Gould 400 Digital Storage Oscilloscope Service Manual

Copyright [©] 1989 Gould Inc., Instruments Division (Gould Electronics Ltd.)

	Contents
	L
	Introduction
	L
1	Safety & Power
	L
2	Specification
3	System Overview
	L
4	Calibration & Test
	L
5	Servicing
6	Circuits & Components
7	Mechanical Components
8	Measurements
9	Mnemonics
10	Sonvice Equilities
10	Service Facilities

Intr	oducti	on	5	Figures		
1.	Safe	ety and Power Requirements	6	Table 1.7	Fuse Ratings	6
	1.1	International Safety Warning	5	Fig 3.1	Main system block diagram	12
	1.2	Grounding	6	Fig 3.2	Input stage block diagram	13
	1.3	Live Parts	6	Fig 3.3	CCD Correction block diagram	14
	1.4	Ventilation and Dust	6	Fig 3.4	Fast timebase and ECL block	
	1.5	Operating Temperatures	6		diagram	15
	1.6	Power and Frequency Requirements	6	Fig 3.5	Video and power supply block	
	1.7	Fuse Requirements	6		diagram	16
				Fig 3.6	Front panel block diagram	17
2.	Spe	cification	7	Fig 4.2.1	The Test Menu Structure	21
				Fig 4.2.2	Test Menu	21
3.	Syst	tem Overview	10	Table 5.3.29a	Input Coupling Settings	34
	3.1	From the BNC to the Screen	10	Table 5.3.29b	Attenuator settings	34
	3.2	Microprocessor Control	10	Table 5.4.12	Fast timebase control settings	37
	3.3	Triggering	10	Fig 5.4.14	ETS ramp generation	38
	3.4	Timebase Generation	11	Fig 5.4.18	Power supply waveforms	39
	3.5	CCD	1 1	Table 5.4.23	LED Functions	41
				Table 5.4.27	Memory Addresses	42
4.	Calil	bration and Test	18	Fig 5.4.28a	Ten Phase Timing	43
	4.1	Calibration Schedule	18	Fig 5.4.28b	Acquisition timing (fast)	44
	4.2	The Test Menus	20	Fig 5.4.28c	Acquisition timing (slow)	45
	4.3	Noise Debug	20	Table 5.4.29	RS423 Connections	42
	4.4	CH1 Calibration Status	20	Fig 6.1.1	Main PCB circuit block locations	47
	4.5	Test Cal Hardware	20	Fig 6.1.2	Pin Out of SKA	49
	4.6	ETS Setup	20	Fig 6.2	Component layout main PCB	51
	4.7	ETS Debug Mode	21	Fig 6.3	Component layout CPU board	53
	4.8	Initialise Cal Stores	2 1	Fig 6.4	Component layout front panel	54
	4.9	RS423 Test Interface	21	Fig 6.6.1	Preamp and trigger circuit diagram	57
5.	Serv	vicing	22	Fig 6.6.2	Input Preamp Chip block diagram	59
	5.1	How to use this section	22	Fig 6.6.3	Trigger Chip block diagram	59
	5.2	Symptom tables	22	Fig 6.7	Acquisition (CCD) circuit diagram	63
	5.3	Fault finding flowcharts	24	Fig 6.8	ECL circuit diagram	65
	5.4	Circuit descriptions	35	Fig 6.9	Power supply circuit diagram	67
		- · · · · · · · · · · · · · · · · · · ·		Fig 6.10	Video and deflection circuit	
6.	Circ	uit diagrams, parts lists and		-	diagram	69
		ponent location	47	Fig 6.11.1	CPU board circuit diagram	71
		•		Fig 6.11.2	Gate array pinout	73
7.	Mec	hanical components and exploded views	79	Fig 6.12	Front panel circuit diagram	75
				Fig 6.13	Tube base circuit diagram	77
8.	Sum	imary of in-circuit measurements	83	Fig 6.16	RS423 connections	78
				Fig 7.1	Exploded view	79
9.	Defi	nition of Mnemonics	85	Fig 7.2	Rear view	80
				Fig 7.3	Calibration adjustment layout	81
10.	Serv	vice facilities	87	-	. ,	

Introduction

This service manual is written primarily for the service engineer who is performing a standard recalibration or who is undertaking repairs when the instrument has developed a fault. The system overview will help the engineer to understand the inner workings of the 400 Digital storage oscilloscope (DSO).

The fault finding procedure given in this manual takes a systematic approach. Starting with the symptoms, the engineer is led to the area or areas at fault by a series of questions in the form of several flowcharts. These require no knowledge of the system, although a basic knowledge of electronics is essential. Throughout this manual a reasonable level of understanding is assumed. A list of abbreviations and mnemonics used is shown in section 9. Many of the complex operational features of the 400 DSO are performed at chip level. The system includes one large semi-custom gate array which generates the ten phase system and related timings and handles the acquisition of data. On the analogue side there are three semi-custom analogue I.C.'s, two of which are channel preamplifiers providing virtually all the input signal processing, the third is the trigger signal processing circuit. When fault finding, they can be treated as 'Black Boxes' so alleviating some of the more difficult servicing tasks.

Should a problem arise whilst servicing the instrument expert help and advice is available from Gould (see section 10 for details).

1.0 SAFETY AND POWER REQUIREMENTS

1.1 International Safety Warning

(as required for I.E.C. 348 Cat I)

This manual contains information and warnings which must be observed to keep the instrument in a safe condition. The instrument should not be switched on if it is damaged and it should not be used under wet conditions.

1.2 Grounding

AC The instrument must be operated with a protective ground connected via the yellow/green conductor of the supply cable. This is connected to the instrument before the line and neutral supply connections when the supply plug is inserted into the socket on the back of the instrument. If the final connection to the supply is made elsewhere, ensure that the ground connection is made before line and neutral.

DC If the instrument is powered from an isolated dc source and not connected to the mains, the unit will not be grounded. Independent provision must be made to maintain the case at a safe potential, preferably by grounding the negative side of the DC supply, or the ground terminal on the rear panel.

Any interruption of the protective ground conductor inside or outside the instrument is likely to make the instrument dangerous.

CAUTION: The negative DC terminal is the ground connection and as such is connected to the instrument case. Care should be taken to avoid ground loops when, for example, the instrument is used in a vehicle.

Signal connections to the instrument should be connected after and disconnected before the ground connection is made, i.e. the supply lead must be connected whenever signal leads are connected.

1.3 Live Parts

The instrument should not be operated with covers removed. The covers protect the user from live parts and they should be removed only by suitably qualified personnel for maintenance and repair purposes.

WARNING: Removing the covers may expose voltages in excess of 8000V at the side of the display tube; these may be present for up to one minute after the instrument has been disconnected from the power source.

1.4 Ventilation and Dust

The instrument relies on forced air cooling via a fan and ventilation slots. Adequate ventilation can usually be achieved by leaving a 3" gap around the instrument.

The instrument should not be operated in dusty environments.

If the screen filter requires cleaning it can easily be removed by pressing in its right hand edge as shown by the moulded arrow.

1.5 Operating Temperatures

The instrument is designed to be operated in an environment having an ambient temperature of between 0 and 50 deg. C, and to operate with full accuracy between 15 and 35 deg. C.

Note: Direct sunlight, radiators and other heat sources should be taken into account when assessing the ambient temperature.

1.6 Power and Frequency Requirements

The instrument uses less than 85VA and operates from line voltages of 90V to 130V, and 190V to 265V, at 45Hz to 70Hz and 400Hz see section 2. Under the extreme conditions of 90V and 45Hz, the instrument will still operate correctly even if there is a half cycle dropout in the mains supply. The instrument may be powered from a direct current supply in the range 12V to 33V. The unit cannot be damaged by applying power to both inputs simultaneously.

Before connecting the instrument to the supply, ensure that the rear panel mains voltage selector is set to the appropriate voltage. Access to the voltage selector can only be made if the mains connector is removed, and is by lifting the top edge of the connector panel. The selector itself can then be moved to the required setting. This same panel provides access to the mains fuse, which must be changed to suit the supply voltage, as shown in table 1.7

The ac power connection is via a standard IEC connector and the dc power input is via the supplied 0.25" spade terminal connector (Gould part No. 457839). See fig 7.2 for polarity details.

CAUTION: The negative DC terminal is the ground connection and as such is connected to the instrument case. Care should be taken to avoid ground loops when, for example, the instrument is used in a vehicle.

1.7 Fuse Requirements

The fuse arrangement shown in table 1.7 must be followed, and additionally in the UK, a 3A fuse should be fitted in the line supply plug.

Supply Voltage	Slow Blow Fuse Rating (UL/CSA)	Gould Part No.	Suggested types. Manufacturer/Type No.
230V	0.5A(0.6A)	457452	Beswick/TDC488,
			Littlefuse/239
115V	1A(1.2A)	457454	Beswick/TDC488,
			Littlefuse/239
12V dc	5A (6A)	457979	HRC type Beswick/S505

Table 1.7 Fuse ratings.

Note: The DC fuse should be an HRC type with a 1500A break capacity. For different DC voltages, the DC fuse rating multiplied by the voltage used should equal 60W. e.g. at 30V a 2A fuse should be used.

2.0 SPECIFICATION

DISPLAY

CRT: 5 inch diagonal screen Raster scan, vertically scanned

- **Graticule:** Electronically generated 8×10 divisions with 0.2 sub divisions
- Intensity: Separate controls for Traces, Graticule and Alphanumerics

VERTICAL SYSTEM

Two identical channels, CH1 and CH2. Inputs via BNC connectors

Sensitivity: 2mV/div to 5V/div in 1-2-5 sequence

Accuracy: $\pm 2.5\%$ of reading ± 1 digitising level (1/30 of a division)

Variable Sensitivity: >2.5:1 range allowing continuous adjustment of sensitivity between ranges

Input Impedance: 1MΩ/28pF

Input Coupling: AC-DC-GND

Bandwidth: DC: 0 - 20MHz (-3dB) AC: 4Hz - 20MHz (-3dB)

Input protection: 400V DC or peak AC at 10KHz or less Expansion: Post storage $\times 0.062$ to $\times 4.00$

HORIZONTAL SYSTEM

Sweep rate: 27 ranges in 1-2-5 sequence

Transient capture: 500ns/div to 50s/div.

Repetitive sampling: 200 and 100ns/div

Sample rate accuracy: $\pm 0.01\%$

Expansion: \times 10 with linear dot interpolation

TRIGGER DELAY

Trigger delay range: 20ns to 5000s

Trigger delay accuracy: $\pm 0.01\%$, ± 1 ns Pre-trigger: 0 to 100% of sweep in 0.4% steps Resolution: 2% of time/div, 20ns min.

TRIGGER SYSTEM

Variable level control with Auto/Normal facility, resolution of less than 0.1 div. Auto/Normal

Mode: In Auto the timebase free runs when insufficient signal (20Hz - 20MHz) is present or when the selected level is outside the range of the input signal.

Source: CH1, CH2, External or Line

Coupling: DC, AC or high frequency reject filter

Slope: +ve or -ve

Sensitivity:

Internal DC Coupled <0.3 div DC to 2MHz <1.5 div DC to 20MHz AC Coupled <0.3 div 10Hz to 2 MHz <1.5 div 4Hz to 20MHz <1.5 div 4Hz to 20MHz <500mV DC to 2MHz AC Coupled <150mV 10Hz to 2MHz <600mV 4HZ to 20MHz

Range:

Internal \pm 10 divisions External \pm 3V

External input impedance: 100KΩ/10pF

External input protection: 250V DC or peak AC

Trigger Jitter: 50s/div to 0.5μ s/div, $\pm 2\%$ of time/div (unexpanded), ± 2 ns 0.2μ s/div and 0.1μ s/div, ± 2 ns

DISPLAY MODES

- Refreshed: Stored data and display updated by triggered sweep
- **Roll:** Stored data and display updated continuously for timebases 50ms/div to 50sec/div. Trigger stops the updating process

Refresh and roll operate as repetitive single shot for timebase ranges faster than 50ms/div

Dot Join: Dots are joined by vertical raster lines. Linear dot interpolation is provided when the trace is X-expanded

X-Y: X-Y display is 8 × 8 divisions. Stored data and display are updated by triggered sweep. There is no dot joining, × 10 expansion or cursor in this mode. CH1 is used as the × (8 bit resolution 25 steps/div) and CH2 as the Y (7 bit resolution 15 levels/div) deflection

Single trace: CH1 or CH2

Dual trace: CH1 and CH2

Add: CH1 and CH2 can be added to give the algebraic sum of the two channels. Addition is post storage

Invert: Both channels may be independently inverted

Single Shot: Freezes store at the end of a single triggered sweep

Display trace hold: (all) Freezes the display immediately

- Channel 1 Trace hold: Freezes channel 1 display immediately
- Channel 2 Trace hold: Freezes channel 2 display immediately
- Reference trace: One reference trace can be displayed in addition to the two input channels. This can display a waveform memory of a trace copied from CH1 or CH2

ACQUISITION SYSTEM

- Maximum sample rate: 100 megasamples/sec simultaneously on each channel
- Vertical resolution: 8 Bits (1 in 256) 30 levels per division

Record length: 501 points per channel

ACQUISITION MODES

- Normal mode: Transient and repetitive signal capture. (Repetitive capture is only on timebase ranges 100 or 200ns/div, which gives an equivalent sample rate of 2ns/sample on the 100ns/div range.)
- **X-Y mode:** Bandwidth 20MHz (-3dB). Acquisition rate dependent on the timebase range.
- Averaging: Averages can be set from 2 to 256 in binary sequence, selected from the menu system. Averaging operates continuously or, using single shot for the set number of acquisitions (weighted average).
- **Peak detection:** Minimum pulse width 2μ s for 100% probability of capture. Operates on timebase range 100μ s/div or slower

MEMORY

- Waveform memory: 3 reference memories are selectable for waveform data storage. These memories are Non-volatile
- Setup: The control set up is retained in memory during power down
- Retention time: The memory support is trickle charged and will retain information for one month after power down

ON SCREEN MEASUREMENTS and ALPHANUMERIC DISPLAY

- Datum Lines: Horizontal and vertical full screen amplitude time and voltage datums
- **Cursor**: The measurement cursor can be assigned to a trace and measurements made in time and voltage with respect to the datums
- Cursor measurement display: △Voltage and △Time displayed on screen
- Accuracy: Voltage $\pm 2.5\%$ of reading, ± 1 digitising level (1/30 division)
- **Time** \pm 0.01% of reading \pm 1 digit
- Resolution: Voltage 0.4% of F.S.D. Time 0.2% of F.S.D.
- Trigger Indication: Trigger level indication on screen. On trace trigger point indication
- Alphanumerics: Display on screen to indicate vertical sensitivity and input coupling for each channel, timebase speed and pre trigger or trigger delay. Arrow for off screen indication of trigger point and traces

MENU SELECTION

- **Control master menu:** Selects menus for prime functions:- Status, display and trigger facilities, display intensity, reference trace control, RS423 interface, and special functions
- Menu/traces: Alternately switches between trace display and the last menu selection
- Post storage master menu: Selects menus for fast access to save/recall trace and plot output parameters

AUTO SET UP

Automatically sets the front panel controls to display any applied repetitive input signal for frequencies greater than 20Hz. Trigger and timebase priority is CH1, CH2 and line

RS423 INTERFACE

Serial interface port for bi-directional waveform data and associated range parameter transfer

Baud rate: 75, 150, 300, 600, 1200, 2400, 4800, 9600

Data bits: 8

Parity: None

Start-stop: Fixed one start bit, one stop bit

DIGITAL PLOTTER OUTPUT

The instrument can directly output to suitable HPGL format plotters via the RS423 interface port

- Plot mode: Manual or auto selection to output a stored trace
- Annotation: Range and scaling annotation, graticule, cursors and cursor readout can all be included in the plot output
- Colors: Color pens automatically selected when available

ENVIRONMENTAL

- **Temperature:** Operating 0 °C to +50° C Full specification +15° C to +35° C Storage -40° C to +70° C
- Humidity: Operating IEC 68-2-Ca at 45° C with 95% RH Non operating IEC 68-2-D6 cycling, 25° C to 45° C with 95% RH, 6 cycles (144 hours)
- Vibration: MIL spec 810D. Random frequency vibrations of 5-500Hz at 1g rms for 15 minutes. IEC 68-2-6 Test Fc. 15 cycles of 1 minute duration 10 to 55Hz at 0.6mm peak to peak displacement in each of the three major axis (4g at 55Hz)
- Safety: Designed for IEC 348 Cat 1 standard
- EMC: EMI to BS 6527, VDE 0871 Class A ESD 10KV to IEC 801-2, BS 6667-2

400 Service Manual

MISCELLANEOUS

Calibrator: 1V peak to peak ± 1% Frequency approx 1KHz calibration signal on front panel **Ground:** Front panel ground reference

POWER REQUIREMENTS

AC Voltage: 90 to 130V or 190 to 265V

Frequency: 45 to 70 Hz. 400 Hz operation is available as an option.

DC Voltage: 12 to 33V

Power: 85VA/70W approx

WEIGHT

5.5Kg (12 lb) approx

DIMENSIONS

135mm height \times 277mm width \times 389mm depth (5 $\frac{1}{2} \times 11 \times 15$ inches) excluding handle

ACCESSORIES SUPPLIED

Operating manual	PN 457400
Line cord UK	PN 457826
Line cord USA/Canada/Japan	PN 456980
Line cord Europe	PN 456979
DC power connector	PN 458055

OPTIONS

Option 106: 400Hz operation. This option must be ordered with the $400\,$

OPTIONAL ACCESSORIES

Rack mounting kit	PN 04090490
Carrying case (soft padded)	PN 04101221
Carrying case (hard, foam lined)	PN 04101222
Front facia cover	PN 04101220
Accessory Pouch	PN 04101223
Probe DC to 100MHz switched x1 and x10	PB12
Probe DC to 250MHz 1200V x100	PB17
Probe DC to 7MHz 15KV x1000	PB27
Service Manual	PN 04101224

3.0 SYSTEM OVERVIEW

The first step in understanding the operation of the 400 Digital Storage Oscilloscope is to gain an appreciation of the how a signal is transferred from the input BNC to a trace on the display. Section 3.1 below describes the signal's path through the 400's major circuit blocks. Following this section, microprocessor control, triggering, timebase generation and the CCD are described. For further details see the block diagrams at the end of this section, and for detailed descriptions of each circuit area see section 5.4.

3.1 From the BNC to the Screen

Signals connected to the front panel BNC sockets first encounter the AC/DC coupling circuit followed by the first attenuation stage which either applies a 1:1 or a 50:1 attenuation to the signal, which can have a wide dynamic range from 2mV/div to 5V/div. The degree of attenuation is dependent on the vertical range selected by the operator or the AUTO SETUP function.

The signal now passes into the semi-custom preamplifier chip which performs the rest of the signal scaling including variable gain, invert and vertical shift. The shift level and variable gain control are generated by the microprocessor in the VGEN circuit, the invert control also comes from the microprocessor but via a serial bus line. The preamplifier provides both a signal output and a trigger drive signal.

Next the signal is clocked into the CCD which is under the control of the gate array and the ECL timebase circuitry. The CCD processes the signal in two different ways depending on the timebase range selected.

Timebase ranges 100µs/div and slower:

On these ranges the CCD is clocked at 1MHz and simply acts as an analog delay line.

Timebase ranges 50µs/div and faster:

On these ranges, the signal is entirely captured in the CCD before being replayed for digitisation. The clock rate for the data capture depends on the timebase selected and varies from 2.5MHz to 100MHz. The signal is then read out at a 1MHz rate irrespective of the rate of the capture.

After coming out of the CCD the signal now consists of both CH1 and CH2 data multiplexed together, this common signal is buffered and amplified and has CCD corrections added to it before being digitised onto the YBUS.

Once on the YBUS the data is processed by the gate array and the max-min function is performed if required. Without max-min the signal is unaffected but with it, glitches and aliases can be detected. After the max-min circuit the signal is passed to a store and further processed by the gate array to generate the separate video waveforms for each trace together with the graticule and the alphanumeric display.

These video drive signals are summed together in the video circuit which allows additive signals to produce a brighter image. The individual intensities of the traces, graticule and alphanumerics are selected by the user from a menu and controlled by the microprocessor on the serial bus by switching various resistors into and out of transistor current paths.

The output of the video circuit drives the CRT directly to produce the visible display.

3.2 Microprocessor Control

Most functions within the 400 are directly controlled by the microprocessor in one of three ways:-

Parallel Bus

Most of the data transfer is performed on one of the 8 or 16 bit parallel buses. These functions include the ROM and RAM address and data lines, the vertical signal data, CCD correction and scanning the front panel switches.

Serial Bus

The serial buses consist of a one bit data stream with a clock and an enable line. The data is extracted from the stream by a serial to parallel converter, i.e. a long shift register. Each device on the serial bus uses three connections rather than the ten or more that are required on a parallel bus. Therefore fewer tracks are needed to transfer the data and more output pins can be available on the receiving device.

The serial buses control the input preamp and relay selection, trigger selection, front panel led drives, display intensity and the self calibration attenuator.

Control voltages

The remaining operations in the system are voltage controlled, the voltages being generated by the VGEN circuitry connected to the five VGEN lines from the MPU. The eight voltages generated are used to provide the variable and position levels to the two input channel preamplifiers, a self calibration offset voltage also to the preamplifiers, the trigger level control and a VGEN feedback reference.

3.3 Triggering

Most of the trigger signal generation is performed in the semi-custom trigger amplifier chip. Signals from the two channel preamplifiers, the EXT socket and from the mains transformer (line trigger) are fed to the trigger chip where one of them is selected as the trigger source by the action of the serial bus. A high frequency reject filter can be switched in on the channel or external trigger signals, and a positive or negative going trigger edge can be selected, again controlled by the serial bus. Trigger level control is by an analog voltage into the trigger chip from the VGEN circuit. The trigger amplifier finally produces an ECL level trigger signal.

