JOHN FLUKE MFG. CO., INC.

P. O. Box 7428 Seattle, Washington 98133

MODEL Render der Kannen **BCD PROGRAMMABL** Е **VOLTAGE SOURCE** ŝ, MODEL 4210A SERIAL NO. AND ON.

warranty

The JOHN FLUKE MFG. CO., INC. warrants each instrument manufactured by them to be free from defects in material and workmanship. Their obligation under this Warranty is limited to servicing or adjusting an instrument returned to the factory for that purpose, and to making good at the factory any part or parts thereof; except tubes, fuses, choppers and batteries, which shall, within one year after making delivery to the original purchaser, be returned by the original purchaser with transportation charges prepaid, and which upon their examination shall disclose to their satisfaction to have been thus defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at a nominal cost. In this case, an estimate will be submitted before work is started, if requested.

If any fault develops, the following steps should be taken:

- 1. Notify the John Fluke Mfg. Co., Inc., giving full details of the difficulty, and include the Model number, type number, and serial number. On receipt of this information, service data or shipping instructions will be forewarded to you.
- 2. On receipt of the shipping instructions, forward the instrument prepaid, and repairs will be made at the factory. If requested, an estimate of the charges will be made before the work begins, provided the instrument is not covered by the Warranty.

SHIPPING

All shipments of John Fluke Mfg. Co., Inc. instruments should be made via Railway Express prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be thoroughly inspected immediately upon receipt. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to John Fluke Mfg. Co., Inc. Upon receipt of this report you will be advised of the disposition of the equipment for repair or replacement. Include the model number, type number, and serial number when referring to this instrument for any reason.

The John Fluke Mfg. Co., Inc. will be happy to answer all application questions which will enhance your use of this instrument. Please address your requests to: JOHN FLUKE MFG. CO., INC., P.O. BOX 7428, SEATTLE, WASHINGTON 98133.

Table of Contents

4210A

SECTION	TITLE	PAGE	
1	INTRODUCTION AND SPECIFICATIONS		
	1-1. Introduction	1-1	
	1-6. Specifications	1-2	
2	OPERATING INSTRUCTIONS	2-1	
	2-1. Introduction	2-1	
	2-3. Shipping Information		
	2-6. Input Power	2-1	
	2-8. Rack Installation	2-2	
	2-10. Operating Features	2-2	
	2-12. Operating Notes	2-2	
	2-24. Programming Information		
3	THEORY OF OPERATION	3-1	
	3-1. Introduction	3-1	
	3-3. Fundamental Circuit Description	3-1	
	3-5. Block Diagram Analysis	3-1	
	3-8. Circuit Descriptions		
4	MAINTENANCE	4-1	
	4-1. Introduction	4-1	
	4-3. Service Information		
	4-6. General Maintenance	4-1	
	4-11. Maintenance Access	4-1	
	4-13. Calibration Procedures		

(continued on page ii)

4210A

TABLE OF CONTENTS, continued

SECTION	CTION TITLE	
5	LIST OF REPLACEABLE PARTS	5-1
	5-1. Introduction	5-1
	5-4. Parts List Column Descriptions	5-1
	5-5. Manufacturers' Cross Reference List Column Descriptions	5-2
	5-6. How To Obtain Parts	5-2
	5-9. Serial Number Effectivity	5-3
6	OPTION & ACCESSORY INFORMATION	6-1
	6-1. Introduction	6-1
	6-3. Option Information	6-1
	6-5. Accessory Information	6-1
	Model A4200 Manual Control Unit	6-1
	6-1. Introduction	6-1
	6-3. Installation	6-1
	6-5. Operating Features	6-1
	Rack Mounting Fixtures	6-1
	6-1. Introduction	6-1
	6-3. Installation Procedures	6-1
	Programming Connector	6-1
	6-1. Introduction	6-1
	6-3. Assembly Instructions	6-1
	Extender Card	6-1
	6-1. Introduction	6-1
	6-3. Installation	6-1

APPENDIX A -- FEDERAL SUPPLY CODE FOR MANUFACTURERS

APPENDIX B – LIST OF ABBREVIATIONS

APPENDIX C - SALES REPRESENTATIVES AND SERVICE CENTERS

SCHEMATIC DIAGRAMS

4210A

List of Illustrations

FIGURE	TITLE	PAGE
Frontispiece	Model 4210A BCD Programmable Voltage Source	
1-1.	Outline Drawing	1-4
2-1.	115/230 VAC Power Conversion	2-2
2-2.	Accessory Rack Mounting Kits	2-3
2-3.	Operating Features	2-4
2-4.	Remote Sensing Connections	2-5
2-5.	Guarded Load Connection	2-6
2-6.	Isolated Control Logic Timing	2-7
2-7.	Flag Timing Relationship	2-7
2-8.	Accuracy Versus Settling Time (Resistive Load)	2-8
2-9.	Settling Time to 0.01% Accuracy (Capacitive Load)	2-8
2-10.	Accuracy Versus External Reference Frequency	2-9
2-11.	AC External Reference Feedthrough (OV Output)	2-9
2-12.	AC External Reference Phase Shift Versus Frequency	2-10
2-13.	AC External Reference Harmonic Distortion Versus Frequency	2-10
3-1.	Power Source Equivalent Circuit	3-1
3-2.	Block Diagram	3-2
3-3.	Ladder Decade (Simplified)	3-5
3-4.	Ladder Driver (Simplified)	3-5

۰.

(continued on page iv)

.

LIST OF ILLUSTRATIONS, continued

FIGURE	TITLE	PAGE
3-5.	Isolated Control Logic (Simplified)	3-6
3-6.	Isolated Control Logic Timing	3-6
3-7.	Direct Coupled Logic Timing	3-10
4-1.	Assembly, Adjustment, and Test Point Locations	4-2
5-1.	Model 4210A BCD Programmable Voltage Source	5-4
5-2.	Mother PCB Assembly	5-6
5-3.	Power Supply PCB Assembly	5-8
5-4.	DAC Amplifier PCB Assembly	5-12
5-5.	External Reference PCB Assembly (-03 External Reference Option)	5-16
5-6.	BCD Ladder PCB Assembly	5-20
5-7.	BCD Logic PCB Assembly (-01 Isolated Control Logic Option)	5-24
5-8.	Non Isolated Logic PCB Assembly (-04 Direct Coupled Control Option)	5-27
5-9.	BCD Display PCB Assembly (-02 Front Panel Display Option)	5-29
5-10.	No Display PCB Assembly (-05 Blank Front Panel Option)	5-30
6-1.	Model A4200 Manual Control Unit and Power Source	6-1
6-2.	Controls, Indicators and Connectors	6-2
6-1.	Accessory Rack Mounting Kits	6-1
6-2.	Rack Mounting Bracket Installation	6-2
6-3.	Dual Rack Mounting	6-2
6-4.	Chassis Slide Installation	6-3
6-1.	Programming Mating Connector	6-1
6-1.	Extender Card	6-1
6-2.	Extender Card Installation	6-2

List of Tables

TABLE	TITLE	PAGE
1-1.	Options (Sheet 1 of 2)	1-1
1-1.	Options (Sheet 2 of 2)	1-2
1-2.	Option Combinations	1-2
1-3.	Programming Input/Outputs	1-4
2-1.	Programming Input/Outputs	2-5
3-1.	Operating Voltage	3-2
3-2.	Truth Tables	3-9
4-1.	Recommended Test Equipment	4-3
4-2.	Linearity Checks	4-4
4-3.	EXT REF Checks	4-4

۷

۰.

Section 1 Introduction & Specifications

1-1. INTRODUCTION

1-2. The Model 4210A is a programmable bipolar dc voltage source. Output voltage range is from 0 to 16.665 vdc and is available in 1 mv increments. Output accuracy is 0.01% of the programmed level, after a 30 usec settling time. A READY/NOT READY flag output indicates when the output has settled. Maximum output current is 100 ma and is short-circuit protected. Current sinking capability is 50 ma with a 10 volt output. It is also overload protected. An OVERLOAD flag output indicates when either a source or sink current limit condition exists.

1-3. Programming requirements are compatible with DTL or TTL logic using BCD or four bit binary 8-4-2-1 coding per decade. Contact or relay closures can also be used. All programming inputs and flag outputs are made through a 50 terminal Amphenol, Blue Ribbon connector at the rear panel. A +5 vdc \pm 10% output is provided at this

connector for use as an external programming bias source. Logic levels are as follows:

Logic "0" = +2.8 to +5.5 vdc or open circuit. Logic "1" = 0 ± 0.4 vdc or short circuit to LOGIC GRD.

1-4. Five options are available and provide tailoring of the power source to fit application requirements. These options are identified by corresponding -01 through -05 designations. Each option is described in Table 1-1. Installation combinations are given in Table 1-2. The -03, option can be installed at any time, as desired. The other options are installed during manufacture.

1-5. Physically, the power source is completely solidstate. Plug-in printed circuit boards are used for ease in servicing. The chassis is designed for bench-top use, or it can be installed in a standard equipment rack. Accessory Rack Mounting Brackets permit offset or side-by-side rack installation.

Table 1-1.	OPTIONS	(Sheet 1	of 2)
------------	---------	----------	-------

OP- TIONS	TITLE	DESCRIPTION
01	ISOLATED CONTROL LOGIC	Separates the external digital interface logic and attendant noise from the Model 4210A analog circuitry. Impedance between the interface logic and the analog circuitry is greater than 10 ⁹ ohms, in parallel with 3 pf. It also provides a data storage that allows multiplexing of several voltage sources from one system interface register or data bus.

Table 1-1. OPTIONS (Sheet 2 of 2)

OP- TIONS	TITLE	DESCRIPTION
-02	FRONT PANEL DISPLAY	Lamps installed on the front panel which indicate the programmed level, SIGN, CURRENT LIMIT, EXT REF, POWER ON and STDBY con- ditions.
-03	EXTERNAL REFERENCE (Field Installable)	Allows the use of an external signal source in place of the internal reference voltage. Any dc or ac signal can be used that has an amplitude from 0 to ± 14.5 volts and a frequency from dc to 100 kHz. Input impedance is 100K, in parallel with 15 pf.
04	DIRECT COUPLED CONTROL	Provides the required buffering between Model 4210A and the program- ming ground is directly connected to the low sense terminal.
-05	BLANK FRONT PANEL	Only a POWER lamp is installed on the front panel.

Table 1-2. OPTION COMBINATIONS

1-6. SPECIFICATIONS

OUTPUT VOLTAGE	0 to ± 9.999 vdc (BCD inputs) 0 to ± 16.665 vdc (4 bit binary, by decade)
OUTPUT VOLTAGE RESOLUTION	1 mv
OUTPUT CURRENT	0 to 100 ma (short-circuit protected).
CURRENT SINK CAPABILITY	$I_{SINK} = 100 \text{ ma} - 4 \text{ E}_{OUT}$
ACCURACY (15° to 35° C)	$\pm (0.01\% \text{ of called output} + 100 \text{ uv})$
STEADY STATE RIPPLE AND NOISE	1 mv peak-to-peak, 300 uv rms
PROGRAMMING NOISE AND TRANSIENTS	Any programmed increment will cause less than a 50 mv peak noise transient during the first 8 usec of the pro- gramming interval.
DIGITAL NOISE REJECTION (-01 Option Only)	The noise between digital ground and analog output is rejected $1000:1$ at 1 MHz.
OUTPUT IMPEDANCE	0.0001 ohms @ dc; 1.4 ohms @ 100 kHz; 7 ohms @ 500 kHz
EXTERNAL REFERENCE (Option -03)	
Voltage Range	0 to ± 14.5 vdc or peak ac
Input Impedance	100k ohms in parallel with 10 pf

Output Voltage	0 to 10v rms; ±17v peak
Output Current	70 ma rms; 100 ma peak
Frequency Range	dc to 100 kHz (75)
	$\pm (0.01\% \text{ of setting } +0.0001\% \left(\frac{75}{E_{XR}}\right) +100 \text{ uv) at dc}$
(15°C to 35°C, 90 days with respect to the	
External Reference, E _{XR})	
DC Stability	$\pm (0.001\% + .0001\% \left(\frac{15}{E_{XR}}\right) + 20 \text{ uv}) \text{ for } 24 \text{ hours}$
(while respect to External Reletioned, EXR)	$\pm (0.001\% + .0001\% \left(\frac{45}{E_{XR}}\right) + 60 \text{ uv}) \text{ for } 90 \text{ days}$
Programming Resolution	$E_{XR} \ge 10^{-4}$ volts Example: If $E_{XR} = 5$ volts, resolution = .5 mv
SPEED	Settles to within 0.01% of programmed change is 30 usec. (Includes selection time of internal/external reference, Option -03) for a resistive load.
OUTPUT STABILITY (15° to 35°C)	+(10 ppm of setting + 20 uv) for 24 hours +(30 ppm of setting + 60 uv) for 90 days
TEMPERATURE COEFFICIENT $(35^{\circ}C < T < 15^{\circ}C)$.	±(10 ppm of output +15 uv)°C
LOAD REGULATION	An output current change of 100 ma causes the output to change less than 100 uv.
LOAD RECOVERY	The output will settle to within 0.01% of final value in 30 usec after an output current change of 100 ma.
LINE REGULATION	A $\pm 10\%$ change in line voltage causes less than a 100 uv change in output.
OUTPUT TERMINALS	HIGH, LOW, HIGH SENSE, LOW SENSE, CHASSIS, GUARD. Terminals located on rear panel. The GUARD terminal can be floated up to 1000 volts above chassis ground.
PROGRAM CONTROL CONNECTOR (See Table 1-3) .	50 terminal input connector on rear panel. Mating con- nector is Amphenol, Blue Ribbon, Part No. 57-30500.
INPUT POWER	$115/230$ vac, $\pm 10\%$, 48-62 Hz single phase, 20 watts fully loaded.
ENVIRONMENTAL	
Temperature	0° C to 50° C – Operating; -40° C to 75° C – Storage
Relative Humidity	0 to 80%
Shock	20g, 11 msec half-sine wave
Vibration	4.5g, 10-55 Hz
Altitude	0-10,000 ft - Operating; $50,000 ft - Non-Operating$
SIZE	5-¼" high x 8½" wide x 15-11/16" deep.
WEIGHT	12 lbs. fully loaded
ACCESSORIES Manual Control Unit	Allows manual checkout, calibration, and control. FLUKE
	Model A4200
Rack Mounting Brackets	 Offset Mounting; M05-203-601 Center Mounting; M05-203-602 Dual Rack Mounting; M05-200-603 Chassis Slides; M00-260-610 (18") Chassis Slides; M00-280-610 (24")
Mating Connector	Amphenol, Blue Ribbon 57-30500 FLUKE PART NO. 266056
Extender Card	FLUKE PART NO. 292623

۰.

PROGRAM CONTROL:	All program control and response lines are compatible with DTL and TTL logic.				
	Programming lines are brought out on the rear panel.				
LOGIC LEVELS:	Logic "1" = $0 \pm .4$ VDC or contact		Logic "0	" = +2.8 to +5.5 \	/DC or open
	closu	re		circuit	
SIGN:	Connector Pin 35			" = Negative outpu	t voltage
MAGNITUDE:	Bit	Conn.	Bit	Conn.	
	<u>Wt</u> .	<u>Pin</u>	<u>Wt.</u>	<u>Pin</u>	
	A ⁸	1	C ⁸	9	
	A ⁴	2	C⁴	10	
	A ²	3	C ²	11	
	A ¹	4	C1	12	
	B ⁸	5	D ⁸	13	
	B⁴	6	D⁴	14	
	B^2	7	D^2	15	
	B1	8	D1	16	
	NOTE: Decade numbers greater than 9 (i.e. 10 thru 15 will be accepted and con- verted to an equivalent analog value. The maximum full scale output is 16.665 VDC.				
DATA STROBE:	Connector pin 33. When using the Isolated Control Logic Option -01, a strobe pulse is required to start the digital-to-analog conversion process after a valid command is present. Minimum pulse width is 500 nanoseconds. A negative leading				
	slope (+5V to OV transition) is required. When using the Direct Coupled Con Logic Option -04 , the Data Strobe may be used to hold the output const while programming the systems interface register. Upon release of the Data Stro- the output will go to the programmed value. If the Data Strobe is not used in Direct Coupled mode, the output will follow any command data perturbation Logic "1" = "hold" condition.			tput constant e Data Strobe, not used in the perturbations.	
EXTERNAL REFERENCE:	Connector Pin 36; Logic "0" = Internal DC Reference, Logic "1" = External Reference.				
STANDBY:	Connector Pin 34; Logic "0" = Operate Mode, Logic "1" = Standby; Output is at				
		zero volts.			
RESPONSE SIGNALS CURRENT OVERLOAD FLAG:	Connector Pin 49:	Logic "1" represer	nts a current o	verload condition.	
READY/NOT READY FLAG:	 Connector Pin 49; Logic "1" represents a current overload condition. Connector Pin 37; Logic "0" = "Ready" condition, the output is within 0.01% of the programmed increment for a resistive load. 				
	Logic "1" = "Not Ready" condition, the power source is in the process of settling to the programmed value.				
POWER CONNECTIONS:	Connector Pin 25; An internal, isolated power supply furnishes +5 vdc at 125 ma for use by the external system interface logic.				
LOGIC GROUND:	Connector Pins 17 thru 24 It is recommended that a large ground strap be used between the interface logic and the power source to reduce the digital pro- gramming noise on the system ground.				

Table 1-3. PROGRAMMING INPUT/OUTPUTS

Figure 1-1. OUTLINE DRAWING

Section 2 Operating Instructions

2-1. INTRODUCTION

2-2. This section contains information regarding installation and operation of the Model 4210A. It is recommended that the contents of this section be thoroughly read and understood before any attempt is made to operate this power source. Should any difficulties be encountered during operation, please contact your nearest John Fluke Sales Representative or the John Fluke Mfg. Co., Inc., P.O. Box 7428, Seattle, Washington 98133, telephone (206) 774-2211. A list of Sales Representatives is located at the rear of this manual.

2-3. SHIPPING INFORMATION

2-4. The Model 4210A was packaged and shipped in a foam packed cardboard carton. Upon receipt, a thorough inspection should be performed to reveal any damage in transient. Special instructions for inspection and claims are included in the carton.

2-5. If reshipment of this power source is necessary, the original container should be used. If the original container is not available, a new one can be obtained from the John Fluke Mfg. Co., Inc. Please reference the Model number when requesting a new shipping container.

2-6. INPUT POWER

2-7. This power source can be operated from either a 115 or 230 vac, 48 to 62 Hz power line. A decal on the rear panel indicates which power line input is required. If it becomes necessary to change from one power line voltage to the other, proceed as follows:

- a. Disconnect the power cord from the rear panel of the power source.
- b. Remove the top dust cover and inner cover.
- c. Remove the four screws shown in Figure 2-1 from the rear panel.
- d. Pull the Power Supply Assembly shown in Figure 2-1 out from the rear panel until the 115/230 slide switch is accessible.
- e. Set the slide switch to the desired line voltage position. Positions are labeled on the printed circuit board.
- f. Slide the Power Supply Assembly back into the power source making sure that the connector at the front panel is correctly mated.
- g. Install the four screws removed from the rear panel, and then replace the inner cover and top dust cover.
- h. Install the following rated value fuse in the rear panel fuse holder.

<u>115 VAC</u>	230 V AC	
1/4A, AGC	1/8A, AGC	

Reconnect the power cord at the rear panel and then energize the power source with the toggle switch on the rear panel. The POWER lamp on the front panel should illuminate.

i.

2-8. RACK INSTALLATION

2-9. The power source is designed for bench-top use or for installation in a 19 inch equipment rack using the Accessory Rack Mounting Kits shown in Figure 2-2. When two power sources of the same size are side-by-side mounted, Accessory chassis slides can also be installed to better facilitate rack installation. Information regarding installation of these Accessories is given into the Section VI, Rack Installation subsection.

2-10. OPERATING FEATURES

2-11. The location and function of all connectors and indicators is given in Figure 2-3.

2-12. OPERATING NOTES

2-13. The following paragraph describe various conditions which should be considered before operating the Model 4210A.

2-14. AC Line Connection

2-15. The input power cord plug is a three prong, polarized connector. This plug allows connection to either a 115 or 230 vac, 48 to 62 Hz, power line (see Input Power, paragraph 2-6), while at the same time connects the power source chassis to earth ground. Always ensure that the round pin is connected to a high quality earth ground. The power source is energized through a toggle switch on the rear panel.

