enter:

telnet [symbolic name or IP address] 5025

You must specify the HP 16500 parser socket address 5025. You can now
type commands directly to the HP 16500 system. The results of queries will
appear on the command line of your PC or workstation.

To send the command which will run the analyzer and acquire data, enter:

:START

Programming Over LAN
Sending Commands to the HP 16500C Socket

4–12

Lockout Command

To lockout the front-panel controls, use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the :LOCKout
OFF command.

Hint Cycling the power will also restore local control, but this will reset the Logic
Analysis System to the power-on defaults and purges any acquired data in
the acquisition memory of all the installed modules.

See Also For more information on this command see chapter 11, "SYSTem Subsystem."

Programming Over LAN
Lockout Command

4–13

4–14

5

Programming and
Documentation Conventions

Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the documentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

5–2

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

• If the long form has four or fewer characters, there is no change in the
short form. When the long form has more than four characters the short
form is just the first four characters, unless the fourth character is a
vowel. In that case only the first three characters are used.

There are some commands that do not conform to the truncation rule by design.
These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 5-1.

Table 5-1 Truncation Examples

Long Form Short Form

OFF OFF

DATA DATA

START STAR

LONGFORM LONG

DELAY DEL

ACCUMULATE ACC

Programming and Documentation Conventions
Truncation Rule

5–3

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

Sequential and Overlapped Commands

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently; therefore,
the command following an overlapped command may be started before the
overlapped command is completed. The overlapped commands for the HP
16500C Logic Analysis System are STARt and STOP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read the
response. The HP 16500C Logic Analysis System will buffer responses to a
query when it is parsed.

Syntax Diagrams

At the beginning of each chapter in Part 2, "Commands," is a syntax diagram
showing the proper syntax for each command. All characters contained in a
circle or oblong are literals, and must be entered exactly as shown. Words
and phrases contained in rectangles are names of items used with the
command and are described in the accompanying text of each command.
Each line can only be entered from one direction as indicated by the arrow

Programming and Documentation Conventions
Infinity Representation

5–4

on the entry line. Any combination of commands and arguments that can be
generated by following the lines in the proper direction is syntactically
correct. An argument is optional if there is a path around it. When there is a
rectangle which contains the word "space," a white space character must be
entered. White space is optional in many other places.

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

< > Angular brackets enclose words or characters that are used to symbolize a
program code parameter or a bus command

::= "is defined as." For example, A ::= B indicates that A can be replaced by B in
any statement containing A.

| "or." Indicates a choice of one element from a list. For example, A | B
indicates A or B, but not both.

... An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

[] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces and separated by vertical bars (|),
one, and only one of these elements must be selected.

XXX Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

<NL> Linefeed (ASCII decimal 10).

Programming and Documentation Conventions
Notation Conventions and Definitions

5–5

The Command Tree

The command tree (figure 5-1) shows all commands in the HP 16500C Logic
Analysis System and the relationship of the commands to each other. You
should notice that the common commands are not actually connected to the
other commands in the command tree. After a <NL> (linefeed - ASCII
decimal 10) has been sent to the instrument, the parser will be set to the root
of the command tree. Parameters are not shown in this figure. The command
tree allows you to see what the system’s parser expects to receive. All legal
headers can be created by traversing down the tree, adding keywords until
the end of a branch has been reached.

Command Types

As shown in chapter 1, "Header Types," there are three types of headers.
Each header has a corresponding command type. This section shows how
they relate to the command tree.

System Commands The system commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon. START
and STOP are examples of system commands.

Subsystem Commands Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Programming and Documentation Conventions
The Command Tree

5–6

Figure 5-1

HP 16500C Command Tree

Programming and Documentation Conventions
The Command Tree

5–7

Tree Traversal Rules

Command headers are created by traversing down the command tree. A
legal command header from the command tree in figure 5-1 would be
:MMEMORY:INITIALIZE . This is referred to as a compound header. As
shown on the tree, branches are always preceded by colons. Do not add
spaces around the colons. The following two rules apply to traversing the tree:

• A leading colon (the first character of a header) or a terminator places the
parser at the root of the command tree. For example, the colon preceding
MMEMORY (:MMEMORY) in the above example places the parser at the root
of the command tree.

• Executing a subsystem command places you in that subsystem until a
leading colon or a terminator is found. The parser will stay at the colon
above the keyword where the last header terminated. Any command
below that point can be sent within the current program message without
sending the keywords(s) which appear above them. For example, the
colon separating MMEMORY and INITIALIZE is the location of the
parser when this compound header is parsed.

The following examples are written using HP BASIC 6.2 on a HP 9000 Series
300 Controller. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF). The three Xs (XXX) shown in this manual after
an ENTER or OUTPUT statement represents the device address required by
your controller.

Example In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM:HEADER is a compound command. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separator> . The LONGFORM command does not need
SYSTEM preceding it, since the SYSTEM:HEADER command sets the parser
to the SYSTEM node in the tree.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Programming and Documentation Conventions
Tree Traversal Rules

5–8

Example In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command must
be in the same program message as the INITIALIZE command, since the
<program message terminator> will place the parser back at the root
of the command tree.

OUTPUT XXX;":MMEMORY:INITIALIZE;STORE ’FILE ’,’FILE
DESCRIPTION’"

Another way to send these commands is by placing MMEMORY: before the
STORE command as shown in the second line of this example.

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX;":MMEMORY:STORE ’FILE ’,’FILE DESCRIPTION’"

Example In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

OUTPUT XXX;":MMEM:CATALOG?;:SYSTEM:PRINT ALL"

Programming and Documentation Conventions
Tree Traversal Rules

5–9

Command Set Organization

The command set for the HP 16500C Logic Analysis System mainframe is
divided into 6 separate groups as shown in figure 5-1. The command groups
are: common commands, mainframe commands, and 4 sets of subsystem
commands. In addition to the command tree in figure 5-1, a command to
subsystem cross-reference is shown in table 5-1.

Each of the 6 groups of commands is described in a separate chapter in Part
2, "Commands." Each of the chapters contain a brief description of the
subsystem, a set of syntax diagrams for those commands, and the commands
for that subsystem in alphabetical order.

The commands are shown in the long form and short form using upper and
lowercase letters. As an example, AUToload indicates that the long form of
the command is AUTOLOAD and the short form of the command is AUT .
Each of the commands contain a description of the command, its arguments,
and the command syntax.

Subsystems

There are four subsystems in the mainframe. In the command tree (figure
5-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power on,
the command parser is set to the root of the command tree; therefore, no
subsystem is selected. The four subsystems in the HP 16500C Logic Analysis
System are:

• SYSTem – controls some basic functions of the instrument.

• MMEMory – provides access to the internal disk drive.

• INTermodule – provides access to the Intermodule bus (IMB).

• TGTctrl – provides access to the target control signals.

Programming and Documentation Conventions
Command Set Organization

5–10

Table 5-1

Alphabetic Command Cross-Reference

Command Subsystem Command Subsystem Command Subsystem
*CLS Common DATA SYSTem PORTEDGE INTermodule
*ESE Common DELete INTermodule PORTLEV INTermodule
*ESR Common DOWNload MMEMory PRINt SYSTem
*IDN Common DRIVe TGTctrl PULSe TGTctrl
*IST Common DSP SYSTem PURGe MMEMory
*OPC Common EOI Mainframe PWD MMEMory
*OPT Common ERRor SYSTem REName MMEMory
*PRE Common HEADer SYSTem RMODe Mainframe
*RST Common HTIMe INTermodule RTC Mainframe
*SRE Common INITialize MMEMory SELect Mainframe
*STB Common INPort INTermodule SETColor Mainframe
*TRG Common INSert INTermodule SIGNal TGTctrl
*TST Common LASTstate TGTctrl SIGStatus TGTctrl
*WAI Common LER Mainframe SKEW INTermodule
ALL TGTctrl LOAD MMEMory STARt Mainframe
AUToload MMEMory LOCKout Mainframe STATes TGTctrl
AVAILable TGTctrl LONGform SYSTem STEP TGTctrl
BEEPer Mainframe MENU Mainframe STOP Mainframe
BITS TGTctrl MESE Mainframe STORe MMEMory
CAPability Mainframe MESR Mainframe SETup SYSTem
CARDcage Mainframe MKDir MMEMory TOGGle TGTctrl
CATalog MMEMory MSI MMEMory TREE INTermodule
CD MMEMory NAME TGTctrl TTIMe INTermodule
CESE Mainframe OUTDrive INTermodule TYPE TGTctrl
CESR Mainframe OUTPolar INTermodule UPLoad MMEMory
COPY MMEMory OUTType INTermodule VOLume MMEMory
CURSTate TGTctrl PACK MMEMory

Programming and Documentation Conventions
Subsystems

5–11

Program Examples

The program examples in chapter 15, "Programming Examples," were written
on an HP 9000 Series 300 controller using the HP BASIC 6.2 language. The
programs always assume a generic address for the HP 16500C Logic Analysis
System of 707. The shorter examples given in the reference sections use a
generic address of XXX.

In the examples, you should pay special attention to the ways in which the
command and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. Uppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONGform allow you to dictate what forms the responses take, but they have
no affect on how you must structure your commands and queries.

Example The following commands all set the logic analyzer’s Timing Waveform Delay
to 100 ms.

Keywords in long form, numbers using the decimal format.

OUTPUT XXX;":SELECT 2:MACHINE1:TWAVEFORM:DELAY .1"

Keywords in short form, numbers using an exponential format.

OUTPUT XXX;":SEL 2:MACH1:TWAV:DEL 1E-1"

Keywords in short form using lowercase letters, numbers using a suffix.

OUTPUT XXX;":sel 2:mach1:twav:del 100ms"

In these examples, the colon shown as the first character of the command is
optional on the HP 16500C Logic Analysis System. The space between DELay
and the argument is required.

Programming and Documentation Conventions
Program Examples

5–12

6

Message Communication and
System Functions

Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 Standard to
successfully program the Logic Analysis System. You can find
additional detailed information about the IEEE 488.2 Standard in
ANSI/IEEE Std 488.2-1987, IEEE Standard Codes, Formats,

Protocols, and Common Commands.

The HP 16500C Logic Analysis System is designed to be compatible
with other Hewlett-Packard IEEE 488.2 compatible instruments.
Instruments that are compatible with IEEE 488.2 must also be
compatible with IEEE 488.1 (HP-IB bus standard); however, IEEE
488.1 compatible instruments may or may not conform to the IEEE
488.2 standard. The IEEE 488.2 standard defines the message
exchange protocols by which the instrument and the controller will
communicate. It also defines some common capabilities, which are
found in all IEEE 488.2 instruments. This chapter also contains a few
items which are not specifically defined by IEEE 488.2, but deal with
message communication or system functions.

The syntax and protocol for RS-232-C program messages and
response messages for the HP 16500C Logic Analysis System are
structured very similar to those described by IEEE 488.2. In most
cases, the same structure shown in this chapter for IEEE 488.2 will
also work for RS-232-C. Because of this, no additional information has
been included for RS-232-C.

6–2

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controller
and the instrument to communicate. This includes defining when it is
appropriate for devices to talk or listen, and what happens when the protocol
is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The output queue of the instrument is the memory area
where all output data are stored until read by the controller.

Parser The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. Parsing and executing of commands begins when either the
instrument recognizes a program message terminator (defined later in
this chapter) or the input buffer becomes full. If you wish to send a long
sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the program message terminator.

Message Communication and System Functions
Protocols

6–3

Protocol Overview

The instrument and controller communicate using program messages and
response messages. These messages serve as the containers into which sets
of program commands or instrument responses are placed. Program
messages are sent by the controller to the instrument, and response
messages are sent from the instrument to the controller in response to a
query message. A query message is defined as being a program message
which contains one or more queries. The instrument will only talk when it
has received a valid query message, and therefore has something to say. The
controller should only attempt to read a response after sending a complete
query message, but before sending another program message. An important
rule to remember is that the instrument will only talk when prompted to, and
it then expects to talk before being told to do something else.

Protocol Operation

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
program messages and response messages. This means that the controller
should always terminate a program message before attempting to read a
response. The instrument will terminate response messages except during a
hardcopy output.

If a query message is sent, the next message passing over the bus should be
the response message. The controller should always read the complete
response message associated with a query message before sending another
program message to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As noted in
chapter 1, "Multiple Queries," multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
Protocols

6–4

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Some of the protocol exceptions are shown
below.

Command Error A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram in this chapter is similar to the syntax diagrams
in the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an element,
that element is optional. If there is a path from right to left around one or
more elements, that element or those elements may be repeated as many
times as desired.

Message Communication and System Functions
Syntax Diagrams

6–5

Figure 6-1

Example syntax diagram

Message Communication and System Functions
Syntax Diagrams

6–6

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need to know.

IEEE 488.2 defines the blocks used to build messages which are sent to the
instrument. A whole string of commands can therefore be broken up into
individual components.

Figure 6-1 is an example syntax diagram and figure 6-2 shows a breakdown of
an example program message. There are a few key items to notice:

• A semicolon separates commands from one another. Each program
message unit serves as a container for one command. The program
message units are separated by a semicolon.

• A program message is terminated by a <NL> (new line). The recognition
of the program message terminator, or <PMT>, by the parser serves as a
signal for the parser to begin execution of commands. The <PMT> also
affects command tree traversal.

• Multiple data parameters are separated by a comma.

• The first data parameter is separated from the header with one or more
spaces.

• The header SYSTEM:LONGFORM OFF is an example of a compound
header. It places the parser in the machine subsystem until the <NL> is
encountered.

• A colon preceding the command header returns you to the top of the
command tree.

See Also Chapter 5, "Programming and Documentation Conventions"

Message Communication and System Functions
Syntax Overview

6–7

Figure 6-2

<program message> Parse Tree

Message Communication and System Functions
Syntax Overview

6–8

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has
the same semantic meaning as the mnemonic single .

<white space>

<white space> is defined to be one or more characters from the ASCII set
of 0 – 32 decimal, excluding 10 decimal (NL). <white space> is used by
several instrument listening components of the syntax. It is usually optional,
and can be used to increase the readability of a program.

Suffix Multiplier The suffix multipliers that the instrument will accept
are shown in table 6-1. They are used in conjunction with suffix units,
shown in table 6-2.

Table 6-1 <suffix mult>

Value Mnemonic

1E18 EX

1E15 PE

1E12 T

1E9 G

1E6 MA

1E3 K

1E-3 M

1E-6 U

1E-9 N

1E-12 P

1E-15 F

1E-18 A

Message Communication and System Functions
Syntax Overview

6–9

Suffix Unit The suffix units that the instrument will accept are shown
in table 6-2.

Table 6-2 <suffix unit>

Suffix Referenced Unit

V Volt

S Second

Example To specify 3 ns, you might enter 3NS or 3E-9 S in your program.

Message Communication and System Functions
Syntax Overview

6–10

7

Status Reporting

Introduction

Status reporting allows you to use information about the instrument in
your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE
488.2 and discusses how they are implemented in the HP 16500C
Logic Analysis System. Also in this chapter is a sample set of steps
you might use to perform a serial poll over HP-IB.

The status reporting features available over the bus are the serial and
parallel polls. IEEE 488.2 defines data structures, commands, and
common bit definitions. There are also instrument-defined structures
and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the summary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue. If *CLS is
sent immediately following a program message terminator, the output
queue will also be cleared.

7–2

Figure 7-1

Status Byte Structures and Concepts

Status Reporting

7–3

Event Status Register

The Event Status Register is an IEEE 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The sixth
bit does not logically exist and is always returned as a zero. To read and
write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 7-1 and in chapter 9, "Common
Commands:"

MAV - message available

Indicates whether there is a response in the output queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - master summary status

Indicates whether the device has a reason for requesting service. This bit is
returned for the *STB? query.

RQS - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to 0 after being read via a serial poll (MSS is not
reset by *STB?).

Status Reporting
Event Status Register

7–4

 MSG - message

Indicates whether there is a message in the message queue (Not
implemented in the HP 16500C Logic Analysis System).

PON - power on

Indicates power has been turned on.

URQ - user request

Always returns a 0 from the HP 16500C Logic Analysis System.

CME - command error

Indicates whether the parser detected an error.

EXE - execution error

Indicates whether a parameter was out of range, or inconsistent with current
settings.

DDE - device specific error

Indicates whether the device was unable to complete an operation for device
dependent reasons.

QYE - query error

Indicates whether the protocol for queries has been violated.

The error numbers and strings for CME, EXE, DDE, and QYE can be read from a
device-defined queue (which is not part of IEEE 488.2) with the query
:SYSTEM:ERROR? STRING.

RQC - request control

Always returns a 0 from the HP 16500C Logic Analysis System.

OPC - operation complete

Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

Status Reporting
Bit Definitions

7–5

LCL - remote to local

Indicates whether a remote to local transition has occurred.

MSB - module summary bit

Indicates that an enable event in one of the module Status registers has
occurred.

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete

The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *OPC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

Example OUTPUT XXX;"*SRE 32 ; *ESE 1" !enables an OPC service
request

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. If the device is requesting service (RQS set), and the
controller serial-polls the device, the RQS bit is cleared. The MSS (Master
Summary Status) bit (read with *STB?)) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

Status Reporting
Key Features

7–6

Figure 7-2

Service Request Enabling

Status Reporting
Key Features

7–7

Serial Poll

The HP 16500C Logic Analysis System supports the IEEE 488.1 serial poll
feature. When a serial poll of the instrument is requested, the RQS bit is
returned on bit 6 of the status byte.

Using Serial Poll (HP-IB)

This example will show how to use the service request by conducting a serial
poll of all instruments on the HP-IB bus. In this example, assume that there
are two instruments on the bus: the Logic Analysis System at address 7 and a
printer at address 1.

