Giga-tronics Sensor Care Training

Giga-tronics Sensor Care Training

- Product Overview
- Making Accurate Measurements
- Sensor Failures at Northrop-Grumman
- Physical Care and Handling
- Questions and Answers

- What are Power Sensors?
 - Devices rectify RF energy to a DC voltage.
 - Diode and Thermal Sensors
 - Giga-tronics uses Diode Sensors
 - All Giga-tronics Sensors are DC Coupled

- Diode Sensor Advantage
 - Thermal sensors respond slowly
 - Fast capable of tracking rapid power changes
 - Measure peak modulated power when designed with proper video bandwidth

- •Square Law region from -70 to -20 dBm
- •Non-linear characteristics from -30 to +20 dBm identified during calibration and corrected during measurement

Giga-tronics Sensor Calibration Techniques

Thermistor used in a patented swept power bridge circuit provides NIST-traceable 90 dB dynamic range

- Connector Types
 - 18 GHz
 - Type N
 - Type K, True RMS and 1 Watt Models only
 - APC 7
 - 26 and 40 GHz
 - Type K

Sensor Specifications

80300A CW Sensor Series

- 10 MHz to 40 GHz (Sensor Dependent)
 - 100 kHz Frequency Range w/ Option 10
- Maximum Power to 50 Watts (47 dBm)
- Continuous Amplitude Signals Only
- Connector Types
 - Type N to 18 GHz
 - Type K to 40 GHz

Sensor Specifications

80350A Peak Sensor Series

- 45 MHz to 40 GHz (Sensor Dependent)
- CW and Pulsed RF Applications
- Rise Time
 - 100 nsec., 75 nsec. typical
 - 50 nsec., 40 nsec. typical with Configuration
 418
- Settling Time 250 nsec. (50% to 3%)
- Sample Delay -20 nsec. to 104 msec.

Sensor Specifications

Modulation Sensor Series

- 10 MHz to 18 GHz
- Video Bandwidths
 - 40 kHz 80400A series
 - -1.5 MHz 80600A series
 - 10 MHz 80700A series
- Connector Types
 - Type N to 18 GHz

Power Measurement Accuracy

Power Measurement Accuracy

- 8 Factors considered when calculating measurement uncertainty:
 - Instrumentation linearity
 - Sensor power linearity
 - Calibrator uncertainty
 - Calibrator/sensor mismatch
 - Calibration factor uncertainty
 - Zero Error
 - Noise
 - Mismatch sensor/source

Sources of Measurement Errors

- Not Zeroing the meter for low power measurements
- VSWR
- Changes in temperature
- Exceeding Sensor Video Bandwidth

Power Measurement Accuracy

Low Power Measurements

- Lowest 15 dB dynamic range
 - "Zero" meter to the source
 - Start from low power setting

Power Measurement Accuracy

Measurement Uncertainty: Noise

- Zero Error
- Meter noise floor
- Significant in the last 15 dB of dynamic range
 - e.g. Noise specification= +/- 50 pW (-73 dBm), Signal measured = -63 dBm (0.5 nW)

Noise Error = 50pW / 0.5 nW = 10% (0.4 dB)

Measurement Uncertainty:

Sensor / Source Mismatch

Exceeding Sensor Video Bandwidth

DC Levels in the RF Path

- All Giga-tronics Sensors are DC coupled
- RF source must not have DC present on output

Maximum Power Ratings

- All Diode Sensors have a maximum rating of +23 dBm (200 mW)
- Rating applies for CW and Peak Levels
- High Power Sensors use
 Attenuators to reduce the power to
 the diode element

Sensor Failure Types:

- Operational/Test
 - Physical Damage
 - Miscellaneous

- Handling Giga-tronics Sensors
 - Inspecting and Cleaning Sensor
 Connectors
 - Making a Proper Connection

Handling Giga-tronics Sensors

- Observe ESD precautions at all times!
- Know the approximate levels being tested
- Do not place sensors in locations where they can be easily dropped
- Never strain sensor body once connected
- Do not leave long sensor cables on the ground

Cleaning Sensor Contacts

- Dirty Connectors
 - Connector Degradation, Measurement
 Repeatability, Accuracy, Connector Life
- Inspect connectors
 - Every 20 connections
 - Inspect sensor and device connectors for signs of damage and wear
 - Dirt and Metal Flakes

Cleaning Sensor Contacts

- Visual Inspection
 - Damage and dirt can significantly degrade repeatability and accuracy
 - Gold plated surfaces are especially sensitive to connector damage
 - Dents, burrs, metal particles, rough spots, and damaged threads
 - Bent or damaged inner conductor
- Never use a damaged connector

Cleaning Sensor Contacts

Visual Inspection

If the connector has the following:

- Deep scratches
- Dents
- Particles clinging to mating plane surfaces
- Uneven wear

Clean connector and re-inspect

Cleaning Sensor Contacts

- First Step
- Compressed Air
 - Filtered
 - Vapor and Oil Free
 - < <60 PSI

High velocity air can generate Electrostatic effects on the connectors

Cleaning Sensor Contacts

- Second Step
- Cotton Swab moistened with Isopropyl Alcohol
 - Clean outer surfaces only
- Do not saturate the swab with Isopropyl Alcohol
- Never make contact with the inner conductor!

Cleaning Sensor Contacts

- Third Step
- Lint free cloth wrapped around an applicator
- Moisten only
- Do not saturate the cloth with Isopropyl Alcohol
- Never make contact with the center

conductor!

Cleaning Sensor Contacts

- Center Conductor
- Use EXTREME caution
- Moisten cloth with Isopropyl Alcohol

Never apply pressure to inner conductor

Cleaning Sensor Contacts

- Don'ts
 - Use Acetone, Methanol or CFC's
 - Overuse Isopropyl Alcohol
 - Wet any plastic parts (dielectrics) in connectors
 - Make contact with the center conductor
 - Use a swab larger than the gap between the inner and outer conductors
 - Blow on a connector

Tightening a Sensor Connector

- Align the sensor connector straight in line with mating device connector
- Turn the Connector Body Only
 - Never turn the sensor body or source connector
 - Gold plating wear
- Hold the sensor stable while connecting and disconnecting the sensor

Tightening a Sensor Connector

- Too much torque will damage a sensor connector
- Use a Torque Wrench whenever possible
- Tighten using thumb and forefinger only
- Recommended Torque
 - − Type N 12 − 15 in-lbs.
 - Type K 8 in-lbs.

Connector Torque

- Never use wrenches or pliers to tighten connector
- Use "Soft Jaw" Pliers and Channel Locks to remove "stuck" connectors only

www.gigatronics.com | 800.726.4442 | support@gigatronics.com