Figure 2-1. 115/230 VAC POWER CONVERSION

Figure 2-2. ACCESSORY RACK MOUNTING KITS

2-16. Load Connections

2-17. An eight terminal barrier strip located on the rear panel contains the output connectors of the power source. The ±OUTPUT terminals are connected to respective sections of the load. Regulation of the programmed output is done through the ±SENSE terminals. These terminals can be bussed through jumpers installed at the factory to the OUTPUT terminals, or they allow remote sensing at the load. In either case, NEVER operate the power supply with the SENSE terminals disconnected. The CHASSIS terminal is connected directly to the chassis and allows grounding of the load, if desired. The GUARD terminal allows load connections that can greatly reduce common mode-to-normal mode signals. This guard connection should always be used if optimum noise free performance is to be achieved.

2-18. Remote Sensing

2-19. Whenever a load is connected to the OUTPUT terminals, there may be an appreciable voltage drop in the connecting cable. This voltage drop is caused by the resistance of the cable leads and can be excessive in some applications. For this reason, SENSE terminals are provided to allow the output to be sensed directly at the load, thus eliminating any voltage drop in the connecting cable. Figure 2-4 shows an example of remote sensing load connections.

NOTE!

Always use a twisted pair of insulated wires between the SENSE terminals and the load.

2-20. Ground Connections

2-21. A CHASSIS terminal is provided at the rear panel. This terminal is directly connected to the chassis of the power source and earth ground through the round pin on the input power plug. If grounding of the load is desired, this terminal provides a convenient connection to earth ground. When a guarded output explained in paragraph 2-22 is not desired, this terminal should be connected to the GUARD terminal.

2-22. Guard Connections

2-23. The power source is equipped with a guard shield that isolates its internal circuitry from the chassis and ground. A GUARD terminal at the rear panel is connected to this shield and allows load connections that greatly reduce any common mode-to-normal mode conversion. Fig-ure 2-5 shows a simplified diagram of a guarded load connections.

2-24. PROGRAMMING INFORMATION

2-25. Control of all functions except POWER ON is done through a 50 pin Amphenol, Blue Ribbon connector on the rear panel. The power source is energized through a toggle switch on the rear panel. Interface between the programming equipment and the power source requires an Amphenol, Blue Ribbon 57-30500 mating connector. This mating connector is available as an accessory for the power source. It can be obtained from FLUKE under PART NO. 266056. Installation information regarding this connector is located in Section VI. Table 2-1 lists and describes each terminal on the Programming Connector.

2-26. Programming input requirements are compatible with either DTL or TTL logic using BCD or binary four bit per decade coding. Logic "0" is +2.8 to +5.5 vdc or open circuit to logic ground. Logic "1" is 0 ± 0.4 vdc or short circuit to logic ground. Logic ground is available at pins 17 through 24 of the programming connector. Shorting these

Table 2-1. PROGRAMMING INPUT/OUTPUTS

	'0" = +2.8 to +5.5 vdc or open circuit				
LOGIC '	LOGIC "1" = 0 ± 0.4 vdc or short circuit to LOGIC GRD				
PIN NO.	FUNCTION				
	CODE				
1	8)				
2 3	4 A DECADE (1V)				
4	1)				
5	8)				
6	4 B DECADE (.1V)				
78	$\begin{pmatrix} 2\\1 \end{pmatrix}$				
9	8)				
10	4 (C DECADE (.01V)				
11 12					
13	8)				
14	4 (D DECADE (.001V)				
15 16	$\begin{bmatrix} 2\\1 \end{bmatrix}$				
17)					
18					
20 21	LOGIC GRD				
22					
23					
24					
25 26	LOGIC PWR (+5 vdc at 0 to 125 ma)				
27					
28	NOT USED				
29 30					
31					
32					
33	DATA STROBE (-01 Option) (See Figure 2-6)				
	INITIATES DIGITAL TO ANALOG CON- VERSION				
34	STANDBY/OPERATE:				
34	LOGIC "O" = OPERATE				
	LOGIC "1" = STANDBY				
35	SIGN:				
	LOGIC "0" = POSITIVE OUTPUT				
	LOGIC "1" = NEGATIVE OUTPUT				
36	EXTERNAL REFERENCE (-03 Option):				
	LOGIC "O" = INTERNAL REFERENCE				
37	LOGIC "1" = EXTERNAL REFERENCE READY/NOT READY FLAG:				
3/	LOGIC "0" = READY				
	LOGIC "1" = NOT READY				
38)					
39					
40 41					
42	NOT USED				
43					
44 45					
46					
47					
48 /	CURRENT OVERLOAD FLAG:				
	LOGIC "0" = NORMAL				
	LOGIC "1" = OVERLOAD				
50	NOT USED				

lines to the appropriate pins of the programming connector using contact closures also allows control of the power source. A +5 vdc $\pm 10\%$ output at up to 125 ma is available at pin 25 for use by the external programming logic.

Figure 2-4. REMOTE SENSING CONNECTIONS

2-27. Standby

2-28. The STANDBY mode can be invoked by applying a Logic "1" to pin 34 of the Programming Connector. When this condition exists, the output will be zero volts. Application of a Logic "0" at this pin returns the output voltage to the programmed level.

2-29. Output Magnitude/Polarity

2-30. The magnitude of the output is controlled with binary by decade coded inputs at pins 1 through 16 of the Programming Connector. Four decades are available; each receives a four bit 8-4-2-1 coded input. The maximum output that can be called from any decade is 15 (8+4+2+1), which provides a total output range of 0 to ± 16.665 volts. It should be noted, however, that any decade word above 9 violates the definition of BCD coding.

2-31. Polarity of the output is controlled by a single line input at pin 35. A Logic "0" will produce a positive output. A Logic "1" will produce a negative output.

2-32. Data Strobe

2-33. The data strobe shown in Figure 2-6 is required to initiate programming inputs when the Isolated Control Logic (-01 Option) is installed. This pulse is applied to pin 33 of the Programming Connector. Upon its negative transition, digital inputs are simultaneously transferred as shown in Figure 2-6, and, after a 30 usec time-out, the output is

Figure 2-5. GUARDED LOAD CONNECTION

then within $\pm 0.01\%$ of the programmed change for a resistive load.

2-34. The data strobe can also be used to hold the output constant while calling changes in magnitude when the Direct Coupled Control Logic (-04 Option) is installed. However, the period of the data strobe must match the program change interval. If this is not done, the output will follow any program changes, which is normal for direct programming.

2-35. Flag Outputs

2-36. Two flag outputs are provided to indicate when a current overload exists and when the output voltage has settled. A current OVERLOAD is indicated by a Logic "1" at pin 49 of the Programming Connector. Normal operation is indicated by a Logic "0". Settling of the output is provided by a READY/NOT READY flag at pin 37. A

Logic "0" indicates a READY condition when the output voltage is within $\pm 0.01\%$ of the programmed change for a resistive load. A Logic "1" indicates a NOT READY condition.

2-37. The OVERLOAD flag and the NOT READY flags will both be activated when a current overload occurs. After the overload is removed, the NOT READY flag will remain for 30 usec until the output voltage has settled. Figure 2-7 shows the timing relationship of these flags.

2-38. External Reference

2-39. When the External Reference (-03 Option) is installed, the power source can be used as a programmable amplitude source through the use of an external reference signal. The output accuracy, however, is then relative to the accuracy and stability of the external reference. Frequency range of this feature is from dc to 100 kHz.

Figure 2-6. ISOLATED CONTROL LOGIC TIMING

2-40. The external reference signal can have an amplitude of 0 to 14.5 vdc or peak ac (volts rms x 1.414). It is applied to \pm EXT REF terminals located on the rear panel barrier strip. Input impedance at these terminals is 100k in parallel with 15 pf. The external reference feature is activated by applying a Logic "1" to pin 36 of the Programming Connector. When BCD coding is used, the resulting dc or peak output of the power source can be calculated as follows:

$$E_{OUT} = (ABCD \times 10^{-4}) (E_{EXT REF})$$

Where:

 $E_{OUT} = dc \text{ or peak output voltage}$

ABCD = Decade BCD coding

 $E_{EXT REF}$ = external reference dc level or peak ac (volts rms x 1.414) value.

NOTE!

In binary coding per decade is used, the maximum output that can be specified is 16.665 volts. The calculation for BCD coded inputs can be used to determine the output voltage; however, the maximum binary output that can be called with a 14.5 volt external reference is 11493 mv. If a 16665 mv output is called, the maximum external reference that can be used is 10 volts.

2-41. Front Panel Indicators

2-42. When the Front Panel Display (-02 Option) is installed, status lamps are provided on the front panel. These lamps indicate the programmed output level, output polarity, current overload, external reference, and standby status of the internal register. None of these lamps are provided when the BLANK FRONT PANEL (-05 Option) is installed. A POWER lamp is included with either option to indicate that the power source is energized.

2-43. Dynamic Characteristics

2-44. The power source output can be changed quite rapidly with high speed programming information. However, a 30 usec period must be allowed before the output has settled to its stated accuracy for a resistive load. A typical example of this settling period is shown in Figure 2-8. If a capacitive load is driven by the power source, the settling time may have to be extended beyond the nominal 30 usec period, depending on the magnitude of the capaci-

Figure 2-7. FLAG TIMING RELATIONSHIP

4210A

tance. Figure 2-9 shows a typical settling time versus capacitive load plot.

2-45. When an external signal is used as the reference for the power source, the output accuracy is dependent upon the characteristics of the external signal. If a dc voltage is used, the output accuracy is related to the accuracy and stability of the external voltage. However, if an ac signal is used, the output accuracy is not only dependent upon the external signal stability, but also its frequency. Typical examples of accuracy versus frequency are shown in Figures 2-10 through 2-13.

Figure 2-8. ACCURACY VERSUS SETTLING TIME (RESISTIVE LOAD)

Figure 2-9. SETTLING TIME TO 0.01% ACCURACY (CAPACITIVE LOAD)

2-8

Figure 2-10. ACCURACY VERSUS EXTERNAL REFERENCE FREQUENCY

Figure 2-11. AC EXTERNAL REFERENCE FEEDTHROUGH (0V OUTPUT)

Figure 2-12. AC EXTERNAL REFERENCE PHASE SHIFT VERSUS FREQUENCY

Figure 2-13. AC EXTERNAL REFERENCE HARMONIC DISTORTION VERSUS FREQUENCY

Section 3 Theory of Operation

3-1. INTRODUCTION

3-2. This section contains the theory of operation for the Model 4210A. The information is arranged under headings of "FUNDAMENTAL CIRCUIT DESCRIPTION, BLOCK DIAGRAM ANALYSIS and CIRCUIT DESCRIP-TIONS." An equivalent circuit is shown in Figure 3-1. Figure 3-2 is a simplified block diagram of the power source that includes all options.

3-3. FUNDAMENTAL CIRCUIT DESCRIPTION

34. The circuitry of the power source consists basically of a high-gain operational amplifier such as shown in Figure 3-1. Digital to analog conversion is accomplished by using a ladder network driven by a bi-polar reference voltage. The differential amplifier, by holding the summing junction at virtual ground, produces an output voltage (V_0) that is maintained by a current through R_f as determined by V_{REF} . R

3-5. **BLOCK DIAGRAM ANALYSIS**

3-6. A simplified block diagram of the power source and options is shown in Figure 3-2. The basic function is to convert digital program words into a representative dc output voltage. One of two A6 Logic assemblies receives and processes the digital inputs. The Isolated Control Logic (-01 Option) provides both isolation and storage for digital inputs. The Direct Coupled Control Logic (-04 Option) provides only level shifting of digital inputs. The resulting output commands from the A6 Logic assembly

then determines the polarity of V_{REF}, condition of the A through D ladder networks, and selection of reference voltage. The commands are also applied to the A7 Display assembly where, if the -02 Option is installed, visual indication of the command word is made available. The A through D ladder networks in the A3 DAC Amplifier and A5 BCD Ladder scale the selected V_{RFF} to a level which

Figure 3-1. POWER SOURCE EQUIVALENT CIRCUIT

then causes the A3 DAC Amplifier to produce an output voltage proportional to the digital input program. The maximum output current capability is limited by the I Limit circuit in the output of the A3 DAC Amplifier to prevent damaging the power source.

3-7. If the A4 External Reference (-03 Option) is installed, an external reference voltage can be used in place of the internal V_{REF}. The magnitude of the external reference can be from 0 to ± 14.5 Vdc or peak ac and have a frequency from dc to 100 kHz. The external reference is processed in the A4 External Reference assembly and applied to the V_{REF} bus in the power source where it is scaled by

Figure 3-2. BLOCK DIAGRAM

the ladder network under control of the magnitude program word. The A3 DAC Amplifier then produces the appropriate output voltage; however, this output is now proportional to the combined effects of the external reference magnitude and the digital program word. The actual output is determined as follows:

> ^EOut = (E_{Ext Ref}) (ABCD x 10⁻⁴) Where: E_{Ext Ref} = External reference dclevel or peak ac (V rms x 1.414) value.

$$ABCD = Decade digital coding(8-4-2-1)$$

3-8. CIRCUIT DESCRIPTIONS

3-9. The following paragraphs describe the circuitry in the power source. Each description, unless otherwise noted, is keyed to the appropriate schematic diagram located at the rear of the manual.

3-10. A2 Power Supply (4210A-1061)

3-11. All operating voltages, as well as the internal reference voltage upon which the power source accuracy and stability relies, are produced in the A2 Power Supply. The designation and magnitude of each voltage is given in Table 3-1.

Table 3-1. OPERATING VOLTAGE

DESIGNATION	VOLTAGE (VDC)		
+v _L	+5V		
_v _L	–5V		
±۷U	±25V		
±V _A	+23.4, –25.1V		
V _{REF}	±10V		

3-12. INPUT POWER. AC power from J1 is applied to T1 through the POWER switch S2 and the 115/230 switch S1. The primary of T1 consists of two windings which allow operation from either a 115 or 230 Vac line. S1 provides a parallel connection for 115 Vac line operation and a series connection for 230 Vac line operation. The four secondary windings of T1 supply ac voltages to the associated power supplies.

3-13. $+V_L$ SUPPLY. The $+V_L$ Supply composed of CR19 and Q21 through Q24 produces a regulated +5 Vdc for use by the A6 Logic and external programming equipment. Diode bridge CR19 rectifies the secondary voltage of T1 and supplies the series regulator of Q21 through Q24 with a dc voltage. C16 filters the voltage applied to the regulator. Q22 functions as a constant current source, supplying base drive to Q21 and Q23. The resulting +5V output of the regulator is developed across CR23 and R54 which supplies a sample of the output voltage to the base of Q24. The conduction of Q24 will limit the base drive to Q21 and Q23 producing a regulated +5V output. This supply is completely isolated from all other supplies in the instrument.

3-14. $-V_L$ SUPPLY. The $-V_L$ Supply composed of CR14 and Q16 through Q18 produces the regulated -5V required to operate the internal logic circuits. Diode bridge CR14 rectifies the secondary voltage of T1 and supplies the series regulator of Q16 through Q18 with a dc voltage. C13 filters the rectified voltage. The base drive for Q18 and Q17 is derived from the $+V_A$ Supply through R44. Reference voltage for the base of Q18 is derived from the $-V_A$ Supply through the divider consisting of R46 and R47. Any variation in the -5V output is then sensed by Q18, which controls the base drive to Q16 and Q17, producing a regulated -5 Vdc output.

3-15. $\pm V_A$ SUPPLY. The $\pm V_A$ Supply produces the regulated +23.4V and -25.1V operating voltages that are used to provide power for all analog circuitry except the power amplifier in the A3 DAC Amplifier board. Diode bridge CR4 rectifies the tapped secondary voltage of T1 and supplies positive and negative voltages for the respective $\pm V_A$ regulators. C7 and C8 filter these rectified voltages.

3-16. The $+V_A$ regulator consists of Q12, Q13 and U4. Reference voltage for this regulator is derived from U2 in the V_{REF} supply and is applied to the non-inverting input of U4. The inverting input of U4 receives a sample of the output voltage from the divider, R36 and R37. Any variations in the $+V_A$ output are thus sensed by U4, which controls the base drive to Q12, producing a regulated +23.4 Vdc output. Q13 together with R33 function to limit the maximum output current of this supply to 125 ma. Should the current through R33 exceed 125 ma, the voltage across R33 will turn on Q13 which limits the conduction and power dissipation of Q12.

3-17. The $-V_A$ regulator consists of Q14, Q15, and U5. R40 and the $+V_A$ supply establish the reference current for the feedback resistor R41. U5 supplies the base drive required by Q15 to maintain the reference current through R41, and thus produces a regulated output of -25.1 volts.

3-18. $\pm V_U$ SUPPLY. The $\pm V_U$ Supply produces unregulated ± 25 Vdc operating voltages for the power source. Diode CR10 is connected as a full-wave rectifier to produce the $\pm V_U$ voltages from the tapped secondary of T1. C11 and C12 filter the resulting outputs. R42 and R43 are bleeders for each power supply.

3-19. V_{REF} SUPPLY. The V_{REF} Supply produces an extremely stable $\pm 10V$ reference upon which the stability of the power source is based. Circuitry of this supply consists of a stable reference amplifier U2, a differential amplifier U1, a series-pass element Q1, an inverter amplifier U3, and an emitter follower Q4.

3-20. The reference amplifier U2 contains matched zener and amplifier elements which produce a stable reference voltage with time and temperature. The zener element receives a portion of its bias current from the +23.4V Supply through R4 and CR1. The amplifier element receives collector current from the same source through R5. Base current for this amplifier is provided through a divider composed of R9, R14, R16, R56 and R59. This divider is connected to the $+V_{REF}$ output line through CR34, CR35 and FET gate Q25 (if Q25 is switched on). The FET gates of Q2 and Q3 provide separate output and sense connections when a positive V_{REF} is called. Should any variation occur on the +V_{REF} line, U2 will amplify them with respect to the zener element reference. The change is then applied to one input of U1 which also receives a sample of the $+V_{REF}$ line from the divider composed of R2 and R17. U1, in turn, amplifies the change and alters the conduction of Q1 to maintain a constant +10V output for +V_{REF}. Variable resistor R9 allows adjustment of the sense line input to U2 and subsequently the +V_{REF} output level.

3-21. The inverter amplifier composed of U3 and Q4 produces a $-10V V_{REF}$. U3 is connected as an inverting, unity gain, amplifier. Emitter follower Q4 functions as an output buffer. Feedback through R19 and R18 controls the overall gain of both amplifiers. Variable resistor R19 adjusts this feedback level and subsequently the resultant $-V_{REF}$ output level. Resistors R6 and R21 compensate for TC factors associated with FET gates in the ladder section driven by V_{REF} .

3-22. GATE DRIVERS. The Gate Drivers of Q7 through Q11 control the conduction of the FET switches associated with the V_{REF} Supply. Whenever the power

source has a positive output programmed, the command at pin 18 will be low (-5V), thus turning on Q8, Q11 and switching off FET gates Q2, Q3. With Q8 on, the E-B junction of Q9 is reverse biased causing Q9 and Q10 to turn off, thus turning on FET gates, Q5, Q6, and Q25. The V_{REF} output applied to pin D is therefore -10V when a positive output is programmed. Should a negative output be programmed, the command at pin 18 will be high (OV), which turns off Q8 and Q11 and switches the FET gates Q2 and Q3 on. With Q8 cut-off, Q9 conducts and turns on Q10, thus switching the FET gates Q5, Q6, and Q25 off. As a result, the voltage at pin D is +10V when a negative output is called. Should the STANDBY or EXT REF mode be programmed, low (-5V) commands will exist at pins S or V. These low inputs will turn on Q7 and Q8, thus turning on both Q10 and Q11 and switch all FET gates off. As a result the V_{REF} supply is completely disconnected from the V_{REF} output terminals, B and D.

3-23. RELAY DRIVER. The Relay Driver composed of Q19 and Q20 is used to energize K1 whenever the power source is turned on. The contacts of K1 then complete the connections to the OUTPUT connector. Should the power source be shut off for any reason the connections are broken so that the load will not be subjected to any voltage not programmed.

3-24. A4 External Reference (4210A-1041)

3-25. The A4 External Reference is installed as the -03 Option. It receives and processes an external reference input having a frequency of dc to 100 kHz and a level from 0 to ± 14.5 Vdc or peak ac. The circuitry consists of three differential amplifiers and an emitter follower which form an operational amplifier. FET gates controlled by drivers apply the amplifier output and sense line to the V_{REF} lines.

