DATA SHEET

Model SR1030

Resistance Transfer Standard System

- Part-per-million transfers from 100 m Ω to 1 M Ω
- Thermally isolated by oil for maximum short-term thermal stability
- Excellent long-term stability; \pm 20 ppm for 6 months
- Accuracy calibrated to \pm 10 ppm
- Seven decades of resistance transfer -1, 10, 100, 1 k, 10 k and 100 k Ω /step
- 100:1 resistance transfers using series, parallel, series/ parallel connection
- Calibration readings traceable
 to the NIST are provided

Extremely Accurate and Stable

The Model SR1030 provides the part-per-million (ppm) resistance transfer accuracies and the longterm stabilities you need in today's modern metrology and calibration laboratories.

The SR1030 Resistance Transfer Standards are extremely accurate, stable resistance standards that are used on the bench and are light enough to carry with you to remote calibration, repair, production or R&D sites. The SR1030 consists of six transfer standards in decades from 1 Ω to 100 k Ω per step. Each decade standard consists of 12 nominally equal resistors matched initially to within 10 ppm. In addition, each decade standard produces three decade values — 10 resistors in series (10R), 10 resistors in parallel (R/10), and nine of the ten resistors in series/parallel (R). By making a 1:1 comparison with the tenth resistor, you can resolve a seriesparallel value to better than 1 ppm.

Oil Immersion Provides Thermal Isolation

All standards, except the 100 k Ω / step standard, are immersed in a mineral oil bath. Oil immersion provides thermal isolation to minimize the effects of ambient temperature variations. This means maximum short-term thermal stability for the standards. The SR1030 also exhibits superior long-term stability (±20 ppm of nominal for six months; ±35 ppm for two years; ±50 ppm typical for five years). This gives you longer mean time between calibrations, increasing your calibration throughput.

As an added benefit, the oil speeds the dissipation of heat created in the resistors during calibration. This heat dissipation further contributes to the stability of the standards.

Gaskets seal the SR1030 to keep your work surface and measuring contacts clean. The gaskets also minimize oil aging and contamination to lengthen the time between oil changes.

Since the 100 k Ω standard can be measured at much lower bridge power than the lower value standards, it is not necessary to immerse the standard in oil. However, this standard still benefits from the thermal lagging effects because it is sealed in a chamber using insulating materials that provide approximately the same temperature lagging effects as oil.

Over 30 Years of Experience Refining Resistance Technology

ESI's more than 30 years of experience in design and manufacture of resistance standards has made ESI standards highly respected throughout government and industry. The SR1030 incorporates all the features of the SR1010 Resistance Transfer Standards with the many benefits of a sealed oil bath.

Ideal as a Multi-Value Standard Resistor or Reference Voltage Divider

The high accuracy and precision of the individual resistors make the SR1030 ideal for use as a multivalue standard resistor or reference voltage divider. The superior stability of the SR1030 makes it particularly suitable for calibrating 6½, 7½, and 8½ digit digital multimeters.

Certified Traceable to the NIST

The SR1030 Resistance Transfer Standard System is certified traceable to the National Institute of Standards and Technology. You can use the SR1030 to transfer this traceability to your resistance standards and measuring equipment. Certified calibration data is supplied with every standard.

The SR1030 Resistance Transfer Standard System also meets military specifications MLEE-JR-88-9.

Specifications

Nominal Values (per step)

1, 10, 100, 1 k, 10 k and 100 k Ω

Transfer Accuracy

100:1	\pm (1 ppm + 0.1 $\mu\Omega$) at
	parallel value, using
	SB103, PC101, and
	SPC102 as necessary
10:1	$\pm(1 \text{ ppm} + 1 \mu\Omega) \text{ at}$
	series or parallel value,
	using SB103, PC101, and
	SPC102 as necessary
	,

Initial Adjustment

±20 ppm, matched within 10 ppm

Initial Calibration Certificate

 ± 10 ppm, NIST traceable

Calibration Conditions

23 ±1°C, low-power, four-terminal measurement, initial calibration readings are provided

Long-Term Resistance Stability

±20 ppm of nominal for 6 months ±35 ppm for 2 years ±50 ppm for 5 years, typical

Temperature Coefficient

1Ω	±15 ppm/°C, matched
	within 5 ppm/°C
10 Ω	±1 ppm/°C, matched
	within 5 ppm/°C
100 Ω to 100 k Ω	±5 ppm/°C, matched
	within 3 ppm/°C

