OPERATING AND SERVICE MANUAL # MODEL 1340A X-Y DISPLAY (including Options 001, 002, 004, 039, 110, 216, 300, 301, 302, 303, 304, 315, 316, 317, 324, 330, 331, 561, 604, 607, 631, and 639.) ## **SERIAL NUMBERS** This manual applies directly to instruments with serial numbers prefixed 1748A. For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in SECTION I. COPYRIGHT HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1977 1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A. ALL RIGHTS RESERVED Manual Part Number 01340-90901 Microfiche Part Number 01340-90801 Operating Note Part No. 01340-90902 **PRINTED: DECEMBER 1977** ## SAFETY This product has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the product safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section I and the Safety Summary for general safety considerations applicable to this product. ## CERTIFICATION Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members. ## WARRANTY This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective. The cathode-ray tube (CRT) in the instrument and any replacement CRT purchased from HP are also warranted against electrical failure for a period of one year from the date of shipment from Colorado Springs. BROKEN TUBES AND TUBES WITH PHOSPHOR OR MESH BURNS, HOWEVER, ARE NOT INCLUDED UNDER THIS WARRANTY. For warranty service or repair, this product must be returned to a service facility designated by HP. However, warranty service for products installed by HP and certain other products designated by HP will be performed at Buyer's facility at no charge within the HP service travel area. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses. For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country. ## LIMITATION OF WARRANTY The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. #### **EXCLUSIVE REMEDIES** THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY. ## **ASSISTANCE** $Product\ maintenance\ agreements\ and\ other\ customer\ assistance\ agreements\ are\ available\ for\ Hewlett-Packard\ products.$ For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual. S C W & A 9/78 (CRT) ## SAFETY SUMMARY The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Fallure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. #### GROUND THE INSTRUMENT. To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards. #### DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE. Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard. ## KEEP AWAY FROM LIVE CIRCUITS. Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them. #### DO NOT SERVICE OR ADJUST ALONE. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. #### USE CAUTION WHEN EXPOSING OR HANDLING THE CRT. Breakage of the Cathode-ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of the instrument. Handling of the CRT shall be done only by qualified maintenance personnel using approved safety mask and gloves. ## DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT. Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained. #### DANGEROUS PROCEDURE WARNINGS. Warnings, such as the example below, precede potentially dangerous procedures throughout this manual, instructions contained in the warnings must be followed. WARNING Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting. General Information Model 1340A Figure 1-1. Model 1340A X-Y Display ## SECTION I ## **GENERAL INFORMATION** ### 1-1. INTRODUCTION. - 1-1. This manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 1340A. - 1-3. Supplied with this manual is an Operating Note that should be kept with the instrument for use by the operator. The part number is listed on the title page. - 1-4. Also listed on the title page of this manual is a Microfiche part number. This number can be used to order 4- x 6-inch microfilm transparencies of the manual. Each microfiche contains up to 96 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement. #### 1-5. SPECIFICATIONS. 1-6. Instrument specifications are listed in table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2 lists supplemental characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user. ## 1-7. DESCRIPTION. 1-8. The Hewlett-Packard Model 1340A is an X-Y display recommended for OEM system use in electronic test equipment, chemical or physical analytical systems, medical electronic equipment or any application where a high-quality image is required. The display uses a post-accelerator CRT with 6.6 kV accelerating potential and aluminized P31 phosphor. ## 1-9. OPTIONS. 1-10. Standard options are modifications installed on HP instruments and are available on request. Table 1-3 lists available options for the 1340A. #### 1-11. ACCESSORIES SUPPLIED. 1-12. The following accessories are supplied with the 1340A: One blue contrast filter One ac line cord Table 1-1. Specifications # VERTICAL AND HORIZONTAL AMPLIFIERS ## RESPONSE Rise Time: ≤120 ns (10% to 90% points) for full-screen deflection or less. Phase Shift: <3° to 1 MHz for full-screen input signals. **DEFLECTION CHARACTERISTICS:** front panel adjustable from 800 mV to 2 volts for 4.7 in. deflection of X or Y amplifiers. LINEAR WRITING SPEED: $\geq 25 \text{ cm}/\mu\text{s}$ (9.8 in./ μs). SETTLING TIME: signal settles to within one spot diameter of final value in ≤300 ns for any on-screen final location. Off-screen deflection (if any) must not exceed specified dynamic range. REPEATABILITY: $\leq 0.4\,$ mm (0.015 in.) error (full-screen) for re-addressing a point from any on- or off-screen location within specific dynamic range. LINEARITY: 5% of full scale along major axes. MAXIMUM INPUT: ±40 V (dc + peak ac) for high impedance input termination; ±3.5 V (dc + peak ac) for 50 Ω input termination. **DYNAMIC RANGE:** beam may be deflected offscreen up to 1/2 screen diameter in any direction provided that the zero input position is onscreen without degradation of specifications. **CROSSTALK**: $< 0.25\,$ mm (0.01 in.) with one input terminated in $50\,\Omega$ and the other axis excited by a 1-V, $500\,$ kHz signal; $< 0.5\,$ mm (0.02 in.) at 3 MHz when driven from a terminated $50\,\Omega$ source. #### **Z-AXIS AMPLIFIER** RISE TIME: < 70 ns. ANALOG BLANKING RANGE: a 1 V change in Zinput voltage causes a full scale change in brightness **MAXIMUM INPUT:** $\pm 40V$ (dc + peak ac) for high impedance input termination; $\pm 3.5 V$ (dc + peak ac) for 50Ω input
termination. ## **CATHODE-RAY TUBE** VIEWING AREA: 114 cm² (17.73 in.²); 9.6 cm (3.78 in.) vertically by 11.9 cm (4.69 in.) horizontally. **SPOT SIZE**: < 0.46 mm (0.018 in.) at center of screen at normal viewing brightness; measured using shrinking raster method. ## SAFETY PROTECTION When ordered with Option 315 the instrument is listed by Underwriters Laboratories for use in Electronic Data Processing Equipment (UL 478). When ordered with Option 330, Model 1340A is listed by UL as a component for use in Medical and Dental Electronic Equipment (UL 544). ## WARNING These displays are designed and manufactured primarily for OEM system applications. Therefore, without Option 315 or Option 330, the top and bottom protective covers are not provided and internal wiring connections of HAZARDOUS VOLTAGES ARE EXPOSED. Operator protection must be provided by the purchaser and/or user of the instrument. If in doubt, order either Option 315 or Option 330 which provides the covers. ## **GENERAL** ## **OPERATING ENVIRONMENT** **Temperature:** 0°C to +55°C; nonoperating, -40°C to +70°C. Humidity: to 95% relative humidity at +40°C. **Altitude:** to 4600 m (15 000 ft); nonoperating, 15 300 m (50 000 ft). Vibration: vibrated in three planes for 15 minutes each with 0.38 mm (0.015 in.) excursion, 5 Hz to 55 Hz. 1 minute per octave, 10 minutes each resonance. **Shock:** 30 g level shock, 11 ms duration and 1/2 sine wave shape. Table 1-2. General Information # VERTICAL AND HORIZONTAL AMPLIFIERS INPUTS: BNC connectors with shield grounded. Input RC: approx 1 M Ω shunted by ≤ 50 pF. 50Ω (nominal) input termination selectable internally. Bandwidth: dc to > 3 MHz (3 dB down) for 5 cm or less deflection. Input Deflection: Independently switch-selectable 5:1 attenuators extend range from approximately 4 V to 10 V for full-screen deflection of X or Y amplifiers **Polarity:** a positive input signal moves beam up or to the right. Negative polarity selectable by internal switches. **POSITION:** front-panel controls allow undeflected spot to be set off screen from any where within the viewing area. Spot position, with both inputs grounded and position controls electrically centered, is approximately at the geometric center of the viewing area. #### DRIFT Position: typically < 0.5 mm/hr (0.02 in./hr) and typically < 1 mm (0.04 in.) in 24 hours (with covers installed and after a 15-minute warmup period). Gain: typically <1% under all conditions of specified line voltage with covers installed, with a temperature range between +20°C and +55°C (+68°F and +131°F), and after a 15-minute warmup period. ## **Z-AXIS AMPLIFIER** ANALOG BLANKING: cutoff level can be set from +0.2 Vdc to -1 Vdc with intensity control. Brightness is limited to a safe level for any Z-axis input voltage with intensity control set fully counterclockwise. **BLANKING POLARITY:** positive going input signal, applied to the Z-axis input, increases brightness. Negative polarity is selectable internally. INPUT: BNC connector with shield grounded. Input RC: approx 1 M Ω shunted by ≤ 40 pF. 50Ω (nominal) input termination selectable internally. **GAIN:** internally adjustable over 2:1 attenuation range. ## **CATHODE-RAY TUBE** TYPE: post deflection accelerator, approximately 6.6 kV accelerating potential. Aluminized P31 phosphor, electrostatic focus and deflection. **GRATICULE:** internal graticule, 8 x 10 divisions, 1 div = ≈ 1.2 cm (Refer to table 1-3 for CRT's without graticules). **RESOLUTION:** Line resolution at center screen is approximately 25 lines/cm at the specified line brightness. #### SAFETY PROTECTION X-RAY EMISSION: <0.5 mr/hr measured with Victoreen Model 440 RF/C. ## **GENERAL** ## FRONT PANEL CONTROLS Knob Adjustments: Intensity, Focus, Position ♠ (X), Position ♠ (Y). Screw-driver Adjustments: Trace Align, X Gain, Y Gain. LINE POWER: Selectable 100, 120, 220, or 240 Vac, +5% to -10%, 48 Hz to 66 Hz (see note); average power dissipation at 60 Hz and 120 Vac is approximately 35 watts. ## NOTE Unit meets all electrical specifications from 48 - 440 Hz, but does not meet line leakage requirements for medical and dental listings at line frequencies above 66 Hz. DIMENSIONS: see outline drawing. Model 1340A General Information Table 1-2. General Information (Cont'd) Table 1-3. Available Options | Options | Description | Kit Part
Number | |---------|--|------------------------------| | | MODULES | | | 001 | Basic module without control panel. | See Table 6-2,
Section VI | | 002 | Basic module with dc supply voltages. | Section vi | | | CABINET CONFIGURATIONS | | | 315 | Basic module with System II 5-1/4 in. high, half rack width cabinet, 15-in. long struts with control panel. (Model 1340A is supplied without cabinet and with control panel.) | | | 316 | Basic module with all necessary hardware assembled for mounting in 10380A or 10386A with 18-inch side struts. Front casting, two 18-inch struts, no covers, rear cover panel. | | | 317 | Basic module with System II 5.25-in. high, full-rack width cabinet with 15-in. long struts (17-1/8 in. overall length). Painted blank front panel and filter panel included. | | | | X AND Y AMPLIFIERS | | | 110 | 4-10 V/div deflection factor. | | | | Z AMPLIFIER | | | 216 | TTL blanking level added to Z-axis amplifier. High state (+2.5 V to +5 V) blanks any analog Z-input signal. Low state (0.0 V to +0.8 V) returns blanking to analog Z-axis input. Input through rear-panel BNC connector. | | | | CRT | | | 004 | Standard CRT replaced with CRT having P4 aluminized phosphor, 8- by 10-div internal graticule. | · | | 039 | Standard CRT replaced with CRT having P39 aluminized phosphor, 8- by 10-div internal graticule. | | | 604 | Standard CRT replaced with CRT having P4 aluminized phosphor, no internal graticule. | | | 607 | Standard CRT replaced with CRT having P7 aluminized phosphor, no internal graticule. | | | 631 | Standard CRT replaced with CRT having P31 aluminized phosphor, no internal graticule. | | | 639 | Standard CRT replaced with CRT having P39 aluminized phosphor, no internal graticule. | | | · | | | Model 1340A Table 1-3. Available Options (Cont'd) | Options | Description | Kit Part
