NOTE

This manual documents the Model 9000A-80186 and its assemblies at the revision levels identified in
Section 7. If your instrument contains assemblies with different revision letters, it will be necessary for
you to either update or backdate this manual. Refer to the supplemental change/errata sheet for newer
assemblies, or to the backdating information in Section 7 for older assemblies.

9000A-80186

Interface Pod

Instruction Manual

P/N 737999 FLUKE
JUNE 1985

©1985 John Fluke Mfg Co., Irc., all rights reserved. Litho in U.S.A.

WARRANTY
COVERAGE

Fluke warrants the 9000A-80186 Interface Pod to be free from defects in material and workmanship under
normal use and service for a period of one (1) year and the Pod Cable for ninety (90) days from the date of
shipment. This warranty extends only to the original purchaser and does not apply to any product that has
been misused, altered, or has been subjected to abnormal conditions of operation.

Fluke’s obligations under this warranty is limited to repair or replacement of a product that is returned to an
authorized Service Center within the warranty period, provided that we determine that the product is
defective. If we determine that the failure has been caused by misuse, alteration, or abnormal conditions of
operation, or if the warranty period has expired, we will repair the Pod and bill you for the reasonable repair
cost.

SERVICE

If a failure occurs, send the product, postage prepaid, to the closest Service Center with a description of the
difficulty. Repairs will be made or the product replaced, and it will be returned, transportation prepaid. Fluke
assumes NO risk for damage in transit.

DISCLAIMER

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS,
OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. FLUKE SHALL NOT BE LIABLE FOR AND
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR
OTHERWISE.

GETTING ANSWERS AND ADVICE

To enhance your use of this Pod, Fluke will be happy to answer you questions about applications and use.
Address all correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON
98206, ATTN: Sales Department. European customers should contact FLUKE (Holland) B.V., P.O. BOX 5053,
5004 EB, TILBURG, THE NETHERLANDS.

JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON 98206

9000A-80186

Table of Contents

SECTION TITLE PAGE
1 INTRODUCTION ...ttt ittt it iia et iaaaa s 1-1
1-1. THE PURPOSE OF THE INTERFACEPODc..ovtt 1-1
1-2. PHYSICAL DESCRIPTION OF THEPODc.h. 1-1
1-3. POD SPECIFICATIONS ottt it iin e enenns 1-3
1-4. USING THIS MANUAL .. ittt eieeans 1-3
2 INSTALLATION, SELF TEST, AND GETTING STARTED 2-1
2-1. INTRODUCTION ottt iie et in i eriaanoannsenneens 2-1
2-2. CONNECTING THE POD TO THE TROUBLESHOOTER 2-1
2-3. PERFORMING THEPODSELFTEST ... 2-1
2-4, CONNECTING THEPOD TOTHE UUT ..oty 2-3
2-5. GETTING STARTED ittt ittt e it ene e 2-4
2-6. INErOAUCLION &« vttt ettt ee s e e et iaina s aiaanesnasenoeenns 2-4
2-7. Changing Pod Characteristicsooeeevinnnieaiiicaas 2-5
2-8. Entering the Queue Status Mode by Accident e 2-6
2-9. Preparing for RUN UUT ... 2-7
2-10. Preparing for LEARN ... i 2-7
2-11. Changing the RESET Signalooiiiiiiiiiiiiiiiien, 2-7
2-12. Changing the Transparent Read Addresscooiivenn 2-7
2-13. USINGTHEPOD ...ttt ittt annnn 2-7
2-14. ADDRESSES ..ttt i i e e 2-8
2-15. | FXS oY R0 Ts15 o) + N T 2-8
2-16. UUT AdAIesSES «vvvvivnenrenrnseeraesenesnsnasereessonsenas 2-9
2-27. Pod Function AdGresseS «.vvverreen e ernnnrnoensenencncnos 2-11
2-31. STATUS AND CONTROLLINESo 2-14
2-32. INtrOAUCHION & vttt ve ittt eie e et eaeanrsnsnaossncnnsns 2-14
2-33. StatUuS LiNeS .« v tiiit i it cntt it 2-14
2-42, CONtIOl LINES - vt v iv ittt ie it e n e ainenanaenansensannnnns 2-17
3 INFORMATION ABOUTPOD SIGNALSt 3-1
3-1. INTRODUCTION . tittiirieenetnnnannatiaesassnsennenns 3-1
3-2. MICROPROCESSOR SIGNALSt 3-1
3-3. POD-GENERATED SIGNALSottt 3-1
3-4. INtFOdUCHION v vttt it ie e e e estn et enaanennonsaesannsnenns 3-1
3-5. Psuedo-Status LINES . .vvvverveeneeneenrnernanenrecneennenns 39
3-11. Pseudo-Control LINES . .vuvurerrnerneroneunrenesnnannecnasanns 3-10
3-16. SPECIAL SIGNAL STATES ...ttt aanns 3-10
3-17. POD DRIVE CAPABILITY ...cvtiitiiiiiiiin it iiinneennas 3-11

i (continued on page ii)

9000A-80186

TABLE OF CONTENTS, continued

SECTION TITLE PAGE
4 OPERATING INFORMATIONo, 4-1
4-1. INTRODUCTION ... e 4-1
4A USINGPOD FUNCTIONS ...ttt i, 4A-1
4A-1. INTRODUCTION ..ttt e e 4A-1
4A-2. TESTINGRAM QUICKLY ...ttt 4A-1
4A-3. INtroductionoiii i e 4A-1
4A-4, The Quick RAM Test . ..vvutiiiii e 4A-2
4A-5. The Quick Fill and Quick Verify Functions 4A-6
4A-6. TESTING ROM QUICKLY ...ttt 4A-9
4A-7. USING THE QUICK RAMP FUNCTIONcvvuinnnnnn., 4A-11
4A-8. Introduction e 4A-11
4A-9. Generating Probe Signaturesooveeennneennnnn. .. 4A-13
4A-10. USING THE POD WITH AN OSCILLOSCOPE 4A-13
4A-11. Introductioncooiuii it e 4A-13
4A-12. Using the Quick-Looping Function 4A-14
4A-13. Probe and Scope Synchronization Modes 4A-14
4A-20. TESTING INTERRUPT CIRCUITRYvvviieeinninannnnn., 4A-15
4A-21. Introduction i 4A-15
4A-22. Normal Mode Interrupts e, 4A-16
4A-31. IRMX'Mode Interruptsouuuiiriineinnenenennnnnnn... 4A-19
4A-38. Using the Interrupt-Acknowledge Syncoovvvunennn.. 4A-21
4A-39. TESTING UUT DMA CIRCUITRYoooiiinininnnnnn 4A-21
4A-40. Introduction ... i 4A-21
4A-41. DMA Operations During RUN UUTcc0viuvunn... 4A-22
4A-45. Simulating DMA Accesses for Troubleshooting 4A-23
4A-46. USINGTHERUNUUTMODEcoiiieiiniinannnni.. 4A-23
4A-47. Introductioniuiiii e 4A-23
4A-48. The RUN UUT Entry Addressooviinienneennnnnnnnan.. 4A-23
4A-52. Peripheral Control BIockovuiiieinniennnnnnnnn., 4A-26
4B CONFIGURING THEPODc.iiiiiiiiiiiianii 4B-1
4B-1. INTRODUCTION ...ttt i e 4B-1
4B-2. CONFIGURING CHIP SELECTS ...ttitiee e 4B-1
4B-3. Introduction ...ttt e 4B-1
4B-4. Programming Chip Selectscoiiiinr i, 4B-2
4B-10. CONFIGURING TIMERS ...ttt e 4B-6
4B-11. INtroductionoiuueet it i e e 4B-6
4B-12. CONFIGURING GENERAL POD CHARACTERISTICS 4B-9
4B-13. Introduction i 4B-9
4B-14. Changing the Standby Read Address (ADDRESS F0 0002) 4B-9
4B-15. Enable RESET Output During Reset (ADDRESS F0 0004) 4B-10
4B-16. CONFIGURING INTERRUPTS, DMA, AND RUN UUT
FUNCTIONS e e i 4B-10
4B-17. MASKING ERRORSottt 4B-11
4B-18. Introductionouiiiiiiii i e 4B-11
4B-19. Error Summary Mask (ADDRESS FO0060) 4B-11
4B-20. Control Drivability Error Mask (ADDRESS F0 0062) 4B-12
4B-21. Forcing Line Error Mask (ADDRESS FOO0064) 4B-12
4B-22, Active Interrupt Error Mask (ADDRESS F0 0066) 4B-12

4B-23. Address Segment Drivability Error Mask (ADDRESS F0 0068) ... 4B-13

it (continued on page iii)

TABLE OF CONTENTS, continued

SECTION

TITLE

4B-24. Low Word Address Drivability Error Mask

(ADDRESS FOOO6A) ...ttt iiniaeneennnn
4B-25. Data Drivability Error Mask (ADDRESS F0 006C)
4B-26. INTA and TIMER OUT Error Mask (Address FO 006E)
4B-27. Chip Select Error Mask (Address FO0070)
4B-28. DETERMINING ERRORS cciiiiiiiiiiiinnn.,
4B-29. Introductioncoiiiiiiniiin it
4B-30. Last Error Summary (ADDRESS FO0040)
4B-31. Last Control Errors (ADDRESS FO0042)
4B-32. Last Forcing Line Errors (ADDRESS F00044)
4B-33. Last Active Interrupts (ADDRESS FO0046)
4B-34. Last Segment Drivability Errors (ADDRESS F0 0048)
4B-35. Last Low Word Address Drivability Errors

(ADDRESS FOO04A) . ..oiiiiiitii i
4B-36. Last Data Drivability Errors (ADDRESS F0 004C)
4B-37. Last INTA and TIMER OUT Drivability Errors

(ADDRESS FOOO4E) ... ittt iiiieiinennns
4B-38. Last Chip Select Drivability Errors (ADDRESS F0 0050) ...
4B-39. Last Status (ADDRESS FO0052)covviiiinnt.
THEORY OF OPERATION i,
5-1. INTRODUCTION P
5-2. GENERAL POD OPERATIONot
5-3. Introductionc..ouviiiiiiiiin i iian e
5-4. Processor Sectioniiiiiiiiiiii it
5-5. UUT Interface SECtionceveevnrrreniunensenenens
5-6. Timing and Control Sectionccoviiiiinvennnn.
5-7. UUT Power-Sensing Sectionocveniiiinianenennn.
5-8. DETAILED THEORY OF OPERATION
5-9. Introductionc.oiveiiniiniiiniin it
5-10. Processor Sectionciiiiiiiiiiiiii i
5-11. Timing and Control Sectioncoviiiiiiiin...
5-12. Interface Sectioniiiiiiin it
TROUBLESHOOTINGottt
6-1. INTRODUCTION e
6-2. WARRANTY AND FACTORY SERVICE
6-3. INSPECTING A SHIPMENT ittt
6-4. SHIPPING THE POD TO FLUKE FOR REPAIR OR

ADJUSTMENT ..t ee it e
6-5. GETTING STARTEDcoiiiiiiiiiiii i,
6-6. DETERMINING WHETHER THE POD IS DEFECTIVE OR
INOPERATIVE .. ittt

6-7. TROUBLESHOOTING A DEFECTIVEPOD
6-8. Introductiono.iiiiniiiiniii ittt
6-9. Interpreting the Self Test Failure Codes
6-13. Preparation for Troubleshooting a Defective Pod
6-14. Troubleshooting a Defective Pod
6-16. RECREATING THE STANDARD SELFTEST
6-17. RECREATING THE ENHANCED SELF TEST ROUTINES
6-18. TROUBLESHOOTING AN INOPERATIVE POD
6-19. Introductionc.uiiniiiii i iiiienenenanns

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

9000A-80186

PAGE

4B-13
4B-13
4B-13
4B-14
4B-14
4B-14
4B-15
4B-16
4B-16
4B-16
4B-16

4B-17
4B-17

4B-17
4B-18
4B-18

5-1

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-8
59
5-13

6-1

6-1
6-1
6-1

6-2
6-2

6-3
6-3
6-3
6-4
6-5
6-8
6-9
6-9
6-11
6-11

(continued on page iv)

9000A-80186

TABLE OF CONTENTS, continued

SECTION .

I o Mmoo mW>»

TITLE PAGE
6-20. Preparation for Troubleshooting an Inoperative Pod 6-11
6-21. Procedure for Troubleshooting an Inoperative Pod 6-13
6-22. EXTENDED TROUBLESHOOTING PROCEDURES 6-15
6-23. INLEOdUCTION vttt et e e ettt 6-15
6-24. Misconfigured Pod oo 6-16
6-25. Partially Checked CIrcuits ..o 6-16
6-26. Timing and Noise Problems ... i 6-18
6-27. DISASSEMBLY . e 6-19
LIST OF REPLACEABLE PARTS i 7-1
7-1. INTRODUCTION e e 7-1
7-2. HOW TO OBTAIN PARTS .. e 7-1
7-3. MANUAL CHANGE AND BACKDATING INFORMATION 7-2
COMPILED PROGRAMS FORTHE 80186 POD A-1
USING THE POD WITHA REMOTE 9020Accconnne. B-1
POWER-UP DEFAULTS e C-1
SEGMENT REGISTERS e D-1
POD RESETS ... i e E-1
PROBLEMS DUE TO A MARGINAL UUTt F-1
OPERATING THE POD IN THE QUEUE STATUSMODE G-1
PERIPHERAL CONTROLBLOCK 0o H-1
PCB RECOVERY PROGRAMS i I-1
SCHEMATIC DIAGRAMS e 8-1
IN D E X o e e e 8-12

iv

TABLE

4A-2.
4A-13.
4A-4,
4A-5.
4A-0.
4A-7.
4B-1.
4B-2.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
7-1.
7-2.
7-3.
7-4,

9000A-80186

List of Tables

TITLE PAGE
9000A-80186 Pod Specificationsiveeeiniioiiiiiiiiannn. -5
Pod FUNCtiON AdAIESSES . v vvvvvnnevrunneeniaronenneerieseunasennnns 2-12
SHALUS LAMES « o ettt ettt imne et e et ia e 2-15
CONtIOl LINES .+ et e ti e ittt e e et ie ittt e asassaenaenans 2-18
80186 Pod Signal Descriptionsvoueverniiieriiiiiie e, 3-2
Quick RAM TESt .t vutte ittt 4A-5
Quick Fill and Verify Functiono 4A-8
QUICk ROM TESL « vttt ettt enen e 4A-10
Quick Ramp Functionouiveieiiiiiiiiiiiinnieneneeenn. 4A-12
Interrupt Handlingovnuriiniinieiiii e 4A-20
DMA Control Addresses . .ovvvere e etiriireniareeenaeenteeroos 4A-22
RUNUUT Control Addressesoviviiinernireeereneneineenaenas 4A-24
Chip Select Special AdAIessesvouvineini e eneniineeeeee., 4B-3
Peripheral Control Block Special Addressesccooiiinienininn 4B-7
Required Test Equipment for Pod Troubleshootingc.ve. 6-2
Standard Self Test Failure Codes ...t iiininan. 6-4
Enhanced Self Test Failure Codesc.ciiiiiiiiiiiiiiiiiien, 6-6
Recreating the Standard Self Test Routinesot 6-9
Pod Device AddIesSES .. vvvve e etunnernnnnessannescaieeeiiarennns 6-14
Pod Latch Addresses and Timingoverereinenniniiieennnn, 6-16
Bit Definitions of Selected Pod Addressesov i 6-17
Pod Ribbon Cable Lines Partially Checked in the Pod Self Test 6-18
9000A-80186 Final Assemblycoivruieinrinneririiinnienaaaens 7-3
A40 Processor PCB Assemblyooiiiiiiiiiinniiiiiiiinann, 7-6
A4l Interface PCB Assemblyt 7-8
Manual Status and Backdating Informationc...o it 7-10

VWi

FIGURE

N—= == =

5-3.

List of lllustrations

TITLE PAGE
External Features of the 80186 Interface Pod 1-2
Communication Between the Troubleshooter, the Pod, and the UUT I-3
Connection of the Interface Pod to the Troubleshooter 2-2
Pod Connected for Self Test ..., 2-2
Addresses Used with the 80186 Pod iiiiiiiinin.... 2-14
80186 Pod and Microprocessor Pin Assignments 3-10
80186 Interface Pod General Block Diagram Leveinonnnnn 5-4
80186 Interface Pod Detailed Block Diagram 5-6
Handshake Signalso oo e 5-8
80186 Pod Signal Timing Relationshipsccivviiinn. 5-10
80186 Pod Internal Signal Timing ittt iinnnenn.. 5-11
80186 Pod Interrupt-Acknowledge Sequence Timing 5-12
Troubleshooting a Defective Pod v, 6-8
Troubleshooting an Inoperative Pod, 6-12
9000A-80186 Final Assembly i, 7-4
A40 Processor PCB Assemblyoiiiiiiiiiii i, 7-7
A4l Interface PCB Assemblyo, 7-9
A40 Processor PCB Assembly ..., 8-3
A4l Interface PCB Assemblyo it 8-8
Schematic Diagram of UUT Cablecooiviiiinnnn.. 8-11

VIl/viii

9000A-80186

9000A-80186

Section 1
Introduction

THE PURPOSE OF THE INTERFACE POD 1-1.

The 9000A-80186 Interface Pod allows you to use any Fluke 9000-Series Micro-
System Troubleshooter to troubleshoot equipment that uses an 80186 microprocessor.

The Micro-System Troubleshooter (referred to hereafter as the Troubleshooter) is
used to service printed circuit boards, instruments and systems that use
microprocessors. The 9000A-80186 Interface Pod (referred to as the Pod) replaces the
80186 microprocessor in the UUT and serves both as an interface to allow the
Troubleshooter access to components on the UUT and as an emulator of the UUT’s
microprocessor.

In normal Troubleshooter/Pod operation, the Pod adapts the general-purpose
architecture of the Troubleshooter to the specific pin layout of the 80186
microprocessor. This allows the Troubleshooter to exercise each of the
microprocessor’s signals and provides complete access to devices on the UUT that are
connected to the microprocessor’s bus, while, at the same time, monitoring activity on
the UUT.

In the RUN UUT mode, the Pod’s microprocessor is connected to the UUT (through
buffers) to serve as a substitute microprocessor. It can be configured to have the same
structure of interrupts, chip selects, timers, and DMA control as the UUT’s
MiCroprocessor.

NOTE

It is assumed that the user of this manual is familiar with the basic
operation of one of the 9000-Series Micro-System Troubleshooters.

PHYSICAL DESCRIPTION OF THE POD 1-2.

The Pod connects to the Troubleshooter through a round shielded cable, and connects
to the unit-under-test (referred to as the UUT) through a ribbon cable and plug that’s
inserted into the UUT’s microprocessor socket. The UUT’s microprocessor is removed
from the UUT and is replaced by the Pod ribbon cable plug.

The external features of the Pod are shown in Figure 1-1.

The Pod consists of a pair of printed circuit board assemblies mounted within a
break-resistant case. A clock-generator module is located near the end of the ribbon
cable. The Pod contains the control software and supporting hardware that is required
to do the following:

1-1

9000A-80186

1-2

® Perform handshaking with the Troubleshooter.
® Receive and execute commands from the Troubleshooter.
® Report the condition of the UUT to the Troubleshooter.,

® Exercise the UUT.

An 80186 microprocessor in the Pod performs all of the functions that are normally
required by the UUT, and performs the Pod’s functions as well. Figure 1-2 shows the
communication between the Pod, the Troubleshooter, and the UUT.

The Troubleshooter supplies operating power for the Pod. The UUT provides the
external clock signals required by the Pod, which allows the Troubleshooter and Pod
to function at the designed operating speed of the UUT. (The clock module on the plug
cable amplifies the clock signal to ensure that it is strong enough to drive both the cable
and the Pod circuitry.)

CLOCK MODULE

\ POD PLUG

GENERAL
INFORMATION
(DECAL ON BOTTOM)

POD SELF TEST SOCKET

PLUG FOR CONNECTION TO TROUBLESHOOTER

Figure 1-1. External Features of the 80186 Interface Pod

9000A-80186

MICROPROCESSOR

|

|

SOCKET [|
N N T] |
] |

l

|

I

TROUBLESHOOTER POD | = 1T UUT BUS
e 1
|
POD PLUG -—/l
| 1/0 1/0
PROBE]
Lo J

Figure 1-2. Communication Between the Troubleshooter, the Pod and the UUT

Logic-level detection circuits on each line to the UUT detect bus shorts, stuck-high or
stuck-low conditions, and any bus drive conflicts (two or more drivers attempting to
drive the same bus line).

Over-voltage protection circuits on each line to the UUT (except the clock lines X1 and
X2) guard against Pod damage that could result from the following:

® Incorrectly inserting the ribbon cable plug into the UUT’s microprocessor socket.

® UUT faults which place potentially damaging voltages on the lines to the UUT’s
microprocessor socket,

A power-level sensing circuit monitors the voltage level of the UUT power supply. If
UUT power rises above or drops below an acceptable level, the Pod notifies the
Troubleshooter of a power-fail condition.

A self-test socket on the Pod enables the Troubleshooter to check Pod operation. The
ribbon cable plug is connected to the self-test socket during self test operation, which
enables the built-in self-test function and allows the Troubleshooter to investigate the
Pod’s internal functions.

CAUTION

To protect against damage to the Pod plug and cable, and to prevent
static damage to Pod components, insert the ribbon cable plug into
the self-test socket when the Pod is not in use.

POD SPECIFICATIONS ' 1-3.
Specifications for the Pod are listed in Tablel-1.
USING THIS MANUAL . 1-4.

This manual provides complete information for using the 80186 Pod, including
installation and setup, operating, and troubleshooting instructions. The summary
below explains briefly what kind of information is available in each of the sections:

9000A-80186

1-4

Section 2

Section 3

Section 4

Section 4A
Section 4B

Section 5

Section 6

Section 7

Section 8

Appendices

Contains installation instructions for connecting the Pod to the UUT and
to the Troubleshooter and using the built-in self test to ensure that the
Pod is working correctly. It also contains descriptions of the addressing
scheme that is used to access both UUT addresses and special Pod
Functions, and of the mapping system used by the Pod to identify status
and control lines. Use the information in this section when you’re first
connecting the Pod, when you’re performing periodic self tests on it, and
when you’re first becoming acquainted with the Pod before learning to
use the Pod Functions.

Provides descriptions of the 80186 signals, as they are implemented by the
Pod. Use this Section to familiarize yourself with how the Pod handles
the 80186’s signals, then use this information as a reference. If you're
already familiar with the 80186 microprocessor, you should still read this
section to learn how its signals are handled by the Pod.

Contains operating information for using the Pod and all of its built-in
diagnostic functions and tests to troubleshoot UUTs. You will need to
read the descriptions and examples in this section to learn how to use the
Pod. The material is broken into two subsections:

Describes Pod Functions that are used to access devices on the UUT.

Describes Pod Functions that are used primarily for configuring the Pod.

Theory of Operation information which you can read to get an
understanding of how the Pod works and a background for extended
troubleshooting of the Pod itself, if necessary.

Procedures for diagnosing and correcting failures in the Pod. If you have
a Pod failure, use the procedures in Section 6 (with the schematics in
Section 8) to help locate the problem.

Parts lists and information to use when ordering replacement parts for
your Pod.

Schematic diagrams to use if it becomes necessary to troubleshoot an
inoperative Pod.

The Appendices contain miscellaneous material which may prove
valuable when using the Pod, such as information about default values,
reset procedures, and remote programming.

9000A-80186

Table 1-1. 9000A-80186 Pod Specifications

ELECTRICAL PERFORMANCE

Power Dissipation 10 watts max.

Maximum External Voltage Pin 59 (X1): -1.5V to +6.5V
Pin 58 (X2): 0V to +5V
All other pins: -7V to +12V

Voltages listed above are continuous and are
referenced to ground.

MICROPROCESSOR SIGNALS*

Clock Input X1 (Pin 59):

Input Low Voltage 0.9V max.
Input High Voltage 3.7V min.
InputCurrent 1.0 uA max.
All other signals:
InputLow Voltage 0.8V max.
Input High Voltage 2.0V min.
OutputLow Voltage 0.5V max. at rated current
Output High Voltage 2.4V min. at -400 pA
Tristate Output L.eakage Current 1+0.02 mA typical, +0.1 to -0.2 mA max.
High-Level InputCurrent 20 puA max.
Low-Level InputCurrent -500 A max.

TIMING CHARACTERISTICS

Maximum External Clock Frequency 16.0 MHz typical (8 MHz internal)
Insertion Delays to 80186 Signals
Inputsignals ...l 12 ns typical
Output signals
High-to-Low Transitions 24 ns typical
Low-to-High Transitions 20 ns typical

UUT POWER DETECTION

Detectionof LowVcc Fault Vee< +4.5V

Detection of High Vec Fault Vce> +5.5V
Pod protection from UUT Low Power Voo +3.4V**
GENERAL
Size ... 57cmHXx145cmWx27.1ecmL(2.2inHx5.7inW
x 10.7 in L)
Weight i 1.5 kg (3.3 Ibs)
Environment
STORAGE -40°C to +70°C, RH < 95% non-condensing
OPERATINGt 0°C to +40°C, RH < 95% non-condensing
ProtectionClass 3 Relates solely to insulation or grounding defined in
IEC 348.

*Signals are specified as they appear at the ribbon cable plug pins
**Pod outputs set to high-impedance, except X2 (Pin 58) and CLKOUT (Pin 56)

1-5/1-6

9000A-80186

Section 2
Installation, Self Test, and Getting Started

INTRODUCTION 2-1.

This section contains directions for setting up your Pod and Troubleshooter to work
with your 80186 based UUT. It also contains general information about addresses,
status lines and control lines that you need to be familiar with to use the Pod.

Before using the Pod, you will need to connect it to the Troubleshooter and to the
UUT. Before connecting it to the UUT, you should also perform the built-in self test to
ensure that the Pod is operating correctly. Once you get the Pod connected and it has
passed the Self Test, you may also need to adapt the Pod to your UUT’s characteristics
before using it for testing. The procedures for connecting the Pod, for performing the
Pod Self Test, and also for getting the Pod set up and working with your UUT are
included below in the first part of this section.

The Pod uses a simple composite address system to accept and display the addresses
that are used for accesses to UUT memory, I/ O spaces, and Pod Functions. The Pod
also maps the 80186 Status and Control lines into consistent bit patterns that are used
uniformly throughout Pod operations. Before using the Pod, you should read the
information in the later parts of this section to become familiar with the way that the
Pod uses addresses and Status and Control line information.

CONNECTING THE POD TO THE TROUBLESHOOTER 2-2.

Before either performing a Pod Self Test or using the Pod to troubleshoot a UUT,
connect the Pod to the Troubleshooter as follows:

I. Check that the Troubleshooter is OFF.

2. Connect the Pod’s round shielded cable to the Troubleshooter at the location
shown in Figure 2-1. Secure the connector using the sliding collar.

PERFORMING THE POD SELF TEST 2-3.
To perform the built-in self test on the Pod, do the following steps:

1. Make sure that the Pod is connected to the Troubleshooter properly.

2. If the Pod is connected to a UUT, release the Pod cable from the
microprocessor socket.

2-1

9000A-80186

2-2

POD CONNECTS HERE

Figure 2-1. Connection of the Interface Pod to the Troubleshooter

POD SELF TEST SOCKET

Figure 2-2. Pod Connected for Self Test

9000A-80186

CAUTION

The Pod plug cable is susceptible to damage from kinking or tearing,
and is expensive to replace. Use caution in handling the cable.

3. Insert the Pod cable into the Zero-Insertion Force (ZIF) self-test socket:
a. Open the ZIF socket by moving the latch lever to the vertical position.

b. Ifthe Pod Plugis not already attached to a Pin-Grid Array (PGA) adapter,
clip the Pod plug in place as follows:

1. Insert the PGA adapter into the ZIF socket, taking care to align pin |
in both.

2. Seccure the PGA adapter within the ZIF socket by pushing the latch
lever down.

3. After moving the wire bail out of the way, insert the Leadless Chip
Carrier (LCC) plug that is one the end of the cable into the top of the
PGA adapter. Insert the beveled corner first, pushing it back against
the corner spring, then lower the rest of the plug into place and hold it
with your finger.

4. Place the retainer clip on top of the LCC plug by pushing the ends of it
back into the cavities in the PGA adapter, then lowering it against the
LCC plug. Hold it firmly in place with your fingers.

5. Flip the wire bail over the tabs on the edge of the retaining clip to secure
the assembly together.

c. Ifthe LCC (the Pod plug) on the end of the Pod cable is already connected
to a Pin-Grid Array adapter, then insert the pins of the PGA into the ZIF
socket and secure it in place by pushing down the latch lever.

5. Press the BUS TEST key to initiate the Pod self test.

If the Troubleshooter displays the message POD SELF TEST 80186 OK, then the Pod
is operating properly.

If the Troubleshooter displays the message POD SELF TEST 80186 FAIL xx, the Pod
may not be operating properly. (The letters xx correspond to a failure code describing
the error; the failure codes are listed in Section 6.) For information about diagnosing
self test failures, refer to Section 6.

CONNECTING THE POD TO THE UUT 2-4,

WARNING

TO PREVENT POSSIBLE HAZARDS TO THE OPERATOR OR
DAMAGE TO THE UUT, DISCONNECT ALL HIGH-VOLTAGE
POWER SUPPLIES, THERMAL ELEMENTS, MOTORS, OR
MECHANICAL ACTUATORS WHICH ARE CONTROLLED OR
PROGRAMMED BY THE UUT MICROPROCESSOR BEFORE
CONNECTING THE POD.

2-3

9000A-80186

Connect the Pod to the UUT as follows:

1.

2.

Be sure that power is removed from the UUT.

Disconnect UUT analog outputs or potentially hazardous UUT peripheral
devices as described in the warning at the beginning of this section.

If necessary, disassemble the UUT to gain access to the microprocessor socket.
If the microprocessor is still in the socket, remove it.

If the Pod plug is inserted into the self-test socket, remove it as follows:

a. If the UUT’s microprocessor socket is a Leadless Chip Carrier, then
remove the LCC plug that is on the end of the Pod cable from the PGA
socket by flipping the wire bail off of the retainer clip, removing the
retainer clip, and lifting the LCC plug free.

b. If the UUT’s microprocessor socket is a pin grid socket, then remove the

Pod plug with the PGA adapter attached by pulling up the latch lever of the
ZIF socket and lifting the Pod plug free.

CAUTION

The Pod plug cable is susceptible to damage from kinking or tearing,
and is expensive to replace. Use caution in handling the cable.

5.

Insert the Pod plug into the UUT’s microprocessor socket and secure it (using
the same means used to secure the microprocessor). Make sure that pin I of the
Pod plug is aligned with pin 1 of the microprocessor socket. If the UUT uses a
Leadless Chip Carrier socket, then insert just the LCC Pod plug. If the UUT
uses a pin-grid socket, then insert the Pod plug into a pin-grid array adapter
before attaching it to the UUT. See the self-test procedure above for
instructions for attaching the pin-grid array adapter.

CAUTION

Do not operate the Pod upside down to change the orientation of the
cable to the UUT. The internal cooling system of the Pod is designed
to operate in the upright position.

6.

Reassemble the UUT, using extender boards if necessary.

CAUTION

To prevent damage to the Pod, you must apply power to the
Troubleshooter before turning UUT power on. This activates
protection circuits within the Pod.

7. Apply power to the UUT.
GETTING STARTED 2-5.

Introduction

2-6.

After you have connected the UUT, Pod, and Troubleshooter and, after power is
applied to the Troubleshooter and UUT, several characteristics of the UUT may cause

2-4

9000A-80186

conditions that prevent you from continuing with testing. If this happens, you must
change the Pod configuration to suit your UUT’s characteristics.

The following few paragraphs summarize the simple changes that you may need to
make to the Troubleshooter setup and Pod configuration before you begin using the
Pod. You may also need to configure the chip-select lines, DMA controller registers,
and the RUN UUT entry address before using the RUN UUT mode or the Learn
operation of the Troubleshooter. Changing the Pod configuration is described in detail
in Section 4b.

NOTE

To use the Pod effectively, you will need to have schematics for the UUT,

specifications for the number of Wait states required by memory on the
UUT, and details of the required configuration for interrupts, DMA

control, timers, and chip selects (such as might be provided by a listing of
the UUT's program). You will use this information to configure the Pod
to be like the UUT's microprocessor.

NOTE

Once you have determined how the Pod configuration needs to be set for
your UUT, you can create a Troubleshooter program to make the
changes automatically. Simply run this program at the beginning of each
troubleshooting session.

NOTE

Other error conditions related to UUT defects are also possible. It is a
good idea to begin using the Pod with a known-good UUT. That will
eliminate any confusion between characteristics of the UUT that require a
Pod configuration change, and UUT defects.

Changing Pod Characteristics 2-7.

Conditions on the UUT that are interfering with Pod operation will cause a message to
be displayed on the Troubleshooter. The messages may occur either immediately after
power is applied or after you try an operation (like BUS TEST). The instructions
below offer simple solutions to the most common reasons why each condition may
occur. Using these instructions, you should be able to identify the conditions which arc
causing the messages and change the Pod/Troubleshooter configuration to
accommodate them. Sece the Troubleshooter Operator Manual for a complete
description of each error.

If these instructions do not help in eliminating error conditions, repeat the sclf test and
refer to the Troubleshooting instructions in Section 6 or contact Fluke Customer
Service for advice.

UUT POWERFAIL — ATTEMPTING RESET

This message indicates that the voltage level at onc or both of the UUT?
microprocessor socket Vee pinsis below 3.5v de. This message is also displayed if the
Pod’s UUT cable is not properly connccted to either the UU'T’s microprocessor
socket or the Pod’s sclf-test socket, or if the Pod is not properly connccted to the
Troubleshooter.

2-5

9000A-80186

2-6

ACTIVE FORCE LINE @ aaaa - LOOP?

This message tells you that forcing lines (microprocessor inputs that could force the
microprocessor into a specific action when asserted) are active. Forcing lines may be
active because of an error, or because of a design characteristic of the UUT. You can
disable the reporting of this error and continue operation by selecting the
Troubleshooter Setup function again and setting the Setup message SET - TRAP
ACTIVE FORCE LINE? to NO.

BAD POWER SUPPLY @ aaaa - LOOP?

This message indicates that the voltage level at the UUT’s microprocessor-socket
Vce pins is out of the 4.5V to 5.5V range (but not below 3.5V). If the UUT is
intentionally using a low-level voltage, and you wish to ignore this error and
continue, set the Troubleshooter’s Setup command SET - TRAP BAD PWR
SUPPLY?to NO.

POD TIMEOUT - ATTEMPTING RESET

This message is usually caused by status lines (input lines to the Pod
microprocessor) called enableable status lines. Try reseting the UUT to begin with
to eliminate the problem. If that does not work, disable the enable lines by setting
the Troubleshooter Setup messages SET - ENABLE EXTRDY? and SET -
ENABLE HOLD?to NO. This may be a temporary measure—just to get you going.
You can go back at a later time and determine which of the enable lines is causing the
problem. If one or the other is not causing the Pod to timeout, you can re-enable it to
restore more thorough testing.

An alternate solution may be to change the SET- TIMEOUT 200-CHANGE? to a
larger value, if the Pod Timeout is caused by the Troubleshooter not waiting long
enough for the Pod to respond before reporting a Pod Timeout error.

NOTE

EXTRDY is a psuedo-status line that combines the function of the UUT
microprocessor'’s SRDY and ARDY lines.

ACTIVE INTERRUPT @ aaaa - LOOP?

This message tells you that interrupts are active. Interrupts may be active because of
an error, or because of a design characteristic of the UUT. You can disable the
reporting of this error and continue operation by selecting the Troubleshooter
Setup function again and setting the Setup message SET - TRAP ACTIVE
INTERRUPT? to NO.

Entering in the Queue Status Mode by Accident 2-8.

The RD/QSMD output line is held to a low logic level to force the Pod into the Queue
Status mode. If you are testinga UUT that does not operate in the Queue Status mode,
and the RD output line is accidently tied low, the Pod will go into the Queue Status
mode. If this happens, the Pod will report address, data, or control drivability errors
that do not actually exist on the UUT. To eliminate this problem, the error condition
must be removed from the RD/QSMD line on such a UUT.

9000A-80186

Preparing for RUN UUT 2-9.

If you perform the RUN UUT function at the default entry address (F FFF0), the
UUT’s initialization programming should configure all of the Peripheral Control
Block (PCB) registers in the Pod. If you do a RUN UUT at addresses other than the
normal entry point though, you may have to manually configure the the entry address,
the chip select definitions, interrupt configuration, and DMA controller
specifications.

Whether you will need to configure these registers depends upon whether the function
is used in your UUT, and whether the default value that is provided is suitable or not.
Specifications are made by writing data to Pod Function addresses that are reserved
for Pod use. See Pod Function Addresses below for a general description of using the
Pod Function addresses. See Using the RUN UUT Function in Section 4A for a
description of how to specify the required information.

Preparing for LEARN 2-10.

Before using the LEARN function, the Pod’s functions may need to be configured to
select the correct memory blocks on the UUT (if the defaults that are provided are not
suitable). The chip select output lines are configured by writing data to Pod Function
addresses that are reserved for Pod use. See Pod Function Addresses below for a
general description of using the Pod Function addresses. See Section 4B for a
description of how to specify the Chip Select definitions.

Changing the RESET Signal 2-11.

Some UUTs may need to have the RESET pulse applied at a high logic level (as an
output of the microprocessor) when the Pod is reset by the Troubleshooter. After
power-up, the default condition for the Pod is to NOT provide this signal, but you have
the option of changing that. If your UUT needs the RESET signal to be supplied high
to the UUT when the Pod is reset, see Configuring General Pod Characteristics in
Section 4B for instructions on how to change the way that the reset signals of the Pod
work.

Changing the Transparent Read Address 2-12.

The Pod does periodic Read operations to a specified address on the UUT to provide a
stimulus for the UUT’s refresh circuitry. If the default address used for this operation
is not suitable for your UUT, you may need to change it. If your UUT needs to have a
different address, see Configuring General Pod Characteristics. in Section 4B for
instructions on how to change it.

USING THE POD 2-13.

Once the Pod is connected to the Troubleshooter and the UUT, and the Pod has been
configured to your UUT as described above, you can begin using the
Troubleshooter/Pod team to investigate 80186 UUTs.

All of the standard diagnostic procedures that are built into the Troubleshooter work
in the usual manner. In addition to these functions, there are many additional
functions that are built into the Pod. These Pod functions allow you to do such things
as perform high-speed memory tests, set up internal registers and masks, check for
details about specific errors, alter default values of various parameters, and
manipulate interrupt activity. Together, with the Troubleshooter’s tests, they provide
an extensive capability for diagnosing UUT defects.

2-7

9000A-80186

2-8

The main thing to do when learning to use the 80186 Pod is to learn to control the
various Pod functions. The Pod functions are implemented in the form of Pod
Function addresses. Pod Function addresses are read/write locations that are not in
the memory space of the UUT; they access diagnostic addresses within the Pod instead.
The Pod Function Addresses are constructed with the usual 20-bit address
information, plus additional bits to indicate specific Pod functions. More detailed
information is located below under Pod Function Addresses.

Many of the Pod functions use and return information about the microprocessor’s
Status and Control lines. The Pod has all of these lines (and a few Pod-generated status
and control lines) mapped into standard Status and Control words. The bit
assignments for these words are described in this section, and for your convenience. are
also provided on the decal that’s on the bottom of the Pod. You'll probably use the
information frequently, so it might pay to take the time to become familiar with it.

ADDRESSES 2-14.
Introduction 2-15.

There are two types of addresses that are used with the 80186 Pod: UUT-access
addresses and Pod Function addresses.

UUT-access addresses are used to Write data to or Read data from memory or 1/0
devices on the UUT. UUT-access addresses consist of two parts: the 20-bit physical
address, which selects physical locations in the UUT, and | additional hex digit of
information, which designates whether memory references are Normal or Direct
Memory Access (DMA), 1/ O or Memory accesses, and byte or word accesses. Details
about accessing addresses on the UUT are described below under UUT Addresses.

Pod Function addresses allow you to use the many additional functions that the Pod
provides in addition to those that are built into the Troubleshooter. Pod Function
addresses consist of two parts: a 20-bit physical address (an address that is meaningful
to the Pod, not the UUT), and 2 additional hex digits of information which designate
Pod functions. Information about using the Pod Functions is described below under
Pod Function Addresses.

Figure 2-3 shows the general address structure that is used with the Pod. Specific
formats for the address are described below in each topic.

NOTE
The most-significant four bits of the address (A28-A31) in the
Troubleshooter are not used. If they are specified. they must be all set 1o 0
(hex O0XXX XXXX). It is not necessary to enter these unused bits
(WRITE @ XXX XXXX is OK). They will not be displaved when
address information is reported by the Troubleshooter.

NOTIE
There are several address notation conventions that yvou should be avware

of while using this manual:

® lForcascolreading, the two halves of the address are separated with a space in this

manual (HHHH LLLL). Do not try to enter addresses with a space (there's no
“space™ key on the Troubleshooter). The Troubleshooter does not display
addresses with a space.

Pod Control Bits

20-bit Memory Address

l | B

0000 XXXX XXXX AAAA AAAA AAAA AAAA AAAA (binary)

| L L]

Address Control Bits

Quick Test Prefix

—

Special Address Bits

Always zero

Figure 2-3. Addresses Used with the 80186 Pod

® X’sare used to denote hex or binary digit spaces where the specific value may be
any hex number. For example, the data value XX00 means that it’s only important
that the two least-significant digits be zero; the other two digits may be any value.

® Some of the examples show addresses in binary form. Address information is only
entered and displayed on the Troubleshooter in hexadecimal form, so binary
information must be converted to hex before using. For example, an address
specification that is illustrated in binary form as 1111 0000 1100 0000 1010 0011 is
entered into the Troubleshooter as FO COA3. /

UUT Addresses 2-16.

INTRODUCTION 2-17.

UUT addresses consist of two parts: a 20-bit (5 hex digit) physical address and a single
address modifier digit. The individual bits of the address modifier denote whether the
address is Normal or DM A, Memory or I/ O, and Byte or Word access. Any time that a
Troubleshooter Read or Write operation is used with a UUT address, it must consist of
all six digits of information.

(I)XX)l(){XXX XXXX XXXX XXXX XXX)|(UUT Address (binary)

l 20-bit Physical Address

Address Modifier (Address Control Bits)

9000A-80186

2-9

9000A-80186

PHYSICAL ADDRESSES 2-18.
Introduction 2-19.

Physical locations on the UUT may be either memory devices or 1/O devices.

Memory Addresses 2-20.

The 80186’ 20 physical address/data lines (ADO-ADI15,and A16/S3- A19/S6) allow
it to address one megabyte (1,048,576 bytes) of memory. The 80186 can address either
words (16 bits of data) or bytes (8 bits of data). Each physical address is a byte address.

The 80186 Pod only accepts even addresses for word accesses; odd addresses default to
the next lower (even) address. To access a word at an odd address, the operator must
actually use two consecutive byte accesses. During even-word accesses, the BHE (Bus
High Enable) line is low, which enables the high byte at the same time as the low byte.

NOTE

Inthe 80186 Pod, addresses are always formed using the most-significant

Sfour bits of the CS Register 80186 microprocessor within the Pod. This
method of forming the address is unimportant to the UUT to which the
Pod is connected.

Memory accesses are specified by an Address Control Bit (see below).

/0O Addresses 2-21.

The 80186 can address up to 64K (65,536) 8-bit ports or 32K (32,768) 16-bit ports. The
1/O space is not segmented; to access a port address, the 80186 places the address on
the lower 16 lines of the address bus. Address line A16 - A19 are output as zeros. 1/ O
addresses are specified by an Address Control Bit (see below).

ADDRESS CONTROL BITS 2-22.
Introduction 2-23.

Four bits (one hex digit) of additional information are added to the normal 20-bit
physical memory address to denote specific information about UUT accesses.

OXXX)l(XXX XXXX XXXX XXXX XXX)I(UUT Address (binary)

|

20-bit Physical Address

Normal/DMA Control Bit
Memory/1/0 Control Bit
Word/Byte Access Control Bit
Always zero for UUT addresses

The additional bits are described below.

If this hex digit is not specified, the Pod will provide a default value. The default value
is 0000 (binary); normal, memory, word accesses.

9000A-80186

Normal/DMA Addressing 2-24.

Specifying the Normal/ DMA bit (A20 in the “address” to be high causes the
microprocessor’s S6 control line to be set, indicating to the UUT that a DM A access is
taking place. This allows “DMA style” transfers (not in response to a DMA request)
that are actually normal UUT Read and Write operations with the S6 line forced high.
Even though the Pod does not do real DM A operations, this capability allows you to
test DMA functions in a UUT. For example, WRITE [F FFB2 = XXXX specifies a
deposit (a DMA Write operation) at location F FFB2.

When the Normal/ DMA bit is low (the default), normal Read and Write operations
are performed.

Memory/{/O ADDRESSING 2-25.

The Memory/1/O bit (A21) determines whether the address is a memory reference or
an operation with an I/ O port. If A21 is low (the default), then the access is to memory.
If A21 is high, then the access is to an 1, O device.

NOTE

Only the lower 16 bits of the physical address are used for I O operations.
Al6 - A19 are output low, and must be specified as zeros in the address.

Forexample, WRITE @ 20 00C4 = XXXX specifies an I/ O word access at location C4.

Word/Byte Addressing 2-26.

The Word, Byte bit (A22) indicates whether the remainder of the address is a byte
access or a word access. When A22 is high, then the access to a byte address. When A22
is low (the default), the access is to a word address. Forexample, WRITE@ 41 9AAI =
XX specifies a byte access to memory location 1 9AAL

NOTE
Word-access addresses should be even (LSB=0). If an odd address is
specified for a word access, the Troubleshooter will display the message
ILLEGAL ADR @ XXXXX. The Pod will still perform the access,
however, and the uneven word-access address will be mapped to the next
lowest word address. For example, WRITE @ 004321 = XX will actually
write to location (4320.

Pod Function Addresses 2-27.
INTRODUCTION 2-28.

The Pod provides many additional functions in addition to those that are built into the
Troubleshooter. These Pod functions are provided to allow you to set up internal
registers and masks, to check for specific errors, to alter default values of various
parameters, to manipulate interrupt activity, and to perform high-speed tests of
memory. Table 2-1 shows the available Pod Function addresses.

The additional functions are used by reading and writing with Pod Function Addresses
in the Pod. Pod Function Addresses are read/write locations that are not in the
memory space of the UUT; they access diagnostic functions of the Pod. The Pod
Function addresses themselves are not sent to the UUT—they are only a means to
access the Pod functions.

9000A-80186

Table 2-1. Pod Function Addresses

ADDRESS DESCRIPTION

Pod Control Addresses (Write/Readable)

FO 0000 Selftest Address
FO 0002 Transparent Read Address
FO 0004 Enable RESET output

Segment Register Contents for RUN UUT (Write/Readable)

FO 0020 ES Register Contents
FO 0022 SS Register Contents
FO 0024 CS Register Contents
FO 0026 DS Register Contents

Error Reporting Addresses (Read Only)

FO 0040 Last Error Summary

FO 0042 Last Control Errors

FO 0044 Last Forcing Line Errors

FO 0046 Last Active Interrupts

FO 0048 Last High (Nibble) Address Drivability Errors
FO 004A Last Low (Word) Address Drivability Errors
FO 004C Last Data Drivability Errors

FO 004E Last INTA and TMR OUT Drivability Errors
FO 0050 Last CHIP SELECT Drivability Errors

FO 0052 Last Status

Error Masks (Write/Readable)

FO 0060 Error Summary Mask

FO 0062 Control Drivability Error Mask

FO 0064 Forcing Line Error Mask

FO 0066 Active Interrupt Error Mask

FO 0068 High (Nibble) Address Drivability Error Mask
FO 006A Low (Word) Address Drivability Error Mask
FO 006C Data Drivability Error Mask

FO 006E INTA and TMR OUT Error Mask

FO 0070 CHIP SELECT Error Mask

Interrupt Vector and Configuration Addresses (Write/Readable)

FO 0080 Interrupt Configuration Address

FG 0082 Interrupt Vector 0 (Re-enable on Read)

FO 0084 Interrupt Vector 0 (No Re-enable on Read)
FO 0086 Interrupt 0 Cascade Address

FO 0088 Interrupt Vector 1 (Re-enable on Read)

FO 008A Interrupt Vector 1 (No Re-enable on Read)
FO 008C Interrupt 1 Cascade Address

Peripheral Control Block Addresses (Mostly Write/Readable)

FO 0120 - FO O1FE Peripheral Control Block Addresses

SPECIAL FUNCTION ADDRESSES 2-29.

When the sixth digit of the address (bits A20-A23) is hexadecimal F, the address is a
Special Function Address used by the Pod. These Special Function addresses provide
a wide variety of diagnostic functions to use in a detailed investigation of a UUT.

XFO OXXX SPECIAL FUNCTION ADDRESS (hex)
—— A 12-bit hex address

— Always zero

—— Pod Function Address Characters

—- Usually 0, but may be 1 if Quick Looping on a Special Fuction Address

Pod Function Addresses are used by writing data to them to do such tasks as loading
registers, defining parameters, or initiating Pod actions, or by reading them to retrieve
information about Pod and UUT. Writing data to Pod Function Address F0 0020, for
example, defines the contents of the CPU’s ES Register (the record of which is
maintained in a location in the Pod’s memory for diagnostic purposes for the RUN
UUT function). The operation does not affect the contents of memory location 0 0020
in the UUT’s memory.

All of the Pod Function Addresses are listed numerically in Table 2-1 to provide a
complete reference, but since they are a means to use the unique functions that are
provided by this Pod, they are described individually elsewhere in this manual.
Functionally related groups of Pod Function Addresses also appear in other tables
throughout the section.

QUICK TEST AND FUNCTION ADDRESSES 2-30.

The four bits in this portion of the address (A24-A27) indicate that one of the Pod’s
Quick Tests is to be used with the indicated physical address.

XXX XXXX QUICK TEST OR FUNCTION ADDRESS (hex)

L J

— Any UUT address (may be a Pod Function address if used with Quick-Looping Function)
= Usually 0, but may be F if Quick Looping on a Special Function Address

— Quick Test Prefix: 0=No Quick Test
1=Quick Looping Function
2=Quick RAM Test
3-Quick ROM Test
4=Quick Fill and Quick Verify Functions
5=Quick Ramp Function

For example, WRITE @ 3XX XXXX is an operation which is part of performing a
Quick ROM Test.

If no Quick Test is wanted, the Quick Test Prefix (A24-A27) may be left blank and the
default will be 0—No Test. (For example, WRITE XX XXXX = XXXX is OK.)

9000A-80186

9000A-80186

2-14

STATUS AND CONTROL LINES 2-31.

introduction 2-32.

Pod status lines are input signals that are applied by the UUT to the UUT’s
microprocessor socket. Status lines are inputs that are not either data, clock, or power

supply signals.

Pod control lines are output signals that are applied by the Pod to the UUT at the
UUT’s microprocessor socket. Control lines are not address or data signals.

The Pod creates several additional psuedo-status and psuedo-control lines to augment
the information that is normally reported to the Troubleshooter by the Pod.

The Troubleshooter can report activity on the status lines and drivability errors on the
control lines after the Pod performs any UUT access.

The status and control lines provide much of the information that is used to diagnose
defects in a UUT. You will use them frequently to determine the results of tests and to
simulate microprocessor operations. It will pay to become familiar with how the status
and control lines work with the Pod before using it to troubleshoot your UUTs.

NOTE

In this manual, the terms Status and Control differ in meaning from the
same terms used in the microprocessor manufacturer’s literature. The
Troubleshooter considers input lines to the microprocessor to be Status
lines, and output lines to be Control lines.

Figure 2-4 shows how the various lines interact between the Pod and the UUT.

Status Lines 2-33.

INTRODUCTION 2-34.

