

MANUAL PART NUMBER: 5580018 PRINTED IN U.S.A. - March 1980

CCN: 1402

 $\sum_{i=1}^{n}$

List of Effective Pages

This List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If a page is simply rearranged due to a technical change on a previous page, it is not listed as a changed page. Within the manual, changes are marked with a vertical bar in the margin.

Pages	Effective Date
PRELIMINARY	May 1979
FIRST EDITION	(CCN 1402)

Printing History

New editions incorporate all update material since the previous edition. The date on the title page changes only when a new edition is published. If minor corrections and updates are incorporated, the manual is reprinted but the date and edition number on the title page do not change.

PRELIMINARY	 	 	 	*****	 	. May 1	979
FIRST EDITION	 	 	 		 	March 1	980

Certification

EIP Microwave certifies that this instrument was thoroughly inspected and tested, and found to be in conformance with the specifications noted herein at time of shipment from factory.

Warranty

EIP Microwave warrants this counter to be free from defects in material and workmanship for one year from the date of delivery. Damage due to accident, abuse, or improper signal level, is not covered by the warranty. Removal, defacement, or alteration, of any serial or inspection label, marking, or seal, may void the warranty. EIP Microwave will repair or replace at its option, any components of this counter which prove to be defective during the warranty period, provided the entire counter is returned PREPAID to EIP or an authorized service facility. In-warranty counters will be returned freight prepaid; out-of-warranty units will be returned freight COLLECT. No other warranty other than the above warranty is expressed or implied.

۷

. . .

.

Table of Contents

PAGE

Section 1, General Information

Description .			•				•		•					•			*	•	•		•	1-1
Specifications	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•			•	•	1-2

Section 2, Installation

Installation			•	•			•			e		,		•	2-1
Counter Identification						·	•								2-1
Shipping and Storage .			٠			•	٠	•			•				2-1
Performance Checkout	P	'n	0	ce	d	u	re	•							2-1

Section 3, Operation

Front Panel Controls and Indicators 3-1 Display 3-1 Operating Status 3-2 Power Meter/DAC Option 3-2
Signal Input
Rear Panel Controls and Connectors
Keyboard
Band Selection
Resolution/Gate Time Selection
Display and Data Entry Sequence
Frequency Limits 3-9
Test Selection
Set-Up for Basic Frequency Measurement 3-12
Frequency Offsets
Display Error Messages

Section 4, Theory of Operation

General	-1
Basic Counter	2
Band 2 Converter	-2
Band 3 Converter 4-	-7
Converter Control	-7
Converter 200 4-	-7
Operation	.9

Section 5, Maintenance and Service

Fuse Replacement .	•	•					•	•						•			5-1
Air Circulation		•	•	•			•			•	•				٠		5-1
Periodic Maintenance	•	•	•	•	•	•		•				•	•				5-1
Factory	•		•		*											•	5-2
Field			•				•		•	•							5-2

PAGE

Section 6, Troubleshooting

Signature Analysis	
Free Running	
Program Controlled	
Self Diagnostics	
Keyboard Controlled Circuit Tests 6-7	
Significant Addresses, I/O Ports 6-10	i.
Significant Addresses, RAM 6-13	ł
Troubleshooting Trees	i
Test Equipment Required	,

Section 7, Adjustments and Calibrations

General
Power Supply Adjustments
Converter Calibration
Coarse Adjustment
Fine Adjustment
Time Base Calibration
Temperature Compensated Crystal
Oscillator (TCXO)
TCXO Calibration
Display Intensity

Section 8, Performance Tests

General
Variable Line Voltage
Required Test Equipment
Band 1
Band 2
Band 3

Section 9, Functional Description and

Illustrated Parts Breakdown	}–1
Reference Designation) -2
Abbreviations) 2
545/548 Microwave Counter Top Assembly	
Parts List) -3
545/548 Overall Block Diagram	9-5

A101	Counter Interconn	e	ct	t	٠		•	٠	•	•	•		•	•	•	•	100-1
A102	Power Supply									·	•		·	•			101-1
A105	Microprocessor .		•		•	•	•		•		•	•	•	•			105-1
A106	Count Chain	•			•	•	•	•		•	•						106-1
A107	Gate Generator .	•	•		•		•		•		•	•					107-1
A108	Converter Control				e			•			•			•			108-1
A109	Band 2 Converter					•						•			•		109-1