3-26. DIFFERENTIAL AMPLIFIER. The Differential Amplifier consists of three individual amplifiers; Q1 through Q8, and the emitter follower, Q13. The external reference input is applied through R1 and C9 to one input of the differential FET, Q1. This stage amplifies the input in respect to V_{REF} common and provides a differential input to Q5. Feedback through R16 and R17 maintains the input of Q1 at virtual V_{REF} common. Adjustment of R17 controls the overall gain and subsequently the output VREF high at terminal 4. Variable resistor R6 allows zero offset adjustment of the output (V_{REF} high). Jumper selection of R5 and R8 through R10 provides range compensation for R6. Further balancing of the output is done through selection of R_N or R_P in the collector circuit of Q1. A constant current source for Q1 is provided through Q2, while TC compensation is provided through Q3. The differential Darlington composed of Q4 and Q5 amplifies the output of Q1 and furnishes a single ended drive signal to Q7. This drive signal is developed across Q6 which functions as a high impedance, constant current source for Q4B. The final differential amplifier of Q7 and Q8 supplies a drive signal to the emitter-follower output stage of Q13. This stage provides a low impedance output to drive the V_{REF} high line. Q14 functions as a high impedance current source for Q13. Diodes CR1 and CR2 provide connection to the feedback line in the event Q9 and Q10 are switched off.

3-27. FET GATES. Q9 and Q10 control application of the external reference to the internal V_{REF} lines. Q9 connects the feedback line to V_{REF} sense, and Q10 connects the external reference to the internal V_{REF} high line. Drivers Q11 and Q12 control the on/off condition of Q9 and Q10 in conjunction with the EXT REF and STANDBY commands at terminals 13 and M.

3-28. When an EXT REF command (OV) exists at terminal 13, Q11 is turned off, and $-V_A$ is applied to both the emitter and base of Q12. This condition turns off Q12 and switches FET gates Q9 and Q10 on, thus applying the external reference to the internal V_{REF} line. The same condition occurs when a STANDBY command (OV) exists at terminal M. Diodes CR3 and CR4 provide isolation between the input command lines.

3-29. Should a STANDBY or EXT REF command (-5V) exist, Q11 will be switched on and turn on Q12. Conduction of Q12 applies $-V_A$ to the gates of Q9 and Q10 which turns them off. This condition then disconnects the external reference from the internal V_{REF} lines.

3-30. A5 BCD Ladder (4210A-1031)

3-31. The A5 BCD Ladder contains a buffer amplifier for V_{REF} and the three lower decade segments of a ladder network. The buffer amplifier produces a V_R' signal from V_{REF} to prevent loading of V_{REF} by ladder switching currents. The ladder decades are voltage dividers weighted in fifteenths for control by digital words from 1 to 15 (8 + 4 + 2 + 1). The relative position of each decade with respect to the ladder output determines the significance of each decade's contribution to the total ladder network output.

3-32. BUFFER AMPLIFIER. The Buffer Amplifier composed of Q1 through Q3 is a unity gain amplifier connected through CR1 to function as a voltage follower. This circuit produces a V_R' signal that is applied to the ladder drivercircuits. Output impedance is sufficiently low from dc to 100 kHz to prevent loading by ladder switching currents.

3-33. LADDERS. The three lower decade ladders consist of R1 through R18. Each decade of the ladder is formed essentially by four resistors which in combination weight the division factor of each decade in fifteenths. A simplified diagram of a typical decade ladder is shown in Figure 3-3.

Figure 3-3. LADDER DECADE (SIMPLIFIED)

3-34. DRIVERS. Each ladder resistor is connected to V_{REF} common using a driver such as the one shown in Figure 3-4. When the bit command is high (OV), QA and QC are both turned off, which applies $-V_A$ to the gate of QB and V_R' to the gate of QD. This condition switches QD on and QB off, thus applying V_{REF} through QD to the ladder resistor R_N . Absence of a bit command will apply a low (-5V) to the base of QA which causes it to conduct. The resulting OV collector signal switches on gate QB and the driver QC. Conduction of QC applies $-V_A$ to the gate of QD, turning it off. As a result, V_{REF} common is applied through QB to the ladder resistor R_N .

Figure 3-4. LADDER DRIVER (SIMPLIFIED)

3-35. A6 Isolated Control Logic (4210A-1021)

3-36. The A6 Isolated Control Logic is installed as the -01 Option. This assembly receives and processes all input and output data at the Programming Connector, J1. A logic diagram in simplified form is shown in Figure 3-5. Timing relationship of all events is shown in Figure 3-6.

3-37. LOGIC DIAGRAM ANALYSIS. Serial to parallel conversion is done using the circuitry shown in Figure 3-5. Presetting of all counter circuits upon initial turn-on is provided using two separate Preset generators in the input and output sections. After presetting, the STROBE input is required to initiate any programming changes that will affect the output. The STROBE input triggers the Delay One-Shot U23 into operation which produces an 800 nsec gate. The positive Q output goes to the Ready One-Shot U8 and is also inverted by U7B. The Ready One-Shot, which triggers on the lagging edge of the Q output, produces a 30 µsec READY flag output through U6A and U7A. The output of U7B is differentiated and the positive going spike triggers the Start/Stop Flip-Flop U10 into operation. The low \overline{Q} output of U23 is inverted by the Hold Driver U11B, Q20 and coupled across the GUARD where it triggers the Hold One-Shot U15 into operation. The resulting HOLD command lasts for 8 µsec and prevents any change in output voltage through a sample and hold circuit in the A3 DAC Amplifier.

Figure 3-6. ISOLATED CONTROL LOGIC TIMING

3-38. The Start/Stop Flip-Flop U10 generates complementary pulses which last for 1.6 μ sec. One of these pulses enable the Clock Generator and the NAND gate, U10C. The Clock Generator produces 16 pulses at a 10 MHz rate which are gated through U10C. This clock signal then initiates serial to parallel conversion. In the event a STANDBY command exists, the output of U7F will continuously enable the Clock Generator, and, when the Start/Stop Flip-Flop period of 1.6 μ sec ends, the clock signal is gated through U6B. This signal is then amplified by Q7 and coupled across the GUARD where CR14 and C21 rectify the pulses. The resulting voltage is inverted by U12C to provide a STANDBY command until the next STROBE input.

3-39. The clock signal output of U10C advances the Address Control U5 which supplies sixteen 4 bit addresses to the Multiplexer composed of U1 through U4. The two serial bit outputs of U4 are gated through U6C and U6B in sequence with the clock signal and amplified by Bit Drivers, Q4 and Q6. This information and the clock are then coupled across the GUARD to the Shift Register of U19 through U21. The Shift Register performs the serial to parallel conversion necessary to produce the internal commands. At the end of the HOLD command described previously, these commands establish the programmed output of the power source.

3-40. Should a source or sink current limit condition occur, the resulting I LIMIT command will first be shaped by the Schmitt Trigger of Q17 through Q19 and then amplified by Q14. The resulting step output of Q14 is coupled across the GUARD where CR6 through CR9 rectify the differentiated portion of the squarewave and supply a positive spike at the leading and lagging edge of the I LIMIT command. These spikes are inverted by U11F and are used to trigger the I LIMIT Flip-Flop at the beginning and at the end of an overload. The positive going Q output of U9 is inverted by U7C and becomes the OVERLOAD flag output. The \overline{Q} output of U9 forces the output of U6A high which produces a **READY** flag output through U7A that lasts for the duration of the I LIMIT command. This \overline{Q} output of U9 also triggers the Ready One-Shot when it reverts to its high state, thus providing a **READY** flag for an additional 30 μ sec. As a result, the **READY** flag lasts for the duration of the OVERLOAD flag plus 30 µsec.

3-41. CIRCUIT DESCRIPTION. Two Preset Generators are used in the Isolation Control Logic (-01 Option). Their purpose is to preset all counters, flip flops, and registers to their proper state when the supply is first turned

on. This is to insure that the output of the power source is programmed to its minimum value, and that all logic is in the proper state to accept input data and process it properly upon command. One Preset Generator is used to preset the input programming circuitry and is composed of Q9, Q10, Q22, and Q23. When input power is applied, the $+V_I$ supply rises to its regulated level of +5 volts. The +5V allows sufficient current through R72 and R73 to drive Q23 into saturation. With Q23 saturated, R70 and R71 form a voltage divider which determines the current level of a constant current source formed by R69 and Q22. At this point C16 has not been charged, and Q9 and Q10 are turned off, leaving the preset line high. C16, driven by the constant current from the collector of Q22, then begins to charge at a linear rate. The voltage divider composed of R29 and R30 provides $a \pm 4V$ reference to the gate of a Programmable Unijunction Transistor, Q9. When the charge on C16 reaches approximately +4.5V, the gate to anode of Q9 is forward biased causing it to turn on and latch. C16 now begins to rapidly discharge through Q9 and R31. The voltage developed across R31 is sufficient to turn on Q10, which causes the preset line to go low, thereby presetting all input programming circuitry. When the discharge of C16 is almost complete, the voltage drop across R31 can no longer supply base drive to Q10; it therefore turns off. allowing the preset line to return to its high state. Q9, however, receives enough current from the collector of Q22 to remain in the latched condition, but not enough to cause Q10 to conduct.

3-42. The second Preset Generator is used to preset the shift registers in the isolated portion of the logic circuitry. It is composed of Q15 and U17A and is less complex than the preset generator previously described. When input power is applied, the $-V_{L}$ supply rises to its regulated level of -5V. At this time Q15 is not conducting, C22 is not charged, and the output of U17A is 0 to -1V. C22 now begins to charge at an exponential rate through R51. R50 and R52 form a voltage which provides a -1V reference to the gate of a Programmable Unijunction Transistor, Q15. When the charge on C22 reaches approximately -.5V, the gate to anode of Q15 is forward biased causing it to turn on and latch. C22 now begins to rapidly discharge through Q15 and R53. The voltage developed across R53 drives the input of U17A toward OV, causing its output to drive close to -5V and clear shift registers U19, U20 and U21. As the discharge of C22 is almost complete, the voltage drop across R53 approaches zero volts allowing the input of U17A to return to a - 5V level. The output of U17A then returns to 0V, completing the preset pulse. Q15, however, remains latched because of the small holding current supplied through R51.

3-43. Parallel input data present on pins 4 through 7 and 9 through 12 of U1, U2, and U3 may now be transferred serially to the isolated shift registers U19 through U21, where it will be stored and presented in parallel form. Data transfer is initiated by a data STROBE pulse applied at terminal 33 of J1. This STROBE triggers a Delay One-Shot U23 into operation. U23 triggers on the lagging edge of the data STROBE as shown in Figure 3-6 and generates a fixed time delay of 800 nsec, which is determined by the RC network composed of R74 and C49. The Q output, which goes high when U23 is triggered, is inverted by U7B and sent to a differentiator composed of C1, R1, and CR1. The negative transition is clamped to -.5V by CR1. The Q output of U23 also goes to the trigger input of the Ready One-Shot U8, which is not triggered until Q goes low. The $\overline{\mathbf{Q}}$ output, which goes low when U23 is triggered, is inverted by U11B and turns on Q20 by supplying base current through R64 and C43. Q20 draws collector current through R66, R67 and the primary winding of T3 which then couples a voltage pulse across the GUARD to the secondary of T3. This voltage pulse is of the proper polarity to cause the emitter-base junction of Q16 to be forward biased through R55, thereby turning on Q16 and supplying the lagging edge trigger required to operate the Hold-One Shot, U15. The RC network composed of R43 and C20 allows U15 to generate an 8 μ sec HOLD pulse at the Q output, which is applied to terminal E of P1. The Q output of U23, which went high for 800 nsec after receiving a data STROBE, now does low, triggering the Ready One-Shot, U8. This causes its \overline{Q} output to go low for 30 usec as determined by the RC network composed of R8 and C4. The Q output of U8 goes to an input of gate U6 where it is inverted. The output is supplied to U7 which again inverts the signal and applies it to terminal 37 of J1 as the READY/NOT READY flag. (Figure 3-6). The Q output of U23 also goes to U7B where it is inverted and sent to a differentiator composed of R1, C1, CR1. Since the output of U7B is a positive transition, the diode CR1 is reversed biased, allowing the signal to be differentiated across R1; thereby supplying a narrow spiked input to U7E where it is inverted and sent as a negative going pulse to trigger the Start/Stop Flip-Flop, U10. When the \overline{Q} output of U23 goes high, it causes the output of U11B to go low, removing the base drive from Q20, turning it off. As the field collapses at the primary of T3, a voltage is coupled across the GUARD to its secondary and clamped to -5.5V by CR19. Q16 is not affected since the polarity of the voltage reverse biases its base-emitter junction.

3-44. The Start/Stop Flip-Flop, U10, is used to start an oscillator, which forms the Clock Generator, and gate clock pulses to the circuitry which will accomplish the parallel

to serial to parallel conversion of input data. When the data conversion is complete, the Start/Stop Flip-Flop is reset, inhibiting the clock and stopping the oscillator. The Start/Stop Flip-Flop consists of two 3 input NAND gates which are cross coupled to form an RS FLIP-FLOP. A momentary low at pin 1 of U10 will cause the output at pins 4 and 12 to go high and the output at pins 2 and 6 to go low. They will remain in that state until a momentary low is applied to pin 5, which will reset the latch to its original state. The 10 MHz Clock Generator is a multivibrator composed of Q2 and Q3 and is controlled by Q1 and Q21. The output of the multivibrator is taken from the collector of Q3 and sent to an input of U10C and U6B where it is gated by the outputs of the Start/Stop Flip-Flop. Clock Pulses are formed at the output of U10C, or stand-by pulses at the output of U6B. The control transistors Q1 and Q21 are normally turned off allowing the emitter of Q2 to float, thus stopping the multivibrator and forcing the collector of Q3 low as a result of the base current supplied by R5. When the STANDBY input (J1 -Pin 34), is commanded (see Figure 3-6), the output of inverter U7F will go high and supply base current through R68 to Q21 causing it to saturate. With Q21 saturated, the emitter of Q2 is close to logic ground and the multivibrator will start. The output of the multivibrator is gated through U6B and sent to the Standby Driver. The input of U10C is inhibited by the Start/Stop Flip-Flop forcing its output high.

The Standby Driver composed of U11C and Q7 3-45. will cause the primary of T1 to be driven at the same frequency as the Clock Generator. This signal is coupled across the GUARD to the secondary of T1, where it is rectified by CR14 and stored by C21. This charge on C21 will cause the output of U12C to drive toward -5V, producing a STANDBY output at pin 6 of P1. If a data STROBE is now applied to terminal 33 of J1, the Start/Stop Flip-Flop will trigger causing the cathode of CR2 and the input of U10C to go high. The input of Gate U6B goes low, inhibiting the standby pulses which were going to the Standby Driver. When the anode of CR2 goes high, the current it was drawing through R13 is gated through CR3, R2, and the emitter base junction of Q1. Both Q1 and Q21 are now turned on, and the multivibrator output is gated through U10C to produce clock pulses. The data STROBE will therefore override the STANDBY command during the data transfer period.

3-46. The Address Control is accomplished by U5, a leading edge triggered, synchronous 4-bit binary counter. The outputs of this counter were preset to zero when line power was applied. The counter is advanced from 0 to 15

by clock pulses received from U10C. The negative transition of the 16th clock pulse will produce a low Carry output at U5, resetting the Start/Stop Flip-Flop, which, in turn, inhibits the inputs of U10C and turns Q1 off. When the input of U10C is inhibited, its output is forced high, causing the 16th clock pulse to make a position transition and return the counter, U5, to zero. The 4-bit binary outputs of U5 are used to supply 16 address codes to the address inputs of the Input Multiplexer.

3-47. Multiplexing of input data is accomplished by four dual, 4 input multiplexers, U1 through U4. Since only 16 address codes are available and 18 data inputs must be scanned, it is necessary to use 2 parallel lines to transfer serial data. The first output of U4 (pin 15) will present serially the 16-bits of parallel magnitude data present at J1 (terminals 1 through 16). The second output of U4 (pin 1), will present POLARITY data with an address code of 14, and EXT REF data with an address code of 15. Table 3-2 shows the address codes required for input multiplexing by U1 through U4. Data available at the non-inverting outputs of U4 is in the inverted form since the inverted outputs of U1 through U3 supply the input of U4.

ADDRESS INPUTS		DATA INPUTS				OUTPUTS	
s _o	s ₁	1 ₀	1 ₁	1 ₂	1 ₃	¹ and 15	² and ₁₄
Ľ	L	L	x	х	x	L	н
L	L	н	х	х	х	н	L
н	L	x	L	х	х	L	н
н	L	X	н	х	х	н	L
L	н	X	х	L	X	L	н
Lι	н	X	X	н	Х	н	L
н	н	x	х	х	L	L	н
н	Н	х	х	х	н	н	L

Table 3-2. TRUTH TABLE

3-48. Two lines of serial data and the clock must now be transferred across the GUARD to the inputs of the isolated Shift Registers. Because the operation of the Bit Drivers and the Clock Driver are the same, only the Clock Driver will be described. The Clock Driver is composed of Q5, Q12, U11A, U12A and T2. When the Clock Driver is not operating, the output of U10C is high, holding the output of U11A low. Q5 and Q12 are not conducting and the output of U12A is low (-5V). When a clock pulse is generated, the output of U11A goes high and supplies enough

base current through R14 and C56 to drive Q5 into saturation. The collector current drawn through the primary of T2, R15 and R16 causes a voltage to be coupled across the GUARD to the secondary of T2. This voltage is of the proper polarity to forward bias the emitter base junction of O12 through R37. With Q12 turned on, the input of U12A is pulled low causing its output to go high. When the first clock is completed, the input to U11A returns high, driving its output low. Base current is no longer supplied to Q6 causing collector current through the primary of T2 to cease. As the field collapses at the primary of T2, a voltage is coupled across the GUARD to its secondary. The polarity of this voltage is such that the emitter base junction of Q12 is reverse biased allowing the inputs of U12 to go high and its output to go low. (Note that capacitor C42 in the Clock Driver circuit is replaced with clamping diodes CR10 and CR12 in the Bit Driver circuits). C42 creates a small time delay in the clock pulse. This allows the data from the Bit Drivers to set up the data inputs of the Shift Registers before the positive transition of the clock pulse arrives.

3-49. Data transferred across the GUARD is derived from the clock pulse. An inverted clock from U7D is gated through U6B and U6C by the data outputs of U4. When the data outputs of U4 are high a clock pulse is sent to the Bit Drivers, coupled across the GUARD, and sent to the data inputs of the Shift Registers. When the data outputs of U4 are low the inputs of U6B and U6C are inhibited, preventing the clock pulse from reaching the input of the Bit Drivers. This will cause a low input to be present at the data inputs of the Shift Registers. Data is transferred across the GUARD when the clock at the output of U10C goes low, and the address to the Multiplexer is advanced when this clock goes high.

3-50. The isolated Shift Registers which restores the serial data to its parallel form are U19, U20 and U21. The 16 bits of serial magnitude data are sent to the data inputs SA and SB of U19. The POLARITY and EXT REF data is sent to the data inputs SA and SB of U21. Data present at these inputs is shifted in when the clock input goes high. The parallel data from these registers is routed to P1.