Most of the Status Lines are input lines to the UUT’s microprocessor socket that
indicate critical factors about system operation. Some additional status lines used are
not real 80186 status lines, but psuedo-status bits that are generated within the Pod to
indicate conditions that are important to the user. They are the same for both Normal
mode and Queue Status mode operation. Status lines and psuedo-status lines are

shown in Table 2-2.

STATUS LINE BIT ASSIGNMENTS 2-35.

Information about status lines is displayed as a map of bits, with each bit
corresponding to a status line. The bits assigned to the specific status lines are shown in
Table 2-2 and on the decal on the back of the Pod.

PSUEDO-STATUS LINES 2-36.

Several of the status lines reported during a Read Status operation are generated by
the Pod and not by the UUT. These lines consist of PWR FAIL, INT VECT 0, INT
VECT I, ACTIVEINTR, and QSMD. These lines are described in detail in Section 3.
Section 4B describes how to determine the source of the last interrupt (reported by
ACTIVE INTR) using the Last Interrupt Pod Function address.

TROUBLESHOOTER

STATUS

CONTROL

POD

CLOCK

POWER (SENSE ONLY)

)

ADDRESS / DATA

uuT

Figure 2-4. Signals Between the Pod and the UUT

Table 2-2. Status Lines

BIT STATUS LINE SPECIAL CHARACTERISTICS
0 ARDY e f
1 SRDY e f
2 HOLD e f
3 RES f
4 DRQO
5 DRQ1
6 TMR IN O
7 TMR IN 1
8 TEST
9 NMI i
10 QSMD p
11 ACTIVE INTR p
12 INTR VECTOR 0 p
13 INTR VECTOR 1 p
14 (not used)

15 POWER FAIL p

9000A-80186

Special Characteristics Definitions

e - an enableable line

f - a forcing line
i - an interrupt

p - a pseudo-status line. Does not reflect actual physical line condition of aline, butinstead a condition

of the Pod that is important to the user.

9000A-80186

FORCING LINES 2-37.
Introduction 2-38.

Forcing lines are a special category of status lines that, when asserted, could force the
UUT’s microprocessor into some specific state or action. When the Pod is plugged into
the UUT’s microprocessor socket in place of the microprocessor, the Troubleshooter
reports activity on these lines with the ACTIVE FORCE LINE (@ aaaaa)-LOOP?
message.

The forcing lines of the 80186 Pod consist of ARDY, SRDY, HOLD, RES, DRQO,
and DRQI.

NOTE

An active forcing line is reported as a high bit in a status error word,
regardless of its actual logic level of the signal. For example, if the RES
line (bit 3) is active (low), an active Reset is reported as ACTIVE FORCE
LINE, STS BTS 0000 0000 0000 1000, while a READ @ STS operation
would show the true logic levels by reporting 0000 0101 0000 0000. An
NMI interrupt, on the other hand (if the Troubleshooter’s active
interrupt trap is enabled) is reported as ACTIVE INTERRUPT, STS
BTS 0000 0010 0000 0000, and a READ @ STS operation will report
0000 0111 0000 0000.

NOTE

Itis possible to disable the reporting of active forcing lines by selecting the
Troubleshooter Setup function message SET-TRAP ACTIVE FORCE
LINE? NO. The Pod will still monitor the lines, but the Troubleshooter
will not interrupt its operation to display the ACTIVE FORCE LINE
error message on the display. Sometimes it is useful to disable the
reporting of active forcing lines, particularly if the information is not
needed by the operator.

User Enableable Forcing Lines 2-39.

The 80186 has several status lines which the operator can individually enable or
disable using the Troubleshooter’s Setup function: ARDY, SRDY, and HOLD. If
these user-enableable lines are disabled (using the Troubleshooter Setup function),
their inputs to the Pod microprocessor are disabled, but the Pod continues to monitor
their condition. If they are asserted, the Pod reports to the Troubleshooter that a
forcing line is active. Pressing the YES key on the Troubleshooter enables the status
line; pressing the NO key disables the status line.

NOTE

Both ARDY and SRDY are enabled or disabled at the same time by the
combined setup message ENABLE EXTRDY.If ARDY and SRDY are
enabled, both must be low before an externally generated wait state can
occur. If ARDY and SRDY are disabled, both must be captured low on
the UUT (during UUT accesses) to generate an ACTIVE FORCING
LINE error message. For information about how the User Forcing Line
Mask affects the reporting of these lines as active forcing lines, see Pod
Function Addresses.

When these UUT-generated lines are disabled, they are prevented from affecting
Troubleshooter and Pod operation. For example, a HOLD line that is stuck high
would cause the 80186 within the Pod to remain in a HOLD state, preventing normal
Troubleshooter/Pod operation. When the Setup function of the Troubleshooter is
used to disable this input to the Pod, the HOLD signal is prevented from reaching the
80186 within the Pod, allowing the Troubleshooter/Pod interactions to take place
normally.

NOTE

If these user-enableable lines are enabled, they are not reported as forcing
line errors, even when they are asserted.

NOTE

During Troubleshooter Setup, selecting the message SET-ENABLE
xxxxxx? NO prevents the designated line from affecting the operation of
the Pod (although the Pod still detects whether the line is high or low).
This differs from selecting the Troubleshooter Setup message SET-
TRAP ACTIVE FORCE LINE? NO which does not prevent an enable
line from affecting the operation of the microprocessor, but does prevent
the active condition from being reported on the Troubleshooter display.

NOTE

Operating the Pod with the enable lines disabled may degrade Pod
performance, especially if the UUT requires Wait states or
HOLD/HLDA operations to operate correctly.

Disabled Forcing Lines 2-40.

The RES, DRQO, and DRQI lines are forcing lines that are hardware-disabled except
during RUN UUT. They are monitored and reported as active forcing lines if they are
active during non-RUN UUT operation.

INTERRUPT LINES 2-41.

Some of the status lines are interrupt signals. Interrupt lines of the 80186 Pod consist
of INTO, INTI,INT2, INT3, and NMI. The NMlinput is disabled by hardware except
during operation in the RUN UUT mode. Although disabled, the NMI input is
routinely checked by the Pod software and reported to the Troubleshooter if held high
by the UUT. NMl is also reported as a status bit (bit 9).

NOTE

Reporting of the active interrupt error message is disabled at power on. It
is possible to enable the reporting of active interrupt lines by selecting the
Troubleshooter Setup function message SET-TRAP ACTIVE
INTERRUPT? YES. Sometimes it is useful to enable the reporting of
active interrupts if you need the information.

Control Lines 2-42.
INTRODUCTION 2-43.

Control lines are Pod output lines that provide information to the UUT. Like status
lines, some of the control lines used with the Pod are actually Pod-generated psuedo-
control bits that provide information about Pod/ UUT signals.

9000A-80186

9000A-80186

The control lines and some of their characteristics are listed in Table 2-3.

CONTROL LINE BIT ASSIGNMENTS 2-44.

[nformation about control lines is displayed as a map of bits, with each bit
corresponding to a control line. The bits assigned to the specific control lines are
shown in Table 2-3 and on the decal on the back of the Pod.

For example, when performing Bus Test or various other Troubleshooter functions,
the Troubleshooter may detect that one or more control lines are not drivable.
Suppose that during a BUS TEST the Troubleshooter detects that the LOCK line is
not drivable. The Troubleshooter displays the message CTL ER R 0000000 0000000 -
LOOP? The zeros and ones correspond to the bit numbers assigned to the control lines
as listed in Table 2-3. The first bit, Bit 0, is set to 1 because the LOCK line was detected
as not drivable.

WRITING CONTROL LINES 2-45.

The 80186 Pod has several control lines that the Troubleshooter can set high or low
with the WRITE CTL function. This feature is used by BUS TEST to check lines which
cannot be toggled by normal read and write operations. It is also useful for helping
troubleshoot these lines.

The Write Control and Data Toggle Control require the entry of binary digits to define

user-writable control lines. When using either of these two functions, the operator is
prompted for a binary number to identify the control line(s) to be written.

Table 2-3 Control Lines

BIT CONTROL LINE SPECIAL CHARACTERISTICS
0 LOCK w
1 RESET w
2 HLDA w
3 ALE (QS0)* w (QSO0 only)
4 WR (QS1)* w (QS1 only)
5 RD
6 DEN
7 DT/R
: %
9 Si
10 S2
11 S6
12 BHE
13 TMR OUT ERROR p
14 INTA ERROR o}
15 CHIP SEL ERROR p
w - writeable control line
p - pseudo-control line
*QS0 and QS1 replace ALE and WR when the Pod is in the Queue Status mode.

9000A-80186

When the Pod operates in the Normal mode, the user-writable control lines consist of
OCK, RESET, and HLDA. When the UUT operates in the Queue Status mode the
QS0 and QS| lines are also writable control lines. (In the Normal mode, the QS0 and
QS lines are used instead as ALE and WR, which are not writable.)

NOTE

The Pod will not report drivability errors on the RD signal when the Pod
is in the Queue Status mode. (The RD signal is not produced by the Pod
in the Queue Status mode.)

For example, to perform a Write Control operation which writes all three user-
writable control lines high (in the normal mode), the operator enters WRITE@ CTL=
111. To write any of the lines to the low state, the operator enters a0 in place of 1 at the
bit position which corresponds to the particular control line.

NOTE

Two of the writable control lines are active high (bit 3, HLDA, and bit 2,
RESET), and one is active low (bit 0, LOCK). To set the three lines to
their inactive states during the WRITE@ CTL operation, use WRITE @
CTL =001.

NOTE

The Write Control function only sets a line high or low for approximately
one UUT access, just long enough to verify that it can be driven.

PSEUDO CONTROL LINES 2-46.

Three of the Control lines are artificial signals that are generated by the Pod to provide
clues to possible failures. The three pseudo-control lines, INTA ERROR, TMR OUT
ERROR, and CHIP SEL ERROR are described in detail in Section 3. Refer to
Section 4B for information about using the Last INTA and TIMER OUT and Last
Chip Select Driveability Error Pod Function addresses to diagnose errors reported by
these pseudo-control lines.

2-19/2-20

9000A-80186

Section 3
Information About Pod Signals

INTRODUCTION 3-1.

This section contains information about microprocessor signals, including
descriptions of the 80186 pin assignments and of the signals as they are implemented by
the Pod. It also includes descriptions of the psuedo-status and psuedo-control signals
that are created by the Pod itself.

This information, particularly that which describes unique characteristics of the
signals used by the Pod, will be useful during troubleshooting.

MICROPROCESSOR SIGNALS 3-2.

Table 3-1 lists all of the 80186 microprocessor signals and provides a brief description
of how each signal is handled by the Pod. Some of the lines are classified by the Pod as
Status Lines, Forcing Lines, Control Lines, or User-Enableable Lines. For

information about these signal classifications, see Status and Control Lines in Section
2.

Figure 3-1 shows the 80186 Pod and microprocessor pin assignments.

Refer to the microprocessor manufacturer’s literature for detailed design-level
information about the various microprocessor signals.

POD-GENERATED SIGNALS 3-3.
Introduction 3-4.

Pseudo-status and pseudo-control lines are Pod-created read-only information bits
that convey information about Pod or UUT operation that is not otherwise available
from the microprocessor- or UUT-generated signals. (Status and Control lines are
used by a microprocessor to exchange information with the rest of a system. See Status
and Control Lines in Section 2.) '

These psuedo lines are not actual lines that connect to the microprocessor, the UUT, or
the Pod. The Pod creates the information solely for display on the Troubleshooter.
The Troubleshooter displays them along with microprocessor/ UUT generated status
and control lines when information is requested (for example, by READ @ STS).
These lines provide you with added information about the results of Pod functions.
For'example, PWR FAIL is a Pod-generated status line that shows that power at the
UUT’s microprocessor socket is out of the range of 4.5 to 5.5 volts—information that is
not obtainable using only the microprocessor’s lines.

3-1

9000A-80186

3-2

Table 3-1. 80186 Pod Signal Descriptions

SIGNAL
NAME

PIN

DESCRIPTION

RESET

|

D
m
[/

) ¢

CLKOUT

57

24

59
58

56

In an 80186-based system, RESET is an asserted-high output signal
that indicates that the 80186 CPU is being reset.

For troubleshooting purposes, the Pod treats the RESET signal as a
Writeable Control line (see Table 2-3).

Normally, the Pod does not assert the RESET signal at the UUT if the
Pod and its microprocessor are being reset by the Troubleshooter.
However, the Pod may be configured so thatit DOES assertthe RESET
outputsignal under such a condition. (See Changing Pod Characteris-
tics in Section 4.)

In an 80186-based system, the RES signal is an asserted-low Schmitt-
trigger input to the microprocessor. When asserted, the RES signal
suspends all operations of the microprocessor, and resets all internal
registers. Instruction execution does not begin again until the RES
signal is returned to a high logic level.

The Pod treats the RES signal from the UUT as an asserted-low
Forcing (Status) fine (see Table 2-2). Except during RUNUUT, the RES
input from the UUT is always disabled from reaching the Pod’s
microprocessor.

These signals are connections to an external crystal (both X1 and X2)
or external clock oscillator (X1 only). The applied frequency is divided
in half by the Pod’s microprocessor and used for the internal micropro-
cessor clock.

CAUTION

The X1 and X2 clock lines do NOT have the input overioad protection
that all other signal connections between the Pod and the UUT have.
Voltages on these signal lines greater than +5.5V dc or less than -0.5V
dc may damage components within the Pod.

CLKOUT is a square-wave output signal that makes the internal clock
of the 80186 microprocessor available to the remainder of the system.
The frequency of the CLKOUT signal is one half the frequency of the
signal(s) being applied to the X1 and X2 pins (see above).

The CLKOUT signal of the Pod is connected from the Pod’s micropro-
cessor to the UUT without being buffered, and is therefore not putinto a
high-impedance state during a low power condition on the UUT. The
CLKOUT signal does, however, pass through the Pod's hybrid protec-
tion networks. (See Section 5, Theory of Operation, for more informa-
tion about the hybrid protection networks.) The drivability of the
CLKOUT signal is not checked by the Pod.

Table 3-1. 80186 Pod Signal Descriptions (cont)

9000A-80186

SIGNAL
NAME

PIN

DESCRIPTION

TEST

TMR IN O
TMR IN 1

TMR OUT 0
TMR OUT 1

DRQO
DRQ1

NMI

INTO
INT1

INT2/INTAO
INT3/INTA1

47

20
21

22
23

18
19

46

45
44

42
a1

In an 80186-based micro-system, TEST is an input signal used to
suspend instruction execution if it is sampled high upon execution of
the WAIT instruction.

Except during the RUN UUT mode, the UUT’s TEST signal is always
disabled from affecting the operation of the Pod’s microprocessor.
TEST is reported by the Pod as a Status line (see Table 2-2).

These two Timer Input signals can be used as either clock or control
signals for the internal peripheral timers of the 80186 microprocessor.

These two inputs are always enabled to the Pod’s microprocessor—
thus allowing operation of the timers in the Pod’s microprocessor atall
times. The Pod treats these two signals as Status lines (see Table 2-2).

These two signals are outputs of the 80186 microprocessor’s internal
peripheral timers.

The Pod always enables these outputs to the UUT (except for a short
time during BUS TEST) — thus allowing operation of the timers in the
Pod's microprocessor at all times. The Pod treats these two outputs as
control lines (see Table 2-3). These outputs are put into a high-
impedance state by the Pod during a low power condition (UUT power
supply voltage below 3.5V).

These two DMA-Request signals are activated by devices requesting
one of the two DMA transfer channels of the 80186 microprocessor.

Except during RUN UUT mode, DRQO and DRQ1 are disabled from
reaching the Pod’s microprocessor. The Pod treats DRQ 0 and DRQ 1
as Forcing (Status) lines (see Table 2-2).

In an 80186-based system, NM! is an asserted-high, non-maskable,
edge-triggered interrupt to the microprocessor.

Except during RUN UUT mode, NMlI is always disabled from reaching
the Pod’s microprocessor. NMl is reported by the Pod as a Status line
(see Table 2-2).

In an 80186-based system, INTO and INT1 are input signals to the
microprocessor for requesting maskable interrupts.

Depending upon how the Pod is configured, INTO and INT1 may or may
not be allowed to interrupt the Pod’s microprocessor during trouble-
shooting operations. See Configuring Interrupts in Section 4 for more
information.

In an 80186-based system, INT2/INTAO and INT3/INTA1 can be con-
figured as either maskable interrupt inputs, interrupt-acknowledge
outputs, or handshake lines for an external Programmable Interrupt
Controller (PIC).

The Pod can be configured to provide all possible functions of these
lines during troubleshooting operations as well as during the RUN UUT
mode.

3-3

9000A-80186

3-4

Table 3-1. 80186 Pod Signal Descriptions (cont)

SIGNAL
NAME

PIN

DESCRIPTION

A19/56
A18/85
A17/84
A16/S3

joy)
I
m

ADO-AD15

ALE/QSO

WR/QS1

65
66
67
68

64

10-17,

1-8

61

63

A16-A19 are the four most-significant address output signals of the
80186 microprocessor (and of the Pod). These signals are time-
multiplexed with the Bus Cycle Status output signals S3-S6.

The 80186 microprocessor (and the Pod) generates A16-A19 during T1
of a bus cycle, and S3-S6 during T2, Tw, T3, and T4 of the same bus
cycle. S6is held low by the Pod to indicate that a bus cycleisaNormal
access; S6 is held high to indicate that the bus cycle is a DMA transfer.
(See Pod Addresses in Section 2 for more information.) S6 is reported
by the Pod as a Control Line (see Table 2-3). $3-S5 are always held low
by the Pod, and are not checked for drivability.

BHE (Bus High Enable) is an output signal of the 80186 microprocessor
(and of the Pod) that, when asserted (low), denotes that data on the
upper half of the data bus is valid. BHE is valid for the entire length of a
bus cycle. BHE is reported by the Pod as a Control Line (see Table 2-3).

These are multiplexed address and data signals of the 80186 micro-
processor (and the Pod). The address output signals (AO-A15) are
generated during T1 of a bus cycle. Data is placed on the bi-directional
data bus (DO-D15) during T2, Tw, T3, and T4 by an external device
during a READ bus cycle, or by the microprocessor (and the Pod)
during a WRITE bus cycle.

In the Normal mode of the 80186 microprocessor (and the Pod), the ALE
(Address Latch Enable) output is provided to latch the address signals
(A0-A19) into external devices. In the Queue Status mode, QS0 com-
bines with QS1 to provide information about the 80186 microproces-
sor's internal instruction queue. (When the Pod is in the Queue Status
mode, QS0 and QS1 provide information about the internal instruction
queue of the Pod’s microprocessor.)

ALE/QSQ is reported by the Pod as a Control Line. When the Pod is in
the Queue Status mode, QSO is a user-writable control line. (See Table
2-3)

In the Normal mode of the 80186 microprocessor (and the Pod), the WR
(Write) output strobe is provided to enable data into external devices
during WRITE bus cycles. In the Queue Status mode, QS1 combines
with QSO0 to provide information about the 80186 microprocessor’s
internal instruction queue. (When the Pod is in the Queue Status mode,
QS0 and QS1 provide information about the internal instruction queue
of the Pod’s microprocessor.)

WR/QS1 is reported by the Pod as a Control Line. When the Pod is in
the Queue Status mode, QS1 is a user-writable control line. (See Table
2-3)

9000A-80186

Table 3-1. 80186 Pod Signal Descriptions (cont)

SIGNAL

NAME PIN DESCRIPTION

RD/QSMD 62 In the Normal mode of the 80186 microprocessor (and the Pod), the RD
(Read) output strobe is provided to enable data from external devices
into the microprocessor (and the Pod) during READ bus cycles. If the
RD/QSMD line s tied low on a UUT when the Pod is being reset (either
by the Troubleshooter or by a power-up), the Pod will go into the Queue
Status mode. In the Queue Status mode, the Pod provides the QS0 and
QS1 output signals (see above). If the RD/QSMD line is not tied low, the
Pod will remain in the Normal mode. In the Normal mode, the Pod
provides the ALE, RD, and WR output strobes.

RD is reported by the Pod as a Control Line (see Table 2-3). QSMD is
reported as a Status Line (see Table 2-2))

ARDY 55 ARDY (Asynchronous Ready) and SRDY (Synchronous Ready) micro-
SRDY 49 processor (and the Pod). Assertion of either of these signals indicates
thata data transfer from an addressed memory space orand |/ O device
can be completed. If both signals are held low atthe proper times, Wait
States will be inserted into the current bus cycle until either signal
becomes asserted (high).

The Pod treats these inputs as Enableable Status lines; They are
normally enabled to reach the Pod’s microprocessor. If enabled, and
held or “stuck” low on the UUT, these signals will suspend Pod opera-
tionsanda POD TIMEOUT will occur. ARDY and SRDY can be disabled
from reaching the Pod’s microprocessor using the Troubleshooter’s
SETUP function. (See Status Lines in Section 2 for more information.)
When disabled, these signals are treated as Forcing lines by the Pod
(see Table 2-2).

LOCK 48 When asserted (low), the LOCK output signal of the 80186 micropro-
cessor (and the Pod) denotes that other other system bus controllers
may not have control over the multiplexed address/data bus.

LOCK is reported by the Pod as a Control Line (see Table 2-3), and is
user-writable.

52 50, 51, and S2 are output signals of the 80186 microprocessor (and the
53 Pod) that define the type of bus cycle being performed. The bus cycle
54 type is defined according to the following table (1 = Logic High, 0 =
Logic Low):

Qg

Type of Bus Cycle

Interrupt Acknowledge
1/0 Read

1/0 Write

Halt

Instruction Fetch
Memory Read

Memory Write

No Bus Cycle

- - o a000O0 U)I
N
— 2 00= =200 (nl
-
-0 =20=0=0 ml
=

80, S1,and S2 are reported by the Pod as Control Lines (see Table 2-3).

3-5

9000A-80186

3-6

Table 3-1. 80186 Pod Signal Descriptions (cont)

SIGNAL
NAME

PIN

DESCRIPTION

HOLD

HLDA

CHIP SELECT
OUTPUTS

50

51

(SEE
BELOW)

HOLD is an asserted-high inputto the 80186 micro-processor (and the
Pod). When asserted (high), HOLD denotes that another bus controller
is requesting control of the local bus. The 80186 microprocessor
responds to a HOLD input by asserting the HLDA output (see below)
and by placing the microprocessor’s bus into a high-impedance state.

The HOLD inputis treated by the Pod as an Enableable Status Line, and
is normally enabled to reach the Pod’s microprocessor. When the
HOLD input is enabled and becomes asserted, the Pod responds by
asserting its HLDA output (see below) and by placing the Pod’s external
bus into a high-impedance state (see Special Signal States in this
section). If the HOLD input is enabled, and held or “stuck” high on the
UUT, operation of the Pod can suspend, causing a POD TIMEOUT. The
HOLD line can be disabled from reaching the Pod’s microprocessor
using the SETUP function of the Troubleshooter. When disabled, the
HOLD input is reported as a Forcing Line by the Pod (see Table 2-2).

The HLDA output of the 80186 microprocessor (and the Pod) is
asserted (high) to acknowledge that an external device may drive the
microprocessor’'s bus. The HLDA output is asserted in response to
assertion of the HOLD input; HLDA then goes low shortly after HOLD is
driven low. When HLDA becomes asserted, the microprocessor’s bus
is placed in a high-impedance state. (See Special Signal States in this
section for a list of the Pod’s signals that are placed in a high-
impedance state in response to an asserted HLDA signal.)

Note thatifthe HOLD input to the Pod is disabled (see above), the HLDA
output is never asserted by the Pod in response to an asserted HOLD
input. HLDA is reported by the Pod as a Control Line (see Table 2-3).
HLDA is user-writable.

NOTE

The Pod'’s bus is NOT put into a high-impedance condition when HLDA
is asserted by the Pod during a WRITE CTL UUT access.

The 80186 microprocessor (and the Pod) has 13 OUTPUTS asserted-
low Chip Select output signals. These outputs are used to select spe-
cific memory or I/0 devices within distinct address spaces in an
80186-based system. The address space in which each Chip Select
line becomes asserted (low) is software programmable (in the Pod as
well as in the 80186 microprocessor). See Configuring Chip Selects in
Section 4B for more information.

The Pod collectively treats the Chip Select outputs as a “Pseudo
Control Line” called CHIP SELECT ERROR (see Table 2-3). If the Pod
dectects that one or more of the Chip Select outputs is notdrivable, the
Pod reports a Control Error on the CHIP SELECT ERROR control line.
Which Chip Select line(s) caused the error can be determined by a
READ at a special “Pod Function” address (see Determining Errors in
Section 4B).

Table 3-1. 80186 Pod Signal Descriptions (cont)

SIGNAL
NAME

PIN

DESCRIPTION

[
(@]

.—
3
)

DT/R

O
m|
p=d

34

33

38
37
36
35

25
27
28
29
30
31
32

40

39

The function of the individual Chip Select outputs is described in the
paragraphs below.

The UCS (Upper Memory Chip Select) output is asserted (low) when-
ever an access is made to the upper portion of memory. The address
range of the UCS line is software programmabie to be from 1K (1024)
bytes wide (from FFCO0 to FFFFF) to 256K (262,144) bytes wide (from
C0000 to FFFFF).

The LCS (Lower Memory Chip Select) output is asserted (low) whe-
never an access is made to the lower portion of memory. The address
range of the LCS line is software programmable to be from 1K (1024)
bytes wide (from 0 to 3FF) to 256K (262,144) bytes wide (from O to.
3FFFF).

One of these Mid-Range Memory Chip Select outputs (MCS0-MCS3)
becomes asserted when an access is made to the area of memory for
which it has been programmed.

One of these Peripheral Chip Select output signals (PCS0-PCS6)
becomes asserted when an access is made to the area of memory or
1/0 space for which it has been programmed. Each peripheral Chip
Select line is valid over a 128-byte block of memory or 1/0 space; the
starting address of the address block over which the Peripheral Chip
Select lines become asserted is software programmable. PCS5 and
PCS6 can also be software programmed to provide Address bits 1 (A1)
and 2 (A2) during each bus cycle. Note that the Peripheral Chip Select
lines are the only Chip Select lines that can be programmed to be valid
in the 1/0 address space of the 80186 microprocessor (and the Pod).

DT/R (Data Transmit/Receive) is an output signal of the 80186 micro-
processor (and the Pod) that indicates whether data flow through an
external data bus transceiver is being transferred into the 80186 (DT/ R
low) or being transferred out onto the external data bus (DT/R high).

DT/R is reported by the Pod as a Control Line (see Table 2-3).

DEN (Data Enable) is an output signal of the 80186 microprocessor
(and the Pod) that enables the outputs of external data bus transceivers.
DEN is asserted during each memory or I/0 access and is notasserted
whenever DT/R changes state.

DEN is reported by the Pod as a Control Line (see Table 2-3).

9000A-80186

3-7

9000A-80186

Table 3-1. 80186 Pod Signal Descriptions (cont)

SIGNAL
NAME PIN DESCRIPTION
VCC1 9 These pins are connections to the 80186 microprocessor's +5 volt
VCC2 43 power supply.
The Pod does notreceive its operating power from these pins (the Pod
is powered by the Troubleshooter). The Pod monitors these pins for the
correct power supply voitage (+5V dc). If the voltage on either of these
pins is not within the range of +4.5V dc to +5.5V dc, the Pod will set the
PWR FAIL status line (see Table 2-2) and report a BAD POWER
SUPPLY to the Troubleshooter. If the voltage on both pins falls below
+3.5V dc, the Pod will place all of its output signals (except CLKOUT
and X2) into a high-impedance state, and the Pod will suspend its
operations. This will cause a UUT POWER FAIL - ATTEMPTING
RESET message to be displayed by the Troubleshooter when an opera-
tion requiring communication with the Pod is attempted.
GND 26 These pins are ground connections to the 80186 microprocessor.
GND 60
_"3 —
2328 BES o3
~ D D = =
EEEE S e
/ BERBIBUSRARSRBIANL
ADI5 | 51 HLDA
AD7 2 50 HOLD
ADI4 3 49 SRDY
ADG 4 48 LOCK
ADI3 5 PIN ASSIGNMENTS 47 TEST
ADS 6 46 NMI
AD12 7 45 INTO
AD4 8 44 INT1
+5V 9 80186 43 +5v
ADIl 10 LCC SOCKET 42 INT2/INTAD
AD3 11 41 INT3/INTA]
ADIO 12 40 DT/R
AD2 13 39 DEN
ADS 14 38 MCSO
ADI 15 37 MCS)
AD3 18 36 MCS?
ADD 17 35 MC
NE2RSNRIRERIIIS/IIT
s§§§§§LEEE§EE§§BE
EEss =
—

Figure 3-1. 80186 Pod and Microprocessor Pin Assignments

NOTE

In this manual, the terms Status and Control differ in meaning from the
same terms used in the microprocessor manufacturer’s literature. The
Troubleshooter considers input lines to the microprocessor to be Status
lines, and output lines to be Control lines.

The psuedo-status and psuedo-control lines are described below. Bit assignments for
the psuedo-status and psuedo-control lines are shown in Tables 2-3 and 2-4.

3-8

Psuedo-Status Lines 3-5.
INTRODUCTION 3-6.

Several of the status lines reported during a Read Status operation are generated by the
Pod and not by the UUT. These lines consist of PWR FAIL, INT VECT 0, INT VECT
1, ACTIVE INTR, and QSMD.

POWER FAIL (PWR FAIL) 3-7.

The PWR FAIL status line is set high by the Pod whenever UUT power supply voltage
on either of the 80186’ Vcc pins drops below 4.5 volts or rises above 5.5 volts.

INTERRUPT VECTORS (INT VECT O, INT VECT 1) 3-8.

These psuedo-status bits tell you that the Pod has performed an interrupt-
acknowledge sequence in response to an interrupt from one of two possible interrupt
channels. The INT VECT bits also indicate that the Pod has stored interrupt-type
information (and, possibly, a cascade address) that was generated by an external
Programmable Interrupt Controller.

The INT VECT 0 line is set whenever an interrupt acknowledge routine is performed
by the INTO, INT2/INTAOD pins, or whenever an interrupt-acknowledge routine is
performed in iRMX* mode and the external Programmable Interrupt Controller does
not select the internal interrupt controller of the Pod’s microprocessor to provide the
interrupt vector. (See the 80186 literature for explanations of these processes.)

The INT VECT 1 bit is set when an interrupt-acknowledge routine is performed by the
INTI1, INT3/INTAT pins (when the INT1 and INT3/INTAT lines are configured in
that mode)

NOTE

INT VECT 0 and INT VECT 1 are never set unless the corresponding
channel of the Pod’s Interrupt Controller has been programmed to the
proper mode. When either interrupt channel is programmed to have two
direct inputs (as opposed to an INT/INTA pair) the corresponding INT
VECT status bit is never set. Also, INT VECT I is never set when the
interrupt controller is programmed in iRM X mode.

INTVECT Oand INT VECT 1 are reset by using appropriate Pod Function addresses
(see Interrupt Acknowledge Addresses).

ACTIVE INTERRUPTS (ACTIVE INTR) 3-9.

This is a pseudo-status bit that informs the user that one or more external interrupts is
active. There can be from two to five external interrupt sources (including NMI),
depending upon how the Pod’s microprocessor is programmed. This bit can be
masked from being reported as active. For more information, including instructions
for determining the actual source of the interrupt, see Troubleshooting Interrupts in
Section 4. See Section 4B for informatin about using the Last Active Interrupt Pod
Function address to obtain more information about active interrupts.

QUEUE STATUS MODE (QSMD) 3-10.

The QSMD' status bit tells the user which mode the Pod’s microprocessor is in. If the
QSMD bit is low, the Pod is in the Queue Status mode. If QSMD s high, the Pod is in
the Normal Mode.

*{RMX is a registered trademark of the Intel Corporation.

9000A-80186

3-9

9000A-80186

The Pod uses the QSMD status bit to determine whether or not it should report
drivability errors on the RD/QSMD line. If the QSMD bit is low, the Pod is in Queue
Status mode and RD/QSMD will not be checked for drivability errors.

NOTE

If the Pod is in the Queue Status mode, the Pod will also output the QS0
and QS| signals instead of ALE and WR. In Queue Status mode, the QS0
and QS1 lines are writable control lines, the drivability of QS0 and QS1 is
not checked except during a BUS TEST or a WRITE CTL operation.

If QSMD is high, the Pod is in Normal mode, the Pod produces the RD, WR, and ALE
signals and will check the drivability of these lines during normal operations.

Pseudo-Control Lines 3-11.
INTRODUCTION 3-12.

Three of the Control lines are artificial signals that are generated by the Pod to provide
clues to possible failures. The three psuedo-control lines are INTA ERROR, TMR
OUT ERROR, and CHIP SEL ERROR. For information about locating and using
the information provided by these lines, see Determining Errors in Section 4B. These
three psuedo-control signals are used to report drivability errors to the
Troubleshooter, which, if not disabled, will display a CTL ERROR message.

INTA ERROR 3-13.

INTA ERROR is a pseudo-control line that is set when one or more of the INTA lines
is not driveable. (There can be 0, 1, or 2 INTA lines depending upon how the Pod is
programmed by the user.) The Pod keeps track of which lines are and are not
configured as INTA lines, and does not check the drivability of these interrupt lines if
they are not configured as INTA lines. See Section 4B for information about using the
Last INTA and TIMER OUT Driveability Error Pod Function address to isolate the
source of the INTA error.

TMR OUT ERROR 3-14.

TMR OUT ERROR is a pseudo-control line that is set when one or more of the TMR
OUT lines is not driveable. See Section 4B for information about using the Last INTA
and TIMER OUT Driveability Error Pod Function address to isolate the source of the
TMR OUT error.

CHIP SEL ERROR 3-15.

CHIP SEL ERROR is a pseudo-control line that gets set when one or more of the
Chip Select lines is not driveable. See Section 4B for information about using the Last
Chip Select Driveability Error Pod Function address to locate more information
about reporting chip select errors.

SPECIAL SIGNAL STATES 3-16.

When the Pod detects certain conditions that indicate abnormal power levels,
reset/initialization periods, or “Hold” states, it responds by driving selected signal
lines to a high-impedance state. This protects UUT circuitry from damage by signals
that might be present during those times. The specific conditions that initiate a reset
are:

® The power level at the UUT’s microprocessor socket drops below the 3.5 volt limit.
® A HOLD signal is asserted.

® The UUT sends an RES signal to the Pod (and the Pod’s microprocessor) during
RUN UUT.

® The Troubleshooter Resets the Pod (and the Pod’s microprocessor).
The lines that are set to high-impedance states are:
ADO - ADIS

A16/S3 - A19/S6
BOE

In addition, these other lines are set to a high-impedance state only when power drops
below the 3.5 volt limit:

INTAI

TMR OUT 0
TMR OUT 1
CHIP SELECTS

POD DRIVE CAPABILITY 3-17.

As a driving source on the UUT bus, the Pod provides equal to or better than normal
80186 current drive capability. All Pod inputs and outputs (except the clock lines X1
and X2) are TTL-compatible.

9000A-80186

3-11/3-12

INTRODUCTION

Section 4

Operating Information

4-1.

This Section contains descriptions of how the unique functions of the 9000A-80186
Interface Pod work. It also contains operating procedures that you will need to know
to use it. The Section is divided into two Subsections:

4A USING POD FUNCTIONS

4B CONFIGURING THE POD

Section 4A describes the way that you
use the various Pod functions to test a
UUT. These tests all involve active read
and write operations to check
components and functional circuits
(such as memory) on the UUT.

Section 4B describes the Pod
Functions that may be used to
configure the Pod so that its
characteristics correspond to those
required by the UUT. It also describes
the Pod Function addresses that you
can use to extract detailed UUT-error
analysis information from the Pod
after UUT operations are completed.

Together with the Troubleshooter Operator and Programming manuals, this
information provides complete instructions for operating the Troubleshooter and Pod

with 80186-based systems.

4-1/4-2

Section 4A
Using Pod Functions

INTRODUCTION 4A-1.

This section describes how to use Pod Functions to test components and circuitry on a
UUT. It includes these subjects:

Testing RAM Quickly How to use the Pod’s Quick RAM tests to
perform high-speed evaluation of blocks of
RAM memory.

Testing ROM Quickly How to use the Pod’s Quick ROM testtodo
high-speed testing of blocks of ROM
memory.

Using the Quick Ramp Function Using the Pod’s Quick Ramp function to
create probe signatures for a fast signature
analysis of data signals on the UUT.

Using the Pod with an Oscilloscope How to use the Pod’s Quick Looping
function to enhance an oscilloscope display,
and how the different sync modes work.

Testing Interrupt Circuitry Using the Pod to evaluate Interrupt circuitry
on the UUT.

Testing DMA Circuitry Using the Pod to check a UUT’s DMA
functions.

Using the RUN UUT Mode How to exercise the UUT by using the Pod

to emulate its microprocessor.

Before using the information in this Section, you should have already connected the
Pod to the Troubleshooter and UUT, and configured it to your UUT’s characteristics
(as described in Sections 2 and 4B).

TESTING RAM QUICKLY 4A-2.
Introduction 4A-3.

The Pod provides several Quick Tests and Functions that allow you to conduct
high-speed tests and verifications on RAM memory in the UUT. They allow you to do
simple Read/Write and Pattern Verify tests on large portions of memory. The

9000A-80186

4A-1

9000A-80186

4A-2

diagnostics performed by the Pod during the execution of these Quick functions are
less rigorous than the diagnostics performed during the execution of the
Troubleshooter’s built-in tests. They should be used when high speed testing is worth
some sacrifice in thoroughness. Each function is described below.

Since the software routines that control these operations reside in the Pod and not in
the Troubleshooter like the other tests and functions, you select these functions by
writing to and reading from Pod Function addresses in the format shown below. The
normal 20-bit address and Pod control bits are used to specify the physical address and
access type. In addition to those 6 hexadecimal digits, another hex digit is placed in the
seventh hex digit of the “address” to denote which of the Quick Functions or Tests are
to be used. This simple process is described in detail in the following paragraphs.

x

0000 XXXX XXXX AAAA AAAA AAAA AAAA AAAA (binary)
I I |

20-bit Memory Address

Address Control Bits

Quick Test Prefix: 0=No Quick Test
1=Quick Looping Function
2=Quick RAM Test
3=Quick ROM Test
4=Quick Fill and Quick Verify Functions
5=Quick Ramp Function

Always 0.

The same process is used to form the addresses for controlling the Quick ROM test (see
Testing ROM Quickly) and the Quick Looping test (see Using the Pod with an
Oscilloscope).

Appendix A contains a program that, when loaded into a 9010A or 9005A
Troubleshooter and executed, makes the Quick functions seem more like the
Troubleshooter’s built-in functions—you simply enter the address and data
information according to displayed prompts. The program is provided in two forms: as
a normal Troubleshooter source program and as a source program for the optional
9010 Language Compiler.

The Quick RAM Test 4A-4.

The Quick RAM Test allows you to test RAM address blocks more quickly than you
can by using the Troubleshooter’s RAM SHORT test. The Quick RAM Test is
considerably faster than the RAM Short test and is almost as rigorous. The Quick
RAM test is particularly well suited for programming applications, because read/ write
and pattern errors will not interrupt the execution of a program, as they would if you
used the Troubleshooter’s RAM tests.

The Quick RAM Test is available in two variations: the normal RAM test and a
Pattern Verification test.

® The normal RAM test, which consists of two phases: the first test phase is a
read-write check, and the second checks address decoding. The read-write check is
performed by writing and reading a one and a zero to and from each bit of each test
address to ensure that there are no bits held high or low. After the read-write check
is completed, a unique bit pattern is written to each address. For the address
decoding check, the Pod reads each address and compares the read data with the
unique word that is expected.

® The Pattern Verification test simply verifies that memory still contains the data
that was last written in the Quick RAM test. Because dynamic RAM may often
retain data for a long time (as much as a minute) without being refreshed, the
Pattern Verification test is provided to check that the memory refresh is working
and that the memory is retaining data. If problems with dynamic RAM are
suspected, it is suggested that the pattern verification test be executed more than a
minute after a Quick RAM test has been performed.

Addresses to be used with a Quick RAM test are defined by placing a “2”in the seventh
hex digit of the address (2XX XXXX). Such addresses are not physical addresses in the
UUT’s address space—they are special read/write operations that the Pod uses to
control it’s built-in tests and functions.

Use the following procedure to perform a Quick RAM test on a section of the UUT’s
RAM memory:

1. Define the starting address by a WRITE @ 2XX XXX X=0, where XX XXXX
is the first address to be tested by the Quick RAM test. (The address must be
even in a word address space.)

2. Define the ending address, address increment, and test specification by asingle
WRITE @ 2YY YYYY=00ZN, where:

YY YYYY Is the desired ending address. The ending address must be
greater than the starting address.

Z Is the desired increment. If Z is omitted or specified as 0, the
address increment defaults to 2. (Must be an even value in a
word address space.)

N Is the test specification. N may be either

I = normal Quick RAM test
2 = Pattern Verification test

00 If specified, the-most significant two digits of the data must be
ZETOoSs.

The Quick RAM Test begins execution as soon as you complete the entry of the ending
address. During and after execution of the test, the Troubleshooter will not display any
information about the progress or results of the test unless you request it. The test may
be aborted before completion by selecting another operation.

NOTE
The address-control bits (A20-A22) must be the same values for both the

starting and ending address. Otherwise, the test will return an abort code
A2 (illegal address in command).

9000A-80186

4A-3

9000A-80186

4A-4

To determine if the Quick RAM Test is still in progress, or what the test results are, you
should perform a Read at the ending address.

® Press READ @ ENTER to command a READ operation at the last-entered
address.

The Troubleshooter will display a code indicating the status of the test or the test
results. The status codes and their meanings are shown in Table 4A-1.

Several read-only Pod Function addresses in the 200 00XX range contain additional
information about the Quick RAM Test, including records of addresses used and any
errors detected. The Pod Function addresses for the Quick RAM test are described in
Table 4A-1.

NOTE

Unless the test has been started, the information contained at these Pod
Function addresses will pertain to a previous test rather than the current
test. Trying to read any of these addresses (or doing any other operation
except a Read) while the current test is in progress will abort the test.

The following example demonstrates the simple procedure used to specify a Quick
RAM test. Assume that the UUT has 4K of RAM memory, from address 1 5000
through 1 SFFF. To test the entire 4K of RAM, it would be best to use word accesses.
The Quick RAM specification would look like this:

WRITE @ 201 5000=0
WRITE @ 201 5FFE=1 (or =21)

Line | defines the starting address to be 1 5000. Line 2 defines the ending address to be |
5FFE and the test to be a full RAM test (as opposed to the Pattern Verification test)
with an increment of 2 (by default). It also causes the test to start.

To monitor the test results and look for any error codes that might result from the test
do

READ @ ENTER

If an error occurs, you can check for more detailed information about the failure by
reading the associated Pod Function addresses in the 2000 00X X range. For example,
you can find the low word of the address where the error occurred by

READ @ 200 2008
You can get a hex mask of any bad data bits by
READ @ 200 2012

The information from all of the other Pod Function addresses is retrieved in the same
manner.

Table 4A-1. Quick RAM Test

ACTION MEANING
WRITE @ 2XX XXXX = 0 XX XXXX = starting address.
WRITE @ 2YY YYYY = 00ZN YY YYYY = ending address

READ @ ENTER

READ @ 200 0000
READ @ 200 0002
READ @ 200 0004
READ @ 200 0006
READ @ 200 0008
READ @ 200 000A
READ @ 200 000C
READ @ 200 000E
READ @ 200 0010

READ @ 200 0012
READ @ 200 0014

Z = increment
1 = byte addresses
0,2 = word addresses
N = function type
1 = RAM test
2 = Pattern Verify
3 = RAM Test then Pattern Verify

Returns status as follows:

CODE | MEANING

0000 No test requested

00AO Aborted, new command entered
00A1 Aborted, illegal data in cmd
00A2 Aborted, illegal adr in cmd
00A3 Aborted, pod timeout occurred
0080 Busy, performing rd/wr check
0081 Busy, performing adr dcd check
0082 Busy, performing pattern verify
00CO0 Complete, no errors

00F0 Failed, read/write error

00F1 Failed, address decoding error
00F2 Failed, pattern verify error

Low word of starting address

High word of starting address

Low word of ending address

High word of ending address

Low word of error address

High word of error address

Data expected at error address

Actual data returned from error address
Returns most recent code (same code as
returned by READ @ ENTER)

Hex mask of error bits

Returns increment and function type

To check the refresh function in this same section of memory, wait a short time to allow
the memory to decay (if the refresh is not working) then perform a Pattern Verification
test. To begin, enter

WRITE @ 201 5SFFE=2 (or =22)

The specification for the starting address remains the same as the previous Quick
RAM test and does not need to be repeated. This new line specifies the same ending
address, only this time using the Pattern Verification test. As before, you can press

9000A-80186

4A-5

9000A-80186

4A-6

READ @ ENTER

to check the progress of the test and, afterwards, the corresponding Pod Function
address will again contain other information about the test.

The Quick Fill and Quick Verify Functions 4A-5.

The Quick Fill and Quick Verify functions allow you to fill blocks of memory with the
same value of data and then verify the accuracy of the contents. The Quick Fill
function works much faster than if the equivalent operation is programmed from a
series of Troubleshooter Write commands. The Quick Fill and Quick Verify functions
allow you to customize special memory diagnostics, such as might be desirable when
testing a memory-mapped video display. You could, for example, just fill the video
memory with a known data value, then simply look for errors on the UUT’s video
display.

The Quick Fill and Quick Verify functions may be used individually or they may be
specified to work together in one step.

The Quick Fill and Quick Verify functions are controlled by writing setup information
into Pod Function addresses in the same manner as the Quick RAM test described
above.

® The Quick Fill function will write the data that is contained in the starting address
to all of the addresses in the block.

® The Quick Verify function will read data from all of the addresses in the block an
compare each one to the data contained in the starting address. Errors will be
reported via the Pod Function addresses described below.

Addresses to be used with a Fill and Verify function are defined by placing a “4” into

the seventh hex digit of the address (4XX XXXX). Such addresses are not physical

addresses in the UUT’s address space—they are special read/ write operations that the

Pod uses to control it’s built-in tests and functions.

Use the following procedure to perform one of the Fill and Verify functions on a
section of the UUT’s RAM miemory:

1. Specify the data to be used by a WRITE @ XX XXXX = DDDD, where:
XX XXXX Is the starting address (including control bits).

DDDD Is the data to be filled throughout the defined address block.

NOTE

This step is only used with the Quick Fill function.

2. Define the starting address by a WRITE @ 4XX XXX X=0, where XX XXXX
is the starting address. (Must be even in a word address space.)

3. Define the ending address, address increment, and test specification by asingle
WRITE @ 4YY YYYY=00ZN, where:

YY YYYY Is the desired ending address. The ending address must be
greater than the starting address.

4 Is the desired increment. If Z is omitted or specified as 0, the
address increment defaults to 2. (Must be even in a word
address space.)

N Is the test specification. N may be either

1 = Quick Fill function
2 = Quick Verify function
3 = Quick Fill and Quick Verify functions

00 If specified, the most-significant two digits of the data must be
Z€eros.

The Quick Fill and Quick Verify functions begin execution as soon as you complete the
entry of the ending address. During and after execution of the functions, the
Troubleshooter will not display any information about the progress or results of the
functions unless you request it. The functions may be aborted before completion by
selecting another operation.

NOTE

If you specify a beginning address that is not readable or writable, the
Quick Fill or Quick Verify functions may write or read incorrect data at
the remaining addresses.

NOTE

The address-control bits (A20-A22) must be the same values for both the
starting and ending address. Otherwise, the test will return an abort code
A2 (illegal address in command).

To determine if the Quick Fill or Quick Verify function is still in progress, or what the
results are, you should perform a Read at the ending address. '

® Press READ @ ENTER to command a READ operation at the last-entered
address.

The Troubleshooter will display a code indicating the status of the test or the results.
The status codes and their meanings are shown in Table 4A-2.

Several read-only Pod Function addresses in the 400 00XX range contain additional
information about the Quick Fill and Quick Verify function, including records of
addresses used and errors. The Pod Function addresses for the Quick Fill and Quick
Verify functions are also described in Table 4A-2.

NOTE

Unless the function has been started, the information contained at the
Pod Function addresses will pertain to a previous test rather than the
current function. Trying to read any of these addresses (or doing any
other operation except a Read at the last test address) while the current
Sfunction is in progress will abort it.

9000A-80186

4A-7

9000A-80186

Table 4A-2. Quick Fill and Verify Function

ACTION MEANING
WRITE @ 4XX XXXX = 0 XX XXXX = starting address.
WRITE @ 4YY YYYY = 00ZN YY YYYY = ending address

Z = increment

1 = byte addresses

0,2 = word addresses
N = function type

1 =Fill

2 = Verify

3 = Fill then Verify
READ @ ENTER Returns status as follows:

CODE | MEANING

0000 No test requested

00AO0 Aborted, new command entered
00A1 Aborted, illegal data in cmd
00A2 Aborted, illegal adr in cmd
00A3 Aborted, pod timeout occurred
00BO Busy, performing fill

00B1 Busy, performing verify

00CO Complete, no errors

00FO0 Failed, data does not match

READ @ 400 0000
READ @ 400 0002
READ @ 400 0004
READ @ 400 0006
READ @ 400 0008
READ @ 400 O00A
READ @ 400 000C
READ @ 400 00OE
READ @ 400 0010
READ @ 400 0012

Low word of starting address

High word of starting address

Low word of ending address

High word of ending address

Low word of error address

High word of error address

Data written by fill

Actual data returned from error address
Returns most recent code

Hex mask of error bits

READ @ 400 0014 Returns address increment and function type

The following example demonstrates the simple procedure used to conduct a
combined Quick Fill and Quick Verify function. To specify the functions over the
RAM addresses 1 2000 through 1 2FFF with the default address increment of 2 and
data 5555, do the following two operations:

WRITE @ 1 2000-5555
WRITE @ 401 2000=0
WRITE @ 401 2FFE=3

Line | inserts the data to be used into the first address. Line 2 defines the starting
address to be 1 2000. Line 3 defines the ending address to be | 2FFE and the testtobe a
combined Quick Fill and Quick Verify function with an increment of 2 (by default). It
also causes the function to start.

4A-8

9000A-80186

To monitor the test results and look for any error codes that might result from the test
press

READ @ ENTER

If an error occurs, you can check for more detailed information about the failure by
reading the associated Pod Function addresses.

TESTING ROM QUICKLY 4A-6.

The Qulck ROM Test allows you to test ROM address blocks more quickly than you
can by using the Troubleshooter’s built-in ROM Test. The Quick ROM Test is not as
rigorous and reliable as the signature analysis used by the Troubleshooter’s built-in
ROM Test, nor does the Quick ROM Test have as extensive an error reporting
capability. However, the Quick ROM Test can detect inactive data bits, and the
checksum can be used to detect a faulty ROM device with a high degree of confidence.

The Quick ROM Test works much like the Quick RAM Test described above.
Addresses to be used with a Quick ROM test are defined by placing a “3” in the seventh
hex digit space of the address (3XX XXXX). Such addresses are not physical addresses
in the UUT’s address space—they are special read/ write operations that the Pod uses
to control its built-in tests and functions.

Use the following procedure to perform a Quick ROM test on a section of the UUT’s
ROM memory:

1. Define the starting address by a WRITE @ 3 XX XXX X=0, where XX XXXX
is the first address to be used by the Quick ROM test. (Must be even in a word
address space.)

2. Define the ending address and address increment by a single WRITE@ 3YY
YYYY=00Z1, where:

YYYYYY Is the desired ending address. The ending address must be
greater than the starting address.

zZ Is the desired increment. If Z is omitted or specified as 0, the
address increment defaults to 2. (Must be even in a word
address space.)

1 Denotes “Ending Address”.
00 If specified, the most-significant two digits must be zeros.

The Quick ROM Test begins execution as soon as you complete the entry of the ending
address. During and after execution of the test, the Troubleshooter will not display any
information about the progress or results of the test unless you request it. The test may
be aborted before completion by selecting another operation.