Table of contents, continued

PAGE

Section 9, (Continued)

A110 Front Panel Display and Keyboard	. 110-1
A111 Front Panel Logic	. 111–1
A203 Microwave Converter	. 203-1
A201A Voltage Control Oscillator	201A-1
A201B IF Amplifier	201B-1

Section 10, Options

Option 01,	Digital-to-Analog Converter (DAC) 01-1
02,	Power Measurement 02-1 Specifications
	Operation 02-1 Theory of Operation 02-2 Calibration 02-6
03,	Time Base Oscillators03/4/5-1Oven Oscillator Power Supply03/4/5-3Oven Oscillator Calibration03/4/5-4
06,	Extended Frequency Capability 06-1

PAGE

Section 10, (Continued)

Option 07, Remote Programming/BCD Output 07-1
08, General Purpose Interface Bus (GPIB) 08-1
Introduction
Equipment
Setting Address Switch 08-1
GPIB Functions Implemented
Programming the 545/548
Program Code Set
Format of GPIB Instructions 08–6
Definitions
Available Commands
Measurement Output Format
Reading A Measurement 08-11
Program Examples 08-12
Parts List
09, Rear Input
010, Chassis Slides 010-1
Appendix A, List of Manufacturers A-1

List of Illustrations

Figure Number

PAGE

<u>3-1.</u>	Front Panel, Model 545
3-2.	Front Panel, Model 548
3-3.	Rear Panel
3-4.	Keyboard
4-1.	Counter Block Diagram, Simplified
4-1.	Band 2 Converter Block Diagram, Simplified
4-2. 4-3.	Band 2 Converter Operation
4-3. 4-4.	Band 2 Operating Ranges
-	
4-5.	Band 3 Converter, Simplified
4-6.	Band 3 Operation, Simplified
4-7.	Band 3 Search for Signal
4-8.	Determine Largest Signal
4-9.	YIG Centering
4-10.	Calculate N and VCO Frequency
4-11.	Band 3 Signal Tracking
4-12.	Increase VCO Reference Frequency 4-15
4-13.	Band 4 Overall Operation
4-14,	Harmonic Mixing Ranges
4-15.	Search for Signal
4-16.	Center YIG on Signal
4-17.	Determine N and +/- Sign
4-18.	Select Proper VCO Frequency
6-1.	Microprocessor Free Running Signatures
6-1 <i>.</i> 6-2.	Microprocessor Free Running Signatures 6-2 Basic PROM Set 6-3
6-2.	Basic PROM Set
6-2. 6-3.	Basic PROM Set 6-3 Signatures, U7 PROM 3 6-3
6-2. 6-3. 6-4.	Basic PROM Set 6-3 Signatures, U7 PROM 3 6-3 Signatures, U6 PROM 4 6-4
6-2. 6-3. 6-4. 6-5.	Basic PROM Set 6-3 Signatures, U7 PROM 3 6-3 Signatures, U6 PROM 4 6-4 Signatures, U13 PROM 5 6-4 Signatures, U12 PROM 6 6-5
6-2. 6-3. 6-4. 6-5. 6-6. 6-7.	Basic PROM Set 6-3 Signatures, U7 PROM 3 6-3 Signatures, U6 PROM 4 6-4 Signatures, U13 PROM 5 6-4 Signatures, U12 PROM 6 6-5 Signatures, U11 PROM 7 6-5
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8.	Basic PROM Set 6-3 Signatures, U7 PROM 3 6-3 Signatures, U6 PROM 4 6-4 Signatures, U13 PROM 5 6-4 Signatures, U12 PROM 6 6-5 Signatures, U11 PROM 7 6-5 Self Diagnostic Error Indications 6-6
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-14
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-14Troubleshooting Test Equipment Required6-15
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-14Troubleshooting Test Equipment Required6-15Main Troubleshooting Tree6-16
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-15Main Troubleshooting Tree6-16Program Inoperative6-17
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-16Program Inoperative6-16Program Inoperative6-17Keyboard6-18
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 6-19.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-14Troubleshooting Test Equipment Required6-15Main Troubleshooting Tree6-16Program Inoperative6-17Keyboard6-18Band 16-19
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 6-19. 6-20.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-14Troubleshooting Test Equipment Required6-15Main Troubleshooting Tree6-16Program Inoperative6-17Keyboard6-18Band 16-19200 MHz Test6-20
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 6-19. 6-20. 6-21.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-16Program Inoperative6-16Program Inoperative6-17Keyboard6-18Band 16-19200 MHz Test6-20Band 26-20
6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 6-19. 6-20.	Basic PROM Set6-3Signatures, U7 PROM 36-3Signatures, U6 PROM 46-4Signatures, U13 PROM 56-4Signatures, U12 PROM 66-5Signatures, U11 PROM 76-5Self Diagnostic Error Indications6-6Keyboard Configuration for Tests Requiring Hexadecimal Inputs6-7Keyboard Test Signatures6-8Converter Ramp Test Signatures6-9I/O Addresses6-11RAM Frequency Storage6-13RAM Power Storage6-14Troubleshooting Test Equipment Required6-15Main Troubleshooting Tree6-16Program Inoperative6-17Keyboard6-18Band 16-19200 MHz Test6-20