3-51. When a current limit occurs in the power supply, it is detected by a Schmitt Trigger and coupled across the GUARD where it is stored in a Flip Flop which produces an OVERLOAD flag at terminal 49 of J1. The Schmitt Trigger composed of Q17 through Q19 is used to create the sharp leading-and-lagging edges required for T4 to transfer a pulse reliably across the GUARD. Under normal operating conditions Q17 is turned off and Q18, Q19 are con-

ducting. The voltage divider formed by R59, R60, and R61 supply +2.5 volts to the base of Q18. Q18 will draw sufficient collector current to cause Q19 to saturate and to maintain its own emitter at a -3.1 volt level. When a current overload occurs, terminal 5 of P1 will be driven to near OV, forward biasing Q17. As Q17 begins to conduct its collector goes negative while its emitter is driven more positive. This action causes the emitter base junction of Q18 to be rapidly reverse biased, thus turning both O18 and Q19 off. When the overload is removed, terminal 5 on P1 will be driven to nearly -5V, and the Schmitt Trigger will return to its original state. Q14, the drive transistor for the primary of T4, receives its base drive from the collector of Q19 through R48 and R49 and is normally biased on. In the event of an overload, base drive is rapidly removed from Q14 allowing the field around the primary of T4 to collapse. This causes a voltage to be coupled across the GUARD to the secondary of T4. The voltage is passed through a full wave bridge, CR6 through CR9, and emerges as a positive voltage drop across R27. The voltage is then differentiated by C8 and R26 and sent as a positive spike to the input of inverter U11F. The output of U11F supplies the negative going pulse required to trigger the J-K Flip Flop, U9. The Q output of U9 goes high and is sent to the inverter U7C which supplies an OVERLOAD flag to terminal 49 of J1. The \overline{Q} output of U9 goes low, forcing the output of NAND gate U6 high. The output of U7 goes low producing a READY flag at terminal 37 of J1. As long as the overload is present, the OVERLOAD flag and the **READY** flag will be maintained. When the overload is removed Q14 will be turned on, causing a pulse to again be coupled across the GUARD, rectified, differentiated, and sent as a trigger to the I LIMIT Flip Flop, U9. The Q output of U9 returns low, removing the OVERLOAD flag. The Q output of U9 returns high, causing the 30 μ s Ready One-Shot to be triggered and its low output to be gated through U6, maintaining a high input to U7. The output of U7 continues to supply a \overrightarrow{READY} flag for 30 μ sec after the overload is removed.

3-52. A6 Direct Coupled Control Logic (4210A-1022)

3-53. The A6 Direct Coupled Control Logic is installed as the -04 Option. It provides only level shifting of all input and output data at the programming connector. The circuitry consists of 26 identical level shifters, a ready oneshot and two driver amplifiers.

3-54. LEVEL SHIFTERS. The Level Shifters receive and process all digital inputs. A Logic "1" input $(0 \pm 0.4V)$ or logic ground) turns off the driver QA which produces an 3-55. READY ONE-SHOT. The Ready One-Shot composed of U3 produces the READY/NOT READY flag output available at terminal 37 of J1. This circuit is activated by the STROBE input or an I LIMIT condition. Timing information is shown in Figure 3-7.

Figure 3-7. DIRECT COUPLED LOGIC TIMING

3-56. The STROBE input at terminal 35 is shown in Figure 3-7. The negative going portion of this input is inverted by U2 and turns on LS18, which generates a HOLD command equal to the duration of the STROBE input. The HOLD command is applied to the A3 DAC Amplifier to prevent any programming changes from affecting the power source output.

3-57. At the end of the STROBE input, the positive to negative transition at the output of U2 triggers U3 into operation. The resulting 30 μ sec signal is gated through U1 and becomes the **READY** flag at terminal 37. Should a current limit condition occur, an I LIMIT command will be present at terminal 5 of P1. This command will turn on Q1 and generate the OVERLOAD flag available at terminal 49 of J1. U1 serves a buffer for the flag output. The output of U2 also triggers the Ready One-Shot into operation which produces a **READY** flag for the duration of the OVERLOAD flag, plus an additional 30 μ sec.

3-58. A3 DAC Amplifier (4210A-1051)

3-59. The A3 DAC Amplifier produces a buffered output voltage proportional to the output of the digital to analog converter. Circuitry consists of the "A" decade ladder and associated ladder drivers, an inverting amplifier, a X5 amplifier, a power amplifier, and an overload detector.

3-60. "A" DECADE LADDER. The "A" Decade Ladder is formed essentially of R8, R16, R24 and R32. Their combined values weight the division of V_{REF} in fifteenths for control by 8-4-2-1 coded digital inputs. Variable resistors located in the 4-2-1 segments allow precise scaling to the 8 segment. The resulting scaled V_{REF} is combined with the A5 BCD Ladder output through R1 and applied to one input of Q18. Feedback from the power source output through R33 drives this point to virtual analog common, thus forming a zero voltage summing junction. Diodes CR13 through CR16 limit the maximum summing junction voltage during programming changes.

3-61. LADDER DRIVERS. The Ladder Drivers of Q1 through Q16 apply V_{REF} or analog common to the ladder resistors under control of the A1 through A8 digital commands. Each Ladder Driver functions in the same manner with the only difference being the use of two parallel FET gates in the A8 driver. For this reason, only the operation of the A8 driver is discussed.

3-62. The A8 Ladder Driver switches the input to the ladder resistor R8 through the FET gates Q1, Q2, and Q3. V_{REF} is switched by Q1, Q2, and V_{REF} common is switched by Q3. When an A8 bit command (0V) exists at terminal 18, both Q4 and Q5 will be switched off which applies $-V_A$ to the gate of Q3 and V_R' to the gates of Q1 and Q2. This condition switches Q3 off and Q1, Q2 on, thus applying V_{REF} to R8. Absence of the A8 command will apply a -5V signal to terminal 18 which will switch both Q4 and Q5 on, and produce a 0V collector signal at Q4 and a $-V_A$ collector signal at Q5. This condition switches Q3 on and switches Q1, Q2 off, thus applying analog common to R8.

3-63. INVERTER AMPLIFIER. The Inverter Amplifier consists of three differential amplifiers designated Q18, Q24, and Q25. This circuitry amplifies the summing junction signal in respect to analog common and provides a drive signal to the X5 amplifier. It also contains a hold circuit which prevents the output from changing during the presence of a HOLD command.

3-64. The summing junction input is first amplified by the J FET Q18. A constant current source is provided

through Q19. Temperature compensation is provided by O20. Variable resistor R40 provides an adjustment to compensate for the input offset voltage of the amplifier. Jumper selection of R37 through R42 provides range compensation for R40. Further balancing of the output is done through selection of R_N or R_P in the collector circuit of Q18. Diodes CR9 through CR12 limit the maximum voltage swing during programming changes. The differential output of Q18 is applied to the inputs of Q24 through MOSFET gates Q21 and Q22. These gates are controlled by the driver Q23 and are switched on except when a HOLD command (-5V) is present at terminal P. Normally a HOLD command (OV) exists at terminal P holding Q23 on, which applies $-V_{I}$ to Q21 and Q22, thus turning them on. However, when a program change is called using a STROBE input, the presence of a HOLD command (-5V)turns Q21, Q22 and Q23 off. Capacitors C6, C7, and C8, which are connected to the inputs of Q24, hold a sample of the last input level and force the output voltage to remain constant for the duration of the HOLD command. This is only true, however, for an 8 µsec HOLD period. Longer periods will cause the output to drift beyond the specified accuracy limits. The resulting output of the differential darlington composed of Q24 and Q25 drives the X5 Amplifier. O26 functions as a high impedance constant current source for Q25B.

3-65. X5 AMPLIFIER. The X5 Amplifier consists of Q27 through Q29. It amplifies the output of the Inverter Amplifier and produces the drive signal for the Power Amplifier. Q29 is a unity gain emitter follower. Q27 and Q28 form a X5 voltage amplifier.

3-66. POWER AMPLIFIER. The Power Amplifier composed of Q30 through Q38 produces the power source output. It also provides both sourcing and sinking current limit protection. J FET's Q35 through Q37 function as constant current sources. The current through CR3 and CR4 provides the bias voltage required for Q32 and Q33 to operate as a Class AB amplifier. Q30 and Q31 provide current limiting for sink and source conditions. Q34 and Q38 detect current overloads.

3-67. The output amplifiers of Q32 and Q33 form a complementary, emitter follower stage. Q32 is used for positive output currents and Q33 for negative. Base drive for Q31 and Q32 is supplied by the X5 amplifier through diodes CR1 through CR4. Maximum output current (sourcing) is limited to 100 ma by Q30 and Q31. Normally, these transistors are cut-off; however, should the output current through R77 or R78 exceed 100 ma, the resulting voltage between the base and emitter of Q30 or Q31 will turn it on. Its conduction through CR5 or CR7

4210A

then shunts any additional base drive current to the Power Amplifier, thus limiting the output current. Should the power source begin drawing (sinking) power from the load, the maximum current will also be limited by Q30 or Q31. However, since this current is now flowing in a direction opposite to the load current, its path is through the opposite output transistor. Polarity sensing through CR6 and CR8 ensures proper turn-on of Q30 or Q31 during a sink condition. These diodes connect the base of Q30 or Q31 through R76 or R81 to the common side of the load. The resulting value of R76 or R81 in conjunction with R75 or R79 then causes Q30 or Q31 to turn on in a sink condition equal to the maximum sourcing output minus four times the output voltage or: MAX. I_{Sink(ma)} = 100 -4E_{Out}.

3-68. OVERLOAD DETECTOR. The Overload Detector produces an I LIMIT command at terminals N and 12 whenever a source or sink limit condition occurs. The circuitry consists of driver Q39 and the detectors Q34, Q38 in the Power Amplifier.

3-69. Under normal conditions Q34 is not conducting and no current is flowing through the divider composed of R74 and R69. Q38 is cut-off during this time, which switches Q39 on and produces a -5V I LIMIT command at

terminals N and 12. Should a source or sink condition turn on Q30, the resulting current through R72 and R73 switches on Q34 and increases the current through R69 and R74. If Q31 is turned on, current through R69 is increased in the same manner through R80. Q38 is switched on during this time and turns off Q39, which then produces an I LIMIT command (0V) at terminals N and 12.

3-70. A1 Mother Board and A7 BCD Display (4210A-1011) 4210A-1013)

3-71. The A1 Mother Board serves to interconnect the A2 through A7 assemblies. No component circuitry other than connectors and amp pins are contained on this assembly. The A7 BCD Display is available in two forms, depending on whether the -02 or -05 Option is ordered. The -02 Option provides light emitting diode (LED) indicators which display the internal command data and power on state. Internal commands of 0V (true) are inverted by U1 through U4 and turn on the associated LED of CR1 through CR20. Power on is indicated through direct application of $-V_L$ to CR21. A blank front panel is provided when the -05 Option is installed. This Option contains only CR21 which indicates a power on state.

Section 4 Maintenance

4-1. INTRODUCTION

4-2. This section contains servicing information for the Model 4210A. Table 4-1 lists the required test equipment. If the recommended equipment is not available, substitute equipment with equivalent specifications can be used.

4-3. SERVICE INFORMATION

4-4. All products manufactured by the John Fluke Mfg. Co., Inc. are warranted for a period of one year. Complete warranty information is located in the WARRANTY at the front of the manual.

4-5. Factory authorized calibration and service is available at various world-wide locations. A complete list of Factory Authorized Service Centers is located at the rear of the manual. If requested, an estimate will be provided before repair work is done on an instrument that is beyond the warranty period.

4-6. GENERAL MAINTENANCE

4-7. Cleaning

4-8. This power source should be cleaned periodically to remove dust, grease, or other contaminates. The exterior can be cleaned with a cloth moistened with anhydrous ethyl alcohol or Freon T.F. Degreaser (MS 180 Miller Stephensen Chemical Co., Inc.) If either of these cleaning agents are not readily available, soap and water applied sparing to a cloth can be used. Cleaning of the interior sections is done using clean, dry air at low pressure.

4-9. Fuse Replacement

4-10. The input power fuse is located on the rear section of the power source. If replacement is necessary, use the following related fuse:

115 VAC LINE	230 VAC LINE
1/4A, AGC	1/8A, AGC

4-11. MAINTENANCE ACCESS

4-12. Access to the interior sections of the power source is done in the following manner:

- a. Disconnect the power cord from line power.
- b. Remove the top dust cover. Access is now provided to all calibration adjustments which are labeled on the inner guard cover.
- c. Remove the inner guard cover. Access is now provided for removal of the A3 through A4 pcb assemblies shown in Figure 4-1.
- d. Removal of the A3 through A5 assembly is done using a gentle rocking motion and even pulling force.

NOTE!

The A2 through A6 assemblies can be mounted on an Accessory Extender Card for servicing. Information regarding this Accessory is given in Section 6.

- e. Removal of the A2 or A6 assembly is done from the rear panel. First, remove the four mounting screws at the rear panel and then pull the assembly out through the rear panel.
- f. Access to the A1 and A7 assemblies is possible after removing the front panel. First, remove the bottom dust cover and then peel the decals from the front side panels. Next, remove the mounting screws from the front corners and pull the front panel free of the power source. Separation of the A1 and A7 assemblies from the front panel is done by removing the large mounting screws located on

the A1 Mother Board. The A1 and A7 assemblies can be separated by removing the small mounting screws on the A1 Mother Board and then pulling the assemblies apart.

4-13. CALIBRATION PROCEDURES

4-14. The power source should be calibrated every 90 days or whenever repairs have been made. Recommended test equipment is listed in Table 4-1. If the recommended equipment is not available, substitute equipment having equivalent specifications can be used. Assembly and adjustment locations are shown in Figure 4-1.

Figure 4-1. ASSEMBLY, ADJUSTMENT, AND TEST POINT LOCATIONS
Table 4-1. RECOMMENDED TEST EQUIPMENT

EQUIPMENT NOMENCLATURE	RECOMMENDED EQUIPMENT
	FLUKE Model 8400A–01 FLUKE Model 510A
AC Source Manual Control Unit (MCU)	

4-15. Initial Procedures

- a. Turn off the power source and then remove the top dust cover screws. Leave the cover in place.
- b. Interconnect the Manual Control Unit (MCU) with the power source.
- c. Connect a DVM to the OUTPUT terminals on the rear panel of the power source, observing proper polarity.
- d. Turn on the power source and select a positive, 0v output on the MCU.
- e. Allow the power source to operate for half an hour and then remove the top dust cover.

4-16. "0.4" Bit Adjustments

a. Connect a jumper between A3TP5 and A5TP1. These test points are accessible through the slots in the inner cover.

CAUTION!

The jumper used in step (a) must be fully insulated to avoid contact with the inner GUARD cover.

- b. Call a +0v output and adjust A3, ZERO for a 0 vdc ±10 uv output.
- c. Call a +0.8v output and record the output voltage.Divide the recorded value by two (2).
- d. Call a +0.4v output and adjust A5, +B4 for an output voltage that is within ± 100 uv of the divided value recorded in step c. For example, if the recorded voltage was $\frac{0.80040}{2}$, then +B4 is adjusted for a 0.40020 vdc output.
- e. Call a +0v output and disconnect the jumper between TP1 and TP5.

4-17. Reference Adjustment

- a. Call a +0v output and adjust A3, ZERO for a 0 vdc ±10 uv output.
- b. Call a -8v output and adjust A2, -A8 for a -8 vdc ±100 uv output.
- c. Call a +8v output and adjust A2, +A8 for a +8 vdc ±100 uv output.

4-18. Bit Adjustments

- a. Call a +4v output and adjust A3, +A4 for a +4 vdc ±100 uv output.
- Call a +2v output and adjust A3, +A2 for a +2 vdc ±100 uv output.
- c. Call a +1v output and adjust A3, +A1 for a +1 vdc ±10 uv output.
- d. Call a +1.1v output in the second decade (B8, B2, B1) and adjust A5, +B15 for a +1.1 vdc ±10 uv output.
- e. Call a +0v output.

4-19. External Reference Adjustments (--03 Option)

4-20. If the A4 Assembly is installed, perform following adjustments:

- a. Connect a jumper between the EXT REF input terminals on the rear panel.
- b. Call EXT REF and a +15v output.
- Adjust A4, EXT REF ZERO for a 0 vdc ±10 uv output.
- d. Disconnect the jumper from the EXT REF input terminals.
- e. Apply a 10 vac signal having a frequency of 100 Hz to the EXT REF input terminals. Record the signal level with the DVM used at the OUTPUT terminals.
- f. Call EXT REF and a +10v output.
- g. Adjust A4, EXT REF GAIN for $e_i \operatorname{vac} \pm 1 \operatorname{mv} \operatorname{out-}$ put (e_i = voltage at EXT REF input terminals).
- h. Call a +0v output.

4-21. Output Checks

a. Perform the Linearity Checks in Table 4-2, observing that the specified outputs are obtained.

Table 4-2. LINEARITY CHECKS

CA		POWER SOURCE			
SIGN		DEC	ADE		OUTPUT VOLTAGE
(POLARITY)	A	в	С	D	(VDC)
+	0	0	0	0	0V ±100 uv
+	0	1	1	1	+111 mv ±120 uv
+	0	2	2	2	+222 mv ±120 uv
+	0	3	3	3	+333 mv ±130 uv
+	0	4	4	4	+444 mv ±140 uv
+	0	5	5	5	+555 mv ±150 uv
+	0	6	6	6	+666 mv ±160 uv
+	0	7	7	7	+777 mv ±180 uv
+	0	8	8	8	+888 mv ±190 uv
+	0	9	9	9	+999 mv ±200 uv
+	0	10	10	10	+1.111v ±200 uv
+	1	0	0	0	+1v <u>+</u> 0.2 mv
+	2	0	0	0	+2v <u>+</u> 0.3 mv
+	3	0	0	0	+3v ±0.4 mv
+	4	0	0	0	+4v ±0.5 mv
+	5	0	0	0	+5v ±0.6 mv
+	6	0	0	0	+6v ±0.7 mv
+	7	0	0	Ō	+7v ±0.7 mv
+	8	0	0	o	+8v ±0.8 mv
+	9	0	0	Ō	+9v ±0.9 mv
+	10	0	0	ō	+10 ±1 my
+	15	15	15	15	+16.665v ±1 mv
	15	15	15	15	-16.665v ±1 mv

If the A4 External Reference (-03 Option) is installed, call a +0v output and then connect a jumper between the EXT REF input terminals.

b.

- c. Call EXT REF and a +10v output. The output voltage should be 0 vdc ±0.1 mv.
- d. Remove the jumper from the EXT REF input terminals.
- e. Apply the EXT REF input signals in Table 4-3, observing that the specified ac output voltage is obtained. Ensure that the called output is EXT REF and +10v during each check.
- f. Turn off the power source and disconnect the test equipment.
- g. Install the top dust cover. Calibration is complete.

Table 4-3. EXT REF CHECKS

EXT. F	REF INPUT	POWER SOURCE	
VAC	FREQ	OUTPUT (VAC)	
10	100 Hz	EXT REF Input ±0.015v	
10	10 kHz	EXT REF Input ±0.05v	
10	100 kHz	EXT REF Input ±3v	
NOTE: Verify each EXT REF signal level with the DVM used to check the OUTPUT.			

List of Replaceable Parts

b.

5-1. INTRODUCTION

5-2. This section contains an illustrated parts breakdown list of the instrument and a Cross Reference List of FLUKE stock numbers to original MANUFACTURERS' part numbers. It also lists recommended spare parts and contains part ordering information. The starting page number of each major listing is given in the Table of Contents.

5-3. The parts list shows the location of all assemblies and the replaceable components. Major assemblies are identified by a designation beginning with the letter A followed by a number (e.g., A1 etc). Subassemblies are identified in the same manner; however, the parent assembly designator precedes this designator (e.g., A1A1 etc.). Electrical components are identified by their schematic diagram designator and listed hardware parts are identified by the FLUKE stock number. All listed components are described, and the FLUKE stock number is given. The original MANUFACTURER'S part number for each listed item is given in the Cross Reference List at the rear of this section.

5-4. PARTS LIST COLUMN DESCRIPTIONS

a. The REF DESIG column indexes the item description to the associated illustration. In general the reference designations are listed under each assembly in alpha-numeric order. Subassemblies of minor proportions are sometimes listed with the assembly of which they are a part. In this case, the reference designations may appear out of order.

- The DESCRIPTION column describes the salient characteristics of the component. Indention of the description indicates the relationship to other assemblies, components, etc. In many cases it is necessary to abbreviate in this column. For abbreviations and symbols used, refer to Appendix B located at the rear of the manual.
- c. The six-digit part number, by which the item is identified at the John Fluke Mfg. Co., Inc. is listed in the STOCK NO. column. Use this number when ordering parts from the factory or authorized representatives. In the case where a flag note is used, special ordering is required. Flag note explanations are located as close as possible to the flag note.
- d. The TOT QTY column lists the total quantity of the item used in each particular assembly. This quantity reflects only the latest Use Code. Second and subsequent listings of the same item are referenced to the first listing with the abbreviation REF.
- e. Entries in the REC QTY column indicate the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one of each assembly in the instrument be stocked. In

the case of optional subassemblies, plug-ins, etc. that are not always part of the instrument, or are deviations from the basic instrument model, the REC QTY column lists the recommended quantity of the item in that particular assembly.

f. The USE CODE column identifies certain parts which have been added, deleted or modified during the production of the instrument. Each part for which a Use Code has been assigned may be identified with a particular instrument serial number by consulting the Serial Effectivity List, paragraph 5-9. Sometimes when a part is changed, the new part can and should be used as a replacement for the original part.