NOTE

The address-control bits (A20-A22) must be the same values for both the
starting and ending address. Otherwise, the test will return an abort code
A2 (illegal address in command).

4A-9

9000A-80186

4A-10

To determine if the Quick ROM Test is still in progress, or what the test results are, you
should perform a Read at the ending address. The Troubleshooter will display a code
indicating the status of the test or the test results. The status codes and their meanings
are shown in Table 4A-3.

® Press READ @ ENTER to command a READ operation at the last entered
address.

Several read-only Pod Function addresses in the 300 00X X range contain additional
information about the Quick ROM Test, including records of addresses used and any
errors detected. The Pod Function addresses for the Quick ROM test are described in
Table 4A-3.

NOTE

Unless the test has been started, the information contained at the Pod
Function addresses will pertain to a previous test rather than the current
test. Trying to read any of them (or perform any other operation excepta
Read at the last test address) while the current test is in progress will abort
.

Table 4A-3. Quick ROM Test

ACTION MEANING
WRITE @ 3XX XXXX = 0 XX XXXX = starting address.
WRITE @ 3YY YYYY = 00Z1 YY YYYY = ending address
Z = increment
1 = byte addresses
0,2 = word addresses
READ @ ENTER Returns status as follows:
CODE MEANING
0000 No test requested
00A0 Aborted, new command entered
00A1 Aborted, illegal data in cmd
00A2 Aborted, illegal adr in cmd
00A3 Aborted, Pod timeout occurred
00B0 Busy, test in progress
00B1 Busy, performing verify
00CO Complete, no errors
00C1 Complete, inactive bits detected
READ @ 300 0000 Low word of starting address
READ @ 300 0002 High word of starting address
READ @ 300 0004 Low word of ending address
READ @ 300 0006 High word of ending address
READ @ 300 000C Checksum
READ @ 300 000E Hex mask of bits detected as inactive
READ @ 300 0010 Returns most recent error code
READ @ 300 0014 Returns address increment

9000A-80186

The following example demonstrates the simple procedure to conduct a Quick ROM
test. Assume that a UUT has 8K of ROM memory, from F C000 through F FFFF,
using four 2K X 8 ROM chips. To test properly, you need to have a separate test for
each ROM device. This means that you’ll have to divide the total address block in half,
and test both upper and lower bytes separately in each of these half blocks. This makes
two address ranges: F C000-F DFFF and F E000-F FFFF. To test the upper byte in the
first block, you would perform the following operations:

WRITE @ 38F C000=0
WRITE @ 38F DFFE=21

Line | defines the starting address of the Quick ROM test to be F C000, with byte
accesses. Line 2 defines the ending address to be F DFFE, with byte accesses, and the
test to been done with an increment of 2 so as to access only the upper (even) bytes. It
also causes the test to start.

To monitor the test results and look for any error codes that might result from the test,
press

READ @ ENTER

If an error occurs, you can check for more detailed information about the failure by
reading the associated Pod Function addresses.

To test the lower byte in the same address range, you would use a similar command,
but start the test at the odd address.

WRITE @ 34F C001=-0
WRITE @ 34F DFFF=21

This will test the remaining ROM chip that provides the odd byte. As before, you can
monitor the test results and look for any error codes that might result from the test by
pressing

READ @ ENTER

NOTE

The only error that will be indicated is one for stuck bits. The test will
always return a checksum value to address 300 000C, but there will be no
indication whether this is the correct value. You must compare this
calculated value with a known good value to determine if the Quick ROM

test passed.
USING THE QUICK RAMP FUNCTION 4A-7.
Introduction 4A-8.

The Quick Ramp function allows you to do a rapid write of data, ramping from 0000 to
FFFF at a single memory address. Like the quick memory tests described above, the
Quick Ramp function is similar to the Troubleshooter’s built-in tests, only much
faster. It is controlled by writing setup information into Pod Function addresses in the
same manner as the other quick tests and functions.

4A-11

9000A-80186

4A-12

Addresses to be used with a Quick Ramp function are defined by placing a“5” into the
seventh digit of the address (5XX XXXX). Such addresses are not physical addresses
in the UUT’s address space—they are special read/ write operations that the Pod uses
to control it’s built-in tests and functions.

Use the following single-step procedure to perform a Quick Ramp function on an
address in the UUT’s RAM memory:

1. Define the address by a WRITE @ 5XX XXXX=0, where XX XXXX is the
address to be used with the Quick Ramp function.

NOTE

The Quick Ramp function s illegal at a byte address. It will default to the
next lowest address if a byte address is specified.

The Quick Ramp function begins execution as soon as you complete the entry. It
begins by writing the data value 0000 to the specified address. It follows with 65, 535
Write operations, incrementing the data each time until the data equals FFFF. During
and after execution of the function, the Troubleshooter will not display any
information about the progress or results of the function unless you request it. The
function may be aborted before completion by selecting another operation.

To determine if the Quick Ramp function is still in progress, or what the results are,
you should perform a Read at the last entered address.

® Press READ @ ENTER to command a READ operation at the last entered
address.

The Troubleshooter will display a code indicating the status of the function. The status
codes and their meanings are shown in Table 4A-4.

Several read-only Pod Function addresses in the 500 00XX range contain additional
information about the Quick Ramp function. The Pod Function addresses for the
Quick Ramp function are also described in Table 4A-4.

Table 4A-4. Quick Ramp Functions

ACTION MEANING

WRITE @ 5XX XXXX = ZZZZ XX XXXX = Ramp address
Z2Z2ZZ - any data

READ @ ENTER Returns status as follows:
CODE MEANING

0000 No test requested

00A0 Aborted, new command entered
00A2 Aborted, illegal adr in cmd
00A3 Aborted, Pod timeout occurred
00BO Busy, performing ramp

00CO Complete

READ @ 500 0000 Low word of address
READ @ 500 0002 High word of address
READ @ 500 0010 Returns most recent code

9000A-80186

NOTE

Unless the function has been started, the information contained at the
special addresses will pertain to a previous test rather than the current
function. Trying to read any of these addresses (or doing any other
operation except a Read at the last test address) while the current
function is in progress will abort it.

The following example demonstrates the simple procedure used to perform a Ramp
function. To specify a Ramp function at address 4 2F0A, do the following operation:

WRITE @ 504 2F0A=0

To see if the Ramp function has been completed, or if it has aborted, press
READ @ ENTER

Generating Probe Signatures 4A-9.

The Quick Ramp function is commonly used as a stimulus for creating probe
signatures. The Troubleshooter Operator manual contains complete information on
how to conduct a signature analysis investigation on your UUT. The basic procedure
using the Pod’s Quick Ramp function is as follows:

1. Press PROBE SYNC D to select the data sync mode for the probe.
2. Probe the selected data-related signal on the UUT.

3. Press READ PROBE to clear the probe.

4. Do the Quick Ramp function, using the procedure indicated above.
5. Press READ PROBE to read the probe.

6. Compare the displayed signature with the expected signature.

USING THE POD WITH AN OSCILLOSCOPE 4A-10.
Introduction 4A-11.

When you use an oscilloscope in conjunction with a Troubleshooter and Pod to
investigate a UUT, you should be familiar with two Pod-specific items: the Quick-
Looping Function and the Synchronization modes.

The primary use of the Pod’s built in Quick-Looping function is to increase the
repetition rate of the oscilloscope display to enhance its brightness. The Using the
Quick-Looping Function description below provides instructions for using this useful
feature.

The Troubleshooter’s Trigger Output can be used to synchronize your oscilloscope
with specific cycles of Pod operations. The Probe and Synchronization Modes topic
below describes the synchronization modes that are provided by the 80186 Pod, for the
Troubleshooter’s probe as well as an oscilloscope.

4A-13

9000A-80186

4A-14

Using the Quick-Looping Function 4A-12.

The Quick-Looping read or write function is used primarily for brightening the display
on an oscilloscope that is synchronized to the TRIGGER OUTPUT pulse (on the
Troubleshooter’s rear panel). When looping on a Troubleshooter function, the signal
trace on the oscilloscope screen is dim due to a low repetition rate; the Quick-Looping
function can increase the repetition rate to make the signal trace much more visible.

To select the Quick-Looping function at address XX XXXX, place a“1”in the seventh
hex digit of the address so that it becomes 1XX XXXX. The Pod first performs a read
or write operation at address XX XXXX in the normal manner, reporting to the
Troubleshooter any UUT system errors that might be detected (such as ACTIVE
FORCE LINE, or CTL ERR, etc.). Then, the Pod enters the Quick Looping mode
where the read or write operation is performed several times faster than the ordinary
Looping mode that is specified by pressing the LOOP key on the Troubleshooter
keyboard. During Quick Looping, the Pod does not check for any UUT system errors
that may occur. Quick Looping continues until the operator selects another operation.

For example, if the operator specifies the operation READ @ 120 F000, the Pod will
perform a Quick-Looping Read operation at the address 20 FO00 (an I/ O access at 0
F000). If the operator specifies the operation WRITE @ 140 B007 = 2F, the Pod will
perform a Quick-Looping Write operation at address 40 B007 (a byte access to address
0 B007), writing the data 2F.

The Quick-Looping function may be used with read or write operations at any valid
address, and any of the special interrupt function addresses listed in a later section
titled Interrupt Handling. The Quick-Looping function is not intended to be used with
any of the other troubleshooting functions or tests.

If both error reporting and the Quick Looping feature are desired, you may apply the
ordinary Troubleshooter Looping function to the Quick-Looping read or write, such
as READ @ 1XX XXXX LOOP. The Troubleshooter will command read operations
at address XX XXXX at the normal looping speed with full error reporting. For every
ordinary read operation, the Pod will interject a few Quick-Looping read operations
(with no error reporting) which will enhance oscilloscope viewing.

Probe and Scope Synchronization Modes 4A-13.
INTRODUCTION ' 4A-14.

You may use the Troubleshooter’s Synchronization function (selected with the SYNC
key) to synchronize both probe operation and the rear panel TRIGGER OUTPUT
pulse (for an oscilloscope) to events on the Pod’s buses. The four synchronization
modes that are available and their Troubleshooter selection codes are:

A = Address Sync

D = Data Sync

I = Interrupt Acknowledge
F = Free-Run

ADDRESS SYNC 4A-15.

If the address sync mode is selected, both the probe and scope trigger output are
synchronized to the address portion of the UUT access. The scope trigger will pulse low
shortly before the UUT access begins, and pulse high at the end of the address portion
of the UUT-access cycle. If the probe stimulus mode is selected, the probe will pulse at
the selected level (high or low) for the time between the two scope trigger pulses

9000A-80186

described above. For probe response, the probe will latch on the signal level present at
its tip at the time of the second or high-going scope trigger pulse.

DATA SYNC 4A-16.

If data sync is selected, the scope trigger will pulse low at the start of the data portion of
the UUT access (the end of the address portion). It will pulse high at the end of the data
cycle (the trailing edge of the Data Enable pulse).

INTERRUPT-ACKNOWLEDGE SYNC 4A-17.

If interrupt-acknowledge sync is selected, the scope trigger will pulse low at the start of
the interrupt-acknowledge cycle, and it will pulse high at the end of the interrupt-
acknowledge cycle. An interrupt-acknowledge sequence consists of two bus cycles.
The interrupt-acknowledge sync pulse starts at the beginning of the first bus cycle of
the sequence and ends at the end of the “send interrupt acknowledge” bus cycle.

NOTE

The interrupt-acknowledge sync mode is selected by the “1” key on the
Troubleshooter (since there is no “I” key).

FREE-RUN 4A-18.

The free-run mode only applies to the Troubleshooter’s probe; it does not affect the
scope trigger output. If free-run is selected, the probe stimulus pulses are generated at a
frequency of approximately 1 kHz with a 1% duty cycle. The scope trigger output
pulses remain synchronized to whatever other sync mode that may have been selected
previously (either address, data, or interrupt acknowledge), even if free-run is selected.

At power-on, the probe is in the free-run mode, and the scope trigger output pulses are
synchronized to the address cycle.

USING THE SYNC MODES 4A-19.

One recommended method for using the scope synchronization is to synchronize on
the negative edge of the scope trigger using the address sync mode. This will trigger the
scope at a time slightly before the UUT access, allowing you to see the entire UUT
access cycle. If you cannot verify that the scope is synchronized to the correct edge, use
the pulse stimulus mode of the probe and display the signal on the scope. Since the
probe stimulus pulses only occur during the UUT access (when the address sync mode
is selected), you can easily check whether the scope is synchronized to the correct edge.
After verifying the correct synchronization, use the scope to look at the DEN signal
during a looping Read operation. If the probe’s red indicator is on, then sync is timed
with the address cycle. If the probe’s green indicator is on, then the sync is timed with
the data access. If both indicators are on, the sync is free-running. The relationship of
these signals and the UUT access is described and illustrated in Section 5.

If the signal image on the scope is dim because of a low repetition rate, use the
Quick-Looping function to increase the repetition rate and make the signal easier to

SCC.
TESTING INTERRUPT CIRCUITRY 4A-20.
Introduction 4A-21.

Once you begin testing your UUT, you may need to investigate the operation of
interrupts. The Pod provides special functions for reading the type and address
information that results from received interrupts. It also provides the ability to force
interrupt-acknowledge signals, so that you can exercise other parts of the UUT’s
interrupt-handling facilities.

4A-15

9000A-80186

4A-16

The Pod can be configured to match the structure of the UUT’s interrupts. If your
UUT uses interrupts, you will probably need to set up the interrupt configuration for
your UUT manually (unless the default values that are provided are adequate).
Information below will help you change the interrupt configuration. (Use the
interrupt-configuration routines that are normally provided by the UUT’s software as
a guide.)

The 80186 Pod provides two distinct methods of structuring interrupts: Normal mode,
where interrupts are passed from external devices to the 80186’s internal interrupt
controller, and iRM X mode, where the internal interrupt controller is configured to be
a slave to an external device. Using the interrupts in the two different modes is
explained separately below.

Normal Mode Interrupts 4A-22.
INTRODUCTION 4A-23.

The Pod provides special functions to allow you to have control over how interrupts
are handled by the UUT and the Pod. Using these functions consists of writing data to
and reading data from several Pod Function addresses.

Pod Function addresses in the FO 008X range are used to configure the Pod’s
interrupt-handling characteristics. The FO 01XX (PCB) addresses do not need to be
used (they are only used during RUN UUT operations).

Instructions for controlling interrupts are provided in the paragraphs below. Included
is information about configuring the different external interrupt lines and functions,
reading the interrupt type and cascade address information that is provided by the
system when an interrupt occurs, and forcing interrupt-acknowledge routines.

CONFIGURING INTERRUPTS 4A-24.

The Interrupt Configuration Pod Function address provides a simple method for
configuring the Pod’s interrupt handling. Writing a single data byte to this address
completely specifies the interrupt handling configuration.

To configure the Pod to the interrupt-handling scheme that is required by your UUT,
write a data byte to the Pod Function address FO 0080, coded as follows:

0000 0000 00XX XXXX (binary)

Channel priority bit. 0= Channel O priority, 1 = Channel 1 priority.
This bitonly applies if in the non-iRMX mode and both Channel
0 and Channel 1 are configured as INT/INTA pairs.

Channel 1 trigger mode bit. 0 = edge-triggered mode, 1 = level-
triggered mode. This bit only applies if notin the iRMX mode and
Channel 1 is configured as an INT/INTA pair.

Channel 1 configuration bit. 0 = INT1 and INT3/INTA1 are
configured as direct inputs, 1 =INTTand INT3/INTA1 are
configured as an INT /INTA pair. Only applies if the iRMX
mode bit not set.

Channel 0 trigger mode bit, 0 = edge-triggered mode, 1 = level-
triggered mode. This bitonly applies if notin the iRMX mode and
Channel 0 is configured as an INT/INTA pair.

Channel 0 configuration bit. 0 = INTO and INT2/INTAQ are
configured as direct inputs, 1 = INTO and INT2/INTAQ are
configured as an INT /INTA pair. Only applies if the iRMX
mode bit is not set.

iRMX/non-iRMX mode bit. 1 =iRMX mode, 0 = non-iRMX mode.
Unused bits.Must be zero.

9000A-80186

For example,

A WRITE @ F0 0080=001D (1 1101 binary) configures both channel 0 (INTO and
INT2/INTAO) and channel 1 (INTI and INT3/INTAI) as interrupt/interrupt-
acknowledge pairs (both bits 4 and 2 of the data are set). Channel 0 is programmed to
the edge-triggered mode (bit 3of the data is set), and channel 1 is programmed to the
level-triggered mode (bit 1 of the data is not set). Since bit 0 is set, channel 1 has
priority.

A WRITE @ F0 0080=20 (10 0000 binary) configures the Pod to the iRMX mode.

A WRITE @ F0 0080=0 configures the Pod to its default interrupt mode, with all
interrupt lines configured as inputs. No interrupt-acknowledge sequences occur in this
mode.

A READ @ FO0 0080 returns the current interrupt configuration of the Pod.

The default value contained in Pod Function address FO 0080 after power-up is 0000
(non-iRMX mode, INTO and INT2/INTAO configured as direct inputs).

NOTE

When either INT2 or INT3 are configured for direct input, the
corresponding interrupt acknowledge lines are disabled by the Pod. The
Pod Function addresses below, otherwise used for reading interrupt
information and forcing interrupt-acknowledge routines, will not work.
Attempts to read interrupt vector addresses will always return 00.

NOTE

A BUS TEST will check the drivability of any lines that are configured as
Interrupt Acknowledge lines. Once you have the Pod configured to
produce any interrupt-acknowledge signals, a BUS TEST is a good way
of making sure that the INTA lines are drivable, instead of forcing an
interrupt-acknowledge routine to check the drivability of an INTA line.
(UUT-generated interrupt-acknowledge cycles will not cause the Pod to
check the drivability of the INTA lines.)

ENABLING INTERRUPTS 4A-25.
A Write operation to the Pod Function address FO 0080 described above enables
interrupts on any channel that is configured as an INT/TNTA pair. The Write
operation also clears both of the INTR VECTOR status bits and clears both sets of
interrupt types and cascade addresses.

NOTE

To eliminate conflicts, there is no Troubleshooter Setup function to
enable or disable interrupts as there is in Interface Pods for other
microprocessors. All interrupt control is accomplished via the Pod
Function addresses listed here.

Reading the interrupt types at FO 0082 and F0 0088 as described below will re-enable
the respective interrupts and clear the corresponding INT VECT status bits.

4A-17

9000A-80186

4A-18

READING INTERRUPT INFORMATION 4A-26.
Introduction 4A-27.

When the Pod and the UUT are configured to have interrupt/interrupt-acknowledge
channels, upon receipt of external interrupts on such a channel, the UUT can generate
two pieces of information: an interrupt type and a cascade address. The Pod has Pod
Function addresses that allow you to view this information.

Reading Interrupt Types 4A-28.

When an interrupt is acknowledged, the interrupting device places an eight-bit byte of
data on the bus which contains the interrupt type (0-FF hex) associated with the device
requesting service. The Pod captures this information from the UUT so that you can
view it later.,

The interrupt type can be determined by reading the Pod Function addresses listed
below. Note that reading either of two addresses, FO 0082 or FO 0088, also clears the
associated status bits and re-enables the interrupts. The other two addresses, FO 0084
and FO 008A, leave the status bits untouched.

READ @ F0 0082 Returns the type that is pointed to by INTR VECTOR 0.
Reading this Pod Function address re-enables INTO and clears

the INTR VECTOR 0 status bit.

READ @ F0 0084 Also returns the type that is pointed to by INTR VECTOR 0,
but does not clear the INTR VECTOR 0 bit or re-enable INT

0.

READ @ FO0 0088 Returns the type that is pointed to by INTR VECTOR 1.
Reading this Pod Function address re-enables INT1 and clears
the INTR VECTOR 1 status bit.

READ @ F0 008A Also returns the type that is pointed to by INTR VECTOR 1,
but does not clear the INTR VECTOR 1 bit or re-enable INT

1.

These and other the Pod Function addresses that are used for interrupt handling are
listed in Table 4A-5.

NOTE

Whenever an interrupt is acknowledged, succeeding interrupts are
temporarily disabled until the current interrupt type is read. This prevents
multiple interrupts from removing the current interrupt type before it can
be read by the Troubleshooter.

Reading Cascade Addresses 4A-29.

When the UUT has multiple slave Programmable Interrupt Controllers (PIC’s), the
Master PIC provides a cascade address during the interrupt-acknowledge routine to
indicate which slave originated an interrupt. If the UUT is so designed, the PIC can put
the cascade address on the UUT’s address bus, and the Pod can capture it during INTA
cycles.

This 16-bit cascade address can be found by reading one of the two Pod Function
addresses FO 0086 (INT0) or FO 008C (INT1). Reading these addresses does not
re-enable the interrupts or clear the respective INTR VECTOR X status bits.

9000A-80186

FORCING INTERRUPT ACKNOWLEDGE ROUTINES 4A-30.

To help with testing interrupts, the Pod Function addresses allow you to force
interrupt-acknowledge routines. You can force an interrupt-acknowledge routine by
writing any data to the Pod Function addresses that contain the interrupt-type
information.

Interrupt-acknowledge routines may be forced without an actual interrupt having
occurred. All that’s required is for the interrupt channel to be configured as an
interrupt pair (channel 0, for example, needs to be set up as an INTO/TN'TAD pair). The
forced interrupt clears previous types and cascade addresses and replaces them with
new information.

The Pod Function addresses for forcing interrupts are:

WRITE @ F0 0082=xx Force an interrupt-acknowledge routine on Channel 0
WRITE @ FO0 0084 =xx Force an interrupt-acknowledge routine on Channel 0

WRITE @ F0 0088 = xx Force an interrupt-acknowledge routine on Channel 1
WRITE @F0 008A=xx Force an interrupt-acknowledge routine on Channel 1

For example, to force an interrupt-acknowledge routine on channel 1, write any data
to FO 0088 or FO 008A.

The interrupt-type and cascade address information captured by the 80186 Pod can be
read as described above under Reading Interrupt Information.

iRMX Mode Interrupis 4A-31.
INTRODUCTION 4A-32.

Some UUTs are designed with circuitry that operates the microprocessor in the iRMX
interrupt mode. The internal Interrupt Controller in the 80186 Pod may be configured
to be compatible with the iRMX-mode UUTs. When the Pod is configured to the
iRMX mode, the internal interrupt controller of the Pod’s microprocessor is treated as
a slave controller to an external Peripheral Interrupt Controller (PIC). The external
interrupt lines of the Pod are used to perform the necessary handshaking functions
with the external PIC. This requires the Pod to handle these external interrupt lines
differently than in the normal mode.

Interrupts are configured to the iRMX mode by setting bit 5 of the Interrupt
Configuration Pod Function address (WRITE @ F0 0080 = 20).

iIRMX INTERRUPT SIGNALS 4A-33.

The iIRMX mode uses the same lines and Pod Function addresses as the normal mode,
only with somewhat different functions. Table 4A-5 describes how the various
interrupt lines are used in the normal mode and in the iRMX mode.

NOTE

The INTO line must be enabled for the lines to function in the iRMX
mode. The INTO line is enabled by selecting the iIRMX mode (via a
WRITE @ F0 0080=20) and re-enabled by reading the interrupt-
acknowledge type address (F0O 0082).

4A-19

9000A-80186

Table 4A-5. Interrupt Handling

READ/WRITABLE ADDRESS DESCRIPTION
FO 0080 Interrupt Configuration Address
FO 0082 Interrupt Vector 0 (Re-enable on Read)
FO 0084 Interrupt Vector 0 (No Re-enable on Read)
FO 0086 Interrupt 0 Cascade Address
FO 0088 Interrupt Vector 1 (Re-enable on Read)
FO O08A Interrupt Vector 1 (No Re-enable on Read)
FO 008C Interrupt 1 Cascade Address
INITIATING INTERRUPTS IN THE iRMX MODE 4A-34.

A WRITE @ F0 0088 or FO 008 A will cause the Pod’s INT3/INTAI line to be set high
as an interrupt-acknowledge signal to the external master PIC. The PIC may or may
not respond with an interrupt on the INTO line. If an interrupt is active on INTO, the
Pod will respond to the interrupt with an iRMX mode interrupt-acknowledge routine
on the INTO/INTAO channel. This iRMX mode interrupt-acknowledge routine
samples the INTI line (used by the Pod iniRMX mode asa SLAVE SELECT input).
This sampling occurs on the falling edge of T2 of the second clock cycle of the
interrupt-acknowledge routine, and the results are used to determine whether or not
the interrupt vector is to be provided by an external PIC or the Pod microprocessor’s
internal PIC.

NOTE

After the Pod performs an iRMX-mode interrupt-acknowledge
sequence, the Pod exits the iRMX mode until the INTO line is re-enabled
bya READ @ F00082. During the time that the Pod has left the iRM X
mode, the INT2/INTAO and INT3/INTAI lines will be pulled high by
the Pod.

A WRITE @ FO0 0088 or FO 008 A=0 will cause the Pod’s INT3/INTAT1 line to be reset
to alow condition when the Pod actually goes into the iRMX mode. When the Pod is
initially configured in the iRMX mode (by a WRITE @ F0 0080=20), the data at the
address FO 0088 and FO 008A is 0, and the INT3/INTAI line is set low.

A READ @ FO0 0088 or FO 008 A will return the data at these addresses.

PROCESSING INTERRUPTS 4A-35.

If INT! (SLAVE SELECT) is high during the interrupt-acknowledge routine, an
external device (usually a slave PIC) caused the interrupt and placed the interrupt type
information on the data bus. The Pod will perform its normal interrupt-acknowledge
routine, and capture the externally generated interrupt type and cascade address. The
INTR VECTOR 0 status bit will be set, and the interrupt type can be read at addresses
FO0 0082 and FO0 0084, as in the “INT/INTA pair” mode. The cascade address can be
read at FO 0086, also as in the “INT/INTA pair” mode.

If INT1 (SLAVE SELECT) is low during the interrupt-acknowledge routine, the
master PIC selected the Pod’s interrupt controller as the interrupting device. The
master PIC expects the Pod’s interrupt controller to place the interrupt type onits own

4A-20

9000A-80186

internal data bus. No external device is selected to place interrupt-type information on
the external data bus. The information captured on the data bus by the Pod during the
interrupt-acknowledge routine is invalid. The Pod executes the interrupt-acknowledge
routine normally, except that it clears all bits of the data at both of the interrupt type
addresses (FO 0082 and F0 0084) for Channel 0 to zero. This informs the user that the
interrupt-type information that was captured by the Pod is invalid.

NOTE

If INTO is disabled, incoming interrupts on this line will be reported as
with any active interrupt. A high or low level on INTI (SLAVE
SELECT), however, will not generate an active-interrupt message.

FORCING INTERRUPTS 4A-36.

An iRMX mode interrupt-acknowledge routine can be forced by the user via a Write
operation to address FO 0082 or FO0 0084 (with any data) regardless of whether
INTO and/or INTI (SLAVE SELECT) are enabled. This interrupt-acknowledge
routine will erase any unread interrupt type and cascade address and replace it with the
new interrupt type and cascade address.

CHANNEL 1 POD FUNCTION ADDRESSES NOT USED 4A-37.

The Pod Function address FO 008C, devoted to Channel 1 interrupts, is not used in the
iRMX mode. A Read operation at address FO 008C will return 0000.

Using the Interrupt-Acknowledge Sync 4A-38.

You may use the Troubleshooter’s Synchronization function to synchronize both
probe operation and the rear panel TRIGGER OUTPUT pulse (for an oscilloscope) to
the Pod’s interrupt-acknowledge cycle. Press SYNC 1 to select the interrupt-
acknowledge sync mode.

NOTE

The interrupt-acknowledge sync mode is selected by the “1” key on the
Troubleshooter (since there is no “I” key).

If interrupt-acknowledge sync is selected, the scope trigger will pulse low at the start of
the interrupt-acknowledge cycle, and it will pulse high at the end of the interrupt-
acknowledge cycle. An interrupt-acknowledge sequence consists of two bus cycles.
The interrupt-acknowledge sync pulse starts at the beginning of the first bus cycle of
the sequence and ends at the end of the “send interrupt acknowledge” bus cycle. See
Using the Pod with an Oscilloscope earlier in this Section for more information about
the available sync modes.

TESTING UUT DMA CIRCUITRY 4A-39.
Introduction 4A-40.

Inthe RUN UUT mode, the Pod provides the complete DMA capability of the 80186
microprocessor. It will handle both internal DMA operations (internal to the CPU)
and external DMA operations. Specific instructions for using both types of DMA
Controllers are provided in the following paragraphs. See Appendix H for detailed
information about the DMA registers.

The Pod also allows you to investigate external DMA circuitry on the UUT by
simulating DMA accesses. See Simulating DMA Accesses beiow.

4A-21

9000A-80186

4A-22

DMA Operations During RUN UUT 4A-41.
INTRODUCTION 4A-42,

Before using the RUN UUT mode with a UUT that uses the CPU’s internal DMA
Controller, you must make sure that the DM A Controller registers are loaded with the
correct contents. You can do this by either using an entry address for RUN UUT that
will access the UUT’s initialization programming (which the UUT would normally use
to load the registers) or by predefining contents by writing data to Pod Function
addresses.

The Pod provides default values for the DMA Controller registers that essentially turn
the DMA mechanism off. These default values are shown in Table 4A-6.

Table 4A-6. DMA Control Addresses

FUNCTION CHANNEL 0 DEFAULT CHANNEL 1 DEFAULT
Control Word FO 01CA 0000 FO 01DA 0000
Transfer Count FO 01C8 0000 FO 01D8 0000
Dest. Pointer FO 01C6 0000 FO 01D6 0000
(upper 4 bits)

Dest. Pointer FO 01C4 0000 FO 01D4 0000
(lower 16 bits)
Source Painter FO 01C2 0000 FO 01D2 0000
(upper 4 bits)
Source Pointer FO 01CO 0000 FO 01DO 0000
(lower 16 bits)
CONFIGURING DMA CONTROL REGISTERS 4A-43.

The DMA Control Registers are changed by writing to a group of Pod Function
addresses. Table 4A-6 shows the Pod Function addresses that correspond to each
DMA Controller Register. If you want to change the contents of the DMA Channel 0
Control Word to 0001, for example, enter WRITE @ F0O 01 CA=0001.

EXTERNAL DMA OPERATIONS 4A-44.

External DMA controllers normally assert the HOLD line to make the 80186 CPU
release control of the bus during DMA operations. If such external DMA operations
are expected during normal operations of the Pod, the Pod should have the HOLD line
enabled, so that the Pod will correctly respond and allow the external DM A controller
to have control. Make sure that the Troubleshooter’s Setup command SET- ENABLE
HOLD?issetto YES. If the HOLD line is not enabled, the Pod will not change its lines
to a high-impedance state in response to a HOLD signal and will not respond with a
Hold Acknowledge (HLDA) signal. The absence of the HLDA signal will prevent
DMA operation from occurring.

9000A-80186

Simulating DMA Accesses for Troubleshooting 4A-45.

Even though the Pod does not provide DM A operation when it is notin the RUN UUT
mode you may still be able to exercise DMA circuitry by writing and reading to and
from DMA addresses. To simulate a DMA access, set the Normal/ DMA Address-
Control Bit when you specify the address. (See Addresses in Section 2 for information
about Address-Control Bits.)

OXXX XXXX XXXX XXXX XXXX XXXX

20-bit Address

Normai/DMA Address Control Bit

For example, to do a word fetch (DMA Read) from memory location 6 88FE, enter
READ @ 16 88FE

A byte-access deposit (DMA Write) to 0 002B would be done by entering
WRITE @ 50 002 B=xx

When the Normal/ DMA Address-Control Bit is high, the Control Line S6 is driven

high by the Pod during memory accesses. The UUT may use the S6 signal to determine
that the operation is a DMA reference, so that the corresponding circuitry can be

enabled.
USING THE RUN UUT MODE 4A-46.
Introduction 4A-47.

The RUN UUT mode allows the Pod to emulate the UUT’s microprocessor by
executing a program directly from the UUT’s memory. Before using the RUN UUT
mode, you may first need to configure the RUN UUT entry address and registers in the
Peripheral Control Block (PCB), such as chip select definitions and DMA Controller
register specifications. The UUT’s program listing may be a useful guide to
configuring these items.

The RUN UUT Entry Address 4A-48.
INTRODUCTION 4A-49.

When you select RUN UUT, you may either use the default execution address that is
supplied by the Pod, or you may explicitly specify the address where execution begins.
Each of these cases are described in the following paragraphs. The Pod Function
addresses that pertain to the RUN UUT mode are listed in Table 4A-7.

NOTE

Interrupts are always disabled when the Troubleshooter enters the RUN
UUT mode.

4A-23

9000A-80186

Table 4A-7. RUN UUT Control Addresses

FUNCTION ADDRESS DESCRIPTION
RUN UUT Type 1 F FFFO This is the RUN UUT default address that the Pod
(Using the supplies if the operator does not specify an execution
Default address. RUN UUT execution at F FFFO sets all
Execution segment register to their reset values (0000 for ES, SS,
Address) and DS, and FFFF for CS) and sets the offset to 0.
RUN UUT Type 2 Xyzz2z2z The RUN UUT execution address may be specified by
(Specifying the entering the address as RUN UUT @ XYZZZZ, where X
Execution is 0 for word accesses or 8 for byte accesses, the CS
Address) register will equal Y000, and the offset will be ZZZZ.
RUN UUT Type 3 FO XXXX The Segment Registers may be defined prior to a RUN
(Specifying the UUT by writing the data to the following Pod Function
Segment addresses:
Register
Contents) FO 0020 = ES Register

FO 0022 = SS Register
FO 0024 = CS Register
FO 0026 = DS Register

After the desired values are written to the above
addresses, execute RUN UUT atthe address FO XXXX,
where XXXX is the desired offset address. The
specified contents are loaded into the segment
registers. As usual, the RUN UUT execution addresses
are formed using the CS register: CS register contents
are shifted left four bits, then added to the offset for
the execution address.

USING THE DEFAULT EXECUTION ADDRESS 4A-50.

If the RUN UUT mode is selected and you do not specify the execution address, the
Pod supplies the address 000F FFFOQ as the execution address. Execution at this
address sets the segments registers to their reset values: 0000 for the ES, SS, and DS
registers, and FFFF for the CS register; the offset address is set to 0000.

NOTE

The default address for RUN UUT is the entry address for the
microprocessor’s Reset software. The UUT'’s programming may alter the
values of the Chip Select Registers and other contents of the Peripheral
Control Block registers. When the Pod exits from the RUN UUT mode,
the Chip Select Registers and other Peripheral Control Block registers
are returned to their previous configuration.

SPECIFYING THE RUN UUT ADDRESS 4A-51.

You may select the address where RUN UUT execution begins by using any of three
methods: changing the default RUN UUT entry address using the Troubleshooter’s
Setup command, explicitly defining the RUN UUT address, or by using Special
Function addresses within the Pod.

4A-24

® You may change the RUN UUT default address with the Troubleshooter Setup
function by entering the desired address for the Setup message SET-RUN UUT @
FFFFO-CHANGE?

® You also may change the RUN UUT entry address by explicitly entering the
beginning address when using the RUN UUT command. For example, entering
RUN UUT @ 0000FE will cause the RUN UUT operation to begin at the address
O0FE.

® Using the Special Function address FO XXXX for RUN UUT will cause the RUN
UUT to begin with the segment registers intact. Using this method, you can specify
a RUN UUT to begin anywhere in memory, without the segment registers being
reset when RUN UUT begins. For example, to performa RUN UUT at A BCDE,
first load the CS register with A000 by a WRITE @ F0 0024=A000, then specify a
RUN UUT using the FO XXXX address, RUN UUT @ FF BCDE.

NOTE

All addresses that are executed in RUN UUT are formed using the CS
register. If an even address is specified, a segment prefix specifying a
word access should be used (such as 3X XXXX). If an odd address is
specified, a segment prefix specifying a byte access should be used (such
as 4X XXXX).

Whenever any address other than the default address (F FFFO0) is specified, the Pod
considers the offset address to be equal to the four least significant digits, and the CS
register contents to equal the fifth hexadecimal digit followed by three zeros. Consider
the following examples:

After the following operations to set up the appropriate registers,

WRITE @ F00022=A000
RUN UUT @ FOBCDE

these are the results:

ADDRESS WHERE
RUN UUT BEGINS CS REGISTER CONTENTS OFFSET

000A BCDE A000 BCDE
The‘ same operation with a byte address,

WRITE @ F00022=A000
RUN UUT @ 40BCDE

produces these results:

ADDRESS WHERE
RUN UUT BEGINS CS REGISTER CONTENTS OFFSET
- 004A BCDE A000 BCDE

9000A-80186

4A-25

9000A-80186

4A-26

In the next example, an odd word address is specified (000F FFFF), However, only
even words are allowed in the specified address space, so the Troubleshooter forces the
address to the next lower even address (which causes the offset to be even—FFFE).
The first operations are,

WRITE @ F00022=F000
RUN UUT @ FOFFFF

and they produce these results:

ADDRESS WHERE
RUN UUT BEGINS CS REGISTER CONTENTS OFFSET

000F FFFE F000 FFFE

A similar example shows the same specification, only in an address space where byte
addressing is permitted,

WRITE @ F00022=F000
RUN UUT @ 40BCDE

This time, the result is a RUN UUT beginning at a byte address:

ADDRESS WHERE
RUN UUT BEGINS CS REGISTER CONTENTS OFFSET

004F FFFF ‘ F000 FFFF

For comparison, note that the default entry address for RUN UUT produces these
values:

ADDRESS WHERE
RUN UUT BEGINS CS REGISTER CONTENTS OFFSET
000F FFFO (default address) FFFF 0000

The CS register contents are set to the reset value and the offset is 0000.

Peripheral Control Block 4A-52.
INTRODUCTION 4A-53.

All of the Peripheral Control Block (PCB) registers may be programmed before youdo
a RUN UUT operation. This allows you to set up registers that would otherwise be
configured by the UUT’s software, and of course, allows you to manipulate the
registers for diagnostic purposes.

Programming the Peripheral Control Block registers involves writing data to Pod
Function addresses, which are summarized (with their default values) in Table 4B-2.
Refer to Appendix H for detailed information about programming the PCB registers.

Before using the RUN UUT mode, you must define the contents of the Segment
registers, Timer registers, DMA Controller registers, and Interrupt registers.

SPECIFYING SEGMENT REGISTER CONTENTS 4A-54.

The contents of any or all of the segment registers may be specified before RUN UUT
execution begins. To specify the segment register contents, use the following
procedure:

1. Write the desired 16-bit value to the following Pod Function addresses before
selecting RUN UUT (these Pod Function addresses and their default values are
also listed in Table 4A-7):

F0 0020 = ES register initial contents (default=0000)
F0 0022 = SS register initial contents (default=0000)
F0 0024 = CS register initial contents (default=FFFF)
F0 0026 = DS register initial contents (default=0000)

Read operations may be performed at these Pod Function addresses to
confirm that they contain the desired values.

2. After the desired values are written to the above addresses, specify RUN UUT
at the address FO XX XX (XXXX equals the offset address). When RUN UUT
begins, the initial contents of the segment registers will equal the values at the
Pod Function addresses.

NOTE
During execution of RUN UUT, no information is passed back to these
Pod Function addresses; even though the segment register contents
change, the values at the Pod Function addresses are unchanged by RUN
UUT. Asusual, the RUN UUT execution addresses are formed using the
CSregister contents and the offset address. (The value in the CS register is
shified left four bits and then added to the offset address.)

SETTING UP TIMERS 4A-55.

The design of your UUT may require that you define the operation of the Timers
before using the RUN UUT mode. The default state of the timers is set to disable all
timer functions. See Configuring the Timers in Section 4B for complete information.

PREDEFINING DMA CONTROLLER REGISTERS 4A-56.

You may need to define the operation of the internal DMA controller before using the
RUN UUT mode. See Testing DMA Circuitry in this Section for complete
information,

DEFINING INTERRUPT HANDLING 4A-57.

You may need to define the operation of interrupts before using the RUN UUT mode.
See Testing Interrupt Circuitry in this Section for complete information.

9000A-80186

4A-27/4A-28

9000A-80186

| Section 4B
Configuring the Pod

INTRODUCTION 4B-1.

This Section describes how to configure the Pod for use with a specific UUT and how
to use Pod functions that do not involve accesses to the UUT.

The Pod provides Pod Function addresses to allow you to set up the Pod to the same
configuration as the microprocessor that it replaces. These include such procedures as
configuring the chip select lines, the interrupt structure, and internal timer operation.
Many of these items need to be set (usually, using the UUT’s program listing as a guide)
before using the Pod in the RUN UUT mode and, occasionally, before you can access
components on the UUT with Read and Write operations.

Other Pod Function addresses allow you to get information from the Pod about the
most recent UUT access, such as status and error information.

Topics in this Section include:

Configuring Chip Selects How to set up the Pod’s Chip Select registers for use
with your UUT.

Configuring Timers How to set up the Pod’s internal Timer registers for use
with your UUT.

Configuring General How to adapt the Pod to accommodate your UUT’s
Pod Characteristics specific characteristics.

Configuring Interrupts Configuring the interrupt structure of the Pod.
Masking Errors How to suppress the reporting of unimportant or

known errors by the Pod.

Determining Errors How to poll the Pod for specific information about

previous errors.
CONFIGURING CHIP SELECTS 4B-2.
Introduction 4B-3.

The 80186 microprocessor has several programmable Chip Select lines. All of these
need to be programmed to define which memory or peripheral addresses that they will
enable. If your UUT uses these Chip Select lines, you will need to have them

4B-1

9000A-80186

4B-2

programmed properly in the Pod so that the correct memory or peripheral blocks are
enabled. That will ensure that all of the available memory and all of the peripherals are
actually tested, and that the accesses have the correct timing. Otherwise, erroneous
Read/ Write errors may be reported due to the Pod trying to select non-existent devices
or using the wrong delay time (number of Wait states), and some sections may be
inadvertently skipped and not tested.

Normally, programming the Chip Selects would be done by the UUT’s software as part
of an initialization routine. When you test a UUT, you can handle these Chip Select
lines by manually defining the Chip Select specifications (by writing to several of the
Pod’s Pod Function addresses) or by using the default Chip Select definitions that are
provided by the Pod. These procedures are both described below.

NOTE

Some 80186 UUTs do not use the Chip Select lines. Instead, they use a
decoder device to expand the range of memory available beyond that
which is possible using the Chip Selects. If your UUT does not use the
Chip Select lines, you may still need to check the default values for the
proper number of Wait states at a given address.

The chip select specifications take immediate effect and remain in operation during
normal Pod operation, as well as during the RUN UUT mode.

NOTE
If the Chip Selects are altered by the UUT'’s software during the RUN
UUT mode, such as they might be if the initialization software is
executed, they will return to the previusly selected values when the
normal RUN UUT is finished. See Appendix I for a description of a
special RUN UUT procedure that retains the UUT s register values upon

completion.
Programming Chip Selects 4B-4.
INTRODUCTION 4B-5.

Manually programming Chip Selects is a two-fold process: defining the allocation of
memory or peripheral blocks for each Chip Select line and specifying the number of
Wait states to be used for accesses to each memory block. These values are defined by
writing the data to Pod Function addresses in the Pod.

ALLOCATION 4B-6.

You may define the valid address range of any of the 80186’s Chip Select lines by
writing data to Pod Function addresses in the Pod which correspond to the Chip
Select Registers in the microprocessor. Refer to Appendix H for information about
the data format and application. Table 4B-1 lists the Pod Function addresses used to
control Chip Selects.

WAIT STATES 4B-7.

Part of each Chip Select definition is the number of Wait states to be used in each bus
cycle that uses that chip select line. The number of Wait states is determined by the
response speed of the memory or peripheral in the particular block that’s being used.
The Wait states are inserted into the bus cycle. The Wait states extend the length of the
bus cycle so that the Pod’s microprocessor can communicate with slowly responding
devices.

9000A-80186

4B-1. Chip Select Special Addresses

DEFAULT
ADDRESS SPECIAL DEFAULT WAIT
REGISTER STATES
FO 01AB MPCS Register AOFB 3
FO 01A6 MMCS Register 81FB 3
FO 01A4 PACS Register 403B 3
FO 01A2 LMCS Register 3FFB ©3F§ 3
FO 01A0 UMCS Register Co03B 3

If you use too many unnecessary Wait states or not enough Wait states, you may
introduce timing problems that produce Read/Write errors. You need to use the
literature from both the memory/peripheral manufacturer and the microprocessor
manufacturer to determine the optimum number of Wait states for your application.
Slower devices will require more Wait states (up to 3). Faster ones will not require as
many, and the fastest will not need any at all. Not all of the memory and peripherals in
a UUT will always have the same required number of Wait states— some may need
different specifications.

USING CHIP SELECT DEFAULTS 4B-8.

The 80186 microprocessor normally only defines the address range of the Upper
Memory Chip Select. That part of memory normally contains the initialization
programming that will be used after power-up to configure the remainder of the lines.
After power-up, the Pod provides default values for all of the available Chip Select
lines, not just the Upper Memory Chip Select. These default values are shown in Table
4B-2. The default values have been selected to cover as much memory space as
possible, in the largest blocks.

Each one of the default values allows three wait states during bus cycles to
accommodate the slowest memories. The external Reading is also enabled by default.

You may be able to use the default values, even if they do not coincide with
arrangement that is used by your UUT. By checking the table of defaults, you may be
able to use the default arrangement to access the memory in your UUT. For example,
you may be testing a UUT that uses its MCS Chip Select line to enable a certain block
of memory. This Chip Select line is normally defined by the UUT’s software to be the
address range 20000-2FFFE. The Pod has this MCS line predefined by default to be
the range 80000-8FFFE. You can access the memory on the UUT without redefining
the MCS Chip Select line by reading and writing to addresses in the 80000-8FFFE
range instead. (Refer to Table C-1 in Appendix C for the default Chip Select register
values.)

CONFIGURING THE INDIVIDUAL CHIP SELECT LINES 4B-9.

The Pod has its own Peripheral Control Block (PCB), like that of the 80186
microprocessor. The PCB of the Pod controls the behavior of the Internal Peripherals
(including the Chip Select Generator and the Wait State Generator) of the Pod’s
microprocessor. The PCB registers of the Pod are accessed by Read and Write
operations at Special Function Addresses (addresses that are not UUT addresses).

The locations of the Pod’s PCB registers in the Pod’s Special Function Address map
are shown below. Note that the registers are arranged in groups according to which

4B-3

9000A-80186

peripheral device they control, and that the beginning and ending address of each
group of registers are shown. The Chip Select Control registers form one of these
groups; they are located at the addresses FO 01A0 through FO 01A8.

80186 POD
SPECIAL
ADDRESS
Relocation Register FO O1FE
FO 01DA
DMA
Controller
Registers F0 01CO
i FO 01A8
Chip Select
Control
Registers FO 01A0
FO 0166
Timer
Control Registers
FO 0150
FOO13E
Interrupt
Controller
Registers FO 0120

There are five Chip Select Control registers; one register controls the UCS line, one
controls the LCS line, and three others control all of the Peripheral Chip Select and
Mid-range Chip Select lines.

Detailed information about the programming the Chip Select registers is located in
Appendix H. The following paragraphs demonstrate how to program a Chip Select
register for the block of RAM shown below.

80186 uP

Socket 128K-byte

(Connection Agdress. Dgta and RAM

to 80186 uP ontrol Signals (0-1FFFF hex)

or 80186 Pod) Requires one
— — wait state
Ics B2 LCS »|Cs

4B-4

This RAM requires the LCS line to be configured to go low over the first 128K bytes
(0-1FFFF) of the Pod’s memory map. There must also be one Wait state inserted into
all (UUT access) bus cycles that address the LCS line. The LMCS register of the Pod’s
PCB is used to control the LCS line. (The LMCS register is one of the Chip Select
Control registers.) The bits in the LMCS register are shown below:

Bit: 1514131211109 8 7 6 543 2 1 0
Pod Address: F001A2 [oJo]uTuluJulululululi]1]i{R2|R1|RO]
Al9 All

Bits 6 through 15 of the LMCS register represent address bits 11 through 19 (Al 1-A19)
of the upper limit address of the LCS line. Bit positions 6 through 13 are a user-
programmable portion of this address. Bits 3, 4, and 5 of the LMCS register are
“hardwired” to a value of 1, and have no meaning.

For this example, the upper limit address of the LCS line is to be IFFFF hex. The
binary representation of this value is shown below:

1 F ¥ F F (hex)
pOOI ITIT T111 I111 1111} (binary)

A19 A0

Address bits A17-A19 are set to zero for the hex address 1 FFFF. Thus, the
corresponding bits in the LMCS register must be set to zero. The LMCS register bits
14 and 15 (corresponding to address bits A18 and A19, respectively) are already
“hard-wired” to zero. (This restricts the upper limit address of the LCS line to 3
FFFF.) Of the bits labeled “U”, only bit 13 (representing address bit 17) is to be set to
zero.

The bits denoted by RO, R1, and R2 are programmable bits that control the number of
Wait states associated with the LCS line. Bit R2 controls whether or not the external
signals ARDY and SRDY are allowed to affect the number of Wait states in bus cycles
using the LCS line; if R2is set to zero, ARDY and SRDY are allowed, otherwise they
are not. For the purpose of this example, R2 will be set to zero (ARDY and SRDY
allowed). Bits R1 and RO control the number of Wait states that are associated with
the LCS line, as follows:

BIT NUMBER
VALUES: OF
WAIT

R RO STATES

0 0 0

0 | 1

1 0 2

1 1 3

In this example, 1 wait state is required, so R1 will be set to 0 and RO will be set to 1.

9000A-80186

4B-5

9000A-80186

4B-6

The LMCS register bit assignments look like those shown below:

Bit: 1514131211109 8 76 543210
Pod Address: FOO1A2 [oloJo[t]t]t[1]i]t]i](]i]1]o]o]1]
vuuvuuvuuvvuuuu R2RIR0O
Al9 All
Hex value: 1FF9
LCS Configuration: -~ Upper Address Limit = 1FFFF (hex)

— Lower Address Limit =0
— Number of Wait States = |
— ARDY and SRDY allowed

The hex value of the bits in the LMCS register should be 1FF9. To configure the LCS
line, use the WRITE function of the Troubleshooter to put the hex data (1FF9) in the
LMCS register (at address FO01A2) of the Pod, as follows:

WRITE @ F001A2 = 1FF9

CONFIGURING TIMERS 4B-10.
Introduction 4B-11.

Some UUT’s may require that the Pod’s timers be programmed a certain way in order
for the Pod to be able to communicate with some of the devices on the UUT. The three
timers in the Pod’s microprocessor can be programmed the same as the UUT’s
microprocessor normally would be. Once programmed, the timers begin running
immediately and remain in operation during normal Pod operation, as well as during
the RUN UUT mode. This makes it possible for you to activate all timer-dependent
devices.

At power-up, the Pod’s timers are set to be non-functional (TMR OUT lines set high,
TMR IN lines ignored). In order to use the timers, you will need to write data to several
Pod Function addresses that correspond to the UUT microprocessor’s Peripheral
Control Block registers. The Pod Function Addresses that control the Pod’s timers are
listed in Table 4B-2.

See Appendix H for information about how to prepare the timer registers to perform a
specific function.

NOTE

You will normally set up the timers in the same manner that the UUT"s
initialization software sets up the timers in the UUT’s microprocessor.
Use the program listing as a guide to defining the appropriate registers.

NOTE

If the Timer Control registers are changed by the UUT’s software during
RUN UUT, the register contents will be restored to their previous values
when the RUN UUT mode is terminated.

9000A-80186

NOTE

The Fod temporarily over-rides the programmed function of the TMR
IN and TMR OUT signals during a BUS TEST in order to verify the
drivability of the TMR OUT lines. After the BUS TEST, the timer
Sfunctions are restored to function as they were originally programmed.