List of Illustrations, continued

Figure Number

02-1.

PAGE

02-2. 02-3. 02-4.	Power Meter Task 02-3 Power Meter/Gate Generator Component Locator 02-8 Power Meter/Gate Generator Schematic 02-9
03/4/5-1. 03/4/5-2. 03/4/5-3. 03/4/5-4. 03/4/5-5. 03/4/5-6.	Time Base Oscillator Option Specifications03/4/5-1Component Location, Time Base Option03/4/5-2Time Base Option, Interconnection Diagram03/4/5-2Oven Oscillator Power Supply (A112) Component Location03/4/5-3Time Base Calibration03/4/5-4Time Base Option Schematic03/4/5-6
08-1. 08-2. 08-3. 08-4.	Allowable Address Codes08-2Location of GPIB in Counter08-14GPIB Component Locator08-16GPIB Schematic08-17

Power Meter Hardware

Section 1 General Information

DESCRIPTION

The 54X series is a microprocessor-based heterodyne device. The standard 545 and 548 cover the frequency range from 10 Hz to 18 GHz and 10 Hz to 26.5 GHz, respectively. The model 548, when equipped with frequency extension capability (option 06), is used in conjunction with a remote sensor (model 591) to cover the range from 26.5 to 40 GHz. Additional remote sensors extend measurement capability into higher narrowband mm ranges (e.g. 90-96 GHz).

Utilizing keyboard control, the 54X series counters provide frequency offsets and frequency selectivity. Options include power measurement, full systems capability via GPIB or BCD/Remote Programming and D/A Converter output.

Full frequency range is covered in three bands. Band 1 is a high (1 M ohms/20 pF) impedance input, and covers a 10 Hz to 100 MHz range, with a sensitivity of 25 mV RMS. Band 2 has an input impedance of 50 ohms, a 10 MHz to 1 GHz range, with a sensitivity of -20 dBm. Band 3 has an input impedance of 50 ohms nominal over its microwave range of 1 GHz to 18 or 26.5 GHz, and a sensitivity to -30 dBm. For frequencies above 26.5 GHz, a remote sensor, with an appropriate waveguide input, is designated as Band 4.

Measurements are presented on a 12 digit, LED display that is sectionalized to read GHz, MHz, KHz, and Hz. When the optional power measurement function is activated, the digits on the far right display power in dBm to 0.1 dB and frequency resolution is limited to 100 kHz.