5-5. MANUFACTURERS' CROSS REFER-ENCE LIST COLUMN DESCRIPTIONS

- a. The six-digit part number, by which the item is identified at the John Fluke Mfg. Co., Inc. is listed in the FLUKE STOCK NO. column. Use this number when ordering parts from the factory or authorized representatives.
- b. The Federal Supply Code for the item manufacturer is listed in the MFG column. An abbreviated list of Federal Supply Codes is included in Appendix A.
- c. The part number which uniquely identifies the item to the original manufacturer is listed in the MFG PART NO. column. If a component must be ordered by description, the type number is listed.

5-6. HOW TO OBTAIN PARTS

5-7. Standard components have been used whenever possible. Standard components may be ordered directly from the manufacturer by using the manufacturer's part number, or parts may be ordered from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE stock number. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

5-8. You can insure prompt and efficient handling of your order to the John Fluke Mfg. Co., Inc. if you include the following information:

- a. Quantity.
- b. FLUKE Stock Number.
- c. Description.
- d. Reference Designation.
- e. Instrument model and serial number.

Example: 2 each, 215897, Transistor, 2N4126 A2A1Q1 & Q2 for 645A, S/N 123.

If you must order structural parts not listed in the parts list, describe the part as completely as possible. A sketch of the part, showing its location to other parts of the instrument is helpful.

5-9. SERIAL NUMBER EFFECTIVITY

5-10. A Use Code column is provided to identify certain parts that have been added, deleted or modified during production of the Model 4210A. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all instruments with serial numbers above 123.

USE

CODE SERIAL NUMBER EFFECTIVITY

A Model 4210A serial number 123 thru 127.

B Model 4210A serial number 128 and on.

Figure 5-1. MODEL 4210A BCD PROGRAMMABLE VOLTAGE SOURCE

REF DESIG	DESCRIPTION	STOCK NO			USE CODE
	BCD PROGRAMMABLE VOLTAGE SOURCE - Figure 5-1	4210A			
Al	Mother PCB Assembly (See Figure 5-2)	292607	1		
A2	Power Supply PCB Assembly (See Figure 5-3)	292599	1		
A3	DAC Amplifier PCB Assembly (See Figure 5-4)	292573	1		
A4	External Reference PCB Assembly (-03 External Reference Option) (See Figure 5-5)	292581	1		· · · · ·
A5	BCD Ladder PCB Assembly (See Figure 5-6)	292565	1		
A6	BCD Logic PCB Assembly (-01 Isolated Control Logic Option) (See Figure 5-7)	292540	1		
A6	Non-Isolated Logic PCB Assembly (-04 Direct Coupled Control Option) (See Figure 5-8)	292557	1		
A7	BCD Display PCB Assembly (-02 Front Panel Display Option) (See Figure 5-9)	292615	1		
A7	No Display PCB Assembly (-05 Blank Front Panel Option) (See Figure 5-10)	301804	1		
	Cover, bottom	303826	1		
	Cover, top	303818	1		
	Foot	292870	4		
	Line cord with plug	284174	1		
	Panel, rear	296939	1		
	Panel, front	296921	1		
	Decal, front panel (-02 Option)	296533	1		
	Decal, front panel (-05 Option)	296541	1		
	ACCESSORIES (Not included with the instrument. Order separately):				
	Connector, Programming, male, 50 contact	266056			
	Extender Card	292623		1	
	Chassis Slides, 18"	308940			
	Chassis Slides, 24"	308957			
	Rack Mounting Kit, offset mounting	304485			
	Rach Mounting Kit, dual rack mounting	304808			
	Rack Mounting Kit, center mounting	304410			
	Model A4200 Manual Control Unit	A4200			

Figure 5-2. MOTHER PCB ASSEMBLY

REF DESIG	DESCRIPTION	STOCK NO			USE CODE
A2	POWER SUPPLY PCB ASSEMBLY - Figure 5-3	292599	REF		
C1,C14, C17	Cap, cer, 0.05 uf +80/-20%, 25v	148924	3		
C2, C5, C9, C10, C19,	Cap, mica, 33 pf ±5%, 500v	160317	5		
C3	Cap, mica, 100 pf ±5%, 500v	148494	1		
C4	Not used				
C6	Cap, cer, 500 pf ±10%, 1 kv	105692	1		
C7,C8	Cap, elect, 250 uf +50/-10%, 64v	185850	2		
C11,C12	Cap, elect, 400 uf +50/-10%, 40v	185868	2		
C13, C16	Cap, elect, 8500 uf +100/-10%, 12v	292854	2		
C15	Not used				
C18	Cap, Ta, 1.0 uf ±20%, 35v	161919	1		
C20	Cap, cer, 2000 pf, gmv, 1 kv	105569	1		
C21	Cap, cer, 0.1 uf +80/-20%, 500v	105684	1		
C22, C23	Cap, plstc, 0.1 uf ±10%, 400v	289744	2		
CR1, CR25, CR26	Diode, silicon, 1 amp, 600 piv	112383	3		
CR2, CR3, CR27 thru CR35	Diode, silicon, 150 ma	203323	11	2	
CR4, CR10, CR14, CR19	Diode bridge, 2 amp	296509	4	1	
CR5 thru CR8, CR11 thru CR13, CR15 thru CR18, CR20 thru CR22, CR24	Not used				
CR9, CR23	Diode, zener, 4.3v	180455	2		
CR36	Diode, zener, 36v	284364	1		
F1	Fuse, fast acting, 1/4 amp, 250v (For 115v operation)	109314	1		
F1	Fuse, fast acting, 1/8 amp, 250v (For 230v operation)	196790			
J1	Connector, male, 3 contact, power	222612	1		

Figure 5-3. POWER SUPPLY PCB ASSEMBLY

REF DESIG	DESCRIPTION	STOCK NO			USE CODE
		295247	1		
J2	Connector, female, 36 contact	285247		1	
K1	Relay, 4PDT, 5v Coil	272716	1	1	
Q1, Q10, Q11, Q13, Q18, Q19, Q24	Tstr, silicon, NPN	218396	7		
Q2, Q3, Q5, Q6	Tstr, J-FET, N-channel	261578	4	2	
Q4, Q7, Q8, Q9, Q14	Tstr, silicon, PNP	195974	5		
Q12, Q17, Q23	Tstr, silicon, NPN	150359	3		
Q15, Q20	Tstr, silicon, PNP	269076	2		
Q16, Q21	Tstr, silicon, NPN	288381	2	1	
Q22	Tstr, J-FET, N-channel	271924	1		
Q25	Tstr, J-FET, N-channel	288324	1	1	
R1, R55	Res, comp, 1k ±5%, 1/4w	148023	2		
R2	Res, met flm, $2.87k \pm 1\%$, $1/8w$	185629	1		
R3, R46	Res, met flm, 17.4k $\pm 1\%$, 1/8w	236802	2		
R4	Res, met flm, $5.76k \pm 1\%$, $1/8w$	260349	1		
R6	Res, met flm, $13.7k \pm 1\%$, $1/8w$	236752	1		
R7, R8, R22, R24, R28, R30	Res, comp, 22k \pm 5%, 1/4w	148130	6		
R9	Res, var, cermet, $20\Omega \pm 20\%$, $1/2w$	285114	1		
R10 thru R13	Not used				
R14	Res, met flm, $40.2\Omega \pm 1\%$, $1/8w$	245373	1		
R15	Not used				
R17 R18	Res, ww, $20.02k \pm 0.1\%$ Res, ww, $20k \pm 0.1\%$ Matched Set	291674	1	1	
	Res, var, cermet, $50\Omega \pm 10\%$, $1/2w$	285122	1		
R19	Res, met flm, $10k \pm 1\%$, $1/8w$	168260	1		
R20	Res, met flm, $10k \pm 1\%$, $1/8w$ Res, met flm, $30.1k \pm 1\%$, $1/8w$	168286			
R21	Kes, met 1111, 50.1K ±170, 1/0w	100200			

REF DESIG	DESCRIPTION	STOCK NO		USE CODE
R23, R42, R43, R44	Res, comp, 10k ±5%, 1/4w	148106	4	
R25, R26,	Res, comp, 3.9k ±5%, 1/4w	148064	3	
R48 R27, R29	Res, comp, 2k ±5%, 1/4w	202879	2	
R31, R32, R38	Res, comp, 2.7k ±5%, 1/4w	170720	3	
R38 R33, R39	Res, comp, 4.7 Ω 5%, 1/4w	193359	2	
R34, R35	Not used			
R36	Res, ww, 10k $\pm 0.1\%$, 1/4w	240945	1	
R37, R41	Res, ww, 4.02k ±0.1%, 1/4w	240937	2	
R40	Res, ww, 3.74k ±0.1%, 1/4w	246173	1	
R45, R49, R50, R53, R58, R60	Res, comp, $470\Omega \pm 5\%$, $1/4w$	147983	6	
R47	Res, met flm, 3.74k ±1%, 1/8w	272096	1	
R51, R52	Not used			
R54	Res, comp, $22\Omega \pm 5\%$, $1/2w$	169847	1	
R57	Res, comp, $10\Omega \pm 5\%$, $1/4w$	147868	1	
R59	Res, factory selected value, may not be installed			
S1	Switch, slide, dpdt, line voltage	226274	1	
S2	Switch, toggle, dpdt, power	115113	1	
T1	Transformer, power (See Figure 5-1)	299602	1	
U1, U4, U5	IC, operational amplifier	271502	3	
U2	IC, reference amplifier			
R5	Res, met flm, selected value Matched Set	301846	1	
R16	Res, ww, 12k ±0.05%, 1/4w	501840		
R56	Res, ww, 1/4w, selected value			
U3	IC, operational amplifier, selected	225961	1	
TB1	Terminal barrier strip	295212	1	
XF1	Fuse holder	160846	1	
	Socket, IC, 14 contact	276527	1	
	Heat sink, Q12 & Q15	104646	2	
	Jumper, terminal barrier strip	283713	3	

REF DESIG	DESCRIPTION	STOCK NO		•	USE CODE
A3	DAC AMPLIFIER PCB ASSEMBLY - Figure 5-4	292573	REF		
C1,C2	Cap, cer, 0.1 uf ±20%, 100v	149146	2		
C3	Cap, elect, 20 uf +75/-10%, 50v	106229	1		
C4	Cap, elect, 50 uf +75/-10%, 50v	105122	1		
C5	Cap, mica, 33 pf ±5%, 500v	160317	1		
C6	Cap, mica, 820 pf ±1%, 500v	226167	1		
C7	Cap, mica, 750 pf ±1%, 500v	284158	1		
C8	Cap, mica, 100 pf ±5%, 500v	148494	1		
С9	Cap, mica, 180 pf ±5%, 500v	148460	1		
C10, C11, C14	Cap, cer, 0.05 uf $\pm 20\%$, 100v	149161	3		
C12, C13	Cap, cer, 300 pf ±10%, 500v	105734	2		
C15	Cap, mica, 22 pf ±5%, 500v	148551	1		
C16, C17	Cap, cer, 1.0 uf, gmv, 3v	106567	2		
C18	Cap, mica, 68 pf ±5%, 500v	148510	1		
CR1 thru CR16	Diode, silicon, 150 ma	203323	16	2	
Q1, Q2, Q3 Q6, Q7, Q10, Q11, Q14, Q15	Tstr, J-FET, N-channel, U2366E, Matched Set	298281	1		
Q4, Q8, Q12, Q16, Q31	Tstr, silicon, PNP	195974	5		
Q5, Q9, Q13, Q17, Q19, Q20, Q26, Q30, Q38, Q39	Tstr, silicon, NPN	218396	10		
Q18	Tstr, J-FET, dual, N-channel, selected	225987	1		
Q21, Q22	Tstr, MOS-FET, P-char.	306142	2	1	
Q23	Tstr, silicon, NPN	159855	1	1	
Q24, Q25	Tstr, silicon, PNP, dual	242016	2	1	
Q27, Q28	Tstr, silicon, NPN	269084	2		

Figure 5-4. DAC AMPLIFIER PCB ASSEMBLY

REF DESIG	DESCRIPTION	STOCK NO		REC QTY	USE CODE
030	Tstr, silicon, PNP	225599	1	1	
Q29		289819			
Q32	Tstr, silicon, NPN	295188		1	
Q33	Tstr, silicon, PNP	266619			
Q34	Tstr, silicon, PNP	285106	3	1	
Q35, Q36, Q37 R1	Diode, Field-Effect, current regulator Res, ww, 108k ±0.1%	285100			
R8	Res, ww, $25.013k \pm 0.1\%$				
R16	Res, ww, 50k $\pm 0.1\%$				
R10	Res, ww, 100.025k $\pm 0.1\%$ Matched Set	289793	1		
R32	Res, ww, 200.075k ±0.1%				
R33	Res, ww, 20.02k ±0.1%				
R2, R5, R6, R9, R12, R13, R17, R20, R21, R25, R28, R29	Res, comp, 51k ±5%, 1/4w	193334	12		
R3, R7, R10, R14, R18, R22, R26, R30	Res, comp, 2.7k ±5%, 1/4w	170720	8		
R4, R11,	Res, comp, 560 Ω ±5%, 1/4w	147991	4		
R19, R27 R15	Res, var, cermet, $50\Omega \pm 10\%$, $1/2w$	285122	1		
R23	Res, var, cermet, $100\Omega \pm 10\%$, $1/2w$	285130	1		
R31	Res, var, cermet, 200 Ω ±10%, 1/2w	285148	1		
R34	Not used				
R35, R36, R43, R44, R83, R84	Res, comp, $10\Omega \pm 5\%$, $1/4w$	147868	6		
R37	Res, met flm, $187k \pm 1\%$, $1/2w$	296376	1		
R38	Res, met flm, $374k \pm 1\%$, $1/2w$	262105	1		
R39	Res, met flm, 750k $\pm 1\%$, 1/2w	155192	1		
R40	Res, var, cermet, 100k ±10%, 1/2w	288308	1		
R41	Res, met flm, 1.27M ±1%, 1/2w	229252	1		
R42	Res, met flm, $107k \pm 1\%$, $1/2w$	296384	1		

REF DESIG	DESCRIPTION	STOCK NO		REC QTY	USE CODE
R45	Res, ww, 45Ω ±0.1%, 1/8w	111815	1		
R46, R47	Res, met flm, $2k \pm 1\%$, $1/8w$	277137	2		
R48	Res, met flm, 10k ±1%, 1/8w	291633	1		
R49	Not used				
R50, R51	Res, ww, 6.8k ±0.03%, 1/2w	254359	2		
R52	Res, comp, $20k \pm 5\%$, $1/4w$	221614	1		
R53, R85	Res, comp, 100k ±5%, 1/4w	148189	2		
R54, R82	Res, comp, $5.1k \pm 5\%$, $1/4w$	193342	2		
R55, R76, R81	Res, comp, $10k \pm 5\%$, $1/4w$	148106	3		
R56, R68	Res, met flm, 3.92k ±1%, 1/2w	160713	2		
R57	Res, met flm, 2.49k $\pm 1\%$, 1/2w	193995	1		
R58, R67	Res, met flm, 11k ±1%, 1/2w	222216	2		
R59, R61	Res, met flm, $49.9k \pm 1\%$, $1/2w$	182980	2		
R60	Res, met flm, $2.67k \pm 1\%$, $1/2w$	161430	1		
R62, R63	Res, comp, $100\Omega \pm 5\%$, $1/4w$	147926	2		
R64	Res, comp, 910 $\Omega \pm 5\%$, 1/4w	203851	1		
R65	Res, met flm, $634\Omega \pm 1\%$, $1/8w$	223560	1		
R66	Res, met flm, 4.99k ±1%, 1/8w	168252	1		
R69, R72	Res, comp, $1k \pm 5\%$, $1/4w$	148023	2		
R70	Res, comp, 150k ±5%, 1/4w	182212	1		
R71	Res, comp, 68k ±5%, 1/4w	148171	1		
R73, R80	Res, comp, $6.2k \pm 5\%$, $1/4w$	221911	2		
R74	Res, comp, 22k ±5%, 1/4w	148130	1		
R75, R79	Res, comp, $270\Omega \pm 5\%$, $1/4w$	160804	2		
R77, R78	Res, comp, $5.6\Omega \pm 5\%$, $1/4w$	208033	2		
R86	Res, comp, 2k ±5%, 1/4w	202879	1		
	Socket, IC, 14 contact	276527	2		

٠.

۰.,

REF DESIG	DESCRIPTION	STOCK NO		USE CODE
A4	EXTERNAL REFERENCE PCB ASSEMBLY (03 EXTERNAL REFERENCE OPTION) - Figure 5-5	292581	REF	
C1,C3	Cap, elect, 20 uf +75/-10%, 50v	106229	2	
C2	Cap, mica, 390 pf ±5%, 500v	148437	1	
C4, C6	Cap, mica, 82 pf ±5%, 500v	148502	2	
C5	Cap, mica, 270 pf ±5%, 500v	148452	1	
C7,C11	Cap, cer, 0.05 uf $\pm 20\%$, 100v	149161	2	
C8,C9	Cap, mica, 5 pf ±10%, 500v	148577	2	
C10	Cap, mica, 22 pf \pm 5%, 500v	148551	1	
CR1 thru CR4	Diode, silicon, 150 ma	203323	4	
Q1	Tstr, J-FET, dual, N-channel, selected	225987	1	
Q2, Q3, Q6, Q12	Tstr, silicon, NPN	218396	4	
Q4, Q5	Tstr, silicon, PNP, dual	242016	2	
Q7, Q8	Tstr, silicon, NPN	269084	2	
Q9, Q10	Tstr, J-FET, N-channel	261578	2	
Q11	Tstr, silicon, PNP	195974	1	
Q13, Q14	Tstr, silicon, NPN	150359	2	
R1 R16	Res, ww, 100.025k Res, ww, 99.955k Matched Set	291682	1	
R2, R11	Res, comp, $10\Omega \pm 5\%$, $1/4w$	147868	2	
R3, R4	Res, ww, 6.8k ±0.03%, 1/2w	254359	2	
R5	Res, met flm, $107k \pm 1\%$, $1/2w$	296384	1	
R6	Res, var, cermet, 100k ±10%, 1/2w	288308	1	
R7	Res, met flm, 1.27M ±1%, 1/2w	229252	1	
R8	Res, met flm, 750k ±1%, 1/2w	155192	1	
R9	Res, met flm, 374k ±1%, 1/2w	262105	1	
R10	Res, met flm, 187k ±1%, 1/2w	296376	1	
R12	Res, ww, $45\Omega \pm 0.1\%$, $1/8w$	111815	1	
R13, R15	Res, met flm, $2k \pm 1\%$, $1/8w$	277137	2	

۰.

.