Table 4B-2. Peripheral Control Block Special Addresses

POWER-UP
ADDRESS DESCRIPTION DEFAULT

VALUE (hex)

Relocation Register Address

FO O1FE Relocation Register OOFF

DMA Controller Register Addresses

FO 01DA DMA Channel 1 Control Word 0000
FO 01D8 DMA Channel 1 Transfer Count 0000
FO 01D6 DMA Channel 1 Dest. Ptr. (upr 4 bits) 0000
FO 01D4 DMA Channel 1 Dest. Ptr. (Iwr 16 bits) 0000
FO 01D2 DMA Channel 1 Src. Ptr. (upr 4 bits) 0000
FO 0100 DMA Channel 1 Src. Ptr. (Iwr 16 bits) 0000
FO 01CA DMA Channel 0 Contrl Word 0000
FO 01C8 DMA Channel 0 Transfer Count 0000
FO 01C6 DMA Channel 0 Dest. Ptr. (upr 4 bits) 0000
FO 01C4 DMA Channel 0 Dest. Ptr. (Iwr 16 bits) 0000
FO 01C2 DMA Channel 0 Src. Ptr. (upr 4 bits) 0000
F0O 01CO DMA Channel 0 Src. Ptr. (Iwr 16 bits) 0000
Chip Select Register Addresses

FO 01A8 MPCS Register AOFB
FO O1A6 MMCS Register 81FB
FOO1A4 PACS Register 4038
FO01A2 LMCS Register 3FFB
FO 01A0 UMCS Register C03B

Timer Register Addresses

F0 0166 Timer 2 Mode/Control Word Register 0000
FO 0162 Timer 2 Max Count A Register 0000
F0 0160 Timer 2 Count Register 0000
FO O15E Timer 1 Mode/Control Word Register 0000
F0 015C Timer 1 Max Count B Register 0000
FO 015A Timer 1 Max Count A Register 0000
FO 0158 Timer 1 Count Register 0000
FO 0156 Timer 0 Mode/Control Word Register 0000
FO 0154 Timer 0 Max Count B Register 0000
FO 0152 Timer 0 Max Count A Register 0000
FO 0150 Timer 0 Count Register 0000

4B-7

9000A-80186

4B-8

Table 4B-2. Peripheral Control Block Special Addresses (cont)

ADDRESS

DESCRIPTION

POWER-UP
DEFAULT
VALUE (hex)

Interrupt Controller Register Addresses

FO 013E

FO 013C

FO 013A

FO 0138

FO 0136
FO 0134
FO 0132

FO 0130
FO 012E
FO 012C
FO 012A
FO 0128

FO 0122

FO 0120

INT3 Control Register (master mode)
Not used in iRMX mode

INT2 Control Register (master mode)
Not used in iRMX mode

INT1 Control Register (master mode)
Timer 2 Control Register (iRMX mode)

INTO Control Register (master mode)
Timer 1 Control Register (iRMX mode)

DMA 1 Control Register (both modes)
DMA 0 Control Register (both modes)

Timer Control Register (master mode)
Timer 0 Control Register (IRMX mode)

Int. Cont. Status Reg. (both modes)
Int. Request Register (both modes)
In-Service Register (both modes)
Priority Mask Register (both modes)
Mask Register (both modes)

EOI Register (master mode)
Specific EO! Register (iRMX mode)

Not used in master mode
Int. Vector Register (iIRMX mode)

000F

000F

000F

000F

000F
000F

000F

8000
0000
0000
0007
00FD

0000

0000

9000A-80186

CONFIGURING GENERAL POD CHARACTERISTICS 4B-12.
Introduction 4B-13.

There are several built-in characteristics of the Pod which provide default addresses
and other functions for your convenience. These characteristics have been predefined
to accommodate a majority of UUTs, but they can be changed to adapt the Pod to your
unique requirements.

The Pod characteristics are changed by Writing to Pod Function addresses in the Pod.
The individual functions are described below.

Changing the Standby Read Address (ADDRESS F0 0002) 4B-14.

To provide UUTs with memory accesses that refresh dynamic memory devices, the
Pod does repetitive standby or “transparent” read operations. When the UUT is idle
(not doing a RUN UUT operation), its normal methods for refreshing memory (such
as DMA operations) may not work. These transparent read operations serve as a
substitute to keep the UUT’s memory functioning correctly.

If the default value that is provided by the Pod does not access RAM on your UUT, or
if that particular address should not be read (because, for example, it might cause an
unwanted operation on the UUT), then you may change the address that is used. You
may specify the location used for these transparent read operations by writing to Pod
Function address FO 0002. (This same address will also be used to perform non-specific
read operations that are used in other operations. See Theory of Operation.)

Pod Function address FO 0002 contains the most-significant 8 bits of the address used
for Transparent Read operations (A12 - A19), plus two control bits. A9 - All of the
transparent read address are always “1.” Bits A1 -A8 of the transparent read address
can be configured to count during transparent reads to simulate repetitive DMA
operations that would otherwise occur if the CPU was installed in the UUT. Bit A0 of
the Transparent Read address is always 0 (BHE is also always 0 for transparent reads).

A19 A0
XXX XXXX 111X XXXX XXXO0 TRANSPARENT READ ADDRESS (binary)
Counter
XXX XXXX XXXX XXXX Contents of FO 0002
D15 D7 DO

—

0=NORMAL, 1=DMA
0=NO COUNT, 1=COUNT

“Don’t care”

4B-9

9000A-80186

4B-10

The default value for Pod Function address FO 0002 is 00FF (Normal accesses, no
counting, A12-A19=FF). When the counter is disabled, it produces all zeros, so the
default transparent read address is F FE00. When the counter is enabled, the address
repeats the cycle from F FEOO through F FFFE (in word increments).

The value of this data is not changed by normal UUT or Pod Reset operations. The
value remains constant until power is removed from the Pod, or until the user changes
it with a write operation to this address (FO 0002).

The contents of FO 0002 may be read to view the current specification for the
transparent read address.

NOTE

During Transparent Read operations, the Pod will enable any chip-select
line that has been programmed to be enabled at the Transparent Read
address. Also, Transparent Read cycles will occur with the number of
Wait states programmed for that chip select line. For example, if the Pod
Function address F0 0002 is set to 2 (by a WRITE @ F0 0002=2), the
Transparent Read address will be 02 E00 (hex). If the Lower Chip Select
line (LCS) is defined to be enabled from addresses 0000 through 4000,
with one Wait state, then Transparent Read cycles will occur with the
LCS line enabled (low) with one Wait state.

Note that the Transparent Read address cannot be programmed to
enable the PCS1-PSC6 chip select lines.

Note also that Pod operations can be made to execute faster by selecting
a Transparent Read address that causes zero Wait states to be inserted
into the Transparent Read cycles.

Enable RESET Output During Reset (ADDRESS F0 0004) 4B-15.

Some UUTs may require the RESET output signal to be asserted (high) whenever the
Pod is reset by either the Troubleshooter or a power-up. Other UUTs may need this
Reset signal to be held low at all times. This Pod Function address gives you the option
of specifying whether or not the RESET output signal will be asserted high by the Pod
when the Pod is reset by the Troubleshooter. Refer to Appendix E for detailed
information about Pod Resets.

Writing non-zero data to this address causes the Pod to assert the RESET output to a
high level whenever the Pod is reset. The default value is 0000. Thus the Pod initially
produces a low level on the RESET output whenever the Pod is reset, except during
RUN UUT.

The contents of FO 0004 may be read to view the current status of the Reset Enable.

CONFIGURING INTERRUPT, DMA, AND.RUN UUT FUNCTIONS 4B-16.

Whenever you use the Pod to emulate an 80186 (the RUN UUT mode) some of the
Peripheral Control Block registers that regulate these functions might have to be
defined first. Since specifying these registers is an integral part of using the Pod in these
capacities, details of configuring the Pod for those uses are described in Section 4A.
See Testing Interrupt Circuitry, Testing DMA Circuitry, and Using the RUN UUT
mode in Section 4A. See Appendix H for detailed information about the Peripheral
Control Block.

9000A-80186

MASKING ERRORS 4B-17.
Introduction 4B-18.

The are several masks available that you may use to control how the Pod and
Troubleshooter report errors. If you wish to suppress the reporting of individual
errors, possibly because a particular error is recurring or may be the result of a design
quirk in the UUT, you may instruct the Pod and Troubleshooter to NOT stop and
display an error message when that error occurs. You can use this capability to avoid
getting stuck at certain errors during troubleshooting.

Like the other Pod functions, these masks are used by writing to and reading from Pod
Function addresses. For all of these masks, a “0” in a bit position signifies that the error
that is assigned to that bit space will not be reported. Details of the individual masks
are described below.

The default value for all of the masks is no bits masked. The data remains intact until it
is changed by writing a new value or by removing and restoring power to the Pod.

Error Summary Mask (ADDRESS F0 0060) 4B-19.

After each Pod-UUT operation, the Pod sends a byte of information to the
Troubleshooter to indicate possible error conditions or significant changes in status.
The Troubleshooter uses this information to generate the correct response to each
condition. For example, if the UUT Power Fail bit is set, the Troubleshooter displays
a BAD POWER SUPPLY message (the Power Fail bit is set by the Pod if the voltage
at one or both of the power supply pins at the UUT’s microprocessor socket is not
between +4.5v dc and +5.5v dc¢).

A Write of data XXYY to address FO 0060 masks the corresponding bits in the
error-summary byte from being reported to the Troubleshooter. The data bits denoted
by YY represent the Pod’s error-summary byte bits. (The most-significant bits XX are
ignored.) A0 inthe YY region means that the corresponding bit in the error summary

byte is to be masked (ignored during error reporting). The individual bits are assigned
as follows:

15 7 0
?000 0000 XXXX XXXX System Fault Byte (binary)
1

Data lines not drivable

Address lines not drivable

Control lines not drivable

Forcing lines pending and disabled
Interrupt pending

lllegal address

Self test

UUT power failure

Will always be zeros

For example, WRITE @ FO0 0060=007F indicates that you want the Pod and
Troubleshooter to ignore the occurrence of an apparent Bad Power Supply. You
might possibly want do this if you are troubleshooting a UUT that intentionally uses a

4B-11

9000A-80186

4B-12

lower power supply voltage. Without masking off this error, the Pod and
Troubleshooter will always stop and report the Bad Power Supply and will not allow
you to do other tests.

The power-up default value of the data at this address is 00FF —all information
enabled.

A Read at this address returns the hex value of the mask as last programmed.

Control Drivability Error Mask (ADDRESS F0 0062) 4B-20.

A Write to address FO 0062 masks individual control line bit errors from being
reported to the Troubleshooter. The data corresponds to the control line bit
assignments in Table 2-3. A data bit value of 0 masks the corresponding control bit.
The power-up default mask is FFFF. A Read at this address returns the current mask.

Forcing Line Error Mask (ADDRESS FO0 0064) 4B-21.

Data written to address FO 0064 individually masks forcing lines from being reported
as active. The lines that are masked correspond to any data bits that are specified as 0
in the bit assignments described below. (Note that the bit assignments for the error
mask are identical to the status line bit assignments in Table 2-2—except that only the
forcing lines are included.)

DATA BIT FORCING LINE

ARDY
SRDY
HOLD
RES
DRQO
DRQI

N R WN-—O

Data bits 6-15 are ignored and normally set to 0. The power-up default mask is 003F
(no lines masked).

A Read at this address returns the current mask.
NOTE
If either ARDY or SRDY is masked, reporting will be inhibited on both
lines. This is because ARDY and SRD Y must both be low onthe UUT to

cause a forcing line error; if either is masked, the other cannot be reported
as an active forcing line by itself, even if it is low on the UUT.

Active Interrupt Error Mask (ADDRESS F0 0066) 4B-22.

A Write at address FO 0066 individually masks interrupts from being reported as
active. The interrupt lines correspond to the data bits as shown below. A 0 in the mask
indicates that the corresponding interrupt line is not to reported as active. Bits 5-15 are
ignored. The power-up default mask is 001F.

A READ @ FO0 0066 returns the current mask.

9000A-80186

DATA BIT INTERRUPT LINE:

0 INTO
1 INTI
2 INT2
3 INT3
4 NMI

NOTE

If either interrupt channel is programmed as an Interrupt/ Interrupt
Acknowledge pair, the corresponding INT?2 or INT3 pinis configured as
an INTA output. Interrupt lines configured in this way are automatically
defeated (masked) from being reported as active.

Address Segment Drivability Error Mask (ADDRESS F0 0068) 4B-23.

A Write at address FO 0068 masks the segment (high nibble) of the UUT’s address bus.
The address bits are assigned to the data in this Pod Function address as follows:

The Default value is 000F.

Low Word Address Drivability Error Mask (ADDRESS F0 006A) 4B-24.

A Write at address FO 006A masks drivability errors on the low word of the UUT’s
address bus. The address bits are assigned to the data at this Pod Function address as
follows:

Address bits: A1S AO
Data bhit mask: DS DO

A WRITE@ F0006A = FDFF, for example, will instruct the Pod and Troubleshooter
not to report drivability problems on address line A9 if they occur.

The Default value is FFFF.

Data Drivability Error Mask (ADDRESS F0 006C) 4B-25.

This mask is a map of the UUT’s data bus bits. The data bits are assigned to the data in
this Pod Function address as follows:

Data bits: DA e DO
Data mask bits: DS e DO

The power-up default condition for this mask is FFFF (errors on all lines reported) A
READ @ F0 006C returns the current mask.

INTA and TIMER OUT Error Mask (Address FO 006E) 4B-26.

A Write to address FO 006E individually masks drivability errors on the INTAOQ,
INTAIL, TMR OUT 0, and TMR OUT 1 lines from being reported as a Control error
onthe INT ERROR or TMR OUT ERROR psuedo-control lines. A data bit specified
as a 0 masks drivability errors on the corresponding line from being reported. The data
bit assignments for drivability errors:

4B-13

9000A-80186

4B-14

DATA BIT LINE
0 TMR OUT 0
1 TMR OUT |
2 INTAO
3 INTAI

Data bits 4-15 are ignored. The power-up default mask is 000F.

A READ @ FO 006 E returns the current mask.

Chip Select Error Mask (Address F0 0070) 4B-27.

A Write to Address FO 0070 individually masks drivability errors on the CHIP
SELECT lines from being reported as a Control error on the CHIP SEL ERROR
psuedo-control line by the Troubleshooter. Data bits written with a value of 0 inhibit
the reporting of drivability errors on the corresponding CHIP SELECT line. The data
bits correspond with the chip select lines as follows:

DATA BIT LINE
0 UCS
1 LCS
2 MCS0
3 MCSI
4 MCS2
5 MCS3
6 PCS0
7 PCSI
8 PCS2
9 PCS3
10 PCS4
11 PCS5/ Al
12 PCS6/A2

Bits 13-15 are ignored. The power-up default mask is 1 FFF.

A Read at address FO 0070 returns the current mask.

DETERMINING ERRORS 4B-28.
Introduction 4B-29.

You may want to know whether errors have occurred after a particular operation, such
as a Write, even if you have disabled the reporting of those errors (see Masking Errors).
The Pod provides several “last error” Pod Function addresses which contain the
results of the possible error conditions. By reading the contents of these addresses, you
can locate specific information about the most recent error.

The information at these Pod Function addresses (with the exception of the Last Error
Summary at address F0 0040) is not changed until another operation that causes the
Pod to execute a UUT-access cycle (a Read or a Write at a UUT address, for example)

9000A-80186

is performed. The data at the Last Error Summary address is updated every time an
operation that causes the Troubleshooter to communicate with the Pod is performed.

NOTE

Reading the contents of any “last error” Pod Function address does not
change the contents of any of the “last error” address, except for the Last
Error Summary address at FO 0040.

NOTE

All of the “last error” Pod Function addresses are “Read Only”. A Write
to any of these addresses will cause the Troubleshooter to display an
Illegal Address error message.

The information for the individual Pod Function addresses is described below.

Last Error Summary (ADDRESS F0 0040) 4B-30.

After each Pod/UUT operation, the Pod sends a byte of information to the
Troubleshooter to indicate possible error conditions or significant changes in the state
of the Pod. The Troubleshooter uses this information to generate the correct response
to each condition. For example, if the Forcing Lines Pending and Disabled bit is set,
the Troubleshooter displays an ACTIVE FORCE LINE message.

A Read at this address (FO 0040) returns the hex value of the Error Summary byte, with
the individual bits assigned as follows:

7 0

0000 0000 XXXX XXXX System Fault Byte (binary)
I |

Data lines not drivable

Address lines not drivable

Control lines not drivable

Forcing lines pending and disabled
Interrupt pending

lllegal address

Self test

UUT power failure

- Will always be zeros

For example, READ @ F0 0040-0008 indicates that there was an asserted interrupt
line during the most recent UUT access.

The power-up default value of the data at this address is 0000—no errors.

The data returned by a Read at this address is NOT effected by the condition of the
Error Summary Mask.

4B-15

9000A-80186

Last Control Errors (ADDRESS F0 0042) 4B-31.

A Read at address FO 0042 returns the hex representation of the control errors for the
most recent Pod/UUT operation. The bits contained in this address are the same as
used for the control lines in other functions. Refer to Table 2-3 for a description of the
Control Line Bit Assignments. The power-up default value of the data at this address is
0000.

Last Forcing Line Errors (ADDRESS F0 0044) 4B-32.

A Read at this address returns the hex representation of any Forcing Line errors that
may have occurred during the most recent operation. The bit assignments are the same
as the Status Line bit assignments described in Table 2-2. A 1 corresponds to a Forcing
Line that was active. Note that ARDY and SRDY are reported individually, even
though they must both be low to cause an ACTIVE FORCING LINE error message.

DATA BIT FORCING LINE

ARDY
SRDY
HOLD
RES
DRQO
DRQI

N W ~—=O

Last Active Interrupts (ADDRESS F0 0046) 4B-33.

There can be from two to five external interrupt sources (including NMI), depending
upon how the Pod is configured for handling errors. The actual source(s) of the
external interrupt can be determined by a Read at this Pod Function address (FO
0046). The data returned will identify the active interrupts as follows:

DATA BIT INTERRUPT LINE

0 INTO
1 INT1
2 INT2
3 INT3
4 NMI

An active interrupt is identified by a 1, meaning that the corresponding interrupt line
was latched high during the last UUT access. Data bits 5-15 will always be returned as
Zeros.

NOTE

If either interrupt channel is programmed in cascade mode (see the
manufacturer’s data sheet), the corresponding INTO or INTI pin is
configured as an INTA output. Interrupt lines configured in this way are
automatically defeated (masked) from being reported as active.

Last Segment Drivability Errors (ADDRESS F0 0048) 4B-34.

A Read at this address (F0 0048) returns a map of bits that identifies drivability errors
on the segment (high nibble) of the UUT’s address bus. The address bits are assigned to
the data at this Pod Function Address as follows:

4B-16

9000A-80186

A bit that is set high indicates a drivability error on the corresponding address line. For
example, READ @ F0 0048=0002 shows that a drivability error occurred on address

line A17.
Address Segment lines: A19 A16
Data bits in FO 0048 DI15 D4 D3 ... DO
always zeros
Last Low Word Address Drivability Errors (ADDRESS FO 004A) 4B-35.

A Read at this address (FO 004A) returns a map of bits that identifies drivability errors
on the low word of the UUT’s address bus. The address bits are assigned to the data in
this Pod Function address as follows:

High bit that is set high indicates a drivability error on the corresponding address line.
For example, READ @ F0 004A4=0020 shows that a drivability error occurred on
address line AS.

Address line: A1S A0
Data line: DD DO
Last Data Drivability Errors (ADDRESS F0 004C) 4B-36.

A Read at this address (FO 004C) returns a map of bits that identifies drivability on the
UUT’s data bus. The data bits are assigned to the data in this Pod Function address as
follows:

Data bus: D15 e DO
Data bit: D5 DO

A bit that is set high indicates a drivability efror on the corresponding data line. For
example, READ @ F0004C=0401 shows that drivability errors occurred on data lines
DO and DI10.

Last INTA and TIMER OUT Drivability Errors (ADDRESS F0 004E) 4B-37.

A Read at address FO 004E reports drivability errors on the INTAO, INTAT, TIMER
OUT 0, and TIMER OUT 1 lines. A data bit with a value of | means that the
corresponding line is not drivable. The lines are identified as follows:

DATA BIT LINE

0 TMR OUT 0
1 TMR OUT 1
2 INTAO
3 INTAI

Data bits 4-15 will always be returned as zeros.

NOTE

Drivability errors on INTAO or INTAI will not be reported if the line has
been configured as an input.

4B-17

9000A-80186

Last Chip Select Drivability Errors (ADDRESS FO0 0050) 4B-38.

A Read at address FO 0050 reports drivability errors on the CHIP SELECT lines. A
data bit with a value of 1 means that the corresponding line is not drivable. The data
corresponds to the lines as follows:

DATA BIT LINE
0 UCS
1 LCS
2 MCS0
3 MCSI
4 MCS?
5 MCS3
6 PCS0
7 PCSI
8 PCS2
9 PCS3
10 PCS4
1 PCS3/Al
12 PCS6/ A2

Data bits 13-15 will always be returned as zeros.

Last Status (ADDRESS F0 0052) 4B-39.

A Read at this address (F0 0052) returns the status line values for the most recent Pod
operation. The normal status bit assignments as shown in Table 2-3 are used.

4B-18

9000A-80186

Section 5

Theory of Operation

INTRODUCTION 5-1.

The theory of operation of the Pod is described on two levels in this section. The first
levelis an overall functional description which describes the major sections of the Pod
and how they relate to each other, to the UUT, and to the Troubleshooter. The second
level is a detailed description of each Pod section. The descriptions are supported by
block diagrams in this section and by complete instrument schematics in Section 8 of
this manual.

GENERAL POD OPERATION 5-2.
Introduction 5-3.

The Pod is essentially a complete microprocessor system by itself, with the capability
of switching between the buses and signals of the UUT and those internal to the Pod. It
is usually in an internal “housekeeping” mode, waiting for instructions from the
Troubleshooter. Under these conditions, it functions like any normal microprocessor-
controlled system. When the Pod receives an instruction, it switches buses and
performs an operation or series of operations on the UUT microprocessor bus. When
the Pod accesses the UUT this way, the bus is momentarily (for the duration of a
memory access cycle or an I/O cycle) switched to the UUT by disabling the
components in the Pod and connecting all lines to the UUT, buffered in the
appropriate direction.

Inthe RUN UUT mode, the components within the Pod are permanently disabled, and
the Pod microprocessor is effectively permanently connected to the UUT.

For the purposes of description, the Pod may be divided into four major functional
areas:

® Processor Section

® UUT Interface Section

® Timing and Control Section

® UUT Power Sensing Section

The general operation of each section is described in the following paragraphs.

5-1

9000A-80186

5-2

Processor Section 5-4.

The Processor Section, shown in Figure 5-1, is made up of a microprocessor, RAM,
ROM, an 1/ O interface to the Troubleshooter, and various latches and buffers. These
elements, along with timing components, constitute a small microsystem which
receives Troubleshooter commands and directs all Pod operations during execution.

For the 80186 Pod, as well as all other Troubleshooter Pods, the microprocessor inputs
from the UUT are referred to as Status Lines, and the outputs to the UUT are referred
to as Control Lines. This nomenclature is not always in agreement with the
manufacturer’s literature (80186 manufacturers, for example, refer to line S3, which is
a microprocessor output, as a status line). This convention, however, allows
consistency between Pods when implementing the Troubleshooter functions which
involve status or control lines, such as READ STATUS or WRITE CONTROL. Refer
to the definition of status and control lines in Section 2 for more information about
these signals.

All Pod status lines that could adversely affect the Pod operation are either
automatically disabled by the Pod or may be disabled by the operator using the
Troubleshooter’s Setup function. Disabling these status lines allows the Pod to operate
in UUT environments where malfunctioning status lines such as HOLD could prevent
the Pod from performing any tests. The one microprocessor input which may not be
disabled, of course, is the UUT clock. The clock signal must aiways be present for Pod
operation. All the status lines are enabled in the RUN UUT mode.

The Processor Section also contains circuitry for Pod self test. When the Pod ribbon
cable plug is inserted into the self test socket, part of the Pod circuitry becomes a
simplified pseudo UUT. During Pod self test, certain tests are performed on this
pseudo UUT, and any failures are reported to the Troubleshooter.

UUT Interface Section 5-5.

The Interface Section, shown in Figure 5-1, consists of buffers and drivers, protection
circuits, logic level detection circuits, and a clock-drive oscillator. The buffers and
drivers switch the UUT to the microprocessor or to the standby control and address
signals, as dictated by the Timing and Control Section.

Each UUT signal is protected from overvoltage or short-circuit conditions that might
damage Pod components. Resistors in series with the inputs of the detection circuit
latches limit the input current, and resistors in series with the output drive lines limit
output current. A pair of clipping diodes connected to ground and power protect the
Pod’s circuitry against damaging voltages.

The detection circuits consist of latches connected through the protection circuitry to
the UUT. The latches are latched during a UUTON cycle, when the signals are
expected to be at a known level.

If a signal cannot be driven through the output-current-limiting resistor, it will be
detected when the latches are individually read by the Processor Section, and the
values are compared with the expected values.

The clock-drive module at the end of the plug cable takes whatever clock signal that
may be used on the UUT, either crystal signals on the X1 and X2 pins or a square wave
on the X1 pin, and amplifies it to a suitable level to overcome the load of the cable and
Pod components.

9000A-80186

Timing and Control Section 5-6.

The Timing and Control Section, shown in Figure 5-1, consists of a timer and internal
timing and control logic. The Timing and Control Section receives inputs from the
Processor Section and the Interface Section. When a UUT access occurs, the internal
databusis disabled and the buffers to the UUT are enabled. During alternate times, the
UUT buffers are disabled and the internal data bus is enabled. This bus switch is
accomplished by buffer control signals and chip enable signals generated by the
Timing and Control Section in response to inputs from the timer, the control register
outputs as set by the microprocessor, the status lines from the UUT, and the control
lines from the microprocessor.

The length of a normal bus switch equals one microprocessor memory access cycle or
I/ O cycle. The bus is switched to communicate with the UUT between the last internal
operation and the start of the intended UUT operation. The bus is switched back to
communicate with the Troubleshooter at the end of the cycle.

If the microprocessor has sent the RUN UUT command to the Pod’s control register
(or port), the bus switch is started in the normal fashion, but is then held on indefinitely
until a Reset signal is received from the Troubleshooter.

During the time that the Pod is not communicating with the UUT, the UUT needs the
proper signals so that it can perform the normal dynamic memory refresh operations
and other similar tasks. In order to provide these signals to the UUT, the Pod performs
what are called transparent reads. A transparent read is a read operation that is
performed at a selected address. Transparent reads generate the transparent or fake
control signals required to simulate a normal microprocessor read operation. This
allows the UUT to maintain non-CPU operations, even when the Pod’s
microprocessor is not communicating with it.

UUT Power-Sensing Section 5-7.

The UUT power-sensing circuit shown in Figure 5-1 constantly monitors the UUT
power supply. This circuit produces an output signal to the Troubleshooter in the event
that UUT power drops below 4.5V or rises above 5.5V.

Any time that the UUT power supply drops below about 3.4V, all active Pod outputs
are changed to their high-impedance states (except the signal on the X2 pin at the
UUT). This feature protects UUT circuits from being damaged by Pod outputs when
the UUT power supply drops below safe operating limits. The Troubleshooter will
display a UUT power-fail error message. When the proper operating power supplies
have been restored to the UUT, the outputs of the Pod will return to normal, and the
Troubleshooter will be ready for additional testing.

DETAILED THEORY OF OPERATION 5-8.

Introduction 5-9.

A detailed block diagram of each major Pod section is presented in Figure 5-2. Where
possible, the reference designation numbers of specific components are shown in
Figure 5-2. The use of the reference designation numbers indicates that most or all of
that component is used within the part of the circuit shown. Portions of unlisted
components may also be used in the circuit. Each major section is described in the
following paragraphs.

5-3

9000A-80186

DMAOOITIWNMMrWCOIT—

I .
HANDSHAKE

ADDRESS
DECODING
AND CHIP
ENABLES

POWER FAILURE

PROCESSOR SECTION

CONTROL SECTION

TIMING AND 1 [

DATA
BUFFER

OUTPUT
LATCH

TIMER

MICRO-
PROCESSOR

INTERNAL
TIMING
AND
CONTROL

SELF TEST

5-4

9000A-80186

INTERFACE SECTION j

DATA
BUFFER

TRANS.
ADDRESS
DRIVER

SWITCH
AND
BUFFER

ADDRESS

CONTROL

BUFFERED
g_ADDRESS/DATA

CE A | PROTECTION
-’ CIRCUITS
AND
LOGIC
LEVEL

SENSING

UUT POWER

SENSING [&—

UUT POWER

CIRCUIT

—MXOOW IONLNLMOODVOIO—= —CC

Figure 5-1. 80186 Interface Pod General Block Diagram

5-5

9000A-80186

[PROCESSOR SecTiON T T T T]:Tlﬁmﬁi'n CONTROL SECTION
[
CE PODSTAT ouTPUT |l TIMER ‘_'Q_E
] LATCHES || u20
CE DATA | DATA CE U15,u18,U22 II {
RUNUUT
| BUFFER U8 ! BUFFER U3 Il [uutoN
: RUNREG™| U26,U28 |— UUTON
| RAM HIGH H
| _u
RAM LOW
| 10
|
| ROM HIGH
| v
| ROM LOW
l us
I INTERNAL TIMING.
. i INTERNAL CONTROL,
a |l S OORESS AND TRANSPARENT
0| LATCH HIGHY/ CONTROL
Al U7 RO U27,U28, U14,U17,
a8 RS Ces U29.U56 U25,U30| |LATCH
E LATCH LOW
s || u2
Hol
0
o |1 .
R| | DDRESS NORMAL/
| QUEUE
| STATUS
I AND WRITE
| CONTROLS
ENABLE u19,
| W U23.U24
[INPUT N
BUFFERS |
| . I UUTON
| i
— DATA SEL| SYNC
| SYNC 1 u21
r’ Il
ADDRESS
|| DECODING .
AND CHIP
NA
B s | c INTERNAL TIMING & CONTROL :L
Lun u12.u13 SELF TEST T T
——————————— U31,U50,U51,U52,Y1
POWER FAIL I I |

5-6

9000A-80186

PROCESSOR BOARD INTERFACE BOARD

ADDRESS/DATA

DATA
LATCH
U19

TRANSPARENT CONTROLS

=z [CONTROL/
STATUS
] CATCHES

BUFFER |
CONTROL |
U16 I

CONTROL/
STATUS
LATCHES

13.U16,U21.U24

CONTROL/
STATUS
LATCHES

U1,U3,U4,U16

ADDRESS/DATA
BUFFER
u18
TRANSPARENT
| ADDRESS ADDRESS DRIVER
LATCH U15,U17,U27
u20 e

BUFFER

CONTROL SWITCH

AND BUFFERS
U11,U28,U29

CONTROL
SWITCH
AND BUFFERS
U14,U22,U23

A1,A2 A4
! UUT CONTROL

A5,A6,A8

UuT 4
ADDRESS/DATA

[
[
I
!
|
I
I
!
I

UuT |
ADDRESS/DATA

I
|
|
I
|
I
I

I
I
I
|
l
|
|
UUT CONTROL
|
|
I
|
|
I

|
YuT STATUS

|
|
|
|
|
|
|
|
|

AMXOONMDONNMOODVODIO—Z —CC

—— e — e —— uuT
{ LOW POWER | POWER |
T
DETECTION UUT POWER
! POWER FAIL U25 U26
e e B

PROCESSOR BOARD «—— INTERFACE BOARD

Figure 5-2. 80186 Interface Pod Block Diagram

5-7

9000A-80186

Processor Section 5-10.

The microprocessor (U53), RAMs (U9, U10) and ROMs (U4, US) amount to a small
microprocessor system which is the heart of the Pod. Because the address/data bus is
time-multiplexed, the address latches (U2, U7) are required to supply valid addresses
to the RAM and ROM during the entire memory cycle. The data side of the RAMs and
ROMs is tied directly to the address/data bus because the RAMs and ROMs cannot
tolerate the extra delay of the data buffers. All other datais input through data buffers
(U3, UB) to reduce loading on the bus. The Processor Section communicates with the
troubleshooter through additional buffers (U1, U6).

All communication between the Pod and the Troubleshooter is fully handshaked
according to the protocol shown in Figure 5-3. The two handshake lines are
MATINSTAT and PODSTAT. MAINSTAT is produced by the Troubleshooter and
monitored by the the Pod. MAINSTAT initiates all data transactions. PODSTAT is
produced by the Pod to indicate the Pod’s response.

The address decoding and chip enable circuitry (Ul1, U12, U13, and associated logic)
select which components or buffers are enabled on the data bus. This circuitry also
controls the direction of the data buffers, and disables all internal components during
UUTON. (The chip select lines[UCS, LCS, etc.] are not used internally by the Pod for
address decoding.)

COMMANDS AND DATA FROM TROUBLESHOOTER TO POD

HERE IS RECEIPT
COMMAND DATA ACKNOWLEDGED
}
MAINSTAT
COMMAND DATA
RECEIVED READY
PODSTAT
DATA FROM POD TO TROUBLESHOOTER
READY FOR DATA
DATA RECEIVED
}
MAINSTAT
HERE IS RECEIPT
DATA ACKNO\A‘LEDGED
PODSTAT

Figure 5-3. Handshake Signals

9000A-80186

The output latches (U15, U18, U22) are used by the microprocessor to control the
function of the Pod. The output latches control which inputs are enabled, the value of
lines during a Write Control operation, which sync pulse is returned to the
troubleshooter, and the Run UUT mode. PODSTAT is also one of the outputs of the
latches.

The various protection networks help protect the microprocessor from potentially
damaging signal levels at the UUT (see the description of the Interface section below).
Intervening logic between the protection circuits and the microprocessor allows or
disallows inputs, depending on which lines are enabled. This logic also allows all inputs
if the Run UUT mode is selected. ‘

The self test circuitry consists of a clock generator (Y1, C2, C3) and some latches which
buffer the address (US50, US1, U52). The outputs of these latches are placed on the data
bus during a read operation. All status lines are driven by a common signal which
causes the status lines to be active and ensures that the Pod can operate in the
potentially hostile UUT environment. Vcc is returned to check the power level. All
output lines are cross-connected to input lines so that continuity of the cable and
functioning of the interface board can be checked.

Timing and Control Section 5-11.

The components that compose the Timing and Control Section are located on the
processor board. The Timing and Control Section is divided into functional
subsections for the purposes of discussion, although some of the subsections are
intricately interrelated.

The timing relationships of several important Pod signals are shown in Figure 5-4. The
signals include UUTON, the latch controls, and sync pulse. The UUTON circuit (U26,
U28, and associated logic gates) controls the bus switch timing and enable signals. The
UUTON signal is initiated by an output of the timer (U20), and is normally ended by
the signal LODEN which is generated by the internal timing circuits. LODEN is an
extended or long data enable pulse. If U26, pin S is high, UUTON stays on (high) until
a reset is received from the troubleshooter.

The sync circuitry (U21 and associated gates) sends a sync signal to the troubleshooter
during the address or data portion of UUTON. (Address or data sync is selected by the
Processor Section.) Sync is inhibited by the signal RUNUUT to prevent damage to the
probe pulser.

The buffer control circuitry (U16) controls the bus switch by controlling the buffer
direction and enable signals of the buffers in the Interface Section. Component U16 is
a PAL* (Programmable Array of Logic); a schematic diagram of U16 is included in
Section 8 of this manual.

The internal timing, internal control, and transparent control circuitry is the group of
circuits which is used to generate a stable set of usable control signals for both the
Normal and the Queue Status mode of 80186 operation. Most of the signals generated
have names that are similar to the names of the microprocessor control lines, with an I
or a T added to the name to indicate whether the signal is used internally or is
transparent. The internal signals are signals that are not sent to the UUT, but are used
solely for internal Pod operations. The transparent signals are signals which are sent to
the UUT during a transparent read. (Transparent reads are described in the previous
section titled Timing and Control Section.) Some of the transparent signals are also
used internally. If any of S0, S1, or S2 go low, the flip-flops U27, U28, U29, or U56
generate the interrupt acknowledge and ALE in the Queue Status mode and to switch
between the Normal and Queue Status modes.

*PAL™ is a trademark of Monolithic Memories, Inc. 5-9

9000A-80186

"oy} uijuasaid jou ase Aay) ‘pPod 98108 34 JO PO [BWION 8y} ul Ajuo jusssid aue sjeubis 37y pue ‘UM ‘Qd 8Ul«
1 | « ; 1 ,

"8PO SNIBIS 8anany

| |

m | | | y | | YNOIS
W —\ — W W - : VIVQ ONAS) LNdLnO
” 43001
_ , A 3409S
| 5 v $SIHAAY ONAS)HILOOHS
! 378N0YL
! e \ [S10313S dIHD
” ,ILM , o STYNDIS
. T TV 1nn
s e , Y3HLO
\ f i T ﬂ \ 2S 10 1 10 0S
/ — , ; N3Q
, ! STYNDIS
/ y/1a
\ —s — = $S300V
; / 5 8 am (0 Avem
W w = 1nn
—(udav mszthUA viva 10N Jn o X' waav 1nn X anvani ———V1v0/SS3HAaV
' y =t
\ / o \ [N3Q
o STVYNDIS
P , 8/1Q [ssaoov
. I avay.
— ay
\ /] = 1nn
I.AMH(“dSNVHLY v1vQ 1NN MMMMY T {Haav 1nn X anvani V|| v1vad/sSs3yaay
[
_/ [S /A W W A WY A U A 1NOXMTD
zL L vL €1 ML zL L v1L
310AD Qvay e « J10AOavad
LNIHVISNYHL ¢ ERSAY _wwm_oo< 53 >4 | NTHVSNYHL
_ sdiysuonejpy Buiwi] eubig pod 98108

Figure 5-4. 80186 Pod Signal Timing Relationships

5-10

9000A-80186

310AD
SS300V INNe e

3T10A0
1N3IHV4SNVHL e

vivd

ONAS

SS3daav

ONAS

LVYaMo

EILA) e

d4avio

.|/

33M0

] NOLNN

I

L 1] ./

—

e
T

T\

L\
]
/

1 /A

vL

€L m1L cL L1

Buiwi] |eubig [eutsjul pod 98108

IVNDOIS
ind1ino
H30Ol1
3d0JS
H3100HS
-379N04Yl

(oldl
359303
ONISIH)
SIVYNDIS
ONI¥O01D
HOLY

SS300V
innv
ONIHNA
IN3S34d
ATNO

Figure 5-5. 80186 Pod Internal Signal Timing

5-11

9000A-80186

3FOAITMONNOVY

1dNYY31NI
ONAS

31VINO

d4av

|

r

——_ 3IdAL H1NI

—Haav-osvyo)

EE) 0]

V.INI

VINI
__eS%1IS®0S

— viva
—— /SS3daav
LYINI/ELNI

L

€l

L/

mielL

L/

Ll

L/

37l

/

/

/

31di

vl

€l

L/

MLZL

Buiwi] sousnbag abpajmouyoy - 1dniislu| pod 98108

\

\

—

S

\ G
/

10
OV.LNI/2LNI

L1

1A%

1NOX10

TVYNDIS
1Ndino
H3991d1
3d00S
H3100HS

1vayo\-3718N0HL

STVYNDIS
aod
TVNH3LNI

STVYNDIS
1nn

Figure 5-6. 80186 Pod Interrupt - Acknowledge Sequence Timing

5-12

The flip-flops U25, U26, U27, U28, U29, U30, and U56, and the associated logic are
used to generate internal signals to allow the internal devices of the Pod to
communicate with each other (and to generate transparent reads) regardless of
whether the Pod has been placed in the Normal mode or the Queue Status mode by the
UUT.

The PAL U23 and part of flip-flip U25 are used to switch the Pod between the Normal
mode and the Queue Status mode whenever the Pod is reset, depending upon how the
RD/QSMD signal is created by the UUT.

Interface Section 5-12.

Components Al through A8 are Fluke-designed hybrid ICs containing current-
limiting resistors and clipping diodes to protect Pod circuits from overvoltage
conditions. Al through A8 also contain (not shown) 200-kilohm pull-up resistors.

The transparent-read address is produced during transparent reads by the buffer U27,
the counter US5, and part of the buffer U15.

The upper eight bits (A12-A19) of the transparent-read address are written to the
output latch U17 by the processor section. These transparent-read address bits are then
sent through buffer U27. The outputs of U27 are enabled and disabled by the Timing
and Control Section. The upper eight transparent-read address bits are selectable by
the user (see Configuring General Pod Characteristics in Section 4A).

Transparent-read address bits AQ and A9-A11 are produced by the buffer U15. Only
half of U5 is used to produce these transparent-read address bits; the other half is used
to buffer the address bits A16-A19 during UUT-access cycles. The outputs of U15 are
enabled and disabled by the Timing and Control Section.

Transparent-read address bits A1-A8 are produced by the eight-bit counter US5.
Normally, this counter is configured by the Processor Section to produce each of
Al-A8 as alogic zero, but the counter can be configured to cycle repeatedly through a
count from 0 to FF. This allows the Pod to simulate DMA operations during
transparent read operations.

When U5 is configured to count, the value of the transparent-read address cycles from
XXEO00 to XXFFE. This is because the counter outputs are connected to A1-A8 and
because the transparent-read address bit A0 is always a zero. (The X’s represent the
selectable transparent-read address bits A12-A19.) The value of the counter outputs is
incremented by one after each transparent-read cycle.

Ul4 is a multiplexer which produces the signals S3-S6, which are time-multiplexed
with address signals A16-A19. The outputs of Ul4 are enabled and disabled by the
Timing and Control Section.

The inputs to all the latches (U1, U3, U4, U7, U8, U12, U13, U16, U19, U20, U24) are
connected to the UUT lines through the 700-ohm resistors of the components Al
through A8. The latches are latched under control of the Timing and Control Section
during a UUT access or during an interrupt acknowledge cycle. The latches may
receive multiple latch pulses during a UUT cycle; the last data latched during the UUT
cycle is the data read by the Processor Section. (The Processor Section compares the
latched data with what the it expected to see to detect drivability errors, forcing lines
pending, or interrupts pending.)

9000A-80186

9000A-80186

5-14

The UUT power-detection circuit constantly monitors the UUT power supply. If the
UUT power supply drops below 4.5V or rises above 5.5V, the power-detection circuit
produces an output to the Troubleshooter which causes the Troubleshooter to display
a UUT power fail error message.

Also, any time the UUT power supply drops below about 3.5V, all active Pod outputs
are disabled. (This feature has been incorporated to protect UUT circuits from being
damaged by Pod outputs when the UUT power supply drops below safe operating
limits.) If this happens, the Troubleshooter displays a UUT power fail error message.
When the proper operating power supplies have been restored to the UUT, the outputs
of the Pod return to normal and the Troubleshooter is ready for additional testing.

During UUT access cycles, the Chip Select signals (UCS, LCS, MCS0-3, and PCS0-6)
of the Pod’s microprocessor are sent to the UUT through the buffers UI0 and U22.
These buffers are disabled during transparent reads. Fake chip select signals are
produced for transparent reads by the output latches Ull and U23, and the
multiplexers U28 and U29. U28 and U29 (along with the flip-flop US56 of the processor
section) are used to ensure that the selected (low) transparent Chip Select line only goes
low at the proper time.

The buffered Chip Select outputs are latched by the latches U12 and U24. The internal
Chip Select lines are latched (on the internal side of buffers U10 and U22) by the latches
U9 and U21. The processor section reads these latches, and compares the results of the
internal latches (U9 and U21) to the results of the latches U10 and U22 in order to
determine if there are drivability errors on the Chip Select outputs. The Pod must use
the internal latches to read the expected Chip Select line conditions because the Pod
software doesn’t automatically know how the Chip Select lines will be produced by the
Pod during a given UUT access cycle.

9000A-80186

Section 6
Troubleshooting

INTRODUCTION 6-1.

This section provides troubleshooting information for the Pod, and includes repair
precautions and disassembly procedures.

The built-in Pod Self Test (described in Section 2 of this manual) will detect most Pod
malfunctions. Whenever the Troubleshooter displays a message indicating a Self Test
error, or whenever the Pod appears to be defective or inoperative, you should make a
note of the message or symptoms. If the Pod is still covered under the Warranty, or if
you want to have the Pod repaired by Fluke, send the Pod to a Fluke Technical Service
Center for repair as described below. If you are going to troubleshoot and repair the
Pod yourself, continue to paragraph 6-3, Getting Started.

CAUTION

The Pod’s Processor PCB uses numerous Surface-Mounted parts.
Replacement of these parts requires a reflow soldering technology.
Attempting to replace Surface-Mounted components using a
soldering iron or other conventional means will damage the PCB.

WARRANTY AND FACTORY SERVICE , 6-2.

Troubleshooting and repair during the one-year Warranty period should be done by a
Fluke Technical Service Center. (See the Warranty statement at the front of this
manual for details of the Warranty.) If the Pod is still covered under the Warranty,
send the Pod, along with the description of the symptoms, to a Fluke Technical Service
Center. The Troubleshooter Operator Manual or Service Manual contains a list of
Fluke Technical Service Centers.

After the Warranty period, if you do not want to service the Pod yourself, or if
attempted troubleshooting fails to reveal the Pod fault, you may still ship the Pod to a
Fluke Technical Service Center for repair at areasonable cost. If requested, a free cost
estimate will be provided before any repair work is performed.

INSPECTING A SHIPMENT 6-3.

If you are receiving an original delivery of this Pod, inspect the Pod thoroughly
immediately upon arrival for damage and missing items.

® Ifthe Podisdamaged in any way, file a claim with the carrier. You are responsible
for negotiations and final claims with the carrier. If you want to have shipping

6-1

9000A-80186

damage repaired by Fluke, contact the nearest Fluke Technical Center for a
quotation.

® Check all material in the container against the enclosed packing list. Fluke will not
be responsible for shortages unless you notify us immediately.

SHIPPING THE POD TO FLUKE FOR REPAIR OR ADJUSTMENT 6-4.

Ship Pod to Fluke prepaid via United Parcel Service or “Best Way” (Air Freight from
overseas). Ship the Pod in its original packing carton, or, if that is not available, a
suitable container that is rigid and of adequate size. If you use a substitute container,
wrap the Pod in paper and surround it with at least four inches of excelsior or other
shock-absorbing material.

GETTING STARTED 6-5.

Troubleshooting the Pod is similar to troubleshooting any other microprocessor-
based UUT, and requires the equipment listed in Table 6-1. You should use the Theory
of Operation in Section 5 and the schematic diagrams in Section 8 to augment the
troubleshooting procedures that are outlined below.

Table 6-1. Required Test Equipment for Pod Troubleshooting

EQUIPMENT TYPE REQUIRED TYPE
Micro-System Troubleshooter Fluke 9000 Series
Interface Pod Fluke 9000A-80186
Digital Multimeter Fluke 77
Oscitlloscope Tektronix 485 or equivalent
NOTE

All references to data and addresses in the following sections are in
hexadecimal notation.

CAUTION

Static discharge can damage MOS components contained in the

Pod. To prevent this possibility, take the following precautions when

troubleshooting and/or repairing the unit.

e Never remove, install, or otherwise connect or disconnect PCB
(printed circuit board) assemblies without disconnecting the Pod
from the Troubleshooter.

® Perform all repairs at a static-free work station.

® Do not handle ICs or PCB assemblies by their connectors.

e Wear a static ground strap when performing repair work.

® Use conductive foam to store replacement or removed ICs.
6-2

9000A-80186

® Remove all plastic from the work area (including vinyl and expanded foam,

such as Styrofoam™*).

® Use a grounded soldering iron.

e Always place the Pod in a static-free plastic bag for shipping.

DETERMINING WHETHER THE POD IS DEFECTIVE OR INOPERATIVE 6-6.

The first task of troubleshooting the Pod is to determine whether the Pod is defective
or inoperative. This determination is based on the results of the Pod self test described
in Section 2. If you have not performed the self test, refer to Section 2 and perform the
self test before proceeding with the troubleshooting.

The results of the Pod self test and the Pod behavior when connected to a known good
UUT will categorize the problem into one of the three following groups:

Defective Pod:

Inoperative Pod:

Suspected Defective
Pod:

The Pod fails the Pod self test and the Troubleshooter
displays a self - test failure code. Refer to
Troubleshooting a Defective Pod in this section.

The Pod is unable to complete the Pod self test and the
Troubleshooter displays an ATTEMPTING RESET
message. Refer to Troubleshooting an Inoperative Pod
in this section.

The Pod passes the Pod self test but exhibits abnormal
behavior when connected to a known good UUT.
Refer to Extended Troubleshooting Procedures in this
section.

NOTE

The 80186 Interface Pod is only designed to be used with a
Troubleshooter that has been updated with improved delay lines and
probes. Earlier models used a slow TTL part as a delay line, which may
provide unstable probe readings at the high clock frequencies (possibly
greater than 6 M Hz) used with the 80186 CPU. If your Troubleshooter’s
Serial Number is lower than 3194000 and is demonstrating such
symptoms, contact a Fluke Technical Service Center for advice.

TROUBLESHOOTING A DEFECTIVE POD 6-7.

Introduction

6-8.

This section describes what to do if the Troubleshooter displays the POD SELF TEST
80186 FAIL xx (where xx represents a self test failure code) message when the Pod self
test is performed. If instead, the Troubleshooter displays an ATTEMPTING RESET

message, refer to Troubleshooting an Inoperative Pod.

NOTE

Make sure that the message is POD SELF TEST 80186 FAIL xx. The
messages FLUKE 90XXA POWER-UP FAIL or FLUKFE 90XXA
RESTARTED FAIL indicate failures within the Troubleshooter, not
within the Pod. Refer to the Troubleshooter Operator Manual for help if
you see either of these messages.

*Styrofoam™ is a registered trademark of Dow Chemical Co., Inc.

9000A-80186

6-4

The procedures for troubleshooting a defective Pod are based on the information
reported by the self test failure codes. These self test failure codes provide information
that can enable the operator to locate the cause of the Pod failure.

NOTE

The fact that the self test was completed (but still reported an error) is a
good indication that the problem is probably located in the UUT
Interface Section of the Pod. If the self test was completed, the Processor
Section and the Timing Section are probably functioning normally.
Those sections are essential for accepting the self test commands and
communicating the results to the Troubleshooter.

Interpreting the Self Test Failure Codes 6-9.
INTRODUCTION 6-10.

Information from two self test sequences is available: the standard self test that is
controlled by the Troubleshooter and performed during the self-test procedure, and
the enhanced self test that is built into the Pod and performed during power-up and
reset sequences. The enhanced self test provides more thorough evaluation of the Pod
than is provided by the standard self test alone. The results of both self tests are
available after doing a normal self test operation on the Pod (see Section 2 for
instructions).

NOTE

The error codes described below are used with the 9005A and 90104
Troubleshooters. Different error codes are used when using the Pod with
a 9020A. See Appendix D in the 9020A Operator Manual for a
description of the 9020A error codes.

Whenever the Troubleshooter displays the message POD SELF TEST 80186 FAIL 00,
then the Pod may have either failed standard self test or the enhanced self test. Refer to
Using the Enhanced Self Test below to find instructions for determining the source of
the failure. Any other failure code (01, 02, 03) denotes a failure of the standard self test.
Standard self test failure codes are described in detail in Table 6-2.

Table 6-2. Standard Self Test Failure Codes

FAILURE CODE DESCRIPTION
00* UUT read access failed or the enhanced self test failed
01 UUT write access failed
02 Control line(s) cannot be driven
03 Enableable status line(s) failed

*When the failure code 00 is received, the Pod may have failed an internal enhanced self test. To

determine whether the Pod failed the enhanced self test or not, perform a read at FO 0000. If the data

- returned is 00FF, the Pod did not fail the enhanced self test. If the message returned is anything other

than 0OFF OK, the enhanced self test failed; refer to the paragraphs titled Recreating the Enhanced Self
Test Routines.

9000A-80186

USING THE STANDARD SELF TEST 6-11.

Whenever the Troubleshooter displays the message POD SELF TEST 80186 FAIL xx
where xx equals 01, 02, or 03, the Pod has failed the standard self test. Record this
information and continue to Preparation to Troubleshoot a Defective Pod.