SPECIFICATIONS

BAND 1	
RANGE	10 Hz to 100 MHz
SENSITIVITY	25 mV rms
IMPEDANCE	1 MΩ/20 pF
CONNECTOR	BNC (female)
MAX, INPUT LEVEL	120 V rms *
DAMAGE LEVEL	150 V rms *
	* (Above 1 KHz max, input will decrease at 6 dB/octive
	down to 3.0 V rms.)
BAND 2	
RANGE	10 MHz to 1 GHz
SENSITIVITY	-20 dBm
DYNAMIC RANGE	30 dB
IMPEDANCE	50Ω Nominal
CONNECTOR	BNC (female)
MAX, INPUT LEVEL	+10 dBm
DAMAGE LEVEL	+27 dBm
ACQUISITION TIME	< 50 msec

RANGE	1 GHz to 18 GHz (26.5 GHz for model 548)	
SENSITIVITY	-30 dBm = 1 GHz to 12.4 GHz	
	-25 dBm = 12.4 GHz to 18 GHz	
	-20 dBm = 18 GHz to 26.5 GHz	
DYNAMIC RANGE	1 GHz to 12.4 GHz, 37 dB	
	12.4 GHz to 18 GHz, 32 dB	
	18 GHz to 26.5 GHz, 27 dB	
IMPEDANCE	50Ω Nominal	
CONNECTOR	Model 545 - Precision type N, (female)	
	Model 548 - SMA (female)	
MAX. INPUT LEVEL	+7 dBm	
DAMAGE LEVEL	5 Watts (+37 dBm)	
ACQUISITION TIME	\sim 250 msec Independent of frequency	
AUTO AMPLITUDE	(Automatic amplitude discrimination of two	
DISCRIMINATION	frequencies) 10 dB	
FM MODULATION	20 MHz P-P up to 10 MHz rate	
VSWR	< 2.5:1 typical	
FREQUENCY LIMIT	Keyboard control of desired limits (standard). Counter	
	will measure largest signal within programmed limits.	
	Signal outside operating band must be separated by at	
	least 100 MHz from either limit. For signals more than	
	10 dB above desired signal, separation is typically 200	
	MHz	

TIME BASE	
FREQUENCY	10 MHz TCXO
AGING RATE	$< 3 \times 10^{-7} $ per month
SHORT TERM	< 1 x 10 ⁻⁹ rms for one second averaging time.
TEMPERATURE	$< 2 \times 10^{-6} 0^{\circ} \text{ to } + 50^{\circ} \text{ C}$
LINE VARIATION	< 1 x 10 ⁻⁷ ± 10% change.
WARM UP TIME	NONE
OUTPUT FREQUENCY	10 MHz, square-wave, 1 V p-p minimum into 50 ohms.
EXT. TIME BASE	Requires 10 MHz, 1 V p-p minimim into 300 ohms.

SPECIFICATIONS, continued

GENERAL		
RESOLUTION	Front panel keyboard input select 1 Hz to 1 GHz	
MEASUREMENT TIME	1 msec for 1 KHz resolution 1 sec for 1 Hz resolution	
DISPLAY	12 digit LED sectionalized	
ACCURACY	±1 count ± time BASE ERROR	
TEST	Front panel selected diagnostics	
SAMPLE RATE	Controls time between measurements variable from 100 msec typ, to 10 sec. Switchable Hold position holds display indefinitely.	
RESET	Resets display to zero and initiates new reading	
OFFSETS	Keyboard control of frequency offsets (standard) and power offsets (standard with power measurement Option 02). Displayed frequency (power) is offset by entering value to 1 Hz resolution (0.1 dB power).	
OPERATION TEMP.	0°C to 50°C	
POWER	100/120/220/240/VAC ± 10% (selectable) 50 to 60 Hz, 60 VA typical	
WEIGHT, NET	\sim 20 lbs. (9.07 kg)	
WEIGHT, SHIPPING	~25 lbs. (11.34 kg)	
DIMENTIONS (HWD)	3.5'' x 16.75'' x 14.0'' (89 mm X 425 mm X 356 mm)	
ACCESSORIES FURNISHED	Power Cord and Manual	

REMOTE SENSOR 591

RANGE	26.5 GHz to 40 GHz
SENSITIVITY	-20 dBm
CONNECTOR	UG599/U Waveguide Flange (WR 28 Waveguide)
MAXIMUM INPUT LEVEL	+ 5 dBm
DAMAGE LEVEL	+ 10 dBm

OPTIONS

See Section 10 for detailed information.

01 D TO A CONVERTER

DAC will convert any three consecutively displayed digits into an analog voltage output on rear panel.

02 POWER METER

1 to 18/26.5 GHz will measure sine wave amplitude to 0.1 dBm resolution and display simultaneously with frequency. Power offset to 0.1 dB resolution, selectable from front panel. Option will not degrade the basic performance of the counter.