The program command for serial poll using HP BASIC 6.2 is
Stat = SPOLL(707). The address 707 is the address of the Logic Analysis
System in the this example. The command for checking the printer is
Stat = SPOLL(701) because the address of that instrument is 01 on bus
address 7. This command reads the contents of the HP-IB Status Register
into the variable called Stat. At that time bit 6 of the variable Stat can be
tested to see if it is set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus.

This allows the controller to see the SRQ line.

2 Disable interrupts on the bus.
3 If the SRQ line is high (some instrument is requesting service) then

check the instrument at address 1 to see if bit 6 of its status register is
high.

4 To check whether bit 6 of an instruments status register is high, use
the BASIC statement IF BIT (Stat, 6) THEN

5 If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more information
about serial poll, refer to your controller manual and programming language
reference manuals.

Status Reporting
Serial Poll

7–8

After the serial poll is completed, the RQS bit in the Status Byte Register of
the HP 16500C Logic Analysis System will be reset if it was set. Once a bit in
the Status Byte Register is set, it will remain set until the status is cleared
with a *CLS command, or the instrument is reset.

Parallel Poll

Parallel poll is a controller-initiated operation which is used to obtain
information from several devices simultaneously. When a controller initiates
a Parallel Poll, each device returns a Status Bit via one of the DIO data lines.
Device DIO assignments are made by the controller using the PPC (Parallel
Poll Configure) sequence. Devices respond either individually, each on a
separate DIO line; collectively on a single DIO line; or any combination of
these two ways. When responding collectively, the result is a logical AND
(True High) or logical OR (True Low) of the groups of status bits.

Figure 7-3 shows the Parallel Poll Data Structure. The summary bit is sent in
response to a Parallel Poll. This summary bit is the "IST" (individual status)
local message.

The Parallel Poll Enable Register determines which events are summarized in
the IST. The *PRE command is used to write to the enable register and the
*PRE? query is used to read the register. The *IST? query can be used to
read the IST without doing a parallel poll.

Status Reporting
Parallel Poll

7–9

Figure 7-3

Parallel Poll Data Structure

Status Reporting
Parallel Poll

7–10

Polling HP-IB Devices

Parallel poll is the fastest means of gathering device status when several
devices are connected to the bus. Each device (with this capability) can be
programmed to respond with one bit of status when parallel polled. This
makes it possible to obtain the status of several devices in one operation. If a
device responds affirmatively to a parallel poll, more information about its
specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses

Certain devices, including the HP 16500C Logic Analysis System, can be
remotely programmed by a controller to respond to a parallel poll. A device
which is currently configured for a parallel poll responds to the poll by
placing its current status on one of the bus data lines. The response and the
data-bit number can then be programmed by the PPC (parallel poll
configure) statement. No multiple listeners can be specified in this
statement. If more than one device is to respond on a single bit, each device
must be configured with a separate PPC statement.

Example ASSIGN @Device TO 707
PPOLL CONFIGURE @Device;Mask

Status Reporting
Polling HP-IB Devices

7–11

The value of Mask (any numeric expression can be specified) is first rounded
and then used to configure the device’s parallel response. The least
significant 3 bits (bits 0 through 2) of the expression are used to determine
which data line the device is to respond on (place its status on). Bit 3
specifies the "true" state of the parallel poll response bit of the device. A
value of 0 implies that the device’s response is 0 when its status bit message
is true.

Example The following statement configures the device at address 07 on the interface
select code 7 to respond by placing a 0 on bit 4 when its status response is
"true."
PPOLL CONFIGURE 707;4

Conducting a Parallel Poll

The PPOLL (Parallel Poll) function returns a single byte containing up to 8
status bit messages for all devices on the bus capable of responding to the
poll. Each bit returned by the function corresponds to the status bit of the
device(s) configured to respond to the parallel poll (one or more devices can
respond on a single line). The PPOLL function can only be executed by the
controller. It is initiated by the simultaneous assertion of ATN and EOI.

Example Response = PPOLL(7)

Status Reporting
Conducting a Parallel Poll

7–12

Disabling Parallel Poll Responses

The PPU (Parallel Poll Unconfigure) statement gives the controller the
capability of disabling the parallel poll responses of one or more devices on
the bus.

Example The following statement disables device 5 only:

PPOLL UNCONFIGURE 705

This statement disables all devices on interface select code 8 from
responding to a parallel poll:

PPOLL UNCONFIGURE 8

If no primary address is specified, all bus devices are disabled from
responding to a parallel poll. If a primary address is specified, only the
specified devices (which have the parallel poll configure capability) are
disabled.

HP-IB Commands

The following paragraphs describe actual HP-IB commands which can be
used to perform the functions of the BASIC commands shown in the previous
examples.

Parallel Poll Unconfigure Command

The parallel poll unconfigure command (PPU) resets all parallel poll devices
to the idle state (unable to respond to a parallel poll).

Parallel Poll Configure Command

The parallel poll configure command (PPC) causes the addressed listener to
be configured according to the parallel poll enable secondary command PPE.

Status Reporting
Disabling Parallel Poll Responses

7–13

Parallel Poll Enable Command

The parallel poll enable secondary command (PPE) configures the devices
which have received the PPC command to respond to a parallel poll on a
particular HP-IB DIO line with a particular level.

Parallel Poll Disable Command

The parallel poll disable secondary command (PPD) disables the devices
which have received the PPC command from responding to the parallel poll.

Table 7-1 Parallel Poll Commands

Command Mnemonic Decimal
Code

ASCII/ISO
Character

Parallel Poll Unconfigure
(Multiline Command)

PPU 21 NAK

Parallel Poll Configure
(Addressed Command)

PPC 05 ENQ

Parallel Poll Enable
(Secondary Command)

PPE 96-111 I-O

Parallel Poll Disable
(Secondary Command)

PPD 112 P

Status Reporting
HP-IB Commands

7–14

8

Error Messages

Introduction

This chapter lists the error messages that relate to the HP 16500C
Logic Analysis System.

8–2

Device Dependent Errors

200 Label not found

201 Pattern string invalid

202 Qualifier invalid

203 Data not available

300 RS-232-C error

Command Errors

–100 Command error (unknown command)(generic error)

–101 Invalid character received

–110 Command header error

–111 Header delimiter error

–120 Numeric argument error

–121 Wrong data type (numeric expected)

–123 Numeric overflow

–129 Missing numeric argument

–130 Nonnumeric argument error (character, string, or block)

–131 Wrong data type (character expected)

–132 Wrong data type (string expected)

–133 Wrong data type (block type #D required)

–134 Data overflow (string or block too long)

–139 Missing nonnumeric argument

–142 Too many arguments

–143 Argument delimiter error

–144 Invalid message unit delimiter

Error Messages
Device Dependent Errors

8–3

Execution Errors

–200 Can not do (generic execution error)

–201 Not executable in local mode

–202 Settings lost due to return-to-local or power on

–203 Trigger ignored

–211 Legal command, but settings conflict

–212 Argument out of range

–221 Busy doing something else

–222 Insufficient capability or configuration

–232 Output buffer full or overflow

–240 Mass Memory error (generic)

–241 Mass storage device not present

–242 No media

–243 Bad media

–244 Media full

–245 Directory full

–246 File name not found

–247 Duplicate file name

–248 Media protected

Internal Errors

–300 Device failure (generic hardware error)

–301 Interrupt fault

–302 System error

–303 Time out

–310 RAM error

–311 RAM failure (hardware error)

–312 RAM data loss (software error)

–313 Calibration data loss

Error Messages
Execution Errors

8–4

–320 ROM error

–321 ROM checksum

–322 Hardware and firmware incompatible

–330 Power on test failed

–340 Self Test failed

–350 Too many errors (error queue overflow)

Query Errors

–400 Query error (generic)

–410 Query interrupted

–420 Query unterminated

–421 Query received. Indefinite block response in progress

–422 Addressed to talk, nothing to say

–430 Query deadlocked

Error Messages
Query Errors

8–5

8–6

Part 2

9 Common Commands 9-1
10 Mainframe Commands 10-1
11 SYSTem Subsystem 11-1
12 MMEMory Subsystem 12-1
13 INTermodule Subsystem 13-1
14 TGTctrl Subsystem 14-1

Commands

9

Common Commands

Introduction

The common commands are defined by the IEEE 488.2 standard.
These commands must be supported by all instruments that comply
with this standard. Refer to figure 9-1 and table 9-1 for the common
commands syntax diagram.

The common commands control some of the basic instrument
functions such as instrument identification and reset, how status is
read and cleared, and how commands and queries are received and
processed by the instrument. The common commands are:

Common commands can be received and processed by the HP 16500C
Logic Analysis System, whether they are sent over the bus as separate
program messages or within other program messages. If an
instrument subsystem has been selected and a common command is
received by the instrument, the system will remain in the selected
subsystem.

Example If the program message in this example is received by the system, it
will initialize the disk and store the file and clear the status
information. This is not the case if some other type of command is
received within the program message.

":MMEMORY:INITIALIZE;*CLS; STORE ’FILE ’,’DESCRIPTION’"

• *CLS

• *ESE

• *ESR

• *IDN

• *IST

• *OPC

• *OPT

• *PRE

• *RST

• *SRE

• *STB

• *TRG

• *TST

• *WAI

9–2

Example This program message initializes the disk, selects the module in slot A,
then stores the file. In this example, :MMEMORY must be sent again
in order to re-enter the memory subsystem and store the file.

":MMEMORY:INITIALIZE;:SELECT 1;:MMEMORY:STORE ’FILE ’,
’DESCRIPTION’"

Status Registers

Each status register has an associated status enable (mask) register.
By setting the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not been
masked (enabled in the enable register) will not be used to report
status summary information to bits in other status registers.

See Also Chapter 7, "Status Reporting," for a complete discussion of how to
read the status registers and how to use the status information
available from this instrument.

Common Commands

9–3

Figure 9-1

 Common Commands Syntax Diagram

Common Commands

9–4

Table 9-1 Common Command Parameter Values

Parameter Values
mask An integer, 0 through 255.
pre_mask An integer, 0 through 65535.

*CLS (Clear Status)

Command *CLS

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte. If
the *CLS command immediately follows a program message terminator, the
output queue and the MAV (Message Available) bit will be cleared.

Example OUTPUT XXX;"*CLS"

See Also Refer to chapter 7, "Status Reporting," for a complete discussion of status.

Common Commands
*CLS (Clear Status)

9–5

*ESE (Event Status Enable)

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in table 9-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status in the
Standard Event Status Register.

<mask> An integer from 0 to 255

Example In this example, the *ESE 32 command will enable CME (Command Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB) in the Status Byte
Register will also be set.

OUTPUT XXX;"*ESE 32"

Query *ESE?

The *ESE query returns the current contents of the enable register.
Returned Format <mask><NL>

Example OUTPUT XXX;"*ESE?"

See Also Refer to chapter 7, "Status Reporting" for a complete discussion of status.

Common Commands
*ESE (Event Status Enable)

9–6

Table 9-2 Standard Event Status Enable Register

Bit Position Bit Weight Enables
7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
1 2 RQC - Request Control
0 1 OPC - Operation Complete

*ESR (Event Status Register)

Query *ESR?

The *ESR query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.

Returned Format <status><NL>

<status> An integer from 0 to 255

Example If a command error has occurred, and bit 5 of the ESE register is set, the
string variable Esr_event$ will have bit 5 (the CME bit) set.

10 OUTPUT XXX;"*ESE 32 !Enables bit 5 of the status register
20 OUTPUT XXX;"*ESR?" !Queries the status register
30 ENTER XXX; Esr_event$!Reads the query buffer

Common Commands
*ESR (Event Status Register)

9–7

Table 9-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

Table 9-3 Standard Event Status Register

Bit Position Bit Weight Bit Name Condition
7 128 PON 0 = register read - not in power up mode

1 = power up
6 64 URQ 0 = user request - not used - always zero
5 32 CME 0 = no command errors

1 = a command error has been detected
4 16 EXE 0 = no execution errors

1 = an execution error has been detected
3 8 DDE 0 = no device dependent errors

1 = a device dependent error has been detected
2 4 QYE 0 = no query errors

1 = a query error has been detected
1 2 RQC 0 = request control - not used - always zero
0 1 OPC 0 = operation is not complete

1 = operation is complete

Common Commands
*ESR (Event Status Register)

9–8

*IDN (Identification Number)

Query *IDN?

The *IDN? query allows the instrument to identify itself. It returns the string:

"HEWLETT-PACKARD,16500C,0,REV <revision_code>"

An *IDN? query must be the last query in a message. Any queries after the
*IDN? in the program message are ignored.

Returned Format HEWLETT-PACKARD,16500C,0,REV <revision code>

<revision
code>

Four digit-code in the format XX.XX representing the current ROM revision.

Example OUTPUT XXX;"*IDN?"

*IST (Individual Status)

Query *IST?

The *IST query allows the instrument to identify itself during parallel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
IST local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 9-2 shows the *IST data structure.
Returned Format <id><NL>

<id> {0|1} 0 indicates the IST local message is true; 1 indicates the IST local
message is false.

Example OUTPUT XXX;"*IST?"

Common Commands
*IDN (Identification Number)

9–9

Figure 9-2

*IST Data Structure

Common Commands
*IST (Individual Status)

9–10

*OPC (Operation Complete)

Command *OPC

The *OPC command will cause the instrument to set the operation complete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for the
HP 16500C are STARt and STOP.

Example OUTPUT XXX;"*OPC"

Query *OPC?

The *OPC query places an ASCII "1" in the output queue when all pending
device operations have been completed.

Returned Format 1<NL>

Example OUTPUT XXX;"*OPC?"

Common Commands
*OPC (Operation Complete)

9–11

*OPT (Option Identification)

Query *OPT?

The *OPT query identifies the software installed in the HP 16500C. This
query returns nine parameters. The first parameter indicates whether you
are in the System. The next two parameters indicate any software options
installed, and the next parameter indicates whether intermodule is available
for the System. The last five parameters list the installed software for the
modules in slot A through E for an HP 16500C mainframe. When an
HP 16501A Expansion frame is connected, there will be ten parameters after
the INTERMODULE for modules in slots A through J. A zero in any of the
last eight parameters indicates that the corresponding software is not
currently installed.

Returned Format {SYSTEM},{<option>|0},{<option>|0},{INTERMODULE|0},{<module>|0}
,{<module>|0},{<module>|0},{<module>|0},{<module>|0}
[,{<module>|0},{<module>|0},{<module>|0},{<module>|0},
{<module>|0}]<NL>

<option> Name of software option

<module> Name of module software

Example OUTPUT XXX;"*OPT?"

Common Commands
*OPT (Option Identification)

9–12

*PRE (Parallel Poll Enable Register Enable)

Command *PRE <mask>

The *PRE command sets the parallel poll register enable bits. The Parallel
Poll Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an IST during a parallel poll. Refer to table 9-4
for the bits in the Parallel Poll Enable Register and for what they mask.

<pre_mask> An integer from 0 to 65535.

Example This example allows the HP 16500C to generate an IST when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit in the Status Byte Register will be high.
OUTPUT XXX;"*PRE 16"

Query *PRE?

The *PRE? query returns the current value of the register.
Returned format <mask><NL>

<mask> An integer from 0 through 65535 representing the sum of all bits that are set.

Example OUTPUT XXX;"*PRE?"

See Also Chapter 7, "Parallel Poll," for more information on conducting a parallel poll.

Common Commands
*PRE (Parallel Poll Enable Register Enable)

9–13

Table 9-4 HP 16500C Parallel Poll Enable Register

Bit Position Bit Weight Enables
15 -8 Not used
7 128 Not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAV - Message Available
3 8 LCL - Local
2 4 Not used
1 2 Not used
0 1 MSB - Module Summary

*RST (Reset)

The *RST command is not implemented on the HP 16500C. The HP 16500C
will accept this command, but the command has no affect on the system.

The *RST command is generally used to place the system in a predefined
state. Because the HP 16500C allows you to store predefined configuration
files for individual modules, or for the entire system, resetting the system can
be accomplished by simply loading the appropriate configuration file.

See Also For more information, refer to chapter 12, "MMEMory Subsystem."

Common Commands
*RST (Reset)

9–14

*SRE (Service Request Enable)

Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A zero
will disable the bit. Refer to table 9-5 for the bits in the Service Request
Enable Register and what they mask.

<mask> An integer from 0 to 255

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit will be high.

OUTPUT XXX;"*SRE 16"

Query *SRE?

The *SRE query returns the current value.
Returned Format <mask><NL>

<mask> An integer from 0 to 255 representing the sum of all bits that are set.

Example OUTPUT XXX;"*SRE?"

See Also Refer to Chapter 7, "Status Reporting," for a complete discussion of status.

Common Commands
*SRE (Service Request Enable)

9–15

Table 9-5 HP 16500C Service Request Enable Register

Bit Position Bit Weight Enables
15-8 not used
7 128 not used
6 64 MSS - Master Summary Status (always 0)
5 32 ESB - Event Status
4 16 MAV - Message Available
3 8 LCL- Local
2 4 not used
1 2 not used
0 1 MSB - Module Summary

*STB (Status Byte)

Query *STB?

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit, not the RQS (Request Service) bit, is
reported on bit 6. The MSS indicates whether or not the device has at least
one reason for requesting service. Refer to table 9-6 for the meaning of the
bits in the status byte.

Returned Format <value><NL>

<value> An integer from 0 through 255

Example OUTPUT XXX;"*STB?"

See Also Refer to chapter 7, "Status Reporting" for a complete discussion of status.