Number | |---------|---|------------------------------| | | CONTRAST FILTER | | | 561 | Standard blue contrast filter replaced by clear CRT impact-protection shield. | See Table 6-2,
Section VI | | | SIGNAL INPUTS | | | 324 | Remote program connector added to rear panel. X-, Y-, and Z-signal inputs wired in parallel with BNC inputs. (NOTE: input capacitance increases to approximately 120 pF.) | | | | POWER CORDS | | | 300 | Power cord for use in Great Britain and Singapore. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor 90° IEC. | | | 301 | Power cord for use in Australia and New Zealand. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor IEC. | | | 302 | Power cord for use in East and West Europe. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor 90° IEC. | | | 303 | Power cord for use in USA, Canada, Japan, and Mexico. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor IEC to NEMA 5-15P. | | | 304 | Power cord used in USA, Canada, Japan, and Mexico. 77.2 cm (30 in.) coiled, extends to 1.8 m (6 ft), removable, 120 V max, 3 conductor IEC to NEMA 5-15P. (NOTE: not available with Option 315 or 330.) | | | | SAFETY | | | 330 | Listed by Underwriter Laboratories for medical and dental electronic equipment (UL 544). Includes special hospital-grade AC line cord, special AC line transformer, special marking on top cover and rear panel, and clear CRT impact-protection shield in lieu of standard blue contrast filter. | | | 331 | Underwriter Laboratories recognized components for use in medical anddental equipment (UL 544) display module without cabinet). | | | | Includes special hospital-grade AC line cord, special AC line transformer, and clear CRT implosion shield in lieu of standard blue contrast filter. | | | | | : | General Information Model 1340A ## 1-13. RECOMMENDED TEST EQUIPMENT. 1-14. Equipment required to maintain the 1340A is listed in table 1-4. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table. ## 1-15. INSTRUMENTS COVERED BY MAN-UAL. - 1-16. Attached to the instrument is a serial number plate. The serial number is in the form: 0000A00000. It is in two parts; the first four digits and the letter are the serial prefix and the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page. - 1-17. An instrument manufactured after the printing of this manual may have a serial number prefix that is - not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a yellow Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument. - 1-18. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible,
Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard. - 1-19. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office. Table 1-4. Recommended Test Equipment | Instrument | Critical Specification | Recommended
Model | Use | |---------------------------------|--|----------------------|-------| | Function
Generator | Output 1: Sine, Square Wave Amplitude: 0 ± 10 Volts into High Z load Amplitude: 0 ± 2 Volt into 50Ω load Offset: ±1 Volt Frequency: 10 MHz Output Z: 50 Ω Output 2: Sine Amplitude: 1 V into 50 Ω Frequency: 10 kHz | HP 3312 A | P,A,T | | Pulse Generator (2
Required) | Period: 0.1 μs to 1 ms Width: square wave Amplitude: 1 Volt Transition Time: <5 ns Output Z: 50 Ω | HP 8013B | P,A,T | | Digital
Multimeter | Volts:±300 VDC
Inputs Z: 10 MΩ | HP 3476A | А,Т | | High Voltage
Probe | 40 kV for use with above DMM | HP 34111 A | A,T | | Oscilloscope | Bandwidth: 100 MHz Input Z: 50Ω and 1 M Ω = 20 pF Vertical Sensitivity: 5 mV | HP 1740 A | A,T | | Oscilloscope
Probe (2 each) | Division Ratio: 10:1 Impedance: 10 $M\Omega$, \approx 10 pF | HP 10004D | А,Т | | | P = Performance Checks A = Adjustments T = Troubles | shooting | | #### SECTION II ## INSTALLATION ## 2-1. INTRODUCTION. 2-2. This section provides installation instructions for the Model 1340A. This section also includes information about initial inspection, damage claims, and packaging instructions. ## 2-3. INITIAL INSPECTION. 2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked mechanically and electrically. ## 2-5. PREPARATION FOR USE. WARNING This instrument is designed and manufactured primarily for OEM systems. Without Option 315 or Option 317, protective covers are not provided and internal, hazardous voltages are exposed when ac power is connected. Operator protection from these hazardous voltages must be provided by the system in which the instrument is used. - **2-6. POWER REQUIREMENTS.** The 1340A operates from any power source supplying 100, 120, 220, or 240 Vac (+5% —10%), single phase, 48 Hz to 66 Hz that can deliver at least 35 watts. (See LINE POWER note in table 1-2.) - **2-7. LINE VOLTAGE SELECTION.** The instrument is normally shipped from the factory set to operate at 120 Vac. To operate from any of the other sources, proceed as follows: WARNING Component replacement, (including ac fuse) and all adjustments should be performed only by service trained personnel who are aware of the hazards involved (for example, fire and electrical shock). - a. Remove power cable (if attached). - b. Remove top cover of 1340A (if installed). - c. Install line select jumper connector (E1 or E2) as indicated on LVPS schematic at rear of this manual. #### NOTE AC input requirement selected by E1 or E2 jumper connector will be displayed as a color code through rear-panel openings indicating selection of either 100, 120, 220, or 240volts. - d. Replace internal input line fuse with 300 mAT fuse (HP Part No. 2110-0044) for 220/240 Vac operation. - e. Replace top cover of 1340A (if required). - f. Connect input ac power cable. - 2-8. POWER CABLES. This instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. See figure 2-1 for part numbers of the power cables with plug configurations available. | HP I | POWER CABLE PART NUM | BERS | |------------|----------------------|------------| | 8120-1692 | 8120-0698 | 8120-0696 | | | | 0 | | OPTION 302 | OPTION 303 | OPTION 30 | | 8120-1703 | 8120-2296 | 8120-2061 | | OPTION 300 | OPTION 306 | OPTION 304 | Figure 2-1. Power Receptacles #### 2-9. REPACKING FOR SHIPMENT. - 2-10. If the instrument is to be shipped to a Hewlett-Packard Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument serial number, and a description of the service required. - 2-11. Use the original shipping carton and packing material. If the original packing material is not available, the Hewlett-Packard Sales/Service Office will provide information and recommendations on materials to be used. ## **SECTION III** #### **OPERATION** ## 3-1. INTRODUCTION. 3-2. This section contains operating instructions, applications and interfacing considerations for the HP Model 1340A. WARNING Without Option 315 or Option 317, protective covers are not provided and internal, harzardous voltages are exposed when ac power is connected. Operator protection from these hazardous voltages must be provided by the system in which the instrument is used. #### 3-3. PANEL FEATURES. 3-4. The Model 1340A is an X, Y, Z display with analog voltage inputs for X-, Y-, and Z-axis controls. All signals must be externally supplied through rear-panel connectors. The instrument is intended for use as a general-purpose graphic display. Intensity, trace align, focus, position (X), position (Y), X-gain, and Y-gain controls are accessible on the front panel. Trace align, X-gain, and Y-gain controls are screwdriver adjustments. Controls and connectors are illustrated and briefly described in figure 3-7. WARNING Component replacement (including ac fuse) and internal adjustments must be made by qualified maintenance personnel. ## 3-5. PREOPERATIONAL PROCEDURE. CAUTION The INTENSITY control will adjust display brightness from completely off (ccw) to maximum brightness (cw). To avoid damage to CRT phosphor, increase intensity slowly until display brightness is at a comfortable viewing level. **3-6. GENERAL.** Prepare the 1340A for operation as follows (instruments with options may require modification of input levels): ## NOTE The instrument is normally shipped with the input attenuator switches set for the 1-volt full scale, high-input impedance configurations. For other input configurations refer to table 3-1 and figure 3-1. - a. Set INTENSITY fully counterclockwise. - b. Set horizontal and vertical POSITION controls to midrange. - c. Set line switch (rear panel) to ON. LINE indicator lamp (front panel) should light. ## CAUTION A high-intensity display over an extended period will burn the CRT phosphor. - d. Adjust INTENSITY control. Display spot brightness should vary from completely extinguished (full ccw position) to acceptable viewing brightness as control is turned cw. Adjust for comfortble viewing brightness of display spot. - e. Adjust position (Y) through its full range. Display spot will move vertically on CRT, disappearing from viewing area at either extreme of control. - f. Adjust position $\blacktriangleleft \triangleright (X)$ through its full range. Display spot will move horizontally on CRT, disappearing from viewing area at either extreme of control. - g. Set ◀▶and ♦ position controls to center display spot on CRT. - h. Set FOCUS control for smallest, sharpest display spot. - i. Apply 1-kHz, 1-volt p-p sine-wave signal to X amplifier input connector on rear panel of instrument. - j. Adjust TRACE ALIGN to align trace horizontally. - k. Set X GAIN for trace length of 119 mm (4.7 in.), or as required by application. - l. Connect 1-kHz, 1-volt p-p sine-wave signal to Y amplifier input connector on rear panel of instrument. - m. Adjust Y GAIN for trace length of 95.2 mm (3.75 in.), or as required by application. Table 3-1. X, Y, and Z Input Switch Coding | | | | A1 ASSEMBLY
SWITCH AND SECTION | | | | | | |-------|-----------|---------|-----------------------------------|--------|---------|--------------|---------|--------| | ATTEN | IMPEDANCE | X INPUT | | | Y INPUT | | Z INPUT | | | | | S1-1 | S1-2 | S1-5 | S2-4 | \$2-7 | S2-8 | S2-1 | | 1:1 | 50 Ω | CLOSED | CLOSED | OPEN | CLOSED | CLOSED | OPEN | CLOSED | | 1:1 | HIGH | OPEN | CLOSED | OPEN | OPEN | CLOSED | OPEN | OPEN | | 5:1 | HIGH | OPEN | OPEN | CLOSED | OPEN | OPEN | CLOSED | NA | 3-7. BANDWIDTH REDUCTION. In certain cases, the full 3-MHz bandwidth of the deflection amplifiers is not required. In fact, in some applications it may be desirable to reduce the bandwidth to eliminate system noise problems. The X- and Y-amplifier bandwidth can be limited by engaging the following input attenuation and bandwidth selection switches (see figure 3-1 for switch location): | Amplifier | Engage
Switch | |-----------|------------------| | X | A1S3-8 | | Y | A1S3-7 | Engaging the bandwidth limit switches reduces the bandwidth of the amplifiers to approximately 165 kHz. 3-8. INPUT POLARITY SELECTION. The X-, Y-, and Z-amplifiers can be conditioned by the input attenuation and bandwidth selection switches for input signals with different polarities. To condition the equipment for different polarity signals, set applicable switches as indicated in table 3-2. (See figure 3-1 for switch location.) Figure 3-1. Input Attenuation and Bandwidth Selection Switches Table 3-2. Input Signal Polarity Selection | INPUT | X AMP | | 1 | PLIFIER