TIME BASE OSCILLATOR OPTIONS:

	03	04	05
AGING RATE/24 HOURS (After 72 hour warm-up)	< 5 x 10 ⁻⁹	< 1 x 10 ^{.9}	< 5 x 10 ⁻¹⁰
SHORT TERM STABILITY (1 second average)	< 1 × 10 ⁻¹⁰ rms	<1 x 10 ⁻¹⁰ rms	< 1 x 10 ⁻¹⁰ rms
0° to +50°C TEMPERATURE STABILITY	< 6 x 10 ⁻⁸	< 3 x 10 ⁻⁸	< 3 x 10 ⁻⁸
± 10% LINE VOLTAGE CHANGE	< 5 x 10 ⁻¹⁰	< 2 x 10 ⁻¹⁰	< 2 × 10 ⁻¹⁰

SPECIFICATIONS, continued

OPTIONS, cont.

06 EXTENDED FREQUENCY CAPABILITY – 548 Use in conjunction with models 59X series Remote Sensors.

07 REMOTE PROGRAMMING/BCD OUTPUT

08 GPIB - Provides programming and output capability per IEEE 488-1975.

09 REAR INPUT

10 CHASSIS SLIDES

Section 2 Installation

INSTALLATION

There are no special installation instructions. The counter is a self-contained bench or rack mounted unit, and only requires connection to a standard, single-phase, 100/120/220/240 volt 50-60 Hz power line for operation.

CAUTION

Check current rating of counter fuse and setting of rear panel VAC selector switch before applying power to counter.

COUNTER IDENTIFICATION

This counter is identified by two sets of numbers. The model number 645 or 548, and a serial number that is located on a label that is affixed to the rear panel. Both numbers must be mentioned in any correspondence regarding your counter.

SHIPPING AND STORAGE

Wrap the counter in heavy plastic or kraft paper, and repack in original shipping carton. If the original container is no longer available, use a heavy (275 lb test) double-walled carton with approximately four inches of packing material between the counter and the inner carton. Seal carton with strong filament tape or strapping.

Mark the carton to indicate that it contains a fragile electronic instrument. Ship to EIP at address on the title page of this manual.

PERFORMANCE CHECKOUT PROCEDURE

The following procedure may be conducted without special tools or equipment.

- 1. Turn counter POWER switch off. Check fuse rating and setting of AC POWER switch on rear panel.
- 2. Connect power cord to 100/120 or 220/240 volt, 50-60 Hz single-phase power source. The ground terminal on the power cord plug should be grounded.
- 3. Turn POWER switch on. Dashes will be displayed for about one second, followed by all 0's. This indicates that the automatic self-check has been completed.

8. This completes the performance checkout procedure.

Section 3 Operation

Figure 3-1. Front Panel, Model 545

FRONT PANEL CONTROLS AND INDICATORS

DISPLAY

- The 12 digit LED display provides a direct numerical readout of a measurement or of an input frequency. The frequency readout is displayed in a fixed position format that is sectionalized in GHz, MHz, kHz and Hz. Power information is displayed in dBm to 0.1 dB resolution, on the three right-most digits. When both power and frequency are displayed, frequency resolution is limited to 100 kHz.
- POWER switch turns counter on.
- SAMPLE RATE/HOLD varies time between measurements from 0.1 to 10 seconds (nominal) per reading. (Gate time is added to sample time, thus the minimum reading for 1 Hz resolution is 1.1 seconds.) The last reading is retained indefinitely in HOLD.
- GATE lights when the signal gate is open and a measurement is being made.
- SEARCH lights when the counter is not locked to an input signal.
- RESET manually over-rides all controls, resets the counter and converter, and initiates a new reading.

OPERATING STATUS

The operating status of the counter is indicated by a series of LEDs. When the counter is displaying input data, instead of a measurement, the appropriate LED status indicator will flash.

- REMOTE lights to indicate that front panel controls are disabled, and that the counter is being controlled by the GPIB option (08), or by the BCD/Remote Programming option (07).
- EXT REF lights to indicate the counter is set to an external time base reference.