3.4 Timebase Generation

The trigger signal initiates the acquisition cycle in one of three acquisition modes according to the timebase selected: For the slow timebase ranges, 50s to 50μ s, the signal is clocked into and out of the CCD at 1MHz, digitised and 1 in n of the samples are fed to a store at a rate appropriate to the timebase where the complete trace is built up before passing on to the video circuit. For timebase ranges from 20μ s to 500ns the signal is clocked into the CCD by the fast timebase clock and again clocked out at 1MHz. Finally for the two fastest ranges 200 and 100ns, the ETS circuitry is used to determine the sampling points. By measuring the ETS ramp level, the software determines when the next samples should be taken and successively samples the entire signal to obtain all the required 501 trace points.

The ECL output from the trigger chip is latched in the ECL circuit and starts the ETS ramp. The next timebase clock after the trigger stops the ETS ramp. The ramp is only used on the two fastest timebase ranges. The trigger signal is then synchronised with the timebase although it has been delayed by two timebase clock periods.

The fast timebase clocks are derived from a master 100MHz oscillator and the 1MHz clock is produced in the gate array. Most of the pre and post trigger counting and timing is performed by the gate array as is the acquisition and data replay timing.

3.5 CCD

The CCD chip forms the heart of the 400 acquisition system. It is basically an analog delay line which has separate clock lines for input and output. This allows analogue signals to be captured at high speeds, i.e. as quickly as one sample every 10ns, the acquired data is then read out at a slower rate (1MHz).

The CCD is constructed internally from eight separate charge coupled lines each 128 elements long. Two analogue inputs are provided which allow the lines to be split into two groups of four. These two sets are driven in parallel by the CCD clock drivers. At the end of the lines within the CCD there are two multiplexers working together: a 1 of 4 multiplexer which is phase related and a 1 of 2 which is channel related. The final output from the CCD is switched by these multiplexers to produce the following sequence: channel 1 FA, channel 2 FA, channel 1 FB, channel 2 FB, channel 1 FC etc. where F means phase.

CCD Correction

Each line within the CCD exhibits a different gain and DC offset which has to be corrected. The gain only varies from line to line, but the offset depends on the particular position along each different line. The offset corrections are held in RAM for each of the 1024 line elements. The signal corrections are applied to the output of the CCD, before the signal is presented to the analogue to digital converter (ADC), by three digital to analogue converters (DAC's) driven from an 8-bit parallel bus.

3

Fig. 3.2 Input Stage Block Diagram

400 Service Manual

Fig. 3.3 CCD Correction Block Diagram

14

Fig. 3.4 ECL Block Digram

Fig. 3.5 Video & Power Supply Block Diagram

Fig. 3.6 Front Panel Block Diagram

4.0 CALIBRATION and TEST

Many of the features of the 400 are internally maintained in calibration by the microprocessor. However, as with any other oscilloscope, it should have a regular annual calibration. The schedule given below uses a minimum of test equipment, all of which should be readily available in any test department.

The instrument should arrive fully calibrated. This will ensure that the unit will operate within specification for at least a year under normal operating conditions (see section 1). A few of the adjustments in the calibration procedure are interactive, i.e. the setting of one will affect the others. In the schedule below it has been assumed that these controls will be set to approximately the correct positions and will only require a minor adjustment.

All the controls are discussed individually although it is recommended that the entire schedule is completed in order. Calibration cannot be assured if this is not done.

To gain access to the inside of the instrument, remove the four screws in the rear moulding feet, and simply slide the whole cover assembly backwards off the unit. If any dust has accumulated inside the oscilloscope particularly around the fan it should be carefully removed using a vacuum cleaner. All the controls can now be reached, some from the underside of the main board. See figure 7.3 for their location.

WARNING: Removing the covers may expose voltages in excess of 8000V at the side of the display tube; these may be present for up to one minute after the instrument has been disconnected from the power source.

Numbers in brackets refer to numeric button sequences required to obtain a particular effect, using the menu system. e.g. (9-777) means press button 9 then button 7 three times.

Equipment required

- 1. Four Digit Digital voltmeter
- 2. General Purpose Oscilloscope
- 3. Oscilloscope Calibrator
- 4. Fast Edge Generator, Tektronix PG506 or similar
- 5. Function Generator
- 6. High Frequency Signal Generator, Tektronix SG503 or similar
- 7. Capacitance Standardiser (28pf), Waugh Instruments or similar
- 8. 50 Ohm input termination

4.1 400 Calibration Schedule

The correct fuses should be fitted to the unit as shown in table 1.7

- 1. Power supply
 - Check +15V supply on PLG pin 4 to within $\pm 0.2V$ (R621).

 Heater voltage Check for +12V on CRT brown lead to within ±0.2V (R718).

Display Set up

Note: The centering magnets on the rear of the yoke are NOT for centering but to make the center of the display as linear as possible.

- 3. Initial display
 - Set R735 (Intensity) midway. Adjust R734 (Black Level) for a visible background raster.
 Remove all the geometry correction magnets from the pegs on the yoke assembly. Set R746 mid way.
 Adjust R706 and R709 so that the raster sweep width is approximately 80mm and ensure that the ramp appearing on the horizontal scan coils is approximately centered about 0V, by monitoring the top of R717.
- 4. Center linearity

Twist the yoke assembly by adjusting the yoke clamp so that the graticule lines are as near horizontal and vertical as possible. Only look at the central part of the display as any corner distortion will be confusing. The ring magnets should now be adjusted to make the center lines of the graticule as straight as possible.

- Vertical position and height Adjust R746 (raster vertical adjust) and L702 (height) to get a vertical raster approximately 62mm centrally positioned on the tube face.
- Video alignment Adjust R741 (video delay) so that the graticule is set 2mm from the top of the raster.
- Black level Set graticule to lowest intensity above off (menu 3). Adjust R734 for a just blank background and just visible graticule lines.
 - Horizontal position and width Adjust R706 (horizontal position) to align the left hand edge of the graticule 5mm from the left hand edge of the display. Adjust R709 (horizontal width) for a graticule width of 80mm.
- 9. Picture Geometry Magnets

8.

The uncorrected display tends to have pin cushion rather than barrel distortion. If necessary, this can be corrected with the geometry magnets, part number 458026, as follows:

WARNING: High voltages exist on the CRT. Exercise extreme caution while fitting magnets to the yoke.

a) Ensure that the major axes of the display are straight and perpendicular.

b) Push a $\frac{1}{2}$ " square rubber magnet onto each of the four "diagonal" pegs on the yoke. Adjust each of these four magnets to push in their corners of the display.

c) Add a magnet to the top and bottom pegs. These magnets affect the top and bottom edges of the picture and also affect whether the two ends of the top or bottom edge are the same height. Adjust them until the top and bottom edges of the display are as straight as possible.

d) Add a magnet to each side peg. Adjust them for the straightest edge to the display

A second magnet may be required on a peg and in these cases, it must be aligned with the first so that their fields reinforce, not cancel, each other.

10. Intensity

Set alpha intensity to max (3-3). Reduce R735 from maximum to obtain reasonable alpha numeric focus in corners. Keep R735 within ¼ of a turn from max.

- Focus Adjust R745 for best overall focus, particularly at the corners of the graticule.
- 13. CCD Supply voltage Set R364 for +14.50V at TP4.
- VGEN. reference Adjust R61 for -8.00V at TP1.
- Default calibration Select initialse cal. stores (9-777-6). Disable autocal (9-6-1).

Avoid using Y shift controls until next full software calibration.

Set R9, R22 & R390 midway and both channel inputs to GND.

16. Invert Balance

Select 10mV/div on both channels, adjust R373 for central traces. Adjust R82 for no channel 1 invert movement. Change to 100mV/div and adjust R9 for no channel 1 invert movement.

Repeat as necessary until there is no movement on either vertical range.

Repeat the whole process for channel 2 using R83 for the 10mV/div range and R22 for 100mV/div.

Step balance

Select 0.1V/div on both channels. Adjust R373 for central traces. Check CH1 & 2 step balance, 0.1V to 10mV/div for less than ± 3 divs.

18. Y Calibration

Apply a 600mV 1KHz calibration signal to both channels switched to AC coupling with a timebase of 0.2ms/div. Adjust gain (R390) for best gain compromise between CH1 & CH2. Adjust R373 for best centring of both traces.

19. Autocal.

Select Full Calibration (9-6-4). When complete, check CH1 & CH2 calibration status (9-777-2), (see section 4.4). Any excessive deviations are highlighted. If the instrument fails calibration (indicated on status pages), try a calibration hardware test (9-777-

4), this checks the DACs. If no failure message is displayed but the gain deviation required is greater than $\pm 2\%$ then proceed as follows.

a) Note the deviation required, select trace mode and set CH1 to 0.1V.

b) Apply a 600mV 1kHz calibration signal to CH1 with the deviation of the calibrator set to the value noted in a).

c) Adjust R390 to make the peaks of the square wave exactly 6 screen divisions apart.

d) Repeat the Full Calibration (9-6-4) and check for a deviation of less than $\pm 2\%$.

20. Attenuator compensation

Set both channels to 0.2V/div, and set the timebase to $50\mu s/div$. Connect high amplitude pulse output from PG506/106 set for approximately 6 divs amplitude at 10KHz to channel 1. Adjust C2 for a square corner. Repeat for channel 2 adjusting C17.

21. Input capacitance

a) Change the timebase to 5μ s/div and switch channel 1 to 0.1V/div. Apply a $0.1V \times 10$ div 1KHz calibrator input to CH1 only via a 28pF standardiser. Check that the over/undershoot on squarewave corner is less than 6%. Switch calibrator and volts/div to 0.2V and adjust C3 to match previous shape.

b) Transfer calibrator signal to CH2 input and repeat test adjusting C16.

22. Internal calibrator

Adjust R56 for 1 Volt amplitude signal at the front panel calibration output within \pm 1% by comparison with amplitude calibrator (Bradley). The frequency should be approximately 1KHz (\pm 15%).

23. ETS Ramp correction (see section 4.6)

Select ETS Setup (9-777-4). Apply a 1MHz sinewave to CH1. Set R514 fully clockwise.
To set the ETS ramp slope, press button 6 and after approximately 10 seconds note the number shown. Adjust R514 slowly anticlockwise until the number is in the range 4 to 6. After each slight movement of the potentiometer, pause for a few seconds to monitor the ramp minimum number. If it falls below 5, turn R514 slightly clockwise and then press button 6 to restart the test. Repeat this until the number shown is consistently 4,5 or 6. Wait about 15 seconds after

- each change of reading.
 24. CCD Phase correction 10MHz sinewave 0.1µs/div. Adjust R385, R387, C370, C371, for optimum waveform on CH1 & CH2 when S/Shot is pressed repeatedly.
- 25. LED Intensity

Select Roll mode and ensure that Horizontal Mag is off, no holds are on, no red LEDs are on, no HF reject is selected, and that neither the armed or stored LED is on, so that there are a total of 11 LEDs illuminated including the power on LED. Six of these are connected to U1 and 4 to U2. Measure the voltage across R15 on the front panel PCB and adjust R12 for 150mV i.e. 25mA per LED. Measure the voltage across R14 and adjust R13 for 100mV i.e. 25mA per LED.

26. Back-up battery current

CAUTION Performing this test will cause all stored trace and calibration data to be lost.

Remove LK1 from the CPU board and measure the trickle charge to the battery. On a nearly fully charged cell the current should be approximately 3mA. Remove the mains and/or DC supply to the unit and measure the discharge current from the battery which should be a maximum of $100\mu A$.

For further performance checks, see section 4 of the operators manual.

4.2 Test Menus

To aid the test and calibration process, there are a series of test menus which either activate a function or provide information on the current state of parts of the system functions. The front panel controls remain live while the test menus are displayed allowing, for example, the calibration status to be checked for different timebases.

The Test menus are obtained by pressing numeric button 7 three times when the control master menu is displayed. If the instrument is turned off while a test menu is being displayed, the instrument status menu will be shown when the unit is next powered up.

4.3 Noise Debug

Repeatedly pressing button 1 selects the noise debug function for CH1, CH2 or Off. When it is on, the selected trace is magnified by a factor of 4 in the Y direction and displayed as the reference trace. This mode is not required for calibration purposes.

4.4 CH1 Calibration Status

Selecting this option using key 2 provides a numeric display of the status of the various calibration coefficients for CH1. Pressing key 6 changes the display to the calibration status for CH2. Pressing key 6 again returns to CH1 calibration status.

To exit from either display, use the Menu/Traces key.

Any value that is marginal, i.e. close to, but not failing calibration, will be shown in inverse video. If an inverse video 'S' is shown, this indicates that the shift calibration for that range is marginal. If an inverse video 'V' is shown, this indicates that the variable gain offset for that range is marginal. If an inverse video 'TL' is shown, this indicates that the trigger level gain calibration is marginal.

The limits for indicating marginal status are selectable for the factory Test or QA departments by key 6. The limits are detailed in table 4.4 below. 400 Service Manual

	Lower	Upper	above
Gain	±6.5%	±18%	±21.4%
Offset	$\pm 37 mV$	$\pm 41 mV$	$\pm 50 mV$
CCD offset	± 94	± 104	± 128
Shift	$\pm 2.6 \text{div}$	$\pm 3 \text{div}$	
Variable gain offset	±6 div	±7 div	

Table 4.4 Calibration Limits

Pressing key 1 on a calibration status page will select the information for the next CCD phase in the sequence 0, 1, 2, 3, 0... The gain % values should be similar between phases. The offset values will be the same on every phase, and the CCD offset values whilst being closely grouped within a range, may have very different average values from one range to another. The offset and CCD offset values will change if the channel under examination is switched to invert.

If any calibration coefficient is marginal, then the message "WARNING: MARGINAL CALIBRATION" will appear even if the marginal coefficient is not on the currently displayed page. If any calibration sequence has failed, then an appropriate message will appear instead. The status "CAL COMPLETE" indicates that an attempt has been made to calibrate all coefficients, even if some have failed calibration or are marginal. "CAL INCOM-PLETE" in inverse video indicates that at least one calibration coefficient has not been computed due to aborting a full calibration or initialising the calibration stores (see section 4.8).

The gain deviation shown gives assistance in setting up the gain pot R390. See section 4.1.19 for details.

4.5 Test Cal Hardware

Selecting this function causes the response of the CCD gain and offset correction DACs to be shown graphically on the screen. The gain DAC response should be an almost horizontal line which may slope either up or down from the 00 end. The offset DAC line should be sloping down roughly 45 degrees from the 00 end.

Button 7 returns the display to the test menu.

4.6 ETS Setup

When this function is selected, the instrument is set to the fastest timebase range in a repetitive capture mode. Any held traces will be lost. This test is used to set the slope of the ETS ramp, see item 28 in calibration schedule. Press button 7 to exit from this test.

4.7 ETS Debug Mode

This mode is used to check the ETS function, and draws a histogram 5 divisions wide at the bottom of the screen, which should be set so that its amplitude is as even as possible across its width. Set R385 & R387 to mid-travel, C370 & C371 to minimum (vanes open). Select copy trace 1 to reference trace (9-4-2) & ETS debug mode (9-777-5). Connect 1MHz sinewave of suitable amplitude to CH1 input and adjust R514 for as even an accumulation of points as possible along the 5 division trace at bottom of screen (histogram). In order to restart accumulation the timebase will need to altered by one range, keeping within the ETS ranges.

4.8 Initialise Cal Stores

Selecting this option sets the RAM data for all the calibrations to their mid values. When a full calibration is performed, reseting the RAM data is the first thing to happen.

4.9 RS423 Test Interface

The two options possible from this function are HPGL and TEST; selected by successive presses of button 7. The normal mode is HPGL where the RS423 interface is used to output trace data as described in the operators manual. In the test mode, control of the unit is given to the test ROM fitted as U2. If the test ROM is not fitted the message 'CANNOT FIND TEST ROM' is displayed.

If this function is test rather than HPGL the message 'IN-STRUMENT UNDER REMOTE CONTROL' is added to the RS423 interface menu and trying to change the Baud rate or the handshake from the RS423 interface menu has no effect.

777

Figure 4.2.1 The test menu structure

NOISE DEBUG= Off CH1 CH2 1 CALIBRATION STATUS . . 2 2 TEST CALIBRATION HARDWARE ETS SETUP MODE 4 2 ETS DEBUG MODE INITIALISE CAL STORES . <
TEST CALIBRATION HARDWARE3 3 [] ETS SETUP MODE4 4 [] ETS DEBUG MODE5 5 [] INITIALISE CAL STORES6 6 [] RS423 FUNCTION
ETS SETUP MODE
ETS DEBUG MODE $=$ Off On 5 INITIALISE CAL STORES 6 RS423 FUNCTION $=$ HPGL Test 7 Posi
INITIALISE CAL STORES6 RS423 FUNCTION= HPGL Test7 Post
RS423 FUNCTION= HPGL Test. 7 Post
Post

Figure 4.2.2 Test Menu.

5.0 SERVICING

This section takes a systematic approach to servicing a faulty instrument. Starting with a list of symptoms, symptom tables are consulted. These indicate a section of text or a flow chart which will aid in locating the faulty area(s). At the end of this section are the circuit descriptions. These describe the circuits block by block indicating what the circuit does rather than how it does it. It is left to the engineer to interpret them and to make the final diagnosis of the fault within the circuit areas. Unless stated otherwise all component references refer to components located on the main printed circuit board.

WARNING Many of the circuits within the 400 contain high voltages, in some cases in excess of 8000V. Suitable precautions should be taken whilst working on a 'Live' instrument. The circuits associated with the tube can retain charges for about one minute after power down.

5.1 How to Use this Section

This section covers the detailed information required to service a faulty 400. It is divided into three parts: symptom tables, fault finding flowcharts and circuit descriptions.

When approaching an instrument for servicing it is necessary to discover all the symptoms of a fault. In some cases this can be easy; for example if the microprocessor fails then the instrument will be unable to do anything. But many very different faults have fairly similar, if not identical symptoms.

With the list of symptoms consult the symptom tables. These are rather like the index of a book, the symptoms referring to a flowchart or a piece of text in section 5.3.

The flowchart will lead to the faulty area(s) by giving instructions for a series of measurements to be taken on the circuit boards. These are fairly detailed but no knowledge of the instrument is required to follow them. There are two types of box on these flowcharts: decision boxes and command boxes. Decision boxes have sloping sides and two exits, one marked 'Y' for Yes and one marked 'N' for No. The command boxes have straight sides and contain instructions about actions that need to be performed.

Having ascertained the area at fault, or in some cases the component, the final decision as to the required cure is left to the engineer. Considering the high reliability of the components used in the 400 it may be advisable to establish the cause of the failure.

To find a circuit area on the main PCB refer to the block location diagram figure 6.1.1. To find the position of a component, locate it in the parts list preceeding the circuit on which it appears and note its grid number. This grid refers to a position on the PCB as shown in the layout drawings figures 6.2 to 6.5.

Section 5.4 provides descriptions of all the circuit blocks. These are of varying sizes depending on the function(s) provided. Typical in-circuit measurements are given, particularly in the analogue areas, to aid the engineer.

The 400 contains many features controlled and calibrated directly by the microprocessor. When a circuit fails within one of these control loops the results are not predictable. This uncertainty is caused by the software/hardware interaction. The fault finding flowcharts presented take this into account.

The flowcharts are based mainly on the failures of semiconductor devices. These are the most likely faults on new models. However, as the instrument ages interconnections and wiring will tend to fail more frequently. This type of fault may be deduced from the circuit areas that apparently fail.

5.2 Symptom Tables

The tables given below cover the most likely symptoms to be expected. They are used in conjunction with Section 5.3 to locate the faulty circuit areas.

Before using the symptom tables ensure that all the internal plugs and sockets are securely connected, that there are no broken wires and that the CPU board is pressed fully home into its connector.

How to Use the Tables

- 1. Make a list of the fault's symptoms.
- 2. Check through the index of symptoms, Sections 5.2.1 to 5.2.7, and make a note of the likely faults.
- Refer to each of the indicated tables for a more detailed description of the fault and its symptoms.
- If one of the tables matches the fault closely then follow the procedure given in the text. If not, re-check the problem and its symptoms looking for additional clues.
- 5. Where a function appears not to work, it may be that the front panel switching is not performing correctly. If the front panel LEDs do not show the correct operation of the selector switches then see fault 5.3.5 before looking too deeply into individual circuit blocks.

5.2.1 General System faults

- Table No. Symptom
- 5.3.1 Total System Failure
- 5.3.2 Total Failure of trigger system
- 5.3.3 No CRT display
- 5.3.4 Some or all the front panel LEDs not working

400 Service Manual

input

5.3.5	No response to some or all front panel switches
5.3.9	No alphanumerics
5.3.10	Memories lost on power down
5.3.11	Alphanumerics unreadable or
	incomprehensible
5.3.12	No dot join
5.3.13	No trace display in X-Y mode
5.3.14	Power supply unit not working
5.3.15	Variable shift and level do not work
	(VGEN Faulty)
5.2.2 Disp	lay Faults
Table No.	Symptom
5.3.3	No CRT display
5.3.9	No alphanumerics
5.3.11	Alphanumerics unreadable or
	incomprehensible
5.3.12	No dot join
5.3.13	No trace display in X-Y mode
5.3.16	No horizontal deflection

One or more traces not displayed

Cramping of horizontal lines

Cramping of vertical lines

Instrument fails to trigger

or always selected

Trigger source and coupling not selectable

High frequency reject filter not selectable

Cannot trigger from the EXT source

No control of the trigger level

No external; or No line; or No channel trigger

No frame blanking

Poor focusing

5.2.4 Triggering Faults

Symptom

5.2.5 Acquisition Faults

Table No.	Symptom
rable rub.	Symptom

- 5.3.25 Trace off the top or bottom of the screen
- 5.3.26 Trace 'stepped'

5.2.6 Y Preamplifier Faults

Table No.	Symptom
5.3.8	Trace distorted
5.3.27	No Y shift or variable gain
5.3.28	Invert not functioning
5.3.29	One or more attenuator range or
	coupling selection not available
5.3.30	Input coupling not selectable

5.2.7 I/O Faults

Table No.	Symptom
I able NO.	Symptom

- 5.3.31 No calibrator signal
- 5.3.32 No Response over RS423

5.2.8 Front Panel LEDs Flashing

Table No.	Symptom
5.3.33	Hold All LED flashes
5.3.34	Roll LED flashes
5.3.35	X-Y LED flashes
5.3.36	Refr LED flashes

5

5.3.17

5.3.18

5.3.19

5.3.20 5.3.21

Table No.