Common Commands
*STB (Status Byte)

9–16

Table 9-6 The Status Byte Register

Bit Position Bit Weight Bit Name Condition
7 128 not used
6 64 MSS 0 = instrument has no reason for service

1 = instrument is requesting service
5 32 ESB 0 = no event status conditions have occurred

1 = an enabled event status condition has occurred
4 16 MAV 0 = no output messages are ready

1 = an output message is ready
3 8 LCL 0 = a remote-to-local transition has not occurred

1 = a remote-to-local transition has occurred
2 4 not used
1 2 not used
0 1 MSB 0 = a module or the system has activity to report

1 = no activity to report
0 = False = Low
1 = True = High

*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as a Group Execute Trigger (GET).
That effect is as if the START command had been sent for intermodule group
run. If no modules are configured in the Intermodule menu, this command
has no effect.

Example OUTPUT XXX;"*TRG"

Common Commands
*TRG (Trigger)

9–17

*TST (Test)

Query *TST?

The *TST query returns the results of the power-up self-test. The result of
that test is a 9-bit mapped value which is placed in the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 9-7 for the
meaning of the bits returned by a TST? query.

Returned Format <result><NL>

<result> An integer 0 through 511

Example 10 OUTPUT XXX;"*TST?"
20 ENTER XXX;Tst_value

Table 9-7 Bits Returned by *TST? Query (Power-Up Test Results)

Bit Position Bit Weight Test
8 256 Disk Test
7 128 not used
6 64 not used
5 32 Front-panel Test
4 16 HIL Test
3 8 Display Test
2 4 Interrupt Test
1 2 RAM Test
0 1 ROM Test

Common Commands
*TST (Test)

9–18

*WAI (Wait)

Command *WAI

The *WAI command causes the device to wait until completing all of the
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of subsequent
commands while the device operations initiated by the overlapped command
are still in progress. Some examples of overlapped commands for the
HP 16500C are STARt and STOP.

Example OUTPUT XXX;"*WAI"

Common Commands
*WAI (Wait)

9–19

9–20

10

Mainframe Commands

Introduction

Mainframe commands control the basic operation of the instrument
for both the HP 16500C mainframe alone or with the HP 16501A
expansion frame connected. Mainframe commands can be called at
anytime, and from any module. The only difference in mainframe
commands with an HP 16501A connected is the number of slots and
modules. These differences will be noted in the affected command
descriptions.

The main difference between an HP 16500C alone and an HP 16500C
with the HP 16501A connected is how you specify the SELECT
command. The HP 16500C alone has only five slots; therefore, if you
specify 6 through 10 for the SELECT command in your program, the
command parser will take no action.

This chapter contains the mainframe commands with a syntax
example for each command. Each syntax example contains the
parameters for the HP 16500C/16501A. Refer to figure 10-1 and
table 10-1 for the syntax diagram of the Mainframe commands.

The mainframe commands are:

• BEEPer

• CAPability

• CARDcage

• CESE

• CESR

• EOI

• LER

• LOCKout

• MENU

• MESE

• MESR

• RMODe

• RTC

• SELect

• SETColor

• STARt

• STOP

• XWINdow

10–2

Figure 10-1

Mainframe Commands Syntax Diagram

Mainframe Commands

10–3

Figure 10-1 (continued)

Mainframe Commands Syntax Diagram (continued)

Mainframe Commands

10–4

Table 10-1 Mainframe Parameter Values

Parameter Values
value An integer from 0 to 65535
module An integer from –2 through 5 for an HP 16500C alone or from

–2 through 10 with an HP 16501A connected
menu An integer
enable_value An integer from 0 to 255
index An integer from 0 to 5 for an HP 16500C alone or from 0 to 10

with an HP 16501A connected
day An integer from 1 through 31
month An integer from 1 through 12
year An integer from 1990 through 2089
hour An integer from 0 through 23
minute An integer from 0 through 59
second An integer from 0 through 59
color An integer from 1 to 7
hue An integer from 0 to 100
sat An integer from 0 to 100
lum An integer from 0 to 100
display name A string containing an IP Address and a display name, for

example, "12.3.19.1:0.0"

Mainframe Commands

10–5

BEEPer

Command :BEEPer [{ON|1}|{OFF|0}]

The BEEPer command sets the beeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

Example OUTPUT XXX;":BEEPER"
OUTPUT XXX;":BEEP ON"

Query :BEEPer?

The BEEPer? query returns the mode currently selected.
Returned Format [:BEEPer] {1|0}<NL>

Example OUTPUT XXX;":BEEPER?"

Mainframe Commands
BEEPer

10–6

CAPability

Query :CAPability?

The CAPability query returns the IEEE 488.1 "Interface Requirements for
Devices" capability sets implemented in the device.

Table 10-2 lists the capability sets implemented in the HP 16500C.
Returned Format [:CAPability] IEEE488,1987,SH1,AH1,T5,L4,SR1,RL1,PP1,DC1,

DT1,C0,E2<NL>

Example OUTPUT XXX;":CAPABILITY?"

Table 10-2 HP 16500C Capability Sets

Mnemonic Capability Name Implementation
SH Source Handshake SH1
AH Acceptor Handshake AH1
T Talker (or TE - Extended Talker) T5
L Listener (or LE - Extended Listener) L4
SR Service Request SR1
RL Remote Local RL1
PP Parallel Poll PP1
DC Device Clear DC1
DT Device Trigger DT1
C Any Controller C0
E Electrical Characteristic E2

Mainframe Commands
CAPability

10–7

CARDcage

Query :CARDcage?

The CARDcage query returns a series of integers which identify the modules
that are installed in the mainframe. For an HP 16500C alone, the first five
numbers returned are the card identification numbers (–1 means no card is
in the slot). The remaining five numbers returned indicate the module
assignment (that is, the slot containing the master card of the module) for
each card. For single-card modules, the module assignment is the same as
the card’s slot. The possible values for the module assignment are 0, 1, 2, 3, 4,
and 5 where 0 indicates an empty slot or the module software is not
recognized or not loaded. 1...5 indicates the number of the slot in which the
master card for this card is located.

When an HP 16501A is connected, the first ten numbers returned are the
card identification numbers (–1 means no card is in the slot). The remaining
ten numbers returned indicate the module assignment for each card. The
possible values for the module assignment are 0 through 10 where 0 indicates
an empty slot or the module software is not recognized or not loaded. 1...10
indicates the number of the slot in which the master card for this card is
located.

Table 10-3 lists the card identification numbers and their associated cards.
Returned Format [:CARDcage]

<ID>,<ID>,<ID>,<ID>,<ID>,[<ID>,<ID>,<ID>,<ID>,<ID>,]
<assign>,<assign>,<assign>,<assign>,<assign>
[,<assign>,<assign>,<assign>,<assign>,<assign>]<NL>

<ID> An integer indicating the card identification number.

<assign> An integer indicating the module assignment.

Example OUTPUT XXX;":CARDCAGE?"

Mainframe Commands
CARDcage

10–8

Table 10-3 Card Identification Numbers

Id Number Card
1 HP 16515A 1GHz Timing Master Card
2 HP 16516A 1GHz Timing Expansion Card
4 HP 16517A 4GHz Timing/1GHz State Analyzer Master Card
5 HP 16518A 4GHz Timing/1GHz State Analyzer Expansion Card
11 HP 16530A 400 MSa/s Oscilloscope Timebase Card
12 HP 16531A Oscilloscope Acquisition Card
13 HP 16532A 1GSa/s Oscilloscope Card
14 HP 16533A or HP 16534A 32K GSa/s Oscilloscope Card
15 HP 16535A MultiProbe 2-Output Module
21 HP 16520A Pattern Generator Master Card
22 HP 16521A Pattern Generator Expansion Card
24 HP 16522A 200MHz Pattern Generator Expansion Card
25 HP 16522A 200MHz Pattern Generator Master Card
30 HP 16511B Logic Analyzer Card
31 HP 16510A or B Logic Analyzer Card
32 HP 16550A 100/500 MHz Logic Analyzer Master Card
33 HP 16550A 100/500 MHz Logic Analyzer Expansion Card
34 HP 16554, 16555, or 16556 Logic Analyzer Master Card
35 HP 16554, 16555, or 16556 Logic Analyzer Expansion Card
40 HP 16540A 100/100 MHz Logic Analyzer Master Card
41 HP 16541A 100/100 MHz Logic Analyzer Expansion Card
42 HP 16542A 2 MB Acquisition Logic Analyzer Master Card
43 HP 16542A 2 MB Acquisition Logic Analyzer Expansion Card

Mainframe Commands
CARDcage

10–9

CESE (Combined Event Status Enable)

Command :CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable) registers
of the HP 16500C. Table 10-4 lists the bit values for the CESE register.

<value> An integer from 0 to 65535

Example OUTPUT XXX;":CESE 32"

Query :CESE?

The CESE? query returns the current setting.
Returned Format [:CESE] <value><NL>

Example OUTPUT XXX;":CESE?"

Mainframe Commands
CESE (Combined Event Status Enable)

10–10

Table 10-4 HP 16500C Combined Event Status Enable Register

Bit Weight Enables
11-15 not used
10 1024 Module in slot J
9 512 Module in slot I
8 256 Module in slot H
7 128 Module in slot G
6 64 Module in slot F
5 32 Module in slot E
4 16 Module in slot D
3 8 Module in slot C
2 4 Module in slot B
1 2 Module in slot A
0 1 Intermodule

CESR (Combined Event Status Register)

Query :CESR?

The CESR query returns the contents of the Combined Event Status register.
This register contains the combined status of all of the MESRs (Module Event
Status Registers) of the HP 16500C System. Table 10-5 lists the bit values for
the CESR register.

Returned Format [:CESR] <value><NL>

<value> An integer from 0 to 65535

Example OUTPUT XXX;":CESR?"

Mainframe Commands
CESR (Combined Event Status Register)

10–11

Table 10-5 HP 16500C Combined Event Status Register

Bit Bit Weight Bit Name Condition
11-15 not used
10 1024 Module J 0 = No new status

1 = Status to report
9 512 Module I 0 = No new status

1 = Status to report
8 256 Module H 0 = No new status

1 = Status to report
7 128 Module G 0 = No new status

1 = Status to report
6 64 Module F 0 = No new status

1 = Status to report
5 32 Module E 0 = No new status

1 = Status to report
4 16 Module D 0 = No new status

1 = Status to report
3 8 Module C 0 = No new status

1 = Status to report
2 4 Module B 0 = No new status

1 = Status to report
1 2 Module A 0 = No new status

1 = Status to report
0 1 Intermodule 0 = No new status

1 = Status to report

Mainframe Commands
CESR (Combined Event Status Register)

10–12

EOI (End Or Identify)

Command :EOI {{ON|1}|{OFF|0}}

The EOI command specifies whether the last byte of a reply from the
HP 16500C is to be sent with the EOI bus control line set true. If EOI is
turned off, the logic analyzer responses will not be IEEE 488.2 compliant.

Example OUTPUT XXX;":EOI ON"

Query :EOI?

The EOI? query returns the current status of EOI.
Returned Format [:EOI] {1|0}<NL>

Example OUTPUT XXX;":EOI?"

LER (LCL Event Register)

Query :LER?

The LER query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

Returned Format [:LER] {0|1}<NL>

Example OUTPUT XXX;":LER?"

Mainframe Commands
EOI (End Or Identify)

10–13

LOCKout

Command :LOCKout {{ON|1}|{OFF|0}}

The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked
out.

Example OUTPUT XXX;":LOCKOUT ON"

Query :LOCKout?

The LOCKout query returns the current status of the LOCKout command.
Returned Format [:LOCKout] {0|1}<NL>

Example OUTPUT XXX;":LOCKOUT?"

Mainframe Commands
LOCKout

10–14

MENU

Command :MENU <module>[,<menu>]

The MENU command puts a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies the
desired menu in the module (defaults to 0). Table 10-6 lists the module
parameters. The mainframe menus and parameters are listed in table 10-7.

<module> Selects module or system. An integer from –2 through 5 for HP 16500C only
or an integer from –2 through 10 with an HP 16501A connected.

<menu> Selects menu (integer)

Example OUTPUT XXX;":MENU 0,1"

See Also Programmer’s Guide for specific module for the module’s <menu> values.

Table 10-6 <module> values

Parameter Menu
0 System/Intermodule
1 Module in slot A
2 Module in slot B
3 Module in slot C
4 Module in slot D
5 Module in slot E
–1 Software option 1
–2 Software option 2

Available when an HP 16501A is connected:
6 Module in slot F
7 Module in slot G
8 Module in slot H
9 Module in slot I
10 Module in slot J

Mainframe Commands
MENU

10–15

Table 10-7 System Menu Values

Menu Command Parameters Menu
MENU 0,0 System Configuration menu
MENU 0,1 Hard disk menu
MENU 0,2 Flexible disk menu
MENU 0,3 Utilities menu
MENU 0,4 Test menu
MENU 0,5 Intermodule menu

Query :MENU?

The MENU query returns the current menu selection.
Returned Format [:MENU] <module>,<menu><NL>

Example OUTPUT XXX;":MENU?"

MESE<N> (Module Event Status Enable)

Command :MESE<N> <enable_value>

The MESE command sets the Module Event Status Enable register. This
register is the enable register for the MESR register. The <N> index
specifies the module, and the parameter specifies the enable value. For the
HP 16500C alone, the <N> index 0 through 5 refers to system and modules 1
through 5 respectively. With an HP 16501A connected, the <N> index 6
through 10 refers to modules 6 through 10 respectively. Table 10-8 lists the
Module Event Status Enable register bits, bit weights, and what each bit
masks for the mainframe.

<N> An integer 0 through 10

<enable_value> An integer from 0 through 255

Mainframe Commands
MESE<N> (Module Event Status Enable)

10–16

Example OUTPUT XXX;":MESE1 3"

Query :MESE<N>?

The query returns the current setting. Table 10-8 lists the Module Event
Status Enable register bits, bit weights, and what each bit masks for the
mainframe.

Returned Format [:MESE<N>] <enable_value><NL>

Example OUTPUT XXX;":MESE1?"

Table 10-8 HP 16500C Mainframe (Intermodule) Module Event Status Enable Register

Bit Position Bit Weight Enables
7 128 not used
6 84 not used
5 32 not used
4 16 not used
3 8 not used
2 4 not used
1 2 RNT - Intermodule Run Until Satisfied
0 1 MC - Intermodule Measurement Complete

Mainframe Commands
MESE<N> (Module Event Status Enable)

10–17

MESR<N> (Module Event Status Register)

Query :MESR<N>?

The MESR query returns the contents of the Module Event Status register.
The <N> index specifies the module. For the HP 16500C alone, the <N>
index 0 through 5 refers to system and modules 1 through 5 respectively.
With an HP 16501A connected, the <N> index 6 through 10 refers to modules
6 through 10 respectively.

Refer to table 10-9 for information about the Module Event Status Register 0
bits and their bit weights.

See Also MESR in the Programmer’s Guide for a specific module for the
interpretation of that module’s Event Status Register.

Returned Format [:MESR<N>] <enable_value><NL>

<N> An integer 0 through 1.

<enable_value> An integer from 0 through 255

Example OUTPUT XXX;":MESR1?"

Table 10-9 HP 16500C Mainframe Module Event Status Register (<N>=0)

Bit Bit Weight Bit Name Condition
7 128 not used
6 64 not used
5 32 not used
4 16 not used
3 8 not used
2 4 not used
1 2 RNT 0 = Intermodule Run until not satisfied

1 = Intermodule Run until satisfied
0 1 MC 0 = Intermodule Measurement not satisfied

1 = Intermodule Measurement satisfied

Mainframe Commands
MESR<N> (Module Event Status Register)

10–18

RMODe

Command :RMODe {SINGle|REPetitive}

The RMODe command specifies the run mode for the selected module (or
Intermodule). If the selected module is in the intermodule configuration,
then the intermodule run mode will be set by this command.

After specifying the run mode, use the STARt command to start the acquisition.

Example OUTPUT XXX;":RMODE SINGLE"

Query :RMODe?

The query returns the current setting.
Returned Format [:RMODe] {SINGle|REPetitive}<NL>

Example OUTPUT XXX;":RMODE?"

Mainframe Commands
RMODe

10–19

RTC (Real-time Clock)

Command :RTC <day>,<month>,<year>,<hour>,<minute>,<second>

The real-time clock command allows you to set the real-time clock to the
current date and time.

<day> integer from 1 to 31

<month> integer from 1 to 12

<year> integer from 1990 to 2089

<hour> integer from 0 to 23

<minute> integer from 0 to 59

<second> integer from 0 to 59

Example This example sets the real-time clock for 1 January 1992, 20:00:00 (8 PM).

OUTPUT XXX;":RTC 1,1,1992,20,0,0"

Query :RTC?

The RTC query returns the real-time clock setting.
Returned Format [:RTC] <day>,<month>,<year>,<hour>,<minute>,<second>

Example OUTPUT XXX;":RTC?"

Mainframe Commands
RTC (Real-time Clock)

10–20

SELect

Command :SELect <module>

The SELect command selects which module (or system) will have parser
control. The appropriate module (or system) must be selected before any
module (or system) specific commands can be sent. SELECT 0 selects
System, SELECT 1 through 5 selects modules A through E in an HP 16500C
only. SELECT 1 through 10 selects modules A through J when an HP 16501A
is connected. –1 and –2 selects software options 1 and 2 respectively. The
query returns the current module selection.

When a module is selected, the parser recognizes the module’s commands
and the System/Intermodule commands. When SELECT 0 is used, only the
System/Intermodule commands are recognized by the parser. Figure 10-2
shows the command tree for the SELect command.

<module> Selects module or system. An integer from –2 through 5 for HP 16500C only
or an integer from –2 through 10 with an HP 16501A connected.

Example OUTPUT XXX;":SELECT 0"

Query :SELect?