USING THE ENHANCED SELF TEST 6-12.

The Enhanced Self Test performs an improved functional test (compared to the
Troubleshooter’s built-in Pod test) and a nearly complete cable test as well. It consists
of a series of read, write, and write control operations using the Self-Test socket. If an
error is detected, all relevant information is saved, and an error code is inserted into the
fault byte at the end of the reset string before it is sent to the Troubleshooter. This code
produces the POD SELF TEST 80186 FAIL 00 message.

Pod Function Address FO 0000 in the Pod contains the result code from the last
Enhanced Self Test. A READ @ F0 0000 will return a code indicating which Enhanced
Self Test routine failed. Table 6-3 describes the possible error codes produced by the
Enhanced Self Test. As with the regular self test data, record the information from FO
0000 and continue to Prepartion for Troubleshooting a Defective Pod.

A WRITE @ FO0 0000 = 0000 will disable the reporting of the Self-Test bit in the fault
byte on all operations. This allows the Self-Test socket to be used as a UUT for
diagnostics. Reenable the Self-Test bit by writing 00FF to F0 0000 (WRITE @ FO
0000 = 00FF), or by turning the Troubleshooter power off and then on again.

Preparation for Troubleshooting a Defective Pod 6-13.

CAUTION

Any adjustment, maintenance, or repair of the opened Pod under
voltage shall be avoided as far as possible and, if done, shall be
carried out only by a skilled person who is aware of the hazards
involved.

Prepare to troubleshoot your defective Pod as follows:

1. Disassemble the Pod, referring to the later section titled Disassembly. It is not
necessary to separate the two PCB assemblies at this point. The two PCB
assemblies should remain securely fastened together with screws to avoid
possible problems with electrical connections between the two PCB
assemblies.

2. Look for any obvious problems such as burned components or ICs that are
loose in their sockets. Replace components if necessary.

3. Connect the Pod to the Troubleshooter, and insert the ribbon cable plug into
the self test socket as shown in Figure 6-1.

4. Press the Bus Test key on the Troubleshooter to initiate the Self Test, then
press the Stop Key. Perform a WRITE @ F0 0000 = 0000 to disable the Pod
Self Test. (The Pod Self Test may be re-enabled by cycling Pod power off and
then on, or by a WRITE @ F0 0000 = 1.)

6-5

9000A-80186

Table 6-3. Enhanced Self Test Failure Codes

EXECUTION/
FAILURE OPERATION* EXPECTED RESULT
CODE (TROUBLESHOOTING CLUES)
0001 READ @ AAAA *DATA RETURNED = ABAA
(Check A0-A15: Odd bits high, even low)
0002 READ @ 405555 = 0054 *DATA RETURNED = 0054
(Check A8-A15: Even bits high, odd low)
0003 READ @ 405556 = 0055 *DATA RETURNED = 0055
(Check A0-A7: Even bits high, odd low)
0004 Not used with 9000A-
80186 Interface Pod
0005 WRITE @ AAAAA = 5555 No Address, Data errors (Check DO-D15: Even bits
high, odd low)
0006 WRITE @ 455554 = AAAA No Address, Data errors (Check D1-D15: Odd bits
high, even low)
0007 READ @ A0000 = 3FAA *DATA RETURNED = 3FAA
(Checks A17, A19 = 1; A16,A18 = 0; S0, S2 = 1; 57,
BHE = 0; PCS1 thru PCS6 = 1)
0008 READ @ 50000 = 3F5A *DATA RETURNED = 3F5A
(Checks A17, A19 = 0; A16, A18 = 1: S0, S2 = 1: 51,
BHE = 0; PCS1 thru PCS6 = 1.
0009 READ @ 600001 = 003F *DATA RETURNED = 003F
(Checks SO, BHE = 1; A16-A19=0: 51,52 = 0;
PCS1 thru PCS6 = 1.)
000A READ @ 40080 = 1F4A *DATA RETURNED = 1F4A
(Checks A16, A17, A19 = 0; A18 = 1; 50, 52 = 1; 51,
BHE = 0; PCS1 = 0; All other PCS lines = 1.)
000B READ @ 40100 = 2F4A *DATA RETURNED = 2F4A
(Checks A16, A17, A19=0; A18=1; 50,52 = 1: §1,
BHE = 0; PCS2 = 0; All other PCS lines = 1))
000C READ @ 40180 = 374A *DATA RETURNED = 374A .
(Checks A16, A17, A19 = 0; A18 = 1; 50, S2 = 1; ST,
BHE = 0; PCS3 = 0; All other PCS lines = 1.)
000D READ @ 40200 = 3B4A *DATA RETURNED = 3B4A
(Checks A16, A17, A19=0; A18=1; 50,52 = 1; 57,
BHE = 0; PCS4 = 0; All other PCS lines = 1.)
000E READ @ 40280 = 3D4A *DATA RETURNED = 3D4A
' (Checks A16, A17, A19 = 0; A18 = 1; 50, 52 = 1; 51,
BHE = 0; PCS5 = 0; All other PCS lines = 1.)
000F READ @ 40300 = 3E4A *DATA RETURNED = 3E4A
(Checks A16, A17, A19=0; A18 =1;50,52 = 1; 51,
BHE = 0; PCS6 = 0; All other PCS lines = 1.)

6-6

Table 6-3. Enhanced Self Test Failure Codes (cont)

EXECUTION/
FAILURE OPERATION* EXPECTED RESULT
CODE (TROUBLESHOOTING CLUES)

0010 WRITE CTL = 001 **HOLD = 1; ARDY, SRDY = 0

0011 WRITE CTL = 010 **HOLD, ARDY = 0; SRDY = 1

0012 WRITE CTL = 100 **HOLD, SRDY = 0; ARDY = 1

0013 WRITE@0=0 **RES = 0; TEST = 1 (Checks WR = 0; RD = 1.)

0014 READ @ 0 = XXXX **RES = 1; TEST = 0 (Checks WR = 1; RD = 0))

0015 READ @ C0000 = XXXX **INTO = 0; INT1-3 = 1; NMI, DRQO-1 = 1
(Checks UCS low; L.CS, MCS0-3, PCS0 high)

0016 READ @ 0 = XXXX **INT1 = 0; INT0,2,3 = 1; NMI, DRQO-1 = 1
(Checks LCS low; UCS, MCS0-3, PCSO0 high)

0017 READ @ 80000 = XXXX **INT2 = 0; INT0,1,3 = 1; NMI, DRQO-1 = 1
(Checks MCSO0 low; LCS, UCS, MCS1-3, PCS0
high)

0018 READ @ 90000 = XXXX **INT3 = 0; INT0,1,2 = 1; NMI, DRQO-1 = 1
(Checks MCS1 low; LCS, UCS, MCS0,2.3, PCS0
high)

0019 READ @ A0000 = XXXX **NMI = 0; INTO-3 = 1; DRQO-1 = 1
(Checks MCS2 low; LCS, UCS, MCS0.1.3, PGS0
high)

001A READ @ B000O = XXXX **DRQO = 0; INT0-3 = 1; NMI, DRQ1 = 1
(Checks MCS3 low; LCS, MCS0-2, PCSO high)

001B READ @ 40000 = XXXX **DRQ1 = 0; INTO-3 = 1; NMI, DRQO = 1
(Checks PCS0 low; UCS, LCS, MCS0-3 high)

001C TRANSPARENT READ **TMRINO=0; TMRIN 1 =1
(Checks TMR OUT 0 low; TMR OUT 1 high)

001D TRANSPARENT READ **TMRINO=1,TMRIN1=0
(Checks TMR OUT 0 high; TMR OUT 1 low)

*Youmustenable the Pod Self Test with a WRITE @ FO 0000=XX (where xx is a non-zero value) before

performing the operations in this column.

9000A-80186

6-7

9000A-80186

6-8

TROUBLESHOOTER
SELF TEST SOCKET

POD CASE AND
/_ HEAT SINK REMOVED

DEFECTIVE POD

PROBE

Figure 6-1. Troubleshooting a Defective Pod

5. Press the Setup key on the Troubleshooter and set the following conditions:

SET-TRAP BAD POWER SUPPLY? YES
SET-TRAP ILLEGAL ADDRESS? YES
SET-TRAP ACTIVE INTERRUPT? NO
SET-TRAP ACTIVE FORCE LINE? NO
SET-TRAP CTL ERR? YES

SET-TRAP ADDR ERR? YES
SET-TRAP DATA ERR? YES
SET-ENABLE EXTRDY? NO
SET-ENABLE HOLD? NO

You are now ready to explore the possible causes of Pod failure that are indicated by
the Pod self test failure codes.

Troubleshooting a Defective Pod 6-14.
INTRODUCTION 6-15.

When the Pod and the Troubleshooter are connected in this configuration (and with
Pod Function Address FO 0000 = 0000 to disable the self test), the tests and
troubleshooting functions of the Troubleshooter can be applied to the Pod, much like
any other UUT. For example, you can perform read or write operations on the UUT
(which is actually the self test socket). The Troubleshooter no longer knows that the
Pod is plugged into its self-test socket.

NOTE

The default values for all of the Peripheral Control Block registers are
suitable when you use the Pod as a UUT. No changes have to be made to
the Pod’s configuration.

9000A-80186

Use the failure code data that was reported as the starting point for subsequent
troubleshooting. Use standard troubleshooting techniques to investigate possible
sources of the problem.

While investigating the problem, you may find it useful to recreate the standard self test
routine that detected the failure. Procedures for recreating the tests are listed below.

RECREATING THE STANDARD SELF TEST 6-16.
Follow the steps listed in Table 6-4 to recreate the individual tests done in the normal
self test.

The same basic techniques may be used for the additional failure codes that may be
obtained when using the 9020A Micro-System Troubleshooter in the remote mode.

RECREATING THE ENHANCED SELF TEST ROUTINES 6-17.

The enhanced self test consists of several test routines that are performed on the Pod’s
circuitry. The test routines are listed and described in Table 6-3.

Whenever the Pod fails the enhanced self test, the Pod causes the Troubleshooter to
display the message POD SELF TEST 80186 FAIL00. To confirm that the enhanced

self test failed, rerun the individual test routine failed, and display information about
the failure, use the following procedure:

NOTE

Quick-Looping can be done on the self-test routines.

Table 6-4. Recreating the Standard Self Test Routines

TEST ROUTINE/ OPERATOR ACTIONS TO
FAILURE CODE POD OPERATION RECREATE TEST
00 Reset Pod WRITE @ F00000=0
READ @ OFFO=FOOF READ @ OFFO

If a power fail error message
occurs, check the power-
detection circuits.

01 WRITE @ OFFO=FOOF WRITE @ OFF0=FOOF
02 Test Control Line BUS TEST
03 Send command to enable all Pod Enable EXTRDY and HOLD

Enableable lines and very that a Pod
timeout occurs. This timeout is
transparent to the operator.

1. Doa WRITE @ F0 0000 = 0 operation to cancel the self test mode.

2. Performaread operation at address F0 0000. If there was a previous failure of
an enhanced self test routine, this read operation will cause that failed routine
to re-execute. (In many cases an error message will be displayed.)

6-9

9000A-80186

3. Press the MORE key to find out more information about the error that was
detected. (Sometimes more than one line of information is available.)

4. Then press the CONT key to find out which enhanced self test routine failed.

You may rerun the failing routine at any time by either repeating the read operation of
F0 0000 (to rerun the last failing routine) or by writing a test code to address FO 0000.
The procedure for using a Write operation to recreate a specific self test routine is as
follows:

I. Do a WRITE @ F0 0000 = 0 operation to cancel the self test mode.

2. A WRITE @ F0 0000=0002, for example, will cause the Pod to re-execute
enhanced self test routine number 2.

NOTE

If you write bad data to this address, (i.e., try to execute an enhanced
selftest routine that doesn’t exist), the Pod will report a data drivability
error on the non-zero bits of the data.

Assume that the Pod self test is performed and the Troubleshooter displays the
message POD SELF TEST 80186 FAIL 00. The following sequence of keystrokes
provides information about the Pod failure detected:

PRESS DISPLAY COMMENT

WRITE @ F00000=0 WRITE @ F00000=0 Disable the Self Test.

READ F00000 ENTER DATA ERR @ F00000-LOOP? Enhanced self test detected
data error.

MORE DATA BITS 0080-LOOP? Unexpected data on data bit 7

(hex 0080 corresponds to bit 7).

CONT READ @ F0 0000 = 0002 FAIL The failure occurred during

test routine 2.

NOTE

If you press the LOOP key or the YES key in response to the LOOP?
prompts that accompany the preceding messages, the Troubleshooter
loops on the READ @ F0 0000; the Troubleshooter then loops on the test
routine in which the failure occurred.

The previous sequence of messages indicates that data bit 7 was found to be in error
while the Pod was performing test routine 2. Note that although a data error implies a
drivability error, when encountered with the enhanced self test a data error may also
indicate that incorrect data was received during a read operation.

9000A-80186

TROUBLESHOOTING AN INOPERATIVE POD 6-18.
Introduction 6-19.

This section describes what to do if the Troubleshooter displays any of the three
ATTEMPTING RESET messages when the Pod self test is performed. The
ATTEMPTING RESET messages indicate that the Pod is not operating and is not
responding to the Troubleshooter.

If you correct a problem while using the procedures provided in this section, try the
Pod self test again. If the Troubleshooter again displays an A TTEMPTING RESET
message, continue with the procedures in this section. However, if the Troubleshooter
displays the message POD SELF-TEST 80186 FAIL xx, refer to the previous section
titled Troubleshooting a Defective Pod. The reason for referring to the other section is
that when the Pod is again communicating with the Troubleshooter, you may use the
Pod to help troubleshoot itself.

Preparation for Troubleshooting an Inoperative Pod 6-20.

An inoperative Pod is like any other microprocessor-based UUT that is not operating
properly; the easiest way to fix an inoperative Pod is by using a Troubleshooter and a
good Pod. Preparation instructions also apply to troubleshooting without a good Pod,
but note that the detailed troubleshooting steps that follow only apply to using the
second Troubleshooter and Pod. Prepare to troubleshoot the inoperative Pod by
performing the following steps:

1. Disassemble the Pod, referring to the later section titled Disassembly, but do
not separate the two PCB assemblies.

2. Look for any obvious problems, such as burned components or [Cs that are
loose in their sockets. Replace components if necessary. If such obvious defects
are found, it might be prudent to try the self test again at this point.

3. Remove the Pod microprocessor from its socket.

4. If a second Troubleshooter is available, connect the Pod cable plug from the
inoperative Pod to the second Troubleshooter to supply the inoperative Pod
with power. If a second Troubleshooter is not available, connect +5V (2 amp)
power supply to the Pod as shown in Figure 6-2. An easy place to make the
power connections is at the connector that normally connects the cable to the
Troubleshooter.

CAUTION

Do not operate the Pod with the voltage supply exceeding 5.25 volts,
or damage to the Pod could resulit.

5. Provide a clock signal for the inoperative Pod by inserting the ribbon cable of
the inoperative Pod into its own self test socket. (Make sure the clock is
working properly.) An alternative source for a clock signal is a known good
UUT or frequency generator.

6. Connect the Troubleshooter to the good Pod as shown in Figure 6-2. Apply
power to the Troubleshooter, then install the ribbon cable plug of the good
Pod into the microprocessor socket of the inoperative Pod.

6-11

9000A-80186

6-12

CAUTION

Do not apply or remove power to the good Pod with the ribbon cable
connected between the good Pod and the inoperative Pod.

CAUTION

Do not separate the PCB assemblies of the inoperative Pod with
power applied to the inoperative Pod. Failure to comply with this can
damage CMOS components in the Pod. The PCB-assemblies should
be securely fastened together with the proper screws before
applying power.

+5VOLT
SUPPLY
COMMON -
TO INOPERATIVE POD
+5V DC .
INOPERATIVE POD
e ——— 4 INSERTED IN
I | — j SELF TEST
SECOND I — SOCKET
| TROUBLESHOOTER LEABl'E\. e
| (OPTIONAL) ! \
L | TO INOPERATIVE N
————————— POD 7 INSERTED IN POD
o MICROPROCESSOR
SOCKET
FIRST GOOD
TROUBLESHOOTER POD

CABLE

PROBE

Figure 6-2. Troubleshooting an Inoperative Pod

Procedure for Troubleshooting an Inoperative Pod 6-21.

Use the following steps as a guide for troubleshooting an inoperative Pod using a good

Pod. The circuits and components mentioned in these steps appear in the schematic

diagrams in Section 8, and the circuits are described in the Theory of Operation in
Section 5.

NOTE

The following procedures are intended only to direct the technician
towards the source of a problem. In each case, once an anomaly is
detected, it is up to the technician to pursue the problem further. It is
suggested that standard troubleshooting procedures be used, once a
problem is identified, to locate the source of the trouble. This involves
such things as checking and verifying activity of enabling and timing
signals, input and output signals, and logic.

NOTE

When performing looping read or write operations with a synchronized
oscilloscope connected to the Troubleshooter, use the Quick-Looping
Read or Write feature described in Section 4 to obtain a brighter signal
trace on the scope.

1.

Prepare the Pod as outlined in the previous section (Preparation for
Troubleshooting an Inoperative Pod). Position the inoperative Pod so that the
processor board (the one with the microprocessor socket) is upwards. Apply
power to the inoperative Pod. If a second Troubleshooter is used to supply
power to the Pod to be tested, press the STOP key on the second
Troubleshooter to prevent repetitive Pod resets.

Check that the microprocessor’s clock signal is present at US53, pin 59. If it is
not, trace the clock signal to the fault.

Check that RES is not being asserted (low) at U53 pin 24.

If the Pod is plugged into a second Troubleshooter, press the BUS TEST key
and then press the STOP key. The Bus Test will reset the inoperative Pod.
Pressing the STOP key will prevent the Troubleshooter from continuing to
reset the Pod. If the second Troubleshooter is not available, use the first
Troubleshooter’s probe to pulse the inoperative Pod Reset line low.

After the inoperative Pod is initialized, try a BUS TEST with the first
Troubleshooter. If you get a timeout message, use the Setup functions to
disable the enableable lines.

If the Bus Test works now, check the input buffers.
If a timeout still occurs, check the clock circuit.

Do a ROM TEST and a RAM TEST. Refer to Table 6-5 for the ROM and
RAM addresses, the expected ROM signature that should be obtained when
the ROM Test is performed, and the expected ROM checksum that should be
obtained when the Quick ROM Test is performed.

If the ROM Test and RAM Test are successful, the next thing to check is the
data communication with the Troubleshooter.

9000A-80186

6-13

9000A-80186

Table 6-5. Pod Device Addresses

DEVICE LOWER ADDRESS UPPER ADDRESS (IF ONE EXISTS)
RAM 0000 OFFF
(4000) (40FF)
ROM** F 8000 F FFFF
Peripheral Control* FFOO _ FFFE
Block 2000 20FE

**The last three words of the Pod’s ROM contain:

*The address range of the internal peripheral control block will be set to either FF00-FFFE in 10 space
or 2000-20FE (segment = 0) in memory space. It will be moved back and forth between these two
address spaces, depending upon where the next UUT access occurs.

FFFFE Interrupt Information (FFFF)
FFFFC Signature (Troubleshooter ROM TEST)
FFFFA Adjusted Checksum (Pod’s Quick ROM Test)

When performing a ROM Test, test from F 8000 to F FFFA, then compare the resulting signature to the
contents of FFFFC. Perform a Quick ROM test from F8000 to FFFFA, then compare the resulting
checksum to 0002.

9. Check the path of incoming data. If a second Troubleshooter is being used and
has timed Out, the data AB is probably being placed on the second
Troubleshooter’s data lines. The first Troubleshooter can read the data lines of
the second Troubleshooter by performing a read operation at 1E00 (1E00 is
the address of incoming data at on the Processor PCB). The data should be
XXAB (X = any value). The most-significant bit (bit 15) of the data should be
the value of MAINSTAT. The second-most-significant bit of the data should
be LOWPR (it should be low). The rest of the bits in the data are
indeterminate.

If asecond Troubleshooter is not being used, you may check the incoming data
path by performing alooping read operation at 1 E00. Set the probe stimulus to
toggle high and low pulses; then apply the stimulus pulses to the data lines and
check whether all bits are readable high and low.

10. If you are using a second Troubleshooter, checking the path of outgoing data is
not as straightforward as previously described for incoming data. Do the
following procedure to check the path of outgoing data:

a. Disconnect the inoperative Pod and connect a good Pod to the second
Troubleshooter.

b. Do acomplete operation that does not time out, then press the STOP key.
This will leave the Troubleshooter data lines in a tristate condition.

9000A-80186

¢. Without disconnecting power, disconnect the good Pod from the second
Troubleshooter and reconnect the inoperative Pod. Do not press any keys
on the second Troubleshooter.

d. Usingthe first Troubleshooter probe in the probe stimulus mode, pulse the
Reset line on the inoperative Pod to initialize the inoperative Pod.

. Onthefirst Troubleshooter, perform the operation WRITE @ 1D00 to set
Bit 14 high; this should turn on the data output latch.

NOTE

Table 6-6 contains a description of this and other latches, including
addressing and timing. Table 6-7 contains bit definitions of selected Pod
addresses.

f. Write a value to 1F00 and check the data lines with the probe to see if the
expected value is present.

g. Check the output port to make sure all signals are writable.
h. Make sure a Pod Reset resets all output port Iines low.

1. Try writing to the timer. Use the probe in the free-run mode. If RUNREQ
is low, the UUTON should have a short pulse. If RUNREQ is high,
RUNUUT should become active after the timer fires, and stay on until the
Pod is reset. This is the RUN UUT mode. While in RUN UUT mode, you
should not be able to read the ROM or RAM of the inoperative Pod, but
instead you should be communicating with the inoperative Pod UUT or
the self test socket.

J- Check that the signal INTNMI is not asserted (check that it is high). If
INTNMI is asserted (low), the Pod’s microprocessor is disabled from
writing to devices in the Pod. INTNMI is an output of U30, pin 8. This
flip-flop is cleared by power-up and Troubleshooter resets.

If all these tests are good, you should no longer have an inoperative Pod, but you may
still have a defective Pod. If the Pod is still defective, refer to the previous section titled
Troubleshooting a Defective Pod.

EXTENDED TROUBLESHOOTING PROCEDURES 6-22.
Introduction 6-23.

The troubleshooting procedures provided in this section supplement the circuit checks
performed on the Pod during the Pod self test. These procedures are appropriate for
use with a Pod that passes the Pod self test but does not appear to function normally
when used with a Trubleshooter and a good UUT. If a Pod fails self test, it would be
better to begin troubleshooting with the procedure provided in the section titled
Troubleshooting a Defective Pod.

Potential problems that may exist in a Pod that passes the Pod self test may be divided
into three categories:

9000A-80186

® Misconfigured Pod

® Partially checked circuits

® Timing and noise problems

Misconfigured Pod 6-24.

The Pod may exhibit abnormal behavior if it is not configured properly for the UUT
being tested. Recheck the procedures listed in Section 2 to make sure that the Pod has
its Chip Selects, Interrupt Control registers, DMA Control registers, Timer Control
registers, RESET output signal, and Transparent Read address set correctly. Check to
see that the Pod is not accidently being placed in the Queue Status mode. A Pod that
has inadvertently been changed to the Queue Status mode will show symptoms such as
unexplained drivability errors on the address lines.

Partially Checked Circuits 6-25.

The most obvious partially checked circuits, and the easiest to check, are possible open
lines on the UUT cable. The circuits are usually checked through the hybrid protection
circuits and back through the latches, but the cable lines themselves are not checked.
Refer to Table 6-8 for a list of the partially checked lines. These lines can be checked
with an ohmmeter, but if they are intermittent, a better way is to check them with the
Troubleshooter probe or an oscilloscope while the Pod is exhibiting its symptoms.
Check at the Pod end for the status lines (inputs), and check at the UUT end for control
lines (outputs).

Table 6-6. Pod Latch Addresses and Timing

LATCH ADDRESS TIMING*
DATAOUT 1F00 N/A
DATAIN 1E00 N/A
CTLOUTA 1D00 N/A
TIMER 1C00 N/A
DATLATCH 1900 Data
ADRLATCH 1800 Address
TRANSCS 1700 Late
TRANSADR 1600 Data
CTLOUTA 1500 Data
LLATCHC 1400 Late
LLATCHB 1300 Late
LLATCHA 1200 Late
EELATCH 1100 Extra Early
ELLATCH 1000 Address (lo byte) — Late (hi byte)

*Definition of Latch Timing:

Address = Beginning of T2
Data = Beginning of T4
Late = Middie of T3

Extra Early = Beginning of T1

9000A-80186

Table 6-7. Bit Definitions of Selected Pod Addresses

A201 13834 vYaiH S3d 00Ha 10OHA O NI LN} 0s s es — 9LV 18 61V 000}
HNL HAL
Lvd Zlivd QJNON31 0SO/3TV 1SO/dM ad N3d 1S3l - - - - — - - 00LE
43IMOd HIMOd 4138
son SO 0SOW LSO ¢SON £SON 0S0d 1S0d ¢S0d £€80d ¥SOd 1¥/SS0d ¢v/9S0d - - 00cL
Son s 0SOW LSOW ZSON £SO 0S0d 1S0d 2S0d €S0d ¥S0d 1V/5SOd 2v/9S3d 1IN0 01NO 00gt
HNL HANL
AQyvY AQds J70H 0SD/37V 1SD/dM ad N3d 4/1a OLNI LINI OVLINt LVLINI IWN 3H8 1S31 oovL
/21NI /ELINI
SSaIppyY 009t
son Sl 0SOW LSOW ¢SO ESOW 0S0d 1S0d 2S0d £S0d ¥SOd 1v/SS80d ¢v/9S3d - - 0041
$Saippy 0081
ejeqg 0061
+——————— ple(] oUW} | —————> — — — 1sanbay — — — — — . — 0001
uny
13S3UN3 9S4 NOINNOD INI4 NIHW1d NYO3dS - - - - - - - - — 006Gt
MO014 13S344 VATHA 0S04 1SO4 INIW JLO0IM SOIN3 AQH3INI AIOHN3 073S41S L13S4TS OONAS 1NOX6 Lv.1Sdod 00ai
opPod Lpod ¢Pod gpod vPod Spod 9pod Lpod - - - - - dMdOT LVISNIVIN 0031
opPod Lpod cpod €pod vpod Spod 9pod Lpod - - - - — — - 003t
0 ! 14 € v S 9 L 8 6 oL L (4} vi Si *SS3HAqav

slig viva

6-17

9000A-80186

Table 6-8. Pod Ribbon Cable Lines Partially Checked in the Pod Self Test

SIGNAL UNTESTED CONDITIONS

CLKOUT Drivability
Signal Presence

S1 Open in the Pod-end of the cable and a short
DT/R to ground at the UUT end of the cable
DEN
52 Low condition
Gnd (pin 60) Open
Vce Shorts to the Pod's +5V supply

During the Pod self test, the Pod self test socket forces the Pod into the normal mode,
so some of the Queue Status mode circuits are only partially checked. These include
any signal that is different in the Queue Status mode from the Normal mode.

The circuits that generate the transparent reads to the UUT when the Pod is not in a
UUTON cycle are also partially checked. These circuits could be malfunctioning
between cycles and causing problems with the UUT.

Another circuit that is partially checked is the tristate and wait state logic. If the UUT
uses DMA (HOLD/HOLDAcknowledge) cycles or wait states, the circuitry of the
Pod that handles these functions could be the problem.

Timing and Noise Problems 6-26.

Timing or noise problems are usually caused by components that are still functioning,
but are not functioning within the component specifications. The best way to check
this problem is to look at suspected signals using an oscilloscope synchronized to either
address or data. Look for slow rise times or signals driven to marginal levels. If the part
is too slow, it might fail on the UUT, but pass the Pod self test because of narrower
design margins on the UUT.

If a part has marginal drive capabilities, the added noise of a UUT environment might
cause it to fail. Be sure to note that inputs can malfunction (they may leak perhaps) and
put too much load on an output causing either low levels, slow rise times, or both.

DISASSEMBLY 6-27.

To gain access to the two PCB assemblies in the Pod, perform the following steps:
1. Remove the Pod ribbon cable plug from the self test socket.

2. Turn the Pod over on its top (with the large Pod decal facing up). Remove the
four phillips screws that hold the case halves together and remove the top and
bottom case halves. Place the PCB assemblies so that the self test socket (on the
processor PCB assembly) is facing up.

3. Remove the four phillips screws that connect the heat sink to the processor
PCB assembly and remove the heat sink.

9000A-80186

NOTE

The heat sink is not needed for heat dissipation unless the Pod is fully
assembled. If the two PCB assemblies are removed from the top and
bottom cases, the heat sink may be removed during Pod operation and
troubleshooting.

4. Remove the single phillips screw that retains the shield surrounding the PCB
assemblies. Remove the shield.

NOTE

When the shield and the heat sink are removed, all the components are
exposed. It may not be necessary to separate the two PCB assemblies
while troubleshooting except to replace components.

5. Toseparate the two PCB assemblies, turn the PCB assemblies over so that the
self test socket is facing down. Remove the four phillips screws at the corners of
the PCB assemblies and carefully pull-the boards apart at the two connectors
along the sides.

6-19/6-20

9000A-80186

Section 7
List of Replaceable Parts

INTRODUCTION 7-1.

This section contains an illustrated parts list for the instrument. Components are listed
alphanumerically by assembly.

Parts lists include the following information:
1. Reference Designation.
2. Static Warning marker.
CAUTION

Devices indicated by an asterisk (*) in the listing are subject to
damage by siatic discharge.

Devices indicated by an asterisk (*) in the listing are subject to damage by static
discharge.

3. Description of Each Part.
4. Fluke Stock Number.

5. Federal Supply Code for Manufacturers (see the 9000 Series Troubleshooter
Service Manual for Code-to-Name list).

6. Manufacturer’s Part Number.
7. Total Quantity of Components Per Assembly.

8. Recommended spares quantity. This entry indicates the recommended number
of spare parts necessary to support one to five instruments for a period of two
years. This list presumes an availability of common electronic parts at the
maintenance site. For maintenance for one year or more at an isolated site, it is
recommended that at least one of each assembly in the instrument be stocked.

HOW TO OBTAIN PARTS 7-2.

Components may be ordered directly from the manufacturer by using the
manufacturer’s part number, or from the John Fluke Mfg. Co., Inc. or an authorized
representative by using the Fluke Stock Number.

7-1

©000A-80186

7-2

In the event the part ordered has been replaced by a new or improved part, the
replacement will be accompanied by an explanatory note, and installation instructions
if necessary.

To ensure prompt and efficient handling of your order, include the following
information.

1. Quantity.

2. Fluke Stock Number.

3. Description.

4. Reference Designation.

5. Printed Circuit Board Part Number and Revision Letter.

6. Instrument Model and Serial Number.
A Recommended Spare Parts Kit for your basic instrument is available from the
factory. This kit contains those items listed in the RSQ column of the parts lists in the
quantities recommended.
Parts price information is available from the John Fluke Mfg. Co., Inc. or its

representative. Prices are also available in a Fluke Replacement Parts Catalog, which
is available upon request.

MANUAL CHANGE AND BACKDATING INFORMATION 7-3.

Table 7-4 contains information necessary to backdate the manual to conform with
earlier PCB configurations. To identify the configuration of the PCB’s used in your
instrument, refer to the revision letter on the component side of each PCB assembly.

As changes and improvements are made to the instrument, they are identified by
incrementing the revision letter marked on the affected PCB assembly. These changes
are documented on a supplemental change/errata sheet which, when applicable, is
inserted at the front of the manual.

To backdate this manual to conform with an earlier assembly revision level, perform
the changes indicated in Table 7-4. There are no backdating changes at this printing.
All PCB assemblies are documented at their original revision level.

REFERENCE
DESTIGNATOR
A=)INUMERICS -~
A 40

A 49

H §

H 2

H 3

H 4

H 3

MR {

MP 2

MP 3

mp 4

Ll 3

1P -]

HP 7

Mp a

MF 9

MP 10

™ i

u 4

u 5

U 3

U P, 10
U 16

u 23

U 53

] i

[2

Xu 4, 5
XU 16, 23
XU 533

Z 6

>

* X K X K & X X

TARLE 7-1. 9000A-8018& FINAL ASSEMBLY
(SEE FIGURE 7-1.)

R onamam o

- DESCRIPTION=vs o

PROCESSOR PCB ASSEMBLY
INTERFACE FCR ASSEMBLY
SCREW, MACH, PHP SEMS, STL,4--40X1/4
SCREW, MACH, FHP, STL , 4-40X3/4
SCREW, MACH, PHP, §.STL, 4-40X3/8
SCREW, MACH, FHP, STL , 4-40X5/8
WASHER, LOCK, INTRNL , STEEL , #4
SHELIL. TOP

SHELL, BOTTOM

LAREL, STATIC CAUTION

DECAL, FOD

DECAL, SPEC

WARNING DECAL 8686
SPACER, HEX, ALUM, 4-40X0 . 375
SHIELD, ALUM MYLAR

HEAT DIS,CHIFP CARRIER LID,ALUM
HEATSINK

INSTRUCTION MANUAL.

PROGRAMED 27128 V1.0
IC,LSTTL,8-BIT BINARY CNTR W/REG-OUT
PROGRAMED 27128 V1.0

IC, 2K X 8 STAT RAM

PROGRAMED 14618 V1.0

FROGRAMED {46L8 V1.0

IC,NMOS, 16 BIT MICROPROCESSOR
ASSY, UUT CARLE

CABLE, POD 86086/88

CLIF, HEATSINK, 24 FIN

CLIP, HEATSINK, 20 PIN

SOCKET, IC,CHIF CARRIER, 68 FPIN
HEADER, PROGRAMMABLE

NOTE 1 = FART OF INTERFACE ASSEMBLY
NOTE 2 = PART OF PROCESSOR ASSEMBLY

FLUKE

STOCK

- ..NO.. -
744771
744789
183918
115063
236164
1436813
110403
744797
648881
403808
737957
T37965
639803
187375
749978
7458314
744813
737999
7433319
741473
745349
647222
743356
7453364
722496
7447463
607184
6074635
607671
720888
639839

MFRS
SPLY
CODE-

89336
89336
89536
89336
89336
89536
09536
895346
89336
893534
895364
893346
89536
89336
89536
89536
89536
89536
09536
89536
89536
31437
89536
893346
89336
89336
89336
89536
895346
895346
89536

MANUFACTURERS
FART NUMBER
~~OR GENERIC TYPE--

715961
715979
1853918
115063
236164
145813
110403
744797
648681
693808
137957
737963
6398603
187575
749979
745831
744843
737999
745334
741173
745349
HM&1 § 6F -3
745356
745364
722496
7447463
667184
607633
607671
7208688
639839

9000A-80186

TOT
Qry

Bl B i i I S P P N NS

- —n ea o

-

7-3

9000A-80186

SEE DETAIL B
1

P

9000A-80186-5001

(10f2)

MP5

Figure 7-1. 9000A-80186 Final Assembly

7-4

9000A-80186

us

DETAIL B

9000A-80186-5001
(2 of 2)

Figure 7-1. 9000A-80186 Final Assembly (cont)

7-5

9000A-80186

7-6

REFERENCE

P -~ 5] A
.3 L N R § SN] P]

*3

DESIGNhTOR
CR 1,
J 1
J 2
MP i
MP 2
MP 3
*P {
TF I
u 1
u 2,
u 59,
u 3,
u &,
u 14,
u 19,
u 21
U 27,
u 54
u 32
u 42
U 44
X 4,
X ?,
X 16,
XU 53
Y 1
c 1
(o 2,
C 4
C e
c 24
R {,
R 2,
R 10,
R 20
R 4
R 7,
R 1%,
R 23
u i1,
u 12
u i5
u 16,
u 20
u s,
u 54
u a3,
u 43
u 34,
u 36,
U 37
u 41,
u 45
u 48
U 49

3
h:d

30,
39,

35
490

»*

XK X XK X X % E X X Xk X

*

® K K K K K X K X K X %X X X & X

TABLE 7-2. A40 PROCESSOR FCR ASSEMBLY
(SEE FIGURE 7-2.)

DIODF,SI BV= 75,0V, I0=1350MA, 500 MU
HEADER,2 ROW,0. 1OOCTR RT ANG,26 PIN
SOCKET ASSEMBLY

SFACER, SWAGED, RND, BRASS, 4-40X0 . 340
SPACER, SWAGED, RND, RRASS, 6--32X0.875
SPACER , SWAGED, RND, BRASS, 4-40X0 ., 437
PIN, SINGLE,PWE,0.025 SQ
TERM,FASTON, TAR, SOLDR,0.110 WIDE
IC,ALSTTL,OCTAL D F/F,+EDG TRG
IC,LSTTL,0CTAL D TRANSFARENT LATCHES

IC, CMOS, OCTAL BUS TRANSCEIVER
IC,LSTTL,0CTAL BUFFER/LINE DRIVER
IC,ALSTTL, QUAD 2~INFUT MULTIPLEXER
IC,ASTTL,DUAL 4-INPUT MUX W/3 STATE
IC,FTTL,8 LINE MUX W/SELECT
IC,FTTL,DUAL D F/F,+EDG TRG,W/CLASET

IC,CMOS, QUAD Z-INPUT NAND GATE
IC,CHOS, QUAD 2INFUT XOR GATE
IC,ALSTTL, TRIFPLE 3 INPUT NAND GATE
SOCKET, IC,28 FIN

SOCKET, IC,24 PIN

SOCKET, IC,20 FIN

SOCKET, IC,CHIP CARRIER, 69 PIN
CRYSTAL , { 6MHZ, +-0.005%, HC~18U

CAP, TA, 1OUF, +--20%, 15V
CAF,CER, 22FF, +-10%, 50V, COG
CAP,CER, 100PF, +-10%, 50V, COG
CﬁP,CER,O.?ZUF,'BO 20%,%50V,Y5V, 1206

RES,CHIF,CERM, 27K, +-5X,0.125W
RES,CHIP,CERM, 4. 7K, +-5%, 0. 125K

RES,CHIF,CERM, 100K, +~5%,0.125%
RES, CHIP,CERM, 82, +--5%, 0. 9254
RES, CHIF, CERMET, 220,+-%5%, ©.f2%54

IC,LSTTL, 3-8 LINE DCDR W/ENABLE
IC,LSTTL,2-4 LINE DEMUX

IC,LSTTL,HEX D F/F,+EDG TRG,W/CLEAR
IC,LSTTL.OCTAL D F/F,TEDG TRG,W/CLEAR
IC,LSTTL,SYNC DIVIDE BY 16 RIN CNTR
IC,LSTTL,DUAL D F/F,TEDG TRG,W/CLR

IC,LSTTL,QUAD 2 INPUT OR GATE

IC,LSTTL,QUAD 2 INPUT NAND GATE
IC,LSTTL,QUAD 2 INFUT AND GATE
IC,LSTTL,QUAD 2 INPUT NOR GATE
IC,LSTTL,HEX INVERTER
IC,LSTTL,TRIPLE 3 INPUT NOR GATE
IC,LSTTL, TRIPLE 3 INFUT AND GATE
IC,LSTTL,QUAD BVS BFR W/3--STATE OUT

FLUKE

$T0CK

NG
203323
512390
759944
380329
266486
442913
267300
3126009
740910
504514
304514
3359046
634105
740902
740894
97743
6595608
639308
741280
740845
740886
448217
376236
4354421
720608
721639
7406472
740563
740571
740397
746597
740530
740822
740522
740322
740548
740480
746347
746347
740969
740931
740944
740928
740936
740983
740985
740878
740878
7416033
740860
741025
741047
740993
741009
740977

MFRS

SPLY

CODE-
07916
893346
89536
89536
89336
89536
00779
02660
89336
01295

36665
04713
689336
89536
89336
07263

895336
89336
89336
?1504
91506
09922
89336
893346
893364
89534
89534
89336

89536
89536

093346
89536
09536

89536
89536
89334
89536
89534
89336

89536

89336
893536
89536
89336
895336
893346
89536

MANUFACTURERS
FART NUMBRER 10T
""OR GENFRIF TYPE"* Qry
1N4449
512590
759944
380329
266486
442943
870221 1
62393
740910
SN7ALS373N

B3

i
VM2 DODaPaad] i

MD74C245AC
SN7ALSS44N
740902
740894
697763
74F74pPC

DERIRNN

741280
740845
7408846
328~-AG39D
324-AG39D
DILR26F-108
720888
721639
740472
7403463
740371
740397

-
Lo} Do s waDJPIN = = -

740530
740522

-

740548
740480
746347

D=

740969
7409514
740944
740920
7406936
740985

740879

741633
7408460
741025
741017
746993
741009
740977

Rl Rl E X H VR G U Y

[P Y

-k A s n -

9000A-80186

l J .
Q us l & usi g
les]
[] []
= ® ui m <
. L - o]
& 9
- ® usa ® us2
)
x| - L e
(=]
-R7
< Y . (2]
N T R22 N c
| R23 2
® = o
=2
o 3 | ® val § a
e clio ° ? ®
%l u7 q v
¢ uo q e
v20
L [
= iz d v22 c
uis i
[c=]
U4 [¢ °
b
: :
uie
Ci19
ci2 L) °
L]
-B us c
[]
U|5=|
® uz4 (¢
|czl| (]
c23 Rz20
uio (°
[RIB® e | e |
e vas
c R;
8 Gz
N °
uie {|[® vie q
=)
C ® (]
Gowg [v2e] [o=] [w] [ser] [[ooe
2 uagﬁ v40'g uzsq e
[Bves ¢ |vs® uss L) | Ry a
L q q 1 q ua7 ¢ 20 2
u
[-59 Uz?j uas U4s U4l u4s m
ci6 ()
&z =
R4J[<1] CAUTION
@ SUBJECT T DAMAGE BY usaq fuss
@ ELECTRICITY h ;
== [Ri]= 73

9000A-80186-1671

Figure 7-2. A40 Processor PCB Assembly

7-7

9000A-80186

REFERENCE
DESIGNATOR
A= YNUMERICS-~~)
A - 8
C i 13
J 1, 2
J 3, A4
R 1, 44
R 2, 10
R 3

R 4

R 3 9,
R 13

™ 1. 2
u i, 3,
u 7, 8,
u i2, 13,
u 19, 20,
U 24

u 6, 18
u 10

u 11, 17,
u 14, 28,
u 13, 27
U 22

u 2%

u W

VR §

Xu 1, 3,
XU - 9,
XU 13, 16,
XU 21, 24
XU 2, 5
XU b

XVR

Z f, 2
Z 3

Z 4

Z]

7-8

4,

12,

19

TABLE 7-3. A41 INTERFACE PCB ASSEMBLY

(SEE FIGURE 7-3.)

e DESCRIET LONm = o om om momm

44 o5 4= vu wn e " mn Am ma — Sn 4 7e =S S8 % 4% = me mm S8 A% T4 4N we ON AN 0o we

*

o % X X K XK kX X XX X XX

HYBRID, 700(, TESTED
car,CER, 0.22UF, +-20%, 50V, Z5U
SOCKET,2 ROW,FWR,0.150CTR, 60 FOS
HEADER,2 ROW,0.100 CTR,40 PIN
RES,MF, 121K, +={%,0.125W, {00FFM
RES, MF,22.6K,+~1%,0.1235W, 100PPH
RES, MF, 10K, +~1%,0.125W, {0OFFM
RES,MF, 14K, +=1%,0.125W, 100PPM
RES,CF,4.7M,+-5%,0.25W
RES,CF, 10K, +-~5%,0.25W
TERM,FASTON, TAR, SOLDR,0.119 WIDE
1C,CMOS,0CTAL D F/F,+EDG TRG,3-STATE

1C,ALSTTL,OCTAL RUS XCVR W/3-STATE
1C,LSTTL,O0CTAL BUFFER/LINE DRIVER
IC,ALSTTL,OCTAL D F/F,+EDG TRG
IC,ALSTTL, QUAD 2-INPUT MULTIPLEXER
IC,ALSTTL,OCTL LLINE DRVR W/3-STATE
IC,LSTTL,HEX BUFFER W/3-STATE OUTPUT
1C,COMPARATOR, QUAD, 14 FIN DIF

1C, COMPARATOR, DUAL ,LO-PWR, 8 PIN DIP
1C, 1.22V,100 FPFM T.C., BANDGAF REF
SOCKET, IC,20 PIN

SOCKET,IC,16 PIN

SPACER, MOUNT, NYLON,

RES,NET,SIF,10 FIN,? RES,4.7K,+-2%
RES NET THICK FILM ASSY,TESTED-9000
RES,NET,SIF,10 FIN,B RES, 10K, +-2X
RES,NET,SIP,6 PIN,S RES,1.5K,+-2%

FLUKE
STOCK
T
582189
309849
602813
6034670
234997
2868431
168260
241497
543355
348839
512889
707693
707695
707693
707693
707695
bA7214
634163
740910
740902
741165
536458
387233
478334
432771
454424
454421
454421
454421
276535
276335
175425
484063
583476
329990
414619

MFRS
SPLY
CODE -~
89536
71590
00779
095364
14637
91637
914637
91637
80031
80031
02640
89534

01293
04713
89536
89336
89336
01295
12040
12040
89336
09922

9?1366

89536
80031
89336
89334
895336

MANUFACTURERS

PART NUMBER TOT
~=0R GENERIC TYPE~- Qry
3682189
CW3COC224K
863966
6036760
CMFS51242F
CMFS32262F
CHMF331002F
CMF351101F
CR251-4-5FA4M7
CR2514-4-3P§ 0K
62395
707695

-

GIN-0O == RNNLD

-

SN74ALS245N
SN74LS541N
740910
740902
741165
SN74L.S363N
LM339N
LM393N
452771
DILB2OP-108

Gln e a MG A

-

o

316-AG39D

§75125
935081 002CL.
363476
529990
4140114

- a aa }) -

-Q

-] -

- -

9000A-80186

i 28 77 |
I]n orx -Q
— F [+ r | cu-Q E o
O 3 Sag > ;:-0
o|llie r < | " Pe = o
N 2 ® 17 =
2
@ == (9
IOl
o N
() of < o <& N o b=
o S
2 ou
~ 0 4 0 +u
{ 4 < q &
o
znu O
L/ ~7 o J [N4 o A
- (4] N 1]
4 q <« ¢
o B> > -
e J N A4 S ™ J o J o 7 o O _'
S e o S > (] ®
- © ~ + o m 0
] 2) 2 2 ol o
&>
o] [o] ~ ol ™~ o] o] ~ [0 ~
S (] S S]] e ®
® o 9 = @ 4 2 °
SHIEITEHINHITHIITEIREEE
D)
N
el
&>
o ' o] ~ o ¥ ' o[~ O
el tiell (et 18 181 |18 |®
. 5 3 N 5 0 n N
=} 2 5 2 2
l If) I 9000A-80186-1672
Figure 7-3. A41 Interface PCB Assembly

7-9

9000A-80186

Table 7-4. Manual Status and Backdating Information

REF FLUKE *To adapt manual to earlier rev contigurations perform changes
OR ASSEMBLY in decending order (by no.), ending with change under desired rev letter
PART
OPTIO NAME N
NO. O |—|a|B[c|D|E|[F|G{H|J[K|[L|M|N|P
A40 | Processor PCB 715961 X
A41 | Interface PCB 715979 e X

«

X = The PCB revision levels documented In this manual.

® = These revision letters were never used in the instrument.
— - No revision letter on the PCB.

+ = Change did not atfect manual.

