Noise & gain measures from 2 to 18 GHz with Eaton 2075 & HP 8971b and adds

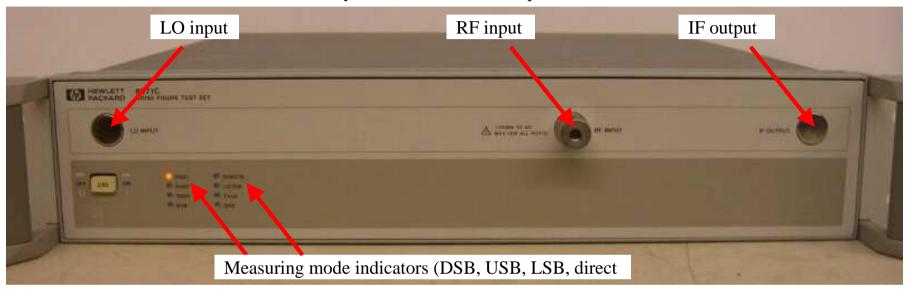
F5DQK February 2009 part 2/2 2 to 18 GHz NF+gain measuring with Eaton 2075 or HP 8970b and ADDS

Overview

- This 2nd Powerpoint is illustrating hits and kinks about gain and NF measurements **OVER 2 GHz** with both Eaton 2075a and HP or Agilent 8970a analysers.
- Solutions are covering the 2-18 and up to 26 GHz band

PART 2

MEASUREMENTS WITH EXTERNAL MIXER


Abstract

- 1- The solutions in the industrial world:
 - HP-8971b or c NF extension test-set
 - Eaton NGA frequency extender
- 2- Direct low-cost DSB measurements using a single broadband mixer
- 3- X, Y and Z outputs to an oscilloscope
- 4- Calibration of unknown noise sources from 2 to 18 GHz
- **5- Conclusions**

1- The solutions in the industrial world

Agilent HP 8971b (or c model) noise figure test-set

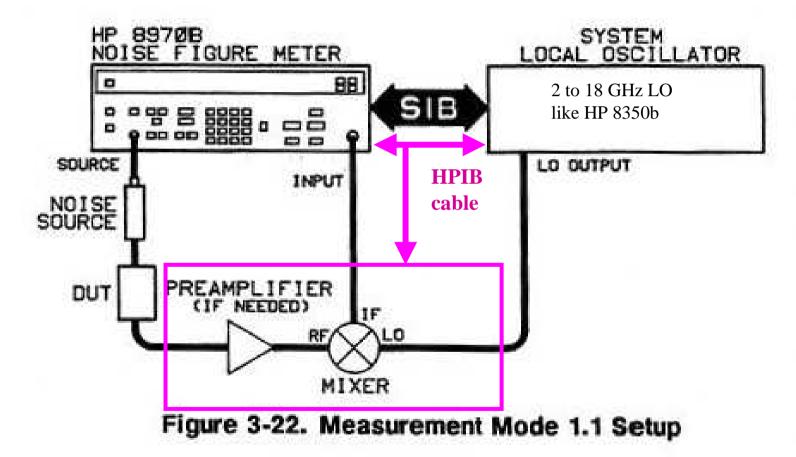
- Model b goes up to 18 GHz and c, up to 26 GHz
- 2 HPIB cables needed between analyser, extention and sweep

It's principally constitued by:

- a YIG following filter with HPIB tracking software
- an RF front-end broadband preamp
- a broadband mixer

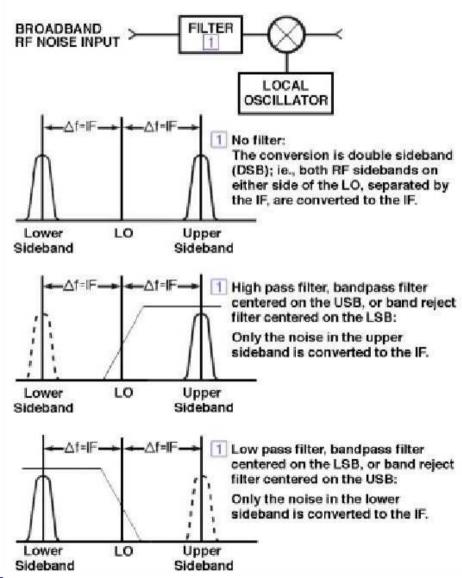
Operation Modes:

- Band 1 SSB1 (10-1600 MHz) using HP 8970b internal mode
- Band 2 SSB2 (1601-2400 MHz, 700 MHz IF)
- Band 3 SSB3 (2401-18000 MHz, 450 MHz IF)
- Band 4 DSB (2401-18000 MHZ, 10 MHz IF)