·

REF DESIG	DESCRIPTION	STOCK NO		REC QTY	USE CODE
R14	Res, met flm, 10k $\pm 1\%$, 1/8w	291633	1		
R17	Res, var, cermet, $100\Omega \pm 10\%$, $1/2w$	285130	1		
R18, R20	Res, met flm, 49.9k ±1%, 1/2w	182980	2		
R19	Res, met flm, $2.1k \pm 1\%$, $1/2w$	193276	1		
R21, R35	Res, comp, $100\Omega \pm 5\%$, $1/4w$	147926	2		
R22	Res, comp, $5.1k \pm 5\%$, $1/4w$	193342	1		
R23, R28	Res, met flm, 10k $\pm 1\%$, 1/2w	151274	2		
R24, R29	Res, met flm, $4.87k \pm 1\%$, $1/2w$	247775	2		
R25	Res, met flm, 2.49k $\pm 1\%$, 1/2w	193995	1		
R26	Res, comp, $1k \pm 5\%$, $1/4w$	148023	1		
R27, R36	Res, comp, $820\Omega \pm 5\%$, $1/4w$	148015	2		
R30	Res, comp, $18k \pm 5\%$, $1/4w$	148122	1		
R31	Res, comp, $47k \pm 5\%$, $1/4w$	148163	1		
R32, R33	Res, comp, $3.9k \pm 5\%$, $1/4w$	148064	2		
R34	Res, comp, $2.7k \pm 5\%$, $1/4w$	170720	1		
R37	Res, comp, $4.7k \pm 5\%$, $1/4w$	148072	1		
R38	Res, comp, $270\Omega \pm 5\%$, $1/4w$	160812	1		
	Socket, IC, 14 contact	276527	2		
			Ì		
	•				

REF DESIG	DESCRIPTION	STOCK NO		REC QTY	USE CODE
A5	BCD LADDER PCB ASSEMBLY - Figure 5-6	292565	REF		
C1, C2	Cap, cer, 0.05 uf $\pm 20\%$, 100v	149161	2		
CR1	Diode, silicon, 150 ma	203323	1		
Q1	Diode, Field Effect, current regulator	285106	1		
Q2 Q2	Tstr, silicon, NPN Tstr, silicon, NPN	218396 168716	13 1		A B
Q7, Q11, Q15, Q19, Q23, Q27, Q31, Q35, Q39, Q43, Q47, Q51	Tstr, silicon, NPN	218396	12		
Q3	Tstr, silicon, PNP	269076	1		
Q4	Not used				
Q5, Q9, Q13, Q17, Q21, Q25, Q29, Q33, Q37, Q41, Q45, Q49	Tstr, silicon, PNP	195974	12		
Q6, Q8	Tstr, J-FET, N-channel, U2366E, Matched Pair	306399	1		
Q10, Q12,	Tstr, J-FET, N-channel, U2366E, Matched Pair	306381	1		
Q14, Q16, Q18, Q20	Tstr, J-FET N-channel, U2366E, Matched Pairs (Q14 matched to Q16; Q18 matched to Q20)	306373	2		
Q22, Q24, Q26, Q28, Q30, Q32, Q34, Q36, Q46, Q48, Q50, Q52	Tstr, J-FET, N-channel, U2366E, Matched Set	298299	1		
Q38, Q40, Q42, Q44	Tstr, J-FET, N-channel	288324	4		
R1	Res, var, cermet, $200\Omega \pm 10\%$, $1/2w$	285148	1		
R2	Res, ww, 24.987k				
R3	Res, ww, 49.975k				
R5	Res, ww, 100.025k Matched Resistor Set	289827	1		
R6	Res, ww, 200.075k				
R7	Res, ww, 108k				

,

REF DESIG	DESCRIPTION	STOCK NO		USE CODE
R4	Res, var, cermet, $50\Omega \pm 10\%$, $1/2w$	285122	1	
R8	Res, met flm, $60.4\Omega \pm 1\%$, $1/8w$	235366	1	
R9	Res, ww, 24.987k ±0.03%, 1/4w	289769	1	
R10	Res, ww, 50k $\pm 0.03\%$, 1/4w	289777	1	
R11	Res, met flm, 100.03k ±0.1%, 1/8w	291088	1	
R12	Res, met flm, 200.08k ±0.1%, 1/8w	290122	1	
R13	Res, met flm, 108.06k ±0.1%, 1/8w	290114	1	
R14	Res, met flm, 49.9k ±0.1%, 1/8w	291070	1	
R15	Res, met flm, 24.9k ±0.1%, 1/8w	290106	1	
R16	Res, met flm, 100k ±0.5%, 1/8w	291054	1	
R17	Res, met flm, 200k ±1%, 1/8w	261701	1	
R18	Res, met flm, 120k ±1%, 1/8w	291062	1	
R19 R19	Res, comp, 560Ω ±5%, 1/4w Res, comp, 1.8k ±5%, 1/4w	147991 175042	13 1	A B
R24, R30, R36, R42, R48, R54, R60, R66, R72, R78, R84, R90	Res, comp, 560Ω ±5%, 1/4w	147991	12	
R20 R20	Res, comp, 51k ±5%, 1/4w Res, comp, 20k ±5%, 1/4w	193334 221614	35 1	A B
R25, R27, R28, R31, R33, R34, R37, R39, R40, R43, R45, R46, R49, R51, R52, R55, R57, R58, R61, R63, R64, R67, R69, R70, R73, R75, R79, R81, R85, R87, R88, R91, R93, R94	Res, comp, 51k ±5%, 1/4w	193334	34	
R21, R22	Not used			

·· ,

-

Figure 5-6. BCD LADDER PCB ASSEMBLY

REF DESIG	DESCRIPTION	STOCK NO		USE CODE
R23, R26, R29, R32, R35, R38, R41, R44, R47, R50, R53, R56, R59, R62, R65, R68, R71, R74, R77, R80, R83, R86, R89, R92	Res, comp, 2.7k ±5%, 1/4w	170720	24	
R89, R92 R76, R82	Res, comp, 100k ±5%, 1/4w	148189	2	

Ϋ.

REF DESIG	DESCRIPTION	STOCK NO			USE CODE
A6	BCD LOGIC PCB ASSEMBLY (-01 ISOLATED CONTROL LOGIC OPTION) - Figure 5-7	292540	REF		
C1	Cap, mica, 200 pf ±5%, 500v	170423	1		
C2,C3	Cap, mica, 12 pf ±5%, 500v	175224	2		
C4	Cap, plstc, 3300 pf ±2%, 100v	168344	1		
C5, C6, C7, C36, C40, C42, C43,	Cap, mica, 56 pf ±5%, 500v	148528	7		
C8 thru C15, C23 thru C30, C32, C33, C34, C37, C38, C44 thru C48	Cap, cer, 0.025 uf ±2%, 100v	168435	26		
C16	Cap, Ta, 0.68 uf ±10%, 35v	182790	1		
C17, C31	Cap, elect, 200 uf +50/-10%, 10v	236935	2		
C18, C19	Not used				
C20	Cap, mica, 330 pf ±1%, 500v	226142	1		
C21	Cap, mica, 430 pf ±5%, 500v	177980	1		
C22	Cap, plstc, 0.1 uf $\pm 10\%$, 50v	271866	1		
C35, C39	Not used				
C41	Cap, mica, 390 pf ±5%, 500v	148437	1		
C49	Cap, mica, 220 pf ±5%, 500v	237008	1		
CR1, CR2, CR3, CR6 thru CR10, CR12, CR14, CR19	Diode, silicon, 150 ma	203323	11	2	
CR4, CR5	Diode, high speed switching	256339	2		
CR11, CR13, CR15 thru CR18	Not used				
J1	Connector, female, 50 contact	267252	1		
Q1 thru Q7, Q10 thru Q14, Q16, Q20, Q21, Q23	Tstr, silicon, NPN	159855	16		

REF DESIG	DESCRIPTION	STOCK NO	,	REC QTY	USE CODE
Q8	Not used				
Q9, Q15	Tstr, silicon, unijunction	268110	2	1	
Q17, Q18	Tstr, silicon, NPN	269084	2		
Q19, Q22	Tstr, silicon, PNP	195974	2		
R1, R26, R31, R44, R53	Res, comp, $390\Omega \pm 5\%$, $1/4w$	147975	5		
R2, R49, R68, R72, R75	Res, comp, $680\Omega \pm 5\%$, $1/4w$	148007	5		
R3, R69	Res, comp, $1.3k \pm 5\%$, $1/4 w$	234252	2		
R4, R7, R9, R13, R17, R22, R65,	Res, comp, $510\Omega \pm 5\%$, $1/4w$	218032	7		
R5, R6	Res, met flm, 6.98k ±1%, 1/8w	261685	2		
R8	Res, met flm, 29.4k ±1%, 1/8w	235135	1		
R10, R15, R19, R23, R46, R66	Res, comp, $51\Omega \pm 5\%$, $1/4w$	221879	6		
R11, R12, R14, R16, R18, R20, R21, R24, R27, R38, R47, R48, R64, R67, R70	Res, comp, 1k ±5%, 1/4w	148023	15		
R25	Not used				
R28	Res, comp, $2.7\Omega \pm 5\%$, $1/4w$	246744	1		
R29, R50	Res, comp, $10k \pm 5\%$, $1/4w$	148106	2		
R30, R52	Res, comp, $39k \pm 5\%$, $1/4w$	188466	2		
R32	Res, comp, $100\Omega \pm 5\%$, $1/4w$	147926	1		
R33	Not used				
R34, R36, R42, R56, R57, R71, R73	Res, comp, 3.3k ±5%, 1/4w	148056	7		

Figure 5-7. BCD LOGIC PCB ASSEMBLY (-01 ISOLATED CONTROL LOGIC OPTION)

1000

REF DESIG	DESCRIPTION		τοτ Δτγ		USE CODE
R35, R37, R41, R55	Res, comp, $200\Omega \pm 5\%$, $1/4w$	193482	4		
R39, R40	Not used				
R43	Res, met flm, 30.9k ±1%, 1/8w	235275	1		
R45	Not used				
R51	Res, comp, $27k \pm 5\%$, $1/4w$	148148	1		
R54	Not used				
R58	Res, comp, $330\Omega \pm 5\%$, $1/4w$	147967	1		
R59	Res, comp, 910 Ω ±5%, 1/4w	203851	1		
R60	Res, comp, 4.7k ±5%, 1/4w	148072	1		
R61	Res, comp, $5.6k \pm 5\%$, $1/4w$	148080	1		
R62	Res, comp, $110\Omega \pm 5\%$, $1/4w$	193474	1		
R63	Res, comp, $220\Omega \pm 5\%$, $1/4w$	147959	1		
R74	Res, met flm, $10k \pm 1\%$, $1/8w$	168260	1		
T1 thru T6	Transformer, pulse	299594	6	1	
U1 thru U4	IC, TTL, Dual 4-Input Multiplexer	293209	4		i I
U5	IC, TTL, 4-Bit Up Down Counters	293183	1	1	
U6	IC, TTL, Quad 2-Input NAND Gate	292953	1		
U7, U11	IC, TTL, Hex Inverter	292979	2		
U8, U23	IC, TTL, Retriggerable Monostable Multivibrator	293134	2		
U9	IC, TTL, J-K Flip Flop	296491	1		
U10	IC, TTL, Triple 3-Input +NAND Gates	292995	1		
U12	IC, TTL, Hex Inverter	293076	1		
U13, U14	Not used				
U15	IC, TTL, Monostable Multivibrator	293050	1		
U16	Not used				
U17	IC, TTL, Quad 2-Input NOR Gates	288845	1		
U18, U22	Not used				
U19, U20 U21	IC, TTL, 8-Bit Shift Register	272138	3		
			[

REF DESIG	DESCRIPTION	STOCK NO			USE CODE
A6	NON-ISOLATED LOGIC PCB ASSEMBLY (-04 DIRECT COUPLED CONTROL OPTION) - Figure 5-8	292557	REF		
C1	Cap, plstc, 3300 pf ±2%, 100v	168344	1		
C2, C3	Cap, elect, 200 uf +50/-10%, 10v	236935	2		
CR1 thru CR26	Diode, zener, 5.6v	277236	26	2	
J1	Connector, female, 50 contact	267252	1		
Q1 thru Q28	Tstr, silicon, NPN	159855	28		
R1	Res, met flm, 29.4k $\pm 1\%$, 1/8w	235135	1		
R2	Res, comp, $1k \pm 5\%$, $1/4w$	148023	1		
R3	Res, comp, $390\Omega \pm 5\%$, $1/4w$	147975	1		
R4, R7, R10, R13, R16, R19, R22, R25, R28, R31, R34, R37, R40, R43, R46, R49 R52, R55, R58, R61, R64, R67, R70, R73, R76, R80, R85	Res, comp, 3.3k ±5%, 1/4w	148056	.27		
R5, R8, R11, R14, R17, R20, R23, R26, R35, R38, R41, R44, R47, R50, R53, R56, R53, R56, R59, R62, R65, R68, R71, R74, R77, R81, R84	Res, comp, 1.5k ±5%, 1/4w	148031	27		
R6, R9, R12, R15, R24, R27, R30, R33, R36, R39, R48, R51, R48, R51, R54, R57, R60, R63, R66, R69, R72, R75, R78, R82	Res, comp, 470Ω ±5%, 1/4w	147983	26		

Figure 5-8. NON ISOLATED LOGIC PCB ASSEMBLY (--04 DIRECT COUPLED CONTROL OPTION)

REF DESIG	DESCRIPTION	STOCK NO	τοτ Ωτγ	REC QTY	USE CODE
Dog					
R83 U1	Res, comp, 2.7Ω ±5%, 1/4w IC, TTL, Quad 2-Input NAND Gate	246744 292953	1 1		
U2	IC, TTL, Hex Inverter	292935	1		
U3	IC, TTL, Retriggerable Monostable Multivibrator	293134	1		

REF DESIG	DESCRIPTION	STOCK NO	ΤΟΤ ΔΤΥ	REC QTY	USE CODE
A7	BCD DISPLAY PCB ASSEMBLY (-02 FRONT PANEL DISPLAY OPTION) - Figure 5-9	292615	REF		
CR1 thru CR21 R1 thru R21 U1 thru U4	Diode, light emitting Res, comp, 270 $\Omega \pm 5\%$, 1/4w IC, TTL, Hex Inverter	293381 160804 292979	21 21 4		

Figure 5-9. BCD DISPLAY PCB ASSEMBLY (-02 FRONT PANEL DISPLAY OPTION)

REF DESIG	DESCRIPTION	STOCK NO		REC QTY	USE CODE
A7	NO DISPLAY PCB ASSEMBLY (05 BLANK FRONT PANEL OPTION) - Figure 5-10	301804	REF		
CR21	Diode, light emitting	293381	1		
R21	Res, comp, 270 Ω ±5%, 1/4w	160804	1		

MANUFACTURERS' CROSS REFERENCE LIST									
FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.				
1 1 2 2 2	0050		149120	01121	CD2225				
A4200	89536	A4200	148130	01121	CB2235				
104646	05820	NF207	148148	01121	CB2735				
105122	56289	30D506G050DD4	148163	01121	CB4735				
105569	71590	DA140-139CB	148171	01121	CB6835				
105684	56289	41C92	148189	01121	CB1045				
105692	71590	2DDH60N501K	148437	14655	CD15F391J				
105734	71590	BB60301KW7W	148452	14655	CD15F271J				
106229	56289	30D206G050CC4	148460	14655	CD15F181J				
106567	71590	UK105	148494	14655	CD15F101J				
109314	71400	Type AGC	148502	14655	CD15F820J				
111815	01686	Type R1250	148510	14655	CD15F680J				
112383	05277	1N4822	148528	14655	CD15F560J				
115113	95146	MST215N	148551	14655	CD15E220J				
147868	01121	CB1005	148577	14655	CD15C050K				
147926	01121	CB1015	148924	72982	5855-¥5U-503Z				
147959	01121	CB2215	149146	56289	33C41B6				
147967	01121	CB3315	149161	56289	55C23A1				
147975	01121	CB3915	150359	95303	2N3053				
147983	01121	CB4715	151274	91637	Type MFF1/2				
147991	01121	CB5615	155192	91637	Type MFF1/2				
148007	01121	CB6815	159855	07910	CS23030				
148015	01121	CB2815	160317	14655	CD15E330J				
148023	01121	C B1025	160713	91637	Type MFF1/2				
148031	01121	CB1525	160804	01121	CB2715				
			160812	01121	CB2705				
148056	01121	CB3325	160846	75915	342004				
148064	01121	CB3925	161430	91637	Type MFF1/2				
148072	01121	CB4725	161919	56289	196D105X0035				
148080	01121	CB5625	168252	91637	Type MFF1/2				
148106	01121	CB1035	168260	91637	Type MFF1/8				
148100	01121	CB1835	168286	91637	Type MFF1/8				
170122	01121	001000	100200	/103/	13 be mr.1.1/0				

÷.,

MANUFACTURERS' CROSS REFERENCE LIST									
FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO				
1/02/4	04171	DE222C	221970	01121	CB5105				
168344	84171	PE332G	221879						
168435 168716	56289 07263	C128B101H253M S19254	221911	01121	CB6225				
169847	01121	EB2205	222216	91637	Type MFF1/2				
170423	14655	CD15F221J	222612	82389	AC3G				
170720 175042	01121 01121	CB2725 CB1825	223560	91637	Type MFF1/8				
175224	14655	CD15E120J	225599	07263	S22650				
177980	14655	CD15F431J	225961	89536	225961				
180455	07910	1N749A	225987	89536	225987				
182212	01121	CB1545	226142	14655	CD15F331F				
182790	56289	150D684X9035A2	226167	14655	CD19F821F				
182980	91637	Type MFF1/2	226274	82389	46256LF				
185629	91637	Type MFF1/8	229252	91637	Type MFF1/2				
185850	73445	C437ARH250	234252	01121	CB1325				
185868	73445	C437ARG400	235135	91637	Type MFF1/8				
188466	01121	CB3935	235275	91637	Type MFF1/8				
193276	91637	Type MFF1/2	235366	91637	Type MFF1/8				
193334	01121	CB5135	236752	91637	Type MFF1/8				
	01121	CB5125	236802	91637	Type MFF1/8				
193342			236935	73445	C426ARD200				
193359	01121	CB47G5		14655	CD19F221J				
193474	01121	CB1115	237008						
193482	01121	CB2015	240937	89536	240937				
193995	91637	Type MFF1/2	240945	89536	240945				
195974	04713	2N3906	242016	07263	SE4901				
196790	71400	Type AGC	245373	91637	Type MFF1/8				
202879	01121	CB2025	246173	89536	246173				
203323	03508	DHD1105	246744	01121	CB27G5				
203851	01121	CB9115	247775	91637	Type MFF1/2				
208033	01121	CB56G5	254359	89536	254359				
218032	01121	CB5115	256339	28480	5082-2900				
218396	04713	2N3904	260349	91637	Type MFF1/8				
221614	01121	CB2035	261578	15818	U2366E				

MANUFACTURERS' CROSS REFERENCE LIST							
FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.		
261685	91637	Type MFF1/8	288381	95303	40372		
261701	91637	Type MFF1/8	288845	01295	SN7402N		
			288343	73445			
262105	91637	Type MFF1/2			C280CF/A100K		
266056	02660	57-30500	289769	89536	289769		
266619	07263	2N4888	289777	89536	289777		
267252	02660	57-40500	289793	89536	289793		
268110	03508	2N6027	289819	95303	40409		
269076	95303	2N4037	289827	89536	289827		
269084	07910	CS2484	290106	91637	Type MFF1/8		
271502	12040	LM301A	290114	91637	Type MFF1/8		
271866	06001	75F2R5A104	290122	91637	Type MFF1/8		
271924	07910	CFE13041	291054	91637	Type MFF1/8		
272096	91637	Type MFF1/8	291062	91637	Type MFF1/8		
272138	12040	DM8570	291070	91637	Type MFF1/8		
272716	24796	R40-E030-1	291088	91637	Type MFF1/8		
276527	23880	TSA-2900-14W	291633	91637	Type MFF1/8		
277137	91637	Type MFF1/8	291674	89536	291674		
277236	07910	1N752A	291682	89536	291682		
283713	71785	422-13-11-013	292540	89536	292540		
284158	14655	CD19D751F	292557	89536	292557		
284174	70903	KHS-7041	292565	89536	292565		
284364	12969	UZ8736	292573	89536	292573		
284604	02660	225-22521-110	292581	89536	292581		
285106	07910	CRE3021	292599	89536	292599		
285114	71450	360S-200B	292607	89536	292607		
285122	71450	360S-500A	292615	89536	292615		
285130	71450	360S-101A	292623	89536	292623		
285148	71450	360S-201A	292854	99392	61C12TS852		
285247	02660	225-21821-110	292870	89536	292870		
288308	71450	360S-104A	292953	01295	SN7400N		
288324	15818	U1994E	292979	01295	SN7404N		

MANUFACTURERS' CROSS REFERENCE LIST								
FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.			
292995	01295	SN7410N	306399	89536	306399			
293050	01295	SN74121N	308940	89536	308940			
293076	01295	SN74H04N	308957	89536	308957			
293134	07263	U6A960159X						
293183	01295	SN74193N						
293209	07263	U6B930959X						
293381	28480	5082-4403						
295188	95303	40410						
295212	71785	Type 140Y						
296376	91637	Type MFF1/2	S.					
296384	91637	Type MFF1/2						
296491	01295	SN7472N						
296509	09423	FB100						
296533	89536	296533						
296541	89536	296541						
296921	89536	296921	2					
296939	89536	296939						
298281	89536	298281						
298299	89536	298299						
299594	89536	299594						
299602	89536	299602						
301804	89536	301804						
301846	89536	301846						
303818	89536	303818						
303826	89536	303826						
304410	89536	304410						
304485	89536	304485						
304808	89536	304808						
306142	05397	3N173						
306373	89536	306373						
306381	89536	306381						

•
Section 6 Option & Accessory Information

6-1. INTRODUCTION

6-2. This section of the manual contains information pertaining to the accessories and options available for your instrument.