PUT | Z AMPLIFIER
INPUT | | |----------|-----------------|-----------------|-------------|----------------|----------------------|-------------| | POLARITY | Switch A1, S3-5 | Switch A1, S3-6 | Switch S3-3 | Switch S3-4 | Switch S3-1 | Switch S3-2
| | Positive | CLOSED | OPEN | CLOSED | OPEN | CLOSED | OPEN | | Negative | OPEN | CLOSED | OPEN | CLOSED | OPEN | CLOSED | Model 1340A Operation #### 3-9. APPLICATION CONSIDERATIONS. 3-10. GENERAL. This section contains interfacing considerations, display adjustments, definitions for specification terminology, and optional features. ## 3-11. INTERFACING CONSIDERATIONS. 3-12. GENERAL. Front-panel gain controls allow adjustment from 800 mV to 2 V to give full-screen deflection in both the X and Y axes of display. One graticule division is equal to $\approx\!1.2$ cm (0.47 in.). Switch-selectable attenuation is available to provide full-screen deflection within the range of 4 V to 10 V. This attenuation range plus the gain adjustments allow the 1340A to interface with most systems. 3-13. Crosstalk and Ringing. The importance of 50-ohm input terminations as related to display quality and reduction of crosstalk cannot be overemphasized. The undersirable effects of crosstalk and ringing will increase as input cable length or system bandwidth are increased. However, the use of the 50Ω terminations will usually reduce crosstalk and reflections to a negligible level. #### NOTE Crosstalk can also be produced by input driving circuits and ground loops. 3-14. Ringing is one possible undesirable side effect of improperly terminated inputs. For instance, an abrupt transition from blanked to unblanked in an improperly terminated Z-axis input line may cause ringing which would appear as intensity fluctuations in the display. For minimum induced crosstalk and ringing, displays connected in parallel should be connected in a "daisy-chain" configuration with only the last display in the chain terminated in 50 ohms (figure 3-2). Figure 3-2. Input Termination Impedance of Displays Connected in Parallel 3-15. Setting the intensity control fully ccw prevents the beam from being turned full-on, regardless of the voltage applied to the Z-axis input. This condition is provided to protect the CRT from damage when a system failure causes loss of control over the Z-axis input voltage or loss of deflection voltages. Therefore, the system operator only has to turn the intensity control fully ccw in the event of a system failure. 3-16. DISPLAY ADJUSTMENTS. In order to obtain best performance and flexibility of the 1340A, it is essential that front-panel controls be set properly. **3-17. FOCUS.** To focus a display, position the beam approximately 2/3 the diagonal distance from center screen towards any corner of the screen and adjust the focus control for optimum spot size. Position the beam to the remaining three quadrants and check for optimum focus at each location. Often, one quadrant of the screen will not focus as precisely as the other three and this quadrant should be adjusted for the best focus. 3-18. Astigmatism Adjustment. This control (internal adjustment A3R24) is used to match voltage on the forward-most element of the focus lens to voltage on the deflection plates to prevent the deflection plates from acting as part of the focus lens. Without this balanced voltage condition, the focal length of the electron gun is changed at the sides of the beam with respect to the top and bottom of the beam, or vice versa, which distorts the beam shape. 3-19. To check the astigmatism adjustment, rotate the focus control back and forth through the point of optimum focus. If the dots elongate vertically and then horizontally, it indicates improper astigmatism adjustment. #### NOTE Astigmatism is properly adjusted if the dots in the corners slant approximately 45° from upper left to lower right and vice versa as the focus control passes through the point of optimum focus. - **3-20. PERFORMANCE SPECIFICATIONS.** Major performance specifications, what they mean, how they are determined, and how they affect system performance are explained in the following paragraphs. - 3-21. Spot Size and Resolution. If you scan a CRT spot with a microscope photometer and plot brightness versus distance (spot width), the result approximates a Gaussian curve (figure 3-3). The spot size is the width of the Gaussian curve at its 50% point (see section I, table 1-2). Operation Model 1340A Figure 3-3. Brightness vs Cross Section of Typical CRT Spot 3-22. In practice, the 50% point can be determined by using the shrinking raster measurement method. The shrinking raster measurement is obtained by displaying a raster of lines (or dots) on the CRT and then adjusting the vertical and horizontal gain until the individual lines (or dots) are no longer individually identifiable. The size of the raster is then divided by the number of lines in the raster to determine the spot size. The point where the raster (or dots) merge is approximately the theoretical 50% point on the Gaussian curve. 3-23. The shrinking raster method should be used if a scanning microscope photometer is not available, because observing an individual line (or dot) with an optical comparator can be very misleading. On a single dot, the eye can see to about the 3% point on the Gaussian curve. Here the dot appears to be approximately twice the width it is across the 50% points. 3-24. Settling Time. Settling time is defined as the elapsed time between an input step command and the time for the beam to settle within a specified tolerance to its final position (see figure 3-4). Settling time must be taken into account when moving the beam from one location to another. Otherwise, there may be tails on dots, or line distortions at the starting point of vectors. 3-25. Linearity. Linearity can be defined as either a scaling error in locating a point on the CRT with given input voltages relative to known full scale input voltages or an error in locating a point within any calibrated increment on the CRT other than full-screen. In other words, if known X and Y input voltages correspond to a certain CRT screen position and other known voltages correspond to another position, then any intermediate voltages between these two sets of voltages correspond to points located proportionately Figure 3-4. Settling Time Figure 3-5. Linearity of Beam Position Showing Ideal Positioning and Possible Error between the two predetermined points with a possible error of $\pm 3\%$ of the distance between the two known points. The increment of position shown in figure 3-5 may be either full screen or any portion of the screen. 3-26. Linearity is specified only along the major CRT screen axes. For CRT line distortion other than along the major axes, refer to the CRT geometry specifications listed in table 1-1 and see figure 3-6. Figure 3-6. Geometric Distortion Caused by CRT (exaggerated) 3-27. From the specifications, it is difficult to relate the actual position of a point on the CRT to the input voltages applied to the X and Y axes, except on the major axes. This is because a CRT is an open-loop device (unlike an X-Y plotter) with no method of applying feedback to the amplifier circuits to make corrections to beam positioning. Therefore, a point along a line from the CRT screen center to a point in the CRT corner is subject to a location error caused by nonlinearity along the major axes and an additional geometric distortion error component which increases in significance as the beam moves out from the CRT center. - INTENSITY. Controls brightness of display. - 2 TRACE ALIGN. Aligns trace with horizontal plane of CRT. - FOCUS. Adjusts writing dot for sharpness. - A X GAIN. Adjusts gain of X amplifier. - 5 X ◀ ▶. Adjusts trace position horizontally. - 6 Y GAIN. Adjusts gain of Y amplifier. - Y 🛊 . Adjusts trace position vertically. - LINE. Power indicator that lights when ac power is applied to instrument. - 9 AC Input Selection. Selected jumper connector will display color code through one opening indicating selection of either 100 V, 120 V, 220 V, or 240 V ac input configuration. - ON-OFF. Ac LINE switch that applies power to instrument. - Z Input. Z-axis BNC input connector. - 12 Y Input. Y-axis BNC input connector. - 13 X Input. X-axis BNC input connector. - 1 Chassis ground. Figure 3-7. Controls and Connectors ## SECTION IV #### PERFORMANCE TESTS #### 4-1. INTRODUCTION. 4-2. The procedures in this section test the instrument's electrical performance using the specifications of table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument. ## 4-3. EQUIPMENT REQUIRED. 4-4. Equipment required for the performance tests is listed in Section I, table 1-4. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended models. ## 4-5. TEST RECORD. 4-6. Results of the performance tests may be tabulated on the Test Record at the end of this section. The Test Record lists the tested specifications and their acceptable limits. The results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repairs or adjustments. ## 4-7. CALIBRATION CYCLE. 4-8. Periodic calibration is not normally required for this instrument. Performance tests, however, should be made after service work has been performed or if improper operation is suspected. 4-9. Further performance checks are included in the adjustments section that require access to the inside of the instrument. These checks are not considered normal requirements for a standard performance test. #### WARNING The instrument is designed and manufactured primarily for OEM systems. Without Option 315 or Option 317, protective covers are not provided and internal, hazardous voltages are exposed when ac power is connected. Component replacement, including ac fuse, and internal adjustments must be made by qualified maintenance personnel. 4-10. The X (horizontal) and Y (vertical) amplifiers are indentical, therefore, only one test has been written and should be applied to both amplifiers before proceeding to the next test. ## 4-11. PERFORMANCE