The SELect? query returns the current module selection.
Returned Format [:SELect] <module><NL>

Example OUTPUT XXX;":SELECT?"

Mainframe Commands
SELect

10–21

Figure 10-2

Select Command Tree

Only available when
an HP 16501A is
connected

Mainframe Commands
SELect

10–22

SETColor

Command :SETColor {<color>,<hue>,<sat>,<lum>|DEFault}

The SETColor command is used to change one of the color selections on the
CRT, or to return to the default screen colors. Four parameters are sent with
the command to change a color:

• Color Number (first parameter)

• Hue (second parameter)

• Saturation (third parameter)

• Luminosity (last parameter)

<color> An integer from 1 to 7

<hue> An integer from 0 to 100

<sat> An integer from 0 to 100

<lum> An integer from 0 to 100

Color Number 0 cannot be changed.

Example OUTPUT XXX;":SETCOLOR 3,60,100,60"
OUTPUT XXX;":SETC DEFAULT"

Mainframe Commands
SETColor

10–23

Query :SETColor? <color>

The SETColor query returns the hue, saturation, and luminosity values for a
specified color.

Returned Format [:SETColor] <color>,<hue>,<sat>,<lum><NL>

Example OUTPUT XXX;":SETCOLOR? 3"

STARt

Command :STARt

The STARt command starts the selected module (or Intermodule) running in
the specified run mode (see RMODe). If the specified module is in the
Intermodule configuration, then the Intermodule run will be started.

The STARt command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example OUTPUT XXX;":START"

Mainframe Commands
STARt

10–24

STOP

Command :STOP

The STOP command stops the selected module (or Intermodule). If the
specified module is in the Intermodule configuration, then the Intermodule
run will be stopped.

The STOP command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example OUTPUT XXX;":STOP"

Mainframe Commands
STOP

10–25

XWINdow

Command :XWINdow {{OFF|0} | {ON|1}[,<display>]}

The XWINdow command opens or closes a window on an X Window display
server, that is, a networked workstation or personal computer. The
XWINdow ON command opens a window. If no display is specified, the
display already stored in the HP 16500C X Window Settings menu is used. If
a display is specified, that one is used. The specified display also is stored in
non-volatile memory in the HP 16500C.

<display> A string containing an Internet (IP) Address optionally followed by a display
and screen specifier. For example,
"12.3.47.11"

or
"12.3.47.11:0.0"

Example To open a window, specifying and storing the display name:

OUTPUT XXX;":XWINDOW ON,’12.3.47.11’"

To open a window, using the stored display name:
OUTPUT XXX;":XWIN ON"

To close the X Window:
OUTPUT XXX;":XWINDOW OFF"

If you have trouble displaying an X Window, check that your server permits
windows from the HP 16500C to be displayed. On UNIX systems, the command
is "xhost +<16500 IP> ". See your network documentation for more
details.

Mainframe Commands
XWINdow

10–26

11

SYSTem Subsystem

Introduction

SYSTem subsystem commands control functions that are common to
the entire logic analysis system, including formatting query responses
and enabling reading and writing to the advisory line on the display of
the HP 16500C mainframe.

Refer to figure 11-1 and table 11-1 for the SYSTem Subsystem
commands syntax diagram. The SYSTem Subsystem commands are:

• DATA

• DSP

• ERRor

• HEADer

• LONGform

• PRINt

• SETup

11–2

Figure 11-1

System Subsystem Commands Syntax Diagram

SYSTem Subsystem

11–3

Table 11-1 SYSTem Parameter Values

Parameter Values
block_data Data in IEEE 488.2 format.
string A string of up to 68 alphanumeric characters.
pathname A string of up to 10 alphanumeric characters for LIF in the

following form:
NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of
the following forms:
NNNNNNNN.NNN when the file resides in the present working
directory
or
\NAME_DIR\FILENAME when the file does not reside in the
present working directory

SYSTem Subsystem

11–4

DATA

Command :SYSTem:DATA <block_data>

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

• Reloading the logic analysis system

• Processing data later in the logic analysis system

• Processing data in the controller.

The format and length of block data depends on the instruction being used
and the configuration of the instrument. This chapter describes briefly the
syntax of the DATA command and query; however, the mainframe by itself
does not have acquired data. Therefore, the DATA command and query are
described in detail in the respective module Programmer’s Guides.
Because the capabilities of the DATA command and query vary for individual
modules, a complete chapter is dedicated to the DATA command and query
in each of the module Programmer’s Guides. The dedicated chapter is
called "DATA and SETup Commands."

Example OUTPUT XXX;":SYSTEM:DATA" <block_data>

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section_header><section_data>

<section_
header>

16 bytes, described in the "Section Header Description" section of the
individual module Programmer’s Guides.

<section_data> The format depends on the type of data

SYSTem Subsystem
DATA

11–5

Query :SYSTem:DATA?

The SYSTem:DATA query returns the block data. The data sent by the
SYSTem:DATA query reflects the configuration of the selected module when
the last acquisition was performed. Any changes made since then through
either front-panel operations or programming commands do not affect the
stored data. Since the mainframe does not acquire data, refer to the
appropriate module Programmer’s Guide for more details.

Returned Format [:SYSTem:DATA] <block_data><NL>

Example See the Programmer’s Guide for the selected module for an example.

DSP (Display)

Command :SYSTem:DSP <string>

The DSP command writes the specified quoted string to a device-dependent
portion of the instrument display.

<string> A string of up to 68 alphanumeric characters

Example OUTPUT XXX;":SYSTEM:DSP ’The message goes here’"

SYSTem Subsystem
DSP (Display)

11–6

ERRor

Query :SYSTem:ERRor? [NUMeric|STRing]

The ERRor query returns the oldest error from the error queue. The optional
parameter determines whether the error string should be returned along with
the error number. If no parameter is received, or if the parameter is
NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error is returned in the following form:

<error_number>,<error message string>

A complete list of error messages for the HP 16500C logic analysis system is
shown in chapter 8, "Error Messages." If no errors are present in the error
queue, a zero (No Error) is returned.

Returned Formats Numeric:
[:SYSTem:ERRor] <error_number><NL>

String:
[:SYSTem:ERRor] <error_number>,<error_string><NL>

<error_number> An integer

<error_string> A string of alphanumeric characters

Example Numeric:

10 OUTPUT XXX;":SYSTEM:ERROR?"
20 ENTER XXX;Numeric

String:
50 OUTPUT XXX;":SYST:ERR? STRING"
60 ENTER XXX;String$

SYSTem Subsystem
ERRor

11–7

HEADer

Command :SYSTem:HEADer {{ON|1}|{OFF|0}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses will
include the command header.

Example OUTPUT XXX;":SYSTEM:HEADER ON"

Query :SYSTem:HEADer?

The HEADer query returns the current state of the HEADer command.
Returned Format [:SYSTem:HEADer] {1|0}<NL>

Example OUTPUT XXX;":SYSTEM:HEADER?"

Headers should be turned off when returning values to numeric variables.

SYSTem Subsystem
HEADer

11–8

LONGform

Command :SYSTem:LONGform {{ON|1}|{OFF|0}}

The LONGform command sets the long form variable, which tells the
instrument how to format query responses. If the LONGform command is set
to OFF, command headers and arguments are sent from the instrument in
the abbreviated form. If the LONGform command is set to ON, the whole
word will be output. This command has no affect on the input data messages
to the instrument. Headers and arguments may be input in either the long
form or short form regardless of how the LONGform command is set.

Example OUTPUT XXX;":SYSTEM:LONGFORM ON"

Query :SYSTem:LONGform?

The query returns the status of the LONGform command.
Returned Format [:SYSTem:LONGform] {1|0}<NL>

Example OUTPUT XXX;":SYSTEM:LONGFORM?"

SYSTem Subsystem
LONGform

11–9

PRINt

Commands :SYSTem:PRINt ALL[,DISK, <pathname>[,<msus>]]
:SYSTem:PRINt PARTial,<start>,<end>
[,DISK, <pathname>[,<msus>]]
:SYSTem:PRINt SCReen[,DISK, <pathname> [,<msus>],
{BTIF|CTIF|PCX|EPS}]

The PRINt command initiates a print of the screen or listing buffer over the
current PRINTER communication interface to the printer or to a file on the
disk. PRINt ALL is only available in menus with an ASCII representation.

PRINt SCReen allows you to specify a graphics type. The BTIF option
formats the screen data in black-and-white TIF. The CTIF and PCX options
format the data in color TIF and color PCX respectively. EPS specifies
Encapsulated PostScript format.

If a file name extension is not specified in the command, the correct
extension will be appended to the file name automatically. The file name
extension is TIF for both BTIF and CTIF options.

PRINT PARTial is valid in certain listing menus. It allows you to specify a
starting and ending state number so you can print just a portion of the listing
to the printer or to a disk file.

<pathname> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the present working directory
or
\NAME_DIR\FILENAME when the files does not reside in the present
working directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<start>
<end>

An integer specifying a state number.

SYSTem Subsystem
PRINt

11–10

Example This instruction prints the screen to the printer:

OUTPUT XXX;":SYSTEM:PRINT SCREEN"

This instruction prints the entire state listing to a file named STATE:
OUTPUT 707;":SYSTEM:PRINT ALL, DISK,’STATE’"

This instruction prints part of a listing to disk:
OUTPUT XXX;":SYSTEM:PRINT PARTIAL,-9,30,DISK, ’LISTING’,INT0"

This instruction prints a black-and-white TIF file to the hard drive:
OUTPUT XXX;":SYSTEM:PRINT SCREEN, DISK, ’PICTURE’, INT0, BTIF"

Query :SYSTem:PRINt? {SCReen|ALL}

The PRINt query sends the screen or listing buffer data over the current
CONTROLLER communication interface to the controller.

The print query should NOT be sent in conjunction with any other command
or query on the same command line. The print query never returns a header.
Also, since response data from a print query may be sent directly to a printer
without modification, the data is not returned in block mode.

PRINT? ALL is only available in menus that have the "Print All" option available
on the front panel. For more information, refer to the HP 16500C Logic Analysis
System User’s Reference.

Example OUTPUT 707;":SYSTEM:PRINT? SCREEN"

SYSTem Subsystem
PRINt

11–11

SETup

Command :SYSTem:SETup <block_data>

The :SYSTem:SETup command configures the logic analysis system as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup command and query for the mainframe.
Because of the capabilities and importance of the Setup command and query
for individual modules, a complete chapter is dedicated to it in each of the
module Programmer’s Guides. The dedicated chapter is called "DATA and
SETup Commands."

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section_header><section_data>

<section_
header>

16 bytes, described in the "Section Header Description" section in the "DATA
and SETup Commands" chapter of the module Programmer’s Guides.

<section_data> Format depends on the type of data

The total length of a section is 16 (for the section header) plus the length of
the section data. When calculating the value for <length> , don’t forget to
include the length of the section headers.

Example OUTPUT XXX USING "#,K";":SYSTEM:SETUP " & <block_data>

SYSTem Subsystem
SETup

11–12

Query :SYSTem:SETup?

The SYSTem:SETup query returns a block of data that contains the current
configuration to the controller.

Returned Format [:SYSTem:SETup] <block_data><NL>

Example See the Programmer’s Guide for the selected module for an example.

SYSTem Subsystem
SETup

11–13

11–14

12

MMEMory Subsystem

Introduction

The MMEMory (mass memory) subsystem commands provide access
to both the hard and flexible disk drives. The HP 16500C Logic
Analysis System supports the DOS (Disk Operating System) format on
the hard drive and both DOS and LIF (Logical Information Format) on
the flexible drive.

Refer to figure 12-1 and table 12-1 for the MMEMory Subsystem
commands syntax diagram. The MMEMory subsystem commands are:

<msus> refers to the mass storage unit specifier. INTernal0 specifies the hard
disk drive and INTernal1 specifies the flexible disk drive.

If you are not going to store information to the flexible configuration disk, or if
the flexible disk you are using contains information you need, it is advisable to
write protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands being mistakenly sent.

• AUToload

• CATalog

• CD (change directory)

• COPY

• DOWNload

• INITialize

• LOAD

• MKDir (make
directory)

• MSI

• PACK

• PURGe

• PWD (present
working directory)

• REName

• STORe

• UPLoad

• VOLume

12–2

Figure 12-1

MMEMory Subsystem Commands Syntax Diagram

MMEMory Subsystem

12–3

Figure 12-1 (Continued)

MMEMory Subsystem Commands Syntax Diagram (Continued)

MMEMory Subsystem

12–4

Figure 12-1 (Continued)

MMEMory Subsystem Commands Syntax Diagram (Continued)

MMEMory Subsystem

12–5

Table 12-1 MMEMory Parameter Values

Parameter Values

auto_file A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

msus Mass Storage Unit specifier. INTernal0 for the hard disk
drive and INTernal 1 for the flexible disk drive.

name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

path_name A string of up to 64 characters for DOS disks ending in a file
name. Separators can be the slash (/) or the backslash (\)
character.

directory_name A string of up to 64 characters for DOS disks ending in a
directory name. Separators can be the slash (/) or the
backslash (\) character. The string of two periods (..)
represents the parent of the present working directory.

description A string of up to 32 alphanumeric characters.
type An integer, refer to table 12-2.

block_data Data in IEEE 488.2 format.

module An integer, –2 through 5 for the HP 16500C alone or –2
through 10 with the HP 16501A connected.

ia_name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

new_name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

MMEMory Subsystem

12–6

AUToload

Command :MMEMory:AUToload {{OFF|0}|{<auto_file>}}[,<msus>]

The AUToload command controls the autoload feature which designates a set
of configuration files to be loaded automatically the next time the instrument
is turned on. The OFF parameter (or 0) disables the autoload feature. A
string parameter may be specified instead to represent the desired autoload
file. If the file is on the current drive, the autoload feature is enabled to the
specified file. The configuration files specified must reside in the root
directory of the current drive.

<auto_file> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example Disabling autoload:

OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"

Setting FILE2 on the hard drive as the autoload file:
OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE2 ’,INTERNAL0"

Query :MMEMory:AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file.

Returned Format [:MMEMory:AUToload] {0|<auto_file>},<msus><NL>

Example OUTPUT XXX;":MMEMORY:AUTOLOAD?"

MMEMory Subsystem
AUToload

12–7

CATalog

Query :MMEMory:CATalog? [[ALL|FULL][,<msus>]]

The FULL option is available with version 1.01 or higher of the HP 16500C
operating system only. Version 1.00 does not recognize this option.

The CATalog query returns the directory of the disk in one of three block
data formats. When no options are used, the directory consists of a string of
51 characters for each file on the disk. Each entry is formatted as follows:
"NNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
where N is the filename, T is the file type (see table 12-2), and F is the file
description.

The optional parameter ALL returns the directory of the disk as a
70-character string for each file, formatted as follows:
"NNNNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
DDMMMYY HH:MM:SS"
where D, M, Y, and HH:MM:SS are respectively the date, month, year, and
time in 24-hour format.

The optional parameter FULL returns an 83-character string for each file in
the directory. The string is formatted as follows:
"NNNNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
DDMMMYY HH:MM:SS LLLLLLLLLLLL"
where L is the file length in decimal.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Returned Format [:MMEMory:CATalog] <block_data>

<block_data> ASCII block containing
 <filename> <file_type> <file_description>
in one of the three formats described above.

Example OUTPUT XXX;":MMEMORY:CATALOG? ALL"

MMEMory Subsystem
CATalog

12–8

CD (Change Directory)

Command :MMEMory:CD <directory_name> [,<msus>]

The CD command allows you to change the current working directory on the
hard disk or a DOS flexible disk. The command allows you to send path
names of up to 64 characters for DOS format. Separators can be either the
slash (/) or backslash (\) character. Both the slash and backslash characters
are equivalent and are used as directory separators. The string containing
double periods (..) represents the parent of the directory.

<directory_
name>

String of up to 64 characters for DOS disks ending in the new directory name.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMory:CD ’CHILD_DIR’"
OUTPUT XXX;":MMEMory:CD ’..’"
OUTPUT XXX;":MMEMory:CD ’\SYSTEM\SOURCE_DIR\DIR’, INTernal0"

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in
the HP 16500C will be compatible in DOS computers.

MMEMory Subsystem
CD (Change Directory)

12–9

COPY

Command :MMEMory:COPY <name>[,<msus>],<new_name>[,<msus>]

The COPY command copies one file to a new file. Wildcards are supported.
The two <name> parameters are the filenames. The first pair of parameters
specifies the source file. The second pair specifies the destination. An error
is generated if the source file doesn’t exist, or if the destination file already
exists. The destination may be a directory, in which case the new file name is
the same as the source file name.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<new_name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR to copy the file to another directory
or
\NAME_DIR\FILENAME to copy the file to another directory and change the
name.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

MMEMory Subsystem
COPY

12–10

Example To copy the contents of "FILE1" to "FILE2":

OUTPUT XXX;":MMEMORY:COPY ’FILE1’,’FILE2’"

To copy the contents of "FILE1" on the hard disk to "FILE2" on the flexible
disk:
OUTPUT XXX;":MMEMORY:COPY ’FILE1’,INTERNAL0,’FILE2’,INTERNAL1"

To copy the contents of a LIF flexible disk to the hard disk:
OUTPUT XXX;":MMEM:COPY ’*’,INT1,’\’,INT0"

DOWNload

Command :MMEMory:DOWNload <name>[,<msus>],<description>,
<type>,<block_data>

The DOWNload command downloads data to a file on the mass storage
device. The <block_data> parameter contains the data; the <name>
parameter is the name of the file being created.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<description> A string of up to 32 alphanumeric characters

<type> An integer (see table 12-2)

<block_data> Contents of file in block data format

MMEMory Subsystem
DOWNload

12–11

Example

OUTPUT XXX;":MMEMORY:DOWNLOAD ’SETUP ’,INTERNAL0,’FILE CREATED FROM SETUP
QUERY’,-16127,#800000643..."