Power Coefficient (typical)

1 Ω	±0.3 ppm/mW/resistor
10 Ω	±0.02 ppm/mW/resistor
100 Ω to 100 k Ω	±0.1 ppm/mW/resistor

Maximum Current and Voltage Capabilities

SR1030 Resistance Value Per	One Resistor Alone	10 Resistors in Parallel (R/10)	10 Resistors in Series (R10)
Step	Maximum I, V	Maximum I, V	Maximum I, V
1 Ω	1.0 A, 1.0 V	7.07 A, 707 mV	707 mA, 7.07 V
10 Ω	316 mA, 3.16 V	2.23 A, 2.23 V	223 mA, 22.3 V
100 Ω	100 mA, 10 V	707 mA, 7.07 V	70.7 mA, 70.7 V
1 kΩ	31.6 mA, 31.6 V	223 mA, 22.3 V	22.3 mA, 233 V
10 kΩ	10 mA, 100 V	70.7 mA, 70.7 V	7.07 mA, 707 V
100 kΩ	3.16 mA, 316 V	22.3 mA, 223 V	1.5 mA, 1500 V*

*Based on the breakdown voltage of 1500 volts peak to case

Maximum Power Rating

Single Step1 W/step10 resistors5W distributed

Leakage Resistance

Ω to 10 k Ω	$>$ 10 ¹² Ω , terminal to case	
00 k Ω	$>$ 10 ¹³ Ω , terminal to case	

Breakdown Voltage

1500 volts peak to case

Oil Bath

1

Туре	Mineral oil, USP Light
	Penco, Sontex 85, white
Insulation	Typically 1014 Ω cm
Resistance	
Quantity	Approximately 0.5 gallons

Dimensions (with oil)

Height	120 mm (4.7 in.)
Width	117 mm (4.6 in.)
Depth	335 mm (13.2 in.)
Mass	6.35 kg (Weight 10 lb)

Operating Environment

Temperature	22.8 ±3.3°C (73±6°F)
Humidity	20 to 50% relative humidity

Safe Operating Environment

Temperature Humidity 0 to 50°C (32 to 126°F) 15 to 80% relative humidity

DATA SHEET

Options to Complete Your Installation

Model SB103 Shorting Bars

The Model SB103 Shorting Bars are used to connect any number of Model SR1030 Resistors in parallel or nine resistors in series/parallel arrangement. They may be used by themselves or in conjunction with the Model PC101 or SPC102 networks. The resistance that must be added to the value calculated from the individual resistor values is given in the accompanying table for two- and four-terminal measurements. See Combined Option Functional Specifications on page 4.

Resistance

End to end: approximately 100 $\mu\Omega$ /bar

Maximum Current

10 A/bar

Dimensions (Each Bar)

Linkster	
Height	36 mm (1.4 in.)
Width	241 mm (9.5 in.)
Depth	20 mm (0.8 in.)
Mass	0.23 kg (Weight 8 oz)

Model PC101 Parallel **Compensation Network**

The Model PC101 Parallel Compensation Network is used in addition to the Model SB103 Shorting Bars for the four-terminal parallel connection of 10 low-value resistors in the Model SR1030 Resistance Transfer Standard System.

Effective Resistance and Accuracy

Effect of connection resistances on fourterminal parallel value less than $\pm 0.1~\mu\Omega$. See Combined Option Functional Specifications on page 4.

Resistor Matching

Matched to 0.05%.

Maximum Current

2.0 A

н

Breakdown Voltage

1500 volts peak-to-case

Dimensions

Height	25 mm
Width	305 m
Depth	81 mm
Mass	0.45 k

Model SPC102 Series/Parallel **Compensation Network**

The Model SPC102 Series/Parallel Compensation Network is used in addition to the Model SB103 Shorting Bars for the four-terminal series/parallel connection of nine low-value resistors in the Model SR1030 Resistance Transfer Standard System.

Effective Resistance and Accuracy

Effect of connection resistances on fourterminal series/parallel values less than $\pm 0.1\,\mu\Omega$. See Combined Option Functional Specifications on page 4.

