DIGITAL STORAGE OSCILLOSCOPE OS4000

Instruction Manual

Hainault Essex England

Telephone 01-500 1000 Telegrams Attenuate Ilford Telex 263785

Contents

SECTION	1	Introduction	4			ILLUSTRATIONS	
				Fig.	1	Alias Effects	10
SECTION	2	Specification	5	Fig.	2	Block Diagram of Instrument	12
				Fig.	3	Block Diagram of ADC	16
SECTION	3	Operating Instructions	6	Fig.	4	Typical Signal Waveforms (ADC)	17
	3.1	Supplies	6	Fig.	5	Timing Signal Waveforms (ADC)	18
	3.2	C.R.T. Controls	6	Fig.	6	Timing Chart (ADC)	19
	3.3	Y Channel Controls	6	Fig.	7	Logic Block Diagram:	
	3.4	Timebase Controls	6			Refreshed Mode	20
	3.5	Store Controls	7	Fig.	8	Timing Diagram: Refreshed	
	3.6	Alias Effects	8			Mode	21
	3.7	Additional Facilities	9	Fig.	9	Timing Diagram: Address	
	3.8	Functional Checks	9			Sequence	22
				Fig.	10	Logic Block Diagram: Roll Mode	23
SECTION	4	CIRCUIT DESCRIPTION	12	Fig.	11	Timing Diagram: Roll Mode	24
	4.1	System Description	12	Fig.	12	Simplified Control Logic	28
	4.2	Power Supplies	13	Fig.	13	Timebase Block Diagram:	
	4.3	Y Amplifier	14			Normal Mode	30
	4.4	Analogue-Digital Converter	16	Fig.	14	Bottom View	37
	4.5	Store and Control Logic	20	Fig.	15	Righthand View	37
	4.6	Mode Control	27	Fig.	16	Righthand View: Maintenance	
	4.7	Trigger and Timebase	30			Position	38
	4.8	D-A Converter and Dot Joiner	34	Fig.	17	Control Condition Table	40
	4.9	Calibrator	35	Fig.	18	Data Faults	50
				Fig.	19	ADC Waveforms	51
SECTION	5	Maintenance	36	Fig.	20	Circuit Diagram: Power Supplies,	
	5.1	General	36			Y Output and Blanking	57
	5.2	Mechanical Assembly	36	Fig.	21	Circuit Diagram: Pre-amplifiers	59
	5.3	Fault Finding	39	Fig.	22	Circuit Diagram: A-D Converter	63
	5.4	Calibration Procedure	52	Fig.	23	Circuit Diagram : Timing and	
						Store Logic	69
SECTION	6	Circuit Diagrams and		Fig.	24	Citcuit Diagram: Timebase	71
		Component Schedules	55	Fig.	25	Circuit Diagram: D-A Converter	
e						and Dot Joiner	73
SECTION	7	Guarantee and Service Facilities	78	Fig.	26	Interconnection Diagram	75

Introduction

Section 1

The Gould Advance OS4000 Digital Storage Oscilloscope is a versatile instrument which combines conventional 10MHz oscilloscope performance with a digital storage system, capable of storing signals up to 450kHz. The digital method of storage offers several advantages over the more common tube storage, notably the facility of pre-trigger viewing, the simultaneous viewing of a stored and a real-time display, absence of deterioration of the stored display with time, completely flicker free, low frequency performance, and the abolition of the very expensive storage tube.

Careful attention to the ergonomic design allows the OS4000 to be operated in the same way as a conventional

oscilloscope with the addition of the minimum number of additional controls for the storage functions.

APPLICATIONS

The OS4000 is ideally suited for viewing:

- 1. Transient waveforms, e.g. in Medical, dynamic testing, vibration, pulse testing application.
- 2. All LF applications where the 'Refresh' mode eliminates flicker. The slowest sweep speed of 200s maximum allows the instrument to be used for new classes of viewing application.
- 3. Normal (real time) viewing with the 10MHz real time performance.
- 4. Comparisons between stored and real time waveforms.

Specification

Section 2

DISPLAY

8 x 10 cm rectangular CRT operating at 4kV Illuminated graticule

VERTICAL DEFLECTION Two identical input channels

Bandwidth: DC-10MHz in the Normal mode

Sensitivity: 5mV/cm to 20V/cm in 12 ranges Uncalibrated fine gain control gives between range sensitivity adjustment

Accuracy: ± 3% in calibrated positions

Input Impedance: IM/28pF

Input Coupling: AC-GND-DC

Maximum Input: 400V DC or pk AC

HORIZONTAL DEFLECTION

Timebase: 1μ s/cm to 20 sec/cm in 23 ranges

Accuracy: ± 3%

X Expansion: Continuously variable from 1X to 10X with calibrated stops at each end

TRIGGER

Source: CH1±, CH2±, Ext±, or line±

Coupling: AC, LF Rej., HF Rej, DC

Sensitivity: Internal 2mm approx., DC-2MHz (1cm at 10MHz) External IV approx. DC-2MHz (5V at 10MHz)

Bright Line: Available on normal operation only

DISPLAY VIA STORE

Store size: 1024 x 8 bits

Vertical Resolution: Approx. 200 for 8cm display, i.e. 25 steps per cm

HORIZONTAL RESOLUTION

Single Trace: Approx. 1000 samples for complete scan (100 samples/cm)

Double Trace Approx. 500 samples for complete scan or Alt. Lock: (50 samples/cm)

Maximum Sample Rate: 1.8MHz (0.55µs)

FASTEST RISE TIME

For step response: 0.55µs single trace 1.1µs dual trace or Alt. Lock (Equivalent Bandwidth 600kHz and 300kHz)

Maximum Storage 450kHz single trace

Frequency – 3 db: 225kHz dual trace or Alt. Lock

Limited Store: For timebase speeds faster than $50\mu s/cm$ the number of samples per cm is reduced in proportion to the sweep rate. For speeds slower than $50\mu s/cm$ the maximum stored bandwidth is reduced in proportion to the sweep rate

Dot Joining: The expanded display appears as straight lines joining consecutive samples rather than as distinct dots

ACCESSORIES SUPPLIED

Handbook PN 36240 2 x Lead PL44 BNC-clip 2 x Lead PL43 BNC-BNC

- Supplies: 115V, 220V, 240V ± 10% 45-400Hz, 55W
- Size: $17.8 \times 31.2 \times 41.7 (7'' \times 12\frac{3}{8}'' \times 16\frac{5}{2}'')$
- Weight: Approx. 11 kg (24¹/₄ lb)

Temperature Range: Operating 0 to 50°C Full spec. 15 to 35°C

OPTION 4001

This add-on option provides analogue outputs to allow the trace to be recorded on strip chart, X Y or T Yrecorders and digital outputs for further processing of the recorded data. (See data sheet.)