Table 12-2 File Types

File File Type
Autoload File –15615
Inverse Assembler –15614
DOS file (from Print to Disk) –5813
HP 16500B System Software –15603
HP 16500B Option Software –15602
HP 16500C System Software –15593
HP 16500C Option Software –15592
HP 16500A/B/C System Configuration –16127
HP 16510A/B Configuration –16096
HP 16511B Configuration –16097
HP 16515A (Master) and 16516A (Expander) Configuration –16126
HP 16517A (Master) and 16518A (Expander) Configuration –16123
HP 16520A (Master) and 16521A (Expander) Configuration –16106
HP 16522A Configuration –16102
HP 16530A (Timebase) and 16531A (Acquisition)
Configuration

–16116

HP 16532A Configuration –16114
HP 16533A and 16534A Configuration –16113
HP 16535A Configuration –16112
HP 16540A/D (Master) and 16541A/D (Expander)
Configuration

–16087

HP 16542A Configuration –16085
HP 16550A Configuration –16095
HP 16554A, 16555A/D, and 16556A/D Configuration –16093

MMEMory Subsystem
DOWNload

12–12

IDENtify

Command :MMEMory:IDENtify? [<msus>]

The IDENtify query is available with version 1.01 or higher of the HP 16500C
operating system only. Version 1.00 does not recognize this query.

The IDENtify query returns the serial number of the disk in the specified
drive. This number is unique for disks created with DOS version 4.0 or
higher. For other disks, the number returned is usually 0.

Returned Format VOLUME SERIAL #: <serial_num>

The IDENtify query always returns the initial string "VOLUME SERIAL #: " and has
no response header.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<serial_num> An eight-digit hexadecimal number

MMEMory Subsystem
IDENtify

12–13

INITialize

Command :MMEMory:INITialize [{LIF|DOS}[,<msus>]]

The INITialize command formats the disk in DOS (Disk Operating System) on
the hard drive or either DOS or LIF (Logical Information Format) on the
flexible drive. If no format is specified, then the initialize command will
format the disk in the DOS format. LIF format is not allowed on the hard
drive.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:INITIALIZE DOS"
OUTPUT XXX;":MMEMORY:INITIALIZE LIF,INTERNAL1"
OUTPUT XXX;":MMEM:INIT DOS,INT0"

Once executed, the initialize command formats the specified disk, permanently
erasing all existing information from the disk. After that, there is no way to
retrieve the original information.

MMEMory Subsystem
INITialize

12–14

LOAD[:CONFig]

Command :MMEMory:LOAD[:CONfig] <name>[,<msus>][,<module>]

The LOAD command loads a configuration file from the disk into the
modules, software options, or the system. The <name> parameter specifies
the filename from the disk. The optional <module> parameter specifies
which module(s) to load the file into. The accepted values are –2 through
10. Not specifying the <module> parameter is equivalent to performing a
’LOAD ALL’ from the front panel which loads the appropriate file for both the
system and the modules, and any software option.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<module> An integer, –2 through 5 for the HP 16500C alone. –2 through 10 with the
HP 16501A connected.

Example OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’FILE ’"
OUTPUT XXX;":MMEMORY:LOAD ’FILE ’,0"
OUTPUT XXX;":MMEM:LOAD:CONFIG ’FILE A’,INTERNAL0,1"

MMEMory Subsystem
LOAD[:CONFig]

12–15

LOAD :IASSembler

Command :MMEMory:LOAD:IASSembler <IA_name>[,<msus>],{1|2}
[,<module>]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state analysis. The <IA_name>
parameter specifies the inverse assembler filename from the desired
<msus>. The parameter after the optional <msus> specifies which machine
to load the inverse assembler into. For example, a 1 specifies that the inverse
assembler files will be loaded into MACHINE 1 of the specified module.

The optional <module> parameter is used to specify which slot the state
analyzer is in. If this parameter is not specified, the state analyzer in the
currently selected module will be loaded with the inverse assembler file.

<IA_name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<module> An integer, 1 through 5 for the HP 16500C alone. 1 through 10 with an HP
16501A connected. Although the parser will accept the values –1 and –2,
they will generate a disk error.

Example OUTPUT XXX;":MMEMORY:LOAD:IASSEMBLER ’I68020 IP’,1"
OUTPUT XXX;":MMEM:LOAD:IASS ’I68020 IP’,INTERNAL0,1,2"

MMEMory Subsystem
LOAD :IASSembler

12–16

MKDir (Make Directory)

Command :MMEMory:MKDir <directory_name> [,<msus>]

The MKDir command allows you to make a directory on the hard drive or a
DOS disk in the flexible drive. Directories cannot be made on LIF disks.
Make directory will make a directory under the present working directory on
the current drive if the optional path is not specified. Separators can be
either the slash (/) or backslash (\) character. Both the slash and backslash
characters are equivalent and are used as directory separators. The string
containing two periods (..) represents the parent of the present working
directory.

<directory
_name>

String of up to 64 characters for DOS disks ending in the new directory name.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:MKDIR ’NEW.DIR’"
OUTPUT XXX;":MMEM:MKD ’\SYSTEM\NEW.DIR’,INT0 "

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in
the HP 16500C will be compatible in DOS computers.

MMEMory Subsystem
MKDir (Make Directory)

12–17

MSI (Mass Storage Is)

Command :MMEMory:MSI [<msus>]

The MSI command selects a default mass storage device. INTernal0 selects
the hard disk drive and INTernal1 selects the flexible disk drive. Once the
MSI is selected it remains the default drive until another MSI command is
sent to the system.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:MSI"
OUTPUT XXX;":MMEM:MSI INTERNAL0"

Query :MMEMory:MSI?

The MSI? query returns the current MSI setting, either INTernal0 or
INTernal1.

Returned Format [:MMEMory:MSI] <msus><NL>

Example OUTPUT XXX;":MMEMORY:MSI?"

MMEMory Subsystem
MSI (Mass Storage Is)

12–18

PACK

Command :MMEMory:PACK [<msus>]

The PACK command packs the files on the LIF disk the disk in the drive. If a
DOS disk is in the drive when the PACK command is sent, no action is taken.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PACK"
OUTPUT XXX;":MMEM:PACK INTERNAL0"

MMEMory Subsystem
PACK

12–19

PURGe

Command :MMEMory:PURGe <name>[,<msus>]

The PURGe command deletes files and directories from the disk in the
specified drive. The PURge command only purges directories when the
directory is empty. If the PURge command is sent with a directory name and
the directory contains files, the message "Directory contains files" is
displayed and the command is ignored. The <name> parameter specifies the
file name to be deleted.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example This instruction purges the file named "FILE1" from the currently specified
drive:
OUTPUT XXX;":MMEMORY:PURGE ’FILE1’"

This purges all files in the directory named "TEMP" from the hard drive:
OUTPUT XXX;":MMEMORY:PURGE ’\TEMP*.*’,INTERNAL0"

This instruction purges the directory named "TEMP" from the hard drive:
OUTPUT XXX;":MMEMORY:PURGE ’\TEMP’,INTERNAL0"

Once executed, the purge command permanently erases all the existing
information about the specified file. After that, there is no way to retrieve the
original information.

MMEMory Subsystem
PURGe

12–20

PWD (Present Working Directory)

Query :MMEMory:PWD? [<msus>]

The PWD query returns the present working directory for the specified drive.
If the <msus> option is not sent, the present working directory will be
returned for the current drive.

Returned Format [:MMEMory:PWD] <directory>,<msus><NL>

<directory> String of up to 64 characters with the backslash (\) as separator for DOS and
LIF disks.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PWD?"
OUTPUT XXX;":MMEMORY:PWD? INTERNAL1"

MMEMory Subsystem
PWD (Present Working Directory)

12–21

REName

Command :MMEMory:REName <name>[,<msus>],<new_name>

The REName command renames a file on the drive. The <name> parameter
specifies the filename to be changed and the <new_name> parameter
specifies the new filename. You cannot use REName to move a file from one
drive to the other.

You cannot rename a file to an already existing filename.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<new name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

Example OUTPUT XXX;":MMEMORY:RENAME ’AUTOLOAD’,’OLD_AUTO’"

MMEMory Subsystem
REName

12–22

STORe [:CONFig]

Command :MMEMory:STORe[:CONfig] <name>[,<msus>],
<description>[,<module>]

The STORe command stores configurations onto a disk. The [:CONFig]
specifier is optional and has no effect on the command. The <name>
parameter specifies the file on the disk. The <description> parameter
describes the contents of the file. The optional <module> parameter allows
you to store the configuration for either the system or the modules. If the
optional <module> parameter is not specified, the configurations for the
system, modules, and any installed software options are stored.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

<description> A string of up to 32 alphanumeric characters

<module> An integer, –2 through 5 for the HP 16500C alone. –2 through 10 with an
HP 16501A connected.

Example OUTPUT XXX;":MMEM:STOR ’DEFAULTS’,’SETUPS FOR ALL MODULES’"
OUTPUT XXX;":MMEMORY:STORE:CONFIG ’STATEDATA’,INTERNAL0,
’ANALYZER 1 CONFIG’,1"

The appropriate module designator "_X" is added to all files when they are
stored. "_X" refers to either an __ (double underscore) for the system or an _(A
through E) for an HP 16500C alone or an _(A through J) with an HP 16501A
connected.

MMEMory Subsystem
STORe [:CONFig]

12–23

UPLoad

Query :MMEMory:UPLoad? <name>[,<msus>]

The UPLoad query uploads a file. The <name> parameter specifies the file to
be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

This command should only be used for HP 16550A configuration files.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN.NNN when the file resides in the current directory or
\NAME_DIR\FILENAME when it does not reside in the current directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

Returned Format [:MMEMory:UPLoad] <block_data><NL>

Example

10 DIM Block$[32000] !allocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;":EOI ON"
40 OUTPUT XXX;":SYSTEM:HEADER OFF"
50 OUTPUT XXX;":MMEMORY:UPLOAD? ’FILE1’" !send upload query
60 ENTER XXX USING "#,2A";Specifier$!read in #8
70 ENTER XXX USING "#,8D";Length !read in block length
80 ENTER XXX USING "-K";Block$!read in file
90 END

MMEMory Subsystem
UPLoad

12–24

VOLume

Query :MMEMory:VOLume? [<msus>]

The VOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (???) are returned if there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal 1 for the flexible disk drive.

The VOLume query does not return a response header.

Returned Format {DOS|LIF|???}<NL>

Example OUTPUT XXX;":MMEMORY:VOLUME?"

MMEMory Subsystem
VOLume

12–25

12–26

13

INTermodule Subsystem

Introduction

The INTermodule subsystem commands specify intermodule arming
from the rear-panel input BNC (ARMIN) or to the rear-panel output
BNC (ARMOUT). Refer to figure 13-1 and table 13-1 for the
INTermodule Subsystem commands syntax diagram. The
INTermodule commands are:

• DELete

• HTIMe

• INPort

• INSert

• OUTDrive

• OUTPolar

• OUTType

• PORTEDGE

• PORTLEV

• SKEW

• TREE

• TTIMe

13–2

Figure 13-1

Intermodule Subsystem Commands Syntax Diagram

INTermodule Subsystem

13–3

Figure 13-1 (continued)

Intermodule Subsystem Commands Syntax Diagram (continued)

INTermodule Subsystem

13–4

Table 13-1 INTermodule Parameter Values

Parameter Value
module An integer, 1 through 5 for HP 16500C alone. 1 through 10

with the HP 16501A connected.
user_lev A real number from –4.0 to +5.0 volts in 0.02 volt increments
index An integer, 1 through 5 for HP 16500C alone. 1 through 10

with the HP 16501A connected.
setting A numeric, – 1.0 to 1.0 in seconds.

:INTermodule

Selector :INTermodule

The INTermodule selector specifies INTermodule as the subsystem the
commands or queries following will refer to. Because the INTermodule
command is a root level command, it will normally appear as the first element
of a compound header.

Example OUTPUT XXX;":INTERMODULE:HTIME?"

INTermodule Subsystem
:INTermodule

13–5

DELete

Command :INTermodule:DELete {ALL|OUT|<module>}

The DELete command is used to remove a module, PORT OUT, or an entire
intermodule tree from a Group Run. The <module> parameter sent with the
delete command refers to the slot location of the module.

<module> An integer, 1 through 5 for HP 16500C alone. 1 through 10 with the HP
16501A connected.

Example OUTPUT XXX;":INTERMODULE:DELETE ALL"
OUTPUT XXX;":INTERMODULE:DELETE 1"

INTermodule Subsystem
DELete

13–6

HTIMe

Query :INTermodule:HTIMe?

The HTIMe query returns a value representing the internal hardware skew in
the Intermodule configuration. If there is no internal skew, 9.9E37 is
returned.

The internal hardware skew is only a display adjustment for time-correlated
waveforms. The value returned is the average propagation delay of the trigger
lines through the intermodule bus circuitry. These values are for reference only
because the values returned by TTIMe include the internal hardware skew
represented by HTIMe.

Returned Format [:INTermodule:HTIMe] <value_A>,<value_B>,<value_C>,<value_D>,
<value_E>[,<value_F>,<value_G>,<value_H>,<value_I>,<value_J>]
<NL>

<value_X> Skew for module in slot X (real number)

Example OUTPUT XXX;":INTERMODULE:HTIME?"

INTermodule Subsystem
HTIMe

13–7

INPort

Command :INTermodule:INPort {{ON|1}|{OFF|0}}

The INPort command causes intermodule acquisitions to be armed from the
Port In, the same as Group Run Armed from PORT IN in the Intermodule
menu. A value of 0 removes Port In from the Group Run.

In version 1.02 and later of the operating system software, you can set Group
Run with OR TRIGGER by setting INPort to 2.

Example OUTPUT XXX;":INTERMODULE:INPORT ON"

Query :INTermodule:INPort?

The INPort query returns the current Group Run setting. A value of 2 means
that the Group Run is set to Group Run with OR TRIGGER.

Returned Format [:INTermodule:INPort] {2|1|0}<NL>

Example OUTPUT XXX;":INTERMODULE:INPORT?"

INTermodule Subsystem
INPort

13–8

INSert

Command :INTermodule:INSert
{<module>|OUT},{GROUP|<module>}

The INSert command adds a module or PORT OUT to the Intermodule
configuration. The first parameter selects the module or PORT OUT to be
added to the intermodule configuration, and the second parameter tells the
instrument where the module or PORT OUT will be located. 1 through 5
corresponds to the slot location of the modules A through E for the HP
16500C alone and 1 through 10 corresponds to slot location of modules A
through J when an HP 16501A is connected.

<module> An integer, 1 through 5 for HP 16500C alone. 1 through 10 with the HP
16501A connected.

Example OUTPUT XXX;":INTERMODULE:INSERT 1,GROUP"
OUTPUT XXX;":INTERMODULE:INSERT 2,GROUP"
OUTPUT XXX;":INTERMODULE:INSERT 3,2;INSERT OUT,2"

The following figure shows the result of the example output commands:

Group Run

 A

 OUT

 B

 C

INTermodule Subsystem
INSert

13–9

OUTDrive

Command :INTermodule:OUTDrive {{0|NORMal}|{1|OPENcllctr}}

The OUTDrive command sets the Port Out BNC to put out either a normal
(TTL-type) or open-collector signal. This corresponds to the Output field in
the PORT IN/OUT Setup menu under the Intermodule menu.

See Also The HP 16500C User’s Reference for more information about open collector
signals.

Example OUTPUT XXX;":INTERMODULE:OUTDRIVE NORMAL"

Query :INTermodule:OUTDrive?

The OUTDrive query returns the current Port Out output setting.
Returned Format [:INTermodule:OUTDrive] {1|0}<NL>

Example OUTPUT XXX;":INTERMODULE:OUTDRIVE?"

OUTPolar

Command :INTermodule:OUTPolar {{0|HIGHtrue}|{1|LOWtrue}}

The OUTPolar command sets the Port Out BNC polarity. This command has
the same effect as setting the Polarity field in the PORT IN/OUT Setup menu
under the Intermodule menu.

Example OUTPUT XXX;":INTERMODULE:OUTP HIGH"

INTermodule Subsystem
OUTDrive

13–10

Query :INTermodule:OUTPolar?

The OUTPolar query returns the current Port Out polarity setting.
Returned Format [:INTermodule:OUTPolar] {1|0}<NL>

Example OUTPUT XXX;":INTERMODULE:OUTPolar?"

OUTType

Command :INTermodule:OUTType {{0|FEEDthru} | {1|LATChed}
| {2|PULse}}

The OUTType command sets the Port Out BNC signal type. This command
has the same effect as setting the Type field in the PORT IN/OUT Setup
menu under the Intermodule menu.

See Also The HP 16500C User’s Reference for more information about Port Out signal
types.

Example OUTPUT XXX;":INTERMODULE:OUTTYPE LATCHED"

Query :INTermodule:OUTType?

The OUTType query returns the current Port Out signal type.
Returned Format [:INTermodule:OUTType] {0|1|2}<NL>

Example OUTPUT XXX;":INT:OUTT?"

INTermodule Subsystem
OUTType

13–11

PORTEDGE

Command :INTermodule:PORTEDGE <edge_spec>

This command does not obey the truncation rules.

The PORTEDGE command sets the Port In BNC to respond to either a rising
edge of falling edge for a trigger from an external source. The threshold level
of the input signal is set by the PORTLEV command.

<edge_spec> A 1 or ON for rising edge or a 0 or OFF for falling edge.