FIGURE

Section 8
Schematic Diagrams

TITLE PAGE
A40 Processor PCB Assembly ..o, 8-3
A4l Interface PCB Assembly O 8-8
Schematic Diagram of UUT Cableoiiiiiiiiiiiie e 8-11

9000A-80186

8-1/8-2

9000A-80186

WARNING: ® INDICATES USAGE OF MOS DEVICE(S)

WHICH MAY BE DAMAGED BY STATIC DISCHARGE. USE SPECIAL
HANDLING PER §.0.P. 18.1

[n| o[o[° ~
- |M L ¢ =3 U
Y v N o]
- ual @ q = n { N[e TRa
10 S) >
] IREE N ® > i’g’ [
o] ."U" FV' @ ."V_ ® < o[o ,;'I. - l.;]
e N ol o[o™ ml e 5 o - O lEJ
_ o] N] N el | o .QO .m L4 3;
i 0 0 [E, > ~ ML ® 5 m N 3 5|
2 5 > ~ Q = N = N : >)) B2
o N S 5 > >)) ®)
%) @ @) [r]a N @ @ ® z o [Ram ‘
odl ® @ 5 ® .O\ .8 .:
= > S)
) N
(d ~ ® ~ o ~ @ ~ Y] 0 (O] @7 LI
J2 o || oo 2 2 2
[4] 9 &
o] I o] & ‘ ‘
7 0 0 LA |
> > g) 3
D 2 D
°
—J i L A ® < A~
o N r'?) F})* 1‘3
. o] MR S d -] 5 = >
o] |V - N
RI ~ J us3
® b e ® L4 [g
b - M Q 10 0 = m N 3 e
> 2 2 0) 5 5 5 5) > o
14
H
@ @ @ o™ ° -
© o
g : 1|
>
' vz @ °
] 2 N
[v P 5 1@ (@
CAUTION

SUBJECT TO DAMAGE BY
STATIC ELECTRICITY

9000A-80186-1671

Figure 8-1. A40 Processor PCB Assembly

9000A-80186

-
POD & 3 oo Dol 2 _ADS Raps 2[ao~ bo|8 a2 oF el 26lais GE p22
POD 1 4 o1 J Dt 1 paD4 2lA1 G etflZ A . 12 lao 3 ot AD®
POD 2 Z Dzl 1 _AD2 RAD2 4 laz < B2l At 5 A2 2 a1 G 012 e[7D &
POD 3] oayb3l & AR3 RAD2 O A3 B3|IS A2 PeM pZ, A3 B8 Ja2 > 0013 14 | AD > x 2 |58
PODA4 04 k Dol 4 A AD4 | ©(Aa S Byllk Al vee [Jag 7 las wyoslla i2 | a1 TMRING | 2¢
PODS os < psll4 5 4408 Tlas g B5[I3 la 4 JAS & laa YL oape 18 | AL TMRINT [2]
POD6 OSZ'DS 17 ADe L ADEé 8laeq Bs|l2 A BAp oL ad NAe 5 las 2 osfiz 7| aDiz2 TMROUT @ [22
250D 7 So+[8 TAAD7 9]a7 H B7[LL A58u01 12 apat A7 4 Asg oe[le abcd K ap3 5| AD13 TMEOUT ! |23
s _ NAB 3 la 70 02H3 ApIg L A agov 15 S ADiu RES |24
+5 LE TE i LT/R Gilom ELIR as” os(is 1AS 2 |as wd labi5 1] apis DEn [29
U2 TOSHT 3 E) a9X'osile ADI24 HIAI® A2 +5 FroET
ual- 11 aig J 5050 apis)] LA FIRINDS pemﬂ aD@ R N e | T
Anaaos.lﬂ____&‘b NAZ 2311 veP 151 AD ¢ MTA/ NTAGL
arzw @079 ____ADISq A3 2laz lap2 2] ap2 INT! [4s
U 4. CEpZ us CEpPZ B N T
PCLKOUT 8 1abpy NMI[4© NMT TeSHT 3
POWERFAIL 7'\ ©]abs TEST |47
PO PRE SENT DT/R 4 | aDs Cock |48
- WWNoly] «Rpy |43
— T —— Héa(_g_g‘c U53 +HoLp |59
U6 CE |1 ENISTY GE?& 9 0] JCS aqigg —-0OA[Sl
9 |aa ceo Dol 3 _ADB_ADR 2lae s¢lia 2| 10119 ADB LAY 8las Wi/mo1|2 2iLcs T p DRaelis DrQg
8la1 o1I o4 AD9YLDI lar~milT J 1ozie FCEY | WA 7 la 1702 1@ BIMCTES DRG1 |12
Zlaz oz~ D2|-1 _ADID)| 4 inz T B2 LS () wroslil __ _ADI® a2 6 laz 7 1/03}LL 27T S 1 W /ast |63 NR/GST
[Aag 03I Da3j & AR FA S las >~ Ballb] tx/oalﬂ_Am lag 5 [As o 1/043 HiMc S ARDY[SS _ ARDY
5 a U pafia ADI2 | 2__Glaglk pglld 4 + 1/0s[1a oDz 1AD 4 a4 ~1/05}14 FES b=t 1
4las 0 ospe ADBTADIS T las 2 msli2 3 mioelis ——Apiad lise 3 las Z 10818 slpcsd Fb/aoWo = B}
3les O pell7 _ADW FaDi4 B [Ag 0 B6[I2 2 1707116 AD 14 A7 2 lae 5 1/07016 211pc S 1 A Es S 6] 5
MANSTAT 2]a7 07 078 ADSYADIS 9 a7 e[l] o1/08{17____ARIS)) 1 e @ 1/08[7 =¥ Y a=y sals2
FEYNC _ U7 ue 23 8 A 221688 3 s 2 PTES S4133 —
1 A5ET 22 N JAIS 22 IAQ ST _WItC S 4 S2134 -
GEFSET 9 19ine ¥ U9 11 19 Aw& yio 3tIPC S5/ A DT/ | 4@ R
ADREY N & 2 RIPTETE/ A2 BHE |64 o
WE K 2l{ WE CLkOUT [S%
N ,éo OE a?-(l IRD 24y O S H8 A9 /56 &8l a9 s sg]
fap /o5 elnie/ss
[ling 5 SN RV PN
"N ® AlE seaa
DL AT IAIS { - 8 A M ‘*‘q uas
4 2
100P§ . uas pg % o
s [U32 rm —— o
IRD A 13 A4 _
U4l 1 6
u43 |2 uss L TosuT3 3_15
——————AREN vso-8 _&f 45
RIB CQUTA‘\ IRD 4
2200] TRD |
| - s
J LODE s 2
e I U4y
STvE
6 N
U4 24
s |uzo pBTRD
2 B \
~
3o uas| | C ~
1AL i
‘Fuaa & 5 (S
TOEN >,TOSHT S 9
BUSCYCLE
(WA || —— -
B vl s 5 an)e N -
— == L] °) - —
PR
1OEN IIDS 2] o als 3 tm
o] use_ | " -5
- 2 9 ck apS 2| V40O LOEN_
U4s 733 10 ELR 3 N —
: oy 3 N1~ E—
N
&5 QU TO! +5 12|V 24 \ N
&6 { T —
Ga
& =100 AR e TN MM R
53 ~ ® . DiN
S He o RB o $hPN0N80IL vaagegnsl: rBofegotinnNy-;0G209 495" Bo0ehr 200039 N
DLAT ', 5F I N R LU T T T I R R A | L T T T O T A O B A
QEN B e N ~rNeNN~NNN NNNNNNYNNT — NANNNNNNNNNNNN NN NN NN N NANN v- - e - oo — NN
1415 E - 00 0 ac0Bocaanda aaGQ0aanQlQ aoeanAQqanadnanagaadac Gaa0 oooanadogona UON } LINTA
> - <9 FEEE] n)o‘?:"."[‘i“)“'g' b
120 ok E § O TN T A b H M IAE 333 22020220¢4
: el i Iu ‘“l‘{}g afefalilf o-nmenorf ooooogmﬁpmbﬂgﬂlg o & 3518
3 4] i
5 gle |- PROITRHEHEG eooao00a3] 33992937 2372323 KRIRRERIRIEY
t% &4 3
g el 33 HA
o2
' o7
s ua ge % To sHT 3
e
T3J2 Pav SLESELE __ ,TO SHT 2 V22 PIN &

SL—FSEL-.L_.__)TO SHT 2 v22 PIN9

8-4

TO SHEET 2

9000A-80186-1071

9000A-80186

1

.~

TO SHEET

R17 ’w] > ~
AAA +5 s Fd“u!
B \ D w4 TO SHT 3 TCSEN P1, P2
=X 5 4Tk e 1 g-j i vesTE
=7 4 Juso 2 2{u4o0 B
RS I \——‘ pr—)
+s 2[TA aa +s Tie (e ThAT et -27|TESE
LR l= 138 s ol SPECRU 2L = LRV ! w2 N— A T
=l 28 Ui4 Jis TO SHT 3 HLDA 2 lpaiets|'8 IMR ING) i =
=% | o). ce lo[TouTh T — AN - U3, s | P —1s |5TE
Iy < BE3 4 1bs 4lps @ gs[iy TOBE 2 |aurrer (I = o7 —a4as |BDT/ &
BES = Em i3 = 551 oA 3 v 2 ETRMRIN 2 — Pt — e larmrouT
9= P EN aB 2Y S Dd 3iDa T apie TMRIN . CONTROL IS R 1 By
\2T/R RI/R _1@lup av [ENA 3 ipa 2 ealld EINT mgqui 41 parL [14] 5 — T 4% | BIMR OUTD
UON =+ L LINTTA, i |&/8 4v |3 BDT/R 2___©1p2 1a2{7 COUNTON BLOPWR 5 =] CATE L TMR 1Ny & a3 g, T |ERESE
i ['syEN D 4lp1 Falls Foe UUTON B i) U3z, —PB 4 jBnLon
3a|l4 Do 2ipp Vag R @ 0 PZ—s2 |ss2
FHe-ENRESET, . Pi — 22 |SBHE
2 e SJW\»,G_ 553 | = 3 f
4 BRHE J U4z 2 N P11 — =6 | CEEN
Ri9 [s L et — 20 | TAEN
A4 TK 1] e P2 — 27 |SDIRIN
ey ERESET BropwR i@ ;P2 —sc |EaDEN
S h P2 —
*s I_‘S 38 D¢ 3[5p - qela FLOCK ELOCK 13 [T=e 2 lupo2 (1 f\i:N—
[EALDAL® laB |7 (D1 4]bt J Qi[5 ERESET UON +LINTA Talsg (19 Pl —23 JINT3INTAL
U 3g == 3A [iD2 T1p2 ¢ Q2|8 EHLDA TERo oS l10A g: — LG 21%2 iN?
—_— - L
lesET 2 weoutt2] a tvlalatueorid PR2—8los Qamiz EQSE 12A 10812 o COCKA 1 P2 — 29 1Bx 4
E5/GoME TMRrR]ouTt d 318 2v|[7]BIMROUTEA LD—‘*——'lDS T gg Dgg uaﬁ TAHEN RES 12 2 12(ysp PI — 59 [LoPwr
~ 128 13 e
L IMR [oUT® pd S5lzaa av[12]BRESET T 0‘245- - wTeTL 2 1L Rz Pl — a3 |AReEs
hHLRA, 2B av|2|BHLDA) = 18 ¥ Si
QA D7 Blo7v a7 ENTCS s 13/ 3 : i—-’\/\/v—+5 \/ .
- &N ce ‘ 5EB 2A [T o TERDL 47K _
5% e fuan o m—: o Py de |TEs
A/8 Dw Ui "R pLIRE Td5ER =8 EYWerad by Tk ETG/?E
P2 — 20 | TAREN
P — 21 COUN TON
HDEN P2 —1I5 T 8e
BLOPWR +& szou: % L InT 5/_19 B — 854 [BRINT 2
L .
rRs P20 RESET U33{,g Pl —z4 [RINT 1
+5 —\VWN—4 4 Pt —13 |gorqae
4.TK Gl 12 EINT 3{u=se R 5 [P — s
Io S [P — 30
— szl ™% Tjrs JEET, | - -
e f . o@ SiNm! AVETF 4 Pl — 42 |BORG
ipy s - 1 3 TOSHT { ! & U236 Pz — 1
D2 45) D IUEXIINIE L DRQ @ S P2 — 3@
a7 oel 1[50 ool 2 ne | | NI P Uzz MR EESET 12 5 3a LY P2 — a0
1Dy ND 1 iioe Hail2 Nne < Re Uch 1413 L! “¢ cplulCoaT, wIcTL & 2 e RO/GSMD 2 b P2 — &0
0% A D2l 12]p2 ¥ 026 nc ‘,(NOT x 12|32 D& | {18107 T Q7H2{ PORSTAT UANDW 13 ¥ =% {ua7
10s A ND3 3 {p3 fa3[2 ~nc [SlnsT, > 131] liDia L "17]pe < gell€l axouT JUTON 4 |paLieisl B =1 JARDY &uas b3
%] J D uzo MREE Sla 3 14[l6 STERY [e IR N X BLOPWR 1) =z
NC 8Q3 | I3 14 l[Di2 13lpa K qall2 syned D/GSMD 11 JUTIWITY g RES Pt — 9 |BarRDY
108 CPDhh 4 45 5 1613 Di| 8|o3 g aal2] INTA 5] PAL s HLDA ss e —e3 L
109 __ TcbplBNC _ > 1pe DI Jlp2 J g2(& ENWR 9 2 RESET J
o T Thup5 7l W saf! D9 o D1501_5_m Y 7 I L_SRDY
1D " TOple Jls2 sl D 3loe " ao NC ENGND 16] - {
1012 _ SRD
D3 SYNGC @ ENERDY z: - ;L? BLRDY
D& SYNC 4 ENHOULD Pl — e
IDIg J
N 2] . s 3 TO SHT - 9 HOLD 8 use 2 3 :
- N cri3 N E 2 uiz piniaf qiaiz 2 | i 8 '@ 2 b
DADR Vi 09 D R HH| 9 T
MRESE i S (Noy [o)f2 i 20| Hrz Ay FL =18 fayy
‘ L I 4 alolo| A P NOLD
N il nsT/ i+) o yu 43 NM I TO SHT A TOSHT 3 Uy
BS NG Wi - et TOSHT 3 BNMT m— =2 e
Mﬂm]) 08| |@ WR/GS
AEN b TDEN -y 2 1oy zaA[3 BALE/GST
< r =i P - = <
FoUIA f 6 “+ EnwR ISCEB =8 Bwe/ast e V=i
& 45 U3a +55 11118 104/ 6 o ALE/asel SEST
J)A 5 i::j_s] RES R3 PI —Si [BIEST
_mr - = c pLopwr | 145Ea 1as[l® +s -2
D | 2] 5 Toeg s FOUN . 27K P2 — 21 |RUNUUT
u2e EQSi 121128 'CEZNGLND INTS y Pt —53 |INT2/INT AR
SQUTR JER aos— 1 SELD 4 s U24] P2 — 55 [T ENGEND
o —_—
[squ=1 " 8 o2 — o4 |SFIFTEST
bl RESFFS » ﬂ 9 8 N
e 2 UNUUT o~—~
UONHLINTA - > - s
UJTON i l b N TO ST oA
o -+ R 2 3 SELF TEST ' N
WREL c 4 _RUNUUT SOLvET (U2
[— +5 ouf | 'N4sss PIN 26
24 Qle a+b '8 TANT R4
- ZDPin_ |ZDI"QQQ éDFEQS ,'_Z_DPQQQ N R
1
\ 6‘ uzsa uz6 u2s5 uzs dz)u3? took
LODEN 3l aps Hlck apd 3lcr 153 N
LRE = | CK 8
TR P ar [aa Sp-
& =) 2 TP 45 ' E 9000A-80186-1071
® RESETS H ®
<U4€si '3 (2 of 4)

Figure 8-1. A40 Processor PCB Assembly (cont)

8-5

9000A-80186

J 2

SELF TEST

Sx i

SRYASMD
STEST
sSAD 8
sSAD 9
sapI@
SADI
€aD12
SADI3
saDig
SADIS

SPCS6 /a2
SPCss/Al
SPCsa
SPCs3
SPcs2
srcel
SDT/R
SDEN

SLcS
SINTH
SMCsS@
SINT2 élNTAB
SNCS
SINTS/INTAT
SMCS2
SNMI
SMCS S
SDORGB
SPC 5@
SDRG
STMR OUT@
STMR IN &
STMR OUT {
STMR 1IN 4

NOTES! UNLESS OTHERWISE SPECIFIED.

RI&

a4.TK

—MA— +5

c5-C18,ClI6- C24

Y

.22 uf

26 P = To SHT2 1. ALL RESISTORS ARE IN OHMS, Yaw, 5%0.
=q Pz PIN24 ALL CAPACITORS ARE N MICROFARADS .
l R9 SEE SHEET 4 FOR SCHEMATIC OF INTERNAL
v ! ‘s LOGIC OF UI6 § U233 PALS.
[
& MHZ 47K
58 1 BAMI To suT 2
&Q _] Pi -S2
156 ~NC _Lca ca2 8 Uas 1@ ENNML
45 22p% 22pF i
ri4¢ OTPa PRWYYT TOosHT2 15 +5
R21 val-& é
s 2200, \V4 - 1)
o £
55] 6 o Rals 12lp PR gl2 wnc
US4 US4
Jir -2 S k&l ek alp
+5 TO sSHT 2 TR anr
Uis -5 T EY
RIS ? ?'
4.7K TO SHT2y, TDEN
U506 va27-8 S
3|pé o¢l2 =ADD ! PR ol9
alol oifs =) 2o Q=—Nc
202 oz_g._%eQ_{\ uso
D3 0319 __SAD3 [3 ek BhDeINTNMI
13 jpa oapla SADA L et 4 Mz [P TO SHT 1,2
14 o5 osps o USa- 46 2 NPyl ’
:g pe os____@_:ﬁ (-] TO 8HT 2 JIRESET o s
p7 o112 __SAD7 Ust—2
- \tJLe OEpR STOEZ
I DES DEVICE +5 [|GND | PINS|{QTY
Ut T4ALSAT4 20 | 10 | 2O 1
U2, 7.50,5).852 1MaLs3373 (20|10 |20 B
U3, e 74MCcT245 [20 |10 | 20| 2
) us4,s 27128 ze | 14 | 28| 2
us, 31 T4 S 54 zo0|[o 20| 2
U9, 0 6116 -3 24 | 121 24] 2
LE { U 1 e 7
7 2ADIS . 2 IDd OQL_EAD.E\;AD_&_QDG op SADD Uti, 13 49138 16 8 16 2
15 41p1 o8 _SADIYSARD 4 ipt Ot U2 T4L S 39 =) e |ie| 4
13 1 2 218 SADIQ Y SADIP) 2 2
Ll 8 ga ga 2 SADU LY SADI 83 83 14,17 74 ALS257 16| & liel 2
8 12)lpa oall2 SADI2YSADRIZ 131pa Oall a uis TALSI 74 6 | & |16 1
a 14 HS SARISF SARID 14 | sl
& 3108 he—2aniuYaapa 7loe el e Ue.23 PALIGLBA | 20| 10| 20| 2
2 18jp7r o7l2 EAD'S\ SADRI o1 o7l U s,22 T4HLS 273 20l 1020 2 REF ERENCE DESIGNATION
USIOEO' 1| seY52 Uio,za 74 As253 |16 | & | 16| 2 LAST USED NOT USED
b U 2o T4LS193) a8) 1 U 56
62 TOSHT 4 UIZ P2
473 SED/SSVD S TOSHT 4 UI2 PNIS uz JarFiS A N N R23 RE R8,RIS
* R 2
uS53 80186 9,43 [26,60| €8 1 v
U 25, 30,26, S4 TALS T4 a7 e a P2
J2
U 27, 28,29, 56 T4FE T4 s |7 14 | 4 c 24 ci4, €IS
U32 T4 HCTOO S 14 | oA
U 33, 35, 29, 43 TH4LS32 4 T 4 | 4 TP 4
U 34, 46, 55 T4 LS00 a7 | 3
<
32 9re erll___saDps [VIERZ J4 Lsoz2 a7 e | o
3] 8lar B1ll2 54D~ 36, 38, 40 T4 LSO 8 14 | 7 14 3
| 22 Ilaz 82|13 T}
29 6 |aa B3|l4 sSADI
28 Slaa Bal|!l SADIZJ U 41, 47 TL4LSOL 4 [7 4y 2
27 4 los B5(l6 b
P 3lae mell? SADI4 U 42 74 HC 86 ta T 14 |
39 R 2 |a1 p7p8 __ SADIS) U 4s T4 ALSIO 78 7 14 [
oE2 19 Py
527 1SToE2, TO SHTi UIZ PN 1 U4s T4 LS27 ta | 7 [e |
:%' EY U 48 T4 LS Y ERESE
Rl U 49 T4 LS 25 e | 1 | 1a | o
ey +5
37 4, 7K
8]
iy
20
e

9000A-80186-1071
(3cf4)

8-6

9000A-80186

DT/R (DTR) 3|

LINTA

sLopPwr S |

rREsEr+ 6 |

HLDA

JUTON

ENTCS

UN 2

s
—]

i

-4

NC

i

vtggvuu
Y

INTERNAL LOGIC
BUFFER CONTROL PAL
uie (1eLs A)

DATEN

BADEN

=2 BDIRIN

TAEN

TAHE

NC

CSEN

BLOPWR

RESET

HL DA

UUTON

WTCTL

PIOTEJ\I;

|.x

4

'.o

LS

NC

1

Z
n

B

=y-4

NC

| BRO/QgMD

BBQZQ;MQ
fjg‘i-——w

RES

SET

LENGND

| QUTON

| CENGND

U
v

e

WTCTC

LOPw

 HLDA

LENGND

3=

il

INTERNAL LOGIC
UTILITY PAL
uz3 (1eLs8)

9000A-80186-1071
(4 of 4)

Figure 8-1. A40 Processor PCB Assembly (cont)

8-7

9000A-80186

WARNING: ® INDICATES USAGE OF MOS DEVICES)

WHICH MAY BE DAMAGED BY STATIC DISCHARGE. USE SPECIAL
HANDLING PER 8.0.P. 19.1

== 9 |
26 .C @ 2z e @ (]
; ue @ ¢ Tz @
® [| —
U22®C® v @ @ Ut Q@ c@ ° o U5®. TP
0)] | A d AT d
uz24 @ (¢ v20 @ (¢ vea @ (
° L []
uza@(var @ q u7 @ ° o
o 0 0 A B ¢ A 3 q
La® ule ®.C© vae @
mi|<
J o L s 211 °
” uis @ ¢ 2@ c@
uis @
A2 d A4 d
o []
° us @ ¢ ua @ ¢
vz @ (]
v * * * —omge
* v2s &« ulo® Foeoo
XX A as 4 bbddd
. 0
. uzs@H unt @ ’a© @ ol @ vas]
e () . NEHE
v E&g ® uzs 'C 700
Ty = . - | 56606 =)L
@ CAUTION
SUBJECT TO.DAMAGE BY
STATIC ELECTRICITY

9000A-8C186-1672

8-8

9000A-80186

J1,d2 4 LS h
BTMRINT |- g1} A BPCS{ 12 [va aallse
BTMRING |ai-12) A PCSE 9]lvy a2
BDORa1 Jv—a21 BMC S Tiv2 3Alil g3
BDRQS J1—i3p A Co2 4lv4 38O Ny
BRES Ji—a3l 5 |= 22 S
B HLDA J1 -4 QEN 2Bl& 4 | GE _cp L 100 A
BRESET |J1-u4 dx/8 a2 9 Q-‘,Jl o718 7 101 19eTd o7l LTMBIN..H STMRINY g |) 4314 | uTMRING
BioER | -5 yzs ' BR2 ¢lae Dps[Y s Yinel 16los ¥ os[LiMRING) KETMRINE 5] 2 J4-15 | UTMRING
_ Slas Dps[l4 SYies] 15les Zos(i4lLDRGY | RBDRG1 1Q] 12 93 -i16|UDRG 1
BDT/R J'_Asﬁ +5 2laa o4 ll3 DaYipal | Qu - oali3ly H3 Jua-is|upra®@
BDEN____ |J1-6) EcsT 12 [va aalis 3 Jas pal[8 D3Yi1D3] 9]qs & oalBll. £s] 70002 4 Jua-18|0RES
BRD/QSMD .n‘ueﬁ - £l 3 481 6 laz Dpz2[T 2YiD2| e sznz L HLDA BHLDA 17) 15 J4 - 37U HLDA
BWR/GSI |J1-17 — = :.2 A r $1a7 o & DiYID il 5] 4 p1&JLRESET ¥ #BRESET Zi A F3 J4-27|URESET
BALE/QS® | Ji-aTp T alvs a8fie 2 lae opl2) (1 2]ap ¥ co[ZlEOCK) E%E éﬁ J3-35|0L0CK
BHOLD Jt=8] >AlE [S3E wplueres Ut A I3 -t
BSRDY Ji-app IS4EN 2B N NES
BARDY Jey=i9 w——GK/ T ALZ J3- 3
%/ 1803 v J43- 4
J . : ; pE Y
TCSE 1 pa -
7 TAOEN i a9 J3-39
Banll__BADZ [ce CE?J.__ 1 _cp bl Q 100 o \ _
532 S BADS o7 a7{l9 D7 (ID'[|:P Q7 1 D7 :_’ _311;{ 8D/ o ll jg_gg Sggéa
- o 6 I Q616 6Y106! [6lqe ~ pellZ]L Vv -
Ao i] el o vy os U aafis SYios 15l as Y bs[2]C = ' I 2 <4 - 19| URD/ ASMD
ADS J2— o \ P"E'&-—A‘Qg\ oa b aali2[{104 Y104l 112 a4 J pa [B]EW wR/Qs 1 J4 -28|0wWR/as 1
\ ek zaop e BADS] o= daalaTlicatipal Tolas Y oalBTiacs BALE/QSA 18 7008 J4 - 32|UALE/QSS
AD4 d2= I TDEN [ialrek? ac 02 a3 G3 ¢ B ﬁ% =
aps - YT g o2 u czlel ID2Wip2l Télaz 4 pzf2]iHoLD \BHoLD 7] J3-28|unOLD
aD2 J2- 3 TR v e of wor{sl Dol T5lar 4o1[alioroy] [&=ROY 2] A2 2 J3-25|USRDY
(AT 2 CCREN aa 100] (BARDY 2| -
AD A J2~ 7 ra 1% &R &CO DB 0P 2] l10e 12] @@ ~ Do LEARDPY A J4 -29| U ARDY
ADD NERE 7} BN QUNTON 19 Uz Us U4 "1"
| ofi2]
\. AT g N
ECCAT | u2-57 CLATS FANTIAN
CCRTT J2-2s 3 @35 3 -40
BADEN J2~-5¢ P FhE J
CKEE J2-54 \ e)
SELFTEST |J42-24 PWREAIL {
— — — R3
a7 tior B2 Alicp o b 1004
3%? BAD7 [BADT e Sy Ap74 LADT 8lo7~ avl@ 1>7\FID‘I T$07307 18 AA o é Ja-9|uapT AAA
Forlal BapeYBansl | 2]ae 1 asl® ADG A 6 Jloe = Qefiel LIDSYIRE. liGlqe = Dafl? J3-10jUADE 1ok 1%
& BADS YBADAE[| 13|86 - As|? ARSH [Lapsl] lalos 1 aspsf HDSJIDs] ISlqs 1 osfl 12 sa3-7 |luabs
e E o3 gaps Yoanal | wlps b asfe abaq FLaDal T 1510 U qafr2] TiDaYioal H2la, § pall3 B J4 -7 tuADA R4
I0EN Z i S AD 34 8 k qa[al 1103 ;_Eil_iqaﬂaaa Tong . 1u4-6 |uaD3
TBEN a0 - a9 hur 1Y) WE) ch§qc 2 SQDSVBADS 2 ol I AD2Z 'tﬁg% 3 g? azle] ltoaYio2l lelqs 4 p2[2 J43-8 [yuAaDp2 FMN—_‘
YAEN |- 20 TAEN 14 Jae il D2 yoabe 8182 g A2 T 3 oSl o1Yiol [s]ar 2 o la 22 13412 fuapt ik
BAD 1 Tla T arl3 AD1A4 [LAD{ 4101 0 Qf Qg D! A3 ;
UUTON Ji- 59 WUTON 12 A SO%N QA BAD Y] 3 2] 11 2 o 126 i3 -9 |uADe 1%
COUNTON |1 - 21 SOUNTNIP TR ROR?| RAR2 JBapgl | 18160 apl2 ARRJ o¢l>J7oaa D2 QTJ&
EECAT J2-23 us Ue RED
X J2- 41 L
X453 J2- 11 EELAT 1
MCS3 J2- 42 G~ N < hof o)
Acs2 J2-12 9o :
s 42-43 - N (BaT
NCS? J2-13 CDAT C CEEEL, +5 _JJ4-20] osC POWER s i
Ccs A2 - 44 \ ")
0<s J2- 14 — a |
v ooy iLLATA HAAGE 14 1 OE] {3E cp " _ — 100 L 0
LLATA | J2- 6 o7 107 T8l a5 5 oohel lsess [Has selu Eﬁ—n’ 1D7 779073 orB) [FE=1 BFEsl e AN 4 43-18|0BCs !
ID7 J2-36 - 4 1D 16 7 LPC S¢ s Ja4-241U Se
Y106 [i6 < 7] 1Pcse foC gla7 7 BTH2 (= Q6 - Dée = = I
6 J2-5 1RG Q6 7 D6 IC MCS3 | 12 - MC S3
igs J2- 38 1e5Yips 115 05; ps[al TMCESAMCSS Z AS;I 86 :2 N.SZJ % [E gi%] gi g [=3 I le jg_gea 3 ‘; :
D4 J2- 4 1043104 L2jaa D3] IMCOSAMCS AS , BS g 5 ws D3l T9]qa ¥ oal 8] [LMCET MCST) 7000 43 -3R|0MES]
10311 [9]lagaF pa[a] M CS 5laq 5 BalS - Py F |
103 ooy TR Y az § oz[2{H TE5[[4 as 8 83[IS MCS | 1247 o2 : 210z § pzidl LM B 12 NSy Rl |
1D J2- = = E S0 17 == 1DY 5lat o1 L v A4y J3 - [
101 J2-33 IDIYIDY 1S)Qa1 1 D14 L L 2 A2 ; B2 T_A - 3 3 — e Ja-271|Goe T
152 J2- 3 ma\ D2 12lcs ool2 = AUC IS !% =0 — Uy s\ S] < thaD‘b UGS 1PN '
CRBAY |J2-28 u9 ulo 582 w FErnE Ju-23] Bxi i
TBAT J2- 58 Ja4-2¢|Juvcca N
J N J3 1ifuvecct) | ™
(NGO FO§) NN]
TR ATE SRCATE 47TMO x
CKLATE |Jy=-25 CSRLATE CKADR m2 Ugusg Ul 3)
CKAaDR Ji=-B5) 0 | | N) cq{ VR {
CADR Ji-2 RA 22.6K,1%\ e Jyecd uzg) >P
TSEN . |Ji-== YTcsEN solo
TCSEN |u1-27 ITs 12aK LOPWR
LTCsS Ji1-57 LLAT ' Y% Ri2 v
CCaT8 Ji- 28 mk__'z $
PWRFAIL 2 | J1- =3 W =
PWRFAIL 1 | J1-29 LOPWR 5 4. TM
LOPWR |J1- 99 Bx1 . RI3 t 7
Bx { J2- 29 - 10K uz2e
BDIRITN Jz-27 —AAA— —
CENGND |J2-55 IAA A S
TAHEN
N N
ofldit o o ZHUk ZH-
< A0 cloldded-lel (A e e il Rt ettt 9000A-80186-1072
4
LJ _Jm,ﬂ NN 9, i J b AAA—4 :‘ (1 0f2)
~ L®m e J5R_ZD_ 2218
TO SHEET 2

Figure 8-2. A41 Interface PCB Assembly (cont)

8-9

9000A-80186

TGO SHiEER T 4 Jd 3
J 4
(h NOTES IUNLESS OTHERWISE SPECIFIED.
ul 1. ALl RESISTORS ARE IN OHMS, Vaw, 5%.
ulit ZZ H « . F ALL CAPACITORS ARE IN MICROFARADS .
S &1 (1 BT S [Pe alol2 'jtl
" 4 |l AN ALY tolaf Hoja] O il 4_‘5
- I il ey P fa olaldal O 2 e T
J2 [e & B o o b v e SR W) L N - -
i DES DEVICE +% [GND |PINS| GATY
U1.3.4,7.8,9, | 74+5C 374 [20| 10 |20} 13
Ut12,13,16,19
uzo.2, 24 @
1l S ADR 1 OO
SADE 18 _LAIG /56 ,BE_B.LQ‘;_&, i Ju-i7|uaas se uz.s T4 LS 590 16 8 e] @
17 TLAIS/S ;ﬂn&ﬁ.&. 2 J3-13 |valasss ue.ia T4ALS24S zo| 0| 20| 2
R 14 | LA7/S4 | 2 J4-13jvarr/ sq
Ja="—is—"¢_\apo = ") = lLA/ss Ag/=3 B Y Ja-5|vaersa U0 74 -S54l 20| w020} !
] (1011 9]as4paje [) , N 18] 7008 _%NC Ui4,28,29 TaALS257 |16 & | 16| 3
HTCS 1e —32 112 6oz {o2{2l L2 ! L J4 -35|052
852 J2-52 ;g_g_§_01301u % 21 AL = e hryi u1s, 27 74ALS244 |20} 10| 20 2
BST 12-22 ibe 2lae Dof2] {h 2 20 (2B |, 3-37|0US@
8@ ~42- 53 N\ Ui3 gwola--nr' oa RTER 745365 e | 8 |16 | 1
~ s 191 Ja-2|—4 u2s LM 339 3 |12 | e | o
SKIATR z o Ja - 3
TAHEN | J2- 2 TAHEN R Il U 26 @ v 293 8 | 4 | 8 | f
AEN 42~ 51 ~ INBUES J4 -39 Uii,17,23 Q 74ALS374 |20 |10 20| 3
RUNUUT J2-21 RUNUUT .) 4
J1 3 N v
n eoj% ’)
SATEN z AEN 1 A1 {58 ~ cp|Lt
EN 2 as SATEN 5 en Aseld EN 19 {0E2 Oyl TALGEN o€ ~cpllig YoloYe
;‘;G jz_ 5 £ESe [PN | relapBanot JEINCYETS aczna ZABDI'[Al197/S6)121,[_12: arI o)t L T - \ 03 -28B|UTEST
a9 /56 | J2-46 9/2ORAIP /26 10148) r3pH2BAD 5:}3&8_/25_§_232 2a2 124187565 1014 16106) Defll 2 03 -7 |OBAE(ST)
aa) v2|Z]Ball/ou gmy;:; ; 281 { 2al IBA”;? }m_j—m:._l.g_giaos %—CMM - NC 0] _%NC - 36| oamz
- AIB/ S5 RAIB /S5 13lap 1 y1l4]Baic/o3YBALG Sy INYYEEY 2 D I ;5_;___&_ Y- -
AB/ss |Juz-16 L 2 ZAZ AD1L 18 |1as U a8l 2 5 IDiI_9laa k Dal& LLNTE/.LﬂAj_ }Mﬂ 7o0ad @134 - 3| 0INTa/TTRE A1,2,3,4,5,6,7,8 | Q000A -4102T| 4 | 23 | 26 a8
m1/eshaiz/on clea F (8aDI0 16 |182 g 1a2] 4 Dig E&laz Jp2 lm" INT2/NTAR 1) 15 J3 -20|UINT2/INTAS
AlTI/ea | J2-47 - =128 4 S5 14 € ID9 _51qQ4 D1 4]LINT] BINTL 2J 12 lu4 -34|uinT
N PPN g 1A N R} :g;ﬁ ::; = 108 2]a0 " DB|S]CINTE) B : A6 1% 2 DinTe 1, 22 rEsNETWORK AW | | — |10]| 2
- ! 18 RinTe -
A6 /82 2T == @ Uik) e g w3_ uie) mme 25 RES.NETWORKISH 1 [— | & |
W—STEBT 44 -5 20 o wiQ Ao —| r 23 54 ~4087TT |— [4« |6 | 1
gl D= R —ns 1 R |46 =4 RESNETWORK (0K | — | — | 10 | ¢
BNMI J1-52 SSSTRIN =N o Iz H
INT3/INTAT|J1- 23 TATA r‘ﬁﬁuﬁ E ;5 i SA-4D
INTR/INTASG| Jt - 53 3 2|t B
BINT Ju,Z‘yj 437 |
BINTP Ji-54
— ! —
TADR J2-28 TADR lilcp UIT u27 celp! TAEN! {lor EN _ | lilcp GER ADR 1~ GE cP [LIGKADR 100
ADIS Ji-2 | f ap7eipr qQ7[i2l 2lia3 1 B3[iBBA9/SC] JoADRIS P UBT A AT JLADISL HEID7 1 o7f19 1DIS PIRIS U Q77 D7 181 _LADIS r§ J ©| J4-4 uaDIs WARNlNG: ®mmmormm|
ADI 4 Ji-22{ 06 Ulpe -qe[l6] aliaz 1B2[6BAB/S5] [BADI4 I21B6 T A6 aniay (1T D6 oelle 1Dis WiDi4 161qe _ DefLT LADIA) fRA E = 2z)3 -5 luabDis WHICH MAY BE DAMAGED BY STATIC DISCHAAGE. USE SPECIAL
AD! 3 Ji-3f_ JIR5S 14lps QsiS| &liar 181 S4q [BADIS 13/g5~ A5 [LADI3] H4iD5 § Q52 Ri3 YIOI3 Doiqgs 7 Osi4l LADIZ] T~ YT 12 43 - 6 |uapia HANDLING PER $.0.9. 10.1
aprz J1-33 1D4 131psy qu[2] Bliap 1 BO|'2BAIR/SS) gADxZ 414 L Aa 3 ll? 12/ 04 | a4 ‘92 glzﬂ {gz"" lé Q4 g D4 lg tﬁ:z 2L % - - _u;- |§ 3:3:7
ADI) Ji-4 | A[ip3 8lpa a3|2 {17l2a3 2m3|2BADIS ADI| |15IB3 j A3 Da q Q3| I a3k p3 / can 4 13- | REFCRENCE eI C AT ION
ADI@ =34 D2 _7]pz a2l Jin]eaz 2B2[5BADI4 YBADI® L6 B2 DAz LApiel 171p2 ﬁﬂ? & 1Dip Yipig [61q2q 02| LADI2Y FBADIO T stz_ NP P =)
ap 9 -sl Apt alos ai|s [43]oar 28T BADIS [BaD S Lrigr day APl lalpy oeifs 102 JIDI Qi qoifal LAD9 b2 214 AT J4-11{UAD 9 LAST USED NOT USE
AD B J-3s__J Dz 3loe aw[z]'1|oa2 2B2[2 BADIZ__ YBADS liblBe ao apel I3]pp qol& 1D8 JIDB oo oo} LaDAal [BAla (2 lua-8luape NEY
1o 5E sEz [Paiaren Y uie Ui9 U20
VS SR] S— y 2 fa = Ri2
PCSE/At|J2- 18] q) 13
Rsu 1l oelel -| mf H 0l VR 1
S3 J2- 19| & —j S mf H 0
sz |D2-se| TTES EEEEEE 25
L L n B IS N J 4
— TP 2
+5 J2-P Ly 1{3E | 1INET 2t < L 1] 3E ~cpjiirrcs 14 BE » cP|l! oan
1015 J1-e DEA?::“'LEA WA;,\:; NC nC 9167 T 07 Lam_hzgm,ov‘.—%“% QT4 I'\/W ° zl Jaois UTMRg.JTr1 wa
- 1 c = ! 1014 16 P % ;mm& JB =19 |UTMROUTR
T ema iy z N Elasnce Disie|ged oepapmead (850] AL
10w Ji=-37 Ipy sa"‘x%a%ﬁ_@ A4 Balll 5_&2 agq,b’)mla 12 f1ole 12 méug 13 PCSE /A 3 J3-30 g_gc_sg/Az
1D J1-8 D3(& ! A1 18] A3 2 B3|2 2/a1) (A1 2103 zoag L g:é Z Qs Dag 1 7000 H4 94 - 30| UPTES/ A1
IDto J1-38 qp2l e elaz2fl B2l7 s JR==Rs Slaz 4Dz Gz] bz 1S |4 -25|0PCSaA
1D 9 Jt-9 Jp1l4 INRE=X =¥ [ZE-F a1 I,D1‘*’ 2 JIR9 Slay Jotjk A8 (2 Jus-24|yUPCS3
10e J1=-2 oelalrcse APCS A Bo =S E- 2lqe " pp[21R2 IDG 2o DoiR ‘ (286 14 -26{uPCS2
yz2 yza uza Ug4
BTMROUT 1| J1 - 18 \/ FERRE
BTMROUT @ | U1 — 42 ol .
CiLkOUT Jy=-i SRLATR Nm‘zq% 5;.
[E 3
et)))
(3] J0- +5 !
NI VTP S i - cia :
—O TP N W H
sz i Qree CAUTION 9000A-80186-1072
2= 30 %7 SUBJECT TO DAMAGE BY 2 0f 2)
NP STATIC ELECTRICITY

rigure 8-2

9000A-80186

FUNCTION

AD IS
AD 7
AD 4

T
n
[

|
N
[
NI

T
]
iy
w

T
8]
[
3

il
[4]
ol
»»
[

r
N
n

2222 Y¢
nnnnn|

Amwwm
-INnI

v/
m
Z

DT /R
INT3/INTA
INT2 /INTAG

vca 2

INT

INT &

NMI

TEST

COCcK

SRDY

HOLD

HLDA

~

ALE/Q5¢
RB/QsMD
WR /G651
BHE
A19 /Se
AlB/SS
AVT/S4
Ale / 53

LCC
PLuG [P2
i 4
2 9
3 5
Fin 10
5 &
& 7
7 16
8 7
9 P ipliN _\
iC iZ
i1 4
-4 10
13 8
14 [N
15 12
16 8
17 E)
18 5
19 16
20 15
21 |4 ‘2'6'\'
22 9
23 14
24 18
25 24 PIN
26 29 22 * 52
40 2
2 3 llll[Tlal‘lllllslll
2 3 Q0* ¢00® '"o0 03
- 00% ®0Q® %o0* -
008 “0a° 'Ssp e 20 21
g e PN 65 7 23 19 22 O+
xe8 - 00 (o]e, 00 -
¥ 2 25 —8063 g " 275 ot o
3 5o 30 : 508 S0 os° 39 02 .
33 23 — 52 -
i _._ 51 a9 s3 o -
% 27 - —O 0% “00*¥00%* 3, 31 7
= s [& 0= “o0 00 ©°7
= = — 2 53 47 38 -
gg P _(5)20 O ‘DO “Og._
1 41
Pt 29 - O 0® “o oo®
42 20 Lyl by et
43 21 DETAIL
44 34 PIN - PIN
Qs 28 x52 (ScAaLE: 4:1) ¥ a5
46 36
41 ErY c i
48 35 +5 __,’
49 25
50 26 R 3 .osuf
si 37 1800 50V
52 37 Yaw, 5%
53 EYl
54 a5
55 29
s6 3y
57 27
58
D)
60 1 1
23
61 32
62 19
63 28
64 7
(%= V7
66 i3
67 13
&8 5
21 20 | _vycc
22 (TO Ut PIN 14)

SEE
DETAIL_A
PIN PIN
(X - %2
PIN PIN
P
sia «2
-
)]
u
'w R
et 32
“:{ 48
LQ‘; L J
N

CLOCK

PIN =226 \ a3 -}
NG ©
S0
FARSIDE PN
£ 40
\ CRTH

PIN NEAR SIDE

YUNDER cHIP’
DECOUPLING CAP

9000A-80186-1035

Figure 8-3. Schematic Diagram of UUT Cable

9000A-80186

Appendix A
Compiled Programs For the 80186 Pod

USING THE 9010A LANGUAGE COMPILER PROGRAM A-1.
Introduction A-2.

The 9010A Language Compiler is a microcomputer program that creates test
programs for the Troubleshooter. It creates these test programs from source files that
are created and edited on the microcomputer. It is available for several common
microcomputers, including the Fluke 1720A and 1722A Instrument Controllers,
computers with the CP/M operating system, and the IBM Personal Computer.
Contact a Fluke Sale Office for information about the 9010A Language Compiler.

Before using the compiler to create 9010A programs for use with the 80186 Pod, you
will need to create a new Pod data file. The simple procedure that is used to create the
Pod data file is listed below.

Creating a New Pod Data File A-3.
A Pod datafile is a simple ASCII file that you create using the text editor on your host

computer system. The procedure is a follows:

1. Using the editor, create a new file named 80186.POD.
2. Copy the following lines into the file.

1 80186 Pod data file
f

FORCELN extrdy = 1
FORCELN hold = 1
busadr = 0000

uutadr = FFFF0

3. Save this new file as file 80186.POD on the disk.
Using the Pod Data File A-4,

The new Pod data file can now be used with the compiler as described in the 9010A
Language Compiler manual.

Verifying the Pod Data File A-5.

The VERIFY program (which is supplied on the 9L.C disk with the 9010A Language
Compiler) verifies the integrity of files on the disk. It is used to detect files which have

9000A-80186

been corrupted, which it does by calculating a checksum for each file and comparing
that checksum to the one contained in the VERIFY.DAT file (also on the 9LC disk).

If you would like to add your new Pod data file to the list of files that are checked by the
VERIFY program, do the following steps:

1. Edit file VERIFY.DAT (supplied on the 9LC disk) and add the following line
to the end of the file:

80186.POD DDDD

80186.POD is the name of the new Pod data file and DDDD is a dummy
checksum for the file. (You’ll replace the dummy checksum with a real one
later.)

2. Save the modified VERIFY.DAT file on the disk.

3. Run the VERIFY program. The last two messages that it reports should be:
File 80186.POD error - signature is CCCC, should be DDDD
zz files tested - | bad signatures, 0 missing files

80186.POD is the name of the new Pod data file, CCCC is the correct
checksum for the Pod data file, and zz is the number of files tested.

4. Write down the correct checksum for the Pod data file (CCCC).

5. Re-edit the file VERIFY.DAT and replace the dummy checksum that you
entered before (DDDD) with the correct checksum (CCCC).

6. Runthe VERIFY program again to confirm that all changes have been made
satisfactorily. The last two messages that it reports should now be:

File 80186.POD verified

zz files tested — no errors

A USEFUL QUICK TEST PROGRAM A-6.

The compiler source program listed in Figure A-1 will make the use of the 80186 Pod’s
Quick Functions appear to operate like the tests that are built into the Troubleshooter.
When using this program, you can use the Quick Functions by entering parameters in
response to display prompts, just like the normal built-in tests, rather than by writing
information to several special addresses.

NOTE

The program is also shown in standard form in Figure A-2. That program
may be used on any Troubleshooter without the compiler. It is entered
line-by-line as shown, then saved on magnetic tape. Refer to the 9010A4
Programmers Manual if you need help.

A-2

Once the program is available on tape, regardless of which form it originated from, it
needs to be loaded into the Troubleshooter and read into memory. Consult the 9010A
Operator’s Manual for information about using stored programs. Once the program is
in memory and is executed, it will begin looping through a display sequence which
prompts the operator to select from the available Quick Functions, then prompts for
address information to use with the selected test.

include "80184&.P0OD"
declarations
assign rega to key
assign regb to incr
assign reg8 to highaddr
assign reg? to lowaddr

setup information
pod — B0O186

program Main
dpy QUICK 80186 OPERATIONS
execute delay

ramtest:
dpq QUICK RAM TEST (Y-N)>7key

% goto romtest

execu e quxckram

romtest:
dpg GUICK ROM TEST (Y-N)>7key
if % O goto fill

execu e quickrom

fill:
dpy QUICK FILL OR VERIFY (Y-N)>7key
if key = ?oto Qramp
execu e filltest
Qramp:

dpg QUICK RAMP (Y-N)7key
if % O goto ramtest
execu e ramptest

program quickr

Py ADDRFSS INCREMENT? /key
1ncr = keg s 4

ncr = in 1
dpu BEGINNING ADDRESS? /key
lowaddr = key _or 2000000
dpy ENDING ADDRESS? /ke
highaddr = key or 2000000
write @ lowaddr = O
write @ highaddr = incr

stat_lp:

read @ ADR

if DAT and FO = FO goto ram_err

i# DAT and FF = CO goto ram_ok
if DAT and FO = AQ goto aboTt
dpy BUSY, STATUS s$e
execute delay
go

to stat_lp
abort:
pg TEST ABORTED
o ram_end
ram_err:
read @ 200000A
regl = DAT shl 1é
read @ 2000008
regl = regl or DAT
read € 2000010
if DAT = FO goto rdwr_err
i# DAT = F1 goto dcd_err
goto stat_lp
rdwr err
FAILED RD/NR ERROR @ %1
o ram_end
dcd_err
FAILED, DECODING ERROR @ $1
o ram_end
ram_ok:
dpg RAM OK
ram_end:
stap
program

pq ADDRESS INCREMENT’ /key
incr = key 9h1

incr = incT

dpy BEGINNING ADDRESS’ /key
lowaddr = key or 3000000
dpy ENDING ADDRESS? /keu

scroll through tests

do the RAM test
do the ROM test
do the Fill or Verify

do the Ramp
Quick RAM test

only basic RAM test

mask special 2XXXXXX address
for Quick RAM test

Start Ramtest at beginning
write at ending address

READ @ ENTER

if an error occurs
if ramtest passes
if test is aborted
else display status

get address of error
igh word of address
move to msb

low word of address

get error code

Quick ROM test
get address increment

get start address
mask in 3XXXXXX address for
80186 Quick ROM test

Figure A-1. Compiler Source Program

9000A-80186

A-3

9000A-80186

A-4

stat_lp:

highaddr = key or 3000000
write @ lowaddr = O
write @ highaddr = incr

read @ ADR

if DAT and FO
i# DAT and FO AO goto abott
dpy BUSY staus %e

execute delay

goto stat_1p

rom_done:

abort:

TOom_err:

chksum:

rom_end:

program

fill:

verify:

fil_wver:

dotest:

stat_lp:

ver_err:

ver_com:

abort:

fil_end:

program

read @ ADR
i¥ DAT and FF
if DAT and FF

dpy TEST ABORTED
goto rom_end

Ci goto rom_err
CO goto chksum

read @ 3000000E
dpz INACTIVE BITS DETECTED se
goto rom_end

read @ 30Q000C
dpz CHECKSUM = se
goto tom_end

i

p

py ENDING ADDRESS? /highaddr

py FILL MEMORY (Y=N)7key

f key = 1 goto fill

p EMORY (Y-N)>7key
oto verify

p VERIFY (Y-N)>7key

key = 1 goto fil_ver

regl = 1
dpy FILL DATA? /key
write @ lowaddr = ke

Y
goto dotest

regl = 2
goto dotest

regl = 3

dpy FILL DATA? /keg
write @ lowaddr = key
goto dotest

dpy Address Increment? /key
incr = key shl 4

inecr = incr or regl

lowaddr = lowaddr or 4000000
highaddr = highaddr or 4000000
write @ lowaddr = O

write @ highaddr = incr

read @ ADR

if DAT and FO = FO goto ver_err
if DAT and FO = CO goto ver_com
if DAT and FO = AO goto aboTt
dpy BUSY

execute delay

goto stat_1p

read @ 400000A

reg 1 = DAT shl 16
read @ 4000008

Treg 1 = reg 1 or DAT
dpg FAILED VERIFY @ $1
goto fil_end

dpy TEST COMPLETE.,
goto fil_end

dpg TEST ABORTED
goto fil_end

NO ERRORS

stop

ramptest
dpy ADDRESS OF RAMP? /KEY

ADR = KEY
dp% DATA OF RAMP? /KEY
DAT = KEY

ADR = ADR or 35000000
write @ ADR = DAT

CO goto rom_done

starting address
ending address and increment

READ @ ENTER

display status

delay speeds test bg not
interrupting the Pod during
the quick test

if code C1,
occurred

then an error

display Checksum

Quick Fill and Verify
get address info

get type of test

code 1 is Fill only
2gt data and write to
irst location

code 2 is Verify only

3 is Fill and Veri#g
et data and write to
irst location

et "Z",
increment

mask in 4XXXXXX, the
special address for
block tests.

Start test

READ @ ENTER for info
code FX means an error
occurred

the address

delay speeds test by

not interrupting the

Pod during quick test

get high word of error Addr.

get low word error Addr.

Quick Ramg sgecified by
WRITE @ SXXXXXX = DATA

Figure A-1. Compiler Source Program (cont)

stat_lp:

ramp_com

abort:

Togram
gec?arat

dloop:

read @ ADR ! READ @ ENTER for info

if DAT and FO = CO goto ramp_com
if DAT and FO = A0 goto abor¥®
dpy BUSY STATUS %$e

execute delay

goto stat_lp

dgg RAMP COMPLETE
stop

dpy TEST ABORTED

stop

delay

ions

assign Tegl to counter
counter =730

counter = counter dec
if counter > O goto dloap

Figure A-1. Compiler Source Program (cont)

9000A-80186

9000A-80186

%nclude "80186. POD"
: 80186 Pod data file — Version 1.0

FORCELN extrdy o
FORCELN hold =
busadr = Q000
uutadr = FFFFO
declarations
assign rega to key
assign regb to incr
assign reg8 to highaddr
assign reg? to lowaddr

=
1

setup information
pod — 80186

program O
dpy QUICK B0O186 OPERATIONS ! scroll through tests
execute 5

0:
dpy QUICK RAM TEST (Y-N)>7A
if REGA = 0O goto
execute 1 ! do the RAM test

1:

dpy QUICK ROM TEST (Y-N)>7A

if REGA = 0 goto 2

execute 2 ! do the ROM test

a2 2:

23 dpy QUICK FILL OR VERIFY (Y-N)>7A

24 if REGA = Q goto 3))
25 execute 3 ! do the Fill or Verify

3:
27 dpy QUICK RAMP (Y-N)?A
28 if REGA = 0 goto O

HOJONCUHWN=OCONT UHUWIR) ¥ % F ok & &k &k &

[S e e e e e e e e

%9 execute 4 '! do the Ramp

o]

31 program ' Quick RAM test

32 dga ADDRESS 1NCREMENT7 /A

33 B = RE l

34 REGB = REbB or . ! only basic RAM test

35 Eg BEGINNING ADDRESS7 /A

36 REG9? = REGA or 2000000 ' mask special 2XXXXXX address
37 dgg ENDING ADDRESS? /A ! for Quick RAM test

38 REG8 = REGA or 2000000

39 write @ REG? = ! Start Ramtest at beginning
g? write @ REGB = REGB ! write at ending address

42 O:

READ @ ENTER

if an error occurs
if ramtest passes
if test is aborted
else display status

43 read @ REGF

44 if REGE and FO = FO goto 1
45 i# REGE and FF = CO goto 2
46 if REGE and FO = AO goto 3
47 dpy BUSY, STATUS $e

48 execute 5

49 goto o

50

51 % TEST ABORTED

52 o 4

53 ! get address of error
54 read @ 200000A ! igh word of address
55 regl = REGE shl 16 ! move to msb

56 read @ 2000008 ! low word of address
37 regl = regl or REGE

58 read @ ! get error code

99 if REGE = FO goto 5
60 if REGE = F1 goto &
61 Sgota o]

62 :

63 dp% FAILED RD/WR ERROR @ %1

gg 6ga o 4

2 dpg FAILED, DECODING ERROR @ #1

&7 goto 4

&8 B

&9 dpy RAM OK

70 4:

71 stop

72

73

74 program ! Quick ROM test

75 d&g ADDRESS INCREMENT7 /A ! get address increment
746 B = shl 4

77 REGB = REGB or 1

78 Ea BEGINNING ADDRESS? /A

79 REG? = REGA or 3000000 ! mask in 3XXXXXX address for
80 déa ENDING ADDRESS? /A ! 80186 Quick ROM test
81 REGB = REGA or 3000000

82 write @ REG? = O ! starting address

83 write @ REGB = REGB ! ending address and increment

Figure A-2. Troubleshooter Program

A-6

9000A-80186

PR R RS YATATATATATATATATATATI AT NENERT R VIR AT e el e le e le o]

1 b B Bk bt e b b B Bk o ek e b b D e Bk e e s et b B 8 1 (et e (e b b e b b e B b et b e (b b b Bt (b b b et e b Db ot et b et b b b
o0 UuUNUg NAUNAUGND DD
d:dn\‘lﬁéggzguaamwoom\m AHWNHOIVONCUHLWUN-OYONIUEDWN-OJDNCUDWN-OIBNCUBWUN~OODNTU

O:

read @ REGF ! READ @ ENTER

if REGE and FO = CO goto 1

if REGE and FO = AQ goto 2

dpy BUSY staus se ' digplay status

execute 9 ! delay speeds test bg not
goto O ! interrupting the Pod during
1: ! the quick test

read @ REGF

if REGE and FF = C
if REGE and FF = C

2:
dpg TEST ABORTED
goto 9

1 goto 3 ¢t if code Cl, then an error
O goto 4 ! occurred

3:

Tread @ 3000000E

dpg INACTIVE BITS DETECTED %e
goto S5

read @ 300000C ! display Checksum

dp% CHECKSUM = s$e
goto 5

stoap

program 3 ! Quick Fill and Verifg
dpy BEGINNING ADDRESS? /9 ! get address space infe
dpy ENDING ADDRESS? /8

dpy FILL MEMORY (Y-N)>?A ! get type of test

if REGA = 1 Eoto (o}

dpy VERIFY MEMORY (Y-N)>?7A

if REGA = 1 goto 1

dpy FILL AND VERIFY (Y-N)>?7A

if REGA = 1 goto 2

regl = 1 ! code 1 is Fill only
dpy FILL DATA? /A ! get data and write to
write @ REG? = REGA ! first location

1goto 3

regl = 2 ! code 2 is Verify only
2go o 3

regl = 3 ' 3 is Fill and VeriFg
dpy FILL DATA? /A ! get data and write to
write @ REGY = REGA ! first location

goto 3

dga Address Increment? /A ! get "ZI", the address
REGB = REGA shl 4 ! increment

REGB = REGB or regl

REG? = REG? or 4000000 ! mask in 4XXXXXX, the
REG8 = REG8 or 4000000 ! special address for
write @ REG? = O ! block tests.
4write @ REG8 = REGB ! Start test

read @ REGF ! READ @ ENTER for info
if REGE and FO = FO goto 3 ! code FX means an error
if REGE and FO = CO goto &6 ! occured

if REGE and FO = AQ goto 7

dpy BUSY

execute D ! delay speeds test by
goto 4 E not 1nterrupt1ng the
i

: Pod during quick test

read @ 40Q000A get high word of error Addr.
reg 1 = REGE shl 16

read @ 4000008 ! get low word error Addr.

reg 1 = reg 1 or REGE

dp% FAILED VERIFY @ $1

goto 8

bp% TEST COMPLETE, NO ERRORS
goto 8

ap% TEST ABDRTED

goto 8
8:
stop
program 4

dE ADDRESS OF RAMP? /A
R gF = REG

A
dpy _DATA OF RAMP? /A
REGE = REGA

-2
REGF = REGF 5000000 ! Quick Ramp specified b
Write @ REGF = REGE i WRITE @ S%xxXxx = DaTA’
o%ead @ REGF ! READ @ ENTER for info

if REGE and FO = CO goto 1

Figure A-2. Troubleshooter Program (cont)
A-7

2000A-80186

A-8

76
77
78
79
8

81
82
8

a4
85
8

87
88
89
0
71
2
93
?4
9

1
1
1
1
1
1
i
1
1
1
186
1
1
1
1
1
1
1
1
1

)

if REGE
dpy BUSY
execute
1goto (o)

agg RAMP
stop
dpy TEST
stop

program 5
declarat
assign 1

OREGI = 3

REG1 = R
if REG1

and FO = AO goto 2
STATUS $e
! delay speeds test by
! not interrupting the Pod

COMPLETE

ABORTED

ions
ggl to counter

EG1 dec
) O goto O

Figure A-2. Troubleshooter Program (cont)

9000A-80186

Appendix B
Using the Pod with a Remote 9020A

INTRODUCTION B-1.