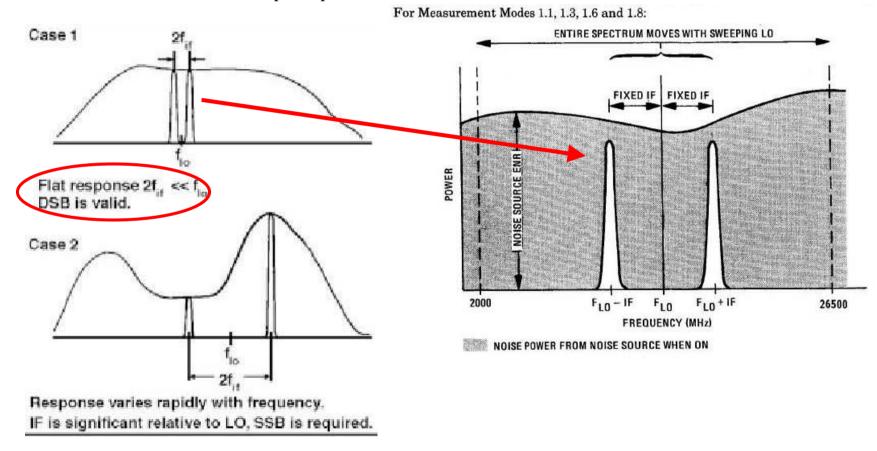

Agilent HP 8971b (or c model) noise figure test-set

HP 8970T Noise Figure Measurement System (10MHz to 18 MHz).

Agilent HP 8971b (or c model) noise figure test-set

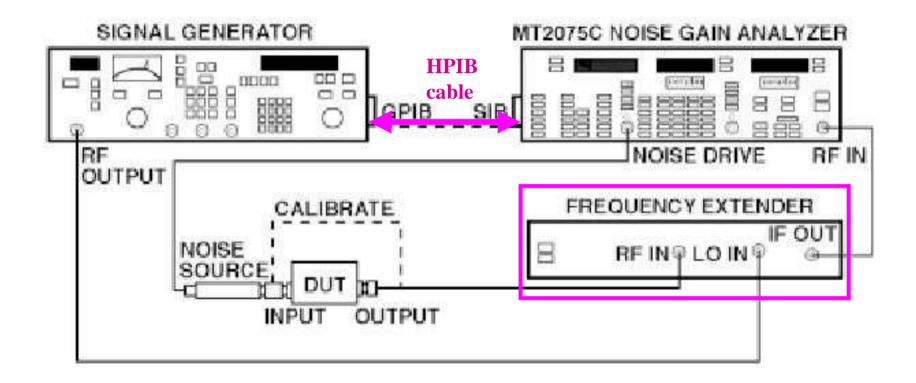

- Not supported by the HP 8970a model!
- In the figure, replace preamp + mixer by the NF test-set (+ additional Yig tracking filter)

Configuration mode 1.1 choice = DSB mode with variable RF, external variable LO, fixed LO


Agilent HP 8971b (or c model) noise figure test-set

DSB or SSB mode

Agilent HP 8971b (or c model) noise figure test-set


- With relatively broadband amps, the DSB mode is preferred
- In this case the error between DSB and SSB mode is little, because IF signal of equal strengths
- No need of additional filter or preamplifier

Eaton (Maury) MT 7550 series noise gain analyser frequency extender, up to 29 GHz

The choice of only DSB mode measurements possibility gives a design with:

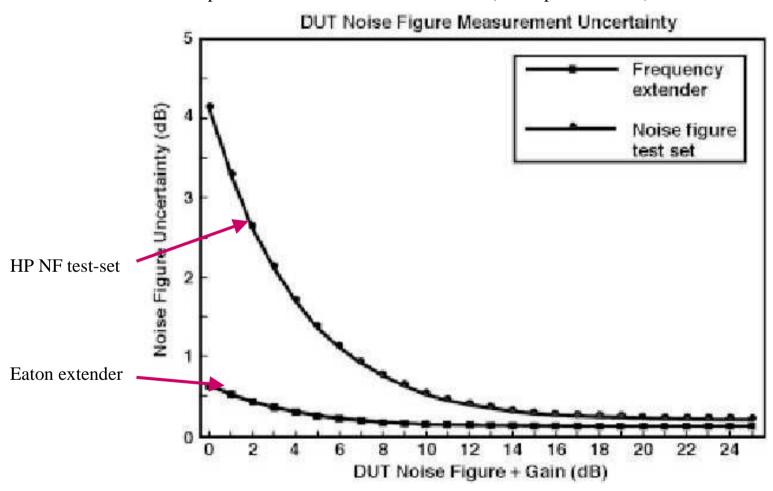
- no internal tracking filter
- no HPIB tracking requirement, only between analyser and sweep generator
- no need of additional filter, only a broadband preamplifier
- far cheeper to build and align