Example OUTPUT XXX;":INTERMODULE:PORTEDGE 1"

Query :INTermodule:PORTEDGE?

The PORTEDGE query returns the current edge setting.
Returned Format [:INTermodule:PORTEDGE] {1|0}<NL>

Example OUTPUT XXX;":INTERMODULE:PORTEDGE?"

INTermodule Subsystem
PORTEDGE

13–12

PORTLEV

Command :INTermodule:PORTLEV {TTL|ECL|<user_lev>}

This command does not obey the truncation rules.

The PORTLEV (port level) command sets the threshold level at which the
input BNC responds and produces an intermodule trigger. The preset levels
are TTL and ECL. The user-defined level is –4.0 volts to +5.0 volts. If a value
outside this range is specified, the value is set to the extreme in the direction
exceeded and no error message is generated.

<user_lev> A real number from –4.0 to + 5.0 volts in 0.01 volt increments.

Example This statement sets the BNC threshold to ECL

OUTPUT XXX;":INTERMODULE:PORTLEV ECL"

This statement sets the BNC threshold to –2.3 volts
OUTPUT XXX;":INTERMODULE:PORTLEV –2.3"

Query :INTermodule:PORTLEV?

The PORTlev query returns the current BNC threshold setting.
Returned Format [INTermodule:PORTLEV] {TTL|ECL|<user_lev><NL>

Example OUTPUT XXX;":INTERMODULE:PORTLEV?"

INTermodule Subsystem
PORTLEV

13–13

SKEW<N>

Command :INTermodule:SKEW<N> <setting>

The SKEW command sets the skew value for a module. The <N> index value
is the module number (1 through 5 corresponds to the slot location of the
modules A through E for the HP 16500C alone and 1 through 10 to slot
location of modules A through J when an HP 16501A is connected). The
<setting> parameter is the skew setting (– 1.0 to 1.0) in seconds.

<N> An integer, 1 through 5 for HP 16500C alone. 1 through 10 with the HP
16501A connected.

<setting> A real number from –1.0 to 1.0 seconds

Example OUTPUT XXX;":INTERMODULE:SKEW2 3.0E-9"

Query :INTermodule:SKEW<N>?

The query returns the user defined skew setting.
Returned Format [INTermodule:SKEW<N>] <setting><NL>

Example OUTPUT XXX;":INTERMODULE:SKEW1?"

INTermodule Subsystem
SKEW<N>

13–14

TREE

Command :INTermodule:TREE <module>,<module>,<module>,
<module>,<module>[,<module>,<module>,<module>,
<module>,<module>],<port_out>

The TREE command allows an intermodule setup to be specified in one
command. The first five (or ten, with an HP 16501A connected) parameters
are the intermodule arm values for modules A through E for an HP 16500C
alone or modules A through J with an HP 16501A connected. The last
parameter corresponds to the intermodule arm value for PORT OUT. A –1
means the module is not in the intermodule tree, a 0 value means the module
is armed from the Intermodule run button (Group run), and a positive value
indicates the module is being armed by another module with the slot location
1 to 10. 1 through 10 correspond to slots A through J.

<module>
<port_out>

An integer, −1 through 5 for an HP 16500C alone. −1 through 10 with an
HP 16501A connected.

Example OUTPUT XXX;":INTERMODULE:TREE 0,0,2,–1,–1,2"

The following figure shows the result of the example output commands:

Group Run

 A

 OUT

 B

 C

INTermodule Subsystem
TREE

13–15

Query :INTermodule:TREE?

The TREE? query returns a string that represents the intermodule tree. A −1
means the module is not in the intermodule tree, a 0 value means the module
is armed from the Intermodule run button (Group run), and a positive value
indicates the module is being armed by another module with the slot location
1 to 10. 1 through 10 correspond to the slots A through J.

Returned Format [INTermodule:TREE] <module>,<module>,<module>,<module>,
<module>[,<module>,<module>,<module>,<module>,<module>],
<port_out><NL>

Example OUTPUT XXX;":INTERMODULE:TREE?"

INTermodule Subsystem
TREE

13–16

TTIMe

Query :INTermodule:TTIMe?

The TTIMe query returns five values for the HP 16500C alone or ten with an
HP 16501A connected representing the absolute intermodule trigger time for
all of the modules in the Intermodule configuration. The first value is the
trigger time for the module in slot A, the second value is for the module in
slot B, the third value is for slot C, etc.

The value 9.9E37 is returned when:

• The module has not yet been run;

• No module is installed in the corresponding slot;

• The module in the corresponding slot is not time correlated; or

• A time-correlatable module did not trigger.

The trigger times returned by this command have already been offset by the
INTermodule:SKEW values and internal hardware skews (INTermodule:HTIMe).

Returned Format [:INTermodule:TTIMe] <module>,<module>,<module>,<module>,
<module>[,<module>,<module>,<module>,<module>,<module>]<NL>

<module> Trigger time for module (real number)

Example OUTPUT XXX;":INTERMODULE:TTIME?"

INTermodule Subsystem
TTIMe

13–17

13–18

14

TGTctrl Subsystem

Introduction

The TGTctrl subsystem commands specify the signals put out by the
Target Control Port. Refer to figure 14-1 and table 14-1 for the
TGTctrl Subsystem commands syntax diagram. The TGTctrl
commands are:

• ALL

• AVAILable

• BITS

• CURSTate

• DRIVe

• LASTstate

• NAME

• PULse

• SIGNal

• SIGSTatus

• STATEs

• STEP

• TOGgle

• TYPE

14–2

Figure 14-1

Targetcontrol Subsystem Commands Syntax Diagram

TGTctrl Subsystem

14–3

Figure 14-1 (continued)

Targetcontrol Subsystem Commands Syntax Diagram

TGTctrl Subsystem

14–4

Table 14-1 TGTctrl Parameter Values

Parameter Value
N An integer, 0 through 7, indicating signal
bits An integer, 0 though 255
state An integer, 0 through 7
name A string of up to 14 characters

:TGTctrl

Selector :TGTctrl

This command does not obey the truncation rule.

The TGTctrl selector specifies target control as the subsystem the commands
or queries following will refer to. Because the TGTctrl command is a root
level command, it will normally appear as the first element of a compound
header.

Example OUTPUT XXX;":TGTCTRL:ALL4?"

TGTctrl Subsystem
:TGTctrl

14–5

ALL

Query :TGTctrl:ALL<N>?

The ALL query returns all parameters of the signal specified by <N>. These
values may be individually queried using other commands in the TGTctrl
subsystem.

<N> An integer, 0 through 7.

Returned Format [:TGTctrl:ALL<N>] <on>,<name>,<type>,<bits>,<drive>,<last>,
<current>,<state0>,<state1>,<state2>,<state3>,<state4>,
<state5>,<state6>,<state7><nl>

<on> {0|1} 0 indicates signal is not active, 1 indicates signal is active.

<name> A string of up to 14 characters

<type> {0|1|2} indicating type of output signal. 0 indicates toggle, 1 indicates
pulse, and 2 indicates a sequence.

<bits> An integer, 0 through 255, whose binary form indicates the signal’s bit mask.
A value of 1 means the bit is turned on.

<drive> {0|1} indicating output type. A value of 0 indicates normal (TTL), and 1
indicates open collector.

<last> An integer, 1 through 7, indicating last state.

<current> An integer, 0 through 7, indicating current state.

<state0> –
<state7>

An integer, 0 through 255, whose binary form indicates the value put out
when the signal is in that state. Values occurring after the last state are not
significant.

Example OUTPUT XXX;"TGT:ALL0?"

See Also SIGNal, NAME, TYPE, BITS, DRIVe, LASTstate, CURSTate, and STATEs
commands in this chapter.

TGTctrl Subsystem
ALL

14–6

AVAILable

Query :TGTctrl:AVAILable?

This command does not obey the truncation rule.

The AVAILable query returns an integer whose binary form indicates
unassigned bits. If a signal is turned off, any bits assigned to it are available.
A 0 indicates that the bit is NOT available.

Returned Format [:TGTctrl:AVAILable] <bits><NL>

<bits> An integer, 0 through 255.

Example For example, if your HP BASIC program contains a line

OUTPUT XXX;":TGTCTRL:AVAILABLE?"

and the value returned is 248, you have 1111 1000 in binary. The binary
value lets you know that bits 0 through 2 are in use, but bits 3 through 7 are
available.

TGTctrl Subsystem
AVAILable

14–7

BITS

Command :TGTctrl:BITS<N> <mask>

The BITS command assigns bits to a signal. A 1 in the mask’s bit position
assigns the bit to the signal. The mask overwrites any previous assignments.

<N> An integer, 0 through 7, specifying signal.

<mask> An integer, 0 through 255.

Example To assign the last four bits to signal 1:

OUTPUT XXX;":TGT:BITS1 #H0F"

Query :TGTctrl:BITS<N>?

The query returns an integer. The binary form of the integer specifys which
bits are assigned to the signal.

Returned Format [:TGTctrl:BITS<N>] <mask><NL>

Example OUTPUT XXX;":TGT:BITS1?"

TGTctrl Subsystem
BITS

14–8

CURSTate

Query :TGTctrl:CURSTate<N>?

This command does not obey the truncation rule.

The CURSTate query returns the current state of the specified signal. For
toggle and pulse signals, this will be either 0 or 1. For sequence signals, it
will be between 0 and the last state.

Returned Format [:TGTctrl:CURSTate<N>] <state><NL>

<N> An integer, 0 through 7, specifying signal.

<state> An integer, 1 through 7, indicating current state.

Example OUTPUT XXX;":TGTCTRL:CURSTATE0?"

DRIVe

Command :TGTctrl:DRIVe<N> {{NORMal|0}|{OPENcllctr|1}}

The DRIVe command sets a signal’s output type. The output type controls
the way in which the line is driven.

<N> An integer, 0 through 7, specifying signal.

Example OUTPUT XXX;":TGTCTRL:DRIVE1 NORMAL"

Query :TGTctrl:DRIVe<N>?

Returned Format [:TGTctrl:DRIVe<N>] <type><NL>

<type> {0|1} 0 indicates normal (TTL); 1 indicates open collector.

TGTctrl Subsystem
CURSTate

14–9

LASTstate

Command :TGTctrl:LASTstate<N> <state>

The LASTstate command sets a signal’s last state. LASTstate has no effect
unless the signal type is sequence.

<N> An integer, 0 through 7, specifying signal.

<state> An integer, 1 through 7.

Example OUTPUT XXX;":TGTCTRL:LAST2 4"

Query :TGTctrl:LASTstate<N>?

The query returns the current last state. For toggle and pulse signals, the
last state is always 1.

Returned Format [:TGTctrl:LASTstate<N>] <state><NL>

Example OUTPUT XXX;":TGTCTRL:LAST1?"

TGTctrl Subsystem
LASTstate

14–10

NAMe

Command :TGTctrl:NAMe<N> <name>

The LASTstate command sets a signal name.

<N> An integer, 0 through 7, specifying signal.

<name> A string of up to 14 characters.

Example OUTPUT XXX;":TGTCTRL:NAME0 ’Reset’"

Query :TGTctrl:NAMe<N>?

The NAMe query returns the name of the specified signal. The default names
are SIGNAL 0 through SIGNAL 7.

Returned Format [:TGTctrl:NAMe<N>] <name><NL>

Example OUTPUT XXX;":TGTCTRL:NAME0?"

TGTctrl Subsystem
NAMe

14–11

PULse

Command :TGTctrl:PULse<N>

This command does not obey the truncation rule.

The PULse command pulses the specified signal. If the signal type is toggle
or sequence, it sets the signal to the next state. This command works the
same as STEP and TOGgle.

<N> An integer, 0 through 7, specifying signal.

Example OUTPUT XXX;":TGTCTRL:PULSE7"

SIGNal

Command :TGTctrl:SIGNal<N> {{OFF|0}|{ON|1}}

The SIGNal command activates or deactivates the specified signal, like
manually selecting Turn Signal Off or Turn Signal On in the Target Control
Port Settings menu.

<N> An integer, 0 through 7, specifying signal.

Example OUTPUT XXX;":TGT:SIGN7 ON"

Query :TGTctrl:SIGNal<N>?

The SIGNal query returns the current status of the specified signal.
Returned Format [:TGTctrl:SIGNal<N>] <status><NL>

<status> {0|1} 0 indicates off and 1 indicates on.

TGTctrl Subsystem
PULse

14–12

SIGSTatus

Query :TGTctrl:SIGSTatus<N>?

This command does not obey the truncation rule.

The SIGSTatus query returns two values. The first is the current state on the
target control lines assigned to the signal. The second is an activity indicator
on the signal. A signal that is off will always return a first value indicating all
assigned lines are 1.

<N> An integer, 0 through 7, specifying signal.

Returned Format [:TGTctrl:SIGSTatus<N>] <cur_st>,<activity><NL>

<cur_st> An integer, from 0 to 255. The binary format represents the current state of
the assigned lines. The return value is packed; that is, unassigned lines do
not appear in the binary form.

<activity> An integer, from 0 to 255, representing recent activity. A 1 indicates that the
bit shows activity. A 0 indicates that the bit has been stable since last screen
update.

Example OUTPUT XXX;":TGTCTRL:SIGSTATUS 3?"

TGTctrl Subsystem
SIGSTatus

14–13

STATEs

Command :TGTctrl:STATEs<N> <value_0>[,<value_1>,
<value_2>,<value_3>,<value_4>,<value_5>,<value_6>,
<value_7>]

This command does not obey the truncation rule.

The STATEs command sets the state values of the specified signal. The
value is interpreted as a packed bitmask. You can specify up to 8 values on
the command line.

<N> An integer, 0 through 7, specifying signal.

<value_N> An integer, 0 through 255, specifying that state’s value in a packed bitmask.

Example If bits 0, 2, and 7 are assigned to signal 0, the following command would set
each bit high in turn:
OUTPUT XXX;":TGT:STATE0 1,2,4"

Query :TGTctrl:STATEs<N>?

The STATEs query returns values for all 8 states. For toggle and pulse
signals, only the first two values are significant.

Returned Format [:TGTctrl:STATEs<N>] <value_0>,<value_1>,<value_2>,
<value_3>,<value_4>,<value_5>,<value_6>,<value_7><NL>

Example OUTPUT XXX;":TGTCTRL:STATES0?"

TGTctrl Subsystem
STATEs

14–14

STEP

Command :TGTctrl:STEP<N>

The STEP command sets the specified signal to the next state. If the signal
type is pulse, it briefly pulses the signal. STEP can be used with any type of
signal. This command has the same effect as PULse and TOGgle.

<N> An integer, 0 through 7, specifying signal.

Example OUTPUT XXX;":TGTCTRL:STEP3"

TOGgle

Command :TGTctrl:TOGgle<N>

This command does not obey the truncation rule.

The TOGgle command toggles the specified signal to the next state. If the
signal type is pulse, it briefly pulses the signal. This command has the same
effect as PULse and STEP.

<N> An integer, 0 through 7, specifying signal.

Example OUTPUT XXX;":TGTCTRL:TOGGLE3"

TGTctrl Subsystem
STEP

14–15

TYPe

Command :TGTctrl:TYPe<N> {{TOGgle|0} | {PULse|1} |
{SEQuence|2}}

The TYPe command sets the signal type for the specified signal. It does not
turn on the signal.

<N> An integer, 0 through 7, specifying signal.

Example OUTPUT XXX;":TGT:TYP2 SEQ"

Query :TGTctrl:TYPe<N>?

The TYPe query returns the current type of the signal. The default type is
toggle.

Returned Format [:TGTctrl:TYPe<N>] <type><NL>

<type> {0|1|2} where 0 indicates toggle, 1 indicates pulse, and 2 indicates
sequence.

TGTctrl Subsystem
TYPe

14–16

Part 3

15 Programming Examples 15-1

Programming Examples

15

Programming Examples

Introduction

This chapter contains short, usable, and tested program examples
that cover the most frequently requested examples. The examples
are written in HP BASIC 6.2.

• Transferring the mainframe configuration between the mainframe
and the controller

• Checking for intermodule measurement completion

• Sending queries to the mainframe

• Getting ASCII data with PRINt? All query

• Reading a disk catalog

• Printing to the disk using PRINT? ALL

15–2

Transferring the Mainframe Configuration

This program uses the SYSTem:SETup? query to transfer the configuration
of the mainframe to your controller. This program also uses the
SYSTem:SETup command to transfer a mainframe configuration from the
controller back to the mainframe. The configuration data will set up the
mainframe according to the data. It is useful for getting configurations for
setting up the mainframe by the controller. This command and query differs
from the SYSTem:DATA? command and query because it only transfers the
configuration and not the acquired data. Because the mainframe, by itself,
does not acquire data the SYSTem:DATA? command and query is only
useful for modules.

10 ! ****************** SETUP COMMAND AND QUERY EXAMPLE ********************
20 ! for the HP 16500C/16501A Logic Analysis System
30 !
40 ! ********************* CREATE TRANSFER BUFFER *************************
50 ! Create a buffer large enough for the block data.
55 !
60 ASSIGN @Buff TO BUFFER [170000]
70 !
80 ! **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90 !
100 REAL Address
110 Address=707
120 ASSIGN @Comm TO Address
130 !
140 CLEAR SCREEN
150 !
160 ! ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 ! The variable "Numbytes" contains the number of bytes in the buffer.
180 !
190 REAL Numbytes
200 Numbytes=0
210 !
220 ! ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230 !
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;0
260 !