5.3.2

5.3.6

5.3.7

5.3.22

5.3.23

5.3.24

5.3 Fault Finding

5.3.1. Total System Failure

symptoms: There is no display and no front panel controls function.

5.3.2 Instrument Fails to Trigger

symptoms: With a suitable signal input, it is not possible to obtain a stable triggered trace.

* NB line trigger is only present when the instrument is connected to AC Power

5.3.3 No CRT Display

symptoms: There is no trace, graticule or alphanumeric display on the screen. The front panel LEDs illuminate as normal.

If either R753, D705 or Q716 appear to be burnt or charred, replace all three components

5.3.4 Some or all the front panel LED's not working

symptoms: When various functions are selected, the expected display is obtained but the front panel indications are wrong.

5.3.5 No Response to some or all front panel switches

symptoms: Some or all of the front panel switches do not function as expected.

5.3.6 Trigger source & coupling not selectable

symptoms: It is not possible to select certain trigger sources or couplings

5.3.7 No External, or No Line Trigger or No channel trigger

symptoms: with a suitable trigger source connected it is not possible to obtain a stable, triggered trace from one of the trigger sources. The unit performs correctly from another trigger source

* NB line trigger is only present when instrument is connected to AC power.

5.3.8 Trace distorted

symptoms: The trace is not a true representation of the input signal and it does not appear any noisier than expected

5.3.9 No alphanumerics

symptoms: All traces and the graticule are displayed correctly but no alphanumerics can be seen.

If there are no alphanumerics, check first that the intensity setting from the display and intensity menu is not set to minimum, then check that the alphanumeric data signal is reaching the base of Q707 from the gate array U24. If the signal does reach Q707 check its emitter connections and D710. If the data does not leave the gate array then suspect a fault within the gate array itself, which should be replaced after ensuring that all the supplies to it are correct.

5.3.10 Memories lost on power down

symptoms: The trace memories cannot be recalled once the instrument has been switched off. Also the instrument performs a complete recalibration on power up.

The circuit is described in 5.4.26, battery backup. If data is not being held in the RAM U8 during power down, check that LK16 is still in place maintaining B1 in circuit. Check that the charging circuit, Q2 and associated discrete components, is recharging the battery. If the battery is in circuit and being charged then it is not retaining its charge and should be replaced.

5.3.11 Alphanumerics unreadable or incomprehensible

symptoms: The alphanumerics may be clear but the words unreadable or the actual characters may be unrecognisable.

This problem is caused by either the RAM or the gate array. Part of the RAM area may be faulty which may show up as fault 5.3.33, or there may be a fault within the gate array, which should be replaced after ensuring that all the supplies to it are correct.

5.3.12 No dot join

symptoms: When dot join is selected On from the display and trigger menu, the individual un-joined dots are still displayed.

This problem may be caused by one of the microprocessor address lines held at a fixed level preventing a control port from being written to, or it may be due to a fault within the gate array, which should be replaced after ensuring that all the supplies to it are correct.

5.3.13 No trace display in X-Y mode

symptoms: When an X-Y display is selected no trace information is displayed even though the instrument is receiving valid triggers and is armed. The graticule and alphanumerics are correct.

The X-Y signal is output by the gate array to R755 and D715 where it is summed to the rest of the display data. Check that the X-Y data is present along its path and that the data reaches both the base of Q705 and R703. If the data does not leave the gate array then suspect a fault within the gate array itself, which should be replaced after ensuring that all the supplies to it are correct.

5.3.14 The power supply unit is not functioning correctly

symptom: some or all of the internal supply voltages are missing.

This could be because the power supply has failed or because part of the rest of the unit has developed a fault and is drawing excess current thus pulling down the power supply. Carefully examine the unit for evidence of burnt or charred components and tracks.

In order to facilitate testing and fault finding of the power supply, a set of four 'solder blob pads' on the underside of the main PCB and a six way connector (PLG) have been provided. These facilities permit two modes of operation:

1. With the solder pads bridged the instrument operates normally from a mains or dc supply connected via the rear panel. The internal supply voltages may be monitored at PLG, see table 5.3.14.

2. With the solder blob switches open and power applied through the rear panel, the power supply outputs are isolated from the rest of the instrument. Their voltages can be measured on PLG. It is recommended that fixed resistors are connected to PLG to draw at least 100mA from each supply rail, however as the output voltage is slightly load dependent, the measured voltages will not necessarily be exactly as indicated on the circuit.

PLG Pin No. Voltage

1	-15V
2	-5V
3	+5V
4	+ 15V
5	No Connection

Table 5.3.14 PLG Connections

If it is suspected that part of the instrument is drawing excessive current from one of the supply rails, a resistor can be soldered across the solder pads and the current deduced from the voltage across this resistor.

5.3.15 VGEN faulty

symptom: One or more of the following functions do not work, Y shift, variable gain, and trigger level, or the instrument may fail offset calibration.

Any of these symptoms could occur if one or more outputs from the VGEN sample and hold buffer amplifiers U6 and U7 are missing. These sample and holds control the functions shown in table 5.3.15

U6a	Y shift	Channel I
U6d	Variable gain	Channel 1
U7c	Offset cal	Channel 1
U6c	Y shift	Channel 2
U7b	Variable gain	Channel 2
U6a	Offset cal	Channel 2
U7d	Trigger level	
U7a	VGEN ramp control	

Table 5.3.15 VGEN sample and hold Functions

Check that the voltage on pin 3 of U5 is a sawtooth ramp with a period of approx 4.2ms and that the count inputs on pins 9, 10 and 11 are 33ms, 16.5ms and 8.2ms square waves respectively. If the ramp is missing, check that Q15 is being switched on and is discharging C50 by the VGENRS pulse via Q14 and Q16 every 4.2ms. If all the outputs from U5 are missing, check that the outputs from U5 are being enabled by an approximately 10μ s negative going pulse every 12ms.

5.3.16 No horizontal deflection

symptoms: The only trace visible is a vertical line at the left hand edge of the screen or the screen is blank.

The circuit is described in section 5.4.19, Horizontal deflection and line correction. Check for negative going 20ms sync pulses on the base of Q701 to reset the frame ramp, check that the ramp drive is present by examining the voltage across R717, ensure that all the connections to the horizontal yoke are intact and being driven by U701a.

5.3.17 No frame blanking

symptoms: The left hand edge of the screen picture is extra bright where the continuous vertical scan waits for the next frame ramp to commence.

Check that the NFSYNC pulses from the gate array are reaching D713 and thus turnging off Q711 during the flyback period. Ensure that the pulses also turn off U702 via D719 again during the flyback period.

5.3.18 Poor focusing

symptoms: The screen picture has a poor overall focus particularly in the corners of the display.

Check the 400VDC rail from D703 and C719 to R745. Check the connections from R745 to the tube base circuit board, connection A3.

5.3.19 One or more traces not displayed

symptoms: The instrument operates correctly apart from one or more traces, the cursors, alphanumerics or graticule is missing from the display.

Check first that the black level control R734 is correctly set and no selections on the display intensity menu are set to minimum. Follow the missing trace signal from the gate array, U24 on the CPU board to the diode and resistor summing network D701, D715-718, R730 and R755-758. If the data does not leave the gate array then suspect a fault within the gate array itself, which should be replaced after ensuring that all the supplies to it are correct.

5.3.20 Cramping of horizontal lines

symptoms: Some cramping of the horizontal lines occurs at the top and/or the bottom of the screen.

This fault is most likely to be caused by one of the three problems described below.

a) Cramping near the top of the screen may be due to too high a resistance in the vertical deflection current path,

Q716, L701, L702, L704 etc. or not enough linearity correction from L701 which may indicate that one of its permanent magnets is damaged.

b) Cramping at the bottom of the screen may be due to too low a resistance in the vertical deflection path, Q716, L701, L702, L704 etc. or too much linearity correction from L701.

c) If the cramping is only at the extreme top and bottom of the screen, this is most likely to be due to too much S correction because C721 is faulty and has too small a value.

The above three faults can all be caused if too much geometry correction has been attempted using external magnets on the yoke assembly. See section 4.1 item 9.

5.3.21 Cramping of vertical lines

symptoms: Some cramping of the vertical lines occurs at the left and/or the right hand edges of the screen display.

This is due to the horizontal linearity correction not functioning correctly. Check the linearity circuit consisting of U701b, D711, D709, and associated discrete components. The horizontal ramp together with any S correction can be seen by examining the voltage across R717.

5.3.22 Cannot trigger from the EXT source

symptoms: The instrument triggers normally on all selections except EXT.

Check the integrity of the connections from the front panel socket to U3 pin 4. If the signal is reaching the trigger chip (U3), and all the voltages and control lines to it are correct then suspect U3.

5.3.23 HF reject not selectable or always selected

symptoms: It is not possible to trigger on high frequency signals (HF reject permantely on) or it is not possible to reject the high frequency components on the input signal to trigger on the low frequency parts (HF reject not selectable).

Check that U11 pin 31 changes state as the filter is selected. If there is no change suspect U11. If the ouput changes state, check that Q20, Q21 and Q22 are functioning correctly.

5.3.24 No control of the trigger level

symptoms: The trigger level cannot be adjusted and/or the trigger level indicator bars do not move on the display.

The VGEN circuit controls the trigger level and the microprocessor controls the indicator bars, the appropriate part of the instrument should be investigated. If other VGEN functions, vertical shift and variable gain etc. are working then suspect U7d. If none of the VGEN voltage controlled functions appear to work then see the VGEN fault guide, section 5.3.15. If the microprocessor appears to be faulty, check all its data and address lines and the supplies to it. 5.3.25 Trace off the top or bottom of the screen

symptoms: The trace is off the screen as indicated by the arrows and cannot be brought into view using the Y shift control.

Ensure that the signal has not got a large DC component. Switch the input coupling to AC to remove any DC offset from the input and ensure that C1 is actually being switched into the signal path. Check that the Y shift VGEN output is working, see fault 5.3.15. Also check that the emitter voltage of Q322 is approximately 3.5V. If not check D305, R373 and Q322.

5.3.26 Trace 'stepped'

- Symptoms: A smooth continuous trace such as a sinewave appears to be mixed up and has large gaps in it. Alternatively the trace may be made of large clearly visible steps.
- Note: The traces are made up of 256 discrete Y levels and on close examination of the screen the levels can be seen. This is normal for digital storage oscilloscopes and should not be confused with the above problem.

Apply a full screen height sinewave to an input and check that all the data lines are active on the following buses: a) the Y bus to U312, and the gate array U24 b) the data outputs from U306, U308, and U314

c) the memory data bus to U8 and the gate array U24

5.3.27 No Y shift or variable gain

symptoms: Vertical shift and or variable gain does not function on one or both of the input channels.

This is due to a fault in the VGEN circuit. If other VGEN functions, trigger level or vertical shift and variable gain for the other input channel are working then suspect the appropriate buffer amplifier: U6b and U6d for CH1 or U6c and U7b for CH2. If none of the VGEN voltage controlled functions appear to work then see the VGEN fault guide, section 5.3.15

5.3.28 Invert not functioning

symptoms: The invert trace function is not working for either CH1 and or CH2, or if it is working there is a DC shift on the inverted trace even if the input is grounded.

If invert is not functioning at all, then examine the control line output from U11: pin 16 for CH1 and pin 13 for CH2, and check that it goes low when invert is selected. If the control line is activating correctly and reaches pin 1 of the appropriate preamplifier, suspect the preamplifier chip.

If an extra DC offset is present on CH1 or CH2 when invert is selected, check R9 or R22 and their related components as appropriate. **5.3.29** One or more of the attenuator ranges or the input coupling selections is not available.

symptoms: One or more of the attenuator ranges cannot be selected. It is possible to obtain abnormal ranges and possibly the input will be permanently AC, DC or Ground coupled.

If the attenuator read-out on the CRT does not change as the front panel controls are adjusted see fault 5.3.5

The input coupling is selected using relays - for AC RL1 is open and for DC RL1 is closed (see table 5.3.29a) - and the attenuator is controlled in two ways. Firstly through a 50:1 relay switched attenuator and secondly by three control lines into the channel preamp chip. Check first that the correct control signals for the selected range are reaching the preamp chip (see table 5.3.29b), and secondly that the attenuator relay is actuating properly - U11 outputs go low to energise the relays. If both of these are correct, the channel preamp U1/U2 maybe faulty. If the above signals are incorrect, check U11 and the associated pull up resistors N5 or N6 and the diode array N4. Check that the serial bus data and clock into U11 is present and not corrupted.

Coupling	RL1	RL2	RL3	RL4
AC	0	Х	Х	X
DC	1	Х	Х	х
GND	Х	1	0	0

Table 5.3.29a Input coupling settings

1 =Energised, 0 =Not energised, X =Don't care

Range/cm	x0.1	x1.25	x2	x4	RL4	RL2	RL3
GND	Х	Х	Х	X	0	1	0
2mV	0	0	1	0	0	0	1
5mV	0	1	0	1	0	0	1
10mV	0	1	1	1	0	0	1
20mV	1	0	1	0	0	0	1
50mV	1	1	0	1	0	0	I
100mV	1	1	1	1	0	0	1
200mV	0	0	0	1	1	1	0
500mV	0	1	1	1	1	1	0
1 V	1	0	1	0	1	1	0
2V	1	0	0	1	1	1	0
5V	1	1	1	1	1	1	0

Table 5.3.29b Attenuator settings

X = Don't care, 1 = High/Energised, 0 = Low/Not energised

5.3.30 Input coupling not selectable

symptom: AC, DC or GND coupling is fixed and cannot be changed. The LEDs change as the AC/DC/GND switch is pressed. If the LEDs do not change see fault 5.3.5. This could be caused by either C1 or R2 being faulty or because RL1 is not switching or not being switched. (C15, R15 and RL6 for CH2). Check the components for short or open circuit and ensure that the relay is being energised correctly from the output of U11.

5.3.31 No calibrator signal

symptoms: There is no 1KHz signal present on the front panel output points.

Check that the base of Q18 is receiving clock pulses from the gate array, if necessary trace the signal back. Check also the connections to the front panel sockets and that Q18, Q19 and Q17 are actually working and producing a signal.

5.3.32 No Response over RS423

Symptoms: No data or commands can be sent or received via the RS423 interface connection.

Many faults involving the RS423 interface can be traced to incorrect signal connections. Check the setting of SW1 and the interface cable. If there is no obvious error check that SW1 is mechanically sound. If the rest of the unit functions correctly then suspect U22 and U23 and their associated discrete components.

5.3.33 Symptom: Hold All LED flashes on power up

This happens due to a RAM check failure. Check that the RAM U8 is correctly plugged in and that all the data and address lines are connecting with its pins. Check that the buffers U11 and U12 are not corrupting the microprocessor address lines. If everything appears to be correct, change the RAM.

5.3.34 Symptom: Roll LED flashes on power up

This occurs when the Paged ROM is not found. Check that U4 and U3 are in firmly in their correct sockets and that the address and data lines are reaching the pins of the devices.

5.3.35 Symptom: X-Y LED flashes on power up

This is because of a Root ROM check sum failure. This may occur if one of the ROMs has been plugged into the wrong socket ie U3 into U2 socket or if there is a fault on the address or data bus to one of the ROMs

5.3.36 Symptom: Refr LED flashes on power up

This indication occurs if the paged ROM version/data does not match the root ROM. Check that ROMs have not been inadvertently swapped with different issues from another set.

5.4 CIRCUIT DESCRIPTIONS

The following sections of text describe the operation of the individual circuit blocks of the 400. The section numbers used in section 5.3, cross reference the circuits under discussion in the flowcharts with the descriptions here. To find the components on the boards see figures 6.1 - 6.4.

Index of circuit blocks

No.	Function	Page
5.4.1	Input Attenuator	35
5.4.2	Attenuator Relay Control	36
5.4.3	Custom Preamp/Attenuator	36
5.4.4	Voltage Generator (VGEN)	36
5.4.5	-8V Reference Generator	36
5.4.6	Probe Calibrator	36
5.4.7	CCD and Supplies	36
5.4.8	CCD Drivers	37
5.4.9	CCD Correction	37
5.4.10	Vertical ADC	37
5.4.11	100MHz Oscillator	37
5.4.12	Fast Timebase Generator	37
5.4.13	Trigger Sync	38
5.4.14	ETS	38
5.4.15	Acquisition Control and CCD Clock Select	38
5.4.16	Post Trigger Counter and Selection	38
5.4.17	4 Phase Clock Generator	38
5.4.18	Power Supply	38
5.4.19	Video Horizontal Deflection and Line	
	Correction	39
5.4.20	Video Vertical Deflection	39
5.4.21	Video and Brightness Control	40
5.4.22	Front Panel Switches	40
5.4.23	Front Panel LEDs	40
5.4.24	MPU	41
5.4.25	MPU Clock and Phase Lock Loop	41
5.4.26	Battery Back Up	41
5.4.27	Memory (ROM and RAM)	42
5.4.28	Gate Array	42
5.4.29	RS423 Serial Interface	42
5.4.30	Self Calibration Attenuator	46
5.4.31	Tube Base Board	46
5.4.32	Tube Scan Coil Board	46

5.4.1 Input attenuator

The input attenuators N1 and N2 are identical custom resistor networks that provide a 50:1 attenuation for CH1 and CH2 respectively. This attenuation is switched on and off by relays 2, 3 and 4 for CH1, and relays 7, 8, and 9 for CH2.

Measurements

U11 pin 38	0V	range 200mV to 5V/div
U11 pin 38	+5V	range 2mV to 100mV/div
U11 pin 38	+5V	input switched to ground
U11 pin 39	+5V	range 200mV to 5V/div
U11 pin 39	0V	range 2mV to 100mV/div
U11 pin 39	+5V	input switched to ground
U11 pin 40	0V	range 200mV to 5V/div
U11 pin 40	+5V	range 2mV to 100mV
U11 pin 40	+5V	input switched to ground

5.4.2 Attenuator Relay Control

The five relays per channel are switched by the outputs from U11 the serial data decoder/driver. Each relay coil is connected to a separate output and can be individually controlled by the data on the serial bus.

Measurements

U11 pins	0V	R1 energized and contacts
		closed

5.4.3 Custom Preamp/Attenuator

Incoming signals to either channel 1 or channel 2 are handled identically so only channel 1 will be described here. The signal coupling is selected to be either ac or dc by the action of RL1. With RL1 open, C1 the ac coupling capacitor is in circuit and with RL1 closed C1 is by-passed. For further details on the input switching arrangements see table 5.3.29a.

Most of the signal processing is performed by U1 a semicustom chip. The variable dc control levels for U1 come from the VGEN circuit whilst the switched control lines are driven by U11. For details of the state of the switched lines for different gains see table 5.3.29b. Q2 and Q3 are simply the pnp transistors in the gain switching stage of the preamp chip. U1 provides two outputs, one is the signal output to the CCD circuit and the other is a trigger signal which is passed to the trigger circuit (U3). The internal arrangement of U1 can be seen in Fig 6.6.2.

Measurements

VN3	-8V
VN1	-8V
VN2	-8V
VP1	+12V
VP2	+12V
VP3	+12V
VP4	+5V

5.4.4 Voltage Generator (VGEN)

The VGEN circuit produces eight voltages: 2 offset correction, 2 shift and 2 variable gain voltages for the channel preamplifiers, a trigger level control voltage and a reference control voltage.

All 8 voltages are generated from a linear ramp by sampling the ramp through a 1 of 8 multiplexer, U5, with individual sample and holds, U6, U7 and C40 - C47, at times determined by an internal timer/counter in the microprocessor U1 (CPU Board).

The ramp itself is generated by U9c and C50 and reset by Q15 which is driven by Q14 and Q16 from a high going pulse on the VGENRS line. The reference control voltage is compared with the unit's fixed -8V reference by U9d and fed back to the linear ramp generator U9c, thus fixing the calibration of all the VGEN outputs. The appropriate output is selected by the control lines VGEN0,1 and 2, when the multiplex inhibit line is taken low by VGENSP.

Measurements

U5 pin 11	squarewave	e 8ms 5V pk-pk			
U5 pin 10	squarewave	e 16ms 5V pk-pk			
U5 pin 9	squareway	squarewave 32ms 5V pk-pk			
U6b pin 8	0V	trace off top of screen			
U6b pin 8	-4V	trace mid screen			
U6b pin 8	-8V	trace off bottom of screen			
U6d pin 14	0 V	variable gain X1			
U6d pin 14	-7V	variable gain X0.4			
U7c pin 7	-4V	typically			
U7d pin 8	0 V	trigger level maximum			
-		below trace			
U7d pin 8	-4V	trigger level mid trace			
U7d pin 8	-8V	trigger level maximum			
		above trace			
U7a pin 1	-8V				

5.4.5 -8V Reference Voltage Generator

The -8V reference voltage is generated by U9b,D13 and D14, and is set by R61. This voltage can be measured on TP1.

Measurements

U9b pin 5	-6.2V	typically
U9b pin 6	-6.2V	typically
U9b pin 7	-8V	

5.4.6 Probe Calibrator

The 1V 1kHz probe calibration signal is created by U9a, Q17, Q18 and Q19. The output level is set by R56 from the -8V reference voltage and the frequency is controlled by the CAL output from the gate array U24 (CPU Board).

Measurements

U9a pin 2	0V
Q18 base	squarewave 1 kHz 3V pk-pk on 2V
	pedestal
U9a pin 1	+4V

5.4.7 CCD and Supplies

The CCD, U301 obtains its 14.5V power supply and 2.2V bias from a local power supply derived from the +15V rail by U304, Q324 and the associated discrete components. The 14.5V is set by R364 and can be monitored on TP4, and the bias voltage is simply divided from this rail by R366 and R367. All the other supplies to the CCD are decoupled locally

Measurements

U301 pin 4, 12 and 34	-5.6V	typically
U301 pin 24	+0.5V	typically
U301 pin 21	+0.5V	typically
U301 pin 25	+1.8V	typically
U301 pins 2, 3 and 20	+14.5V	

5.4.8 CCD Drivers

The four phase clocks to the CCD are driven by two, two phase clock drivers. Their operation is identical so only one is described here. The clocks from the preceding ECL circuit are differentially terminated by U305b. The resistor, capacitor and inductor network at the front end allows adjustment of the differential delay and termination of FA and FB. The ECL output from U305b drives the differential pair Q301 and Q302, the current source for which is Q303. U302 in conjunction with R310, R309, R308 and R322 compares the average level of the output waveform with half the value of the required output clock pulse amplitude. Feedback to the current source Q303 corrects the output swing, thus removing any drift from this circuit block.