TEST PROCEDURES. ## 4-12. DYNAMIC RANGE TEST (X AND Y AMPLIFIERS). ## SPECIFICATIONS: The dynamic range shall extend offscreen to at least 1/2 screen diameter in any direction provided the zero input position is on screen. #### **DESCRIPTION:** A square-wave signal and a ramp signal are used in an oscilloscope-type presentation. Amplitude of the waveforms is 1.5 times the screen diameter and the display is then checked for distortion. #### NOTE Care must be taken to correctly identify changes in output of the pulse generator. Otherwise, these changes can be misinterpreted as dynamic range irregularities. Figure 4-1. Dynamic Range Test Setup #### **EQUIPMENT:** | Function Generator | HP 3312A | |--------------------|----------| | Oscilloscope | HP 1740A | | Pulse Generator | | #### PROCEDURE: a. Connect equipment as shown in figure 4-1. ## NOTE Sync output from the recommended function generator (table 1-4) must be shifted to gate the pulse generator. The R-C network shown in figure 4-1 shift the output level from the function generator to assure stable gating of the pulse generator. b. Set pulse generator as follows: | PULSE PERIOD | 10 µs | |--------------------|-------------| | PULSE WIDTH S | quare Wave | | AMPLITUDE (V) (see | Note below) | #### NOTE The output amplitude of the pulse generator is set for a full screen display of 96 mm when driving the Y (vertical) amplifier and 119 mm when driving the X (horizontal) amplifier. c. Set function generator as follows: | FREQUENCY | 20 kHz | |-----------|------------------------| | FUNCTION | (Sawtooth) | | OFFSET | | | AMPLITUDE | full-screen deflection | - d. On oscilloscope, note amplitude of pulse generator output required to produce 96 mm (119 mm) display on 1340A CRT. - e. Increase output amplitude from pulse generator by 1.5 times that noted in step d. - f. Displayed waveform on 1340A should extend offscreen in one direction (depending on which axis is driven by pulse generator). ## NOTE If trouble is experienced while performing this procedure, check the power supplies, their decoupling networks, and the X-, Y-amplifier outputs, particularly the plate average of +85 volts. #### 4-13. X-, Y-AMPLIFIER BANDWIDTH AND RISE TIME. #### SPECIFICATION: Rise time is ≤ 120 ns (10% to 90% points) for full-screen deflection (or less). Bandwidth is dc to greater than 3 MHz (3 dB down) for 5 cm or less deflection. ## **DESCRIPTION:** This test measures bandwidth of the amplifiers; bandwidth is then used to compute rise time. Figure 4-2. Bandwidth and Rise Time Test Setup | EQUIPMENT: | | |--------------------|----------| | Function Generator | | | Oscilloscope | HP 1740A | ### PROCEDURE: - a. Connect equipment as shown in figure 4-2. - b. Set function generator as follows: | FREQUENCY | | 10 kHz | |-----------|------|----------| | FUNCTION | (Sin | ie Wave) | - c. Connect output of function generator to one input on 1340A. - d. Adjust function generator output for 5 cm trace deflection on 1340A CRT. - e. Using oscilloscope, note p-p amplitude from function generator. - f. Maintaining same amplitude noted in step e, increase function generator frequency until trace deflection on 1340A CRT decreases to 3.5 cm. - g. Final frequency setting of function generator is 3 dB bandwidth of amplifier under test. - h. Using the following formula, compute rise time: $$rt_{(ns)} = \frac{350}{BW (MHz)}$$ i. Repeat above procedure for other amplifier and complete following: | X AMPL BANDWIDTHMHz | |---------------------| | X AMPL RISE TIMEns | | Y AMPL BANDWIDTHMHz | | Y AMPL RISE TIMEns | #### 4-14. PHASE SHIFT. #### SPECIFICATION: 3° to 1 MHz for input signals causing full-screen deflection. #### **DESCRIPTION:** This test verifies the phase shift difference between the X and Y amplifiers. Phase shift must remain the same (within 3°) to at least 1 MHz. Figure 4-3. Phase-shift Test Setup Figure 4-4. Phase-shift Measurement Equipment: Function Generator HP 3312A #### PROCEDURE: #### NOTE This test cannot be performed properly if the internal input attenuators are not set for the same range. - a. Connect equipment as shown in figure 4-3. - b. Set function generator as follows: - c. Adjust output amplitude of function generator for full-screen, diagonal trace on 1340A CRT. (Front-panel gain control may need readjusting for corner-to-corner presentation.) - d. While watching diagonal trace on 1340A CRT, increase frequency until trace separation is 3.5 mm (see figure 4-4). Frequency causing 3.5 mm trace separation is: ## 4-15. DIAGONAL SETTLING TIME. #### SPECIFICATION: Signal settles to within one spot diameter of final value in ≤300 ns for any on-screen movement. Off-screen deflection must not exceed specified dynamic range. ## **DESCRIPTION:** The intensity (Z-axis) is turned on a short time after the X- or Y-axis transition. Blanking time must be ≤300 ns before a significant tail (1 spot diameter) is seen on the spot indicating the beam position is just reaching its settling point. Figure 4-5. Diagonal Settling Time Test Setup | Pul | PMENT: HP 8013B se Generators (2) HP 1740A | |-----|---| | | CEDURE:
Connect equipment as shown in figure 4-5. | | b. | Set pulse generator (A) as follows: | | | PULSE PERIOD | | c. | Adjust pulse generator (A) AMPLITUDE to position two spots on diagonal corners of 1340A CRT. Position and Gain controls of 1340A may require adjustments for proper positioning of the spots. | | d. | Set pulse generator (B) as follows: | | | PULSE PERIOD (+) EXT PULSE DELAY 400 ns PULSE WIDTH 1 μs AMPLITUDE 1V | | | Reduce pulse generator (B) PULSE DELAY time until tail of one spot diameter in length is visible at one or both diagonal spots. | | f. | Measure delay time on oscilloscope. Test limit is 300 ns maximum. Diagonal Settling Time is:ns. | Performance Tests Model 1340A ## **PERFORMANCE TESTS** #### 4-16. REPEATABILITY. #### SPECIFICATION: 0.4 mm error (full-screen) for re-addressing a point from any on- or off-screen location within the specified dynamic range. #### DESCRIPTION: This test verifies the amplifier performance stability with a varying input signal. Figure 4-6. Repeatability Test Setup #### **EQUIPMENT:** | Pulse Generator | HP 8013B | |-----------------|------------------| | Oscilloscope | HP 1740 A | ## NOTE This test requires a pulse generator with a very stable baseline during changes in pulse period, pulse width, and amplitude. If a pulse generator other than that recommended is used, the baseline shift should be carefully measured. The baseline shift should not exceed 0.05% of the amplitude change. #### PROCEDURE: - a. Connect equipment as shown in figure 4-6. - b. Set pulse generator as follows: | PULSE PERIOD | | |--------------|---------------| | PULSE WIDTH | 50 μ s | c. Using 1340A controls, position baseline spot at center of CRT. #### NOTE Use oscilloscope as a monitor when accomplishing step d. Do not exceed specified dynamic range of the 1340A. d. Vary pulse generator amplitude, pulse period, and pulse width verniers and notice any position change in spot. Spot movement should be 0.4 mm or less. ## 4-17. TTL BLANKING (OPTION 216 ONLY). ## SPECIFICATION: Option 216 - high state (± 2.5 V to ± 5.0 V) blanks any analog Z-axis input signal. Low state (0 V to ± 0.8 V) returns blanking function to Z-axis input. #### **DESCRIPTION:** This test verifies the upper and lower TTL blanking and unblanking limits. Figure 4-7. Option 216 Test Setup | EQ | 1 1 | ŧ | D | 数量 | 2 | A.S | ┱, | |-----|-----|---|---|-------|-----|-----|-----| | - W | • | , | 7 | 5 W ± | No. | 1.4 | 2 . | | Function Generator | HP 3312A | |--------------------|----------| | Pulse Generator | HP 8013B | | Oscilloscope | HP 1740A | ## PROCEDURE: a. Connect equipment as shown in figure 4-7. #### NOTE Sync output from the recommended function generator (table 1-4) must be shifted to gate the pulse generator. The R-C network shown in figure 4-7 shifts the output level from the function generator so that stable gating of the pulse generator is assured. b. Set function generator as follows: | FREQUENCY | 10 kHz | |--------------------------|----------| | FUNCTION(Sa | wtooth) | | AMPLITUDE full screen de | flection | c. Set pulse generator as follows: | PULSE PERIOD | 10 μ SEC | |------------------|----------| | PULSE WIDTHSqua | | | AMPLITUDE/OFFSET | +2.5 V | - d. Increase 1340A INTENSITY control until segmented line is displayed on CRT indicating blanking and unblanking is occurring. - e. Disconnect pulse genertor fom 1340A Z-axis input connector. ## PERFORMANCE TEST RECORD | HEWLETT-PACKARD | | |-----------------|-----------| | MODEL 1340A | | | X-Y DISPLAY | Tested By | | Serial No. | Date | | Paragraph
Number | Test | Min | Results
Actual | Max | |---------------------|--|------------------------------------|-------------------|--------------------| | 4-11 | Dynamic Range Test | | | | | | Y-amplifier | off-screen | | MARKATAN PARAMATAN | | | X-amplifier | off-screen | | | | 4-12 | X-, Y-amplifier Bandwidth and Rise Time | | | | | | X-amplifier Bandwidth
X-amplifier Rise Time | 3 MHz | | 130 ns | | | Y-amplifier Bandwidth
Y-amplifier Rise Time | 3 MHz | | 130 ns | | 4-13 | Phase Shift | 1 MHz | | | | 4-14 | Diagonal Settling Time | | | 300 ns | | 4-15 | Repeatability | | | 0.4 mm | | 4-16 | TTL Blanking (Opt 216 only) | +0.8 V (unblank)
+2.5 V (blank) | | | ## SECTION V ## **ADJUSTMENTS** ## 5-1. INTRODUCTION. 5-2. This section describes adjustments and checks required to return the instrument to peak operating capabilities when repairs have been made. Included in this section are equipment setups and adjustment procedures. ## 5-3. SAFETY REQUIREMENTS. 5-4. Although this instrument has been
designed in accordance with international safety standards, general safety precautions must be observed during all phases of operation, service, and repair of the instrument. Failure to comply with the precautions listed in the Safety Summary at the front of this manual or with specific warnings given throughout the manual could result in serious injury or death. Service and adjustments should be performed only by qualified service personnel. ## 5-5. EQUIPMENT REQUIRED. 5-6. A complete list of required test equipment is given in Section I, table 1-4. Test equipment equivalent to that recommended may be substituted, provided it meets the required characteristics. For best results, use recently calibrated test equipment. ## 5-7. ADJUSTMENTS. - 5-8. The adjustments given in this section are not interrelated. Refer to table 5-1 for a list of adjustable components and their functions. - 5-9. After repair, the applicable adjustments should be made, but a complete readjustment of the instrument is unnecessary. Prior to any adjustments, however, the power supply outputs should be checked for proper voltage levels. - 5-10. For best results, allow the instrument to warm up for 15 minutes before making adjustments. Adjustment locations are shown on Service Sheet 6 at the back of this manual. ## 5-11. ADJUSTMENT PROCEDURES. WARNING Adjustment procedures described are performed with power supplied to the instrument and should be performed only by trained service personnel who are aware of the hazards involved (for example, fire and electrical shock). Table 5-1. Adjustable Components | Reference
Designator | Adjustment
Name | Adjustment
Paragraph | Service
Sheet | Description | |-------------------------|--------------------|-------------------------|------------------|--| | A2R15 | +165 V Adj | 5-12 | 4 | +165 V LVPS Adjustment. | | A3R2 | HV Adj | 5-13 | 3 | Adjust for proper CRT filament voltage. | | A3R22
A3R24 | Focus Adj
AST | 5-14 | 3 | Centers FOCUS control and adjusts astigmatism of CRT. | | A1R74 | INT LIMIT | 5-15 | 3 | Sets maximum intensity limit for CRT. | | A 3R25 | PATTERN | 5-16 | 3 | Adjusts CRT deflection for minimum distortion. | | A1R7
A1R19 | X BAL
Y BAL | 5-17 | 2 | Balance X and Y amplifiers for minimum spot movement while GAIN controls are varied. | Table 5-1. Adjustable Components (Cont'd) | Reference
Designator | Adjustment
Name | Adjustment
Paragraph | Service
Sheet | Description | |-------------------------|--|-------------------------|------------------|---| | A1R13
A1R25 | Y GAIN SET
X GAIN SET | 5-18 | 2 | Establishes range of front-panel X and Y GAIN controls. | | A1R67 | Z BAL | 5-19 | 2 | Balances the Z-axis amplifier. | | A1R70
A1R75
A1C31 | Z GAIN
HF Adj No. 1
HF Adj No. 2 | 5-20 | 2 | Z-axis amplifier response adjustment. | | A1C1
A1C10 | X-Input Comp
Y-Input Comp | | 2 | AC compensation for 5:1/Hi impedance range. | ## 5-12. LOW-VOLTAGE POWER SUPPLY ADJUSTMENT. #### REFERENCE: Service Sheet 4. ## **DESCRIPTION:** The +165 Vdc Power Supply is adjusted for an output of +165 V ± 1 V. The low-voltage supplies are then checked for proper output. #### **EQUIPMENT:** ## PROCEDURE: Adjust +165 V low-voltage power supply as follows: - a. Connect DMM between pin 10 (+165 V) and pin 3 (ground) of ribbon cable A2W1. - b. Adjust +165 V Adj A2R15 for +165 V±1 V indication on DMM. - c. Check other dc voltages as indicated in table 5-2. Table 5-2. LVPS Tolerances | Power
Supply | Test Point