Eaton (Maury) MT 7550 series noise gain analyser frequency extender

3 models choice according to the frequency domain

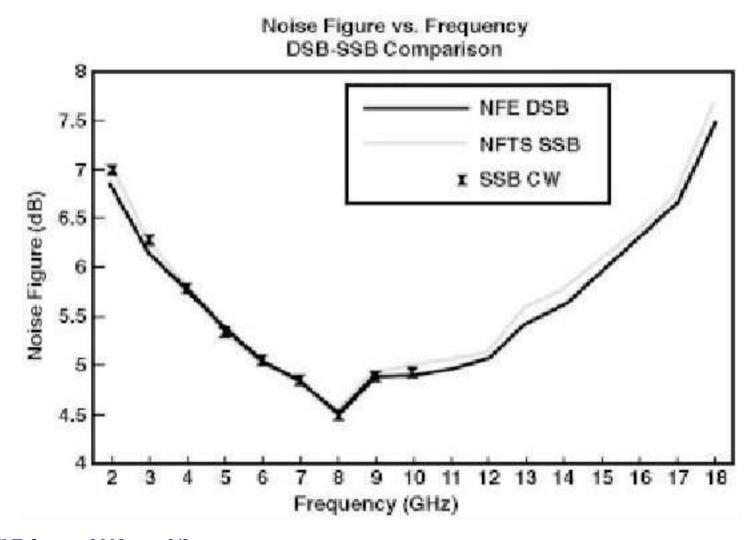
	Conversion Mode	Frequency Range GHz	Model
*1	Single Sideband	1.6 — 4.2	MT7550A
→ no inside filter!	Double Sideband	1.8 — 18.0	MT7551B
→ no inside filter!	Double Sideband	1.8 — 26.5	MT7552B

Great advantage : full compatibility with :


- all Agilent/HP sweeps 9350a or b series - or sweep synthesiser
- all Maury/Eaton or Agilent/HP noise/gain analyser

Comparaison between Agilent/HP and Eaton/Maury designs

	HP test-set	Eaton extender
Compatibility	Only with HP 8970b version	With all HP & Eaton versions
NF uncertainity at 2 GHz	Greater at low frequencies	Lower
DSB and SSB possibility	Yes	No
Price	« Expansive »	Far lower
2nd hand choice	Yes but expansive	Never found

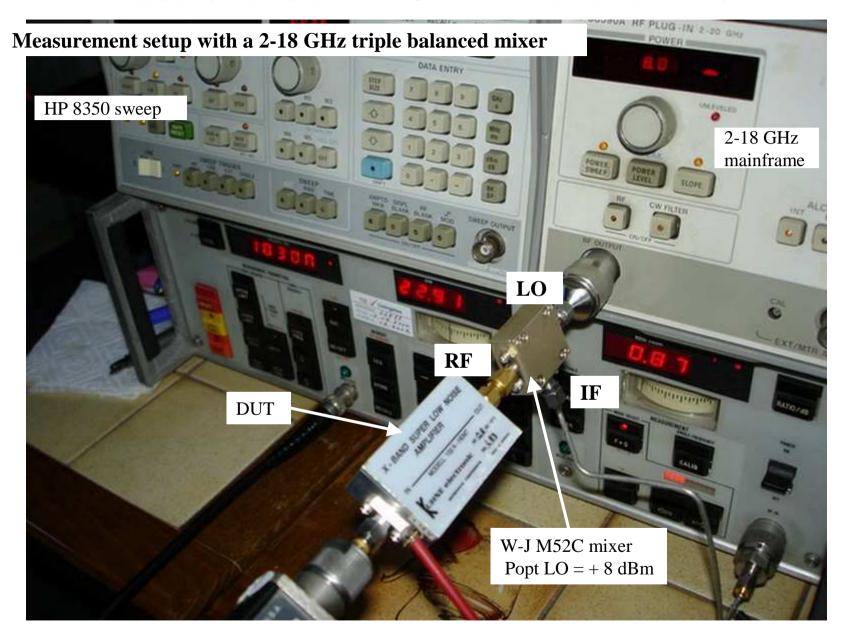

Comparaison between Agilent/HP and Eaton/Maury designs

NF uncertainities compared between both extension brands (Eaton point of view)