The complimentary followers Q304, Q327 and Q308, Q328 buffer the collector outputs of Q301 and Q302 respectively and directly drive the CCD sample clocks \emptyset AS, \emptyset BS, \emptyset ES and \emptyset FS. Resistors R316 and R328 introduce a small delay to the sample clocks before feeding them, as the transport clocks, to \emptyset AT, \emptyset BT, \emptyset ET and \emptyset FT.

Measurements

U305b pin 2	pulses 1V pk-pk on – 1V pedestal.
	Period dependent on timebase
U305b pin 3	pulses 1V pk−pk on −1V pedestal.
	Period dependent on timebase
Q315 emitter	pulses 12V pk-pk period dependent on
	timebase

5.4.9 CCD Correction

DAC's U307, U309, and U314 are used for offset, gain, and gain offset correction respectively. Data words from RAM are latched from the YBUS on the leading and trailing edges of the COFFSET pulses by U308 and U306. Current from U307 is summed with the CCD output related current at the junction of R376, R396, and R391, thus providing offset correction.

For the gain correction, the CCD output signal varies the VREF input to U309. U309 multiplies the latched digital word, from U308, by its VREF input producing an output which is dependent on the CCD output, which when summed with the CCD output by U311, acts as a gain correction.

The gain correction process produces an offset which needs to be removed and this is achieved by U314 which functions in the same way as U307.

The output of U311 (pin 6) feeds the ADC input (U312 pin 14).

Measurements

U311 pin 3	3V
Q323 base	Multiplexed signal of trace 1 and 2 DC
	level typically 3V with traces at centre of
	screen
U311 pin 6	multiplexed signal of trace 1 and 2
	0V equivalent to centre of screen

5.4.10 Vertical ADC

The ADC (U312) is a full flash converter driven by the ADCCLK line and enabled onto the YBUS by ADCOE. Voltage regulators U310 and U313 provide U312 with the ADC reference voltages.

Measurements

U310 pin 2	+1.2V
U313 pin 2	-1.2V
U312 pin 18	Clock pulses 5V pk-pk

5.4.11 100MHz Oscillator

The basic timing reference within the 400 is a 100MHz oscillator built around U501c and XL501. U501b buffers the clock signal to the fast timebase generator circuit. The MPU can 'Kick' the oscillator and introduce a phase offset via C525 which is in turn kicked from the serial bus via U11 on the preamp and trigger circuit. This prevents absolute phase locking between sampling edges and an external signal on ETS ranges.

Measurements

U501b pin 3 100MHz Clock

5.4.12 Fast Timebase Generator

The fast timebase can be any of six frequencies and is derived from the 100MHz clock as follows: D Type flip flops U502b, U502a and U503b form a divide by 5 counter, which is followed by U503a, a divide by two stage, the output of which is therefore 10MHz. Either this signal or the basic 100MHz then passes through a 1 of 2 Multiplexer formed by U504c and U504d and controlled by FTB1 through a TTL to ECL level translator U509c. U505a and U505b are further divide by two stages whose outputs together with the earlier 1 of 2 multiplexer's 10/100MHz output, are selected by a 1 of 3 multiplexer consisting of U507c, U504a and U504b. FTB2 and FTB3 via U509a and U509b control the selection in this final stage. The resulting fast timebase clock may be monitored on TP2. The control signals required for various clock frequencies arc shown in table 5.4.12.

Timebase	FTB3	FTB2	FTB1	FTB CLK
500ns	1	0	0	100MHz
$1\mu s$	0	0	0	50MHz
2µs	0	1	0	25MHz
5µs	1	0	1	10MHz
10µs	0	0	1	5MHz
20µs	0	1	1	2.5MHz

Table 5.4.12 FTB control settings
Measurements

U501b pin 3	100MHz
U503b pin 15	20MHz
U503a pin 2	10MHz
U504c pin 14 and	
U504d pin 15	10 or 100MHz selected by FTB1
U505a pin 3	5 or 50MHz selected by FTB1
U505b pin 14	2.5 or 25MHz selected by FTB1
TP2	2.5, 5, 10, 25, 50 or 100MHz selected by
	FTB1, FTB2 and FTB3.
	See table 5.4.12.

5.4.13 Trigger Sync

The asynchronous trigger signal from the trigger circuit U3, passes through three D-Type flip flops. First it is latched in U517a, then it is synchronised to the timebase by U517b. Finally, U510a produces a trigger signal synchronised to the timebase, delayed by two timebase periods.

Measurements

U517a pin 3	+ve edge on trigger
U517b pin 15	+ve edge on timebase clock
U510a pin 3	+ve edge sync'd to timebase clock

5.4.14 ETS

The ETS circuit produces a ramp whose final level is a measure of the time difference between a trigger and the next timebase clock. Q501, Q502 and C526 form a fast ramp generator which starts, stops and resets under the control of U514a and U516c. The ramp is started by the latched trigger signal from U517a and stopped by the synchronised trigger output from U517b on the next timebase clock.

Measurements

5.4.15 Acquisition Control and CCD Clock Select

The CCD clock frequency is either 1Mhz or the fast timebase depending on the output from a 1 of 2 multiplexer U507a and U507b which is switched by U509d from the CA line. The rate is dependent on the time per division selected; slower than 50μ s/div uses a CCD clock of 1MHz.

Measurements

U507b pin 7	logic 0	Timebase 50s to 50µs/div
U507b pin 7	logic 1	Timebase $20\mu s$ to $0.1\mu s/div$
U519d pin 15	1MHz clock	Timebase 50s to 50µs/div
U519d pin 15	see FTB	Timebase $20\mu s$ to $0.1\mu s/div$
U519d pin 12	logic 1	Timebase 50s to 50µs/div

5.4.16 Post Trigger Counter and Selection

The post trigger counter stages U511 and U512a are really only the 3 least significant bits of a 16 bit descending counter whose other 13 bits are contained within the gate array. U511b is enabled by the wired OR consisting of U515a, U515c, U515d, and U510a preventing it from counting unless acquisition has been triggered, the appropriate clock is present and the higher bits of the counter have reached zero. U516b detects an all zero condition from the counter and enables U510b thus turning on the 4 phase generator as long as a valid trigger is latched on the output of U517b and the post trigger carry line from the gate array is low.

Measurements

U516b pin 7 negative going pulse 5µs wide 20ms period Timebase 0.2ms/div

5.4.17 4 Phase Clock Generator

The four phase clocks for the CCD are generated by a Johnson counter U506a and U506b from the CCD clock.

Measurements

U506b pin 15	250KHz clock phase A	Timebase 50s to 50µs/div
U506b pin 14	250KHz clock phase B	Timebase 50s to 50µs/div
U506a pin 2	250KHz clock phase C	Timebase 50s to 50µs/div
U506a pin 3	250KHz clock phase D	Timebase 50s to 50µs/div

5.4.18 Power Supply

Mains power applied to the instrument is filtered by the input connector's built in filter. The mains voltage series/ parallel switching also occurs at the input connector. Transformer T601 transforms the mains input to 24Vac, then BR601 and C621 rectify and smooth this to about 26V dc. C621 removes most of the ripple from the DC side of BR601. Prior to BR601 the ac voltage is fed to the trigger chip U3, as the line trigger input, and also to the CPU board as SPSYNC. The regulation of the power supply is performed by U601 a switched mode controller whose sense line monitors the output current via the voltage across the source resistor from Q602. If the sense line rises above 1V, the controller shuts off the output. The soft start circuit raises the sense line above 1V, thus forcing the output to turn off, and then gradually lowers the sense voltage to slowly increase the output.

Measurements

Fig. 5.4.18 Typical Power Supply Waveforms

5.4.19 Video Horizontal Deflection and Line Correction

U701b and C706 form part of a ramp generator. R708 and R709 determine the charging current through C706, however not all the current through the above resistors comes from C706, some is supplied via R701 and R702.

When the right hand end of C706 (PLD5) is positive, U701b pin 3 sinks current through D711, and R702 has 0V at both its ends. Together with R701 and C706 this results in a curved RC ramp being generated instead of the more usual linear ramp from a simple integrator.

When the right hand end of C706 is negative, U701b switches diodes D709 and D711 off and acts as an inverting amplifier with a gain of -2. The gain is set by R712 and R713. Twice the current flows through R702 as can flow in R701. Half the current flows through R701, the other half causes an RC bend to be given to the ramp, but in the opposite direction to the bend caused by R701 when C706 was positive.

The overall result of this circuit is that the current through the horizontal yoke L704a has a slightly 'S' shaped waveform which can be seen by monitoring the voltage across R717. The ramp is reset by Q712 which in turn is switched by Q701 driven from NFSYNC. Capacitor C706 is not reset to 0V, but the maximum negative ramp voltage. When Q712 is on, the voltage on C706 must be negative in order to force the voltage at the junction of R707 and R710 to be 0V. The amplitude and starting level of the ramp are set by R709 and R706 respectively. The horizontal yoke L704a is driven by the power Op-amp U701a, pin 8 of which is a virtual earth, as is U701b pin 5.

Measurements

C702	negative going pulse 4ms wide
	5V pk-pk every 20ms
U701a pin8	positive going pulse 0.2ms wide
	0.5V pk-pk every 20ms
U701a pin 1	positive going 20ms linear ramp
	6V pk-pk centered about 0V First 4ms
	flat with 15V negative pulse at start
R717	positive going 20ms linear ramp 2V
	pk-pk centered about 0V first 4ms flat
U701b pin 3	negative going 20ms linear ramp 3V
	pk-pk and last 7ms flat

5.4.20 Video Vertical Deflection

The vertical defection circuit used in the 400 is a standard television tuned flyback system. T701 the line output transformer (LOPT) is really a tapped inductor which stores and then later releases energy. C722 filters a boost voltage generated during the forward conduction of D705. Two simple halfwave rectifier circuits driven from the flyback pulse generate the required 75V and 400V; D704 and C720 produce 75V whilst D703 and C719 produce 400V. The 8kV EHT voltage comes from a voltage doubler fed from an overwind on the LOPT. Line sync pulses LSYNC from the gate array are delayed by U703 to fix the position of the video relative to the raster, then so long as the display enable line from U702 pin 14 into U703b pin 13 is high, the sync pulses turn on Q715 which then turns on FET Q716 sinking current from +15V through part of T701's primary winding to ground.

When Q716 turns off, its drain voltage rapidly rises to about 350V. C718 and the vertical coils L701, L702 and L704b tune the pulse at this point so that it becomes relatively flat topped and 5μ S wide for efficient rectification. The body diode of Q716 catches the pulse as it swings negative and clamps the drain to just below 0V.

The flyback pulse causes the scan current in L701, L702 and L704b to reverse thereby forcing the sweep to retrace from the top to the bottom of the CRT. C721 is the S correction capacitor which supplies a sinusoidal current phased such that the resultant sweep current waveform is slightly S shaped to compensate for the geometric distortion caused by the flat CRT screen.

When the instrument is first switched on, the soft start circuit Q702, R763 and C714, controlled by NRS pulses reduces the width of the output from U703b which reduces the time that Q716 is on and thus the current drawn, so that when the instrument is powered by a DC power supply, the peak start-up current is substantially reduced.

Measurements	
Q702 base	+5V rises from 0V at switch on
R670	positive going pulse 5V pk-pk 6µs wide every 32µs
U703b pin 10	positive going pulse 5V pk-pk 6μ s wide every 32μ s
Q715 collector	positive going exponential ramp 12V pk-pk
Q716 drain	positive going pulse 325V pk-pk
PLD1	20μs wide every 32μs positive going pulse 230V pk-pk 20μs wide every 32μs

5.4.21 Video and Brightness Control

The video signals on the 400 are strings of pulses which cause dots to be illuminated on the CRT. Alphanumerics (NALPHA), the Graticule (NSCALE), X-Y (NXY), Traces 1, 2 and 3 (NTRACE1,2 and 3) and the cursor (NCURSOR) are all individual negative logic digital video signals. All the traces, X-Y and the cursor are digitally OR'd through diodes D701 and D715-D718 to drive the base of Q705. NALPHA and NSCALE directly drive the bases of Q707 and Q706 respectively. These three transistors are all emitter followers whose emitter current is set by the parallel combination of their emitter resistors (e.g. R720-R722 for Q705); the lower the total resistance the greater the current. The emitter resistors are switched in and out of circuit by U702 which is driven from the CPU board.

The emitters are OR'd by D702, D708 and D710 and then via R703 are resistively OR'd with the video signals from R730 and R755-R758 to the emitter of Q711. As more signals become low, more current is diverted from Q711 emitter. The more current drawn from Q711 the brighter the display becomes.

The minimum brightness of the display is set by adjusting the most positive voltage possible with R734 (Black Level). The amplitude of the video signal from that point is set by R735 (Brightness). From the collector of Q711, Q709 and Q710 form a complimentary emitter follower providing a low impedance video drive to the CRT.

The display is blanked by either the NFSYNC pulse through D713 during the field flyback period, or by the POWER OK line being low. Both events cause Q711 to turn off.

Measurements

U702 pins 2,	
3 and 4	0V or + 5V dependent on brightness setting of graticule
U702 pins 6,	0 0
7 and 8	0V or +5V dependent on brightness setting of alphanumerics
U702 pin 18,	
19 and 20	0V or +5V dependent on brightness setting of traces and cursor
D713/D719	negative going pulses 5V pk-pk 4ms wide every 20ms

Q705 base	negative going blanked trace and cursor
O706 base	signal 5V pk-pk negative going blanked graticule
Q700 base	5V pk-pk
Q707 base	negative going blanked alphanumeric
PLC pin 5	signal 5V pk-pk negative going video signal 20V pk-pk
	on +40V pedestal

5.4.22 Front Panel Switches

All the front panel switches with the exception of the power on/off switch, are made up from a rubber mat with carbon inserts and the front panel PCB with carbon areas screened onto it. There are three kinds of these composite switches: simple single action switches and two kinds of 'push harder go faster' (PHGF) switches.

The single action switches consist of interleaving fingers of carbon on the PCB that are bridged by carbon pads on the rubber mat.

One PHGF switch type has two positions whilst the other is continuously variable. Both PHGF switch types have a carbon dome on the rubber mat that distorts and makes contact over a greater area on the PCB as it is pushed harder.

The PCB carbon area for the two position type consists of two pairs of fingers, the first of which are bridged as soon as the switch is operated and the second pair are bridged when the switch is pressed harder. For the continuously variable PHGF switch, the PCB carbon area is a square whose resistance is paralleled with the carbon dome; the harder the dome is pressed and flattened on to the carbon square, the lower the total resistance.

The variable PHGF switches are used in pairs to produce a voltage at their mid point that varies as either of the pair is pressed, in proportion to the hardness of the press. The voltage output is read by the microprocessor U1 on the CPU board.

The other switches are at the intersections of a grid whose columns are latched onto the memory data bus by U18 on the CPU board. This data is examined every 4ms and when a change is detected, the rows are pulsed from U1 on the front panel to determine the active intersection i.e. the switch that is being pressed.

51/ 1 0 5

Measurements

Key Row	positive going 5V pulse 0.5ms wide when a key is pressed		
Analog signals	+2V	no PHGF switch pressed	
Analog signals	+3V	appropriate 'up' PHGF	
Analog signals	+1V	switch pressed appropriate 'down' PHGP switch pressed	

...

5.4.23 Front Panel LEDs

The front panel LEDs are driven by the two drivers, U1 and U2 which are controlled by the microprocessor. The scrial data input is latched and held by the drivers. See table 5.4.23. The brightness of the LEDs connected to U1 may be varied by adjusting R12, similarly R13 varies U2's LEDs.

LED No.	Function	Device -Pin No.	LED No.	Function	Device -Pin No.
D1	Pos	U1-11	D21	CH2 Uncal	U1-26
D2	Mag	U1-25	D22	CH2 AC	U2-18
D3	Datum	U1-18	D23	CH2 DC	U2-19
D4			D24	CH2 Gnd	U2-20
D5	Power On	+5V	D25	CH2 Off	U2-3
D6	Refresh	U1-37	D26	CH2 On	U2-2
D7	Roll	U1-36	D27	CH2 Inv	U2-1
D8	X-Y	U1-35	D28	Triggered	Q9
D9	Armed	U1-34	D29	Trigger Normal	U1-13
D10	Stored	U1-33	D30	Trigger Auto	U1-30
D11	Hold All	U1-38	D31	Trigger Slope +	U1-28
D12	Hold CH1	U1-39	D32	Trigger Slope -	U1-31
D13	Hold CH2	U1-40	D33	Trigger Reject	U1-27
D14	CH1 Uncal	U1-16	D34	Trigger AC	U1-29
D15	CH1 AC	U2-14	D35	Trigger DC	U1-2
D16	CH1 DC	U2-16	D36	Trigger CH1	U1-15
D17	CH1 Gnd	U2-17	D37	Trigger CH2	U1-14
D18	CH1 Off	U2-8	D38	Trigger Ext	U1-12
D19	CH1 On	U2-7	D39	Trigger Line	U1-3
D20	CH1 Inv	U2-6	D40	Trigger HF	U1-24

Table 5.4.23 LED Functions

Measurements

U1 LED Drives	+3V	Typically with LED Off
U1 LED Drives	+1.5V	Typically with LED On
U1 pin 19	+4V	Typically

5.4.24 MPU

The MPU U1 is an 8 bit microcomputer with on-chip peripherals consisting of an 8 channel 8 bit ADC, an asynchronous serial interface, a synchronous 3 wire interface, a free running 16 bit timer system offering input capture and output compare lines, real time interrupt, an 8 bit pulse accumulator to count external events or measure time periods, and a monitoring system to protect against software failures, loss of system clock and illegal op codes. The MPU runs the system software, monitors the PHGF switches and the value of the ETS ramp via its ADC, and controls the RS423 interface.

Measurements

U1 pin 52	4.1V	typically
Data, address	and control li	nes to U1 are all 0 to 5V signal

5.4.25 MPU Clock and Phase Lock Loop

The MPU acts as slave to the gate array and as such it has to track the gate array timing. The phase lock circuitry, U17 and associated discrete components, phase locks the E clock from the MPU to the E clock generated by the gate array, by using any difference in timing to correct the MPU's 8MHz clock. Resistors R39-44 limit the clock level to below the supply voltage.

Measurements

U17 pin 4	8MHz squarewave
U17 pin 14	2MHz clock
U17 pin 3	2MHz squarewave

5.4.26 Battery Back Up

Power to the internal RAM U8 is supplied in one of two ways. During normal operation of the instrument, +5V is applied via Q2. During power down, B1 takes on the task of maintaining the supply to the RAM via D5. The battery is trickle charged from the +5V rail through Q2 and R34. Any interruption to the power supply is detected on the PWROK line which forces an NMI to the MPU which in turn sends out a pulse to Q1 which disables the RAM putting it in its standby mode thus preventing corrupted data to be written to it, and also turns on Q3, discharging C31. Once the supply has fallen below the battery voltage, B1 begins to supply current to the RAM.

When power is restored, the reset line to the gate array is held low by U21a and U21d until the voltage on C31 crosses the threshold of the input to U21a.

Measurements

Q2 emitter	+4.6V	Power on
Q2 emitter	+4.0V	Power off
Q3 collector	$0\mathbf{V}$	Power off
Q3 collector	+4V	rises from 0V in approx-
		imately 2 secs when
		instrument switched on
Q1 collector	+4V	Power off
Q1 collector	$0\mathbf{V}$	falls from +4V
		approximately 1 sec after
		switch on

PS3	PS2	PS1	PS0	U2/CS	U3/CS	U4/CS	ROMA14	ROMA15	Page
0	0	0	0	0	1	1	1	1	В
0	0	0	1	0	1	1	0	1	Α
0	0	1	0	0	1	1	1	0	9
0	0	1	1	0	1	1	0	0	8
0	1	0	0	1	0	1	1	1	3
0	1	0	1	1	0	1	0	1	2
0	1	1	0	1	0	1	1	0	1
0	1	1	1	1	0	1	0	0	7
1	0	0	0	1	1	0	1	1	Root
1	0	0	1	1	1	0	0	1	6
1	0	1	0	1	1	0	1	0	5
1	0	1	1	1	1	0	0	0	4
Х	х	Х	Х	1	1	0	1	1	Root

Table 5.4.27 Memory Page Selection

5.4.27 Memory (ROM and RAM)

The CPU board contains the instruments memory which consists of 128k bytes of ROM and 32k bytes of RAM. U2, U3, and U4, are ROMs containing the system software and U8 is a RAM which holds all variable data, i.e. the three trace memories, the control set up and the internal calibration data. The MPU only has access to the RAM during phases 0 and 5 of the 10 phase system when the gate array turns on the MPU's tri-state address buffers whilst disabling its own address buffers. All data to and from the RAM goes via the gate array.

The ROMs reside in the upper 32k of the microprocessor address space. The Root ROM occupies the address range C000-FFFF hex (16k), while the Paged ROM occupies the address range 8000-BFFF (16k) with the page port determining which page is selected. See table 5.4.27

5.4.28 Gate Array

U24 is a CMOS gate array containing 10496 gates of which 90% are used. It contains three main areas that handle acquisition timing, memory management and display functions. It operates on a 10 phase system, where each phase controls a certain task, e.g. all microprocessor communications to the RAM and external ports are handled by the gate array during phases 0 and 5. See figure 5.4.28a. The acquisition controller contains a timebase generator, facilities to provide pre and post trigger, digital add, maxmin, an interrupt controller, and a 1kHz generator for the front panel calibration signal. For further details of the acquisition timing see figures 5.4.28b and 5.4.28c.