(A2W1 Pin No.) | Tolerance | Range | |-----------------|------------------------------|-----------|--------------------| | +15 V | Pin 5 | ±5% | +14.25 to +15.75 V | | —15 V | Pin 1 | ±5% | —14.25 to —15.75 V | | —7.5 V | Pin 4 | ±10% | -6.75 to -8.25 V | | +3.5 V | Pin 2 | ±10% | +3.15 to +3.85 V | ## 5-13. HIGH-VOLTAGE POWER SUPPLY ADJUSTMENT. #### REFERENCE: Service Sheet 3. #### **DESCRIPTION:** The HVPS is adjusted to the voltage specified on the high-voltage transformer ($\pm 3\%$) to assure proper filament voltage for the CRT. #### **EQUIPMENT:** #### NOTE Digital Multimeter must have a 10-megohm input termination and a 10-V range to be compatible with the 1000:1 probe. #### PROCEDURE: - a. Set 1340A front-panel INTENSITY control fully ccw. - b. Set rear-panel LINE switch to OFF position. WARNING Voltages capable of causing injury or death are present in the high-voltage power supply. Use an insulated adjustment tool and proceed carefully. - c. Note voltage marked on high-voltage transformer. - d. Set rear-panel LINE switch to ON. - e. Connect DMM to +165 V (pin 5 of ribbon connector A3W1) and note voltage indication. - f. Connect DMM to +165 V through high-voltage probe (1000:1) and note voltage indication. - g. Compute percentage of error introduced by high-voltage probe (difference between indications noted in step e and step f). - h. Set LINE switch to OFF. - i. Connect DMM through high-voltage probe to cathode output at assembly A3 (square pin to which (4) wire is connected). - j. Set LINE switch to ON. - k. While monitoring voltage at cathode output, adjust A3R2, HV ADJ, on assembly A3 for DMM indication equal to that listed on high-voltage transformer (step c). #### NOTE Final indication on DMM should include percentage of error noted in step g. - l. Set LINE switch to OFF. - m. Disconnect high-voltage probe from cathode output square pin. #### 5-14. FOCUS LIMIT ADJUSTMENT. #### REFERENCE: Service Sheet 3. ### **DESCRIPTION:** Focus Adj A3R22 centers the range of the front-panel FOCUS control. ## EQUIPMENT: None #### PROCEDURE: - a. Set INTENSITY and vertical/horizontal POSITION controls for spot of normal intensity at center of CRT. - b. Set front-panel FOCUS control to midrange. - c. Adjust Focus Adj A3R22 and AST control A1R24 for sharpest focus of round spot. ## 5-15. INTENSITY LIMIT ADJUSTMENT. #### REFERENCE: Service Sheet 3. ## DESCRIPTION: Intensity limit adjustment A1R74 sets maximum intensity of the CRT by limiting the grid-to-cathode voltage to 40 volts above cutoff. #### **EQUIPMENT:** #### PROCEDURE: - a. Connect DMM to pin 1 of ribbon cable A3W1 at A1 assembly. - b. Slowly adjust front-panel INTENSITY control until CRT displayed spot just extinguishes. Note DMM indication. ## CAUTION The INTENSITY control will adjust display brightness from completely off (ccw) to maximum brightness (cw). To avoid damage to the CRT be certain to accomplish step c before proceeding with this adjustment. - c. Using Y POSITION control move spot from CRT viewing area. - d. Set front-panel INTENSITY control fully clockwise (maximum brightness). - e. With DMM connected as directed in step a, adjust INT LIMIT A1R74 for 40 V indication on DMM above that voltage noted in step b. - f. Set front-panel INTENSITY control fully counterclockwise. - g. Disconnect DMM. ## 5-16. PATTERN ADJUSTMENT. ## REFERENCE: Service Sheet 3. ## **DESCRIPTION:** The function generator outputs provide a raster display which is adjusted for the squarest shape. Figure 5-1. Pattern Adjustment Test Setup | | CEDURE: Connect equipment as shown in figure 5-1. | |----|---| | b. | Set function generator outputs as follows: | | | FREQUENCY A 15 kHz FREQUENCY B 10 kHz FUNCTION A and B ~ Sine Wave | | | AMPLITUDE A and B | | c. | Adjust pattern control A3R25 for squarest pattern, i.e., straight sides, no barreling or pincushioning. | ## 5-17. X- AND Y-AMPLIFIER BALANCE ADJUSTMENTS. #### REFERENCE: Service Sheet 2. #### **DESCRIPTION:** X- and Y-amplifier balances are adjusted so that there is minimum spot movement as the front-panel GAIN controls are rotated through their range. ## **EQUIPMENT:** None ## PROCEDURE: - a. Using vertical and horizontal POSITION controls, center spot on CRT. - b. While rotating front-panel X GAIN control through its range, adjust A1R7 for minimum spot shift. - c. While rotating front-panel Y GAIN control through its range, adjust A1R19 for minimum spot shift. ## 5-18. X- AND Y-AMPLIFIER GAIN SET. #### REFERENCE: Service Sheet 2. #### DESCRIPTION: X- and Y-amplifier gains are adjusted so that front-panel gain controls have a range of 0.8 V to 2 V. Figure 5-2. Gain Set Adjustment Test Setup | FOI | HDA | #EA | JT. | |-----|-----|-----|-----| | Function Generator | HP 3312A | |--------------------|----------| | Oscilloscope | | #### PROCEDURE: - a. Connect equipment as shown in figure 5-2. - b. Set X- and Y-input attenuators for 50Ω range (see Service Sheet 2). - c. Set front-panel X- and Y-GAIN controls fully clockwise. - d. Set function generator output as follows: | FREQUENCY | 1 kHz | |-----------|-------------| | FUNCTION | quare Wave | | AMPLITUDE | . 0.4 V p-p | - e. Adjust appropriate X- or Y-amplifier GAIN SET control (A1R25 or A1R13) for 5 div (60 mm). - f. Increase output of function generator to 2 V p-p. - g. Verify that front-panel X- or Y-GAIN control can decrease spot separation to less than 5 div (60 mm). #### 5-19. Z-AMPLIFIER BALANCE ADJUSTMENT. #### REFERENCE: Service Sheet 3. ## **DESCRIPTION:** Z-amplifier balance control is adjusted so that there is minimum change in intensity as the Z GAIN control is rotated through its range. #### **EQUIPMENT:** None #### PROCEDURE: - a. Using vertical and horizontal POSITION controls, center spot on CRT. - b. While rotating Z-GAIN control, A1R70, through its range, adjust A1R67 for minimum change in intensity. ## 5-20. Z-AMPLIFIER GAIN AND HIGH FREQUENCY ADJUSTMENTS. #### REFERENCE: Service Sheet 3. #### **DESCRIPTION:** Z-axis GAIN control A1R70 is normally operated at full gain (fully clockwise). Amplifier response is adjusted for the fastest transition consistent with minimum overshoot. Figure 5-3.
Z-amplifier Gain and High Frequency Adjustment Test Setup | EQU | PM | ΕN | IT: | |-----|----|----|-----| |-----|----|----|-----| | Pulse Generator | HP 8013B | |--------------------|-----------| | Oscilloscope | | | 10:1 Divider Probe | HP 10004D | ## PROCEDURE: - a. Using front-panel FOCUS control, defocus spot on CRT. - b. Set Z-amplifier input attenuator for 50Ω range. - c. Set Z-axis gain control A1R70 fully clockwise. - d. Connect equipment as shown in figure 5-3. - e. Using 10:1 divider probe, connect oscilloscope to pin 1 of A3W1 at A1 assembly. - f. Set pulse generator as follows: | PULSE PERIOD | 0.1 ms | |-------------------|---------| | PULSE WIDTH Squar | e Wave | | AMPLITUDE 0. | 5 V p-p | - g. Adjust front-panel INTENSITY control so waveform observed at pin 1 of A3W1 does not limit at top or bottom. - h. Adjust HF ADJ No. 1 (A1R75) and HF ADJ No. 2 (A1C31) to achieve fast-rise response as observed on oscilloscope (< 70 ns) consistent with sharp corners and minimum overshoot. ## 5-21. INPUT ATTENUATOR COMPENSATION. #### REFERENCE: Service Sheet 2. #### **DESCRIPTION:** This procedure adjusts input attenuators for the X- and Y-axis amplifiers. No adjustments are required for the 1:1/50 and the $1:1/\mathrm{Hi}$ impedance ranges. The $5:1/\mathrm{Hi}$ impedance range requires ac compensation. Service Sheet 2:1/50shows switch settings for the 5:1/Hi impedance input. Figure 5-4. Input Attenuator Adjustment Test Setup | EQUIPMENT: | TTD 0010 A | |--------------------|------------| | Function Generator | HP 3312A | | Oscilloscope | HP 1740A | | 10:1 Divider Probe | HP 10004D | ## PROCEDURE: #### NOTE Connect the function generator output to only one input at a time. Using 10:1 divider probe, connect oscilloscope to appropriate amplifier output. - a. Set both X- and Y-input attenuator switches for 5:1/Hi impedance input (see Service Sheet 2). - Connect equipment as shown in figure 5-4. - c. Set function generator output as follows: | FREQUENCY | | 10 | kF | ŦΖ | |-----------|-------|------|-----|----| | FUNCTION | Squar | re V | Vav | ve | | AMPLITIDE | | 5 V | / p | -p | d. Adjust appropriate attenuator compensation capacitor (A1C1 for X INPUT; A1C10 for Y INPUT) for sharp square-wave response on oscilloscope. Model 1340A Replaceable Parts ## **SECTION VI** ## REPLACEABLE PARTS ## 6-1. INTRODUCTION. 6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list, table 6-2 lists all replaceable parts in reference designator order, and table 6-3 contains the names and addresses that correspond to the manufacturers' code numbers. ## 6-3. ABBREVIATIONS. 6-4. Table 6-1 lists abbreviations used in the parts list, the schematics, and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in other parts of the manual other abbreviation forms are used with both lower and uppercase letters. #### 6-5. REPLACEABLE PARTS LIST. - 6-6. Table 6-2 is the list of replaceable parts and is organized as follows: - a. Electrical assemblies in alphanumerical order by reference designation. - b. Chassis-mounted parts in alphanumerical order by reference designation. - c. Electrical assemblies and their components in alphanumerical order by reference designation. The information given for each part consists of the following: - a. Complete reference designation. - b. Hewlett-Packard part number. - c. Total quantity (Qty) in instrument. - d. Description of part. - e. Typical manufacturer of part in identifying five-digit code. - f. Manufacturer's number for part. The total quantity for each part is given only once—at the first appearance of the part number in the list. ## 6-7. ORDERING INFORMATION. - 6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office. - 6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office. ## 6-10. DIRECT MAIL ORDER SYSTEM. - 6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows: - a. Direct ordering and shipment from HP Parts Center in Mountain View, California. - b. No maximum or minimum on any mail order (there is minimum order amount for parts ordered through local HP offices when orders require billing and invoicing). - c. Prepaid transportation (there is small handling charge for each order). - d. No invoices—to provide these advantages, check or money order must accompany each order. - 6-12. Mail order forms and specific ordering information is available through your local HP office. Replaceable Parts Model 1340A Table 6-1. Reference Designators and Abbreviations | REFERENCE DESIGNATORS | | | | | | | | |-----------------------|---|--------------|---------------------------------------|-------------|--|------------|--| | 4 | = assembly | F | ≕ fuse | MP | | u | = integrated circuit | | 3 | = motor | FL | = filter | MP
P | = mechanical part
= plug | v | = integrated circuit
= vacuum, tube, neon | | ST | = battery - | IC. | = integrated circuit | á | = transistor | • | bulb, photocell, etc | | C C | = capacitor | j | = iack | R | = resistor | VR | = voltage regulator | | CP | = coupler | ĸ | = relay | RT | = thermistor | w | = cable | | CR | = diode | L | = inductor | s | = switch | x | = socket | | DL | = delay line | LS | = loud speaker | Ť | = transformer | Ÿ | = crystal | | DS | = device signaling (lamp) | M | = meter | TB | = terminal board | Z | = tuned cavity network | | E | = misc electronic part | MK | = microphone | TP | = test point | | | | | | | ABB | REVIATIONS | | | - | | A | = amperes | H | = henries | N/O | = normally open | RMO | = rack mount only | | AFC | automatic frequency control | HDW | = hardware | NOM | = nominal | RMS | = root-mean square | | AMPL | = amplifier | HEX | = hexagonal | NPO | negative positive zero | NWV | = reverse working | | | | HG | = mercury | | (zero temperature | | voltage | | BFO | = beat frequency oscillator | HR | = hour(s) | | coefficient) | | 4 14 | | BE CU
BH | = beryllium copper
= binder head | HZ | = hertz | NPN | = negative-positive- | S-B | = slow-blow | | BH
BP | = binder nead
= bandbass | | | NOSO | negative | SCR | = screw | | BRS | = bandpass
= brass | IF | = intermediate freq | NRFR | = not recommended for | SE
SECT | = selenium
= section(s) | | ans