6-3. OPTION INFORMATION

6-4. Each of the options available for this instrument, if any, are described separately under headings containing the option number. The option descriptions contain

applicable operating and maintenance instructions and field installation procedures. A complete list of replaceable parts for each option is contained at the end of that option description.

6-5. ACCESSORY INFORMATION

6-6. The accessory information, if applicable, will contain details concerning accessories that may be used with this particular instrument.

Accessory Model A4200

6-1. INTRODUCTION

6-2. The Model A4200 Manual Control Unit (MCU) shown in Figure 6-1 allows manual control of the FLUKE 4200 series power sources. An interface cable is included with the MCU. All internal operating voltages are derived from the power source through the interface cable.

6-3. INSTALLATION

6-4. The Model A4200 is connected to the power source as follows:

- a. Turn off the power source and then disconnect the Programming Connector from the rear panel.
- b. Connect the interface cable to the Programming Connectors on the power source and the MCU.
- c. Turn on the power source and select the desired operating condition on the MCU.

6-5. OPERATING FEATURES

6-6. The location and function of all controls, indicators, and connectors of the Model A4200 are shown in Figure 6-2.

Figure 6-1. MODEL A4200 MANUAL CONTROL UNIT AND POWER SOURCE

Figure 6-2. CONTROLS, INDICATORS AND CONNECTORS

ND.	TE5									
1.	ALL 5	6 HIT (CHES	SHO	IN IN	'OU'	T' P	905 I T	ION.	
2.				14 (ONNE	CTED	τo	+5V.		
з.							TO	LDGI	C GND.	Δ
4.	U1,U2	2.03	PIN	LOCF	TION	S				•
		2 1 3 1 4 1	14 13 12 11 10 9 8							
5.										
	0	ECOC	ING	LOGI	¢					
	0	Qī	QŹ	03	Q 4					
	1	Q1	02	0 3	04					
	2	01	02	03	04					
	3	01	02	ā3	Q 4					
	4		02	03	04					
	6	01	02 02	03 03	04 04					
	7	01	02	03	04					
	8	i i i	02	03	04					
	9	01	02	03	04					
	10	āi	02	03	04					
	11	01	02	ā3	Q.4					
	12	តា	02	03	Q4					
	13	01	Q 2	QЭ	Q4					
	14	01	Q2	Q3	Q4					
	15	01	02	03	Q4					

FUNCTIONAL SCHEMATIC DIAGRAM
MODEL A4200 MANUAL CONTROL UNIT
DRAWING NO. A4200-1000
FLUKE JOHN FLUKE MFG. CO., INC. P.O. Box 7428 Seattle, Weshington 98133

Accessory Rack Mounting Fixtures

6-1. INTRODUCTION

1

6-2. The Fluke 4200 series power sources can be installed in a 19 inch equipment rack using one of the Accessory Rack Mounting Kits shown in Figure 6-1. Chassis Slide Kits can also be installed on full rack width units and the side-by-side mounted units.

6-3. INSTALLATION PROCEDURES

6-4. Center, Offset, Full Rack Bracket Installation

6-5. Installation of all Rack Mounting Brackets is done in essentially the same manner. To install these components and mount the power source in the equipment rack, proceed as follows:

- a. Disconnect the line power cord.
- b. Peel the decal shown in Figure 6-2 from each front side panel.
- c. Install the mounting brackets on each front side panel using the $\#8-32 \ge 1/2$ " PHP screws provided in the kit. The mounting brackets for offset installation can be installed on either side, as desired.
- d. Remove the feet from the bottom dust cover.

Figure 6-1. ACCESSORY RACK MOUNTING KITS

Figure 6-2. RACK MOUNTING BRACKET INSTALLATION

g.

i.

1.

0.

e. Slide the power source into the equipment rack and secure it in place with fasteners through the mounting brackets.

NOTE!

Chassis slides should be installed on the fullrack width units.

f. Connect the power cord to line power.

6-6. Dual Rack Installation

6-7. Two half-rack width power sources can be installed side-by-side in an equipment rack using the M05-200-603 Rack Mounting Kit. To install these components and mount the units in the equipment rack, proceed as follows:

- a. Ensure that the power cord of each power source is disconnected from line power.
- b. Peel the front and rear side panel decals from each power source.
- c. Select one power source and remove the top and bottom dust covers.
- d. Remove the inner guard cover.
- e. Remove the three screws from the front side panel that will make against the other power source.
- f. Pull the front panel forward slightly and then thread the # 8-32 fasteners into the P-nuts shown in Figure 6-3.

- Push the front panel into position, making sure that each pcb is correctly mated into the Mother Board pcb, and then install the three screws in the front side panel.
- h. Thread the #8-32 fasteners into the P-nuts located on the inner rear side panel that will make against the other power source.
 - Bolt the two power sources together as shown in Figure 6-3.
- j. Install the inner guard cover removed in step d.
- k. Remove the feet from the bottom dust cover of each power source.
 - Install the top and bottom dust covers removed in step b.
- m. Install the mounting brackets shown in Figure 6-2 on the outer front side panels. Use the # 8-32 x 1/2" PHP screws provided in the kit.
- n. Slide the two power sources into the equipment rack and secure them in place with fasteners through the mounting brackets.

NOTE!

Refer to paragraph 6-8 for chassis slide installation

Connect the power cords to line power.

6-8. Chassis Slide Installation

6-9. The M00-260-610 (18") or M00-280-610 (24") Chassis Slide Kit should be installed to better facilitate dual rack mounting or installation of full width rack units. To install these components and mount the units or unit in the equipment rack, proceed as follows:

- a. Peel the center side panel decals from the power source.
- b. Peel the rear side panel decals from the power source.
- c. Remove the six screws from the rear panel corner brackets and then remove the brackets.
- d. Slide the spacer (A) into the center section of the side panel until the tapped holes are aligned with the holes in the side panels.
- e. Scribe a line on spacer where it protrudes from the rear of the side panel and then remove it from the power source.

- f. Cut off the spacer at the scribe mark and then install it in the side panel.
- g. Install the rear panel corners.
- h. Attach the chassis section (B) to the side panels with the screws (C) provided in the kit.
- i. Install the cabinet sections (E) and center sections (D) in equipment rack. The extension angle brackets, which are part of section (E), are mounted at the rear of the cabinet.
- j. Slide the center sections (D) toward the front of the cabinet until they lock in place.
- k. Depress the spring locks on the chassis sections (B) and insert the power source between the extended center sections (D) on the cabinet.
 - Slide the power source completely into the equipment rack and secure in place with fasteners through the mounting brackets.

1.

Figure 6-4. CHASSIS SLIDE INSTALLATION

Accessory Programming Connector

6-1. INTRODUCTION

6-2. The mating connector shown in Figure 6-1 is required for interface between the Remote connector and the programming equipment. This connector can be obtained directly from Amphenol under PART NO. 57-30500, or from the factory by referencing FLUKE PART NO. 266056.

6-3. ASSEMBLY INSTRUCTIONS

6-4. Wiring connections to the mating connector are done as follows:

- a. Remove the screws from the cover of the mating connector and remove the cover.
- b. Remove the screws from the restraining clamp on the cover and then remove the clamp.
- c. Thread the wiring through the cover. Maximum size is #24.
- d. Solder the wiring to the appropriate terminals of the connector. Refer to Figure 6-1 for terminal locations.
- e. slide the cover in place and install the attaching screws.
- f. Install the restraining clamp and screws. If necessary, wrap the wiring bundle to provide a proper diameter for the restraining clamp.
- g. Connect the mating connector to the Remote connector, J1. Fasten it securely in place with the side clips.

Figure 6-1. PROGRAMMING MATING CONNECTOR

.

.

.

Accessory Extender Card

6-1. INTRODUCTION

6-2. The Extender Card shown in Figure 6-1 is available as an Accessory for the FLUKE 4200 series power sources. This accessory permits the printed circuit boards in the power source to be extended for servicing. The Extender Card can be obtained by ordering it under FLUKE PART NO. 292623.

6-3. INSTALLATION

- 6-4. To install a printed circuit board on the Extender Card as shown in Figure 6-2, proceed as follows:
- a. Turn off the power source and then remove the top dust cover and inner guard cover.
- b. Locate the printed circuit board to be serviced and remove it using the information given in Section IV, MAINTENANCE ACCESS.
- c. Install the Extender Card in the Mother Board connector as shown in Figure 6-2.
- d. Install the printed circuit board in the Extender Card connector as shown in Figure 6-2.
- e. Turn on the power source. The printed circuit board can now be serviced.

Figure 6-1. ACCESSORY EXTENDER CARD

Figure 6-2. EXTENDER CARD INSTALLATION

Federal Supply Code for Manufacturers

A-1. CODE TO NAME

A-2. The following five-digit code numbers are listed in numerical sequence along with the manufacturer's

00213	Sage Electronics Corp. Rochester, New York	04009	Arrow Hart and Hegemen Electronic Company Hartford, Connecticut
00327	Welwyn International, Inc. Westlake, Ohio	04062	Replaced by 72136
00656	Aerovox Corp. New Bedíord, Massachusetts	04202	Replaced by 81312
00779	AMP Inc. Harrisberg, Pennsylvania	04217	Essex Wire Corp. Wire & Cable Div. Anaheim, California
01121	Allen-Bradley Co. Milwaukee, Wisconsin	04221	Aemco Div. of Midtex Inc. Mankato, Minnesota
01281	TRW Semiconductors Lawndale, California	04645	Replaced by 75376
01295	Texas Instruments, Inc. Semiconductor Components Dlv. Dallas, Texas	04713	Motorola Semiconductor Products Inc. Phoenix, Arizona
01686	RCL Electronics Inc. Manchester, New Hampshire	05082	Replaced by 94154
01730	Deleted	05236	Jonathan Mfg. Co. Fullerton, California
01884	Dearborn Electronics Inc. Orlando, Florida	05 27 7	Westinghouse Electric Corp. Semiconductor Dept. Youngwood, Pennsylvania
02114	Ferroxcube Corp. Saugerties, New York	05278	Replaced by 43543
02606	Replaced by 15801	05397	Union Carbide Corp. Electronics Div.
02660	Amphenol-Borg Elect. Corp. Broadview, Illinois		Cleveland, Ohio
02799	Arco Capacitors, Inc. Los Angeles, California	05571	Sprague Electric Co Pacific Div. Los Angeles, California
03614	Replaced by 71400	05704	Alac, Inc.
U3651	Replaced by 44655		Glendale, California
0 3 7 97	Eldema Corp. Compton, California	05820	Wakefield Engineering Ind. Wakefield, Massachusetts
03877	Transitron Electronic Corp. Wakefield, Massachusetts	06001	General Electric Company Capacitor Department Irmo, South Carolina
03888	Pyrofilm Resistor Co., Inc. Cedar Knolls, New Jersey	06136	Replaced by 63743
03911	Clairex Corp. New York, New York	0647 3	Amphenol Space & Missile Sys. Chatsworth, California
03980	Muirhead Instruments, Inc. Mountainside, New Jersey	06555	Beede Electrical Instrument Co. Penacook, New Hampshire

name and address to which the code has been assigned. The Federal Supply Code has been taken from Cataloging Handbook H 4-2, Code to Name.

11358

06739	Electron Co	orp.
	Littletown,	Colorado

06743	Clevite Corp.	
	Cleveland, Ohio	

- 06751 Semcor Div. Components Phoenix, Arizona
- 06860 Gould National Batteries Inc. City of Industry, California
- 06980 Eitel-McCullough, Inc. San Carlos, California
- 07115 Replaced by 14674
- 07138 Westinghouse Electric Corp Electronic Tube Div. Elmira, New York
- 07263 Fairchild Semiconductor Div. of Fairchild Camera & Instrument Corp. Mountain Vlew, California
- 07344 Bircher Co., Inc. Rochester, New York
- 07792 Lerma Engineering Corp. Northampton, Massachusetts
- 07910 Continental Device Corp. Hawthorne, California
- 08530 Reliance Mica Corp. Brooklyn, New York
- 08792 CBS Electronics Semiconductor Operations-Div. of CBS Inc. Lowell, Massachusetts
- 08806 General Electric Co. Miniature Lamp Dept. Cleveland, Ohio
- 08863 Nylomatic Corp. Norrisville, Pennsylvania
- 08988 Skottie Electronics Inc. Archbald, Pennsylvania
- 09922 Burndy Corp. Norwalk, Connecticut
- 11237 Chicago Telephone of Calif. Inc. South Pasadena, California

Newburyport, Massachusetts 11403 Best Products Co. Chicago, Illinois 11503 Keystone Mig. Div. of Avis Industrial Corp. Warren, Michlgan 12014 Chicago Rivet & Machine Co. Bellwood, Ilinois National Semiconductor Corp. 12040 Danburry, Connecticut 12060 Dlodes, Inc. Chatsworth, California 12136 Philadelphia Handle Co. Camden, New Jersey 12323 Presin Co., Inc. Sheiton, Connecticut 12327 Freeway Washer & Stamping Co. Cleveland, Ohio 12400 Replaced by 75042 Hamlin Inc. 12617 Lake Mills, Wisconsin 12697

CBS Electronics Div. of CBS Inc.

- 12697 Clarostat Míg. Co. Dover, New Hampshire 12749 James Electronics Chicago, Illinois
- 12856 Micrometals
- Sierra Madre, California 12954 Dickson Electronics Corp. Scottsdale, Arizona
- 13606 Sprague Electric Co. Transistor Div. Concord, New Hampshire
- 13839 Replaced by 23732
- 14099 Semtech Corp. Newbury Park, California
- 14193 California Resistor Corp. Santa Monica, California
- 14298 American Components, Inc. Conshohocken, Pennsylvania

- **Cornell-Dubilier Electronics** 38315 Honevwell Inc. 14655 Newark, New Jersey 14674 Corning Glass Works Corning, New York Electro Cube Inc. 14752 San Gabriel, California 14869 Replaced by 96853 Elec-Trol Inc. 15636 Northridge, California Fenwal Electronics Inc. 15801 Framingham, Massachusetts 15818 Amelco Semiconductor Div, of Teledyne Inc. Mountain View, California Useco, Inc. 15849 Mt. Vernon, New York 15909 Replaced by 17870 16332 Replaced by 28478 Cambridge Scientific 1nd, Inc. 16473 Cambridge, Maryland 16742 Paramount Plastics Downey, California Delco Radio 16758 Div. of General Motors Kokomo, Indiana Circuit Structures Lab. 17069 Upland, California 17856 Siliconix, Inc. Sunnyvale, California Daven-Div, of Thomas A. Edison 17870 Ind. --McGraw-Edison Co. Manchester, New Hampshire 18083 Deleted Vactec Inc. 18178 Maryland Heights, Missouri 18736 Voltronics Corp. Hanover, New Jersey 19429 Montronics, Inc. Seattle, Washington Perine Machinery & Supply Co. Seattle, Washington 19451 19701 Electra Míg. Co. Independence, Kansas Enochs Mfg. Co. Indianapolis, Indiana 20584 22767 ITT Semiconductors Div. of ITT Palo Alto, California 23732 Tracor Rockville, Maryland 24248 Southco Div. of South Chester Corp. Lester, Pennsylvania 24655 General Radio Co. West Concord, Massachusetts 25403 Amperex Electronic Corp Semiconductor & Receiving Tube Division Slatersville, Rhode Island Deltrol Controls Corp. Milwaukee, Wisconsin 28478 Heyman Mfg. Co. Kenilworth, New Jersey 28520 Illinois Tool Works Inc. 30323 Chicago, Illinois 33173 General Electric Co. ube Dept. Owensboro, Kentucky
- 37942 Mallory, P. R., & Co., Inc. Indianapolis, Indiana
- National Company 42498 Melrose, Massachusetts 43543 Nytronics Inc. 44655 Ohmite Mfg. Co Skokie, Illinois 49671 49956 53021 55026 56289 58474 60399 62460 Deleted 63743 64834 65092 66150 70563 Belden Míg. Co. 70903 71002 Bussmann Mfg. 71400 CTS Corp. Elkhart, Indiana 71450 71468 71482 Clare, C. P. & Co. Centralab 71590 71707 71744 71785 72005 72136 Nytronics Inc. 72259 72354 Deleted 72619 72653
 - 72928 Transformer Co. Div. Alpha, New Jersey 72982 73138 Radio Corp. of America New York, New York 73293 Raytheon Company Lexington, Maine 73445 Sangamo Electric Co. Springfield, Illinois 73559 Simpson Electric Company Chicago, Illinois 73586 Sprague Electric Co. North Adams, Massachusetts 73734 Superior Electric Co. Bristol, Connecticut 73743 Torrington Mfg. Co. Torrington, Connecticut 73899 Ward Leonard Electric Co. 73949 Mount Vernon, New York West Mfg. Co. San Francisco, California 74199 Weston Instruments Inc. 74217 Newark, New Jersey 74276 Winslow Tele-Tronics Inc. Asbury Park, New Jersey 74306 Amperite Company Union City, New Jersey 74542 Chicago, Illinois 74970 Birnbach Radio Co., Inc. New York, New York 75042 Div. of McGraw-Edison Co. St. Louis, Missouri 75376 75382 ITT Cannon Electric Inc. Los Angeles, California 75915 Chicago, Illinois 76854 Div. of Globe Union Inc. 77342 Milwaukee, Wisconsin Coto Coil Co., Inc. Providence, Rhode Island 77969 Chicago, Illinois 78189 Cinch Mfg. Co. & Howard B. Jones Div. Chicago, Illinois 78277 78488

Precision Meter Div.