The memory controller contains an address generator, coordinates the RAM read and write cycles, controls the direct memory access and has control of the operation of the various blocks within the gate array.

The display controller contains the XY, alphanumeric, graticule, cursor, and trace generators.

5.4.29 RS423 Serial Interface

The RS423 output is controlled by the MPU U1 and will also work as an RS232 interface using a limited number of handshake lines. It can be configured as either Data Terminal Equipment (DTE) or Data Communication Equipment (DCE) according to the settings of SW1, see table 5.4.29 below and the operators manual for further details.

Measurements

U22 pin 22	±4V data	Instrument plotting
		No load connected
U22 pin 7	+5V	Instrument plotting
-		No load connected

Pin No.	SW1 No.	Signal	DTE Direction	Switch Setting	Signal	DCE Direction	Switch Setting
2	А	RX	Input	1 to 2 (up)	TX	Output	2 to 3 (down)
3	В	TX	Output	4 to 5 (up)	RX	Input	5 to 6 (down)
4	С	RTS	Output	11 to 12 (down)	CTS	Input	10 to 11 (up)
5	D	CTS	Input	8 to 9 (down)	RTS	Output	7 to 8 (up)

Table 5.4.29 RS423 Connections

Fig. 5.4.28a Gate Array 10 Phase Timing

400 Service Manual

Fig. 5.4.28b Acquisition timing (fast)

Servicing

400 Service Manual

Servicing

5

Fig. 5.4.28c Acquisition timing (slow)

5.4.30 Self Calibration Attenuator

As part of the power up automatic set-up procedure both input channels are self calibrated using the voltages produced by N3 a precision attenuator network. N3 divides the -8V reference voltage from the reference voltage generator and presents six stable voltages to U10. U10 is a 1 of 8 multiplexer driven from U11 which is in turn driven by the microprocessor.

5.4.31 Tube Base Board

This board sits on the base plug of the CRT.

WARNING When the instrument is on, there are voltages up to 400V present on this board. These can be retained for about a minute after power down.

This board brings all the tube control voltages to the CRT base. Measurements can be taken on this board but care should be taken to avoid touching any pins or tracks.

5.4.32 Tube Scan Coil Board

This board is located on the side of the scan coil assembly and brings all the scan signals to the CRT. R820 and R821 from the deflection circuit are mounted on this board.

6.0 CIRCUIT DIAGRAMS AND COMPONENT LISTS

This section contains all the circuit diagrams of the 400 DSO, together with component layouts and mechanical drawings. For ease of component location, each major functional block on the main PCB can be treated as a separate unit. Each of the main circuit blocks shown in figure 6.1 has its component identification numbers commencing with a different group of hundreds as shown below.

up to 200 Preamp and trigger	(figure 6.6)
300+ Acquisition (CCD)	(figure 6.7)
500+ ECL	(figure 6.8)
600+ Power supply	(figure 6.9)
700+ Video and deflection	(figure 6.10)

The relevant parts are shown on the component list preceding the appropriate circuit diagram.

Fig. 6.1.1 Main PCB Circuit Block Location

ņ

400 Service Manual

Circuit Diagrams and Component Lists

Dim		OFSKA	Direction	Pin	Signal Name	Level	Direction
Pin	Signal Name	Level	Direction	F 111	Signarivarile	Level	Direction
SKA1A	YBUS0	CMOS	bi-directional	SKA15A	NSCALE	CMOS	from CPU
SKA1B	YBUS1	CMOS	bi-directional	SKA15B	VGEN2	CMOS	from CPU
SKA1C	YBUS2	CMOS	bi-directional	SKA15C	VGEN1	CMOS	from CPU
SKA2A	YBUS3	CMOS	bi-directional	SKA16A	NALPHA	CMOS	from CPU
SKA2B	YBUS4	CMOS	bi-directional	SKA16B	NX-Y	CMOS	from CPU
SKA2C	YBUS5	CMOS	bi-directional	SKA16C	VGEN0	CMOS	from CPU
SKA3A	YBUS6	CMOS	bi-directional	SKA17A	NTRACE3	CMOS	from CPU
	YBUS7	CMOS	bi-directional	SKA17B	SP1NDE	CMOS	from CPU
SKA3B						CMOS	
SKA3C	CCDMUX	CMOS	from CPU board	SKA17C	MOSI	CMOS	from CPU
SKA4A	CCDNRE	CMOS	from CPU board	SKA18A	NTRACE2	CMOS	from CPU
SKA4B	CGAIN	CMOS	from CPU board	SAK18B	VRL	CMOS	from CPU
SKA4C	CAL	CMOS	from CPU board	SKA18C	SCK	CMOS	from CPU
SKA5A	+5V power	+5V	to CPU board	SKA19A	NTRACE1	CMOS	from CPU
SKA5B	+5V power	+5V	to CPU board	SKA19B	SPONDE	CMOS	from CPU
SKA5C	+5V power	+5V	to CPU board	SKA19C	VRH	CMOS	from CPU
SKA6A	0V power	$0\mathbf{V}$	to CPU board	SKA20A	NFSYNC	CMOS	from CPU
SKA6B	0V power		to CPU board	SKA20B	CTS	emoo	to CPU bo
			to CPU board	SKA20D	GND	$0\mathbf{V}$	to CPU be
SKA6C	0V power	0 •	to CPO board	SKA20C	GND	0 v	lo Cr O D
SKA7A	0V power	$0\mathbf{V}$	to CPU board	SKA21A	LSYNC	CMOS	from CPU
SKA7B	0V power	$0\mathbf{V}$	to CPU board	SKA21B	FTRIG	CMOS	from CPU
SKA7C	0V power	0V	to CPU board	SKA21C	SPSYNC	CMOS	to CPU bo
SKA8A	0V power	$0\mathbf{V}$	to CPU board	SKA22A	+15V power	+15V	to CPU bo
SKA8B	0V power	0V	to CPU board	SKA22B	+15V power	+15V	to CPU bo
SKA8C	0V power	$0\mathbf{V}$	to CPU board	SKA22C	+15V power	+15V	to CPU bo
SKA9A	0V power	0V	to CPU board	SKA23A	-5V power	+5V	to CPU bo
SKA9B	0V power	0V	to CPU board	SKA23B	-5V power	+5V	to CPU bo
SKA9C	0V power		to CPU board	SKA23C	-5V power	+5V	to CPU be
SKA10A	NCURSOR	CMOS	from CPU board	SKA24A	FTB2	CMOS	from CPU
SKA10A	n/c		nom er e board	SKA24B	FTB1	CMOS	from CPU
SKA10D	TXD		from CPU board	SKA24D SKA24C	n/c	4	
CV A 11 A	0V norman	01/	to CPU board	SV 4 25 4	AN7	CMOS	from CPU
SKA11A	0V power	0V	to CPU board	SKA25A			from CPU
SKA11B	0V power	0V	to CPU board	SKA25B	TRIGNEN	CMOS	
SKA11C	0V power	0V	to CPU board	SKA25C	FTB3	CMOS	from CPU
SKA12A	RAMEN	CMOS	to CPU board	SKA26A	FARM	CMOS	from CPU
SKA12B	RXD		to CPU board	SKA26B	CCDPHB	CMOS	to CPU be
SKA12C	RTS		from CPU board	SKA26C	n/c		
SKA13A	n/c			SKA27A	FPTS	CMOS	from CPU
SKA13B	n/c			SKA27B	TRIGD	CMOS	to CPU bo
SKA13C	Trigger LED		front panel via	SKA27C	FACOMP	CMOS	to CPU be
			CPU board	SKA28A	PT0	CMOS	from CPU
	n/c			SKA28B	PT1	CMOS	from CPL
SKA14A							
SKA14A SKA14B	VGENRS	CMOS	from CPU board	SKA28C	PT2	CMOS	from CPU

400 MAIN PCB: PIN OUT OF SKA (Cont)											
Pin	Signal Name	Level	Direction								
SKA29A	COFFSET	CMOS	from CPU board								
SKA29B	ADCCLK	CMOS	from CPU board								
SKA29C	ADCOE	CMOS	from CPU board								
SKA30A	PTCARY	CMOS	from CPU board								
SKA30B	n/c										
SKA30C	MCLK	CMOS	to CPU board								
SKA31A	SLOW	CMOS	from CPU board								
SKA31B	TBCLK	CMOS	from CPU board								
SKA31C	PTCLK	CMOS	to CPU board								
	00000	0.000	CONTRACTOR								
SKA32A	CCD1MHz	CMOS	from CPU board								
SKA32B	CA	CMOS	from CPU board								
SKA32C	CCDPHA	CMOS	to CPU board								

Fig 6.1.2 400 Main PCB: Pin out of SKA

400 MAIN PCB

Fig. 6.2 Component layout main PCB

3

Fig. 6.3 Component layout CPU board

Fig. 6.4 Component layout front panel

Circuit Diagrams and Component Lists

PREAMP AND TRIGGER - PART OF 400 MAIN BOARD

Cir ref	Description	Tol%±	Rating	Grid	Part No.	Cir ref	Description	Tol%±	Rating	Grid	Part No.
RESIS	TORS										
R 1	47R	5	1/8W	N7	43146	R57	1K	1	$\frac{1}{4}W$	N4	455428
R2	3K9	5	1/2W	N7	18557	R58	2K7	1	V_4 W	N4	455438
R3	390K	5	1/2W	M8	18581	R59	10 K	1	$\frac{1}{4}W$	N4	455452
R4	47R	5	½₩	L7	43146	R60	22K	5	1∕8W	P4	44238
R5	51K	1	$\frac{1}{4}W$	M7	455469	R61	10K Pot	20	1∕3W	P3	455938
R6	220R	1	$\frac{1}{4}W$	M7	455412	R62	56R	5	½W	M3	18535
R7	18K	5	1/8W	L7	44237	R63	10K	5	1∕8W	K7	44235
R8	10K	5	1/8W	M 7	44235	R64	10 K	5	¹∕8W	K9	44235
R9	10K Pot	20	1/3W	M6	455938	R65	3K3	5	1∕8 W	L11	43358
R10	33R	5	!∕8W	M 7	43144	R66	10 K	5	1/8W	M1	44235
R11	68R	5	1∕8W	K6	43148	R67	2 K 7	5	1/8W	M2	44230
R12	2R2	5	1∕4W	M3	455961	R68	2K7	5	1∕8W	M2	44230
R13	100R	5	$\frac{1}{8}W$	L5	43150	R69	4K7	5	1/8W	M 1	44232
R14	47R	5	1/8W	N9	43146	R70	220R	1	1/4W	N2	455412
R15	3K9	5	1/2W	N9	18557	R71	240K	2	$\frac{1}{4}W$	N2	38651
R 16	390K	5	$\frac{1}{2}W$	M10	18581	R72	33K	5	1/8W	N2	44240
R17	47R	5	½₩	L9	43146	R73	2K2	5	!∕8W	N2	43357
R18	51K	1	1/4W	M10	455469	R74	1M8	5	$\frac{1}{4}W$	P2	29594
R19	220R	1	1/4W	M10	455412	R75	220K	5	1/8W	P3	44250
R20	18K	5	1/8W	L10	44237	R76	180 R	5	1/8W	M7	43715
R21	10K	5	1/8W	M9	44235	R77	180R	5	1∕8W	M10	43715
R22	10K Pot	20	1/3W	M9	455938	R78	100R	5	1/8W	L5	43150
R23	33R	5	1/8W	M9	43144	R79	100 R	5	1/8W	L5	43150
R24	68R	5	1/8W	K8	43148	R80	220R	1	$\frac{1}{4}W$	K6	455412
R25	12R	5	1/2W	M4	18527	R81	220R	1	1/4W	K9	455412
R26	91 K	2	1⁄4W	P10	38641	R82	10K Pot	20	1/3W	M7	455938
R27	9K1	1	1⁄4W	N11	455451	R83	10K Pot	20	1/3W	M9	455938
R28	100R	5	1/8W	K11	43150						
R29	1K2	5	1/8W	K10	44227	RESIST	OR NETWORKS				
R30	680R	5	1/8W	K11	44224	N1	50:1 Attenuato	r		M7	456226
R31	15R	5	1/8W	N2	43140	N2	50:1 Attenuato			M10	456226
R32	820R	5	1/8W	LII	44225	N3	Self Cal Netwo			N4	456339
R33	22K	5	1/8 W	L11	44238	N5	$47K \times 8 SIL$	5	1/8W	M6	450602
R34	5K6	5	1/8W	K11	44233	N6	$47K \times 8 SIL$	5	1/8W	L5	450602
R35	100K	5	1/8W	M11	44246	110					
R36	7K5	1	1/4W	M6	455449	CAPAC	ITORS				
R37	100K	5	1/8W	LII	44246	C1	56nF	20	400V	P6	455618
R38	100R	5	1/8W	N11	43150	C2	0.6-3.5pF trim			M7	452015
R39	220R	1	1/4W	NII	455412	C3	0.6-3.5pF trim			M7	452015
R40	220R	1	1/4W	N11	455412	C4	150pF	10	50V	M7	452157
R40	1K	5	1/8W	NII	44226	C5	2.2nF	20	500V	M8	22389
R42	1K 1K	5	1/8W	N10	44226	C6	10uF Tant	20	16V	M7	457212
		-				C7	10uf Tant	20	16V	M7	457212
R43 R44	1K 1M	5 5	1∕8W 1∕8W	N10 K10	44226 44258	C8		+50/-10	25V	M6	32180
R45	22K	5	1/8W	N4	44238	C9		+80/-20	50V	M6	43498
R45 R46	7K5	1	1/4W	M8	455449	C10	2.2pF	+/-0.5pH		K6	452135
R40 R47		5	1/8W	P5	44229	C10	220pF	10	50V	K7	452159
	1K8					C12	10nF	10	50V	K6	452179
R48	10K	5 5	1∕8 W 1∕8W	P4 P5	44235	C12 C13	10uF Tant	20	16V	L10	457212
R49	10K				44235	C13	10uF Tant 10uF Tant	20	16V 16V	L10	457212
R50	100R	5	1/8W	L7	43150						
R51	100R	5	1/8 W	L10	43150	C15	56nF	20	400V	N9 M0	455618
R52	1K	1	1/4W	P4	455428	C16	0.6-3.5pF trim			M9 M0	452015
R53	1K	1	1/4W	P4	455428	C17	0.6-3.5pF trim		501/	M9	452015
R54	7K5	1	1/4W	P4	455449	C18	150pF	10	50V	M9	452157
R55	100R	5	1/8 W	L5	43150	C19	2.2nF	20	500V	M10	22389
R56	1K Pot	20	1∕3 W	P4	455935	C20	10uF Tant	20	16V	M9	457212

PREAMP AND TRIGGER - PART OF 400 MAIN BOARD (Cont)

FREAM											
Cir ref	Description	Tol%±	Rating	Grid	Part No.	Cir ref	Description	Tol%±	Rating	Grid	Part No.
	ITORS (Cont)										
C21	10uF Tant	20	16V	M9	457212	C78	10uF Tant	20	16V	L6	457212
C22	10uF E	+50/-10	25V	M8	32180	C79	10uF Tant	20	16V	L8	457212
C23	100nF	+80/-20	50V	M8	43498	C80	10uF Tant	20	16V	L10	457212
C24	2.2pF	+/-0.5pF	50V	K9	452135	C81	100nF	+80/-20	50V	N6	43498
C25	220pF	10	50V	K9	452159	C82	10uF Tant	20	16V	P7	457212
C26	10nF	10	50V	K8	452179	C83	100nF	+80/-20	50V	P7	43498
C27	6.8pF	+/-1pF	500V	P11	22362	C84	100nF	+80/-20	50V	P8	43498
C28	68pF	10	50V	N11	452153	C85	100nF	+80/-20	50V	K 8	43498
C29	0.22uF	10	100V	K10	44370	C86	100nF	+80/-20	50V	N8	43498
C30	100nF	+80/-20	50V	K11	43498	C87	10uF Tant	20	16V	P9	457212
C31	10uF E	+50-10	25V	N4	32180	C88	100nF	+80/-20	50V	P9	43498
C32	100nF	+80/-20	50V	L11	43498	C89	100nF	+80/-20	50V	P10	43498
			35V	M11	450587	C90	100nF	+80/-20	50V	K10	43498
C33	10uF E	+50/-10				C90	10uF E	+50/-20	25V	P2	32180
C34	10uFE	+50/-10	35V	M11	450587			+ 30/-10	23 V 50V	M11	452179
C35	2.2uFTant	20	35V	P8	35930	C92	10nF				
C36	2.2uFTant	20	35V	P10	35930	C93	100nF	+80/-20	50V	M6	43498
C37	4.7pF	+/-1pF	500V	M7	29649	C94	100nF	+80/-20	50V	M7	43498
C38	1uF Non Pola		50V	M8	455698	C95	2.2uF Tant	20	35V	K 7	35930
C39	10uF E	+50/-10	25V	N3	32180	C96	100nF	+80/-20	50V	M8	43498
C40	10nF	10	50V	M2	452179	C97	100nF	+80/-20	50V	M9	43498
C41	10nF	10	50V	M2	452179	C98	2.2uF Tant	20	35V	K9	35930
C42	10nF	10	50V	M2	452179	C99	2.2uF Tant	20	35V	K10	35930
C43	10nF	10	50V	M2	452179	C100	100nF	+80/-20	50V	M7	43498
C44	10nF	10	50V	N2	452179	C101	100nF	+80/-20	50V	M9	43498
C45	10nF	10	50V	M2	452179	C102	Not fitted				N7
C46	10nF	10	50V	N2	452179	C103	Not fitted				N9
C47	10nF	10	50V	N2	452179	C104	100nF	+80/-20	50V	M 1	43498
C47 C48	470nF	10	63V	P3	39181	C105	100nF	+80/-20	50V	K11	43498
C48 C49	2.2nF	10	50V	M2	452171	C106	100nF	+80/-20	50V	K7	43498
		21/2	63V	N2	35924	C100	100nF	+80/-20	50V	K6	43498
C50	10nF					C107	100nF	+80/-20	50V	K9	43498
C52	47uFE	+50/-10	16V	P3	453376	C108	100nF	+80/-20	50V	K8	43498
C53	4.7pF	+/-1pF	500V	M9	29649	C110	220pF	10	50V	M5	452159
C54	1uF Non Pola		50V	M10	455698	CHO	220pr	10	30 V	NI.5	452159
C55	100nF	+80/-20	50V	K7	43498	DIODES					
C56	100nF	+80/-20	50V	K9	43498	DIODES D1	JPAD50			M7	41814
C57	100nF	+80/-20	50V	K11	43498	1					
C58	10uF Tant	20	16V	K 7	457212	D4	JPAD50	~	(1)0	M9	41814
C59	10uF Tant	20	16V	K9	457212	D5	Zener	5	6V8	K11	33931
C60	10uF Tant	20	16V	N10	457212				400mW		
C61	10uF E	+50/-10	25V	M4	32180	D6	Zener	5	6V8	M7	33931
C62	1.8nF	10	50V	N11	452170				400mW		
C63	47nF	10	50V	N10	457786	D7	Zener	5	6V8	M9	33931
C64	47nF	10	50V	N11	457786				400mW		
C65	2.2uF Tant	20	35V	N6	35930	D8	Zener	5	5V1	KH	33928
C66	2.2uF Tant	20	35V	P7	35930				400mW		
C67	2.2uF Tant 2.2uF Tant			P7		D9	1N4148		75V	L10	23802
		20	35V		35930				150mA		
C68	2.2uF Tant	20	35V	K8	35930	D10	Zener	5	2V7	M3	33921
C69	2.2uFTant	20	35V	N8	35930	2.10		-	400mW		
C70	2.2uF Tant	20	35V	P9	35930	D11	1N4148		75V	N4	23802
C71	2.2uF Tant	20	35V	K10	35930		1134140		150mA	1.1.4	20002
C72	10uF E	+50/-10	25V	L3	32180	D12	1114149		75V	P5	23802
C73	10uF E	+50/-10	25V	M3	32180	D12	1N4148			15	20002
C74	100nF	+80/-20	50V	P2	43498	Dia			150mA	M4	10015
C75	10uF E	+50/-10	25V	N4	32180	D13	Ref Diode	+/-0V	30V2	M4	40045
C76	10uF E	+50/-10	25V	M3	32180						
C77	2.2uF Tant	20	35V	P10	35930	N4	Diode array S	SIL		N6	456614
						-					

400 Service Manual

PREAMP AND TRIGGER - PART OF 400 MAIN BOARD (Cont)