BWO | = backward wave oscillator | IMPG | = impregnated | NSR | field replacement
= not separately | SEMICON | = sectionisi
= semiconductor | | | Juornal d wave opolitator | INCD | = incandescent | поп | replaceable | SERICON | = sellicon | | ccw | = counter-clockwise | INCL | = include(s) | | Phiereania | SIL | = silver | | CER | = ceramic | INS | = insulation(ed) | OBD | = order by description | SL | = slide | | CMO | = cabinet mount only | INT | = internal | OH | = oval head | SPG | = spring | | COEF | = coeficient | | | οx | = oxide | SPL | = special | | COM | = common | K | = kilo=1000 | | | SST | = stainless steel | | COMP | = composition | | • | | | SR | ≈ split ring | | COMPL | = complete | LH | = left hand | P | ∞ peak | STL | = steel | | CONN | = connector | LIN | = linear taper | PC | = printed circuit | | | | CP | = cadmium plate | LK WASH | = lock washer | PF | = picofarads= 10-12 | TA | = tantalum | | CRT | = cathode-ray tube | LOG | = logarithmic taper | | farads | TD | = time delay | | CW | = clockwise | LPF | = low pass filter | PH BRZ | = phosphor bronze | TGL | = toggle | | | | | | PHL | = phillips | THD | = thread | | DEPC | deposited carbon | M | = milii=10-3 | PIV | = peak inverse voltage | TI | = titanium | | DR | = drive | MEG | = meg=106 | PNP | ⇒ positive-negative- | TOL | = tolerance | | | | MET FLM | = metal film | | positive | TRIM | = trimmer | | ELECT | = electrolytic | MET OX | = metallic oxide | P/O | = part of | TWT | = traveling wave tube | | ENCAP | = encapsulated | MFR | = manufacturer | POLY | = polystyrene | | | | EXT | = external | MHZ | = mega hertz | PORC | = porcelain | U | = micro=10-6 | | F | = farads | MINAT
MOM | = miniature | POS | = position(s) | | and also a | | F
FH | = faraos
= flat head | MOM | = momentary | POT | = potentiometer | VAR | = variable | | FH
FILH | = fiat nead
= fillister head | MTG | = metal oxide substrate
= mounting | PP
PT | = peak-to-peak | VDCW | = dc working volts | | FIL H
FXD | = finister nead
= fixed | MIG | = mounting
= "mylar" | PWV | = point | W/ | - with | | FAM | - nadu | IN I | - mytat | PMY | = peak working voltage | w/ | = with | | G | = giga (109) | N | = nano (10-9) | RECT | = rectifier | WIV | = watts | | GE | = germanium | N/C | = normally closed | REC: | = rectiner
= radio frequency | 1414 | = working inverse
voltage | | GL | = glass | NE | = neon | Ar
AH | = round head or | ww | = wirewound | | GRD | = ground(ed) | NI PL | = nickel plate | nn | right hand | W/O | = without | Table 6-2. Replaceable Parts | Reference
Designation | erence ignation HP Part Number Oty | | | | Mfr
Code | Mfr Part Number | | |--------------------------------------|---
---|--|--|---|-----------------|--| | A1
A2
A3
A4
A5 | 01340-66501
01340-66502
01340-66503
01340-66504
01340-66506 | 1
1
1
1 | BOARD ASSEMBLY X Y Z AMPLIFIER BOARD ASSEMBLY LOW-VOLTAGE POWER SUPPLY BOARD ASSEMBLY HIGH-VOLTAGE POWER SUPPLY BOARD ASSEMBLY CONTROL BOARD ASSEMBLY DC POWER (OPTION 002 ONLY) | 28480
28480
28480
28480
28480
28480 | 01340-66501
01340-66502
01340-66503
01340-66504
01340-66506 | | | | E1 | 01340-67601 | 1 | LINE SELECT ASSY: 100V-120V (NOT SUPPLIED WITH OPTION 002) | 28480 | 01340-67601 | | | | E2 | 01340-67602
1510-0038 | 1 | LINE SELECT ASSY: 220V-240V (NOT SUPPLIED WITH OPTION 002) POST-BINDING | 28480
28480 | 01340-67602
1510-0038 | | | | £4
£5 | 0340-0564
0340-0565 | 3 | INSULATOR-TSTR INSULATOR-TSTR | 28480
28480 | 0340-0564
0340-0565 | | | | H1
H2
H3
H4
H5 | 0340-0857
0360-1632
0400-0002
0400-0009
0520-0144 | 4
3
1
1
2 | INSULATOR-BUSHING
LUG-SOLDER
GROMMET-RUBBER
GROMMET-VINYL
SCREW-RETAINING, FILTER 2-56 .25 IN. LG | 28480
79963
82099
01538
28480 | 0340-0857
761-3/8
3002
G250
0520-0144 | | | | H6
H7
H8
H9
H10 | 0624-0289
1200-0081
1400-0017
2190-0008
2190-0027 | 3 9 1 1 1 | SCREW-TAPPING 2-28.312-IN-LG PAN HD INSULATOR-BUSHING, NYLON CLAMP-CABLE. 312-DIA .375 WD NYL WASHER-LK EXT T NO. 6 .141-IN-ID WASHER-LK INTL T 1/4 IN .256-IN-ID | 28480
28480
05683
04604
78189 | 0624-0289
1200-0081
374-6
1341
1934-00 | | | | H11
H12
H13
H14
H15 | 2190-0030
2190-0045
2190-0112
2200-0107
2200-0129 | 4
3
3
1
3 | WASHER-LK HLCL NO. 4 . 115-IN-ID
WASHER-LK HLCL NO. 2 . 088-IN-ID
WASHER-LK HLCL NO. 2 . 088-IN-ID
SCREW-MTL 0. 375 LG
SCREW-MTL 2.00 LG | 28480
76854
78189
28480
28480 | 2190-0030
1501-009
1920-02
2200-0107
2200-0129 | | | | H16
H17
H18
H19
H20 | 2200-0143
2200-0179
2200-0180
2200-0528
2260-0001 | 4 1 1 3 | SCREW-MTL 0.375 LG
SCREW-MTL 0.725 LG
SCREW-MTL 1.375 LG
SCREW-MTL 1.875 LG
NUT-HEX-DBL-CHAM 4-40 THD .094-IN-THK | 28480
28480
28480
28480
28480 | 2200-0143
2200-0179
2200-0180
2200-0528
2260-0001 | | | | H21
H22
H23
H24
H25 | 2260-0003
2360-0111
2360-0115
2360-0181
2360-0192 | 1
4
7
4
6 | NUT-HEX-PLST CLKG 4-40 THD .141-IN-THK
SCREW-MTL 0.188 LG 6-32
SCREW-MTL 0.212 LG 6-32
SCREW-MTL 0.250 LG 6-32
SCREW-MTL 0.250 LG 6-32 | 72962
28480
28480
28480
28480 | 97NM40
2360-0111
2360-0115
2360-0181
2360-0192 | | | | H26
H27 | 2420-0001
2260-0009 | 1
1 | NUT-HEX W/LKWR 6-32 .109-IN-THK
NUT, HEX-DBL-CHAM 4-40 THD .093-IN-THK | 28480
28480 | 2420-0001
2260-0009 | | | | J1
J2
J3
J4 | 1250-0083
1250-0083
1250-0083
1250-0083 | 4 | CONNECTOR-BNC FEMALE CONNECTOR-BNC FEMALE CONNECTOR-BNC FEMALE CONNECTOR-BNC FEMALE | 02660
02660
02660
02660 | 31-222-1021
31-222-1021
31-222-1021
31-222-1021 | | | | L1 | 01340-66001 | 1 | COIL-TRACE ALIGN | 28480 | 01340-66001 | | | | MP1
MP2
MP3
MP4
MP5 | 0370-0603
0370-2512
7100-0389
01340-00201
01340-00601 | 1
4
1
1 | PUSHBUTTON-MINT GRAY SQ
KNOB-RND
COVER-XFMR
PANEL-REAR (STANDARD MODEL)
SHIELD-HV, OUTER | 28480
28480
28480
28480
28480 | 0370-0603
0370-2512
7100-0389
01340-00201
01340-00601 | | | | MP6
MP7
MP7
MP7
MP8 | 01340-00602
01340-02702
01340-02701
01340-02703
01340-04101 | 1 1 2 2 | SHIELD-HV, INNER FILTER-BLUE FILTER-CLEAR (OPTION 561 ONLY) FILTER-AMBER (OPTION 007 ONLY) RETAINER-FILTER | 28480
28480
28480
28480
28480 | 01340-00602
01340-02702
01340-02701
01340-02703
01340-04101 | | | | MP9
MP10
MP11
MP12
MP13 | 01340-60602
01340-04103
4040-1311
5040-7548
5040-8381 | 4 T | SUBASSY SHIELD SUPPORT PLATE-COVER, REAR COVER, LOW VOLTAGE PLATE, COVER-CRT PANEL, FRONT | 28480
28480
28480
28480
28480 | 01340-60602
01340-04103
4040-1311
5040-7648
5040-8381 | | | | MP14
MP15
MP16
MP17
MP18 | 5060-9977
01332-00204
01340-00207
01340-00208
01340-00209 | 1 1 | COVER-TOP (OPTION 315 ONLY) PANEL-REAR (OPTION 316 ONLY) PANEL-FRONT, BLANK (OPTION 317 ONLY) PANEL-COVER, REAR, BLANK (OPTION 317 ONLY) PANEL-SUB, FRONT (OPTION 317 ONLY) | 28480
28480
28480
28480
28480 | 5060-9977
01332-00204
01340-00207
01340-00208
01340-00209 | | | | MP19
MP20
MP21
MP22
MP23 | 01340-01201
1460-1345
5060-9834
5060-9846
5060-9973 | And the date date of the | BRACKET-MOUNTING (OPTION 316 ONLY) STAND, TILT (OPTIONS 315 AND 317 ONLY) COVER-TOP (OPTION 317 ONLY) COVER-BOTTOM (OPTION 317 ONLY) COVER-BOTTOM (OPTION 315 ONLY) | 28480
28480
28480
28480
28480 | 01340-01201
1460-1345
5060-9834
5060-9846
5060-9973 | | | | MP24
MP25
MP26
MP27
MP28 | 5001-0439
5020-8803
5020-8804
5020-8815
5020-8816 | 2 1 1 | TRIM-FRONT SIDE (OPTIONS 315 AND 317 ONLY) CASTING-FRONT (OPTION 317 ONLY) CASTING-REAR (OPTION 317 ONLY) CASTING-FRONT FRAME (OPTIONS 315 AND 317 ONLY) CASTING-REAR FRAME (OPTIONS 315 AND 316 ONLY) | 28480
28480
28480
28480
28480 | 5001-0439
5020-8803
5020-8804
5020-8815
5020-8816 | | | Table 6-2. Replaceable Parts (Cont'd) | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |--------------------------------------|---|----------------------------|---|---|--| | MP29
MP30
MP31
MP32
MP33 | 5020-8836
5020-8837
5040-7201
5040-7202
5040-7203 | 4
1
4
1 | STRUT-CORNER (OPTIONS 315 AND 317 ONLY) CASTING-CORNER (OPTION 316 ONLY) FOOT (OPTIONS 315 AND 317 ONLY) TRIM-STRIP, TOP (OPTION 317 ONLY) TRIM-STRIP, TOP (OPTION 315 ONLY) | 28480
28480
28480
28480
28480
28480 | 5020-8836
5020-8837
5040-7201
5040-7202
5040-7203 | | MP34
MP35 | 5040-8382
5040-8383 | 1 | FRONT PNL INSERT-RIGHT (OPTIONS 315 AND 316 ONLY) FRONT PNL INSERT-LEFT (OPTIONS 315, 316, AND 317 ONLY) | 28480
28480 | 5040-8382
5040-8383 | | MP36 | 5060-9911
1854-0433 | 1 | SIDE-PERF (OPTION 317 ONLY) | 28480 | 5060-9911 | | Q2 | 1854-0330 | 3
1 | TRANSISTOR NPN SI PD=90W FT=2 MHZ TRANSISTOR NPN SI PD=21W FT=10 MHZ (NOT SUPPLIED WITH OPTION 902) | 28480
28480 | 1854-0433
1854-0330 | | Q3
Q4 | 1854-0433
1854-0433 | | TRANSISTOR NPN SI PD=90W FT=2 MHZ (OPTION 002 ONLY TRANSISTOR NPN SI PD=90W FT=2 MHZ (OPTION 002 ONLY | 28480
28480 | 1854-0433
1854-0433 | | T1 | 01340-66002 | 1 | TRANSFORMER-INPUT PWR (NOT SUPPLIED WITH OPTION 002) | 28480 | 01340-66002 | | U1
U2
U3 | 1826-0106
1826-0214
1826-0106 | 2
1 | IC 7815 V RGLTR (NOT SUPPLIED WITH OPTION 002) IC V RGLTR (NOT SUPPLIED WITH OPTION 002) IC 7815 V RGLTR (OPTION 002 ONLY) | 28480
28480
28480 |
1826-0106
1826-0214
1826-0106 | | V1
V1
V1 | 5083-5251
5083-5252
5083-5261
5083-5270
5083-5271 | 1 1 1 | CRT-P31 AL NG CRT-P31 AL NG (OPTION 031 ONLY) CRT-P4 AL NG (OPTION 004 ONLY) CRT-P39 AL IG (OPTION 039 ONLY) CRT-P39 AL NG (OPTION 639 ONLY) | 28480
28480
28480
28480
28480 | 5083-5251
5083-5252
5083-5261
5083-5270
5083-5270 | | W1
W1
W1
W1
W1
W1 | 8120-1521
8120-1703
8120-0896
8120-0698
8120-1692
8120-0698
8120-2061
8120-2296
5040-7649 | 1
1
1
1
1
1 | CABLE UNSHLD 3-COND 18AWG CABLE, 3-COND (OPTION 300 ONLY) CABLE, 3-COND (OPTION 301 ONLY) CABLE, 3-COND (OPTION 302 ONLY) CABLE, 3-COND (OPTION 303 ONLY) CABLE, 3-COND (OPTION 304 ONLY) CABLE, 3-COND (OPTION 304 ONLY) CABLE, 3-COND (OPTION 306 ONLY) SOCKET-CRT BASE | 28480
28480
28480
28480
28480
28480
28480
28480
28480 | 8120-1521
8120-1703
8120-0696
8120-1692
8120-0698
8120-2061
8120-2296
5040-7649 | | A1A1 | 01340-66501
1KA2-5006
1KA2-5006 | 1 2 | 80ARD ASSEMBLY-X Y Z AMPLIFIER (LESS A1A1 AND
A1A2)
IC:X-Y PREAMPLIFIER (NOT SUPPLIED WITH A1-ORDER
SEPARATELY)
IC: Z PREAMPLIFIER (NOT SUPPLIED WITH A1-ORDER | 28480
28480
28480 | 01340-66501
1KA2-5006
1KA2-5006 | | A1C2 | 0121-0506
0160-2257
0160-2055 | 3
2
4 | SEPARATELY) CAPACITOR-V TRMR 1-5 PF 250V CAPACITOR-FXD 10 PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD .01 UF +80-20% 100VDC CER | 28480
28480
28480 | 0121-0506
0160-2257
0160-2055 | | A1C5
A1C6
A1C7 | 0160-3447
0160-2265
0160-3447
0160-3443
0160-3443 | 2
2
4 | CAPACITOR-FXD 470 PF + 10% 1KVDC CER CAPACITOR-FXD 22 PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 470 PF + 10% 1KVDC CER CAPACITOR-FXD .1 UF +80-20% 50WVDC CER CAPACITOR-FXD .1 UF +80-20% 50WVDC CER | 56289
28480
56289
28480
28480 | C0168102F221KS25-CDH
0160-2265
C0168102F221KS25-CDH
0160-3443 | | A1C10 (
A1C11 (
A1C12 (| 0160-3443
0121-0506
0160-2257
0160-2055
0160-2265 | - OF 100 PM | CAPACITOR-FXD .1 UF +80-20% 50WVDC CER
CAPACITOR-V TRMR 1-5 PF 250V
CAPACITOR-FXD 10 PF +-5% 500VDC CER 0+-60
CAPACITOR-FXD .01 UF +80-20% 100VDC CER
CAPACITOR-FXD 22 PF +-5% 500VDC CER 0+-30 | 28480
28480
28480
28480
28480 | 0160-3443
0121-0506
0160-2257
0160-2055
0160-2265 | | A1C15
A1C16
A1C17
A1C18 | 0160-3443
0140-0192
0160-3665
0160-2236
0160-2236 | 2
7
4 | CAPACITOR-FXD .1 UF +80-20% 50WVDC CER CAPACITOR-FXD 68 PF +-5% 300VDC CAPACITOR-FXD .01 UF +80-20% 500VDC CER CAPACITOR-FXD 1 PF +1 PF 500VDC CAPACITOR-FXD 1 PF +1 PF 500VDC | 28480
72136
28480
28480
28480 | 0160-3443
DM16E560J0300WV1CR
0160-3665
0160-2236
0160-2236 | | A1C20 C
A1C21 C
A1C22 C | 0160-3665
0160-0166
0160-0166
0140-0192
0160-3665 | 5. | CAPACITOR-FXD .01 UF +8020% 500VDC CER
CAPACITOR-FXD .068 UF +10% 200VDC
CAPACITOR-FXD .068 UF +10% 200VDC
CAPACITOR-FXD .068 UF +5% 300VDC
CAPACITOR-FXD .01 UF +8020% 500VDC CER | 28480
06001
06001
72136
28480 | 0160-3665
AE22C883KT
AE22C883KT
DM15E56G0/300WV1CR
0160-3665 | | A1C25 C
A1C26 C
A1C27 C | 0160-2236
0160-2236
0160-3665
0160-0166
0160-0166 | 300 | CAPACITOR-FXD 1 PF +1 PF 500VDC CAPACITOR-FXD 1 PF +1 PF 500VDC CAPACITOR-FXD .01 UF +80-20% 500VDC CER CAPACITOR-FXD .068 UF +10% 200VDC CAPACITOR-FXD .068 UF +10% 200VDC | 28480