Comparaison between Agilent/HP and Eaton/Maury designs

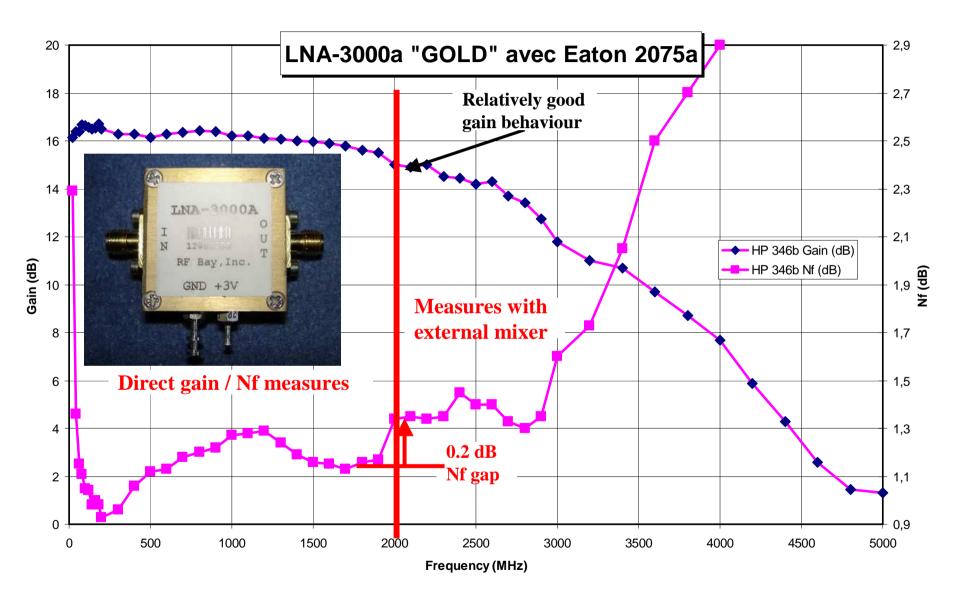
DSB and SSB measures comparaisons, according to Eaton

2- Direct low-cost DSB measurements on preamplifiers with only an external RF mixer and a sweep generator

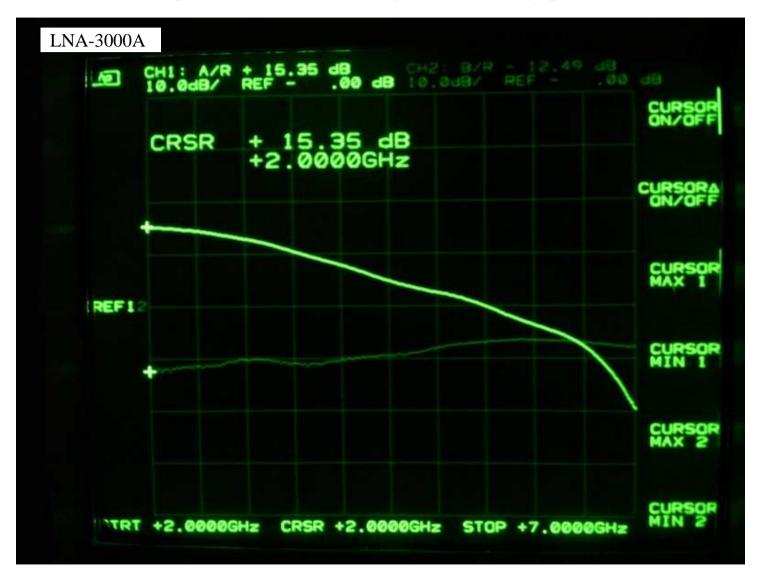

Target: maximum gain & NF stability after 0 calibration with

- DSB option choice because microwave amps have a relatively broadband at high frequencies, in comparaison of the IF frequency taken for the meas (like a 5.7 GHz preamp measured with a 70 MHz IF).
- IF choice à 30 or 70 MHz - so both IFs will sure have exactly the same power
- Choice of a double or preferably triple balanced mixer
- Care taking of optimal (not maximal) LO injection power for minimal insertion loss, between +7 to +13 dBm
- Older analyser versions like the HP 8970a or the Eaton 2075a can be used!
- Older sweep versions like the HP 8350a can also be used (not only the b version like with the HP NF test-set)!

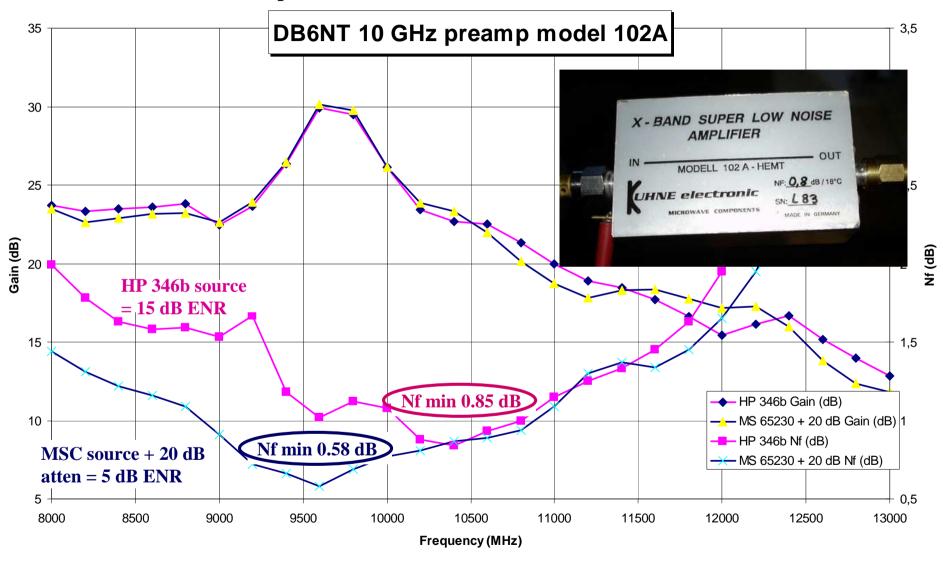
Examples of typical balanced SMA mixers (all tested):