Cir ref	Description Tol	%± Rating	Grid	Part No.		Cir ref	Description	Tol%±	Rating	Grid	Part No.
TRANS	ISTORS					CONNE	CTORS				
Q1	2N5566		M7	457866		SKA	96 Way DIN 4161	2 Type C		F5	453848
Q2	BC557B		M6	44950		SK1	2 way 0.1" locki	ng header		P5	41391
Q3	BC557B		M6	44950		CH1	BNC Socket 50	R			456088
Q4	2N5566		M9	457866		CH2	BNC Socket 50	R			456088
Q5	BC557B		M8	44950		EXT	BNC Socket 50	R			456088
Q6	BC557B		M9	44950							
Q7	MPSH81		L11	457002							
Q8	MPSH81		L11	457002							
Q9	BC547B		K11	44951	1	MISCEL	LANEOUS				
						L1	10uH Choke	10	$\frac{1}{4}W$	K7	455739
Q13	BC457B		M2	44951		L2	10uH Choke	10	$\frac{1}{4}W$	K7	455739
Q14	2N3906		N1	21533		L3	10uH Choke	10	$\frac{1}{4}W$	K9	455739
Q15	U1898		P2	456615	1	L4	10uH Choke	10	$\frac{1}{4}W$	K10	455739
Q16	BC457B		N1	44951		L5	10uH Choke	10	$1/_4$ W	L11	455739
Q17	2N3906		N5	21533							
Q18	2N3906		N4	21533	1	P1	Mini component	carrier so	lder pin x2	M11	36207
Q19	2N3906		N4	21533	1	P2	Mini component	carrier so	Ider pin x2	M11	36207
Q20	BC547B		N11	44951	1	P3	Mini component	carrier so	der pin x2	L10	36207
Q21	BC547B		N11	44951	1	P5	Mini component carrier solder pin x2				36207
Q22	BC547B		N11	44951	1	P6	Mini component				36207
INTEGR	ATED CIRCUITS					P22	Mini component	carrier so	der pin x2	K8	36207
U1	Preamp Semi custom		L6	456617		P23	Mini component				36207
U2	Preamp Semi custom		L8	456617							
U3	Trigger Semi custom		M10	456616	1	RL1	Reed Relay		5V coil	N6	455318
U4	Voltage reg	8V 1.5A	M4	37561	1	RL2	Reed Relay		5V coil	N7	455318
U5	4051		N2	41897	1	RL3	Reed Relay		5V coil	N7	455318
U6	LMC660CN		M3	457206	1	RL4	Reed Relay		5V coil	N8	455318
U7	LMC660CN		N3	457206	1	RL5	Reed Relay		5V coil	L8	455318
U8	Voltage reg	5V 100m.	AM3	40406	1	RL6	Reed Relay		5V coil	N8	455318
U9	LM324		N3	44495	1	RL7	Reed Relay		5V coil	N9	455318
U10	4051		M4	41897	1	RL8	Reed Relay		5V coil	N10	455318
U11	MM5450N		M5	456613		RL9	Reed Relay		5V coil	N10	455318
U12	TL780-12CKC reg	12V 1.5A	M4	456274	1	RL10	Reed Relay		5V coil	L10	455318
U13	Voltage reg	-12V 0.1	AP2	456652			-				
U15	74HC4538		K10	457168	-	ГР1	Wire 0.045" squa	na huasa f	in alota	N3	43355

Fig. 6.6.2 Input Pre-amp chip block diagram

Fig. 6.6.3 Trigger chip block diagram

ACQUISITION AND CCD - PART OF 400 MAIN BOARD

			•••••								
Cir ref	Description	$Tol\%\pm$	Rating	Grid	Part No.	Cir ref	Description	Tol%±	Rating	Grid	Part No.
RESIST	ORS				1						
R301	300R	1	3∕4W	H9	457289	R376	180R	1	1⁄4W	H8	455410
R302	33R	5	1/8W	F7	43144	R377	100R	5	½₩	H10	43150
R303	33R	5	!∕8W	J10	43144	R378	10R	5	1/8W	G10	43138
R304	680R	5	1/8W	J10	44224	R379	10R	5	1/8W	G9	43138
R305	2K2	5	1/8W	H10	43357	R380	180R	1	$\frac{1}{4}W$	G9	455410
R307	2K7	5	1∕8W	H9	44230	R382	180R	1	$\frac{1}{4}W$	F10	455410
R308	47K	1	1/4W	H9	455468	R383	10R	1	ŀ∕₄W	F10	455380
R309	30K	1	1/4W	G10	455463	R384	10R	1	1∕4W	F10	455380
R310	39K	1	1/4W	H10	455466	R385	10K Pot	20	1/3W	J5	455938
R311	120R	5	¹∕8W	J10	43713	R386	2K7	5	1/8W	J5	44230
R312	68R	5	1/8W	H10	43148	R387	10K Pot	20	1/3W	J5	455938
R313	68R	5	1/8W	J10	43148	R388	2K7	5	1/8W	J5	44230
R316	33R	5	½₩	J9	43144	R389	100R	5	1/8W	H8	43150
R317	68R	5	1/8W	J9	43148	R390	470R Pot	20	1/3W	G8	455934
R318	300R	1	3⁄4W	J9	457289	R391	240R	1	1/4W	G9	455413
R321	2K7	5	1/8W	J9	44230	R392	220R	1	$\frac{1}{4}W$	G8	455412
R322	47K	1	$\frac{1}{4}W$	J10	455468	R393	470R	5	1/8W	F7	44222
R324	1K5	5	1/8W	F6	44228	R394	470R	5	1/8W	G9	44222
R325	680R	1	$\frac{1}{4}W$	F6	455425	R395	1K	1	$\frac{1}{4}W$	G9	455428
R328	33R	5	1/8W	J9	43144	R396	680R	1	$\frac{1}{4}W$	G8	455424
R331	300R	1	3⁄4W	H7	457289	R397	3K9	5	1/8W	G7	44231
R332	68R	5	1/8W	J7	43148	R398	3K9	1	$\frac{1}{4}W$	G7	44231
R333	33R	5	1/8W	J6	43144	R400	150R	5	1/8W	K5	43714
R334	680R	5	1∕8W	J6	44224	R401	150R	5	1/8W	K5	43714
R335	2K2	5	1∕8W	J6	43357	R402	150R	5	1/8W	K5	43714
R337	2K7	5	1/8W	H7	44230	R403	150R	5	1/8W	K5	43714
R338	47K	1	$\frac{1}{4}W$	H6	455468	R404	330R	5	1/8W	H6	44220
R339	30K	1	$\frac{1}{4}W$	G7	455463	R405	100R	5	1⁄8W	E7	43150
R340	39K	1	$\frac{1}{4}W$	G6	455466	R406	100R	5	1/8W	E6	43150
R341	120R	5	¹∕8W	J6	43713	R407	100R	5	1∕8W	E6	43150
R342	68R	5	1/8W	J6	43148	R408	100R	5	1∕8W	E6	43150
R343	68R	5	1/8W	J6	43148	R409	100R	5	1/8W	E7	43150
R345	1K	5	¹∕8W	J6	44226	R410	100 R	5	1∕8W	E7	43150
R346	33R	5	¹∕8W	J 7	43144	R411	100R	5	½₩	E7	43150
R348	300R	1	3⁄4W	J7	457289	R412	100R	5	1∕8W	E7	43150
R351	2K7	5	1∕8W	J7	44230	R413	330R	5	1/8W	E7	44220
R352	47K	1	$\frac{1}{4}W$	J6	455468						
R354	10K	5	1/8W	F6	44235	CAPACIT	ORS				
R355	4K7	5	¹∕8W	F6	44232	C301	100nF	20	50V	H8	456932
R358	33R	5	1/8W	J7	43144	C302	100nF	20	50V	H8	456932
R359	150R	5	1/8W	E9	43714	C303	100 n F	20	50V	J8	456932
R360	150R	5	1/8W	E9	43714	C304	1nF	10	50V	H7	452167
R361	2R2		1∕8W	G7	452690	C305	680pF	10	50V	G11	
R362	680R	5	1/8W	F6	44224	C306	1nF	10	50V	G10	452167
R363	1K8	5	1/8W	F6	44229	C307	1nF	10	50V	J7	452167
R364	220R Pot	20	1/3W	G7	455933	C308	1nF	10	50V	H9	452167
R366	1K5	5.	1/8W	K8	44228	C309	10nF	10	50V	J10	452179
R367	240R	1	1⁄4W	K8	455413	C310	10nF	10	50V	J6	452179
R368	1K	5	1/8W	K9	44226	C311	15pF	10	500V	J8	22366
R369	1K	5	1/8W	K9	44226	C312	10pF	10	500V	J8	22364
R370	12K	5	1/8W	K8	43246	C312	1nF	10	50V	J9	452167
R370	12K	5	1/8 W	K8	43246	C314	27pF	10	50V	H8	452148
R372	680R	5	1/4W	G10	28723	C314	680pF	10	50V	H6	452165
R372	470R Pot	20	1/3W	G9	455934	C315	1nF	10	50V	G6	452167
R373	1K5	5	1/8W	G9	433934 44228	C310	47pF	10	50V	F9	452151
	390R	5	1/8 W			C317		10	50V	F9	452151
R375	390K	5	78 W	H8	44221	C318	47pF	10	50 V	1.9	452151

ACQUISITION AND CCD - PART OF 400 MAIN BOARD (Cont)

ACQUI	SITION AND	CCD - PART	OF 400 I	MAIN	BOARD (Cont)							
Cir ref	Description	Tol%+	Rating	Grid	Part No.	Cir ref	Description	Tol	%±	Rating	Grid	Part No.
CAPACI	TORS (Cont)					DIODES						
C319	10nF	10	50V	K 6	452179	D301	Zener	5	5V	1 400mW	K 8	33928
C320	10nF	10	50V	J10	452179	D303	BAT 85 Schottky	0		/ 100mA		454507
C320	10uF Tant	20	16V	G6	457212	D304	BAT 85 Schottky			/ 100mA		454507
C321 C322	47uF E	+50/-10	16V	G6	453376	D305	Zener	5		1 400mW		33928
C322 C323	470FE 100nF	20	50V	H8	456932	D307	Zener	5		1 400mW		33928
C323 C324	100nF	20	50V	J9	456932	D308	1N4148	5		/ 150mA		23802
		+80/-20	50V	J9 J10	43498	D309	1N4148			/ 150mA		23802
C325	100nF	+ 80/-20	50V	J7	456932	D309	1N4148			/150mA		23802
C326	100nF	20	50V	J 7 J 8	456932	D312	1N4148			/ 150mA		23802
C327	100nF		50V	јо Јб	43498	0312	1194140		15	/ ISUIIA	37	25602
C328	100nF	+80/-20				TRANSI	STORE					
C329	100nF	20	50V	J8	456932						цо	24146
C330	4.7uF Tant	20	35V	H8	53249	Q301	2N3904				H9	
C331	4.7uF Tant	20	35V	H8	53249	Q302	2N3904				J9	24146
C332	100nF	20	50V	J8	456932	Q303	2N3904				J9	24146
C333	10uF Tant	20	16V	H6	457212	Q304	MPS2369				H9	36625
C334	100nF	+80/-20	50V	J7	43498	Q308	MPS2369				J9	36625
C335	10pF	10	50V	J6	452143	Q312	2N3904				H7	24146
C336	100nF	+80/-20	50V	H9	43498	Q313	2N3904				J7	24146
C337	100nF	+80/-20	50V	H10	43498	Q314	2N3904				J7	24146
C338	10uF Tant	20	16V	F7	457212	Q315	MPS2369				H7	36625
C339	10uF Tant	20	16V	F7	457212	Q319	MPS2369				J7	36625
C340	47uF E	+50/-10	16V	H11	453376	Q322	BC547B				G10	44951
C341	100nF	+80/-20	50V	F8	43498	Q323	BC547B				H8	44951
C342	18pF	10	50V	G9	452146	Q324	2N3906				F6	21533
C343	10uF Tant	20	16V	F6	457212	Q325	2N3906			,	J7	21533
C344	10nF	10	50V	H8	452179	Q326	2N3906				J 7	21533
C345	10nF	10	50V	G7	452179	Q327	2N3906				H9	21533
C346	10nF Tant	10	16V	F8	457212	Q328	2N3906				J9	21533
C340	100nF	+80/-20	50V	G9	43498	4020						
C348	10nF	10	50V	H7	452179	INTEGR	ATED CIRCUITS					
C348 C349	10nF	10	50V	F7	452179	U301	MS1007A CCD				J8	456619
		10	50V	G9	452179	U302	LF351N				G10	40130
C350	100pF			G9 G7		U302 U303	LF351N				G6	40130
C351	10nF	10	50V		452179	U303 U304	LF351N				F6	40130
C352	100nF	+80/-20	50V	G11	43498							39903
C353	10uF Tant	20	16V	F8	457212	U305	10216				H5	
C354	10uF Tant	20	16V	G9	457212	U306	74HC374				F7	451728
C355	10uF Tant	20	16V	G9	457212	U307	DAC-08AH				G7	450686
C356	100nF	+80/-20	50V	F8	43498	U308	74HC373				F8	452559
C357	10uF Tant	20	16V	F9	457212	U309	DAC-08AH				G8	450686
C358	10uF Tant	20	16V	F8	457212	U310	Variable Reg Pos	i tive	e	100mA	F10	457229
C359	10uF Tant	20	16V	F10	457212	U311	MC34080P				G9	456721
C360	10uF Tant	20	16V	G10	457212	U312	MC10319				F9	457017
C361	10uF Tant	20	16V	F9	457212	U313	Variable Reg Neg	; ati	ve	100mA		455012
C362	100nF	+80/-20	50V	H8	43498	U314	DAC-08AH				G7	450686
C363	100nF	+80/-20	50V	G10	43498							
						CONNEG	PTOPS					
C365	10uF	+50/-10	25V	F10	32180	SKA	96 Way DIN 4161	2 Тч	ne (-	F5	453848
C366	10uF	+50/-10	25V	F10	32180	SKA	50 way Diri 4101	2 i y	per	-	10	-1000 - 10
C367	10nF	10	50V	G9	452179							
C368	100nF	+80/-20	50V	F6	43498	MISCEL	LANEOUS					
C369	100IF 10nF	+80/-20	50V	H6	452179	L301	10uH Choke	10		$\frac{1}{4}W$	H8	455739
C369 C370	1.2-10pF Tri		501	H5	451127	L306	0.27uH Choke	10		1/4W	J5	455738
C370 C371	1.2-10pF Tri			H5	451127	L307	0.27uH Choke	10		1⁄4W	J6	455738
C373	10uFTant	20	16V	H9	457212	L308	0.27uH Choke	10		1⁄4W	J5	455738
	10uF Tant 10nF	10	50V	G5	452179	L309	0.27uH Choke	10		1⁄4W	J5	455738
C374	10111	10	50 4	05	-52177		o.e. arr onore					

ACQUISITION AND CCD - PART OF 400 MAIN BOARD (Cont)

Cir ref	Description	Tol%± Rating	Grid	Part No.	
P300	Mini component solder pin x2	carrier	J8	36207	
P301	Mini component solder pin x2	carrier	J8	36207	
TP4	Wire 0.045"squar brass tin plated	e	G6	43355	

.

Fig. 6.7 Acquisition (CCD) circuit diagram

Circuit Diagrams and Component Lists

Cir ref Tol%± Rating Grid Part No. Cir ref Description Tol%± Rating Grid Part No. Description RESISTORS 1/8W L2 44235 50V 452179 R501 10K 5 C513 10nFCer 10 13 R502 330R 5 1⁄8W L3 44220 C514 10nF Cer 50V K2 452179 10 5 1/8W L3 44220 C515 10nF Cer 50V 452179 R503 330R 10 H2R504 5 1⁄8W M2 44246 C516 10nF Cer 50V 452179 100K 10 H4 5 1/8W F2 44228 10nF Cer 50VR505 1K5 G3 452179 C517 10 R506 10**R** 5 1∕8W L3 43138 C518 10nF Cer 10 50V G2 452179 5 1/8W G4 44222 C519 K2 452179 R507 470R 10nF Cer 10 50V 5 1⁄8W 44254 C520 R508 470K G3 10nF Cer 10 50V G2 452179 44225 5 $1/_{8}W$ 50VR509 820R G2 C521 10nF Cer 10 G2 452179 5 1/8W 44220 R510 330R G4 C522 10nF Cer 10 50V H3 452179 1/6W 44232 F4 R511 4K7 5 C523 10nF Cer 10 50V F4 452179 1∕8W 44238 R512 22K 5 G2 C524 10nF Cer 10 50V H4 452179 5 1/8W 44221 R513 390R F4 C525 1pF Cer +/-0.5pF 50V L2 452131 R514 220R Pot 20 1/3W G4 455933 47pF 21/2 F3 35910 C526 63V 1⁄8W 44243 R515 56K 5 G3 C527 100pF Cer 10 50V K2 452155 5 ½₩ F3 44235 C528 10nFCer 452179 R516 10K 50V F4 10 R517 470R 5 1/8W L3 44222 C529 10nF Cer 10 50V F4 452179 455412 220R 1/4WK2 C530 +80/-2050V 43498 R518 1 100nF F3 455412 R519 220R 1 1⁄4W K3 C531 10uF Tant 16V K2 457212 20 470R 1/8W F4 44222 C532 +80/-2050V13 43498 R520 5 100nF R521 5 1/8W F2 44228 C533 10000uF E 10V G5 457863 1K5 20 $\frac{1}{4}W$ 455412 H3 50V F5 456932 220R C534 100nF 20 R522 -1 R523 1K5 5 1/8W F2 44228 C535 1-2-10pF Trimmer M1 451127 455412 50V $1/_4$ W 10 G3 C536 47pF 452151 R524 220R 1 .11 1⁄8W 44228 R525 1K5 5 F2 43150 1/8W K2 R526 100R 5 DIODES 1⁄8W F2 44228 R527 1K5 5 23802 75V150mA G3 D501 1N4148 1/8W F2 44228 R529 1K5 5 30V100mA F4 454507 D502 BAT85 Schottky 1⁄8W F2 44228 R531 1K5 5 454507 30V100mA F3 D503 BAT85 Schottky RESISTOR NETWORKS 1/8W 453788 5 L4 N501 $560R \times 6$ TRANSISTORS 1/8W 451135 N502 $560R \times 4$ 5 K2 MPS3640 G3 30323 O501 39258 N503 $560R \times 8$ 5 1/8W J2 MPS-H10 or FTR 174 38411 0502 G3 1⁄8W J4 453788 N504 $560R \times 6$ 5 1/8W H3 451135 N505 $560R \times 4$ 5 1⁄8W 451135 INTEGRATED CIRCUITS N506 $560R \times 4$ 5 G4 39903 5 1/8W J3 453788 U501 10216 L2 N507 $560R \times 6$ N508 $560R \times 6$ 5 1⁄8W K4 453788 U502 10231 L3 39247 39247 $1/_{8}W$ U503 L4 N509 $560R \times 4$ 5 K5 451135 10231 39243 N510 $4K7 \times 8$ 5 1⁄8W F2 39255 U504 10102 K2 N511 $1K2 \times 8$ 5 1⁄8W G2 44877 U505 10131 K1 39246 U506 10131 K4 39246 CAPACITORS U507 10102 K4 39243 15pF Cer 10 50V L2 452145 U508 10125 K3 39245 C501 C502 10pF Cer 10 50V L3 452143 U509 10124 H2 44366 10nF Cer 10 50V L2 452179 U510 10231 H3 39247 C503 C504 10nF Cer 10 50VH2 452179 U511 10231 G3 39247 452179 U512 10231 G2 39247 C505 10nF Cer 10 50VK3 C506 10nF Cer 10 50V L3 452179 U513 10124 HI 44366 U514 C507 10nF Cer 50V 452179 10125 G2 39245 10 14 U515 10102 C508 10nF Cer 10 50V K4 452179 H3 39243 U516 10105 C509 10nF Cer 50V J2 452179 G4 452076 10 C510 10nF Cer 10 50V J2 452179 U517 10H131 H4 451817 20 16V J4 457212 U518 LF 351N F3 40130 C511 10uF Tant

ECL CIRCUIT - PART OF 400 MAIN BOARD

C512

10nF Cer

50V

10

J4

452179

U519

10102

K3

400 Service Manual

ECL CIRCUIT - PART OF 400 MAIN BOARD (Cont)

Cir ref	Description	Tol%:	Rating	Grid	Part No.
CONNEC	TORS				
SKA	96 Way DIN 41612	F5	453848		
SKP	25 Way D Type	Right	angle	A5	457618
MISCELL	ANEOUS				
XL501	100MHz Crystal		⊦/-50ppm	L1	457913
L501	0.27uH Choke	10	1/4W	L2	455738
L502	0.27uH Choke	10	!∕4W	L1	455738
P4	Mini component solder pin x2	carrie	r	J5	36207
TP2	Wire 0.045" squar tin plate	K4	43355		
ТР3	Wire 0.045" squar tin plate	e brass		F3	43355

ş

65

POWER SUPPLY - PART OF 400 MAIN BOARD

Cir ref	Description	Tol%±	Rating	Grid	Part No.
RESIST	ORS				
R601	100 K	5	4∕8W	C8	44246
R602	6K8	5 5 5	¹∕8W	C9	43245
R603	47K	5	¹∕8W	C9	44242
R604	10K	5	¹∕8W	D9	44235
R605	4K7	5	¹∕8W	B10	44232
R606	1K5	5	1/4W	B 8	21801
R607	22K	5	1/8W	A9	44238
R608	10R	5	¹∕8W	A9	43138
R609	3K6	1	¼W	C8	455441
R610	1 K	1	¹∕4W	C8	455428
R611	5K6	5	1∕4W	B 8	21806
R612	8M2	5	1/2W 3k	V	452027
R613	8M2	5	1/2W 3k	V	452027
R614	2K2	5	2W	D8	456802
R615	1K	5	1/8W	D9	44226
R616	100 K	5	½₩	B 8	44246
R617	33R	5	V_4W	C10	28712
R618	56K	5	1∕8W	B 7	44243
R619	1K1	1	1∕4W	C8	455429
R620	4K7	5	1/8W	A8	44232
R621	470R Pot	20	1/3W	C8	455934
CAPAC C601	10nF	10	50V	D9	452179
C602	10nF	10	50V	C8	452179
C603	5.6nF	10	50V	C8	452176
C604	100nF	+80/-20	50V	D9	43498
C605	47uF E	+50/-10	16 V	C10	453376
C606	100pF	10	50V	D9	452155
C607	47 uF E	20	25V	C8	457013
C608	10000uF E	20	40V	B 9	457785
C609	10nF	+40/-20	250V	B10	22395
C610	100nF	+80/-20	50V	B 10	43498
C611	470uF		25V	D10	455705
C612	470uF		25V	D10	455705
C613	47uF E	20	25V	D8	457013
C614	1000uF		10V	E10	455702
C615	47uF E	20	25V	D8	457013
C616	1000uF		10V	E11	455702
	47uF E	20	25V	E8	457013
C617					455500
	470uF		25V	D11	455705
C617		20	25V 25V	D11 E8	
C617 C618	470uF	20 10			457013
C617 C618 C619	470uF 47uF E		25V	E8	455705 457013 39199 32188