The 80186 Pod may be used with a 9020A Micro-System Troubleshooter in its remote
IEEE-488- or RS-232-controlled mode. The only Pod-specific information that you
need to know to use the 80186 Pod with a remotely operated 9020A is the commands
for controlling the Enableable Status Lines. (Using Status Lines in the Local Mode is
described in Section 2 of this manual.)

REMOTE SETUP OF ENABLE LINES B-2.

The two Enableable Status lines (Enable Lines) of the 80186 Pod may be changed (as in
the Local Mode Setup Command) by sending setup commands via the remote bus.
Paragraph 6-31 in the 9020A Operator Manual gives instructions for sending these
commands. The commands for the 80186 Pod are shown in Table B-1 below, which is
an addenda to Table 6-9, Enable Line Setup Commands, in the 9020A Operator
Manual.

Table B-1. Enable Line Setup Commands

INTERFACE

POD S0,8 $0,9 50,10 S0,11 $0,12 $0,13 S0,14 $§0,15
80186 EXTRDY HOLD * * * * * *
(both Normal
and Queue

Status Modes)

*If this command is sent to the 9020A, it will cause a command error (status response 95).

B-1/B-2

Appendix C
Power-Up Defaults

INTRODUCTION C-1.

Whenever power is applied to the Pod, it sends a string of Reset information to the
Troubleshooter, and applies default values to many of the addresses and registers.
These default values are available, in case you do not want to select them explicitly
every time you use certain functions.

Many of the default values are described in detail elsewhere in this manual, but they are
listed here for completeness. In some cases, there are methods available for changing
default values. When you change default values, those values are usually available until
power is removed from and reapplied to the Pod. The methods for changing values,
when provided, are also described in other parts of this manual under the appropriate
topic.

MODE C-2.

When the Pod is plugged into a UUT, the Pod mode is determined by the state of the
UUT’s RD/QSMD line. If the the line is tied low when the Pod is reset (either by a
power-up reset or a Troubleshooter reset), the Pod will go into the Queue Status
Mode; otherwise, it will go into the Normal mode.

ADDRESSES C-3.
Introduction C-4.

The following paragraphs describe the default address parameters that are provided
for the Learn operation and the Bus Test. Other default addresses not mentioned in
this manual are described in the Troubleshooter Operator manual and apply to all
Pods.

Address Increment C-5.

The default address increment value is 2—specifying word accesses.

Segment Registers C-6.

The segment registers for RUN UUT (Pod Function addresses FO 0020 - FO 0026)
contain the following default values:

ES Register = 0000
SS Register = 0000
CS Register = FFFF
DS Register = 0000

9000A-80186

9000A-80186

LEARN Operation Default Address C-7.

If you select the LEARN operation and do not specify the starting and ending
addresses for the operation, the Pod specifies the default address spaces of 0000 0000 -
000F FFFE for the basic word address space and 0020 0000 - 0020 FFFE for the I/0
word space. The LEARN operation is then performed over these address spaces.
Default Address for Data Line Testing for BUS TEST C-8.

No address is explicitly required when you select the BUS TEST. However, as part of
BUS TEST, the drivability of the data lines is tested with Write operations to a
particular address supplied by the Pod. For the 80186 pod, the data line testing occurs
at address 0000 0000. You may change this address with the Troubleshooter Setup
function by entering the desired address for the Setup message SET-BUS TEST @
00000000- CHANGE?

RUN UUT C-9.

Like BUS TEST, no address is explicitly required when you select the RUN UUT.
RUN UUT is set by default to occur at address 000F FFF0. You may change this
address with the Troubleshooter Setup function by entering the desired address for the
Setup message SET-RUN UUT @ FFFF0- CHANGE?

Peripheral Control Block C-10.
INTRODUCTION C-11.

Table 4B-2 shows the specific default contents of the Peripheral Control Block
registers, including those to control the chip selects, timers, and interrupts.

CHIP SELECTS C-12.

Chip Selects are defined by default to provide to widest possible range of address
coverage. Table C-1 shows the default chip select specifications.

TIMERS C-13.

The timers will all be idle and unprogrammed after power-up. All of the timer output
lines will be high.

INTERRUPTS C-14.

All of the interrupt lines will be configured as direct mode inputs. All interrupt lines
will be defeated. Refer to Testing Interrupt Circuitry in Section 4A.

Masks C-15.

All of the error reporting control masks will be configured so that no errors will be
masked from being reported by the Troubleshooter. See the individual descriptions
under Masking Errors.

Enableable Status Lines C-16.

All enableable status lines are enabled by default.

Table C-1. Power-up Chip Select Default Summary

LOWER UPPER

LINE LIMIT ADDRESS LIMIT ADDRESS WAIT STATES
LCs 0 3FFFF 3
#PCS0 40000 4007F 3
#PCS1 40080 400FF 3
#PCS2 40100 4017F 3
#PCS3 40180 401FF 3
#PCS4 40200 4027F 3
*#PCS5 40280 402FF 3
*#PCS6 40300 4037F 3
MCS0 80000 8FFFF 3
MCSH 90000 9FFFF 3
MCS2 A0000 AFFFF 3
MCS3 B000O BFFFF 3
UCsS C0000 FFFFF 3

*PCS5/A1 and PCS6/A2 are configured to produce PCS5 and PCS6 (not A1 and A2) upon power up.

#PCSO0 through PCS6 are configured to operate in memory space upon power up.

Externally generated wait states will be allowed (unless ARDY and SRDY are disabled at
the Troubleshooter).

9000A-80186

C-3/C-4

9000A-80186

Appendix D
Segment Registers

INTRODUCTION D-1.

The 80186 microprocessor uses two 16-bit registers to form addresses for memory
accesses. The Pod uses the segment registers somewhat differently than the 80186
microprocessor. This Appendix describes how the Segment Registers work in both the
80186 microprocessor and the Pod. During troubleshooting operations, the Pod uses
the segment registers in a way that is transparent to the user. The user simply enters a
5-digit address on the Troubleshooter keyboard, and the Pod knows how to form the
address for a UUT access.

SEGMENT REGISTERS IN THE 80186 D-2.

The 80186 has four segment registers that are used to form the effective memory
address. The registers are the Extra Data register (ES), Stack register (SS), Code
register (CS), and Data register (DS). The CS register points to the current code
segment from which instructions are fetched. The DS register points to the current
data segment, which generally contains program variables. The SS register points to
the current stack segment; stack operations are performed on locations in this segment.
The ES register points to the current extra data segment, which is typically used for
data storage.

The segment registers normally contain a base address, which identifies the start of that
memory segment. The contents of the register are shifted four bits to the left and added
to the 16-bit “offset” address to make the completed 20-bit address.

SEGMENT REGISTERS IN POD OPERATION D-3.

The Pod only uses the lower 16 bits of the address internally and does not use the
segment information. For external addressing, the lower 12 bits of the segments are
kept at 0, and the 20-bit addresses are formed as usual:
S000 Segment Register
+ XXXX Offset Register
SXXXX Complete Address
NOTE

Segment registers may be predefined before doing a RUN UUT
operation. See RUN UUT in Section 4A for more information.

D-1/D-2

Appendix E
Pod Resets

There are several conditions that reset the Pod to its initial state. When the Pod is resct,
it returns to its predefined start-up configuration and it also performs some internal
set-up procedures, such as checking the QSMD line and entering the correct operating
mode (see Testing in the Queue Status Mode).

The contents of all user-defined variables are not changed by a Troubleshooter-
generated reset. The contents of the Chip Select Control Registers, for example, are
also saved by the Pod in its RAM memory. After the Pod has been reset by the
Troubleshooter, the Pod automatically reprograms the Chip Select control registers
by reading their values from RAM, and replacing them in the appropriate registers in
the Pod’s microprocessor. Only removing and restoring power to the Pod will cause
these values to change. See the descriptions of the specific items in Sections 4A and 4B.

Reset signals may come from either the Troubleshooter, the UUT, or from within the
Pod itself. The conditions which cause the Pod to be reset are described below:

NOTE

The RES input signal from the UUT is not allowed to reset the Pod’s
microprocessor, except during the RUN UUT mode.

Troubleshooter-generated Pod resets:

® When you perform a BUS TEST.

® When you change the sync mode.

® When you enable or disable a user-enableable status line (EXTRDY or HOLD).
® When the Pod exits the RUN UUT mode.

® When the Pod recovers from a Pod timeout or a UUT power fail condition.
UUT-generated Pod resets:

® When the UUT asserts a low RES signal at the microprocessor socket while the
Pod is in the RUN UUT mode.

9000A-80186

E-1

9000A-80186

Pod-generated Pod resets:

® When you apply power to the Troubleshooter (and the Pod).

® When the UUT experiences a low-power condition (both Vcc pins fall below 3.5
volts) while the Pod is in the RUN UUT mode.

E-2

Appendix F
Problems Due to a Marginal UUT

INTRODUCTION F-1.

The Pod is designed to approximate, as closely as possible, the actual characteristics of
the microprocessor that it replaces in the UUT. However, the Pod does differ in some
respects. In general, these differences tend to make marginal UUT problems more
visible. A UUT may operate marginally with the UUT microprocessor installed, but
exhibit errors with the Pod plugged in. Since the Pod differences tend to make
marginal UUT problems more obvious, the UUT becomes easier to troubleshoot.
Various UUT and Pod operating conditions that may reveal marginal problems are
described in the paragraphs that follow.

UUT OPERATING SPEED AND MEMORY ACCESS F-2.

Some UUTs operate at speeds which approach the time limits for memory access. The
Pod contributes a slight time delay which causes memory access problems to become

apparent.

UUT NOISE LEVELS F-3.

As long as the UUT noise level is low enough, normal operation is unaffected.
Removing the UUT from its chassis or case may disturb the integrity of the shielding to
the point where intolerable noise could exist. The Pod may introduce additional noise.
In general, marginal noise problems will actually be made worse (and easier to
troubleshoot) through use of the Pod and Troubleshooter.

BUS LOADING F-4.

The Pod loads the UUT slightly more than the UUT microprocessor. The Pod also
presents more capacitance than the microprocessor. These effects tend to make any
bus drive problems more obvious.

CLOCK LOADING F-5.

The Pod slightly increases the normal load on the UUT clock. While this loading will
rarely have any effect on clock operation, it may make marginal clock sources more

obvious.

9000A-80186

F-1/F-2

9000A-80186

Appendix G
Operating the Pod in the Queue Status Mode

The Pod will operate in either of the 80186’s two modes: the Normal mode or the
Queue Status mode. UUTs are normally wired permanently so that they initialize in
one mode or the other. If your UUT is supposed to run in the Queue Status mode, then
the RD/QSMD line should be tied low at the UUT’s microprocessor socket. If the
@/QSMD line is not tied low, the Pod will enter the Normal mode.

The Pod will change modes (depending upon the state of the QSMD line) whenever the
Pod is reset. See Pod Resets for a list of reset conditions.

When the Pod is in the Queue Status mode, the QSMD status bit (bit10) of the will be
set to 0. When the Pod is in the Normal mode, the QSMD bit is set to 1. To read the
status bits, perform a READ @ STS operation on the Troubleshooter.

NOTE
Ifyouare testing a UUT that does not operate in the Queue Status mode,
and the RD output line is accidently tied low, the Pod will go into the
Queue Status mode. If this happens, the Pod will report address, data, or
control drivability errors that do not actually exist on the UUT.

NOTE

The Pod will not report drivability errors on RD when the Pod is in the
Queue Status mode.

G-1/G-2

9000A-80186

_ Appendix H
Peripheral Control Block

INTRODUCTION

The information in this Appendix is reprinted from the Intel Corporation’s Data
Sheet for the iAPX 186* High Integration 16-Bit Microprocessor. It is provided here
as an aid to configuring the individual bits of the Pod’s Peripheral Control Block
registers, which you may need to do to set up the Pod to work with your UUT or which
you may want to change while troubleshooting individual components on the UUT.

Refer to Appendix I for information about using the PCB Recover Tape to extract
set-up data for the Peripheral Control Block from a known-good UUT.

INTERNAL PERIPHERAL INTERFACE*

All the 80186 integrated peripherals are controlled via 16-bit registers contained
within an internal 256-byte control block. This control block may be mapped into
either memory or I/ O space. Internal logic will recognize the address and respond to
the bus cycle. During bus cycles to internal registers, the bus controller will signal the
operation externally (i.e., the RD, WR, status, address, data, etc., lines will be driven
as in a normal bus cycle), but D15-0, SRDY, and ARDY will be ignored. The base
address of the control block must be on an even 256-byte boundary (i.e., the lower 8
bits of the base address are all zeros). All of the defined registers within this control
block may be read or written by the 80186 CPU at any time. The location of any
register contained within the 256-byte control block is determined by the current base
address of the control block.

The control block base address is programmed via a 16-bit relocation register
contained within the control block at FO 01FE from the base address of the control
block (see Figure H-1). It provides the upper 12 bits of the base address of the control
block. Note that mapping the control register block into an address range
corresponding to a chip-select range is not recommended (the chip select circuitry is
discussed later in this data sheet). In addition, bit 12 of this register determines whether
the control block will be mapped into I/ O or memory space. If this bit is 1, the control
block will be located in memory space, whereas if the bit is 0, the control block will be
located in I/ O space. If the control register block is mapped into I/ O space, the upper 4
bits of the base address must be programmed as 0 (since I/ O addresses are only 16 bits
wide).

* jAPX 186 is a trademark of the Intel Corporation

** ©|ntel Corporation, 1982 Reprinted by permission.

No part of this material may be reproduced in any form or by any means without prior written consent of Intel Corporation. intel Corporation
assumes no responsibility for any error that may appear in this document, nor for any error introduced in its reproduction. Intel Corporation
makes no commitment to update nor to keep current the information contained here.

9000A-80186

H-2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OFFSET: FEM| ET [AMX] X [mro] Relocation Address Bits R19-R8 |

ET = ESC Trap/ No ESC Trap (1/0)

M/IO = Register block located in Memory / I/O Space (1/0)

RMX = Master Interrupt Controller mode / IRMX compatible
Interrupt Controller mode (0/1)

Figure H-1. Relocation Register

In addition to providing relocation information for the control block, the relocation
register contains bits which place the interrupt controller into iRMX mode, and cause
the CPU to interrupt upon encountering ESC instructions. At RESET, the relocation
register is set to 20FFH. This causes the control block to start at FFOOH in I/ O space.
An offset map of the 256-byte control register block is shown in Figure H-2.

The integrated 80186 peripherals operate semi-autonomously from the CPU. Access
to them for the most part is via software read/ write of the control and data locations in
the control block. Most of these registers can be both read and written. A few
dedicated lines, such as interrupts and DMA request provide real-time
communication between the CPU and peripherals as in a more conventional system
utilizing discrete peripheral blocks. The overall interaction and function of the
peripheral blocks has not substantially changed.

CHIP-SELECT/READY GENERATION LOGIC

The 80186 contains logic which provides programmable chip-select generation for
both memories and peripherals. In addition, it can be programmed to provide
READY (or WAIT state) generation. It can also provide latched address bits Al and
A2. The chip-select lines are active for all memory and I/ O cycles in their programmed
areas, whether they be generated by the CPU or by the integrated DMA unit.

OFFSET
Relocation Register FEH

DAH
DMA Descriptors Channel 1

DOH

CAH

OMA Descriptors Channel 0
COH
ABH
Chip-Select Contro! Registers

AOH

66H
Timer 2 Control Registers

60H

SEH
Timer 1 Control Registers

58H

56H
Timer 0 Control Reglsters

50H

3EH

d C R LA
20H

Figure H-2. Internal Register Map

9000A-80186

Memory Chip Selects

The 80186 provides 6 memory chip select outputs for 3 address areas: upper memory,
lower memory, and midrange memory. One each is provided for upper memory and
lower memory, while four are provided for midrange memory.

The range for each chip select is user-programmable and can be set to 2K, 4K, 8K,
16K, 32K, 64K, 128K (plus 1K and 256K for upper and lower chip selects). In addition,
the beginning or base address of the midrange memory chip select may also be
selected. Only one chip select may be programmed to be active for any memory
location at a time. All chip select sizes are in bytes, whereas the 80186 memory is
arranged in words. This means that if, for example, 16 64K x 1 memories are used, the
memory block size will be 128K, not 64K.

Upper Memory C$

The 80186 provides a chip select, called UCS, for the top of memory. The top of
memory is usually used as the system memory because after reset the 80186 begins
executing at memory location FFFFOH.

The upper limit of memory defined by this chip select is always FFFFFH, while the
lower limit is programmable. By programming the lower limit, the size of the select
block is also defined. Table H-1 shows the relationship between the base address
selected and the size of the memory block obtained.

The lower limit of this memory block is defined in the UMCS register (see Figure H-3).
This register is at FO 01A0 in the internal control block. The legal values for bits 6-13
and the resulting starting address and memory block sizes are given in Table H-1. Any
combination of bits 6-13 not shown in Table H-1 will result in undefined operation.
After reset, the UMCS register is programmed for a 1K area. It must be
reprogrammed if a larger upper memory area is desired.

Any internally generated 20-bit address whose upper 16 bits are greater than or equal
to UMCS (with bits 0-5 “0”) will cause USC to be activated. UMCS bits R2-R0 are
used to specify READY mode for the area of memory defined by this chip-select
register, as explained below.

Table H-1. UMCS Programming Values

Starting
Address Memory UMCS Value
(Base Block (Assuming
Address) Size R0=R1=R2=0)
FFCO0 1K FFF8H
FF800 2K FFB8H
FF000 4K FF38H
FEO000 8K FE38H
FC000 16K FC38H
F8000 32K F838H
F0000 64K FO38H
E0000 128K E038H
C0000 256K C038H
1514 1312 1110 87 2 1 0
OFFSET: AOH| 1 l1]u]u]u|u]u1u[ulu|1]1]1[nz|a1lno]
A19 AN

Figure H-3. UMCS Register

H-3

9000A-80186

H-4

Lower Memory cs

The 80186 provides a chip select for low memory called LCS. The bottom of memory
contains the interrupt vector table, starting at location 00000H.

The lower limit of memory defined by this chip select is always OH, while the upper
limit is programmable. By programming the upper limit, the size of the memory block
is also defined. Table H-2 shows the relationship between the upper address selected
and the size of the memory block obtained.

The upper limit of this memory block is defined in the LM CS register (see Figure H-4).
This register is at FO 01A2 in the internal control block. The legal values for bits 6-15
and the resulting upper address and memory block sizes are given in Table H-2. Any
combination of bits 6-15 not shown in Table H-2 will result in undefined operation.
After reset, the LMCS register value is undefined. However, the LCS chip-select line
will not become active until the LMCS register is accessed.

Any internally generated 20-bit address whose upper 16 bits are less than or equal to
LMCS (with bits 0-5 “1”) will cause LCS to be active. LMCS register bits R2-R0 are
used to specify the READY mode for the area of memory defined by this chip-select
register.

Mid-Range Memory CS

The 80186 provides four MCS lines which are active within a user-locatable memory
block. This block can be located anywhere within the 80186 1M byte memory address
space exclusive of the areas defined by UCS and LCS. Both the base address and size
of this memory block are programmable.

The size of the memory block defined by the mid-range select lines, as shown in Table
H-3, is determined by bits 8-14 of the MPCS register (see Figure H-5). This register is
at location A8H in the internal control block. One and only one of bits 8-14 must be set
at atime. Unpredictable operation of the MCS lines will otherwise occur. Each of the
four chip-select lines is active for one of the four equal contiguous divisions of the
mid-range block. Thus, if the total block size is 32K, each chip select is active for 8K of
memory with MCSO being active for the first range and MCS3 being active for the last
range.

Table H-2. LMCS Programming Values Table H-3. MPCS Programming Values
Memory LMCS Value Total Block Individual MPCS Bits
Upper Block (Assuming Size Select Size 14-8
Address Size RO=R1=R2=0) 8K 2K 0000001B
003FFH 1K 0038H 16K 4K 00000108
007FFH 2K 0078H 32K 8K 00001008
00FFFH 4K 00F8H 64K 16K 00010008
01FFFH 8K 01F8H 128K 32K 00100008
03FFFH 16K 03F8H ~— 256K 64K 01000008
07FFFH 32K 07F8H 512K 128K 10000008
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H
3FFFFH 256K 3FF8H

15 14 13 12 1110 9 8 7 6 85 4 3 2 1 0
orrser: Al 0 Jo [uJu Julu JuJuJuJul 111 [R]nr]no]
) AN

Figure H-4. LMCS Register

9000A-80186

The EX and MS bits in MPCS relate to peripheral functionality as described in a later
section.

The base address of the mid-range memory block is defined by bits 15-9 of the MMCS
register (see Figure H-6). This register is at FO 01A6 in the internal control block.
These bits correspond to bits A19-A13 of the 20-bit memory address. Bits A12-A0 of
the base address are always 0. The base address may be set at any integer multiple of
the size of the total memory block selected. For example, if the mid-range block size is
32K (or the size of the block for which each MCS line is active is 8K), the block could
be located at 10000H or 18000H, but not at 14000H, since the first few integer
multiples of a 32K memory block are 0H, 8000H, 10000H, 18000H, etc. After reset, the
contents of both of these registers is undefined. However, none of the MCS lines will
be active until both the MMCS and MPCS registers are accessed. (Note: the Pod
provides default values for all CS lines.)

MMCS bits R2-R0 specify READY mode of operation for all mid-range chip selects.
All devices in mid-range memory must use the same number of WAIT states.

The 512K block size for the mid-range memory chip selects is a special case. When
using 512K, the base address would have to be either locations 00000H or 80000H. If it
were to be programmed at 00000H when the LCS line was programmed, there would
be an internal conflict between the LCS ready generation logic and the MCS ready
generation logic. Likewise,_ if the base address were programmed at 80000H, there
would be a conflict with the UCS ready generation logic. Since the LCS chip-select line
does not become active until programmed, while the UCS line is active at reset, the
memory base can be set only at 00000H. If this base address is selected, however, the
LCS range must not be programmed.

Peripheral Chip Selects

The 80186 can generate chip selects for up to seven peripheral devices. These chip
selects are active for seven contiguous blocks of 128 bytes above a programmable base
address. This base address may be located in either memory or I/ O space.

Seven CS lines called PCS0-6 are generated by the 80186. The base address is user
programmable; however it can only be a multiple of 1K bytes, i.e., the least significant
10 bits of the starting address are always 0.

PCSS5 and PCS6 can also be programmed to provide latched address bits Al, A2. If so
programmed, they cannot be used as peripheral selects. These outputs can be
connected directly to the AO, Al pins used for selecting internal registers of 8-bit
peripheral chips. The scheme simplifies the hardware interface because the 8-bit
registers of peripherals are simply treated as 16-bit registers located on even
boundaries in I/ O space or memory space where only the lower 8-bits of the register
are significant: the upper 8-bits are “don’t cares”.

15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0
orFrgeT: AsH[1 [me]ms T ma[maime|mijmofexms| 1] 1] 1 |R[R[Ro]

Figure H-5. MPCS Register

15] 3)
orrse: mH[v JuJu TuJuJuTu e[+l tsfl1 11 R{m]r]
Y1) A13

Figure H-6. MMCS Register

H-5

9000A-80186

H-6

The starting address of the peripheral chip-select block is defined by the PACS register
(see Figure H-7). This register is located at FO 01 A4 in the internal control block. Bits
15-6 of this register correspond to bits 19-10 of the 20-bit Programmable Base Address
(PBA) of the peripheral chip-select block. Bits 9-0 of the PBA of the peripheral
chip-select block are all zeros. If the chip-select block is located in I/ O space, bits 12-15
must be programmed zero, since the 1/ O address is only 16 bits wide. Table H-4 shows
the address range of each peripheral chip select with respect to the PBA contained in
PACS register.

The user should program bits 15-6 to correspond to the desired peripheral base
location. PACS bits 0-2 are used to specify READY mode for PCS0-PCS3.

The mode of operation of the peripheral chip selects is defined by the MPCS register
(which is also used to set the size of the mid-range memory chip-select block, see
Figure H-8). This register is located at FO 01 A8 in the internal control block. Bit 7 is
used to select the function of PCS5 and PCS6, while bit 6 is used to select whether the
peripheral chip selects are mapped into memory or I/ O space. Table H-5 describes the
programming of these bits. After reset, the contents of both the MPCS and the PACS
registers are undefined, however none of the PCS lines will be active until both of the
MPCS and PACS registers are accessed.

MPCS bits 0-2 are used to specify READY mode for PCS4-PCS6 as outlined below.

READY Generation Logic

The 80186 _can generate a “READY” signal internally for each of the memory or
peripheral CS lines. The number of WAIT states to be inserted for each peripheral or
memory is programmable to provide 0-3 wait states for all accesses to the area for
which the chip select is active. In addition, the 80186 may be programmed to either
ignore external READY for each chip-select range individually or to factor external
READY with the integrated ready generator.

READY control consists of 3 bits for each CS line or group of lines generated by the
80186. The interpretation of the ready bits is shown in Table H-6.

Table H-4. PCS Address Ranges Table H-5. MS, EX Programming Values
PCS Line Active between Locations Bit Description

Pcso * PBA —PBA+127 MS 1 = Peripherals mapped into memory space.

PCS1 PBA+128 —PBA+255 0 = Peripherals mapped into I/O space.

PCS2 PBA+256 —PBA+383 EX 0 =5 PCS lines. A1, A2 provided.

PCS3 PBA-+384 —PBA+511 1 =7 PCS lines. A1, A2 are not provided.

PCS4 PBA+512 —PBA+639

PCS5 PBA+640 —PBA+767

PCS6 PBA+768 —PBA+895

15 8 s 3 0
OFFSET: Amrﬁlu]u[u[ulu]ululululll1|1-]nz[nﬂno]
A9 A10

Figure H-7. PACS Register

15 14 13 12 1 10 8 8 7 8 5 4 3 2 1 o
OFFSET: AgH| 1 [ms|ms [me[m3[m2[mi[mo]exTms] 1 [+ [+ [me[mi[no]

Figure H-8. MPCS Register

9000A-80186

The internal ready generator operates in parallel with external READY, not in series if
the external READY is used (R2 = 0). This means, for example, if the internal
generator is set to insert two wait states, but activity on the external READY lines will
insert four wait states, the processor will only insert four wait states, not six. This is
because the two wait states generated by the internal generator overlapped the first
two wait states generated by the external ready signal. Note that the external ARDY
and SRDY lines are always ignored during cycles accessing internal peripherals.

R2-R0 of each control word specifies the READY mode for the corresponding block,
with the exception of the peripheral chip selects: R2-R0 of PACS set the PCS0-3
READY mode, R2-R0 of MPCS set the PCS4-6 READY mode.

Chip Select/Ready Logic and Reset
Upon reset, the Chip-Select/ Ready Logic will perform the following actions:

® All chip-select outputs will be driven HIGH.

® Uponleaving RESET, the UCS line will be programmed to provide chip selects to
a 1K block with the accompanying READY control bits set at 011 to allow the
maximum number of internal wait states in conjunction with external Ready
consideration (i.e., UMCS resets to FFFBH).

® No other chipselect or READY control registers have any predefined values after
RESET. They will not become active until the CPU accesses their control
registers. Both the PACS and MPCS registers must be accessed before the PCS
lines will become active. Note: this is how the CS lines behave in RUNUUT. In
normal troublshooting, the pod provides default values.

DMA CHANNELS

The 80186 DMA controller provides two independent high-speed DMA channels.
Data transfers can occur between memory and I/ O spaces (e.g., Memory to 1/ O) or
within the same space (e.g., Memory to Memory or I/O to I/O). Data can be
transferred either in bytes (8 bits) or in words (16 bits) to or from even or odd
addresses. Each DM A channel maintains both a 20-bit source and destination pointer
which can be optionally incremented or decremented after each data transfer (by one
or two depending on byte or word transfers). Each data transfer consumes 2 bus cycles
(a minimum of 8 clocks), one cycle to fetch data and the other to store data. This
provides a maximum data transfer rate of one Mword/sec or 2 MBytes/ sec.

DMA Operation

Each channel has six registers in the control block which define each channel’s
specification operation. The control registers consist of a 20-bit Source pointer (2
words), a 20-bid Destination pointer (2 words), and 16-bit Transfer Counter, and a
16-bit Control Word. The format of the DMA Control Blocks is shown in Table H-7.
The Transfer Count Register (TC) specifies the number of DMA transfers to be
performed. Up to 64K byte or word transfers can be performed with automatic
termination. The Control Word defines the channel’s operation (see Figure H-9). All
registers may be modified or altered during any DMA activity. Any changes made to
these registers will be reflected immediately in DMA operation.

9000A-80186

H-8

Table H-6. READY Bits Programming

Table H-7. DMA Control Block Format

R2 | R1 | RO|Number of WAIT States Generated Register Address
0 0 0 |0 wait states, external RDY also used.
o | 0 | 1 |1 wait state inserted, external RDY also| Register Name Ch. 0 Ch. 1
used. Control Word CAH DAH
0 1 0 |2 walit states inserted, external RDY also Transfer Count C8H D8H
used. Destination Pointer (upper 4 C6H D6H
0 1 1 |3 wait states inserted, external RDY also] bits)
used. Destination Pointer C4H D4H
1 0 0 |0 wait states, external RDY ignored. Source Pointer (upper 4 bits| C2H D2H
1 0 1 |1 wait state inserted, external RDY]| Source Pointer COH DOH
ignored.
1 1 0 |2 wait states inserted, external RDY]
ignored.
1 1 1 |3 wait states inserted, external RDY]
ignored.

ADDER CONTROL
20 BIT ADDER/SUBTRACTOR
LOGIC TIMER REQUEST
I DRQ1
ReQuEST [* D
SELECTION
[THANSFER COUNTER CH. 1 LoGic | PRao U
DEST. ADRS. POINTER CH. 1
SAC. ADRS. POINTER CH. 1 | DMA I
CONTROL
] TRANSFER COUNTER CH. 0 LOGIC
DEST. ADRS. POINTER CH. 0 INTERRUPT
™ REQUEST
SRC. ADRS. POINTER CH. 0 |-
CHANNEL CONTROL WORD 1
CHANNEL CONTROL WORD 0

INTERNAL ADDRESS/DATA BUS

<

Figure H-9. DMA Block Unit Diagram

DMA Channel Control Word Register

Each DMA Channel Control Word determines the mode of operation for the
particular 80186 DMA channel. This register specifies:

the mode of synchronization;

whether bytes or words will be transferred;

whether interrupts will be generated after the last transfer;

whether DMA activity will cease after a programmed number of DMA cycles;
the relative priority of the DMA channel with respect to the other DM A channel;

whether the source pointer will be incremented, decremented, or maintained
constant after each transfer;

whether the source pointer addresses memory or I/ O space;

whether the destination pointer will be incremented, decremented, or maintained
constant after each transfer; and

whether the destination pointer will address memory or I/ O space.

The DMA channel control registers may be changed while the channel is operating.
However, any changes made during operation will affect the current DMA transfer.

DMA Control Word Bit Descriptions

B/W:

ST/STOP

CHG/NOCHG:

INT:

TC:

SYN:

(2 bits)

SOURCE:INC
M/IO
DEC

DEST: INC
M/T10
DEC
P

Byte/ Word (0/1) Transfers.
Start/stop (1/0) Channel.

Change/ Do not change (1/0)) ST/STOP bit. If this bit is set
when writing to the control word, the ST/STOP bit will be
programmed by the write to the control word. If this bit is
cleared when writing the control word, the ST/STOP bit
will not be altered. This bit is not stored; it will always be a0
on read.

Enable Interrupts to CPU on byte count termination.

If set, DMA will terminate when the contents of the
Transfer Count register reach zero. The ST/STOP bit will
also be reset at this point if TC is set. If this bit is cleared, the
DMA unit will decrement the transfer count register for
each DMA cycle, but the DMA transfer will not stop when
the contents of the TC register reach zero.

00 No synchronization.
NOTE: The ST bit will be cleared automatically when the

contents of the TC register reach zero regardless of the
state of the TC bit.

01 Source synchronization.
10 Designation synchronization.
11 Unused.

Increment source pointer by 1 or 2 (depends on B/ W) after
each transfer.

Source pointer is in M/10 space (1/0).
Decrement source pointer by 1 or 2 (depends on B/ W) after
each transfer.

Increment destination pointer by 1 or 2 (B/ W) after each
transfer.

Destination pointer is in M/IO space (10).

Decrement destination pointer by 1 or 2 (depending on
B/ W) after each transfer.

Channel priority - relative to other channel.

0 low priority.
1 high priority.

Channels will alternate cycles if both set at same priority
level.

9000A-80186

H-9

9000A-80186

TDRQ 0: Disable DMA requests from timer 2.
1: Enable DMA requests from timer 2.

Bit 3 Bit 3 is not used.

If both INC and DEC are specified for the same pointer, the pointer will remain
constant after each cycle.

DMA Destination and Source Pointer Registers

Each DMA channel maintains a 20-bit source and a 20-bit destination pointer. Each
of these pointers takes up two full 16-bit registers in the peripheral control block. The
lower four bits of the upper register contain the upper four bits of the 20-bit physical
address (see Figure H-10a). These pointers may be individually incremented or
decremented after each transfer. If word transfers are performed the pointer is
incremented or decremented by two. Each pointer may point into either memory or
I/ O space. Since the DMA channels can perform transfers to or from odd addresses,
there is no restriction on values for the pointer registers. Higher transfer rates can be
obtained if all word transfers are performed to even addresses, since this will allow
data to be accessed in single memory access.

DMA Transfer Count Register

Each DMA channel maintains a 16-bit transfer count register (TC). This register is
decremented after every DMA cycle, regardless of the state of the TC bit in DMA -
Control Register. If the TC bit in the DMA control word is set, however, DMA
activity will terminate when the transfer count register reaches zero.

DMA Requests

Data transfers may be either source or destination synchronized, that is either the
source of the data or the destination of the data may request the data transfer. In
addition, DMA transfers may be unsynchronized; that is, the transfer will take place
continually until the correct number of transfers has occurred. When source or
unsynchronized transfers are performed, the DMA channel may begin another
transfer immediately after the end of a previous DMA transfer. This allows a complete
transfer to take place every 2 bus cycles or eight clock cycles (assuming no wait states).
No prefetching occurs when destination synchronization is performed, however. Data
will not be fetched from the source address until the destination device signals that it is
ready to receive it. When destination synchronized transfers are requested, the DMA
controller will relinquish control of the bus after every transfer. If no other bus activity
is initiated, another DMA cycle will begin after two processor clocks. This is done to
allow the destination device time to remove its request if another transfer is not
desired. Since the DMA controller will relinquish the bus, the CPU can initiate a bus
cycle. As a result, a complete bus cycle will often be inserted between destination
synchronized transfers. These lead to the maximum DMA transfer rates shown in
Table H-8.

DMA Acknowledge

No explicit DMA acknowledge pulse is provided. Since both source and destination
pointers are maintained, a read from a requesting source, or a write to a requesting
destination, should be used as the DMA acknowledge signal. Since the chip-select
lines can be programmed to be active for a given block of memory or 1/O space, and
the DMA pointers can be programmed to point to the same given block, a chip-select
line could be used to indicate a DMA acknowledge.

9000A-80186

514 13 12 11109 8 71 6 5 & 3 2 1 [
T

M/ DESTINATION SOURCE D B

lrj DEC INC| DEC INc [TC | INT | SYN Plal x| nesh | & w
Q

X = DON'T CARE.

Figure H-10. DMA Control Register

HIGHER
REGISTER XXX XXX XXX
ADDRESS
LOWER
REGISTER
ADDRESS

A19-A18

A15-A12 A11-A8 AT-A4 A3-A0

15 0

XXX = DON'T CARE

Figure H-10a. DMA Memory Pointer Register Format

Table H-8. Maximum DMA Transfer Rates

Type of
Synchronization

Selected CPU Running | CPU Halted
Unsynchronized 2MBytes/sec 2MBytes/sec
Source Synch 2MBytes/sec 2MBytes/sec
Destination Synch 1.3MBytes/sec | 1.5MBytes/sec

DMA Priority

The DMA channels may be programmed such that one channel is always given
priority over the other, or they may be programmed such as to alternate cycles when
both have DMA requests pending. DMA cycles always have priority over internal
CPU cycles except between locked memory accesses or word accesses the odd memory
locations; however, an external bus hold takes priority over an internal DMA cycle.
Because an interrupt request cannot suspend a DMA operation and the CPU cannot
access memory during a DMA cycle, interrupt latency time will suffer during
sequences of continuous DMA cycles. An NMI request, however, will cause all
internal DMA activity to halt. This allows the CPU to quickly respond to the NMI
request.

DMA Programming

DMA cycles will occur whenever the ST/STOP bit of the Control Register is set. If
synchronized transfers are programmed, a DRQ must also have been generated.
Therefore, the source and destination transfer pointers, and the transfer count register
(if used) must be programmed before this bit is set.

Each DMA register may be modified while the channel is operating. If the
CHG/NOCHG bit is cleared when the control register is written, the ST/STOP bit of
the control register will not be modified by the write. If multiple channel registers are
modified, it is recommended that a LOCKED string transfer be used to prevent a
DMA transfer from occurring between updates to the channel registers.

H-11

9000A-80186

DMA Channels and Reset

Upon RESET, the DMA channels will perform the following actions:
® The Start/Stop bit for each channel will be reset to STOP.

® Any transfer in progress is aborted.

TIMERS

The 80186 provides three internal 16-bit programmable timers (see Figure H-11). Two
of these are highly flexible and are connected to four external pins (2 per timer). They
can be used to count external events, time external events, generate nonrepetitive
waveforms, etc. The third timer is not connected to any external pins, and is useful for
real-time coding and time delay applications. In addition, this third timer can be used
as a prescaler to the other two, or as a DMA request source.

Timer Operation

The timers are controlled by 11 16-bit registers in the internal peripheral control block.
The configuration of these registers is shown in Table H-9. The count register contains
the current value of the timer. It can be read or written at any time independent of
whether the timer is running or not. The value of this register will be incremented for
each timer event. Each of the timers is equipped witha MAX COUNT register, which
defines the maximum count the timer will reach. After reaching the MAX COUNT
r gister value, the timer count value will reset to zero during the same clock, i.e., the
maximum count value is never stored in the count register itself. Timers 0 and I are, in
addition, equipped with a second MAX COUNT register, which enables the timers to
alternate their count between two different MAX COUNT values programmed by the
user. If a single MAX COUNT register is used, the timer output pin will switch LOW
for a single clock, 2 clocks after the maximum count value has been reached. In the
dual MAX COUNT register mode, the output pin will indicate which MAX COUNT
register is currently in use, thus allowing nearly complete freedom in selecting
waveform duty cycles. For the timers with two MAX COUNT registers, the RIU bitin
the control register determines which is used for the comparison.

@ @ 2 141 DMA
N A houd IN A ROUT, ——= REQ.
T0 3 72
INT. > INT. INT.
REQ. REQ. REQ.
T2 0UT

3

TIMER 0 X TIMER 1
MAX COUNT VALUE MAX COUNT VALUE TIMER 2
A CLOCK A
MAX COUNT VALUE MAX COUNT VALUE MAX COUNT VALUE
[B
MODE/CONTROL MODE/CONTROL MODE/CONTROL
WORD WORD WORD

3

i1

2

INTERNAL ADDRESS/DATA BUS

ALL 18 BIT REGISTERS

Figure H-11. Timer Block Diagram

Each timer gets serviced every fourth CPU-clock cycle, and thus can operate at speeds
up to one-quarter the internal clock frequency (one-eighth the crystal rate). External
clocking of the timers may be done at up to a rate of one-quarter of the internal
CPU-clock rate (2 MHz for an 8 MHz CPU clock). Due to internal synchronization
and pipelining of the timer circuitry, a timer output may take up to 6 clocks to respond
to any individual clock or gate input.

Since the count registers and the maximum count registers are all 16 bits wide, 16 bits
of resolution are provided. Any Read or Write access to the timers will add one wait
state to the minimum four-clock bus cycle. However, this is needed to synchronize and
coordinate the internal data flows between the internal timers and the internal bus.

The timers have several programmable options.
® All three timers can be set to halt or continue on a terminal count.

® Timers 0 and 1 can select between internal and external clocks, alternate between
MAX COUNT registers and be set to retrigger on external events.

® The timers may be programmed to cause an interrupt on terminal count.

Timer Mode/Control Register

ALT:

The mode/ control register (see Figure H-12) allows the user to program the specific
mode of operation or check the current programmed status for any of the three
integrated timers.

The ALT bit determines which of two MAX COUNT registers is used for count
comparison. If ALT = 0, register A for that timer is always used, while if ALT =1, the
comparison will alternate between register A and register B when each maximum
count is reached. This alternation allows the user to change one MAX COUNT
register while the other is being used, and thus provides a method of generating
non-repetitive waveforms. Square waves and pulse outputs of any duty cycle are a
subset of available signals obtained by not changing the final count registers. The ALT
bit also determines the function of the timer output pin. If ALT is zero, the output pin
will go LOW for one clock, the clock after the maximum count is reached. If ALT is
one, the output pin will reflect the current MAX COUNT register being used (0/ 1 for
B/A).
Table H-9. Timer Control Block Format

Register Offset

Register Name Tmr. 0 Tmr. 1 Tmr. 2
Mode/Control Word 56H 5EH 66H

Max Count B 54H 5CH |not present

Max Count A 52H 5AH 62H

Count Register 50H 58H 60H

15 14 13 12 N [4 3 2 1 [
[Eulmﬁlmrlmul o I...-IMC|RTG| PIEXTIAL‘I’[CONTJ

Figure H-12. Timer Mode/Control Register

9000A-80186

H-13

9000A-80186

H-14

CONT:

EXT:

RTG:

EN:

I

Setting the CONT bit causes the associated timer to run continuously, while resetting
it causes the timer to halt upon maximum count. If CONT =0 and ALT = I, the timer
will count to the MAX COUNT register A value, reset, count to the register B value,
reset, and halt.

The external bit selects between internal and external clocking for the timer. The
external signal may be asynchronous with respect to the 80186 clock. If this bit is set,
the timer will count LOW-to-HIGH transitions on the input pin. If cleared, it will
count an internal clock while using the input pin for control. In this mode, the function
of the external pin is defined by the RTG bit. The maximum input to output transition
latency time may be as much as 6 clocks. However, clock inputs may be pipelined as
closely together as every 4 clocks without losing clock pulses.

The prescaler bit is ignored unless internal clocking has been selected (EXT=0).If the
P bit is a zero, the timer will count at one-fourth the internal CPU clock rate. If the P
bitis a one, the output of timer 2 will be used as a clock for the timer. Note that the user
must initialize and start timer 2 to obtain the prescaled clock.

Retrigger bit is only active for internal clocking (EXT = 0). In this case it determines
the control function provided by the input pin.

IfRTG =0, the input level gates the internal clock on and off. If the input pin is HIGH,
the timer will count; if the input pinis LOW, the timer will hold its value. As indicated
previously, the input signal may be asynchronous with respect to the 80186 clock.

When RTG = 1, the input pin detects LOW-to-HIGH transitions. The first such
transition starts the timer running, clearing the timer value to zero on the first clock,
and the incrementing thereafter. Further transitions on the input pin will again reset
the timer to zero, from which it will start counting up again. If CONT = 0, when the
timer has reached maximum count, the EN bit will be cleared, inhibiting further timer
activity.

The enable bit provides programmer control over the timer’s RUN /HALT status.
When set, the timer is enabled to increment subject to the input pin constraints in the
internal clock mode (discussed previously). When cleared, the timer will be inhibited
from counting. Allinput pin transitions during the time EN is zero will be ignored. If
CONT is zero, the EN bit is automatically cleared upon maximum count.

The inhibit bit allows for selective updating of the enable (EN) bit. If INH is a one
during the write to the_mode/control word, then the state of the EN bit will be
modified by the write. If INH is a zero during the write, the EN bit will be unaffected by
the operation. This bit is not stored; it will always be a 0 on a read.

INT:

MC:

RIU:

When set, the INT bit enables interrupts from the timer, which will be generated on
every terminal count. If the timer is configured in dual MAX COUNT register mode,
an interrupt will be generated each time the value in MAX COUNT register A is
reached, and each time the value in MAX COUNT register B is reached. If this enable
bit is cleared after the interrupt request has been generated, but before a pending
interrupt is serviced, the interrupt request will still be in force. (The request is latched
in the Interrupt Controller.)

The Maximum Count bit is set whenever the timer reaches its final maximum count
value. If the timer is configured in dual MAX COUNT register mode, this bit will be
set each time the value in MAX COUNT register A is reached, and each time the value
in MAX COUNT register B is reached. This bit is set regardless of the timer’s
interrupt-enable bit. The MC bit gives the user the ability to monitor timer status
through software instead of through interrupts.

The Register In Use bit indicates which MAX COUNT register is currently being used
for comparison to the timer count value. A zero value indicates register A. The RIU
but cannot be written, i.e., its value is not affected when the control register is written.
It is always cleared when the ALT bit is zero.

Not all mode bits are provided for timer 2. Certain bits are hardwired as indicated
below:

ALT=0,EXT=0,P=0,RIU=0

Count Registers

Each of the three timers has a 16-bit count register. The current contents of this register
may be read or written by the processor at any time. If the register is written into while
the timer is counting, the new value will take effect in the current count cycle.

Max Count Registers

Timers 0 and | have two MAX COUNT registers, while timer 2 has a single MAX
COUNT register. These contain the number of events the timer will count. In timers 0
and 1, the MAX COUNT register used can alternate between the two max count
values whenever the current maximum count is reached. The condition which causes a
timer to reset is equivalent between the current count value and the max count being
used. This means that if the count is changed to be above the max count value, or if the
max count value is changed to be below the current value, the timer will not reset to
zero, but rather will count to its maximum value, “wrap around” to zero, then count
until the max count is reached.

Timers and Reset

Upon RESET, the Timers will perform the following actions:
® All EN (Enable) bits are reset preventing timer counting.

® All SEL (Select) bits are reset to zero. This selects MAX COUNT register A,
resulting in the Timer Out pins going HIGH upon RESET.

9000A-80186

9000A-80186

Interrupt Controller

The 80186 can receive interrupts from a number of sources, both internal and external.
The internal interrupt controller serves to merge these requests on a priority basis, for
individual service by the CPU.

Internal interrupt sources (Timers and DMA channels) can be disabled by their own
control registers or by mask bits within the interrupt controller. The 80186 interrupts
controller has its own control registers that set the mode of operation for the
controller.

The interrupt controller will resolve priority among requests that are pending
simultaneously. Nesting is provided so interrupt service routines for lower priority
interrupts may themselves be interrupted by higher priority interrupts. A block
diagram of the interrupt controller is shown in Figure H-13.

The interrupt controller has a special iIRMX 86 compatibility mode that allows the use
of the 80186 within the iRM X 86 operating system interrupt structure. The controller
is set in this mode by setting bit 14 in the peripheral control block relocation register
(see iRMX 86 Compatibility Mode section). In this mode, the internal 80186 interrupt
controller functions as a “slave” controller to an external “master” controller. Special
initialization software must be included to properly set up the 80186 interrupt
controller in iRMX 86 mode.

NON-iRMX MODE OPERATION
Interrupt Controller External Interface

For external interrupt sources, five dedicated pins are provided. One of these pins is
dedicated to NMI, non-maskable interrupt. This is typically used for power-fail
interrupts, etc. The other four pins may function either as four interrupt input lines
with internally generated interrupt vectors, as an interrupt line and an interrupt
acknowledge line (called the “cascade mode™) along with two other input lines with
internally generated interrupt vectors, or as two interrupt input lines and two
dedicated interrupt acknowledge output lines. When the interrupt lines are configured
in cascade mode, the 80186 interrupt controller will not generate internal interrupt
vectors.

External sources in the cascade mode use externally generated interrupt vectors.
When an interrupt is acknowledge, two INTA cycles are initiated and the vector is read
into the 80186 on the second cycle. The capability to interface to external 8259A
programmable interrupt controllers is thus provided when the inputs are configured in
cascade mode.