28480
28480
06001
06001 | 0160-2236
0160-2236
0160-3665
AE22C683KT
AE22C683KT | | | | | | | | Table 6-2. Replaceable Parts (Cont'd) | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|-----------------------|---|--|---| | A1029
A1030
A1031
A1032
A1033 | 0160-2055
0150-0116
0121-0506
0160-2055
0160-3638 | 1 | CAPACITOR-FXD .01 UF +80-20% 100VDC CER
CAPACITOR-FXD 47 PF +-10% 500VDC
CAPACITOR-V TRMR 1-5 PF 250V
CAPACITOR-FXD .01 UF +80-20% 100VDC CER
CAPACITOR-FXD .22 UF +80-20% 200VAC | 28480
28480
28480
28480
16546 | 0160-2055
0150-0116
0121-0506
0160-2055
CZ40B224Z | | A1C34 | 0160-0166 | 1 | CAPACITOR-FXD .068 UF +-10% 200VDC | 06001 | AE22C683KT | | A10R1
A10R2
A10R3
A10R4 | 1901-0028
1901-0028
1901-0096
1901-0040 | 10
1
1 | DIODE-PWR RECT 400V 750MA D0-29
DIODE-PWR RECT 400W 750MA D0-29
DIODE-SWITCHING 120V 50MA 100NS
DIODE-SWITCHING 30V 50MA 2NS D0-35 | 28480
28480
28480
28480 | 1901-0028
1901-0028
1901-0096
1901-0040 | | A1J1 | 1200-0474 | 1 | SOCKET IC-14 PIN DIP | 28480 | 1200-0474 | | A1MP1 | 1600-0441 | 2 | SHIELD, AMPLIFIER | 28480 | 1600-0441 | | A101
A102
A103
A104
A105 | 1853-0036
1853-0036
1853-0038
1854-0523
1854-0523 | 4
5
4 | TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ | 28480
28480
28480
28480
28480 | 1853-0036
1853-0036
1853-0038
1854-0523
1854-0523 | | A1Q6
A1Q7
A1Q8
A1Q9
A1Q10 | 1853-0038
1853-0036
1853-0036
1853-0038
1854-0523 | | TRANSISTOR PNP SI TO:39 PD=1W FT=100MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI TO:39 PD=1W FT=150MHZ TRANSISTOR NPN SI TO:39 PD=1W FT=150MHZ | 28480
28480
28480
28480
28480 | 1853-0038
1853-0036
1853-0036
1853-0038
1854-0523 | | A1011
A1012
A1013
A1014
A1015
A1016 | 1854-0523
1853-0038
1854-0019
1853-0038
1854-0419
1854-0215 | 1 1 | TRANSISTOR NPN SI TO 39 PD=1W FT=150MHZ TRANSISTOR PNP SI TO 39 PD=1W PT=100MHZ TRANSITION NPN SI TO 18 PD=360MW TRANSISTOR PNP SI TO 39 PD=1W FT=100MHZ TRANSISTOR NPN SI TO 39 PD=1W FT=200MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ | 28480
28480
07933
28480
28480
28480 | 1854-0523
1853-0038
RT-2849
1853-0038
1854-0419
1854-0215 | | A1R1
A1R2
A1R3
A3R4
A1R5 | 0684-3331
0684-3331
0757-0706
0757-0487
0757-0472 | 6
3
2
2 | RESISTOR 33K 10% .25W FC TC=-400/+800
RESISTOR 33K 10% .25W FC TC=-400/+800
RESISTOR 51.1 1% .25W F TC=0+-100
RESISTOR 825K 1% .125W F TUBULAR
RESISTOR 200K 1% .125W F TC=0+-100 | 28480
28480
28480
28480
28480 | 0684-3331
0684-3331
0757-0706
0757-0487
0757-0472 | | A1R6
A1R7
A1R8
A1R9
A1R10 | 0684-2211
2100-0554
0683-1825
0684-2241
0757-0420 | 3
3
3
3
3 | RESISTOR 220 10% .25W FC TC=-400/+800 RESISTOR-TRMR 500 10% C TOP ADJ 1-TRN RESISTOR 1.8K 5% .25W FC TC=-400/+700 RESISTOR 120K 10% .25W FC TC=-800/+900 RESISTOR 750 1% .125W F TC=0+-100 | 01121
32997
28480
28480
16701 | CB2211
3386P-Y46-501
0683-1825
0684-2241
C4-1/8-T0-751-F | | A1R11
A1R12
A1R13
A1R14
A1R15 | 0684-8211
0757-0465
2100-3211
0684-3331
0684-3331 | 3
4
5 | RESISTOR 820 10% .25W FC TC=-400/+600 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR-TAMP 1K 10% C TOP ADJ 1-TRN RESISTOR 33K 10% .25W FC TC=-100/+800 RESISTOR 33K 10% .25W FC TC=-100/+800 | 01121
16701
32997
28480
28480 | C88211
C4-1/8-T0-1003-F
3386P-Y46-102
0684-3331
0684-3331 | | A1R16
A1R17
A1R18
A1R19
A1R20 | 0757-0706
0757-0487
0684-2211
2100-0554
0683-1825 | | RESISTOR 51.1 1%.25W F TC=0+-100 RESISTOR 825K 1%.125W F TUBULAR RESISTOR 220 10%.25W FC TC=-400/+800 RESISTOR.7FMM 500 10% C TOP ADJ 1-TRN RESISTOR 1.8K 5%.25W FC TC=-400/+700 | 28480
28480
01121
32997
28480 | 0757-0706
0757-0487
CB2211
3386P-Y46-501
0683-1825 | | A1R21
A1R22
A1R23
A1R24
A1R25 | 0757-0472
0684-2241
0757-0420
0684-8211
2100-3211 | | RESISTOR 200K 1% .125W F TC=0+-100 RESISTOR 220K 10% .25W FC TC=-800/+900 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 820 10% .25W FC TC=-400/+600 RESISTOR.TRMR 1K 10% C TOP ADJ 1-TRN | 28480
28480
16701
01121
32997 | 0757-0472
0684-2241
C4-1/8-T0-751-F
C88211
3386P-Y46-102 | | A1R26
A1R27
A1R28
A1R29
A1R30 | 0757-0465
0684-1831
0698-0085
0757-0406
0698-0085 | 2
2
1 | RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 18K 10% .25W FC TC=-400/+800 RESISTOR .261K 1% .125W F TC=0+-100 RESISTOR 182 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 | 16701
28480
28480
16701
28480 | C4-1/8-T0-1003-F
0684-1831
0698-0085
C4-1/8-T0-182R-F
0698-0085 | | A1R31
A1R32
A1R33
A1R34
A1R35 | Q684-1831
0698-3438
0684-5631
0684-5631
0684-6811 | 2
4
8 | RESISTOR 18K 10% .25W FC TC=400/+800
RESISTOR 147 1% .125W F TC=0+100
RESISTOR 56K 10% .25W FC TC=400/+800
RESISTOR 56K 10% .25W FC TC=-400/+800
RESISTOR 680 10% .25W FC TC=-400/+800 | 28480
28480
01121
01121
28480 | 0684-1831
0698-3438
C85631
C85631
0684-6811 | | A1R36
A1R37
A1R38
A1R39
A1R40 | 0684-6811
0698-3175
0757-0847
0757-0847
0698-3175 | 4
9 | RESISTOR 680 10% .25W FC TC=400/+800 RESISTOR 147K 1% .5W F TC=0+100 RESISTOR 27.4K 1% .5W F TC=0+100 RESISTOR 27.4K 1% .5W F TC=0+100 RESISTOR 147K 1% .5W F TC=0+100 | 28480
28480
28480
28480
28480 | 0684-6811
0698-3175
0757-0847
0757-0847
0698-3175 | | A1R41
A1R42
A1R43
A1R44
A1R45 |
0757-0290
0757-0338
0757-0847
0757-0290
0757-0338 | 4
5 | RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 1K 1% .25W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 1K 1% .25W F TC=0+-100 | 16701
16701
28480
16701
16701 | C4-1/8-T0-6191-F
C4-1/8-T0-1001-F
0757-0847
C4-1/8-T0-6191-F
C4-1/8-T0-1001-F | Table 6-2. Replaceable Parts (Cont'd) | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |---|--|--|---|--|---| | A1R46
A1R47
A1R48
A1R49
A1R50 | 0757-0847
0698-3438
0684-5631
0684-5631
0684-6811 | THE PERSON NAMED IN COLUMN TO PE | RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 56K 10% .25W FC TC=-400/+800 RESISTOR 56K 10% .25W FC TC=-400/+800 RESISTOR 680 10% .25W FC TC=-400/+800 | 28480
28480
01121
01121
28480 | 0757-0847
0698-3438
C85631
C85631
0684-6811 | | A1R51
A1R52
A1R53
A1R54
A1R55 | 0684-6811
0698-3175
0757-0847
0757-0847
0698-3175 | HARMAN AND PROPERTY PROPERT | RESISTOR 680 10%, 25W FC TC=400/+800
RESISTOR 147K 1%, 5W F TC=0+100
RESISTOR 27.4K 1%, 5W F TC=0+100
RESISTOR 27.4K 1%, 5W F TC=0+100
RESISTOR 147K 1%, 5W F TC=0+100 | 28480
28480
28480
28480
28480 | 0684-6811
0698-3175
0757-0847
0757-0847
0698-3175 | | A1R56
A1R57
A1R58
A1R59
A1R60 | 0757-0290
0757-0338
0757-0847
0757-0290
0757-0338 | | RESISTOR 6.19K 1% .125W F TC=0+-100
RESISTOR 1K 1% .25W F TC=0+-100
RESISTOR 27.4K 1% .5W F TC=0+-100
RESISTOR 6.19K 1% .125W F TC=0+-100
RESISTOR 1K 1% .25W F TC=0+-100 | 16701
16701
28480
16701
16701 | C4-1/8-T0-6191-F
C4-1/8-T0-1001-F
0757-0847
C4-1/8-T0-6191-F
C4-1/8-T0-1001-F | | A1R61
A1R62
A1R63
A1R64
A1R65
A1R66 | 0757-0847
0684-1231
0757-0706
0684-2241
0684-2211
0684-1051 | 1 | RESISTOR 1K 1% .25W F TC=0+-100 RESISTOR 12K 10% .25W F C TC=-400/+800 RESISTOR 51.5 1% .25W F TC=0+-100 RESISTOR 220K 10% .25W F C TC=-800/+900 RESISTOR 220 10% .25W F C TC=-400/+800 RESISTOR 10% .25W F C TC=-800/+900 | 28480
28480
28480
28480
01121
01121 | 0757-0847
0684-1231
0757-0706
0684-2241
CB2211
CB1051 | | A1R67
A1R68
A1R69
A1R70
A1R71 | 2100-0554
0683-1825
0684-3331
2100-3211
0684-3331 | | RESISTOR-TRMR 500 10% C TOP ADJ 1-TRN
RESISTOR 1.8K 5% .25W FC TC=-400/+700
RESISTOR 33K 10% .25W FC TC=-400/+800
RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN
RESISTOR 33K 10% .25W FC TC=-400/+800 | 32997
28480
28480
32997
28480 | 3386P-Y46-501
0683-1825
0684-3331
3386P-Y46-102
0684-3331 | | A1R72
A1R73
A1R74
A1R75
A1R76 | 0757-0419
0757-0419
2100-0211
2100-03211
0684-1011 | 2 | RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100 RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN RESISTOR 100 10% .25W FC TC=-400/+800 | 16701
16701
32997
32997
01121 | C4-1/8-T0-681R-F
C4-1/8-T0-681R-F
3386P-Y46-102
3386P-Y46-102
CB1011 | | A1877
A1878
A1879
A1880
A1881 | 0684-3311
0757-0190
0757-0761
0757-0847
0761-0070 | 4
2
1 | RESISTOR 330 10% .25W FC TC=-400/+800
RESISTOR 20K 1% .5W F TC=0+-100
RESISTOR 22.1K 1% .25W F TC=0+-100
RESISTOR 27.4K 1% .5W F TC=0+-100
RESISTOR 27.4K 1% .5W F TC=0+-100
RESISTOR 8.2 K 5% 1W MO TC=0+-200 | 01121
28480
16701
28480
28480 | CB3311
0757-0190
C5-1/4-T0-2212-F
0757-0847
0761-0070 | | A1R82
A1R83
A1R84
A1R85
A1R86 | 0757-0190
0757-0433
0884-3311
0757-0420
0684-3331 | 2 | RESISTOR 20K 1%.5W F TC=0+-100 RESISTOR 3.32K 1%.125W F TC=0+-100 RESISTOR 330 10%.25W F CTC=-400/+800 RESISTOR 336 10%.125W F TC=0+-100 RESISTOR 33K 1%.125W F TC=0+-100 | 28480
24546
01121
16701
24546 | 0757-0190
C4-1/8-T0-3321-F
C83311
C4-1/8-T0-751-F
C4-1/8-T0-3302-F | | A1S1
A1S2
A1S3 | 3101-2159
3101-2268
3101-2268 | 1
2 | SWITCH ASSY-5 SPST
SWITCH ASSY-8 POS
SWITCH ASSY-8 POS | 28480
28480
28480 | 3101-2159
3101-2268
3101-2268 | | A1VR1
A1VR2
THRU | 1902-0025
1902-3139 | 1
3 | DIODE ZNR 10V 5% D0-7 PD=.4W TC=+.06%
DIODE ZNR 8.25V 5% D0-7 PD=.04W TC=+.053% | 04713
04713 | SZ 10939-182
SZ 10939-158 | | A1VR4
A1VR5 | 1902-0074 | 1 | DIODE-ZNR 7.15V 5% D0-7 PD=.04W TC=+.047% | 04713 | SZ 10939-140 | | A1XA1
A1XA2 | 1200-0624
1200-0624 | 2 | IC SOCKET 40-PIN DIP
IC SOCKET 40-PIN DIP | 28480
28480 | 1200-0624
1200-0624 | | A2C1
A2C2
A2C3
A2C4 | 01340-66502
0180-2843
0160-0168
0180-2351
0180-0291 | 1
1
2 | BOARD ASSEMBLY-LOW-VOLTAGE POWER SUPPLY (NOT SUPPLIED WITH OPTION 002) CAPACITOR-FXD 70 UF 300VDC CAPACITOR-FXD .1 UF +10% 200VDC POLYE CAPACITOR-FXD 2000 UF +75-10% 50VDC AL CAPACITOR-FXD 1 UF +10% 35VDC TA | 28480
28480
06001
56289
28480 | 01340-66502
0180-2843
AE22C104KT
390243-05B
0180-0291 | | A2C5
A2C6
A2C7
A2C8 | 0180-2351
0140-0196
0180-0195
0180-0195 | 1
2 | CAPACITOR-FXD 2000 UF +75-20% 50VDC AL
CAPACITOR-FXD 150 PF +-5% 300VDC MICA 0+70
CAPACITOR-FXD .33 UF +-20% 35VDC TA
CAPACITOR-FXD .33 UF +-20% 35VDC TA | 56289
28480
28480
28480 | 39D243-DSB
0140-0196
0180-0195
0180-0195 | |
A2CR1
A2CR2
A2CR3
A2CR4
A2CR5 | 1906-0006
1901-0028
1901-0028
1906-0006
1906-0006 | 3 | DIODE-FW BRDG 400V 1A
DIODE-PWR RECT 400V 750MA D0-29
DIODE-PWR RECT 400V 750MA D0-29
DIODE-FW BRDG 400V 1A
DIODE-FW BRDG 400V 1A | 28480
0271C
0271C
28480
28480 | 1906-0006
MP493
MP493
1906-0006
1906-0006 | | A2CR6
A2CR7
A2CR8
A2F1
A2F1
A2F1
A2F2 | 1901-0028
1901-0028
1901-0040
2110-0016
2110-0044
2110-0016 | 1
2
1 | DIODE-PWR RECT 400V 750MA 00-29
DIQUE-PWR RECT 400V 700MA 00-29
DIODE-SWITCHING 30V 50MA 2NS D0-35
FUSE .6A 250V SLO-8LO 1.25 X .25 UL
FUSE .3A 250V SLO-8LO (220V/240V OPERATION ONLY)
FUSE .6A 250V SLO-8LO 1.25 X .25UL | 9271C
9271C
28480
6F364
6F364
6F364 | MP493
MP493
1901-0040
MDL 6/10
MDL 3/10
MDL 6/10 | | | | | | The state of s | | Table 6-2. Replaceable Parts (Cont'd) | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|-----------------------|--|---|---| | A2F3
A2J1
A2J2
A2J3 | 2110-0011
1200-0690
1200-0690
1200-0690 | 1 3 | FUSE .062A 250V NORM-BLO 1.25 X .25 UL
SOCKET-TSTR
SOCKET-TSTR
SOCKET-TSTR | 6F 364
28480
28480
28480 | AGC 1/16
1200-0690
1200-0690
1200-0690 | | A2MP1
A2MP2
A2P1
A2P2
A2P3 | 2110-0269
5041-0565
1251-4743
1251-5099
1251-5090 | 6
1
1
2
1 | CLIP-FUSE CAP-ON/OFF SWITCH CONNECTOR-AC POWER CONNECTOR-8 PIN M CONNECTOR-13 PIN M | 28480
28480
28480
28480
28480 | 2110-0269
5041-0565
1251-4743
1261-5099
1251-5090 | | A201
A202
A203
A204
A205
A206 | 1854-0071
1853-0336
1854-0575
1854-0053
1854-0053 | 1 1 2 | TRANSISTOR NPN SI PD=300MW FT=200MHZ NOT ASSIGNED TRANSISTOR PNP SI PD=625MW FT=50MHZ TRANSISTOR NPN SI PD=625MW FT=50MHZ TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW | 01295
28480
25480
28480
28480 | 9KA1124
1853-0336
1854-0575
1854-0053
1854-0053 | | A2R1
A2R2
A2R3
A2R4
A2R5 | 0690-1841
0683-1005
0684-8211
0757-0777
0757-0443 | 1
1
1 | RESISTOR 180K 10% 1W CC TC=0+882 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 820 10% .25W FC TC=-400/+600 RESISTOR 121K 1% .25W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100 | 01121
01121
01121
16701
16701 | GB1841
CB1005
CB8211
C5-1/4-T0-1213-F
C4-1/8-T0-1102-F | | A2R6
A2R7
A2R8
A2R9