Cir ref	Description	Tol%±	Rating	Grid	Part No.
DIODES					
D602	MR750		50V 6A	A2	456783
D603	Zener	5 15	/ 400mW	B 8	33939
D605	1N4148	75\	/150mA	D9	23802
D606	MUR405	50\	/4A	C10	456705
D607	EGP20A	50\	/ 2A	D10	456785
D608	SB340 Schottky	40\	/ 3A	C11	456786
D609	EGP20A	501	/2A	D11	456785
D610	1N4148	75	/ 150mA	C8	23802
D611	18923	200	/ .25A	D10	3560
D612	1N4148	75	/150mA	D9	23802
BRIDGE	RECTIFIERS				
BR601	BY225-100	100	/ 5A	A8	451943
DICOUL	D1225-100	100 1	511	AU	451745
TRANS	STORS				
O601	BC547B			C8	44951
Q602	IRF540		100V	A10	456576
Q603	BC547B			C9	44951
4000	2				
INTEGR	ATED CIRCUITS				
U601	UC3843N			D9	456577
CONNE					
PLE	4 Way 0.1" locking			B 8	457892
PLF	0.25" Terminal Bl	ade		B 2	454048
PLG	6 Way 0.1" locking			D8	457893
PLH	2 Way 0.1" locking			D10	41391
PLR1	0.25" Spade Term	inal		A4	456928
PLR2	0.25" Spade Term			A3	456928
SKA	96 Way DIN 4161	2 Type C	2	F5	453848
SKM	IEC Input socket.	, Filter a	nd		
	Fuse Holder				456312
MISCEL	LANEOUS				
FS601	Fuse (see section	17)	0.5A		457452
FS602	Fuse 20mm (see section	/		B3	457979
L601	4.7uH	cetton 1.	2A	D9	457784
L602	4.7uH		2A	D9	457784
L602	4.7uH		2A 2A	E9	457784
L603	4.7uH		2A 2A	E9	457784
L604 L605	4.70H 1uH 5mR		2A 7A	E9 B8	456711
S1	On/Off Switch		/A	D0	456700
51	On/On Switch				450700
T601	Mains Input Tran	sformer	24V		458264
T (02		C		D 11	45((12
T602	Inductor Flyback	Convert	er	B11	456612

Fig. 6.9 Power supply circuit diagram

Circuit Diagrams and Component Lists

VIDEO - PART OF 400 MAIN BOARD

VIDEO	- PART OF 400 MI	AIN BO	ARD								
Cir ref	Description	Tol%±	Rating	Grid	Part No.	Cir ref	Description	Tol% \pm	Rating	Grid	Part No.
RESIST	ORS										
R701	75K	1	1∕4W	C4	455473	R752	33K	5	1∕8W	D4	44240
R702	75K	1	¼W	D4	455473	R753	1R	5	V_4W	D8	457028
R703	390R	5	1/8W	B3	44221	R754	2K2	5	1/8W	A7	43357
R704	1M	5	1/8W	D3	44258	R755	4K7	5	1/8W	E3	44232
R705	82K	5	1∕8W	D5	44245	R756	4K7	5	1/8W	E2	44232
R706	470R Pot	20	⅓W	C3	455934	R757	4K7	5	½₩ 1⁄8₩	E2	44232
R707	1K2	5	1/8W	C3	44227	R758 R759	4K7 1K2	5 5	½8 W 1∕8W	E2 D2	44232 44227
R708	100K	5	¹∕8W	D5	44246	R760	470R	5	1/8W	E4	44227
R709	100K Pot	20	1/3W	C5	455941	R761	4K7	5	1/8W	E3	44232
R710	100R	5	1/8W	C4	43150	R762	10K	5	1/8W	B2	44235
R711	100R	5	¹∕8W	B4	43150	R763	10K	5	½₩	B2	44235
R712	2K	1	1⁄4W	D4	455435	R820	220R	5	1⁄4W		21796
R713	1K	1	1/4W	D4	455428	R821	10K	5	$1/_4 W$		21809
R714	330R	5	1/8W	D5	44220						
R715	100K	5	1/8W	C5	44246	CAPACI	TORS				
R716	390K	5	1/8W	C4	44253	C702	22nF	20	50V	D3	42445
R710	4R7	1	1/4W	C4	457037	C703	100nF	+80/-20	50V	D6	43498
R718	50R Pot	10	1/2W	C2	42155	C704	47uF E	+50/-10	16V	B3	453376
R718	10K	5	1/8W	D2	44235	C705	47uF E	+50/-10	16V	D4	453376
		1	78 ₩ 1⁄4W	C3	44233	C706	470nF	10	63V	C4	39181
R720	3K		י∕4 vv ¹∕8W			C707	100nF	+80/-20	50V	D5	43498
R721	1K5	5		D3	44228	C710	10uF E	+50/-10	25V	E2	32180
R722	750R	1	1/4 W	D3	455425	C711	2.2uF	20 10	100V 50V	B4	452245 452167
R723	2K4	1	1/4W	D3	455437	C712 C714	1nF 2.2nF	10	50 V	B3 B1	452167
R724	1K2	5	1/8W	C3	44227	C714	1nF	10	50V	E3	452167
R725	4K7	5	1/8W	C3	44232	C716	1nF	10	50V	D3	452167
R726	3K	1	1/4 W	C3	455439	C717	2.2nF	10	50V	B6	452171
R727	1K5	5	1/8W	C3	44228	C718	4.7nF	5	400V	B7	457662
R728	750R	1	1⁄4W	C3	455425	C719	0.02uF	+40/-20	500V	B5	53819
R729	2K7	5	1∕8 W	B4	44230	C720	2.2uF	20	100V	C6	452245
R730	10K	5	1/8 W	D2	44235	C721	1uF	10	100V	B 7	37389
R731	4K7	5	1/8W	C3	44232	C722	10 uF	+50/-10	25V	C6	32180
R732	2K2	5	1/8W	C3	43357	C723	470nF	10	63V	D5	39181
R733	2K2	5	1∕8W	C3	43357	C724	10nF	10	50V	C4	452179
R734	100K Pot	20	1/3W	B 4	455941	C725	47uF E	20	25V	E8	457013
R735	2K2 Pot	20	1/3W	B 4	455936						
R736	1K5	5	¹∕8W	B 4	44228	DIODES		751	150	D 2	22002
R737	100 R	5	¹∕8W	B3	43150	D701 D702	1N4148		/ 150mA / 150mA	D2 C3	23802 23802
R738	1K	5	¹⁄8₩	B3	44226	D702 D703	1N4148 BA158		0.5A	C6	456699
R739	1K2	5	1/8W	E2	44227	D703	18923		0.3A 0.2A	C7	430099 3560
R740	1K	5	¹∕8W	E3	44226	D704	UF4004 or	200 4	0.2A	07	5500
R741	10K Pot	20	4∕3 W	D3	455938	0705	MUR140	400V	' 1A	D8	457783
R742	8K2	1	1/4W	E3	455450	D706	1\$923		250mA	D6	3560
R743	47K	5	1/8W	C7	44242	D707	1\$923		250mA	D6	3560
R744	470R	5	1∕8W	B 6	44222	D708	1N4148		′ 150mA	B3	23802
R745	500K Pot	10 ½V	V500V	C5	457012	D709	1N4148	75V	/ 150mA	D5	23802
R746	220R Pot	20	1/3W	D5	455933	D710	1N4148	75V	/ 150mA	B2	. 23802
R747	1K	5	¼8 W	C7	44226	D711	1N4148	75V	/ 150mA	D4	23802
R 748	2K2	5	$\frac{1}{4}W$	B5	21802	D712	Zener	5 5V1	400 mW	E2	33928
R749	27R	5	1/8W	C7	43143	D713	1N4148		′ 150mA		23802
R750	100R	5	¹∕8W	C2	43150	D714	Zener		400mW		33935
R751	150K	5	1/8W	C5	44248	D715	1N4148	75V	150mA	D3	23802

VIDEO - PART OF 400 MAIN BOARD (Cont)

			,	
Cir ref	Description	Tol%± Rating	Grid	Part No.
DIODES	(Cont)			
D716	1N4148	75V 150mA	D2	23802
D717	1N4148	75V 150mA	D2	23802
D718	1N4148	75V 150mA	D2	23802
D719	1N4148	75V 150mA	B3	23802
TRANSIS	STORS			
Q701	BC547B		C5	44951
Q702	2N3906		B2	21533
Q705	BC547B		C3	44951
Q706	BC547B		C3	44951
Q707	BC547B		C3	44951
Q708	BC449		B 4	42131
Q709	BC450		B4	42130
Q710	BC449		B5	42131
Q711	BC449		B 4	42131
Q712	U1898		D4	456615
Q713	2N3906		B 4	21533
Q715	BC547B		B 7	44951
Q716	IRF740	400V 10A	A 7	457787

Cir ref	Description 7	ol%±	Rating	Grid	Part No.				
INTEGR/	TED CIRCUITS								
U701	L272			D4	457205				
U702	MM5481			C2	456696				
U703	74HC4538			E3	457168				
CONNECTORS									
				D5	457710				
PLC	7 way locking heade			B 5	457718				
PLD	5 way locking heade		C4	457717					
SKA	96 Way DIN 41612 T		F5	453848					
SKD	5 way IDC header				456689				
MISCELL	ANEOUS								
L701	Raster Scan Lin Coi	:1		B5	456693				
					100070				
L702	Raster Scan Height	Coil		B6	456692				
L703	Raster Scan Shift								
	Coil 1.6mH 100)mA		C5	458032				
L704	Vertical and Horizo	ontal	Yoke		456690				
L705	10uH Choke 1	0	1⁄4W	B 4	455739				
T701	LOPT			E6	458301				

Fig. 6.10 Video and deflection circuit diagram

400 CPU BOARD

Cir ref	Description	Tol%+	Rating	Grid	Part No.	Cir ref	Description	Tol%±	Rating	Grid	Part No.
				-							
RESIST		-		C 10	11000	C13	22pF	10	50V	C9	452147
R1	1K	5	1/8W	C10	44226	C14	100nF	+80/-20	50V	B9	43498
R2	1K	5	1/8W	B9	44226	C15	22pF	10	50V	C10	452147
R4	10K	5	1/8W	D9	44235	C16 C17	10nF	10	50V	B10	452179
R5	10K	5	1/8W	D9	44235	C17 C18	47uF E	+50/-10 +50/-10	16V 16V	D4	453376
R6	10K	5	1/8W	D9	44235	C18 C19	47uF E		50V	D4 C0	453376
R7	220R	5	1/8W	C9	43359	C19 C20	10nF 2.2nF	10 10	50V 50V	C9	452179
R 8	220R	5	1/8W	D10	43359		2.2nF 100nF			C10	452171
R9	220R	5	1/8 W	D10	43359	C21		+80/-20	50V	C10	43498
R10	470K	5	1/8W	E9	44254	C22 C23	100nF 100nF	+80/-20	50V 50V	C10	43498
R11	220K	5	1/8W	E9	44250	C23 C24	100nF	+80/-20	50V 50V	C10 C10	43498 43498
R12	4K7	5	1/8W	B10	44232	1		+80/-20	50V		
R13	5K6	5	1/8W	B10	44233	C25 C26	100nF 100nF	+80/-20	50V 50V	C10 C10	43498 43498
R14	10K Pot	20	1/3W	B10	455938		100nF	+80/-20	50V		
R15	4K7	5	1/8W	B10	44232	C27		+80/-20		C10	43498
R18	3K3	5	1/8W	D3	43358	C28	10uF E 47E E	+50/-10	25V	B10	32180
R19	680R	5	1/8W	B10	44224	C29	47uF E	20	25V	B9	457013
R21	270R	5	1/8W	B10	43716	C30	10nF 1FTont	10	50V	B9	452179
R22	10K	5	1/8W	A2	44235	C31	luF Tant	20	35V	D3	34895
R23	470K	5	1/8W	C2	44254	C32	1nF	10	50V	C1	452167
R24	10K	5	1/8 W	C10	44235	C33	100nF	+80/-20	50V	D8	43498
R25	33K	5	1/8W	C10	44240	C34	10nF	10	50V	B7	452179
R26	33K	5	1/8W	C10	44240	C35	100pF	10	50V	C8	452155
R27	33K	5	1/8W	C10	44240	C36	10uF Tant	20	10V	C3	52938
R28	33K	5	1/8W	C10	44240	DIODES					
R29	33K	5	!∕8W	C10	44240	D1	Zener	5 4V7	400mW	C2	33927
R30	33K	5	1/8W	C10	44240	D2	1N4148	75V	150mA	E8	23802
R31	33K	5	1/8W	C10	44240	D3	1N4148	75V	150mA	A8	23802
R33	22K	5	1/8W	D9	44238	D4	1N4148	75V	150mA	A9	23802
R34	390R	5	1/8W	D2	44221	D5	1N4148	75V	150mA	C2	23802
R35	4K7	5	¹∕8W	C3	44232	D6	1N4148	75V	150mA	C8	23802
R36	12K	5	1/8W	D9	43246	D7	1N4148	75V	150mA	B 8	23802
R37	4 K 7	5	1/8W	A8	44232	D8	BAT85 Scho	ttky 30V	100mA		454507
R38	4K7	5	1/8W	C3	44232						
R39	4K7	5	1/8W	A9	44232	TRANS	STORS				
R40	560R	5	1/8W	A9	44223	Q1	BC547B			D9	44951
R41	4K7	5	1/8W	B10	44232	Q2	BC547B			C3	44951
R42	560R	5	$\frac{1}{8}W$	C10	44223	Q3	BC547B			E8	44951
R43	4K7	5	1/8W	C10	44232			-			
R44	560R	5	1/8W	C10	44223	1	ATED CIRCUIT			Do	45 (70)
R45	22K	5	¹∕8W	C8	44238	U1	MC68HC11A			B9	456702
RESIST	OR NETWORKS					U2	· ·	RAM not fit	ted)	B5	456704
N1	$2K2 \times 4$ SIL	5	1⁄8W	D10	455593	U3	27C512			B6	456704
						U4	27C512		(70.)	B7	456704
CAPACI			501/	64	450170	U8	$32K \times 8$ Stat	ic RAM	(70ns)	C4	456736
C1	10nF	10	50V	C6	452179	U9	74HC573			A8	456735
C2	10nF	10	50V	B1	452179	U10	74HC138			C7	452561
C3	10nF	10	50V	B8	452179	Ull	74AC541			A4	457221
C4	10nF	10	50V	B5	452179	U12	74AC541			A5	457221
C5	10nF	10	50V	D10	452179	U13	74HC574			D6 D7	455065
C6	10nF	10	50V	B3	452179	U14	74HC574	at fitte 1		D7	455065
C7	10nF	10	50V	D8	452179	U15	74HC574 (N	· · · · ·		D6	455065
C8	10nF	10	50V	C8	452179	U16	74HC365 (N	or inted)		A9 D10	456697
C9	10nF	10	50V	C7	452179	U17	74HC4046			B10	457167
C10	10nF	10	50V	C5	452179	U18	74HC541			D7	455601
C11	10nF	10	50V	D8	452179	U19	74HC00			C5	451956
C12	22pF	10	50V	C9	452147	U20	74HC00			C6	451956

400 CPU BOARD (Cont)

Cir ref	Description	Tol%±	Rating	Grid	Part No.					
INTEGRATED CIRCUITS (Cont)										
U21	74HC14			E9	453961					
U22	26LS29			C8	453501					
U23	26LS32			D10	453502					
U24	400 Gate Array ass	embly		B2	456703					
U25	Voltage Reg	5V	100mA	B9	40406					
SWITCHES										
S1	4 Way change ove	r DIL		E10	457612					

Cir ref	Description	Tol%± Rating	Grid	Part No.						
CONNECTORS										
PLA	96 Way DIN 41612	Type C	E5	453847						
PLB	26 Way Header		D10	43952						
SKD	Not fitted		D5							
MISCELLANEOUS										
B1	NiCad	3V60.1AH	D2	455604						
LK16	Jumper link		D2	453877						
LK16	2 way 0.1" header		D2	457908						

400 Service Manual

GATE ARRAY PINOUT

Pin No.	Description	Pin No.	Description
1	+5V	56	A011
2	TRC1 (NTRACE 1)	57	A010
3	ALPH (NALPHA)	58	A09
4	SCAL (NSCALE)	59	A08
5	0 V	60	$0\mathbf{V}$
6	CURS (NCURSOR)	61	+5V
7	CAL	62	A07
8	COFF (COFFSET)	63	A06
9	NXR1	64	A05
10	CNRE (CCD NRE)	65	A04
11	CMUX (CCD MUX)	66	A03
12	PHA (CCD PHA)	67	A02
13	PHB (CCD PHB)	68	A01
14	CIMI (CCD 1MHz)	69	A00
15	0V	70	0V
16	YI7 (YBUS7)	71	UD7
17	Y16 (YBUS6)	72	UD6
18	YI5 (YBUS5)	72	UD5
19	YI4 (YBUS4)	75	UD4
20	YI3 (YBUS3)	75	0V
20	YI2 (YBUS2)	75	UD3
22		70	UD3 UD2
22	YII (YBUS1) YI0 (YBUS0)	78	
23 24		78 79	UD1
	0V		UD0
25	NXW2	80	0V
26 27	NXW1	81	E
	NXW0	82	NRF
28	NXR0	83	NRS
29	NIRQ	84	
30	+5V	85	
31	0V	86	
32	URNW (R/WB)	87	
33	NEAN	88	ADCK (ADC C
34	TLO (not used)	89	ADOE (ADCO
35	TST3	90	+5V
36	TST1	91	0V
37	TST2	92	SLOW
38	NMOE	93	
39	NMWR	94	CLK (MCLK)
40	0V	95	
41	MD7	96	TBTB (TB CLK)
42	MD6	97	
43	MD5	98	PTK (PT CLK)
44	MD4	99	
45	MD3	100	PTCY (PT CAR
46	MD2	101	PT2
47	MD1	102	PT1
48	MD0	103	TC0 (not used)
49	0 V	104	PT 0
50	UA15	105	CA
51	UA14	106	FAC (FA COMP
52	UA13	107	TC1 (not used)
53	A014	108	FARM
54	A013	109	0V

GATE ARRAY PINOUT (Cont)

Pin No.	Description	Pin No.	Description
111	TC2 (not used)	116	NFS (NF SYNC)
112	TRGD (TRIG.D)	117	X-Y (NX-Y)
113	EXS (SP SYNC)	118	TRC3 (NTRACE 3)
114	LS (L SYNC)	119	TRC2 (NTRACE 2)
115	TC3 (not used)	120	0V

Fig. 6.11.2 Gate Array Pinout

400 FRONT PANEL						
Cir ref	Description	Tol%±	Rating	Grid	Part No.	
RESISTO	ORS					
R 1	1 K	5	1/8W	A3	44226	
R2	1K	5	!∕8W	E3	44226	
R3	22R	5	⅓W	E7	43142	
R11	330R	5	1⁄8W	E7	44220	
R12	4K7 Pot	20	⅓W	A3	455937	
R13	4K7 Pot	20	¼3 W	E3	456284	
R14	1R	5	1/4W	E4	457028	
R15	1R	5	¼W	A2	457028	
NOTE:	All other Resistors	are part	of carbor	n scree	n	
RESIST	OR NETWORKS					
N1	$22K \times 8 SIL$	5	1/8W	E7	457605	
CAPACI		- 0				
C1	47uF E	20	25V	A4	457013	
C2	47uF E	20	25V	D4	457013	
C3	1.5nF	10	50V	A6	452169	
C4	1.5nF	10	50V	A6	452169	
C5	1.5nF	10	50V	A6	452169	
C6	1.5nF	10	50V	A7	452169	
C7	1.5nF	10	50V	A5	452169	
C8	1.5nF	10	50V	A5	452169	
C9	1.5nF	10	50V	A5	452169	
C10	1.5nF	10	50V	A 6	452169	
C13	1.5nF	10	50V	A3	452169	
C13 C14	1.5nF	10	50V	E4	452169	
C14	1.501	10	504	1.4	452105	
DIODES						
D10023	Green Rectangul	arIFD	6mm	E9	455498	
D1 D2	Green Rectangul	arLED	6mm	E9	455498	
D2 D3				E9	455498	
D5	Green Rectangular LED 6mm E9 455498 Green Rectangular LED 6mm E11 455498					
D6	Green Rectangular LED 6mm A5 455498					
D7	Green Rectangular LED 6mm A5 455498					
D8	Green Rectangular LED 6mm A4 45549					
D9	Green Rectangul	A4	455498			
D10	Green Rectangul	A4	455498			
D10	Red Rectangular			A3	455497	
D11 D12	Red Rectangular	455497				
D12 D13	Red Rectangular			A2 A2	455497	
015	D15 Red Redailgular EED olimit 712 100 000					

Cir ref	Description	Tol%±	Rating	Grid	Part No.
D14	Red Rectangular L	ED 6m	m	C5	455497
D15	Green Rectangular	LED 6	mm	D6	455498
D16	Green Rectangular	LED6	mm	D5	455498
D17	Green Rectangular	LED	mm	D5	455498
D18	Red Rectangular L	ED 6m	m	D6	455497
D19	Green Rectangular	LED	mm	D5	455498
D20	Green Rectangular	LED	mm	D5	455498
D21	Red Rectangular L	ED 6m	m	C3	455497
D22	Green Rectangular	r LED 6	mm	D4	455498
D23	Green Rectangular	LED	mm	D4	455498
D24	Green Rectangular	LED 6	mm	D3	455498
D25	Red Rectangular L	ED 6m	m	D4	455497
D26	Green Rectangular			D4	455498
D27	Green Rectangular	r LED 6	mm	D3	455498
D28	Green Rectangular	r LED 6	ómm	C1	455498
D29	Green Rectangular	r LED (ómm	C2	455498
D30	Green Rectangular	r LED (ómm	C2	455498
D31	Green Rectangular	r LED (ómm	D2	455498
D32	Green Rectangular	r LED (ómm	D2	455498
D33	Green Rectangula	r LED (ómm	D2	455498
D34	Green Rectangular	r LED 6	ómm	D2	455498
D35	Green Rectangular	r LED 6	ómm	D2	455498
D36	Green Rectangula	r LED (ómm	D2	455498
D37	Green Rectangula	r LED (ómm	D2	455498
D38	Green Rectangular	r LED 6	ómm	D2	455498
D39	Green Rectangular			D2	455498
D40	Green Rectangula	r LED (ómm	D2	455498
D41	1N4003	200	V 1A	A2	32771
INTEGRATED CIRCUITS					
LII	MM5450N			R4	456613

U1	MM5450N	B4	456613
U2	MM5481	D3	456696

SWITCHES

NOTE: All the switches are formed by part of the carbon screen and the conductive mat,

CONNECTORS

PLC	Part of ribbon cable assy		453751
SKC(U3)	Set of holes in PCB to accept PLC	B6	

.