CAUTION

When EXT REF lights it does NOT indicate that correct signal level has been applied.

- PWR dBm lights to indicate that the Power Meter option (02) is active.
- FRQ LMT, LOW/HIGH lights when frequency limits for counter operation have been selected.
- OFFSET, PWR/FRQ lights when power and/or frequency readings are offset from their actual value.
- BAND 1, 2, 3, 4 lights to indicate which operating range has been selected. When Band 4 is lit it indicates that the Extended Frequency Capability option (06) has been selected.
- DAC OPT lights to indicate that the Digital-to-Analog Converter option (01) is active.

POWER METER/DAC OPTION KEYBOARD

Four keys control the operation of these options.

- ON/OFF push button activates/deactivates power meter.
- OFFSET push button activates the power offset function.
- dB pushbutton acts as a terminator for the input of power offsets.
- DAC pushbutton, followed by two digits (00-12), activates the DAC option. The number keyed in will select the most significant digit (00 = OFF, 01 = 1 Hz, 12 = 10 GHz).

Figure 3-2. Front Panel, Model 548

SIGNAL INPUT

- BAND 1 input connector (BNC female) has a nominal input impedance of 1 Meg ohms, shunted by 20 pF. It is used for measurements in the range of 10 Hz to 100 MHz.
- BAND 2 input connector (BNC female) has a nominal input impedance of 50 ohm. It is used for measurements in the range of 10 MHz to 1 GHz.
- BAND 3 input connector on the model 545 is a precision type N female. It is used for counter operation in the range of 1 GHz to 18 GHz. Model 548 has a precision type SMA female connector that is used for operation in the range of 1 GHz to 26.5 GHz.
- BAND 4 is used in conjunction with the Extended Frequency capability option (06). It provides the interface between the Remote Sensor assembly and the 548 counter.

Figure 3-3. Rear Panel

REAR PANEL CONTROLS AND CONNECTORS

- AC POWER connector accepts the power cord supplied with the counter.
- FUSE provides overload protection. Use only a 0.75A slow-blow MDL type fuse for 100/120V operation. Use a 0.40A slow-blow FST type fuse for 220/240V operation.
- VAC SWITCH sets the operating voltage of the counter to match power line. There are 4 settings: 100, 120, 220, and 240 VAC. Counter will operate at voltages within ± 10% of selected line voltage, at frequencies of 50 to 60 Hz.

CAUTION

Switch setting and fuse rating must match power line voltage.

- GPIB connector is used with the IEEE 488-1975 General Purpose Interface Bus option (08).
- BCD OUTPUT and REMOTE PROGRAMMING connectors (not shown) replace the GPIB connector when the counter is equipped with the BCD OUTPUT/REMOTE PROGRAMMING option (07).
- TIME BASE ADJUST control is used with options 03, 04, or 05 only. Screwdriver adjustment allows precise setting of the internal ovenized crystal oscillator.
- TIME BASE INT/EXT switch selects either the internal time base or an external 10 MHz reference.
- TIME BASE connector (BNC female) allows monitoring of internal 10 MHz time base, or input of an external 10 MHz reference.
- DAC OUTPUT connector (BNC female) provides analog output voltage for the Digital-to-Analog Converter option (01).

5580018

Figure 4-4. Keyboard

KEYBOARD

The keyboard consists of 16 pushbuttons that control major functions of the counter. Twelve keys are used for numerical data entry, the digits 0 through 9, the decimal point and the minus sign. Two keys (MHz and GHz) act as terminators for the input of frequency offset or frequency limits. The CLEAR DATA and CLEAR DISPLAY keys are used to clear stored or displayed data. Six of the numerical keys are also used to select the band, resolution, test function, frequency offset and frequency limits.

UNITS (MHz/GHz)

Completes Entry Sequence

PRESS:

PRESS:

Completes Entry Sequence

CLEAR (DATA/DISPLAY)

GH₇

BAND SELECTION

To select one of three standard operating bands on the model 545 or 548.

	BAND			BAND			BAND	
PRESS:		1	or		2	or		3

Notice annunciator flash and selected band number will light when chosen. This feature allows multiple inputs to be connected and selected in turn.

The "BAND" KEY followed by a numeric key enables the following band selection.