A2R10 | 0684-3941
0683-8225
0698-3618
0687-5611
0684-2701 | 1
2
1
2
1 | RESISTOR 390K 10% .25W FC TC=-800/+900
RESISTOR 8.2K 5% .25W FC TC=-400/+700
RESISTOR 82 5% 2W MO TC=0+-200
RESISTOR 560 10% .5W CC TC=0+529
RESISTOR 27 10% .25W FC TC=-400/+500 | 01121
01121
28480
01121
-1121 | CB3941
CB8225
0698-3618
EB5611
CB2701 | | A2R11
A2R12
A2R13
A2R14
A2R15 | 0683-8225
0687-5611
0764-0013
0687-1021
2100-3273 | 1
1
1 | RESISTOR 8.2K 5% .25W FC TC=-400/+700 RESISTOR 560 10% .5W CC TC=0+529 RESISTOR 56 5% 2W MO TC=0+-200 RESISTOR 15 5% CW CC TC=0+647 RESISTOR TRMR 2K 10% C SIDE AOJ 1-TRN | 01121
01121
28480
01121
92507 | CB8225
EB5611
0764-0013
FB1021
3386X:Y46-202 | | A2R16
A1R17
A2R18
A2S1 | 0757-0801
0757-1001
0683-0275
3101-2252 | 1
1
1 | RESISTOR 150 1% .5W F TC=0+-100
RESISTOR 56.2 1% .5W F TC=0+-100
RESISTOR 2.7 5% .25W FC TC=-400/+500
SWITCH-PB | 28480
28480
01121
28480 | 0757-0801
0757-1001
CB27G5
3101-2252 | | A2VR1
A2VR2
A2VR3
A2VR4
A2W1 | 1902-0188
1902-0041
1902-0048
1902-0668
8120-2602 | 1
1
2
2 | DIODE-ZNR 4.12V 5% DO-7 PD=.4W TC=041%
DIODE ZNR 5.11V 5% DO-7 PD=.4W TC=009%
DIODE-ZNR 6.81V 5% DO-7 PD=.4W TC=+.043%
DIODE-ZNR 200V 5% DO-15 PD=1W TC=+.088%
CABLE-FLEXIBLE | 04713
04713
04713
04713
28480 | SZ10939-71
SZ10939-98
SZ10939-134
SZ11213-449
8120-2602 | | A3
A3A1
A3A1C1
A3A1CR1
A3A2 | 01340-66503
01340-61101
0160-2264
1907-0663
0960-0490 | 1
1
1
1 | BOARD ASSEMBLY-HIGH-VOLTAGE POWER SUPPLY
TRANSFORMER-HIGH VOLTAGE
CAPACITOR-FXD 20 PF +-5% 500VDC CER 0+-30
DIODE-HV RECT 10KV 5MA 250NA
MULTIPLIER-HIGH VOLTAGE | 28480
28480
28480
28480
28480 | 01340-66503
01340-61101
0160-2264
1901-0683
0960-0490 | | A3C1
A3C2
A3C3
A3C4
A3C5 | 0160-0162
0160-3558
0160-4051
0160-4051
0160-3453 | 1 4 | CAPACITOR:FXD .022 UF +-10% 200VDC POLYE
CAPACITOR:FXD .1 UF +-20% 50VDC CER
CAPACITOR:FXD .01 UF +-20% 4KVDC
CAPACITOR:FXD .01 UF +-20% 4KVDC
CAPACITOR:FXD .05 UF +80-20% 100VDC CER | 06001
28480
56289
56289
56289 | AE17C223KT
0160-3558
430P103040
430P103040
C023B101H203MS25-CDH | | A3C6
A3C7
A3C8
A3C9
A3C10 | 0160-0684
0160-0684
0160-4051
0160-3665
0180-0269 | 2 | CAPACITOR.FXD 1000 PF +-20% 4KVDC CAPACITOR.FXD 1000 PF +-20% 4KVDC CAPACITOR.FXD .01 UF +-20% 4KVDC CAPACITOR.FXD .01 UF +80-20% 500VDC CER CAPACITOR.FXD 1 UF +75-10% 150VDC AL | 56289
56289
56289
28480
56289 | 430P102040
430P102040
430P103040
0160-3865
30D105G1508AZ-DSM | | A3C11
A3C12
A3C13
A3C14 | 0160-4051
0160-3665
0160-3665
0180-0141 | 1 | CAPACITOR-FXD .01 UF +-20% 4KVDC
CAPACITOR-FXD .01 UF +80-20% 500VDC CER
CAPACITOR-FXD .01 UF +80-20% 500VDC CER
CAPACITOR-FXD 50 UF +75-10% 50VDC AL | 56289
28480
28480
56289 | 430P103040
0160-3665
0160-3665
30D506G050DD2-DSM | | A3CR1
A3CR2
A3CR3
A3CR4
A3CR5 | 1801-0028
1901-0028
1901-0040
1901-0040 | 2 | DIODE-PWR RECT 400V 750MA D0-29
DIODE-PWR RECT 400V 750MA D0-29
DIODE-SWITCHING 30V 50MA 2NS D0-35
DIODE-SWITCHING 30V 50MA 2NS D0-35
DELETED | 28480
28480
28480
28480 | 1901-0028
1901-0028
1901-0040
1901-0040 | | A3CR6
A3CR7
A3CR8
A3CR9 | 1901-0028
1901-0028
1901-0028
1901-0028 | | DIODE-PWR RECT 400V 750MA DO-29
DIODE-PWR RECT 400V 750MA DO-29
DIODE-PWR RECT 400V 750MA DO-29
DIODE-PWR RECT 400V 750MA DO-29 | 28480
28480
28480
28480 | 1901-0028
1901-0028
1901-0028
1901-0028 | | A3DS1
A3DS2
A3J1
A3L1
A3L2 | 2140-0018
2140-0018
1251-5112
9140-0115
9140-0129 | 2
1
1 | LAMP-GLOW A9A-C 90/58 VDC 700UA T-2 BULB
LAMP-GLOW A9A-C 90/58 VDC 700UA T-2 BULB
CONNECTOR-3 PIN F
COIL-MLD 22 UH 10% Q=60 .215 DX .56 LG
COIL-MLD 220 UH 5% Q=65 .155 DX .375 LG | 74276
74276
28480
99800
99800 | C7A (NE-2D)
C7A (NE-2D)
1251-5112
1537-36
1537-92 | | | | | | | | Table 6-2. Replaceable Parts (Cont'd) | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|----------------------------|--|--|---| | A3P1
A3R1
A3R2
A3R3
A3R4 | 1251-4316
0757-0194
2100-3357
0757-0465
0683-2265 | 1
1
3 | CONNECTOR-7 CONT M RESISTOR 1.33M 1% 5W F TC=0+~100 RESISTOR-TRMR 500K 10% C SIDE ADJ 1-TRN RESISTOR 100K 1% .125W F TC=0+~100 RESISTOR 22M 5% .25W FC TC=—900/+1200 | 28480
28480
32997
16701
01121 | 1251-4316
0757-0194
3386X-Y46-504
C4-1/8-T0-1003-F
CB2265 | | A3R5
A3R6
A3R7
A3R8
A3R9 | 0684-1011
0687-3911
0757-0465
0684-4731
0684-2221 | 1 1 1 | RESISTOR 100 10% .25W FC TC=400/+500 RESISTOR 390 10% .25W CC TC=0+529 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 47K 10% .25W FC TC=400/+800 RESISTOR 2.2K 10% .25W FC TC=400/+700 | 01121
01121
16701
01121
01121 | C81011
C83911
C4-1/8-T0-1003-F
C84731
C82221 | | A3R10
A3R11
A3R12
A3R13
A3R14 | 0684-5621
0687-3941
0684-1001
0698-8689
0684-6811 | 1 1 | RESISTOR 5.6K 10% .25W FC TC=-400/+700
RESISTOR 390K 10% .5W CC TC=0+882
RESISTOR 10 10% .25W FC TC=-400/+500
RESISTOR 20M 5% 1W CF TC=0-3500
RESISTOR 680 10% .25W FC TC=-400/+800 | 01121
01121
01121
01121
03888
28480 | C85621
E83941
C81001
PVC 70
O684-6811 | | A3R15
A3R16
A3R17
A3R18
A3R19 | 0684-1061
0684-6811
0684-6811
0684-6811
0757-0452 | 1 | RESISTOR 10M 10% .25W FC TC=-900/+1100
RESISTOR 680 10% .25W FC TC=-400/+800
RESISTOR 680 10% .25W FC TC=-400/+800
RESISTOR 680 10% .25W FC TC=-400/+800
RESISTOR 27.4K 1% .125W F TC=0+-100 | 01121
28480
28480
28480
16701 |
CB1061
0684-6811
0684-6811
0684-6811
C4-1/8-T0-2742-F | | A3R20
A3R21
A3R22
A3R23
A3R24 | 0757-0446
0698-8770
2100-3358
0698-6441
2100-3357 | 1
1
1 | RESISTOR 15K 1% .125W F TC=0+-100 RESISTOR 3M 5% 1W CF TC=0-2000 RESISTOR-THMR 1M 20% C SIDE ADJ 1-TRN RESISTOR 6.5M 5% 1W CF TC=0-2000 RESISTOR TRMR 500K 10% C SIDE ADJ 1-TRN | 16701
03888
73138
03888
32997 | C4-1/8-T0-1502-F
PVC 70
72-154-0
PVC 70
3386X-Y46-504 | | A3R25
A3R26
A3U1
A3VR1
A3VR2 | 2100-3357
0684-1021
1826-0167
1902-0175
1902-0668 | **
** | RESISTOR-TRMR 500K 10% C SIDE ADJ 1-TRN
RESISTOR 1K 10% .25W FC TC=-400/+800
IC OP AMP
DIODE-ZNR 100V 5% DO-15 PD=1W TC=+.083%
DIODE-ZNR 200V 5% DO-15 PD=1W TC=+.088% | 32997
01121
28480
04713
04713 | 3386X-Y46-504
C81021
1826-0167
S211213-403
S211213-449 | | A3VR3
A3W1 | 1902-3402
8120-2602 | 1 | DIODE-ZNR 80.6V 2% DO-7 PD=.4W TC=.081%
CABLE-FLEXIBLE | 04713
28480 | SZ 10939-444
8120-2602 | | A4
A4DS1
A4R1
A4R2
A4R3
A4R4 | 01340-66504
1990-0521
2100-3692
2100-3690
2100-3691
2100-3689 | 1
1
3
1
1
2 | BOARD ASSEMBLY-CONTROL (NOT SUPPLIED WITH OPTION DOID DIODE, LIGHT-EMITTING-GRN RESISTOR-VAR 5K (INTENSITY) RESISTOR-VAR 5K (TRACE ALIGN) RESISTOR-VAR 1M (FOCUS) RESISTOR-VAR 1K (X GAIN) | 28480
28480
28480
28480
28480
28480 | 01340-66504
1990-0521
2100-3692
2100-3690
2100-3691
2100-3689 | | A4R5
A4R6
A4R7
A4R8
A4R9 | 2100-3692
2100-3689
2100-3692
0757-0338
0684-2711 | 1 | RESISTOR-VAR 5K (X POSITION) RESISTOR-VAR 1K (Y GAIN) RESISTOR-VAR 5K (Y POSITION) RESISTOR 1K 1% .25W F TC=0+-100 RESISTOR 270 10% .25W FC TC=-400/+800 | 28480
28480
28480
16701
01121 | 2100-3692
2100-3689
2100-3692
C5-1/4-T0-1001-F
C82711 | | A4R10
A4W1 | 0684-2711
8120-0622 | 1 | RESISTOR 270 10% .25W FC TC =400/+800
CABLE ASSY-RIBBON | 01121
28480 | CB2711
8120-0622 | | A5
A5C1
A5C2
A5C3
A5C4
A5C5 | 01340-66506
0160-3443
0160-0207
0160-3448
0180-1819
0180-2843 | 1 1 1 1 | BOARD ASSEMBLY-DC POWER (OPTION 002 ONLY) CAPACITOR:FXD .1UF +80-20% 50WVDC CER CAPACITOR:FXD .01UF +-5% 200VDC POLYE CAPACITOR:FXD 1000FF +-10% 1KVDC CER CAPACITOR:FXD 100UF +75-10% 50VDC AL CAPACITOR:FXD 70UF 300VDC | 28480
28480
06001
56289
56289
28480 | 01340-66506
0160-3443
AE13C103JT
C016B102F471LS25-CDH
3001070600DH2-OSM
0180-2843 | | A5C6
A5C7
A5C8
A5CR1
A5CR2 | 0180-0195
0180-0291
0180-0291
1901-0669
1901-0669 | 2 2 | CAPACITOR-FXD .33UF +-20% 35VDC TA CAPACITOR-FXD 1UF +-10% 35VDC TA CAPACITOR-FXD 1UF +-10% 35VDC TA DIODE-PWR RECT 400V 1A 150NS DIODE-PWR RECT 400V 1A 150NS | 28480
28480
28480
28480
28480 | 0180-0195
0180-0291
0180-0291
1901-0669
1901-0669 | | A5CR3
A5CR4
A5F1
A5F2
A5F3 | 1901-0028
1901-0040
2110-0080
2110-0020
2110-0004 | 1
1
1
1 | DIODE.PWR RECT 400V 750MA D0-29
DIODE.SWITCHING 30V 50MA 2NS D0-35
FUSE .75AT 250V 5LO-BLO 1.25 X .25 UL IEC
FUSE .8AT 250V 5LO-BLO 1.25 X .25 UL
FUSE .25A 250V FAST-BLO 1.25 X .25 UL | 28480
01295
6F364
6F364
6F364 | 1901-0028
PG512
MDL 3/4
MDL 8/10
AGC-1/4 | | A5J1
A5J2
A5J3
A6L1
A5L2
A5P1
A5Q1
A5Q2
A5Q4
A5R1
A5R2
A5R3 | 1251-5112
1251-5112
1200-0690
9100-3139
9140-0137
1251-3195
1854-0433
1854-0433
1854-0053
1854-0053
1854-0053
1854-0053
1854-0053 | 2 1 1 1 2 2 2 1 1 1 | SOCKET-TSTR SOCKET-TSTR SOCKET-TSTR COIL 75UH 15% .5D X .875 LG COIL MLD 1MH 5% Q=60 CONNECTOR-4 PIN M POST TYPE TRANSISTOR NPN SI SPEC TRANSISTOR NPN SI SPEC TRANSISTOR NPN 20218 SI T0-5 PD=800MW TRANSISTOR NPN 20218 SI T0-5 PD=800MW TRANSISTOR NPN 202218 SI T0-5 PD=800MW RESISTOR 162K 1% .25W F TC=0+—100 RESISTOR-TRMR 500 10% C SIDE ADJ 1-TRN RESISTOR 2.43K 1% .125W F TC=0+—100 | 27.264
27.264
28.480
28.480
28.480
28.480
28.480
28.480
28.480
28.480
28.480
28.480
28.480
28.480 | 09-52-3031
09-52-3031
1200-0690
9100-3139
9140-0137
09-60-1041
1854-0433
1854-0433
1854-0053
1854-0053
1854-0053
1757-0780
2100-3351
0757-0431 | See introduction to this section for ordering information Table 6-2. Replaceable Parts (Cont'd) | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |---|---|---|---|---|---| | A5R4
A5R5
A5R6
A5R6
A5R8
A5R9
A5R10
A5R11
A5R12
A5R13
A5R14
A5R15
A5R16
A5R16
A5R17
A5T1
A5U1
A5U2
A5VR3
A5VR3
A5W1 | 0757-0438
0757-0438
0698-3151
0760-0014
0757-0240
0757-0280
05757-0280
0687-5611
0698-3618
0757-0801
0684-2701
0684-2701
0687-5611
0764-0013
0757-1001
9100-XXXX
1826-0428
1826-0406
1902-0048
8120-2602 | 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 2.67K 1% .125W F TC=0+-100 RESISTOR 18 2% 11W MG TC=0+-200 RESISTOR 18 X 11W MG TC=0+-100 RESISTOR 18 X 11.25W F TC=0+-100 RESISTOR 18 1% .125W F TC=0+-100 RESISTOR 18 1% .125W F TC=0+-100 RESISTOR 500 10% .5W CC TC=0+-100 RESISTOR 82 5% 2W MO TC=0+-200 RESISTOR 82 5% 2W MO TC=0+-200 RESISTOR 501 1% .5W F TC=0+-100 RESISTOR 501 1% .5W F TC=0+-100 RESISTOR 501 10% .5W CC TC=0+-100 RESISTOR 501 10% .5W CC TC=0+-100 RESISTOR 501 10% .5W CC TC=0+-100 RESISTOR 501 10% .5W F TC=0+-100 TRANSFORMER, AC IC GENERIC IC VOLT-REGULATOR DIODE-ZNR 4.12V 5% DO-7 PD=.4W TC=.041% DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC=.043% CABLE. RIBBON | 24546
24546
24546
28480
24546
24546
24546
01121
28480
28480
01121
28480
28480
28480
28480
28480
28480 | C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-2871-F 0760-0014 C4-1/8-T0-2002-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F E85611 0696-3618 0757-0801 0684-2701 E85611 0764-0013 0757-1001 9100-XXXX 1826-0428 1826-0106 1902-0188 1902-0048 FSN22A-10 | Table 6-3. List of Manufacturers' Codes | Mfr
Code | Manufacturer Name | Address | Zip
Code | |--|---|--|---| | 01121
01538
02660
03886
04604
04713
05683
05001
07933
16546
16701
28480
32997
56289
67364
72136
72962
73138
74276
76854
78189
79963
82099
99800 | ALLEN BRADLEY CO SMALL PARTS INC BUNKER RAMO CORP AMPHENOL CONNECTOR DIV PYROFILM CORP EAGLE CHEMICAL CO INC MOTOROLA INC SEMICONDUCTOR PRODUCT DIV MEG PRODUCT DIV OF MANDREL INDUSTRIES INC GENERAL ELECTRIC CO CAPACITOR AND BATTERY PRODUCTS DEPT RAYTHEON CO SEMICONDUCTOR DIV HQ US CAPACITOR CORP RAPITAG NEEDLE CO HEWLETT-PACKARD CO CORPORATE HQ BOURNS INC TRIMPOT PROD DIV SPRAGUE ELECTRIC CO BUSSMAN MFG DIV OF MCGRAW-EDISON CO ELECTRO MOTIVE MFG CO INC ELASTIC STOP NUT DIVISION OF AMERACE ESNA CORP BECKMAN INSTRUMENTS INC HELIPOT DIV SIGNALITE INC OAK MFG CO DIV OF
OAK ELECTRO/NETICS CORP ILLINOIS TOOL WORKS INC SHAKEPROOF DIV ZIERICK MFG CO GOODYEAR SUNDRIES AND MECHANICAL CO INC AMERICAN PRECISION INDUSTRIES INC DELEVAN DIV | MILWAUKEE WI COSTA MESA CA BROAD VIEW IL WHIPPANY NJ CHICAGO IL PHOENIX AZ SEATTLE WA IRMO SC MOUNTAIN VIEW CA BURBANK CA LAKE WORTH FL PALO ALTO CA RIVERSIDE CA NORTH ADAMS MA ST LOUIS MO WILLIMANTIC CT UNION NJ FULLERTON CA NEPTUNE NJ CRYSTAL LAKE IL ELGIN IL MT KISCO NY NEW YORK NY EAST AURORA NY | 53204 92626 60153 07981 60612 85008 95266 29063 94040 91504 33460 94304 92507 01247 63017 06226 07083 92634 07753 60014 60126 10549 10013 14052 |