Resistor Matching

Matched to 0.05%

Maximum Current 2.0 A

Breakdown Voltage

1500 volts peak-to-case

Dimensions

Height	
Width	
Depth	
Mass	

25 mm (1 in.) 305 mm (12 in.) 81 mm (3.2 in.) 0.45 kg (Weight 1 lb)

DATA SHEET

Options, continued

Combined Option Functional Specifications

Resistor Grouping	Ten Resistors in Parallel	Nine Resistors in Series/Parallel	Ten Resistors in Series
Nominal Value (Relative to Individual Resistor Value R)	0.1 R	0.1R R	
Four-Terminal Measurement	Resistance Added to Value Calculated from Individual Resistor Values (Value and Tolerance in Microhms)		
With SB103 and PC101 or SPC102	$0 \pm 0.1 \ \mu\Omega$	0 ±1 $\mu\Omega$	_
With SB103 Alone	$50 \pm 10 \ \mu\Omega$	200 ±40 $\mu\Omega$	—
With no Accessories	_	—	$0\pm10~\mu\Omega$
Two-Terminal Measurement			
With SB103	150 ±30 $\mu\Omega$	$300 \pm 60 \ \mu\Omega$	_
With no Accessories	_	_	$300 \pm 60 \ \mu\Omega$

Order Information

Part number

SR1030 Resistance Transfer Standard System:

1 Ω Resistance Transfer Standard 10 Ω Resistance Transfer Standard 100 Ω Resistance Transfer	31030 31031
Standard	31032
1 k Ω Resistance Transfer Standard 10 k Ω Resistance Transfer Standard	31033 31034
100 k Ω Resistance Transfer Standard	31035
Options: SB103 Shorting Bars PC101 Parallel Compensation	30103
Network	08540
SPC102 Series/Parallel Compensation Network	08560

Warranty

WARRANTY OF QUALITY

Electro Scientific Industries, Inc., warrants its products to be free from defects in material and workmanship. Rigorous quality control permits the following standard new equipment warranties:

- 1. Two years for components and instruments exclusively utilizing passive circuitry.
- 2. One year on components and instruments utilizing active circuitry.

During the warranty period, we will service or, at our option, replace at the factory any device that fails in normal use to meet its published specifications. Batteries, tubes and relays that have given normal service are excepted. Special systems will have warranty periods as listed in their quotation.

DISCLAIMER OF IMPLIED WARRANTIES

THE FOREGOING WARRANTIES OF ESI ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. ESI SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OR MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE.

In no event will ESI be liable for special or consequential damages. Purchaser's sole and exclusive remedy in the event any item fails to comply with the foregoing express warranties of ESI shall be to return the item to ESI, shipping charges prepaid, and at the option of ESI obtain a replacement item or a refund of the purchase price.

Where an ESI product will interconnect with components not supplied by ESI, ESI does not warrant the ESI product against failures caused by mismatch of the non-ESI component to the ESI product, nor will ESI be liable for damages to the non-ESI component resulting from the mismatch.

Unless specifically requested by the customer, ESI does not inspect or test an instrument for compliance with applicable safety, governmental or industry standard. Customers who desire an inspection or test for conformity to a standard should specify the standard with particularity. Not all instruments can be modified to conform with standards adopted after the instrument was manufactured, and such modifications are not repairs, nor is failure to comply with a standard adopted after the date of manufacture a defect.

For complete information regarding warranties, terms and conditions, contact ESI.

WARRANTY OF TRACEABILITY

The reference standards of measurement of Electro Scientific Industries, Inc. are compared with the U.S. National Standards through frequent tests by the U.S. National Institute of Standards and Technology. The ESI working standards and testing apparatus used are calibrated against the reference standards in a rigorously maintained program of measurement control.

The manufacture and final calibration of all ESI instruments are controlled by the use of ESI referenced and working standards and testing apparatus in accordance with established procedures with documented results.

ESI reserves the right to change specifications and other product information without notice.

© 1991 Electro Scientific Industries, Inc. Printed in U.S.A

I2400-691-A2.5k

Electro Scientific Industries, Inc., 13900 N.W. Science Park Drive, Portland, Oregon 97229-5497 • (503) 641-4141 • Telex: 474-2064 • Fax: (503) 643-4873