Manchester, New Hampshire

- Driver, Wilber B., Co. Newark, New Jersey Electro Motive Mfg. Co. Willimantic, Connecticut 79136 Berkeley Heights, New Jersey 79497
- Dialight Corp Brooklyn, New York G. C. Electronics Rockford, Illinois

- 72665 Replaced by 90303
- Dzus Fastener Co., Inc. 72794 West Islip, New York
 - Gudeman Co. Chicago, Illinois
- Erie Tech, Products Inc. Erie, Pennsylvania
- Beckman Instruments Inc. **Helipot** Division Fullerton, California
 - **Hughes Aircraft Co** Electron Dynamics Div. Newport Beach, California
- Amperex Electronic Corp. Hicksville, New York
- Carling Electric Inc. Hartford, Connecticut
- Circle F Industries Trenton, New Jersey
- Federal Screw Products, Inc. Chicago, Illinois
- Fischer Special Mfg. Co. Cincinnati, Ohio
- JFD Electronics Co. Brooklyn, New York
- Guardian Electric Mfg. Co. Chicago, Illinois
- Quam Nichols Co. Chicago, Illinois
- Radio Switch Corp. Marlboro, New Jersey Signalite Inc.
- Neptune, New Jersey Piezo Crystal Co.
- Carlisle, Pennsylvania Hoyt Elect. Instr. Works
- Penacook, New Hampshire
- Johnson, E. F., Co. Waseca, Minnesota IRC Inc
- Philadelphia, Pennsylvania
- Kurz-Kasch, Inc. Dayton, Ohio Kulka Electric Corp.
- Mt. Vernon, New York
- Littlefuse Inc. Des Plaines, Illinois
- Oak Mlg. Co. Crystal Lake, Illinois
- Potter & Brumfield Div. of Amer. Machine & Foundry Princeton, Indiana
- Rubbercraft Corp. of Calif. LTD. Torrance, California Shakeproof
- Div. of Illinois Tool Works Elgin, Illinois
- Sigma Instruments, Inc. South Braintree, Massachusetts
- Stackpole Carbon Co. St. Marys, Pennsylvania Tinnerman Products 78553
 - Cleveland, Ohio Waldes Kohinoor Inc. Long Island City, New York
 - Western Rubber Company Goshen, Indiana
- 79963 Zierick Mfg. Corp. New Rochelle, New York
- 80031 Mepco Div. of Sessions Clock Co. Morristown, New Jersey

- 80145 API Instruments Co. Chesterland, Ohio
- Sprague Products North Adams, Massachusetts 80183
- 80294 Bourns Inc. Riverside, California
- Hammarlund Co., Inc. Mars Hill, North Carolina 80583
- Stevens, Arnold Inc. Boston, Massachusetts 80640
- Grayhill Inc. 81073 La Grange, Illinois
- Winchester Electronics 81312 Div. of Litton Industries Oakville, Connecticut
- 81439 Therm-O-Disc Inc. Mansfield, Ohio
- 81483 International Rectifier Corp. El Segundo, California
- 81590 Korry Mfg. Co. Seattle, Washington
- 82376 Deleted
- Switchcraft Inc. 82389 Chicago, Illinois
- Price Electric Corp. 82415 Frederick, Maryland
- Roanwell Corp. New York, New York 82872
- Rotron Mfg. Co., fnc. Woodstock, New York 82877
- 82879 ITT Wire & Cable Div. Pawtucket, Rhode Island
- Varo fnc. 83003 Garland, Texas
- 83298 Bendix Corp. Electric Power Division Eatontown, New Jersey
- Smith, Herman H., Inc. 83330 Brooklyn, New York
- Rubbercraft Corp. of America 83478 New Haven, Connecticut
- 83594 Burroughs Corp. Electronic Components Div. Plainfield, New Jersey
- Union Carbide Corp. Consumer Products Div. 83740 New York, New York
- 84171 Arco Electronics, Inc. Great Neck, New York
- TRW 84411 Ogallala, Nebraska
- 86577 Precision Metal Products Stoneham, Massachusetts
- Radio Corp. of America Electronic Components & 86684 Devices Harrison, New Jersey
- 86689 Deleted
- 87034 Marco-Oak Inc. Anaheim, California
- 88419 Use 14655
- 88690 Replaced by 04217
- 89536 Fluke, John Mfg. Co., Inc. Seattle, Washington
- Replaced by 08806 89730
- Mallory Capacitor Co. 90201 Indianapolis, Indiana
- 90215 Best Stamp & Mfg. Co. Kansas City, Missouri

- Chicago Miniature Lamp Works

- 72092 Replaced by 06980

90211	Square D Co. Chicago, Illinois	91934	Miller Electric Co., Inc. Pawtucket, Rhode Island
90303	Mallory Battery Co. Tarrytown, New York	93332	Sylvania Electric Products Semiconductor Products Div. Woburn, Massachusetts
91293	Johanson Míg. Co. Boonton, New Jersey	94145	Replaced by 49956
91407	Replaced by 58474	94154	Tung-Sol
91637	Dale Electronics Inc. Columbus, Nebraska		Div. of Wagner Electric Corp. Newark, New Jersey
91662	Elco Corp. Willow Grove, Pennsylvania	95146	Alco Electronics Products Inc. Lawrence, Massachusetts
91737	Gremar Mfg. Co., Inc. Wakefield, Massachusetts	95263	Leecraft Mfg. Co. Long Island City, New York
91802	Industrial Devices, Inc. Edgewater, New Jersey	95264	Replaced by 98278
91836	King's Electronics Tuckahoe, New York	95275	Vitramon Inc. Bridgeport, Connecticut
91929	Honeywell Inc. Micro Switch Div. Freeport, Illinois	95303	Radio Corp. of America Solid State & Receiving Tube Div. Cincinnati, Ohio

95354	Methode Mfg. Corp.
	Rolling Meadows, Illinois

95712 Dage Electric Co., Inc. Franklin, Indiana
95987 Weckesser Co., Inc. Chicago, Illinois

- 96733 San Fernando Electric Mfg. Co. San Fernando, California
- 96853 Rustrak Instrument Co. Manchester, New Hampshire
- 96881 Thomson Industries, Inc. Manhasset, New York
- 97540 Master Mobile Mounts Div. of Whitehall Electronics Corp. Los Angeles, California
- 97913 Industrial Electronic Hdware Corp. New York, New York
- 97945 White, S. S. Co. Plastics Div. New York, New York

97966Replaced by 1135898094Replaced by 4995698278Microdot Inc.
Pasadena, California98291Sealectro Corp.
Conhex Div
Mamaroneck_ New York98388Accurate Rubber & Plastics
Culver City, California98743Replaced by 1274998925Deleted99120Plastic Capacitors, Inc.
Chicago, Illinois.99217Southern Electronics Corp.
Burbank, California

99515 Marshall Industries Capacitor Div. Monrovia, California

> Revised August 1, 1968 Using H4-1 and H4-2 Dated June, 1968

۰.,

Appendix B List of Abbreviations

A,amp	ampere	m	milli or 10 ⁻³
ampl	amplifier	mm	millimeter
ac	alternating current	n	nano or 10 ⁻⁹
855Y	assembly	neg	negative
BCD	binary coded decimal	Ω	ohm
сар	capacitor	OSC	oscilloscope
car	carbon	ppm	parts per million
cm	centimeter	piv	peak inverse voltage
С	centigr ad e	P-P	peak to peak
cer	ceramic	p	pico or 10 ⁻¹²
cw	clockwise	pistc	plastic
CMRR	common mode rejection ratio	±	plus or minus
comp	composition	pos	positive
CCW	counterclockwise	pps	pulses per second
conn	connector	PCB	printed circuit board
CRT	cathode ray tube	QTY	quantity
cps	cycles per second	rf	radio frequency
db	decibel	rfi	radio frequency interference
dvm	digital voltmeter	REC	recommended
dc	direct current	REF	reference
dpdt	double-pole, double-throw	RH	relative humidity
dpst	double-pole, single-throw	res	resistor
elect	electrolytic	rms	root mean square
ext	external	rtry	rotary
f	fahrenheit	SOC	second
F	farad	sect	section
FET	field effect transistor	S/N	serial number
fim	film	Si	silicon
Ge	germanium	SCT	silicon controlled rectifier
g	giga or 10 ⁹	spdt	single-pole, double-throw
gnd	ground	spst	single-pole, single-throw
gmv	guaranteed minimum value	SW	switch
grd	guard	Ta	tantalum
h	henry	TC	temperature coefficient
Hz	hertz	t	tera or 10 ¹²
hf	high frequency	xfmr	transformer
IC	integrated circuit	tstr	transistor
if	intermediate frequency	tvm	transistor voltmeter
int	internal	uhf	ultra high frequency
kc	kilocycle	vtvm	vacuum tube voltmeter
k	kilo (10 ³)	var	variable
If	low frequency	vhf	very high frequency
mc	megacycle	vlf	very low frequency
М	meg or mega (10 ⁶)	v	volt
met	metal	VCO	voltage controlled oscillator
MOS	metal oxide silicon	w	watt
μ	micro or 10 ⁻⁶	ww	wire wound

.

. .

. .

Appendix C

Sales Representatives & Service Centers

ALABAMA

HUNTSVILLE BSC Associates, Inc. 3322 S. Memorial Parkway P.O. Box 1273 Tel. (205) 881-6220 Zip 35807

ALASKA

SEATTLE Showalter-Judd, Inc. 1806 S. Bush Place Seattle, Washington 98144 Tel. (206) 324-7911

ARIZONA

* PHOENIX Barnhill Associates 537 E. Osborn Road, Suite 4 Tel. (602) 263-1250 Zip 85012

CALIFORNIA *****LOS ANGELES**

Instrument Specialists, Inc. 1109 S. Central Ave. Glendale, California 91204 Tel (213) 245-9404

****SANTA CLARA** Instrument Specialists, Inc. 2359 De La Cruz Blvd. Tel. (408) 244-1505 Zip 95050

SAN DIEGO Instrument Specialists, Inc. 1909 State St. Tel. (714) 232-2017 Zip 92101

COLORADO

* DENVER Barnhill Associates 1170 S. Sheridan Blvd. Tel. (303) 934-5505 Zip 80226

CONNECTICUT

HARTFORD Instrument Representatives, Inc. P. O. Box 165 Glastonbury, Connecticut 06033 Tel (203) 633-0777

* * *

FLORIDA

DOMESTIC)

SERVICE CENTERS

**ORLANDO BCS Associates, Inc. 940 N. Fern Creek Ave. P.O. Box 6578 Tel. (305) 843-1510 Zip 32803

GEORGIA

ATLANTA BCS Associates, Inc. 1230 Briar Hill Dr. Tel. (404) 874-9925 Zip 30306 ΗΔ₩ΔΠ

HONOLULU Industrial Electronics, Inc. 646 Queen Street P.O. Box 135 Tel. (808) 533-6095 Zip 96817

ILL INOIS **CHICAGO Cozzens & Cudahy, Inc. 9501 W. Devon Ave. Rosemont, Illinois 60018 Tel. (312) 825-1144 INDIANA

INDIANAPOLIS Cozzens & Cudahy, Inc. Port O'Call Executive Ctr. 21 Beachway Drive

Tel. (317) 244-2456 Zip 46234 MARYLAND

**BALTIMORE

Electronic Marketing Assoc. Inc. 11501 Huff Court Kensington, Maryland 20795 Tel. (301) 881-5300, 744-7700

MASSACHUSETTS **BOSTON Instrument Representatives, Inc.

1046 Massachusetts Avenue Arlington, Massachusetts 02174 Tel. (617) 646-1034

MICHIGAN DETROIT

WKM Associates, Inc. 1474 East Outer Dr. Tel. (313) 892-2500 Zip 48234

MINNESOTA

MINNEAPOLIS Cozzens & Cudahy, Inc. 7450 France Ave. So. Tel. (612) 920-1022 Zip 55435

MISSOURI

ST. LOUIS Cozzens & Cudahy, Inc. P. O. Box 10013 Tel. (314) 423-1234

DESIGNATES REPRESENTATIVE OFFICES WITH SERVICE CENTERS

NEW JERSEY **NEWARK

SBM Representatives 1519 Stuyvesant Avenue Union, New Jersey 07083 Tel. (201) 687-8737

NEW MEXICO * ALBUQUERQUE Barnhill Associates 1410–D Wyoming N.E. Tel. (505) 299-7658 Zip 87110

NEW YORK ***NEW YORK** SBM Representatives 28 Hobby Street Pleasantville, N.Y. 10570 Tel. (914) 769-1811

**ROCHESTER SBM Representatives 4515 Culver Rd. Tel. (716) 226-1400 Zip 14622

NORTH CAROLINA GREENSBORO BCS Associates, Inc. 1039 E. Wendover Ave. P.O. Box 6426 Tel. (919) 273-1918 Zip 27405

6.HO

*CLEVELAND WKM Associates, Inc. 16141 Puritas Ave. Tel. (216) 267-0445 Zip 44135

* DAYTON WKM Associates, Inc.

6073 Far Hills Ave. Tel. (513) 434-7500 Zip 45429 OREGON PORTLAND

Showalter-Judd, Inc. 1445 N. E. Arrington Hillsboro, Oregon 97123 Tel. (503) 648-6372

PENNSYLVANIA PHILADELPHIA

Electronic Marketing Assoc. 210 Goddard Blvd, -- Suite 100 King of Prussia, Pennsylvania Tel (215) 248-5050 Zip 19406

PITTSBURGH WKM Associates, Inc. 90 Clairton Blvd. Tel. (412) 892-2953 Zip 15236

TEXAS

* DALLAS Barnhill Associates Suite 220 312 N. Central Express Wy. Richardson, Texas 75080 Tel. (214) 231-2573

* HOUSTON Barnhill Associates Suite 332 3810 Westheimer Tel. (713) 621-0040 Zip 77027

EASTERN VIRGINIA WILLIAMSBURG BCS Associates, Inc. 107 Rich Neck Road Tel. (703) 229-5108 Zip 23185

WASHINGTON SEATTLE

Showalter-Judd, Inc. 1806 S. Bush Place Seattle, Washington 98144 Tel. (206) 324-7911

CANADA

BRITISH COLUMBIA

VANCOUVER Allan Crawford Associates. Ltd. 1820 Pandora St. Tel. (604) 253-7136

ONTARIO

* MALTON Allan Crawford Associates, Ltd. 6427 Northam Drive. Tel. (416) 678-1500

OTTAWA, 3 Allan Crawford Associates, Ltd. 376 Churchill Ave. - Suite 106 Tel. (613) 725-3354

QUEBEC

LONGUEUIL Allan Crawford Associates, Ltd. 157 (rue) St. Charles Street W. Tel. (514) 670-1212

Lambert Field - Zip 63145

DESIGNATES FLUKE REGIONAL SERVICE CENTER

INTERNATIONAL REPRESENTATIVES

ARGENTINA

Coasin S.A. Virrey del Pino 4071 Buenos Aires, Argentina

AUSTRALIA Elmeasco Instruments 7 Chard Road P.O. Box 334 Brookvale, N.S.W. Australia 2100 AUSTRIA

Kontron GMBH & Co., Kg. Lederergasse 16 1080 Wien Austria

BELGIUM

C. N. Rood S/A 37, Place de Jamblinne de Meux B-1040 Brussels, Belgium BRAZIL

AMBRIEX S.A. Av. Graca Aranha 226-6⁰ And. Rio De Janeiro, Brazil

AMBRIEX S.A. Av. Pacaembu, 811 Sao Paulo, Brazil

CHILE

Coasin Chile Ltd. Casilla 14588 Correo 15 Santiago, Chile

COLOMBIA Marones Ltda. Apartado Aereo 90687 Bogota 8, Colombia

DENMARK

France

Tage Ofsen A/S 1, Ronnegade Copenhagen 0, Denmark FINLAND Oy Findip AB Postbox 52025

Helsinki 52, Finland FRANCE Radio Equipment Antares 9, Rue Ernest Cognacq 92 Levallois - Perret

GREECE

Marios Dalleggio Representations 2 Alopekis Street Athens 19 Greece

HONG KONG

Gilman & Co. Ltd. P.O. Box 56 Hong Kong

INDIA

Hinditron Services Pvt. Ltd. 69/A Nepean Sea Road Bombay 6, India

IRAN

Berkeh Company Ltd. 20 Salm Road, Roosevelt Ave. Tehran, Iran

ISRAEL

R.D.T. Electronics Eng'r. Ltd. P.O. Box 21082 Tel Aviv, Israel

ITALY

Elettronucleonica S.P.A. 7, P.zza De Angeli 20146 Milano, Italy

JAPAN

Toyo Trading Co., Ltd. P.O. Box 5014 International Tokyo Japan 2-38 Junkeicho-dori Minami-ku, Osaka, Japan

KOREA

M-C International I.P.O. Box 1355 Seoul, Korea

MALAYSIA

O'Connor's (Pte) Ltd. P.O. Box 1197 Kota Kinabalu East Malaysia P.O. Box 91 Pataling Jaya West Malaysia

MEXICO

Mexitek, S.A. Eugenia 408 Departments 1 v 5 Mexico 12, D.F.

THE NETHERLANDS

C.N. Rood N.V. Post Office Box 4542 Rijswijk (Z.H.) 2100 The Netherlands Fluke (Nederland) N.V. Post Office Box 5053 Industrieterrein Noord Tilburg, The Netherlands

NEW ZEALAND

Elmeasco Instruments Pty. Ltd. Suite 1, 33 Queens Road Melbourne, Vic. 3004 Australia NIGERIA Deemtee Electrotechnics Ltd.

P.O. Box 3073 Lagos, Nigeria NORWAY

Morgenstierne & Co. A/S P.B. 6688 Rodelokka Oslo 6, Norway

PAKISTAN Pak International Operations P.O. Box 5323 Karachi, Pakistan PORTUGAL Equipamentos De Laboratorio, Ltda.

P.O. Box 1100 Lisbon, Portugai SINGAPORE

Robinson Road

SOUTH AFRICA K. Baker (Pty.) Ltd. P.O. Box 1257 P.O. Box 3641 Cape Town, So. Africa P.O. Box 2143 Durban, So. Africa

SPAIN

Rema Leo Haag, S.A. General Sanjurjo 18 Madrid 3, Spain

SWEDEN

Erik Ferner AB Box 56 Snormakarvagen 35 161.26 Stockholm-Bromma Sweden

SWITZERLAND

Kontron Electronic A.G. Hardstrasse 235 P.O. Box 193 8031 Zurich Switzerland

TAIWAN- REPUBLIC OF CHINA

Heighten Trading Co., Ltd. P.O. 1408 Taipel, Taiwan, 104

THAILAND

G,Simon Radio Ltd. 30 Patpong Avenue Suriwong Bangkok, Thailand

THE UNITED KINGDOM

Fluke International Corp. Garnett Close Watford, WD24TT England

URUGUAY

Coasin Uruguaya S.A. Cerrito 617 - 4º Piso Montevideo, Uruguay

VENEZUELA

Coasin C.A. APDO, Postal 50939 Sabana Grande No. 1 Caracas, Venezuela

In Europe, contact FLUKE NEDERLAND, N.V., POST OFFICE BOX 5053, INDUSTRIETERREIN NOORD, TILBURG, THE NETHERLANDS

FLUKE REGIONAL SERVICE CENTER: THE NETHERLANDS

FLUKE (NEDERLAND) N.V. P. O. BOX 5053 TILBURG, THE NETHERLANDS

FLUKE REGIONAL SERVICE CENTER, UNITED KINGDOM

FLUKE INTERNATIONAL CORP. GARNETT CLOSE WATFORD, WD2 4TT ENGLAND

AUTHORIZED SERVICE LABORATORIES INTERNATIONAL

EACH INTERNATIONAL REPRESENTATIVE IS EQUIPPED WITH AN AUTHORIZED SERVICE LABORATORY. PLEASE REFER TO THE INTERNATIONAL REPRESENTATIVE LISTING FOR YOUR SERVICE NEEDS.

O'Connor's (Pte) Ltd. Maybank House 124-126 Singapore 1, Singapore

Johannesburg, So. Africa

FUNCTIONAL SCHEMATIC DIAGRAM					
A3 DAC AMPLII	FIER	3			
		REV.			
DRAWING NO. 421	0A-1051	а			
FLUKE JOHN FLUKE	MFG. CO., ettle, Washington				

NOTES:

1.	ALL	CAPACITANCE IS IN uf UNLESS
2.	÷	LOGIC GROUND

- з. 🕁 соммом

SS OTHERWISE NOTED

NOTES:

- ALL CAPACITANCE IS IN uf UNLESS OTHERWISE NOTED 1.
- ÷ LOGIC GROUND 2.
- 4 COMMON З.
- 4.
- * FACTORY SELECTED 5.

٥	DESIGNATIONS						
2	034	038	D41	D42	D44	D48	
3	R59	R65	R71	R77	R83	R89	
4	R60	R66	R72	R78	R84	R90	
5	R61	R67	R73	R79	R85	R91	
6	R62	R68	R74	R80	R86	R92	
7	R63	R69	R75	R81	R87	R93	
8	R64	R70	R76	R82	R88	R94	
5	Q29	033	037	Q41	Q45	049	
6	030	Q34	0 38	042	Q46	050	
7	Q31	Q35	039	Q43	Q47	051	
8	032	036	040	044	048	052	

CHANGES:

1.			123 THRU	127
	R19	WAS	560Ω	
	R20	WAS	51K	

FUNCTIONAL SCHEMATIC DIAGRAM												
	5											
A5												
BCD LADDER												
	REV.											
DRAWING NO. 4210A-1031	а											
JOHN FLUKE MFG. CO., INC.												

																			_								
REF	7.00	LS																									
CES	TYPE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
QA	CS23030	02	Q3	Q4	Q5	Q6	Q7	Q8	09	Q10	Q11	Q12	Q13	014	Q15	016	Q17	018	019	020	021	022	023	024	025	026	027
RA	3.3K	R4	R7	R10	R13	R16	R19	R22	R25	R28	R31	R34	R37	R40	R43	R46	R49	R52	R55	R58	R61	R64	R67	R70	R73	P76	R80
RB	1.5K	R5	R8	R11	R14	R17	R20	R23	R26	R29	R32	R35	R38	R41	R44	R47	R50	R53	R56	R59	R62	R65	R68	R71	R74	R77	R81
RC	470	R6	R9	R12	R15	R18	R21	R24	R27	R30	R33	R36	R39	R42	R45	R48	R51	R54	R57	R60	R63	R66	R69	R72	R75	R78	R82
CRA	1N752A	CR1	CR2	CR3	CR4	CR5	CR6	CR7	CR8	CR9	CR10	CR11	CR12	CR13	CR14	CR15	CR16	CR17	CR18	CR19	CR20	CR21	CR22	CR23	CR24	CR25	CR26

NOTES:

- ALL CAPACITANCE IS IN uf UNLESS OTHERWISE NOTED 1.
- ÷ LOGIC GROUND 2.
- Ą COMMON 3.
- \leftarrow PCB CONNECTOR 4.
- ---- PROGRAMMING CONNECTOR 5.

FUNCTIONAL SCHEMATIC DAGRAM A6 OPTION --04 DIRECT COUPLED CONTROL LOGIC REV. DRAWING NO. 4210A-1022 с JOHN FLUKE MFG. CO., INC. FLUKE • P.O. Box 7428 Seattle, Washington 98133