Brand	Model	RF (GHz)	IF (GHz)	Balance	P LO opt (dBm)
Macom	MD-123	0.01-3	0.01-3	double	+10 to +15
W-J	M52C	2-18	0.1-4	triple	+10
W-J	M83C	1-18	0.03-5	triple	+13
W-J	M87C	0.5-19	0.03-5	triple	+13
Miteq	TB0218	2-18	0.5-8	triple	+10
Anaren	74129	5-18	DC-2.5	double	+12

W-J = Watkins Johnson



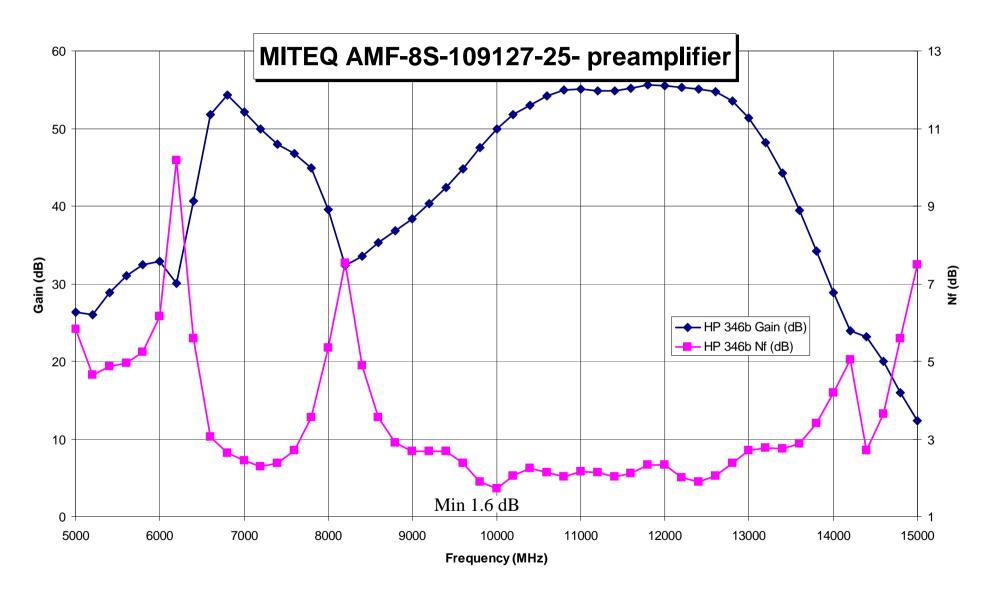
HPIB commands examples using either the HP or Eaton analyser


Gain/N	V f mea	sures	in DS	B with	outside LO at freque	ncies >	2 GHz		
With HP 8970a analyser							With Ea	5 analyser	
		_							
	HP 8970a master			_	HPIB			Eaton 20	75
		HPIB ca	ıble		analyser				HPIB cable
	HP 8350a ou b			_ m	enu to enter		HP 8350a		
	default add	•						default ac	
page 3-70	1,1	SP	LED Loca	Talk "on"	Var RF, ext LO, fixed IF		SP	1,2	Enter
Start	6000	Enter			Start 6 GHz		Start	6000	Enter
Stop	12000	Enter			Stop 12 GHz		Stop	12000	Enter
Step size	100	Enter			Step size		Step size	100	Enter
					= DSB		SP	2,0	Enter
	41,0	SP			Drives the HP 8350a or b sweep		SP	47,3	Enter
	4,1	SP			Takes the HP 8350a control		SP	40,2	Enter
	3,0	SP	70	Enter	Fixed IF of 70 MHz	Shift	Start	70	Enter
Sweep HF	P 8350	Pwr Ivi	6	dBm	P LO = +6 dBm		Shift	↑ 6	Enter
	19,1	SP			IF cal		SP	33,0	Enter

Good and safe comportment on scalar analyser (S11 always positive)

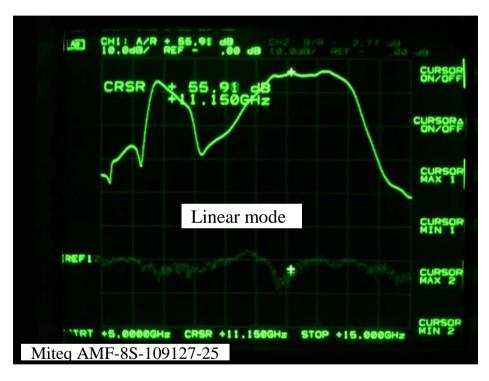
ENR value influence on precision measurements