Interrupt Controller Modes of Operation

The basic modes of operation of the interrupt controller in non-iRMX mode are
similar to the 8259A. The interrupt controller responds identically to internal
interrupts in all three modes: the difference is only in the interpretation of function of
the four external interrupt pins. The interrupt controller is set into one of these three
modes by programming the correct bits in the INTO and INT1 control registers. The
modes of interrupt controller operation are as follows:

Fully Nested Mode

When in the fully nested mode four pins are used as direct interrupt requests. The
vectors for these four inputs are generated internally. An in-service bit is provided for

9000A-80186

every interrupt source. If a lower-priority device requests an interrupt while the
in-service bit (IS) is set, no interrupt will be generated by the interrupt controller. In
addition, if another interrupt request occurs from the same interrupt source while the
in-service bit is set, no interrupt will be generated by the interrupt controller. This
allows interrupt service routines to operate with interrupts enabled without being
themselves interrupted by lower-priority interrupts will be serviced.

When a service routine is completed, the prior IS bit must be reset by writing the
proper pattern to the EOI register. This is required to allow subsequent interrupts
from this interrupt source and to allow servicing of lower-priority interrupts. An EOI
command is issued at the end of the service routine just before the issuance of the
return from interrupt instruction. If the fully nested structure has been upheld, the
next highest-priority source with its IS bit set is then serviced.

Cascade Mode

The 80186 has four interrupt pins and two of them have dual functions. In the fully
nested mode the four pins are used as direct interrupt inputs and the corresponding
vectors are generated internally. In the cascade mode, the four pins are configured into
interrupt input-dedicated acknowledge signal pairs. The interconnection is shown in
Figure H-14. INTO is an interrupt input interfaced to an 8259A, while INT2/IN TAO
serves as the dedicated interrupt acknowledge signal to that peripheral. The same is
true for INT1 and INT3(INTAI. Each pair can selectively be placed in the cascade or
non-cascade mode by programming the proper value into INTO and INTI control
registers. The use of the dedicated gcknowledge signals eliminates the need for the use
of external logic to generate INTA and device select signals.

The primary cascade mode allows the capability to serve up to 128 external interrupt
sources through the use of external master and slave 8259As. Three levels of priority
are created, requiring priority resolution in the 80186 interrupt controller, the master
8259As, and the slave 8259As. If an external interrupt is serviced, one IS bit is set at
each of these levels. When the interrupt service routine is completed, up to three
end-of-interrupt commands must be issued by the programmer.

TIMER TIMER TIMER DMA DMA
0 1 2 0 1 INTO INTH INT2 INT3 NMI

NERALTILL

TIMER WNTERRUPT
CONTROL REG. REQUEST REG.
DMA 0 INTERRUPT
CONTROL REG. - MASK REG.
DMA1 N-BERVICE
CONTROL REG. REG.
INTERAUPT
Ry = Tch =X
EXTINPUT 1 RESOLVER INTERRUPT
CONTROL REG. STATUS REG.
EXT. INPUT 2
CONTROL REG.
EXT. INPUT 3
CONTROL REG.

INTERRUPT
REQUEST TO

j I PROCESSOR
< INTERNAL ADDRESS/DATA BUS

Figure H-13. Interrupt Controller Block Diagram

9000A-80186

H-18

80186
INTO INT

8259A
PIC

Figure H-14. Cascade Mode Interrupt Connection

Special Fully Nested Mode

This mode is entered by sctting the SFNM bit in INTO or INTI control register. It
enables complete nestability with external 8259A masters. Normally, an interrupt
request from an interrupt source will not be recognized unless the in-service bit for that
source is reset. If more than one interrupt source is connected to an external interrupt
controller, all of the interrupts will be funneled through the same 80186 interrupt
request pin. As a result, if the external interrupt controller receives a higher-priority
interrupt, its interrupt will not be recognized by the 80186 controller until the 80186
in-service bit is reset. In special fully nested mode, the 80186 interrupt controller will
allow interrupts from an external pin regardless of the state of the in-service bit for an
interrupt source in order to allow multiple interrupts from a single pin. An in-service
bit will continue to be set, however, to inhibit interrupts from other lower-priority
80186 interrupt sources.

Special procedures should be followed when reseting IS bits at the end of interrupt
service routines. Software polling of the external master’s IS register is required to
determine if there is more than one bit set. If so, the IS bit in the 80186 remains active
and the next interrupt service routine is entered.

Operation in a Polled Environment

The controller may be used in a polled mode if interrupts are undesirable. When
polling, the processor disables interrupts and then polls the interrupt controller
whenever it is convenient. Polling the interrupt controller is accomplished by reading
the Poll Word (Figure H-1). Bit 15 is in the poll word indicates to the processor that an
interrupt of high enough priority is requesting service. Reading the Poll Word causes
the In-Service bit of the highest-priority source to be set.

[t is desirable to be able to read the Poll Word information without guaranteeing
service of any pending interrupt, i.e., not set the indicated in-service bit. The 80186
provides a Poll Status Word in addition to the conventional Poll Word to allow this to
be done. Poll Word information is duplicated in the Poll Status Word, but reading the
Poll Status Word does not set the associated in-service bit. These words are located in
two adjacent memory locations in the register file.

9000A-80186

Non-iRMX Mode Features
Programmable Priority

The user can program the interrupt sources into any of eight different priority levels.
The programming is done by place a 3-bit priority level (0-7) in the control register of
each interrupt source. (A source with a priority level of 4 has higher priority over all
priority levels from 5 to 7. Priority registers containing values lower than 4 have
greater priority.) All interrupt sources have preprogrammed default priority levels (see
Table H-10).

If two requests with the same programmed priority level are pending at once, the
priority ordering scheme shown in Table H-10 is used. If the serviced interrupt routine
reenables interrupts, it allows other requests to be serviced.

End-of-Interrupt Command

The end-of-interrupt (EOI) command is used by the programmer to reset the In-
Service (IS) bit when an interrupt service routine is completed. The EOI command is
issued by writing the proper pattern to the EOI register. There are two types of EOI
commands, specific and nonspecific. The nonspecific command does not specify
which IS bit is reset. When issued, the interrupt controller automatically resets the IS
bit of the highest priority source with an active service routine. A specific EOI
command requires that the programmer send the interrupt vector type to the interrupt
controller indicating which source’s IS bit is to be reset. This command is used when
the fully nested structure has been disturbed or the highest priority IS bit that was set
does not belong to the service routine in progress.

Trigger Mode

The four external interrupt pins can be programmed in either edge- or level-trigger
mode. The control register for each external source has a level-trigger mode (LTM)
bit. All interrupt inputs are active HIGH. In the edge sense mode or the level-trigger
mode, the interrupt request must remain active (HIGH) until the interrupt request is
acknowledged by the 80186 CPU. In the edge-sense mode, if the level remains high
after the interrupt is acknowledged, the input is disabled and no further requests will
be generated. The input level must go LOW for at least one clock cycle to reenable the
input. In the level-trigger mode, no such provision is made: holding the interrupt input
HIGH will cause continuous interrupt requests.

Interrupt Vectoring

The 80186 Interrupt Controller will generate interrupt vectors for the integrated DM A
channels and the integrated Timers. In addition, the Interrupt Controller will generate
interrupt vectors for the external interrupt lines if they are not configured in Cascade
or Special Fully Nested Mode. The interrupt vectors generated are fixed and cannot be
changed (see Table H-10).

Interrupt Controller Registers
The Interrupt Controller register model is shown in Figure H-15. It contains 15
registers. All registers can both be read or written unless specified otherwise.
in-Service Register

This register can be read from or written into. The format is shown in Figure H-16. It
contains the In-Service bit for each of the interrupt sources. The In-Service bit is set to
indicate that a source’s service routine is in progress. When an In-Service bit is set, the

9000A-80186

H-20

interrupt controller will not generate interrupts to the CPU when it receives interrupt
requests from devices with a lower programmed priority level. The TMR bit is the
In-Service bit for all three timers; the D0 and D1 bits are the In-Service bits for the two
DMA channels; the 10-13 are the In-Service bits for the external interrupt pins. The IS
bit is set when the processor acknowledges an interrupt request either by an interrupt
acknowledge or by reading the poll register. The IS bit is reset at the end of the
interrupt service routine by an end-of-interrupt command issued by the CPU.

Interrupt Request Register

The internal interrupt sources have interrupt request bits inside the interrupt
controller. The format of this register is shown in Figure H-16. A read from this
register yields the status of these bits. The TMR bit is the logical OR of all timer
interrupt requests. DO and D1 are the interrupt request bits for the DMA channels.

The state of the external interrupt input pins is also indicated. The state of the external
interrupt pins is not a stored condition inside the interrupt controller, therefore the
external interrupt bits cannot be written. The external interrupt request bits shown
exactly when an interrupt request is given to the interrupt controller, so if edge-
triggered mode is selected, the bit in the register will be HIGH only after an active-to-
active transition. For internal interrupt sources, the register bits are set when a request
arrives and are reset when the processor acknowledges the requests.

Table H-10. 80186 Interrupt Vectors OFFSET
Vector |Default Related INT3 CONTROL REGISTER 3EH
Interrupt Name | Type |Priority| Instructions
Divide Error 0 1 DIV, IDIV INT2 CONTROL REGISTER aCH
Exception
Single Step 1 12%*2 Al INT1 CONTROL REGISTER 3AH
Interrupt
NMI 2 1 All INTO CONTROL REGISTER 38H
Breakpoint 3 *1 INT
Interrupt DMA 1 CONTROL REGISTER 38H
INTO Detected 4 "1 INTO
Overflow DMA 0 CONTROL REGISTER 341
Exception
Array Bounds 5 "1 BOUND TIMER CONTROL REGISTER am
Exception
Unused-Opcode 6 “1 Undefined
Exception Opcodes INTERRUPT STATUS REGISTER 30H
ESC Opcode 7 bt el ESC Opcodes
Exception
Timer 0 interrupt 8 DA INTERRUPT REQUEST REGISTER 2EH
Timer 1 Interrupt 18 2B
Timer 2 interrupt 19 20" IN-SERVICE REGISTER 2CH
Reserved 9 3
DMA 0 Interrupt 10 4 PRIORITY MASK REGISTER 2AH
DMA 1 Interrupt 11 5
INTO Interrupt 12 6 MASK REGISTER 28H
INT1 Interrupt 13 7
INT2 Interrupt 14 8 POLL STATUS REGISTER 26H
INT3 Interrupt 15 9
POLL REGISTER 244
EO! REGISTER 224

Figure H-15. Interrupt Controller Registers
(Non-iRMX 86 Mode)

[1:|1:J N [100]:[:|I;I|:[:f|:]:1|ozo];|r:ﬂ

Figure H-16. In-Service, Interrupt Request, and Mask Register Formats

Mask Register

This is a 16-bit register that contains a mask bit for each interrupt source. The format
for this register is shown in Figure H-16. A one in a bit position corresponding to a
particular source services to mask the source from generating interrupts. These mask
bits are the exact same bits which are used in the individual control registers;
programming a mask bit using the mask register will also change this bit in the
individual control registers, and vice versa.

Priority Mask Register

This register is used to mask all interrupts below particular interrupt priority levels.
The format of this register is shown in Figure H-17. The code in the lower three bits of
this register inhibits interrupts of priority lower (a higher priority number) than the
specified. For example, 100 written into this register masks interrupts of level five
(101), six (110), and seven (111). The register is reset to seven (111) upon RESET so all
interrupts are unmasked.

Interrupt Status Register

This register contains general interrupt controller status information. The format of
this register is shown in Figure H-18. The bits in the status register have the following
functions:

DHLT: DMA Halt Transfer; setting this bit halts all DMA transfers. It is
automatically set whenever a non-maskable interrupt occurs, and it is
reset when an IRET instruction is executed. The purpose of this bit is to
allow prompt service of all non-maskable interrupts. This bit may also be
set by the CPU.

IRTx: These three bits represent the individual timer interrupt request bits.
These bits are used to differentiate the timer interrupts, since the timer IR
bit in the interrupt request register is the “OR” function of all timer
interrupt requests. Note that setting any one of these three bits initiates
an interrupt request to the interrupt controller.

Timer, DMA 0, 1; Control Registers

These registers are the control words for all the internal interrupt sources. The format
for these registers is shown in Figure H-19. The three bit positions PR0, PR1, and PR2
represent the programmable priority level of the interrupt source. The MSK bit
inhibits interrupt requests from the interrupt source. The MSK bits in the individual
control registers are the exact same bits as are in the Mask Register; modifying themin
the individual control registers will also modify them in the Mask Register, and vice
versa.

15 14 3 2 1 0
[o] o [o [pamz2]pami]rrMo]
Figure H-17. Priority Mask Register Format
15 14 7 6 5 4 3- 2 1 0
fona] o | . - e e e] o Lo o] o] o [ir2]mmri]irm]

Figure H-18. Interrupt Status Register Format

9000A-80186

H-21

9000A-80186

H-22

INTO-INT3 Control Registers

These registers are the control words for the four external input pins. Figure H-20
shows the formal of the INTO and INT1 Control registers; Figure H-21 shows the
format of the INT2 and INT3 Control registers. In cascade mode or special fully
nested mode, the control words for INT2 and INT3 are not used.

The bits in the various control registers are encoded as follows:

PRO-2: Priority programming information. Highest priority = 000, lowest
priority = 111.

LTM: Level-trigger mode bit. 1 = level-triggered; 0 = edge-triggered.
Interrupt Input levels are active high. In level-triggered mode, an
interrupt is generated whenever the external line is high. In edge-
triggered mode, an interrupt will be generated only when this level is
preceded by an inactive-to-active transition on the line. In both cases,
the level must remain active until the interrupt is acknowledged.

MSK: Mask bit, 1 = mask; 0 = nonmask.

C: Cascade mode bit, 1 = cascade; 0 = direct.

SFNM: Special fully nested mode bit, I = SFNM; 0 = normal nested mode.
EOI Register

The end of the interrupt register is a command register which can only be written into.
The format of this register is shown in Figure H-22. It initiates an EOIl command when
written to by the 80186 CPU.

The bits in the EOI register are encoded as follows:

Sx: Encoded information that specifies an interrupt source vector type as
shown in Table H-10. For example, to reset the In-Service bit for
DMA channel 0, these bits should be set to 01010, since the vector type
for DMA channel 0is 10. Note that to reset the single In-Service bit for
any of the three timers, the vector type for timer 0 (8) should be written
in this register.

1B 1 43 2 1 [
[T o] I . . o | o [msk] pr2] pr1 PRO |

Figure H-19. Timer/DMA Register Formats

15 14 7 86 S 4 3 2 1 0
Lo o] +] o [senm[¢ Tum [msk] pr2 | pR1 | Pro |

Figure H-20. INTO/INT1 Register Formats

15 14 5 4 3 2 1 0
[o] of .« e . . D] o [um [wmsk]Pr2] Pr1] PRo |

Figure H-21. INT2/INT3 Register Formats

9000A-80186

NSPEC/: A bit that determines the type of EOI command. Nonspecific = 1,
SPEC Specific = 0.

Poll and Poll Status Registers

These registers contain polling information. The format of these registers is shown in
Figure H-23. They can only be read. Reading the Poll register constitutes a software
poll. This will set the IS bit of the highest priority pending interrupt. Reading the poll
status register will not set the IS bit of the highest priority pending interrupt; only the
status of pending interrupts will be provided.

Encoding of the Poll and Poll Status register bits are as follows:

Sx: Encoded information that indicates the vector type of the highest
priority interrupting source. Valid only when INTREQ = 1.

INTREQ: This bit determines if an interrupt request is present. Interrupt Request
= I; no Interrupt Request = 0.

iRMX 86 COMPATIBILITY MODE

This mode allows iRMX 86-80186 compatibility. The interrupt model of iRMX 86
requires one master and multiple slave 8259As in cascaded fashion. When iRMX
mode is used, the internal 80186 interrupt controller will be used as a slave controller
to an external master interrupt controller. The internal 80186 resources will be
monitored through the internal interrupt controller, while the external controller
functions as the system master interrupt controller.

Upon reset, the 80186 interrupt controller will be in the non-iIRMX 86 mode of
operation. To set the controller in the iRMX 86 mode, bit 14 of the Relocation
Register should be set.

Because of pin limitations caused by the need to interface to an external 8259 A master,
the internal interrupt controller will no longer accept external inputs. There are
however, enough 80186 interrupt controller inputs (internally) to dedicate one to each
timer. In this mode, each timer interrupt source has its own mask bit, IS bit, and
control word.

15 14 17 5 4 3 2 1 0
SPEC/
NSPEC 0 0 . . . D 0 S84 S3 82 St S0

Figure H-22. EOI Register Format

18 14 13 5 4 3 2 1 [

INT
rRea | @ 0 [S4 83 s2 81 S0

Figure H-23. Poll Register Format

H-23

©9000A-80186

H-24

The iRMX 86 operating system requires peripherals to be assigned fixed priority
levels. This is incompatible with the normal operation of the 80186 interrupt
controller. Therefore, the initialization software must program the proper priority
levels for each source. The required priority levels for the internal interrupt sources in
iRMX mode are shown in Table H-11.

These level assignments must remain fixed in the iRMX 86 mode of operation.

iRMX 86 Mode External Iinterface

This configuration of the 80186 with respect to an external 8259A master is shown in
Figure H-24. The INTO input is used as the 80186 CPU interrupt input. INT3
functions as an output to send the 80186 slave-interrupt-request to one of the 8
master-PIC-inputs.

Correct master-slave interface requires decoding of the slave addresses (CAS0-2).
Slave 8259As do this internally, Because of pin limitations, the 80186 slave address will
have to be decoded externally. INTI is used as a slave-select input. Note that the slave
vector address is transferred internally, but the READY input must be supplied
externally.

INT2is used as an acknowledge output, suitable to drive the INTA input of an 8259A.

Interrupt Nesting

iRMX 86 mode operation allows nesting of interrupt requests. When an interrupt is
acknowledged, the priority logic masks off all priority levels except those with equal or
higher priority.

Table H-11. Internal Source Priority Level

Priority Level Interrupt Source
0 Timer 0
1 (reserved)
2 DMA 0
3 DMA 1
4 Timer 1
5 Timer 2

8259A
MASTER

WA REQUESTS FROM
N 1RO < :omea SLAVES
80186 INT. IN T
IR7
sor6e CAS0-2
INTO i ;:VJ\
SCAVE SELECY CASCADE
INTH ADDRESS DECODER
INT2 o
INT3 80186 SLAVE INTERRUPT OUTPUT

Figure H-24. IRMX 86 Interrupt Controller Interconnection

Vector Generation in the iRMX 86 Mode

Vector generation in iRMX mode is exactly like that of an 8259A slave. The interrupt
controller generates an 8-bit vector which the CPU multiplies by four and uses as an
address into a vector table. The significant five bits of the vector are user-
programmable while the lower three bits are generated by the priority logic. These bits
represent the encoding of the priority level requesting service. The significant five bits
of the vector are programmed by writing to the Interrupt Vector register at FO 0122.

Specific End-of-Interrupt

In iRMX mode the specific EOI command operates to reset an in-service bit of a
specific priority. The user supplies a 3-bit priority-level value that points to an
in-service bit to be reset. The command is executed by writing the correct value in the
Specific EOI register at FO 0122.

Interrupt Controller Registers in the iRMX 86 Mode

All control and command registers are located inside the internal peripheral control
block. Figure H-25 shows the offsets of these registers.

End-of-Interrupt Registers
The end-of-interrupt register is a command register which can only be written. The
format of this register is shown in Figure H-26. It initiates an EOI command when
written by the 80186 CPU.
The bits in the EOI register are encoded as follows:

Lx: Encoded value indicating the priority of the IS bit to be reset.

OFFSET
LEVEL 5 CONTROL REGISTER 2AH
(TIMER 2)
LEVEL 4 CONTROL REGISTER 36M
(TIMER 1)
LEVEL 3 CONTROL REGISTER 284
(OMA 1)
LEVEL 2 CONTROL REGISTER M
(DMA 0)
LEVEL 0 CONTROL REGISTER a2
(TIMER 0)
INTERRUPT STATUS REQISTER 30H
INTERRUPT-REQUEST REGISTER 2EH
IN-SERVICE REGISTER 2CH
PRIORITY-LEVEL MASK REGISTER 2AH
MASK REGISTER 26H
SPECIFIC EOl REGISTER 22H
INTERRUPT VECTOR REGISTER 20H

Figure H-25. Interrupt Controller Registers
(iRMX 86 Mode)

9000A-80186

H-25

9000A-80186

H-26

In-Service Register

This register can be read from or written into. It contains the in-service bit for each of
the internal interrupt sources. The format for this register is shown in Figure H-27. Bit
positions 2 and 3 correspond to the DMA channels; positions 0,4, and 5 correspond to
the integral timers. The source’s IS bit is set when the processor acknowled ges its
interrupt request.

Interrupt Request Register

This register indicates which internal peripherals have interrupt requests pending. The
format of this register is shown in Figure H-27. The interrupt request bits are set when
a request arrives from an internal source, and are reset when the processor
acknowledges the request.

Mark Register

This register contains a mask bit for each interrupt source. The format for this register
is shown in Figure H-27. If the bit in this register corresponding to a particular
interrupt source is set, any interrupts from that source will be masked. These mask bits
are exactly the same bits which are used in the individual control registers, i.e.,
changing the state of a mask bit in this register will also change the state of the mask bit
in the individual interrupt control register corresponding to the bit.

Control Registers

These registers are the control words for all the internal interrupt sources. The format
of these registers is shown in Figure H-28. Each of the timers and both of the DM A
channels have their own Control Register.

The bits of the Control Registers are encoded as follows:

prx: 3-bit encoded field indicating a priority level for the source; note that each
source must be programmed at specified levels.

msk: mask bit for the priority level indicated by prx bits.

15 14 13 8 7 [] 5 4 3 2 1 0

0 0 [. 0 0 0 [TMR2|{TMR1| D1 Do 0 | TMRO

Figure H-27. In-Service, Interrupt Request, and Mask Register Format

9000A-80186

Interrupt Vector Register

This register provides the upper five bits of the interrupt vector address. The format of
this register is shown in Figure H-29. The interrupt controller itself provides the lower
three bits of the interrupt vector as determined by the priority level of the interrupt
request.

The format of the bits in this register is:

tx: 5-bit field indicating the upper five bits of the vector address.

Priority-Level Mask Register

This register indicates the lowest priority-level interrupt which will be serviced.
The encoding of the bits in this register is:

mx: 3-bit encoded field indication priority-level value. All levels of lower priority
will be masked.

Interrupt Controller and Reset
Upon RESET, the interrupt controller will perform the following actions:

® All SFNM bits reset to 0, implying Fully Nested Mode.

® All PR bitsin the various control registers set to 1. This places all sources at lowest
priority (level 111).

® All LTM bits reset to 0, resulting in edge-sense mode.

® All Interrupt Service bits reset to 0.

® All Interrupt Request bits reset to 0.

® All MSK (Interrupt Mask) bits set to 1 (mask).

® All C (Cascade) bits reset to 0 (non-cascade).

® All PRM (Priority Mask) bits set to 1, implying no levels masked.

® Initialized to non-iIRMX 86 mode.

H-27

9000A-80186

H-28

15 14 13 8 7 6 5 4 3 2 1 0
[] 0 0 . . . 0 0 0 0 [MSK { PR2 | PR1 | PRO
Figure H-28. Control Word Format
15 14 13 8 7 (] 5 4 3 2 1 0
0 (] [. [} t4 <] 2 t t0 0 0 0
Figure H-29. Interrupt Vector Register Format
15 14 13 8 7 6 5 4 3 2 1 0
o 0 [. . . . [] 0 0 0 0 0 m2 mi | mo0

Figure H-30. Priority Level Mask Register

9000A-80186

Appendix |
PCB Recovery Tape

INTRODUCTION I-1.

The Pod has a special feature that allows it to save the contents of the Peripheral
Control Block (PCB) registers after a RUNUUT operation. This feature, which is
accomplished by exiting from RUNUUT in a special way that doesn’t reset the Pod’s
microprocessor, allows you to recover PCB values from a known-good UUT.

This method is an easy and reliable way to establish correct values fora UUT’s PCB
registers prior to troubleshooting. These known-good values are created by the UUT’s
own programming, and are used as standard values for troubleshooting other UUTs
of the same type.

The procedure for automatically performing the special RUNUUT operation to
recover PCB registers is on the tape that is included with the Pod. A 9010A Language
Compiler source listing of the program is included in this Appendix. A description of
the internal operation of the special RUNUUT function and directions for using the
program follow.

SPECIAL RUNUUT 1-2.

This soft exit uses the Non-Maskable Interrupt (NMI) and switches the Pod’s buffers
from the UUT’s bus to the Pod’s internal bus. This allows the Pod to recover the
UUT’s PCB register contents and save them in a series of Pod Function addresses in
the range FO03XX. This range corresponds to the normal FOO1XX range used by the
Pod for the Peripheral Control Block (see Table I-1).

The Pod is configured by the tape to use this special exit from RUNUUT by using a
WRITE @ FO 0006=1 operation before the RUNUUT is started. Then, after the
UUT’s program has initialized all the PCB registers, MAINSTAT is asserted low to
initiate the bus switch and NMI.

A READ @ F00006 after RUNUUT is completed returns information about whether
or not the PCB registers were successfully recovered. The significant data in FO 0006 is

as follows:
Bit 1 Bit 1 is set if the NMI routine fails to execute. If bit 1 is set, either the UUT
had already entered its NMI routine, or the processor wasina HOLD or
Wait state.

9000A-80186

Bit 2

Bit 3

Bit 2 is set if the RAM in the Pod has been written to (contaminated)
coming out of RUNUUT. There is little chance of this happening, but it is
a possibility.

Bit 3 is set if the routine cannot find the PCB registers. There is the
possibility that the UUT’s program moves the PCB registers from their
default location by means of the relocation register. In this case, the PCB
Recovery program will not help you determine the values for the PCB
registers.

Table I-1. Recovered Peripheral Control Block Special Addresses

RECOVERED
FROM
uuT

POD’S POWER-UP
ADDRESS DESCRIPTION DEFAULT

VALUE (hex)

Relocation Register Address

FO O3FE

FO O1FE Relocation Register O0OFF

DMA Controller Register Addresses

FO 03DA FO 01DA DMA Channel 1 Control Word 0000
FO 03D8 FO 01D8 DMA Channel 1 Transfer Count 0000
FO 03D6 FO 01D6 DMA Channel 1 Dest. Ptr. (upr 4 bits) 0000
FO 03D4 FO01D4 DMA Channel 1 Dest. Ptr. (iwr 16 bits) 0000
FO 03D2 FO 01D2 DMA Channel 1 Src. Ptr. (upr 4 bits) 0000
FO 03D0 FO 01DO DMA Channel 1 Src. Ptr. (Iwr 16 bits) 0000
FO 03CA FO 01CA DMA Channel 0 Contrl Word 0000
FO0 03C8 FO 01C8 DMA Channel 0 Transfer Count 0000
FO 03C6 FO 01C6 DMA Channel 0 Dest. Ptr. (upr 4 bits) 0000
FO 03C4 FO 01C4 DMA Channel 0 Dest. Ptr. (Ilwr 16 bits) 0000
FO 03C2 FO01C2 DMA Channel 0 Src. Ptr. (upr 4 bits) 0000
FO 03CO FO 01CO DMA Channel 0 Src. Ptr. (iwr 16 bits) 0000
Chip Select Register Addresses

FO 03A8 FO 01A8 MPCS Register AOFB
FO 03A6 FO 01A6 MMCS Register 81FB
FO 03A4 FO 01A4 PACS Register 403B
FO 03A2 FO 01A2 LMCS Register 3FFB
FO 03A0 FO 01A0 UMCS Register Cco038

Timer Register Addresses

FO 0366

FO 0362
FO 0360
FO 035E
FO 035C
FO 035A
FO 0358
FO 0356
FO 0354
FO 0352
FO 0350

FO 0166 Timer 2 Mode/Contro! Word Register 0000
FO 0162 Timer 2 Max Count A Register 0000
FO 0160 Timer 2 Count Register 0000
FO 015E Timer 1 Mode/Control Word Register 0000
FO 015C Timer 1 Max Count B Register 0000
FO 015A Timer 1 Max Count A Register 0000
FO 0158 Timer 1 Count Register 0000
FO 0156 Timer 0 Mode/Control Word Register 0000
FO 0154 Timer 0 Max Count B Register 0000
FO 0152 Timer 0 Max Count A Register 0000
FO 0150 Timer 0 Count Register 0000

Table I-1. Recovered Peripheral Control Block Special Addresses (cont)

RECOVERED
FROM
uuT

POD’S
ADDRESS

DESCRIPTION

POWER-UP
DEFAULT
VALUE (hex)

interrupt Controller Register Addresses

FO 033E

FO 033C

FO 033A

FO 0338

FO 0336
FO 0334

FO 0332

F0 0330
FO 032E
F0 032C
FO 032A
F0 0328

FO 0326

FO 0324

FO 0122

FO 0120

FO 013E

F0 013C

FO 013A

FO 0138

FO 0136
FO 0134

FO 0132

FO 0130
FO 012E
FO012C
FO 012A
FO 0128

FO 0326

FO 0324

FO 0122

FO 0120

INT3 Control Register (master mode)
Not used in iRMX mode

INT2 Control Register (master mode)
Not used in iIRMX mode

INT1 Control Register (master mode)
Timer 2 Control Register (IRMX mode)

INTO Control Register (master mode)
Timer 1 Control Register (iRMX mode)

DMA 1 Control Register (both modes)
DMA 0 Control Register (both modes)

Timer Control Register (master mode)
Timer 0 Control Register (iRMX mode)

Int. Cont. Status Reg. (both modes)
Int. Request Register (both modes)
In-Service Register (both modes)
Priority Mask Register (both modes)
Mask Register (both modes)

Poll Status Register (master mode)
Not used in iRMX mode (read only)

Poll Register (master mode)
Not used in iIRMX mode (read only)

EOI Register (master mode)
Specific EOl Register (iIRMX mode)

Not used in master mode
Int. Vector Register (iRMX mode)

000F

O000F

O000F

000F

000F
O0O0OF

000F

8000
0000
0000
0007
00FD

0000

0000

0000

0000

9000A-80186

9000A-80186

USING THE PCB RECOVERY PROGRAM I-3.

Use the following procedure to recover PCB register values from a UUT:

1. Connectaknown-good UUT to the Pod and make sure no errors occur with a
BUS TEST.

2. Insert the PCB Recovery cassette with side A up.

3. Press READ TAPE to read the tape. (Press YES/ENTER in response to
READ TAPE- ARE YOU SURE?)

4. Press EXEC 0 ENTER to run program 0. You'll see the message 80/86 POD
PCB RECOVERY PROGRAM and the program will do the WRITE @
F00006 = 1 and enter RUNUUT.

5. A message will ask READY TO RECOVER PCB REGS? to determine
whether or not the UUT?s initialization routines have been completed.

NOTE

You must wait until the UUT's initialization routines have completed to
ensure that the PCB register contents are valid.

6. Once you are certain that the PCB register contents have been established,
press ENTER/YES. The program will cause the Pod to do a soft exit from
RUNUUT.

7. The program will ask if you wantto SET POD TO RECOVERED VALUES?.
If you press YES/ENTER, then all the PCB register values from the FO03XX
range are copied to the FO01XX addresses.

To use the recovered values, a program is normally created to write the initialization
values to all the PCB registers (F001XX addresses). Then, when troubleshooting an
inoperative UUT, the Pod is configured using this tape.

While using the PCB Recovery program, any of several error messages might be
display. The error messages that can occur are:

PCB REGISTERS NOT FOUND-

This is displayed if the UUT’s program shifted the location of the PCB registers with
the relocation register (bit 3 of FO0006 was 0). In this case, the program cannot help
you determine what the PCB registers should be.

RUNUUT EXIT FAILED- TRY AGAIN?

This is displayed when the NMI was not executed due to another NMI active or the
processor being in a hold or wait state (bit 1 was set to 1). In this case, go ahead and
re-try executing the program—try waiting longer or putting the UUT in a different
state before recovering the registers.

FAILURE OCCURRED
POD REGS MAY BE CONTAMINATED
RESET POD TO PWR-UP DEFAULT?

This message indicates that something went wrong in the exit from RUNUUT and the
Pod’s RAM was written to inadvertently. When this occurs, either power to the Pod
should be turn off and back on or, if the user answers YES, the program will
re-initialize all Pod registers (bit 2 of F00006 was set to 1). In this case, after the Pod
has been re-initialized, try the program again. Wait for a longer period before
recovering the registers or put the UUT in a different state.

include "801864.POD"
declarations

setup information

program main

begin:
dpy 801846 POD PCB RECOVERY PROGRAM
execute delay
redo:
write @ FOO004 = 1 ! write to special address
! to let Pod know that a
! RUNUUT with soft exit
i ! will take Blace.
i RUN UUT @ FFFFO ! Btart the UUT’s program
running:
g dpy READY TO RECOVER PCB REGB7kay ! Wait until the UUT's
! initialization has completed
if key = 1 goto next
goto running
next:

A source program for the Fluke 9000A Language Compiler

Date: 4/29/83%
Revision : 0
Revision History: none

User Instructions: 9000A-80186 Interface Pod Getting Started Manual

Tape Part Number: 768703
(c) Copyright 1983, John Fluke Mfg. Co., Inc. All rights reserved.

ggéi(gro ram executes a special "soft" exit from RUNUUT that allows the
program memory rather than being set-up manuvally. Normallg‘ this program
wou u

programmed tape written by the user.

000A~-80184 INTERFACE POD PCB RECOVERY PROGRAM

Program O PCB Recovery

Program 1 PCB Register Swap

Program 2 Restore PCB values to Power~up default
Program 3 Restore all Pod values to reset condition

2000A-80184 Interface Pod Instruction Manual, Appx I

eripheral Control Block) to be obtained from a working UUT’s

d be used once and then the PCB registers would be se p by another

assign rega to key

%od - 30186
RAP ACTIVE FORCE LINE - NO

execute statwiggle ! lower MAINSTAT to
! generate an NMI

read @ FOO006 ! Special address returns
! whether the recovery was
! guccessful or not.

regbh =rege and 2 ! Check bit 1 (if NMI

! worked)

if regh = O goto NMI_FAIL

regh = rege and 8 ! Check bit 3 (if the
' UUT’s program shifted the
! location of the PCB’s)

if regh = O goto pch_shift

regbh =rege and 4 ! Check bit 2 (if contaminated
! RAM found in the Pod)

if regh = 4 goto Bad_RAM

Figure I-1. PCB Recovery Program

9000A-80186

9000A-80186

-6

dpy RECOVERY SUCCESSFUL

execute del #

dpy SET POD TO RECOVERED VALUES7kaey
key =0 goto end

dpy WORKING...

execute swap ! Trade FOO3XX and FOO1XX
goto complt ! Addresses

pcb_shift: ! I# the WUT’s program
dpy PCB REGQISTERS NOT FOUND ! changes the relocation
execute delay ! register contents
dpy PCB RECOVERY NOT COMPLETED
execute delay
dpy TRY RECOVERY AGAINTkey
if key = 1 goto redo
goto end

Bad_RAM:

dpy FAILURE OCCURRED

execute delay

dpy POD REGS MAY BE CONTAMINATED
execute B

dpg RESET PD TO PWR-UP DEFAULT?7key

g = 0 gato end
execu e

dpy ALL PDD REGS RESTORED TO DEFAULT
execute delay
goto end

NMI_FAIL:
dpy RUNUUT EXIT FAILED-TRY AGAIN?key
if key = 1 goto redo
goto end

restore:
dpg SET POD TO DEFAULT PCB VALUES7key
if B O goto end
dpy WORKING...
execute default

complét:
dpy 80184 POD PCB SETUP COMPLETE

eéxecute delay
dpy 801846 PCB RECOVERY PROGRAM DONE

end:

! This erugram sw aps the contents of the PCB registers
! from the FOO3XX special addresses to the FOOIXX addresses

program swap

XB ; FOOE2O ! Swap INT. Vector Reg.
Te
HRITE [} regb and FFF1FF = rege
Tegb = FOO
loop2: ! Smag Interrupt
! Controller Registers

READ @ reg

WRITE @ regb and FFF1FF = rage
regh = pre 2

if rcgb = FOOB4O goto incr2
goto loopl

regb = FO03350

loop3: ! Swap Timer Registers
READ @ regb
WRITE @ regb and FFF1FF = rege
regb = reg 2
if regh = F003b4 goto incr3
goto loap3

ragh = FOO366

READ @ regb

WRITE e regb and FFFIFF = rage
ragb = FO

incra:

incr3:

loop4: ! Swap Chip Select regs.
READ @ reg
WRITE @ regb and FFFIFF = rege
regb = r@ 2
?b = FOOSAA goto incr4
goto oop4

regb = FO0O3CO

incr4:

Figure I-1. PCB Recovery Program (cont)

loopB:

incr5:
loopéb:

incré:

READ @ reg

WRITE e regb and FFFIFF = rege

ragh = reg

if regh = FOOBCC gnto incrd

goto loopH
regb = FOO3DO

READ @ regb

WRITE @ regb and FFFlFF = rege

regbh = re

if re?b = FOOSDC goto incré

goto

regb = FOOIFE
READ @ re

oopb

b
WRITE @ regb and FFFIFF = rege

! This program restores the PCB registers to their
! power-up default values.

program default

Swa

DMA caontroller Reg
(C)

annel O

Swa

Bua DMA controller Reg

annel 1)

write @ FOO120 = QO
write @ FOO122 = O
write @ FOO128 = FD
write @ FOOI2A = 7
write @ FOO12C = O
write @ FOOIR2E = O
write @ FOO130 = 8000
write @ FOO132 = F
write @ FOO134 = F
write @ FOO1346 = F
write @ FOO0138 = F
write @ FOQ13A = F
write @ FOO13C = F
write @ FOO13E = F
write @ FOO1%50 = O
write @ FOO132 = O
write @ FOO134 = O
write @ FOO1346 = O
write @ FOQ1IVB = O
write @ FOO13A = O
write @ FOO19C = O
write @ FOOLIDBE = O
write @ FOQ140 = O
write @ FOO142 = 0O
write @ FOO1466 = O
write @ FOO1A0 = CO3B
write @ FOO1A2 = JFFB
write @ FOO1A4 = 4038
write @ FOO1A6 = BIFB
write @ FOO1AB = AOFB
write @ FOO1C0 = O
write @ FOO1C2 = O
write @ FOO1C4 = O
write @ FOO1C&6& = O
write @ FOO1(C8 = O
write @ FOOI1CA = O
write @ FOOIDO = O
write @ FOOID2 = O
write @ FOO1ID4 = O
write @ FOO1D& = O
write @ FOOID8 = O
write @ FOOIDB = O
write @ FOOIFE = FF
! This grogram restores all Pod registers to their power-up
! defavlt values

program set_up
write @ FOO008 = AADY

Bus

program delay

dloop:

declarations

[}
.

assign regl to counter

counter =

g;%te incorrect sticky
reset Pod

counter = counter dec
if counter) O goto dloop

9000A-80186

Figure I-1. PCB Recovery Program (cont)

9000A-80186

fthis program lowers then raises -Mainstat from the 9010
program statwiggle

{binary)

%14F SODDEB3E18D3C000003E19D3CODDE1010000C740D

Figure I-1. PCB Recovery Program (cont)

Active Interrupt Error Mask, 4B-12
ACTIVE INTR, Pseudo-Status Line, 2-14, 3-9
Address Control Bits, 2-10
Address Segment Drivability Error Mask, 4B-13
Address Sync, 4A-14
Address, RUN UUT Entry, 4A-23
Specifying the RUN UUT, 4A-24
Addresses, 2-14
Addresses,
Cascade, 4A-18
1/0, 2-10
Physical, 2-10
Pod Function, 2-11
Quick Test and Function, 2-13
Special Function, 2-13
UUT, 2-9
Memory, 2-10
Addressing, Memory/IO, 2-11
Normal/DMA, 2-11
Word/Byte, 2-11

Backdating Information, Manual Change and, 7-2

Bit Assignments,
Control Line, 2-18
Status Line, 2-14
Byte, Word/Byte Addressing, 2-11

Cascade Addresses, Reading, 4A-18

Changing Pod Characteristics, 2-5

Changing the RESET Signal, 2-7

Changing the Standby Read Address, 4B-9
Changing the Transparent Read Address, 2-7
CHIP SEL ERROR Pseudo-Status Line, 3-10
Chip Select Defaults, 4B-3

Chip Select Error Mask, 4B-13

Chip Selects, Configuring, 4B-1, 4B-3

Chip Selects, Programming, 4B-2

Circuits, Partially Checked, 6-16

Compiled Programs for the 80186 Pod, Appendix A
Configuring Chip Selects, 3-1

Configuring DMA Control Registers, 4A-22, 4B-10
Configuring Interrupts, 4A-16, 4B-10
Configuring the Pod, 4B-9

Configuring Timers, 4B-6

Connecting the Pod to the Troubleshooter, 2-1
Connecting the Pod to the UUT, 2-3

Control Bits, Address, 2-10

Control Drivability Error Mask, 4B-12
Control Line Bit Assignments, 2-18

Control Lines, 2-17

Control, Pseudo Control Lines, 2-19

Data Drivability Error Mask, 4B-13
Data Sync, 4A-15

Defaults, Power-Up, Appendix C
Defective Pod, Troubleshooting a, 6-3
Defining Interrupt Handling, 4A-27

Determining Errors, 4B-14

Determining Whether the Pod is Defective or Inoperative, 6-3
Disabled Forcing Lines, 2-17

Disassembly, Pod, 6-18

DMA Controller Registers, Predefining, 4A-27

DMA Operations During RUN UUT, 4A-22

DMA, Configuring Control Registers, 4A-22

DMA, Normal/DMA Addressing, 2-11

DMA, Simulating Accesses for Troubleshooting, 4A-23
DMA, Testing UUT Circuitry, 4A-21

Drive Capability, Pod, 3-11

Enableable Forcing Lines, User, 2-16

Enabling Interrupts, 4A-17

Enhanced Self Test Routines, Recreating the, 6-9
Enhanced Self Test, Using the, 6-5

Entering the Queue Status Mode by Accident, 2-8
Entry Address, RUN UUT, 4A-23

Error Summary Mask, 4B-11

Error, Last Chip Select Drivability, 4B-18

Error, Last Control, 4B-16

Error, Last Data Drivability, 4B-17

Error, Last Forcing Line, 4B-16

Error, Last INTA and TIMER QUT Drivability, 4B-17
Error, Last Low Word Address Drivability, 4B-17
Error, Last Segment Drivability, 4B-16

Error, Last Summary, 4B-15

Errors, Determining, 4B-14

Errors, Masking, 4B-11

Extended Troubleshooting Procedures, 6-15

Factory Service, Warranty and, 6-1

Forcing Intertupt-Acknowledge Routines, 4A-19
Forcing Interrupts, 4A-19

Forcing Line Error Mask, 4B-12

Forcing Lines, 2-16

Forcing Lines, Disabled, 2-17

Forcing Lines, User Enableable, 2-16

Free-Run Sync, 4A-15

Generating Probe Signatures, 4A-13
Getting Started, 2-4

How to Obtain Parts, 7-1

10 Addresses, 2-10

1/0, Memory/1/0 Addressing, 2-11
Inoperative Pod, Troubleshooting an, 6-11
Inspecting a Shipment, 6-1

INT VECT 0 and INT VECT 1 Pseudo-Status Lines, 2-14, 3-9

INTA and TIMER OUT Error Mask, 4B-13
INTA ERROR Pseudo-Control Line, 3-1Q
Interpreting the Self Test Failure Codes, 6-4
Interrupt Circuitry, Testing, 4A-15
Interrupt Information, Reading, 4A-18
Interrupt Lines, 2-17

Interrupt Signals, iRMX, 4A-19

Interrupt Types, Reading, 4A-18
Interrupt-Acknowledge Routines, Forcing, 4A-19
Interrupt-Acknowledge Sync, 4A-15
Interrupts, Configuring, 4A-15
Interrupts, Enabling, 4A-17
Interrupts, Forcing, 4A-19
Interrupts, iRMX Mode, 4A-19
Interrupts, Normal Mode, 4A-16
Interrupts, Processing, 4A-19

iRMX Interrupt Signals, 4A-19
iRMX Mode Interrupts, 4A-19

Last Active Interrupts, 4B-16

Last Chip Select Drivability Errors, 4B-18

Last Control Errors, 4B-16

Last Data Drivability Errors, 4B-17

Last Error Summary, 4B-15

Last Forcing Line Errors, 4B-16

Last INTA and TIMER QUT Drivability Errors, 4B-
Last Low Word Address Drivability Errors, 4B-17
Last Segment Drivability Errors, 4B-16

Last Status, 4B-18

LEARN, Preparing for, 2-7

Lines, Control, 2-17

Lines, Disabled Forcing, 2-17

Lines, Forcing, 2-16

Lines, Interrupt, 2-17

Lines, Pseudo Control, 2-19

Lines, Pseudo-Status, 2-14

Lines,. Status, 2-14

Lines, User Enableable Forcing, 2-16

List of Replaceable Parts, 7-3

Low Word Address Drivability Error Mask, 4B-13

Manual Change and Backdating Information, 7-2
Manual, Using This, 1-3

Marginal UUT, Problems Due to a, Appendix F
Mask, Active Interrupt Error, 4B-12

Mask, Address Segment Drivability Error, 4B-13
Mask, Chip Select Error, 4B-13

Mask, Control Drivability Error, 4B-12

Mask, Data Drivability Error, 4B-13

Mask, Error Summary, 4B-11

Mask, Forcing Line Error, 4B-12

Mask, INTA and TIMER OUT Error, 4B-13
Mask, Low Word Address Drivability Error, 4B-13
Masking Errors, 4B-11

Memory Addresses, 2-10

Memory/1/0O Addressing, 2-11

Microprocessor Signals, 3-1

Misconfigured Pod, 6-16

Normal Mode Interrupts, 4A-16
Normal/DMA Addressing, 2-11
Noise, Timing and Noise Problems, 6-18

1
i

=~
f

INDEX

Operating the Pod in the Queue Status Mode, Appendix G
Oscilloscope Synchronization Modes, 4A-14
Oscilloscope, Using the Pod with an, 4A-13
Partially Checked Circuits, 6-16

Pattern Verify Function, 4A-6

PCB Recovery Tape, Appendix I

Performing the Pod Self Test, 2-1

Peripheral Control Block, A-26, Appendix H
Physical Addresses, 2-10

Physical Description of the Pod, 1-1

Pod Drive Capability, 3-11

Pod Function Addresses, 2-11

Pod Resets, Appendix E

Pod Signals, 3-1

Pod Specifications, 1-3

Pod, Changing Characteristics, 2-5

Pod, Configuring the, 4B-9

Pod, Disassembly, 6-18

Pod, Extended Troubleshooting Procedures, 6-15
Pod, Misconfigured, 6-16

Pod, Physical Description of the, 1-1

Pod, Purpose of the Interface, 1-1

Pod, Self Test, 2-1

Pod, Using the, 2-7

Pod, Using with a Remote 9020A, Appendix B
Pod-Generated Signals, 3-1

POWER FAIL Psuedo-Status Line, 3-9, 2-14
Power-Up Defaults, Appendix C

Predefining DMA Controller Registers, 4A-27
Preparation for Troubleshooting a Defective Pod, 6-5
Preparation for Troubleshooting an Inoperative Pod, 6-11
Preparing for LEARN, 2-7 ’
Preparing for RUN UUT, 2-7

Probe and Scope Synchronization Modes, 4A-14
Probe Signatures, Generating, 4A-13

Problems Due to a Marginal UUT, Appendix F
Problems, Timing and Noise, 6-18

Processing Interrupts, 4A-19

Programming Chip Selects, 4B-2
Pseudo-Control Lines, 2-19, 3-10
Psuedo-Status Lines, 2-14, 3-9

Purpose of the Interface Pod, 1-1

QSMD, 3-9

Queue Status Mode, Entering by Accident, 2-8

Queue Status Mode, Operating the Pod in the, Appendix G
Quick Fill and Quick Verify Functions, 4A-6

Quick RAM Test, 4A-2

Quick Ramp Function, 4A-11

Quick ROM Test, 4A-9

Quick Test and Function Addresses, 2-13

Quick Verify Function, 4A-6

Quick-Looping Function, Using the, 4A-14

RAM Test, Quick, 4A-4
Ramp Function, Quick, 4A-11

INDEX-1

INDEX

Reading Cascade Addresses, 4A-18

Reading Interrupt Information, 4A-18
Reading Interrupt Types, 4A-18

Recreating the Enhanced Self Test Routines, 6-9
Recreating the Standard Self Test, 6-9
Replaceable Parts, List of, 7-1

RESET Output During Reset, Enable, 4B-10
RESET Signal, Changing the, 2-7

Resets, Pod, Appendix E

ROM Test, Quick, 4A-9

RUN UUT Address, Specifying the, 4A-24
RUN UUT Entry Address, 4A-23

RUN UUT Mode, 4A-23

RUN UUT, DMA Operations During, 4A-22
RUN UUT, Preparing for, 2-7

Segment Registers, Appendix D

Self Test, 2-1

Self Test Failure Codes, Interpreting the, 6-4
Setting Up Timers, 4A-27, 4A-2

Shipping the Pod to Fluke for Repair or Adjustment, 6-2
Signals, Microprocessor, 3-1

Signals, Pod-Generated, 3-1

Signatures, Generating Probe, 4A-13
Simulating DMA Accesses for Troubleshooting, 4A-23
Special Function Addresses, 2-13

Special Signal States, 3-10

Specifications, Pod, 1-3, 1-5

Specifying Segment Register Contents, 4A-27
Specifying the RUN UUT Address, 4A-24
Standard Self Test, Recreating the, 6-5
Standard Self Test, Using the, 6-5

Standby Read Address, Changing the, 4B-9
States, Special Signal, 3-10

Status Line Bit Assignments, 2-14

Status Lines, 2-14

Status, Last, 4B-18

Status, Pseudo-Status Lines, 2-14, 3-9

Sync Modes, Using the, 4A-13

Sync, Address, 4A-14

Sync, Data, 4A-15

Sync, Free-Run, 4A-15

Sync, Interrupt-Acknowledge, 4A-15, 4A-21

Testing Interrupt Circuitry, 4A-15

Testing RAM Quickly, 4A-1

Testing ROM Quickly, 4A-9

Testing UUT DMA Circuitry, 4A-21

Theory of Operation, 5-1

Timers, Configuring, 4B-6

Timing and Noise Problems, 6-18

TMR OUT ERROR Pseudo-Status Line, 3-10
Transparent Read Address, Changing the, 2-7
Troubleshooter, Connecting the Pod to the, 2-1
Troubleshooting a Defective Pod, 6-3
Troubieshooting an Inoperative Pod, 6-i1

INDEX-2

User Enableable Forcing Lines, 2-16

Using Chip Select Defaults, 4B-3

Using the Enhanced Self Test, 6-5

Using the Pod, 2-7

Using the Pod with a Remote 9020A, Appendix B
Using the Pod with an Oscilloscope, 4A-13
Using the Quick-Looping Function, 4A-14
Using the RUN UUT Mode, 4A-23

Using the Standard Self Test, 6-5

Using the Sync Modes, 4A-13

Using This Manual, 1-3

UUT Addresses, 2-9

Verify Function, Quick, 4A-6
Wait States, 4B-2

Warranty and Factory Service, 6-1
Word/Byte Addressing, 2-11
Writing Control Lines, 2-18

9020A, Using the Pod with a Remote, Appendix B

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4a-01
	4a-02
	4a-03
	4a-04
	4a-05
	4a-06
	4a-07
	4a-08
	4a-09
	4a-10
	4a-11
	4a-12
	4a-13
	4a-14
	4a-15
	4a-16
	4a-17
	4a-18
	4a-19
	4a-20
	4a-21
	4a-22
	4a-23
	4a-24
	4a-25
	4a-26
	4a-27
	4a-28
	4b-01
	4b-02
	4b-03
	4b-04
	4b-05
	4b-06
	4b-07
	4b-08
	4b-09
	4b-10
	4b-11
	4b-12
	4b-13
	4b-14
	4b-15
	4b-16
	4b-17
	4b-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	Index-1
	Index-2