Programming Examples
Transferring the Mainframe Configuration

15–3

270 ! *********************** SEND THE SETUP QUERY **************************
280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;"SELECT 0"
310 OUTPUT @Comm;":SYSTEM:SETUP?"
320 !
330 ! ******************** ENTER THE BLOCK SETUP HEADER *********************
340 ! Enter the block setup header in the proper format.
350 !
360 ENTER @Comm USING "#,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "#,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420 ENTER @Comm USING "#,B";Byte
430 PRINT CHR$(Byte);
440 Byte=Byte-48
450 IF Byte=1 THEN ENTER @Comm USING "#,D";Numbytes
460 IF Byte=2 THEN ENTER @Comm USING "#,DD";Numbytes
470 IF Byte=3 THEN ENTER @Comm USING "#,DDD";Numbytes
480 IF Byte=4 THEN ENTER @Comm USING "#,DDDD";Numbytes
490 IF Byte=5 THEN ENTER @Comm USING "#,DDDDD";Numbytes
500 IF Byte=6 THEN ENTER @Comm USING "#,DDDDDD";Numbytes
510 IF Byte=7 THEN ENTER @Comm USING "#,DDDDDDD";Numbytes
520 IF Byte=8 THEN ENTER @Comm USING "#,DDDDDDDD";Numbytes
530 PRINT Numbytes
540 !
550 ! ******************** TRANSER THE SETUP ********************************
560 ! Transfer the setup from the mainframe to the buffer.
570 !
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 ! Clear the terminator from the message queue
610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is";LEN(Length$)
630 !
640 PRINT "**** GOT THE SETUP ****"
650 PAUSE
660 ! ********************* SEND THE SETUP **********************************
670 ! Make sure buffer is not empty.
680 !
690 IF Numbytes=0 THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF

Programming Examples
Transferring the Mainframe Configuration

15–4

730 !
740 ! ********************* SEND THE SETUP COMMAND **************************
750 ! Send the Setup command
760 !
770 OUTPUT @Comm USING "#,15A";":SYSTEM:SETUP #"
780 PRINT "SYSTEM:SETUP command has been sent"
790 PAUSE
800 !
810 ! ********************* SEND THE BLOCK SETUP ****************************
820 ! Send the block setup header to the mainframe in the proper format.
830 !
840 Byte=LEN(VAL$(Numbytes))
850 OUTPUT @Comm USING "#,B";(Byte+48)
860 IF Byte=1 THEN OUTPUT @Comm USING "#,A";VAL$(Numbytes)
870 IF Byte=2 THEN OUTPUT @Comm USING "#,AA";VAL$(Numbytes)
880 IF Byte=3 THEN OUTPUT @Comm USING "#,AAA";VAL$(Numbytes)
890 IF Byte=4 THEN OUTPUT @Comm USING "#,AAAA";VAL$(Numbytes)
900 IF Byte=5 THEN OUTPUT @Comm USING "#,AAAAA";VAL$(Numbytes)
910 IF Byte=6 THEN OUTPUT @Comm USING "#,AAAAAA";VAL$(Numbytes)
920 IF Byte=7 THEN OUTPUT @Comm USING "#,AAAAAAA";VAL$(Numbytes)
930 IF Byte=8 THEN OUTPUT @Comm USING "#,AAAAAAAA";VAL$(Numbytes)
940 !
950 ! *********************** SAVE BUFFER POINTERS *************************
960 ! Save the transfer buffer pointer so it can be restored after the
970 ! transfer.
980 !
990 STATUS @Buff,5;Streg
1000 !
1010 ! ****************** TRANSFER SETUP TO THE HP 16500C ********************
1020 ! Transfer the setup from the buffer to the HP 16500C mainframe.
1030 !
1040 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
1050 !
1060 ! ********************** RESTORE BUFFER POINTERS ***********************
1070 ! Restore the transfer buffer pointer
1080 !
1090 CONTROL @Buff,5;Streg
1100 !
1110 ! ******************** SEND TERMINATING LINE FEED **********************
1120 ! Send the terminating linefeed to properly terminate the setup string.
1130 !
1140 OUTPUT @Comm;""
1150 !
1160 PRINT "**** SENT THE SETUP ****"
1170 END

Programming Examples
Transferring the Mainframe Configuration

15–5

Checking for Intermodule Measurement Completion

This program can be appended to or inserted into another program when you
need to know when an intermodule measurement is complete. If it is at the
end of a program it will tell you when measurement is complete. If you insert
it into a program, it will halt the program until the current measurement is
complete.

420 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
430 ! Enable the MESR register and query the register for a measurement
440 ! complete condition.
450 !
460 OUTPUT 707;":SYSTEM:HEADER OFF"
470 OUTPUT 707;":SYSTEM:LONGFORM OFF"
480 !
490 Status=0
500 OUTPUT 707;":MESE0 1"
510 OUTPUT 707;":MESR0?"
520 ENTER 707;Status
530 !
533 ! Start a measurement
536 OUTPUT 707;":START"
540 ! Print the MESR register status.
550 !
560 CLEAR SCREEN
570 PRINT "Measurement complete status is ";Status
580 PRINT "0 = not complete, 1 = complete"
590 ! Repeat the MESR query until measurement is complete.
600 WAIT 1
610 IF Status=1 THEN GOTO 630
620 GOTO 510
630 PRINT TABXY(30,15);"Measurement is complete"
640 !
650 END

Programming Examples
Checking for Intermodule Measurement Completion

15–6

Sending Queries to the Logic Analysis System

This program example contains the steps required to send a query to the
logic analysis system. Sending the query alone only puts the requested
information in an output buffer of the logic analysis system. You must follow
the query with an ENTER statement to transfer the query response to the
controller. When the query response is sent to the logic analysis system, the
query is properly terminated in the logic analyzer. If you send the query but
fail to send an ENTER statement, the logic analysis system will display the
error message "Query Interrupted" when it receives the next command from
the controller and the query response is lost.

10 !************************ QUERY EXAMPLE ***********************
20 ! for the HP 16500C/16501A Logic analysis system
30 !
40 ! ************************ OPTIONAL ***************************
50 ! The following two lines turn the headers and longform on so
60 ! that the query name, in its long form, is included in the
70 ! query response.
80 !
90 ! ************** NOTE ****************
100 ! If your query response includes real
110 ! or integer numbers that you may want
120 ! to do statistics or math on later, you
130 ! should turn both header and longform
140 ! off so only the number is returned.
150 ! *************************************
160 !
170 OUTPUT 707;":SYSTEM:HEADER ON"
180 OUTPUT 707;":SYSTEM:LONGFORM ON"
190 !
200 ! ***
210 ! Select the mainframe.
220 ! Always a 0 for the HP 16500C/16501A mainframe.
230 OUTPUT 707;":SELECT 0"
240 !
250 ! **
260 ! Dimension a string in which the query response will be entered.
270 !
280 DIM Query$[100]
290 !
300 ! **

Programming Examples
Sending Queries to the Logic Analysis System

15–7

310 ! Send the query. In this example the MENU? query is sent. All
320 ! queries except the SYSTem:DATA and SYSTem:SETup can be sent with
330 ! this program.
340 !
350 OUTPUT 707;"MENU?"
360 !
370 ! **
380 ! The two lines that follow transfer the query response from the
390 ! query buffer to the controller and then print the response.
400 !
410 ENTER 707;Query$
420 PRINT Query$
430 !
440 !
450 END

Programming Examples
Sending Queries to the Logic Analysis System

15–8

Getting ASCII Data with PRINt? ALL Query

This program example shows you how to get ASCII data from a listing
display, like the disk catalog or state listing, using the PRINt? ALL query.
There are two things you must keep in mind:

• You must select the mainframe, which is always SELECT 0 for the
HP 16500C mainframe.

• You must select the proper menu. The only menus that allow you to use
the PRINt? ALL query are the disk menu and listing menus.

10 ! ****** ASCII DATA *******
20 !
30 !
40 ! This program gets the hard disk directory from the HP 16500C mainframe
50 ! in ASCII form by using the PRINT? ALL query.
60 !
70 !**
80 !
90 DIM Block$[32000]
100 OUTPUT 707;"EOI ON"
110 OUTPUT 707;":SYSTEM:HEAD OFF"
120 OUTPUT 707;":SELECT 0" ! Always a 0 for the HP 16500C mainframe
130 !
140 !
150 OUTPUT 707;":MENU 0,1" ! Selects the hard disk menu. Print? All
160 ! will only work in disk menu and listings.
170 !
180 OUTPUT 707;":SYSTEM:PRINT? ALL"
190 ENTER 707 USING "-K";Block$
200 !
210 !**
220 ! Now display the ASCII data you received.
230 !
240 PRINT USING "K";Block$
250 !
260 END

Programming Examples
Getting ASCII Data with PRINt? ALL Query

15–9

Reading the disk with the CATalog? ALL query

The following example program reads the catalog of the currently selected
disk drive. The CATALOG? ALL query returns the entire 70-character field.
Because DOS directory entries are 70 characters long, you should use the
CATALOG? ALL query with DOS disks.

10 ! ****** DISK CATALOG ******
20 ! using the CATALOG? ALL query
30 !
40 DIM File$[100]
50 DIM Specifier$[2]
60 OUTPUT 707;":EOI ON"
70 OUTPUT 707;":SYSTEM:HEADER OFF"
80 OUTPUT 707;":MMEMORY:MSI INTERNAL0" ! select the hard drive
90 OUTPUT 707;":MMEMORY:CATALOG? ALL" ! send CATALOG? ALL query
100 !
110 ENTER 707 USING "#,2A";Specifier$! read in #8
120 ENTER 707 USING "#,8D";Length ! read in block length
130 !
140 ! Read and print each file in the directory
150 !
160 FOR I=1 TO Length STEP 70
170 ENTER 707 USING "#,70A";File$
180 PRINT File$
190 NEXT I
200 ENTER 707 USING "A";Specifier$! read in final line feed
210 END

Programming Examples
Reading the disk with the CATalog? ALL query

15–10

Reading the Disk with the CATalog? Query

This example program uses the CATALOG? query without the ALL option
to read the catalog of the currently selected disk drive. However, if you do
not use the ALL option, the query only returns a 51-character field. Keep in
mind if you use this program with a DOS disk, each filename entry will be
truncated at 51 characters.

10 ! ****** DISK CATALOG ******
20 ! using the CATALOG? query
30 !
40 DIM File$[100]
50 DIM Specifier$[2]
60 OUTPUT 707;":EOI ON"
70 OUTPUT 707;":SYSTEM:HEADER OFF"
80 OUTPUT 707;":MMEMORY:MSI INTERNAL0" ! select the hard drive
90 OUTPUT 707;":MMEMORY:CATALOG?" ! send CATALOG? query
100 !
110 ENTER 707 USING "#,2A";Specifier$! read in #8
120 ENTER 707 USING "#,8D";Length ! read in block length
130 !
140 ! Read and print each file in the directory
150 !
160 FOR I=1 TO Length STEP 51
170 ENTER 707 USING "#,51A";File$
180 PRINT File$
190 NEXT I
200 ENTER 707 USING "A";Specifier$! read in final line feed
210 END

Programming Examples
Reading the Disk with the CATalog? Query

15–11

Printing to the disk

This program prints acquired data to a disk file. The file can be either on a
LIF or DOS disk. If you print the file to a flexible disk in the DOS format, you
will be able to view the file on a DOS compatible computer using any number
of file utility programs.

10 ! ********* PRINTING TO A DISK FILE **********
20 !
30 !
40 ! This program prints the acquired data to a disk file on a floppy disk.
50 ! It will print to either a LIF or DOS file using the PRINT ALL command.
60 !
70 !**
80 ! This program assumes a logic analyzer module
85 ! is installed in slot 1.
90 OUTPUT 707;":SELECT 1" ! Selects the module in slot 1. This program
100 ! assumes a logic analyzer module is installed
110 ! in slot 1.
115 !
120 OUTPUT 707;":MENU 1,7" ! Selects the Listing 1 menu. Print to disk
130 ! will only work in Listing and Disk menus.
140 !
150 OUTPUT 707;":SYSTEM:PRINT ALL, DISK, ’DISKFILE’, INTERNAL1"
160 !
170 !**
180 ! Now display catalog to see that the file has been saved on the disk.
190 !
200 DIM File$[100]
210 DIM Specifier$[2]
220 OUTPUT 707;":EOI ON"
230 OUTPUT 707;":SYSTEM:HEADER OFF"
235 OUTPUT 707;":MMEMORY:MSI INTERNAL1"
240 OUTPUT 707;":MMEMORY:CATALOG? ALL"
250 ENTER 707 USING "#,2A";Specifier$
260 ENTER 707 USING "#,8D";Length
270 FOR I=1 TO Length STEP 70
280 ENTER 707 USING "#,70A";File$
290 PRINT File$
300 NEXT I
310 ENTER 707 USING "A";Specifier$
320 END

Programming Examples
Printing to the disk

15–12

Index

*CLS command, 9–5
*ESE command, 9–6
*ESR command, 9–7
*IDN command, 9–9
*IST command, 9–9
*OPC command, 9–11
*OPT command, 9–12
*PRE command, 9–13
*RST command, 9–14
*SRE command, 9–15
*STB command, 9–16
*TRG command, 9–17
*TST command, 9–18
*WAI command, 9–19
..., 5–5
32767, 5–4
9.9E+37, 5–4
::=, 5–5
 , 5–5 , 5–5
[], 5–5[], 5–5
{ }, 5–5{ }, 5–5
|, 5–5|, 5–5

A

Addressed talk/listen mode, 2–3
ALL, 14–6
Angular brackets, 5–5
Arguments, 1–8
AUToload command, 12–7
AVAILable, 14–7

B

Bases, 1–13, 1–20
BASIC, 1–3
Baud rate, 3–8
BEEPer command, 10–6
Binary numbers, 1–13
Bit definitions, 7–4 to 7–5
BITS, 14–8
Block data, 1–7, 1–21
Block length specifier, 11–5, 11–12
Braces, 5–5
Bus addressing, 2–4

C

C programs
See Examples

Cable
RS-232-C, 3–3

CAPability, 10–7
Card identification numbers, 10–8
CARDcage command, 10–8
Case sensitivity, 6–9
CATalog, 12–8
CD, 12–9
CESE, 10–10
CESR, 10–11
Clear To Send (CTS), 3–5
Clock, 10–20
CME, 7–5
Comma, 1–13
Command, 1–7, 1–17

*CLS, 9–5
*ESE, 9–6
*OPC, 9–11
*PRE, 9–13
*RST, 9–14
*SRE, 9–15
*TRG, 9–17
*WAI, 9–19
AUToload, 12–7
BEEPer, 10–6
BITS, 14–8
CD (change directory, 12–9
CESE, 10–10
Combining, 1–10
COPY, 12–10
DATA, 11–5
DELete, 13–6
DOWNload, 12–11
DRIVe, 14–9
DSP, 11–6
EOI, 10–13
Errors, 8–3
Execution, 6–3
HEADer, 1–17, 11–8
INITialize, 12–14
INPort, 13–8
INSert, 13–9
LASTstate, 14–10
LOAD:CONFig, 12–15
LOAD:IASSembler, 12–16
LOCKout, 3–10, 10–14
LONGform, 1–17, 11–9
MENU, 10–15
MESE, 10–16
MKDir, 12–17
Mode, 2–3

MSI, 12–18
NAMe, 14–11
Organization, 5–10
OUTDrive, 13–10
OUTPolar, 13–10
OUTType, 13–11
PACK, 12–19
PORTEDGE, 13–12
PORTLEV, 13–13
PRINt, 11–10
PULse, 14–12
PURGe, 12–20
REName, 12–22
RMODe, 10–19
RTC, 10–20
SELect, 10–21
SETColor, 10–23
SETup, 11–12
SIGNal, 14–12
SKEW, 13–14
STARt, 10–24
STATEs, 14–14
STEP, 14–15
STOP, 10–25
STORe:CONFig, 12–23
Structure, 1–5
SYStem:DATA, 11–5
SYStem:SETup, 11–12
TGTctrl, 14–5
TOGgle, 14–15
TREE, 13–15
TYPe, 14–16
Types, 5–6
XWINdow, 10–26

Command tree, 5–6
SELect, 10–22

Common commands, 1–10, 5–6, 9–2
Communication, 1–3
Compound commands, 1–9
Configuration file, 1–4
Control level, 4–4 to 4–5
Controllers, 1–3, 4–5

mode, 2–3
Conventions, 5–5
COPY, 12–10
CURSTate, 14–9

Index–1

D

DATA, 11–5
Data

bits, 3–8
level, 4–4
mode, 2–3
types, 1–13 to 1–14

Data Carrier Detect (DCD), 3–5
DATA command/query, 11–5
Data Communications Equipment,

see DCE
Data Set Ready (DSR), 3–5
Data Terminal Equipment, 3–3
Data Terminal Ready (DTR), 3–5
DCE, 3–3
DCL, 2–6
DDE, 7–5
Decimal numbers, 1–13
Definite-length block response data, 1–21
DELete, 13–6
Device address, 1–7

HP-IB, 2–4
LAN, 4–3
RS-232-C, 3–9

Device clear, 2–6
Device dependent errors, 8–3
Documentation conventions, 5–5
DOWNload, 12–11
DRIVe, 14–9
DSP, 11–6
DTE, 3–3
Duplicate keywords, 1–10

E

Ellipsis, 5–5
Embedded strings, 1–3, 1–7
Enter statement, 1–3
EOI, 10–13
ERRor, 11–7
Error messages, 8–2
ESB, 7–4
Event Status Register, 7–4
Examples

BASIC program, 1–19, 12–24, 15–2
C program, 4–9, 4–11
RS-232 cables, 3–6
telnet, 4–12