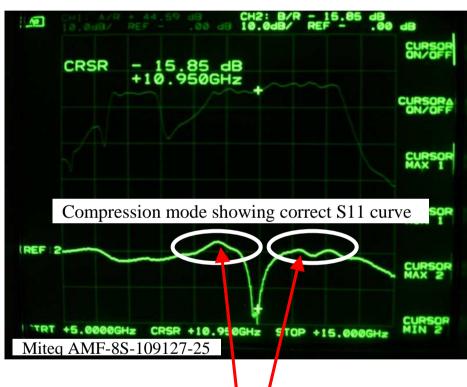

Good and safe comportment on scalar analyser (S11 always positive)



Measurement of a 50 dB gain broadband amplifier

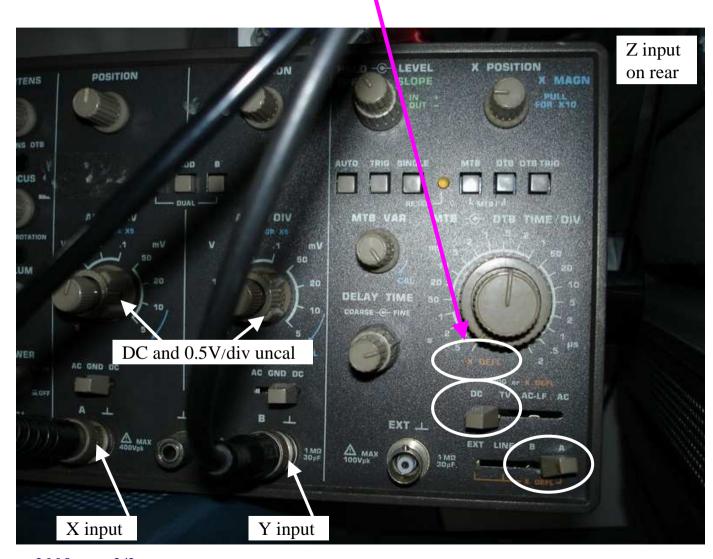
- Because of its too high measured gain, a 20 dB attenuator is put at its outside.
- So an additional 20 dB **loss after DUT** must be entered into the analyser menu.



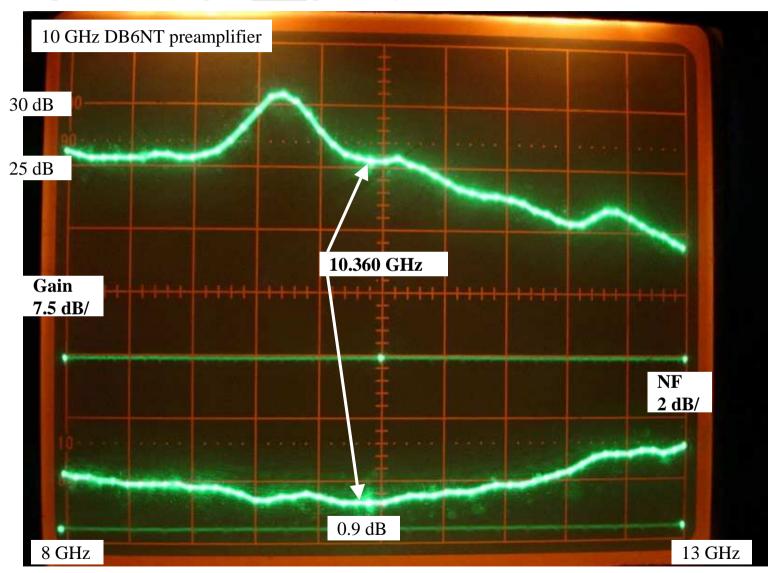


Comportment on scalar analyser, especially for its S11 curve

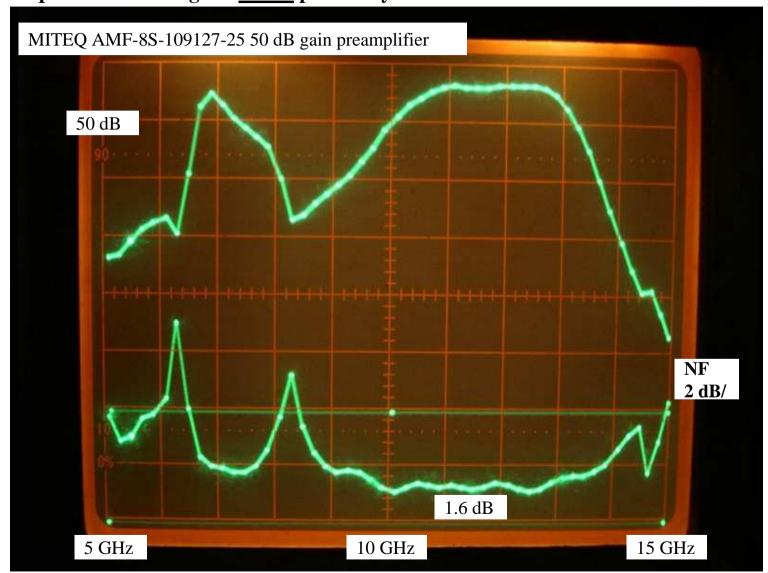
Miteq AMF-8S-109127-25 preamplifier


S11 slightly positive and suspicious !! Calibrating or oscillation beginning problems ?