Fig 6.12 Front panel circuit diagram

400 Service Manual

400 TUBEBASE BOARD

Cir ref	Description	Tol%:	± Rating	Grid Part No.
RESIST	ORS			
R4	10 K	5	1/2W	18552
R5	22K	5	1/2W	18566
R6	22K	5	1/2W	18566
R7	1K5	5	ŀ∕₂W	18552
CONNE	CTORS			
SKC	7 Way IDC Housing			451419
SKC	Terminals			39846
	CRT socket 7 v	vay		456689

Fig 6.13 Tube base circuit diagram

÷,

Fig 6.16 RS423 connections

No	Name	Description
1	0V	Protective Ground
2	RXD	Receive Data
3	TXD	Transmit Data
4	RTS	Request to send
5	CTS	Clear to send
7	0 V	Signal Ground
9	0V	Ground

RS423 Pin Connections

7.0 MECHANICAL COMPONENTS AND EXPLODED VIEWS

-

This section contains mechanical views of the 400 DSO and lists all the mechanical parts not previously shown in the manual.

Com	D		Com	p	
No.	Description	Part No.	No.	Description	Part No
1	Filter	457374	34	Screw No 4 x ¹ / ₄ " pan HD	45576
2	Front ident coverlay	457432	35	Washer M3 wavy	3301
3	Switch cap square on/off	457262	36	Semiconductor retaining clip	45760
4	Front switch coverlay	457431	37	Heatsink – power supply	45760
5	Actuating rod	457436	38	Carrier	45631
6	Tube	456695	39	Main PCB assy	47777
7	Tube mounting corners	457092	40	CPU PCB assy	47776
8	Spring	457390	41	Spacer nylon	45790
9	Front moulding	457055	42	Fan 12v brushless	45670
10	Earthing strip (6 off)	457437	43	Spacer nylon	45787
11	Screw M3 x 8 pan HD	33038	44	Cableform tubebase	45742
12	Tube coils (yoke)	456690	45	Cableform scan coils	45742
13	Screw M3 x 5 pan HD	33036	46	Locknut M6	3302
14	Front panel inner (metal)	457440	47	Wavy washer M6	3301
15	Conductive mat (front pcb)	457066	48	Washer M6	3300
16	Front panel PCB assy	477820	49	Transformer	45826
17	Screen attenuator (main pcb)	457899	50	Screw M6 x 55 button HD	4571
18	Coupling	457789	51	Mains connector	45631
19	Side plate LH	457441	52	Rear moulding	45714
20	Screw No 4 x ³ / ₅ " pan HD	450460	53	Nut M4	3302
21	Switch on/off	456700	54	Rear panel inner (metal)	45760
22	Handle spacer (2 off)	457891	55	Washer M4	3300
23	Handle	457445	56	Screw M4 x 10 pan HD	3304
24	Cross support (cpu)	457443	57	Knurled nut M5	45827
25	Tube base PCB assy	477740	58	Stepped washer M5	45828
26	Washer nylon	26857	59	Case	45743
27	Screw No 4 x ⁵ /16" pan HD	35759	60	Rear warning coverlay	45743
28	Screen BNC (main pcb)	457611	61	Rear socket coverlay	45743
29	Side plate RH	457442	62	Rear rating coverlay	45743
30	Screw M3 x 8 cisk HD	33069	63	Switch cap small light grey (31 off)	4573
31	Screen power supply (main pcb)	457897	64	Switch cap large light grey (16 off)	45709
32	Heatsink CCD	45715	65	Switch cap large dark grey (6 off)	45710
33	Securing clip CCD	456378	66	Switch cap small blue	4573
	0		67	Screw M4 x 16 pan HD	3304
			68	Foot rubber	45744

Fig 7.1 Exploded view

ł

Fig. 7.2 Rear view

Fig 7.3 Calibration adjustment layout

R1 energized and contacts

closed

8.0 SUMMARY OF IN-CIRCUIT MEASUREMENTS

The measurements given below are a compilation of those given in the circuit descriptions, are typical values.

Input Attenuator U11 pin 38 0Vrange 200mV to 5V/div U11 pin 38 +5V range 2mV to 100mV/div +5V U11 pin 38 input switched to ground U11 pin 39 +5V range 200mV to 5V/div $0\mathbf{V}$ U11 pin 39 range 2mV to 100mV/div U11 pin 39 +5V input switched to ground $0\mathbf{V}$ U11 pin 40 range 200mV to 5V/div range 2mV to 100mV U11 pin 40 +5V U11 pin 40 +5Vinput switched to ground

Attenuator control 0V

Custom preamp/attenuator						
VN3	-8V					
VN1	-8V					
VN2	-8V					
VP1	+12V					
VP2	+12V					
VP3	+12V					
VP4	+5V					

VGEN

U9a pin 1

(OLA)		
U5 pin 11	squarewave	8ms 5V pk-pk
U5 pin 10	suarewave 1	6ms 5V pk-pk
U5 pin 9	squarewave	32ms 5V pk-pk
U6b pin 8	0V	trace off top of screen
U6b pin 8	-4V	trace mid screen
U6b pin 8	-8V	trace off bottom of screen
U6d pin 14	0 V	variable gain X1
U6d pin 14	-7V	variable gain X0.4
U7c pin 7	-4V	typically
U7d pin 8	0 V	trigger level maximum
		below trace
U7d pin 8	-4V	trigger level mid trace
U7d pin 8	-8V	trigger level maximum
-		above trace
U7a pin 1	-8V	
-8V reference		
U9b pin 5	-6.2V	typically
U9b pin 6	-6.2V	typically
U9b pin 7	-8V	
-		
Probe calibrator		
U9a pin 2	0 V	
Q18 base	squarewave	1KHz 3V pk-pk on 2V
		pedestal

+4V

CCD and Supplies LI301 pin 4 1

U301 pin 4, 12		
and 34	-5.6V	typically
U301 pin 24	+0.5V	typically
U301 pin 21	+0.5V	typically
U301 pin 25	+1.8V	typically
U301 pins 2, 3		cypically
and 20	+14.5V	
und 20	111.51	
CCD Drivers		
U305b pin 2	pulses 1V n	k-pk on −1V pedestal.
05050 pm 2		endent on timebase
U305b pin 3		k-pk on –1V pedestal.
0.5050 pin 5		endent on timebase
O315 emitter		pk-pk period dependent
Q313 emitter	on timebase	
	on unebase	
CCD Correction		
U311 pin 3	3V	
Q323 base		l signal of trace 1 and 2DC
Q525 0430	level typical	lly 3V with traces at centre
	of screen	ity 5 v with traces at centre
U211 nin 6		laional after as 1 and 2
U311 pin 6		l signal of trace 1 and 2 ent to centre of screen
	ov equivale	ent to centre of screen
Vertical ADc		
U310 pin 2	+1.2V	
U313 pin 2	-1.2V	
U312 pin 18	Clock pulse	s 5V pk-pk
0512 pii 18	Clock pulse	55 v pk-pk
100MHz Oscillato	r	
U501b pin 3	100MHz Cl	ock
Fast Timebase Ge	nerator	
U501b pin 3	100MHz	
U503b pin 15	20MHz	
U503a pin 2	10MHz	
U504c pin 14		
and U504d pin 15	10 or 100M	Hz selected by FTB1
U505a pin 3		selected by FTB1
U505b pin 14		Iz selected by FTB1
TP2		5, 50 or 100MHz selected by
		2 and FTB3
	See table 5.	
Trigger sync		
U517a pin 3	+ve edge of	00
L1517b pin 15	+ve edge ov	n timebase clock

U517b pin 15 +ve edge on timebase clock U510a pin 3 +ve edge sync'd to timebase clock

Acquisition control and CCD clock select

U507b pin 7	logic 0	Timebase 50s to $50 + \mu s/div$	
U507b pin 7	logic 1	Timebase $20\mu s$ to $0.1\mu s/div$	
U519d pin 15	1MHz clock	Timebase 50s to 50µs/div	
U519d pin 15	see FTB	Timebase 20µs to 0.1µs/div	
U519d pin 12	logic 1	Timebase 50s to 50µs/div	

8

Summary of In-Circuit Measurements 8.0

Post	trigger	count	ter
------	---------	-------	-----

U516b pin 7	negative going pulse 5µs wide
	20ms period
	Timebase 0.2 ms/div

4 phase clock generator

U506b pin 15	250 KHz clock phase A	Timebase 50s to 50µs/div
U506b pin 14	250KHz clock phase B	Timebase 50s to 50µs/div
U506a pin 2	250KHz clock phase C	Timebase 50s to 50µs/div
U506a pin 3	250KHz clock phase D	Timebase 50s to 50µs/div

Video Horizontal Deflection

negative going pulse 4ms wide 5V pk-pk every 20ms
positive going pulse 0.2ms wide 0.5V
pk-pk every 20ms
positive going 20ms linear ramp 6V
pk-pk centered about 0V First 4ms flat
with 15V negative pulse at start
positive going 20ms linear ramp 2V
pk-pk centered about 0V first 4ms flat
negative going 20ms linear ramp 3V
pk-pk first 4 and last 7ms flat

Video Vertical Deflection 021

video vertical Deflection			
Q702 base	+5V rises from 0v at switch on		
R670	positive going pulse 5V pk-pk 6μ s wide every 32μ s		
U703b pin 10	positive going pulse 5V pk-pk 6μ s wide every 32μ s		
Q715 collector	positive going exponential ramp 12V pk-pk		
Q716 drain	positive going pulse 325V pk-pk 20µs wide every 32µs		
PLD1	positive going pulse 230V pk-pk 20+s wide every 32μ s		

Video and brightness control

0702 pins 2, 5	
and 4	0V or +5V dependent on brightness
	setting of graticule
U702 pins 6, 7	
and 8	0V or +5V dependent on brightness
	setting of alphanumerics
U702 pins 18, 19	
and 20	0V or +5V dependent on brightness
	setting of traces and cursor
U713/D719	negative going pulses 5V pk-pk 4ms wide
	every 20ms

			-
Q705 base negative going blanked trace and cursor signal 5V pk-pk			
Q706 base	negative go	к-рк ping blanked graticule	-
Q707 base	5V pk-pk	ing blanked alphanumeric	
Q707 base	signal 5V p		
PLC pin 5	negative going video signal 20V pk-pk on +40V pedestal		
Front Panel Swite	-h		
Key Row	positive	going 5V pulse 0.5ms wide when a key	
100,100.0	is pressed	Bounder France on the other of the other	
Analog signals	+2V	no PHGF switch pressed	-
Analog signals	+3V	appropriate 'up' PHGF witch pressed	
Analog signals	+1V	appropriate 'down' PHGF switch pressed	
			~
Front Panel LED	-		
U1 LED Drives	+3V	Typically with LED Off	
U1 LED Drives	+1.5V	Typically with LED On	
U1 pin 19	+4V	Typically	
MPU			
U1 pin 52	4.1V	typically	
Data, address and	d control line	s to U1 are all 0 to 5V signals	
MPU clock and phase locked loop			
U17 pin 4 8MHz squarewave			

U17 pin 4	8MHz squarewave
U17 pin 14	2MHz clock
U17 pin 3	2MHz squarewave

Battery Back up			-
Q2 emitter	+4.6V	Power on	
Q2 emitter	+4.0V	Power off	
Q3 collector	0V	Power off	
Q3 collector	+4V	rises from 0V in	
		approximately 2 secs when	
		instrument switched on	
Q1 collector	+4V	Power off	
Q1 collector	$0\mathbf{V}$	falls from +4V	
		approximately 1 sec after	
		switch on	
			_
Serial interface			
U22 pin 22	±4V data	Instrument plotting	
-		No load connected	
U22 pin 7	+5V data	Instrument plotting	
-		No load connected	

9.0 DEFIN	ITION OF MNEMONICS	K1	Fro
Label	Description	K2	Fre
A0	Memory Address Bus Line 0	K3	Fre
Al	Memory Address Bus Line 1	K4	Fre
A2	Memory Address Bus Line 2	K5	Fre
A3	Memory Address Bus Line 3	K6	Fre
A4	Memory Address Bus Line 4	K7	Fre
A5	Memory Address Bus Line 5	KR0	Fre
A6	Memory Address Bus Line 6	KR1	Fre
A7	Memory Address Bus Line 7	KR2	Fre
A8	Memory Address Bus Line 8	KR3	Fre
A9	Memory Address Bus Line 9	KR4	Fre
A10	Memory Address Bus Line 10	KR5	Fre
A11	Memory Address Bus Line 11	KR6	Fre
A12	Memory Address Bus Line 12	LED	Li
A13	Memory Address Bus Line 13		Li
A14	Memory Address Bus Line 14		Li
ADC	Analogue to Digital Converter	LSYNC	Li
ADCCLK	ADC Clock	MCLK	Ga
ADCOE	ADC Output Enable	MD0	M
AN0	Analogue control line 0 (Trigger Level)	MD1	M
AN1	Analogue control line 1 (Trigger Position)	MD2	M
AN2	Analogue control line 2 (CH2 vertical position)	MD3	M
AN3	Analogue control line 3 (Cursor)	MD4	M
AN4	Analogue control line 4 (CH1 Vertical position)	MD5	M
AN5	Analogue control line 5 (Horizontal Datum)	MD6	M
AN6	Analogue control line 6 (Vertical Datum)	MD7	М
CCD	Charge Coupled Device	MISO	M
CA	Continuous Acquisition	MOSI	M
	CCD multiplex clock	MPU	Μ
CCDNRE	CCD read enable - active low	MUX	M
	CCD correction data clock Phase A	NALPHA	Ne
CCD PHB	CCD correction data clock Phase B	NCURSOR	N
	CCD 1MHZ clock	NSCALE	N
CH1	Channel 1	NFSYNC	N
CH2	Channel 2	NTRACE1	N
CPU	Central processor unit	NTRACE2	N
COFFSET	Correction offset	NTRACE3	N
CRT	Cathode Ray Tube	NXY	N
CTS	RS423 Clear to Send	PCB	Pr
DAC	Digital to Analogue Converter	PHA	C
DIL	Dual in line	PTCARRY	Po
ECL	Emitter coupled logic	PTCLK	Po
ETS	Equivalent time sampling	PT0	Po
EXT	External	PT1	Po
FA	CCD 4 phase clock A	PT2	Po
FB	CCD 4 phase clock B	PWROK	Po
FC	CCD 4 phase clock C	RAM	R
FD	CCD 4 phase clock D	REF	R
FACOMP	Acquisition complete	ROM	R
FARM	Acquisition Armed	RTS	R
FPTS	Fast Post Trigger Counter Strobe	RXD	R
FTB1	Fast timebase control line 1	SCK	Se
FTB2	Fast timebase control line 2	SIL	Si
FTB3	Fast timebase control line 3	SLOW	SI
FTRIG	Forced Trigger	SPSYNC	Su
HF	High frequency	SP0 NDE	Se
HORZ	Horizontal	SP1 NDE	Se
K0	Front panel switches data column 0	SP2 NDE	Se

K 1	Front panel switches data column 1
K 2	Front panel switches data column 2
K 3	Front panel switches data column 3
K 4	Front panel switches data column 4
\$5	Front panel switches data column 5
ζ6	Front panel switches data column 6
K7	Front panel switches data column 7
KR0	Front panel switches data row 0
KR1	Front panel switches data row 1
KR2	Front panel switches data row 2
KR3	Front panel switches data row 3
KR4	Front panel switches data row 4
KR5	Front panel switches data row 5
KR6	Front panel switches data row 6
LED	Light emitting diode
LIN	Linearity
LOPT	Line output transformer
LSYNC	Line Sync Pulse
MCLK	Gate Array Master Clock
MD0	Memory Data Bus Line 0
MD1	Memory Data Bus Line 1
MD2	Memory Data Bus Line 2
MD3	Memory Data Bus Line 3
MD4	Memory Data Bus Line 4
MD5	Memory Data Bus Line 5
MD6	Memory Data Bus Line 6
MD7	Memory Data Bus Line 7
MISO	Master In Serial Out (MPU)
MOSI	Master Out Serial In (MPU)
MPU	Microprocessor
MUX	Multiplexer
NALPHA	Negative logic video drive (Alpha)
NCURSOR	Negative logic video drive (Cursor and Datums)
NSCALE	Negative logic video drive (Graticule)
NFSYNC	Negative logic Frame sync pulse
NTRACE1	Negative logic video drive (Channel 1)
NTRACE2	Negative logic video drive (Channel 2)
NTRACE3	Negative logic video drive (Reference Trace)
NXY	Negative logic video drive (X-Y)
PCB	Printed circuit board
PHA	CCD clock Phase A
PTCARRY	Post trigger counter carry -active low
PTCLK	Post trigger clock
PT0	Post trigger count line 0
PT1	Post trigger count line 1
PT2	Post trigger count line 2
PWROK	Power supply OK control line
RAM	Random access memory
REF	Reference
ROM	Read only memory
RTS	RS423 Request to send data
RXD	RS423 Receive data
SCK	Serial Clock (3 Wire Bus)
SIL	Single in line
SLOW	Slow Timebase Mode
SPSYNC	Supply Sync (Line)
SP0 NDE	Serial Port 0 Data Enable - active low
SP1 NDE	
STINDE	Serial Port 1 Data Enable - active low

85

400 Service Manual

SP3 NDE	Serial Port 3 Data Enable - active low
TBCLK	Timebase Clock
TRIG	Trigger
TRIG'D	Triggered
TRIG NEN	Trigger Enable - active low
TXD	RS423 Transmit Data
UA0	Microprocessor Address Bus Line 0
UA1	Microprocessor Address Bus Line 1
UA2	Microprocessor Address Bus Line 2
UA3	Microprocessor Address Bus Line 3
UA4	Microprocessor Address Bus Line 4
UA5	Microprocessor Address Bus Line 5
UA6	Microprocessor Address Bus Line 6
UA7	Microprocessor Address Bus Line 7
UA8	Microprocessor Address Bus Line 8
UA9	Microprocessor Address Bus Line 9
UA10	Microprocessor Address Bus Line 10
UA11	Microprocessor Address Bus Line 11
UA12	Microprocessor Address Bus Line 12
UA13	Microprocessor Address Bus Line 13
UA14	Microprocessor Address Bus Line 14
UD0	Microprocessor Data Bus Line 0
UD1	Microprocessor Data Bus Line 1
UD2	Microprocessor Data Bus Line 2
	-

UD3	Microprocessor Data Bus Line 3
UD4	Microprocessor Data Bus Line 4
UD5	Microprocessor Data Bus Line 5
UD6	Microprocessor Data Bus Line 6
UD7	Microprocessor Data Bus Line 7
VERT	Vertical
VGEN	Voltage generator
VGEN0	VGEN Address line 0
VGEN1	VGEN Address Line 1
VGEN2	VGEN Address Line 2
VGENRS	Voltage generator ramp reset
VGENSP	Voltage generator select output enable
VREF	Reference Voltage
VRH	Analogue control voltage high from MPU
VRL	Analogue control voltage low from MPU
YBUS0	Y DAC/ADC Data Bus Line 0
YBUS1	Y DAC/ADC Data Bus Line 1
YBUS2	Y DAC/ADC Data Bus Line 2
YBUS3	Y DAC/ADC Data Bus Line 3
YBUS4	Y DAC/ADC Data Bus Line 4
YBUS5	Y DAC/ADC Data Bus Line 5
YBUS6	Y DAC/ADC Data Bus Line 6
YBUS7	Y DAC/ADC Data Bus Line 7

10.0 SERVICE FACILITIES Service Facilities

Gould and its distributors and agents maintain comprehensive after sales facilities and, whether or not it is still under guarantee, the instrument should be returned to the local Gould service center or distributor through whom it was supplied for servicing if this is necessary. The type and serial number of the instrument should always be quoted, together with full details of any fault and service required.

Equipment returned for servicing must be adequately packed, preferably in the box in which the product was

supplied and shipped, with transportation charges prepaid. We accept no responsibility for instruments arriving damaged.

Our Sales and Service Departments and those of approved distributors and agents are ready to assist you at all times.

The Gould Service Department and those of approved distributors and agents can provide maintenance and repair information by telephone or letter, if required.

PRINCIPAL GOULD SERVICE OFFICES

AUSTRIA

Gould Electronics GmbH, Niederlassung Wien, Mauerbachstrasse 24, A-1140 Wien. Telephone (222) 97 25 06. Telex 01-31380.

BELGIUM

Gould Instrument Systems,

Avenue Reine Astrid, 1. 1430 Wauthier-Braine. Telephone 02-366.17.52 Telex 20425 Gould/B.

FRANCE

Gould Electronique,

57 Rue Saint Sauveur, Ballainvilliers, 91160 Longjumeau. Telephone (6) 934-1067. Telex 600824 ALLCO.

Adresse postale: B.P. 115,91162 Longjumeau Cedex.

GERMANY

Gould Instruments, Dieselstrasse 5-7,D-6453 Seligenstadt, Telephone (6182)8010. Telex 4184556.

WL 1 89 43012 1

1 2 3 4 5 6 7 8 9

NETHERLANDS Gould Instrument Systems Netherlands, Computerweg 4, 3606 AT Maarssenbroek. Telephone 030 42 01 42. Telex 70667.

SWITZERLAND

Gould Elektronik AG, Grubenstrasse 56, Ch-8045 Zurich. Telephone 463 2766. Telex 813607.

UNITED KINGDOM

Gould Electronics Ltd., Instrument Systems, Roebuck Road, Hainault, Ilford, Essex IG6 3UE. Telephone 01-500-1000. Telex 263785.

U.S.A

Gould Inc., Recording System Division, 3631 Perkins Avenue, Cleveland, Ohio 44114. Telephone (216) 361-3315. Telex 196 1123 GLD RS UT.

And other Gould Agents and Distributors worldwide.

Manual Part Number 430120