EXE, 7–5

Execution, 6–3
errors, 8–4

Exponents, 1–13, 6–9
Extended interface, 3–5
External trigger, 13–12

F

File type numbers, 12–12
Fractional values, 1–14

G

Group execute trigger (GET), 2–6
Group Run, 13–8

See also Intermodule

H

HEADer, 1–17, 11–8
Headers, 1–7, 1–9, 1–12
Hexadecimal numbers, 1–13
Host language, 1–7
HP-IB, 2–2 to 2–3, 7–8

address, 2–3
commands, 7–13
device address, 2–4
interface, 2–2 to 2–4

HTIMe, 13–7

I

IEEE 488.1, 2–2, 6–2
bus commands, 2–6

IEEE 488.2, 6–2
IFC, 2–6
Infinity, 5–4
Initialization, 1–4
INITialize, 12–14
INPort, 13–8
Input buffer, 6–3
INSert, 13–9
Instructions, 1–6

headers, 1–7
parameters, 1–8
syntax, 1–6
terminator, 1–8

Instrument address, 2–4
Integers, 1–14
Interface capabilities, 2–3

RS-232-C, 3–8

Interface clear, 2–6
Interface select code

HP-IB, 2–4
RS-232-C, 3–9

Intermodule menu, 13–2
delete module, 13–6
group run, 13–8

INTermodule subsystem, 13–2
Internal errors, 8–4

K

Keyword data, 1–14
Keywords, 5–3

L

Labels, 1–14
LAN connections, 4–3

control vs data, 4–4
mount, 4–4
net use, 4–4
socket, 4–11
telnet, 4–5, 4–12

LASTstate, 14–10
LCL, 7–6
LER, 10–13
Linefeed, 1–8, 5–5
LOAD:CONFig, 12–15
LOAD:IASSembler, 12–16
Local, 2–5
Local lockout, 2–5
LOCKout command, 3–10, 10–14
Longform, 1–12
LONGform command, 1–17, 11–9
Lowercase, 1–12

M

Magic numbers, 12–12
Mainframe commands, 10–2
MAV, 7–4
Measurement complete program, 15–6
Measurement unavailable, 5–4
MENU, 10–15
MESE, 10–16
MESR, 10–18
MKDir, 12–17
MMEMory subsystem, 12–2
Mnemonics, 1–14, 5–3
Module ID numbers, 12–12

Index

Index–2

Module identification number, 10–9
Mounting, 4–4
MSB, 7–6
MSG, 7–5
MSI, 12–18
MSS, 7–4, 9–16
Msus, 12–2
Multiple

numeric variables, 1–22
program commands, 1–15
queries, 1–22
subsystems, 1–15

N

NAMe, 14–11
Negative numbers, 1–14
New Line character, 1–8
NL, 1–8, 5–5
Notation conventions, 5–5
Numbers, 1–13, 1–19

base, 1–20, 1–13
data, 1–13
variables, 1–20

O

Octal numbers, 1–13
OPC, 7–5
Operation Complete, 7–6
OR notation, 5–5
OR TRIGGER, 13–8
OUTDrive, 13–10
OUTPolar, 13–10
Output

buffer, 1–11
queue, 6–3

OUTPUT statement, 1–3
OUTType, 13–11
Overlapped commands, 5–4, 9–11, 9–19,

 10–24 to 10–25

P

PACK, 12–19
Parallel poll, 7–9

 commands, 7–14
Parameters, 1–8

syntax rules, 1–13
types, 1–13

Parity, 3–8
Parse tree, 6–8
Parser, 6–3
PON, 7–5
Port In, 13–8, 13–12 to 13–13
Port Out, 13–10 to 13–11, 13–15
PORTEDGE, 13–12
PORTLEV, 13–13
PPC, 7–13
PPD, 7–14
PPE, 7–14
PPU, 7–13
PRINt, 11–10
Printer mode, 2–3
Program examples, 5–12, 15–2

checking measurement complete, 15–6
getting ASCII data with PRINt ALL, 15–9
sending queries to mainframe, 15–7
SYSTem:SETup, 15–3
transferring configuration

15–3
Programming

conventions, 5–5
message syntax, 1–6
message terminator, 1–8

Protocol, 3–8, 6–3 to 6–4
None, 3–8
XON/XOFF, 3–8
exceptions, 6–5

PULse, 14–12
PURGe, 12–20

Q

Query, 1–7, 1–11, 1–17
*ESE, 9–6
*ESR, 9–7
*IDN, 9–9
*IST, 9–9
*OPC, 9–11
*OPT, 9–12
*PRE, 9–13
*SRE, 9–15
*STB, 9–16
*TST, 9–18
ALL, 14–6
AUToload, 12–7
AVAILable, 14–7
BEEPer, 10–6

BITS, 14–8
CAPability, 10–7
CARDcage, 10–8
CATalog, 12–8
CESE, 10–10
CESR, 10–11
CURSTate, 14–9
DATA, 11–6
EOI, 10–13
ERRor, 11–7
FTIMe, 13–7
HEADer, 11–8
INPort, 13–8
LASTstate, 14–10
LER, 10–13
LOCKout, 10–14
LONGform, 11–9
MENU, 10–16
MESE, 10–17
MESR, 10–18
MSI, 12–18
NAMe, 14–11
OUTDrive, 13–10
OUTPolar, 13–11
OUTType, 13–11
PORTEDGE, 13–12
PRINt, 11–11
RMODe, 10–19
SELect, 10–21
SETColor, 10–24
SETup, 11–13
SIGNal, 14–12
SIGSTatus, 14–13
SKEW, 13–14
STATEs, 14–14
SYSTem:DATA, 11–6
SYStem:SETup, 11–13
TREE, 13–16
TTIMe, 13–17
TYPe, 14–16
UPLoad, 12–24

Query errors, 8–5
Query program example, 15–7
Query responses, 1–16, 5–4
Question mark, 1–11
QYE, 7–5

Index

Index–3

R

Real numbers, 1–14
Real-time clock, 10–20
Receive Data (RD), 3–4 to 3–5
Remote enable (REN), 2–5
REName, 12–22
Request To Send (RTS), 3–5
Response data, 1–21
Responses, 1–17, 5–4
RMODe, 10–19
Root, 5–8
RQC, 7–5
RQS, 7–4, 9–16
RS-232-C, 3–2, 3–9, 6–2
RTC (real-time clock), 10–20

S

Scientific notation, 1–13
SDC, 2–6
SELect command, 10–21

command tree, 10–22
Selected device clear, 2–6
Sequential commands, 5–4
Serial poll, 7–8
Service Request Enable Register, 7–4
SETColor, 10–23
SETup, 11–12 to 11–13
Shortform, 1–12
SIGNal, 14–12
Signed numbers, 1–14
SIGSTatus, 14–13
Simple commands, 1–9
Skew, 13–7
SKEW command, 13–14
Slot numbers, 10–15
Spaces, 1–8, 1–14, 6–9
Square brackets, 5–5
STARt, 10–24
STATEs, 14–14
Status, 1–23, 7–2, 9–3

byte, 7–6
registers, 1–23, 9–3
reporting, 7–2

STEP, 14–15
Stop bits, 3–8
STOP command, 10–25
STORe:CONFig command, 12–23

String data, 1–14
String variables, 1–19
Subsystem commands, 5–6

INTermodule, 13–2,
MMEMory, 12–2
SYSTem, 11–2
TGTctrl, 14–2

Suffix multiplier, 6–9
Suffix units, 6–10
Syntax diagrams

Common commands, 9–4
IEEE 488.2, 6–5
INTermodule subsystem, 13–3 to 13–4
interpretation, 5–4
Mainframe commands, 10–3 to 10–4
MMEMory subsystem, 12–3 to 12–4, 12–6
SYSTem subsystem, 11–3
TGTctrl subsystem, 14–3 to 14–4

System commands, 5–6
System modules

talking to, 1–4
SYSTem subsystem, 11–2
SYSTem:SETup program, 15–3

T

Tabs, 1–8
Talk only mode, 2–3
Target Control menu, 14–2
Terminator, 1–8
TGTctrl subsystem, 14–2, 14–5
Three-wire Interface, 3–4
TOGgle, 14–15
Trailing dots, 5–5
Transmit Data (TD), 3–4 to 3–5
TREE command, 13–15
Trouble

connecting, 4–5
X Window, 10–26

Truncation rule, 5–3
TTIMe query, 13–17
TYPe, 14–16

U

Units, 1–13, 6–10
UPLoad, 12–24
Uppercase, 1–12
URQ, 7–5

W

White space, 1–8, 6–9

X

XWINdow, 10–26
XXX, 5–5, 5–8

(meaning of), 1–7

Index

Index–4

© Copyright Hewlett-
Packard Company 1987,
1990, 1993, 1994, 1996
All Rights Reserved.

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws.

Document Warranty

The information contained in
this document is subject to
change without notice.
Hewlett-Packard makes

no warranty of any kind

with regard to this

material, including, but

not limited to, the implied

warranties of

merchantability or fitness

for a particular purpose.

Hewlett-Packard shall not be
liable for errors contained
herein or for damages in
connection with the
furnishing, performance, or
use of this material.

Safety

This apparatus has been
designed and tested in
accordance with IEC
Publication 348, Safety
Requirements for Measuring
Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warning

• Before turning on the
instrument, you must connect
the protective earth terminal
of the instrument to the
protective conductor of the
(mains) power cord. The
mains plug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
(power cable) without a
protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient
protection.

• Only fuses with the
required rated current,
voltage, and specified type
(normal blow, time delay,
etc.) should be used. Do not
use repaired fuses or
short-circuited fuseholders.
To do so could cause a shock
of fire hazard.

• Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any
service unless qualified to do
so. Do not attempt internal
service or adjustment unless
another person, capable of
rendering first aid and
resuscitation, is present.

• If you energize this
instrument by an auto
transformer (for voltage
reduction), make sure the
common terminal is
connected to the earth
terminal of the power source.

• Whenever it is likely that
the ground protection is
impaired, you must make the
instrument inoperative and
secure it against any
unintended operation.

• Do not operate the
instrument in the presence of
flammable gasses or fumes.
Operation of any electrical
instrument in such an
environment constitutes a
definite safety hazard.

• Do not install substitute
parts or perform any
unauthorized modification to
the instrument.

• Capacitors inside the
instrument may retain a
charge even if the instrument
is disconnected from its
source of supply.

• Use caution when exposing
or handling the CRT.
Handling or replacing the
CRT shall be done only by
qualified maintenance
personnel.

Safety Symbols

Instruction manual symbol:
the product is marked with
this symbol when it is
necessary for you to refer to
the instruction manual in
order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used
to indicate a circuit common
connected to grounded
chassis.

W A R N I N G

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the
like, which, if not correctly
performed or adhered to,
could result in personal
injury. Do not proceed
beyond a Warning sign until
the indicated conditions are
fully understood and met.

C A U T I O N

The Caution sign denotes a
hazard. It calls attention to
an operating procedure,
practice, or the like, which, if
not correctly performed or
adhered to, could result in
damage to or destruction of
part or all of the product. Do
not proceed beyond a
Caution symbol until the
indicated conditions are fully
understood or met.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901

Product Warranty

This Hewlett-Packard
product has a warranty
against defects in material
and workmanship for a period
of one year from date of
shipment. During the
warranty period,
Hewlett-Packard Company
will, at its option, either
repair or replace products
that prove to be defective.
For warranty service or
repair, this product must be
returned to a service facility
designated by
Hewlett-Packard.
For products returned to
Hewlett-Packard for warranty
service, the Buyer shall
prepay shipping charges to
Hewlett-Packard and
Hewlett-Packard shall pay
shipping charges to return
the product to the Buyer.
However, the Buyer shall pay
all shipping charges, duties,
and taxes for products
returned to Hewlett-Packard
from another country.
Hewlett-Packard warrants
that its software and firmware
designated by
Hewlett-Packard for use with
an instrument will execute its
programming instructions
when properly installed on
that instrument.
Hewlett-Packard does not
warrant that the operation of
the instrument software, or
firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by the Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environmental specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is

expressed or implied.

Hewlett-Packard

specifically disclaims the

implied warranties of

merchantability or fitness

for a particular purpose.

Exclusive Remedies

The remedies provided
herein are the buyer’s sole
and exclusive remedies.
Hewlett-Packard shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
customer assistance
agreements are available for
Hewlett-Packard products.
For any assistance, contact
your nearest Hewlett-Packard
Sales Office.

Certification

Hewlett-Packard Company
certifies that this product met
its published specifications at
the time of shipment from the
factory. Hewlett-Packard
further certifies that its
calibration measurements are
traceable to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
Institute’s calibration facility,
and to the calibration
facilities of other
International Standards
Organization members.

About this edition

This is the first edition of the
HP 16500C/16501A

Programmer’s Guide.

Publication number
16500-97018
Printed in USA.
Edition dates are as follows:
First edition, December 1996

New editions are complete
revisions of the manual.
Update packages, which are
issued between editions,
contain additional and
replacement pages to be
merged into the manual by
you. The dates on the title
page change only when a new
edition is published.
A software or firmware code
may be printed before the
date. This code indicates the
version level of the software
or firmware of this product at
the time the manual or
update was issued. Many
product updates do not
require manual changes; and,
conversely, manual
corrections may be done
without accompanying
product changes. Therefore,
do not expect a one-to-one
correspondence between
product updates and manual
updates.

The following list of pages
gives the date of the current
edition and of any changed
pages to that edition.

All pages original edition

	In This Book
	Contents
	General Information
	Introduction to Programming
	Talking to the Logic Analysis System
	Talking to Individual System Modules
	Initialization
	Instruction Syntax
	Output Command
	Device Address
	Instructions
	Instruction Terminator
	Header Types
	Duplicate Keywords
	Query Usage
	Program Header Options
	Parameter Data Types
	Selecting Multiple Subsystems

	Receiving Information from the Logic Analysis System
	Response Header Options
	Response Data Formats
	String Variables
	Numeric Base
	Numeric Variables
	Definite-Length Block Response Data
	Multiple Queries
	System Status

	Programming Over HP-IB
	Interface Capabilities
	Command and Data Concepts
	Talk/Listen Addressing
	HP-IB Bus Addressing
	Local, Remote, and Local Lockout
	Bus Commands

	Programming Over RS-232-C
	Interface Operation
	RS-232-C Cables
	Minimum Three-Wire Interface with Software Protocol
	Extended Interface with Hardware Handshake
	Cable Examples
	Configuring the Logic Analysis System Interface
	Interface Capabilities
	RS-232-C Bus Addressing
	Lockout Command

	Programming Over LAN
	Communicating with the HP 16500C
	LAN Addressing
	Password Protection and File Protection
	Permission Levels: Control and Data
	Controlling the HP 16500C
	Echoing Commands
	Copying Command Files
	Writing to \system\program from a Program
	Sending Commands to the HP 16500C Socket
	Lockout Command

	Programming and Documentation Conventions
	Truncation Rule
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	Syntax Diagrams
	Notation Conventions and Definitions
	The Command Tree
	Tree Traversal Rules
	Command Set Organization
	Subsystems
	Program Examples

	Message Communication and System Functions
	Protocols
	Syntax Diagrams
	Syntax Overview

	Status Reporting
	Event Status Register
	Service Request Enable Register
	Bit Definitions
	Key Features
	Serial Poll
	Parallel Poll
	Polling HP-IB Devices
	Configuring Parallel Poll Responses
	Conducting a Parallel Poll
	Disabling Parallel Poll Responses
	HP-IB Commands

	Error Messages
	Device Dependent Errors
	Command Errors
	Execution Errors
	Internal Errors
	Query Errors

	Commands
	Common Commands
	*CLS (Clear Status)
	*ESE (Event Status Enable)
	*ESR (Event Status Register)
	*IDN (Identification Number)
	*IST (Individual Status)
	*OPC (Operation Complete)
	*OPT (Option Identification)
	*PRE (Parallel Poll Enable Register Enable)
	*RST (Reset)
	*SRE (Service Request Enable)
	*STB (Status Byte)
	*TRG (Trigger)
	*TST (Test)
	*WAI (Wait)

	Mainframe Commands
	BEEPer
	CAPability
	CARDcage
	CESE (Combined Event Status Enable)
	CESR (Combined Event Status Register)
	EOI (End Or Identify)
	LER (LCL Event Register)
	LOCKout
	MENU
	MESE<N> (Module Event Status Enable)
	MESR<N> (Module Event Status Register)
	RMODe
	RTC (Real-time Clock)
	SELect
	SETColor
	STARt
	STOP
	XWINdow

	SYSTem Subsystem
	DATA
	DSP (Display)
	ERRor
	HEADer
	LONGform
	PRINt
	SETup

	MMEMory Subsystem
	AUToload
	CATalog
	CD (Change Directory)
	COPY
	DOWNload
	IDENtify
	INITialize
	LOAD[:CONFig]
	LOAD :IASSembler
	MKDir (Make Directory)
	MSI (Mass Storage Is)
	PACK
	PURGe
	PWD (Present Working Directory)
	REName
	STORe [:CONFig]
	UPLoad
	VOLume

	INTermodule Subsystem
	:INTermodule
	DELete
	HTIMe
	INPort
	INSert
	OUTDrive
	OUTPolar
	OUTType
	PORTEDGE
	PORTLEV
	SKEW<N>
	TREE
	TTIMe

	TGTctrl Subsystem
	:TGTctrl
	ALL
	AVAILable
	BITS
	CURSTate
	DRIVe
	LASTstate
	NAMe
	PULse
	SIGNal
	SIGSTatus
	STATEs
	STEP
	TOGgle
	TYPe

	Programming Examples
	Programming Examples
	Transferring the Mainframe Configuration
	Checking for Intermodule Measurement Completion
	Sending Queries to the Logic Analysis System
	Getting ASCII Data with PRINt? ALL Query
	Reading the disk with the CATalog? ALL query
	Reading the Disk with the CATalog? Query
	Printing to the disk

	Index