GAIN: compare both values obtained with gain/NF and scalar analyser!!

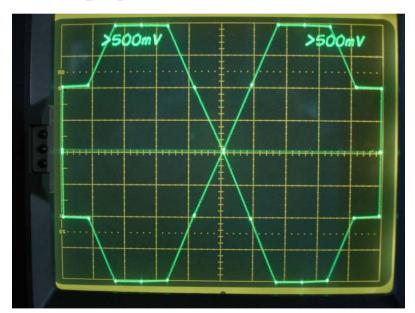

One point NF measure or broadband gain + NF curves?

- Doing only NF measurements at one fixed point in a ham band has **NO SENSE**!
- The great gain obtained on our masthead preamps can conduct to auto-oscillation
- Example: on a scalar analyser, look the S11 at its max gain! You'll be estonished to see how it can approach the zero value, and in certain cases, be a little positive!!! That becomes easily an oscillator!
- If the temperature goes about 40°C down (from summer to winter), many masthead preamps are very easy oscillating !!!
- In order to feel how your (pre)amplifier is working, the only way to know it is to visualise in BROADBAND operation the regularity of both GAIN AND NF curves (french word = monotone) !!!
- Both HP and Eaton analysers have the three X, Y and Z output possibility to visualise this.


Philips PM 3209 using the \underline{X} defl possibility on its time base

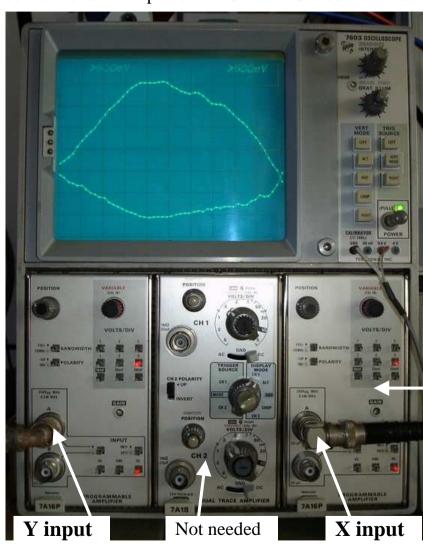
Philips PM 3209 using the \underline{X} defl possibility on its time base

Philips PM 3209 using the \underline{X} defl possibility on its time base

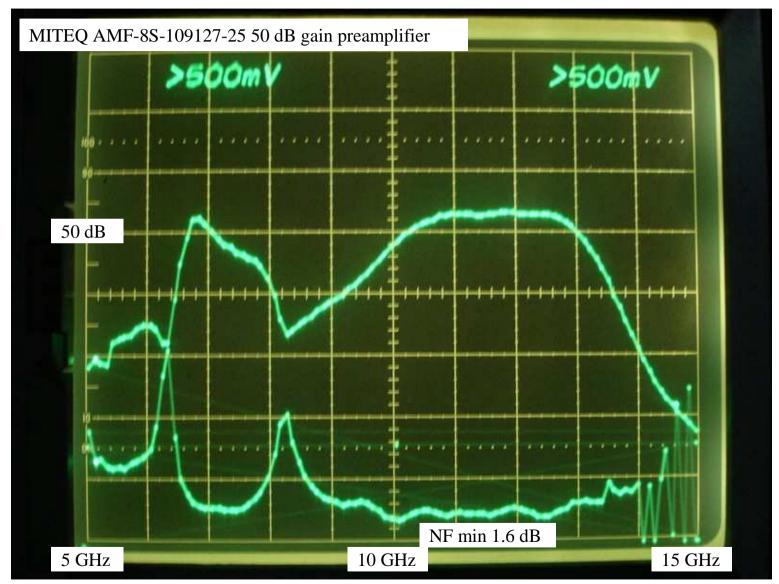


Tektronix 7603 using time-base and Y amplifier plugins

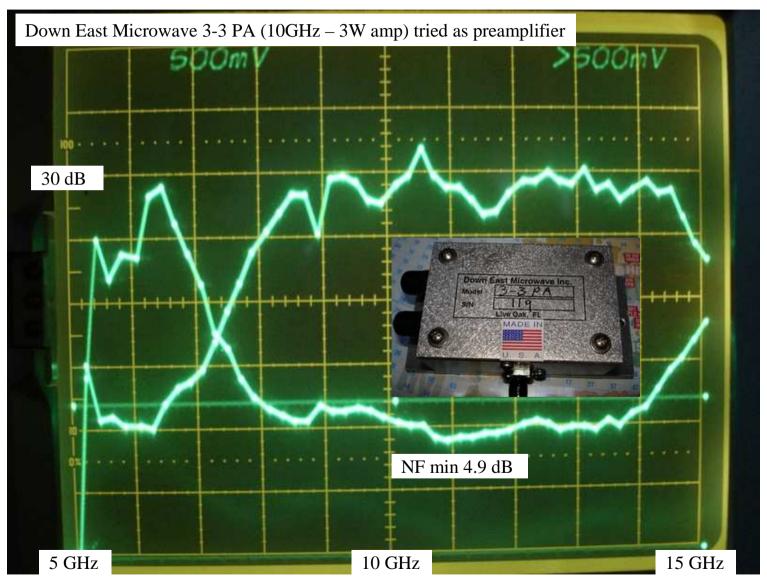
Its 7B80 time-base unit is replaced by a 2nd conventional Y amplifier 7A16 or 7A18 module


(thanks to F6BSW for this trick)

Substitution only possible with oscilloscope mainframes accepting plugins!


Initial test pattern obtained with:

- SP 7.2 « Enter » on Eaton 2075
- 7.1 SP on HP 8970


2nd Y amp instead of time-base

Tektronix 7603 using time-base and Y amplifier plugins

33

Tektronix 7603 using time-base and Y amplifier plugins

F5DQK February 2009 part 2/2 2 to 18 GHz NF+gain measuring with Eaton 2075 or HP 8970b and ADDS

4- Calibration of unknown noise sources from 2 to 18 GHz

Unknown source calibration

Every 25, 15 or 6 dB noise source can be calibrated with a previous « gold » reference

	F5DQK	longue	F	5DQK	courte		F1PDX		
	AILTECH	7616	Α	ILTECH	7616	П	MSC	MS 65230	
	S/N	3710	S	/N	3300		S/N	4173	
	21/01/2009		2	21/01/2009			21/01/2009		
						П			
	F (MHz)	ENR (dB)		F (MHz)	ENR (dB)		F (MHz)	ENR (dB)	
<u> </u>	10	6,65		10	14,7		10	24,19	
Т	30	12,64		30	16,14		30	25,38	
	50	13,94		50	15,59		50	24,83	
	70	14,47		70	15,69		70	24,98	
DIRECTLY!	110	14,78		110	15,83		110	25,08	
DIRECTET!	150	14,93		150	16,13		150	25,29	Calibration of a totally
	430	15,13		430	16,13		430	25,51	unknown MSC source
	1000	15,28		1000	16,18		1000	25,52	ulikilowii MSC source
	1300	15,32		1300	16,23		1300	25,39	
	1500	15,34		1500	16,14		1500	25,3	
*	1900	15,49		1900	15,84		1900	25,28	
	2000	15,16		2000	15,44		2000	24,98	
T	2300	15,09		2300	15,49		2300	23,79	
	3000	15,07		3000	15,12		3000	24,58	
	4000	14,72		4000	15,32		4000	24,46	
	5000	14,61		5000	15,51		5000	24,72	
	5600	14,29		5600	15,29		5600	24,33	
	6000	14,36		6000	15,31		6000	24,47	
	7000	14,7		7000	15,52		7000	25,04	
EXTERNAL	8000	14,68		8000	15,28		8000	24,91	
EXTERNAL	9000	14,48		9000	15,28		9000	24,76	
MIXER!	10000	15,43		10000	15,53		10000	24,7	
WIZEK.	10360	15,58		10360	15,23		10360	24,42	
M. 16' and 10 11' and 10 and	11000	15,48		11000	15,13		11000	23,88	
Multipoint calibration	12000	15,05		12000	14,9		12000	23,97	
also at every GHz	13000	15,78		13000	15,23		13000	24,06	
· · · J	14000	14,75		14000	13,75		14000	23,3	
	15000	14,93		15000	15,58		15000	23,18	
T	16000	14,31		16000	13,31		16000	23,46	
▼ ·	17000	14,44		17000	14,39		17000	24,72	

5- Conclusion

Conclusion

- For conventional ham purposes (large band microwave preamps and also transverter), DSB measures are giving largely enough accuraty
- According to the band of interest, the mixer choice must be carefully done
- The LO power injection must be chosen for minimal conversion loss
- No need of extra expansive NF test-set or frequency extender
- No need of an additional broadband amplifier
- Both oscilloscope gain and NF traces are useful to immediately thumb-up oscillating problems
- A complementary scalar analysis can confirm the linear gain and may also thumb-up oscillations beginning problems
- And in opposite way, a single gain / NF measure at only ONE frequency has absolutely NO SENSE!
- 2 to 18 GHz calibration of unknown noise sources can be easily achieved

Special thanks to F6FTN, F5BQP, F6BSW, F6DPH, F6AJW and F1PDX for their very useful help