PRESS:	BAND	1 10 Hz - 100 MHz Input
PRESS:	BAND	2 10 MHz - 1 GHz Input
PRESS:	BAND	3 1 GHz - 18 GHz (Model 545) 26.5 GHz (Model 548)

On the model 548, equipped with option 06 and a 59X series Remote Sensor, Band 4. is selected by:

	BAND	
PRESS:	\square	4

For example, with the 591 Sensor you will press

Х

BAND	4	1

RESOLUTION / GATE TIME SELECTION

The "RESOL" key followed by a numeric key enables following resolutions.

As the resolution is decreased from 1 Hz to 1 kHz, the gate time LED should cycle faster:

- 1 Hz resolution equals a gate time of 1 sec.
- 10 Hz = 100 msec Gate time
- 100 Hz = 10 msec Gate time
- 1 KHz to 1 GHz = 1 msec Gate time

DISPLAY AND DATA ENTRY SEQUENCE

The keyboard display and data entry sequences are segmented into four main groups. All keyboard operations must be started by choosing the function first.

DATA ENTRY - enter offsets or limits

- FUNCTION, SIGN (plus sign not required), NUMBER, DECIMAL, NUMBER, UNITS Sequence: 1. (decimal and second number is optional)
 - 2, FUNCTION, NUMBER

DISPLAY DATA - display previously entered data

Sequence : FUNCTION, CLEAR DISPLAY CLEAR FREQ Example : OFFSET DISPLAY

CLEAR DATA - clear entered data

FUNCTION, CLEAR DATA Sequence: 1.

> 2. FUNCTION, 0 , UNITS

> > DATA

FUNCTION, UNITS 3,

Example :

1.	OFFSET		
2,	OFFSET	0 (^{dB}]
3,		dB	

CLEAR ENTRY - clear display before completing data entry

Sequence :

FUNCTION, STRING, CLEAR DISPLAY

Example :

3-8

FREQUENCY LIMITS

Frequency limits can be entered to 10 MHz resolution.			
FREQ LIMIT			
PRESS: Notice flashing annunciator.			
PRESS: # Number keys corresponding to desired frequency low limit to 10 MHz resolution.			
PRESS: Or To terminate input sequence. Notice FRQ LMT LOW annunciators GHz solidly lit.			
FREQLIMIT			
PRESS: Notice flashing annunciator			
PRESS: # Key numbers corresponding to desired freq. Hi limit. High and low limits			
should be separated by at least 100 MHz.			
PRESS: Or GHz To terminate input sequence. Notice Hi annunciator solidly lit.			
To recall stored limits. FREQ LIMIT CLEAR FREQ LIMIT CLEAR			
PRESS: low and DISPLAY then high and DISPLAY			
To clear data memory and remove frequency limits.			
PRESS: low and CLEAR then high and CLEAR Vary Source. Notice selected limit (s) are erased. Also notice "FREQ LMT LOW HI" annunicators are out.			

TEST SELECTION

The following tests will verify proper operation of most functional areas of the counter. At the initial turn on the counter performs a RAM and PROM check. During this check dashes are displayed until the check has been completed.

RAM and PROM

The processor writes a sequential bit pattern to each RAM location, then independently reads that pattern. Thus each bit in each location is checked. If the RAM check fails the display will show all "E's". This indicates that the RAM or the RAM decoding is faulty.

The PROM check verifies the PROM bit pattern. If the PROM check fails an error message will be displayed. This indicates that the PROM decoding is faulty. See Section 6.

If both RAM and PROM check are good the counter will begin normal operation about one second after turn on. The counter will now display all 0's.

200 MHz SELF TEST

	TEST		
PRESS:		0	1

Notice display is 200 MHz. This verifies operation of the time base reference and it's associated circuits, the signal selection, the count chain, and the local oscillator.

LED TEST

	TEST		
PRESS:		0	2

Notice all LED segments and yellow annunciators are lit. This verifies operation of all visual indicators

LED SEGMENT TEST

	TEST		
PRESS:		0	3

Notice each segment of each display digit is lit in turn. The sample rate pot will change the rate, and may be adjusted. This checks the segment drivers.

DISPLAY DIGIT TEST

	TEST		
PRESS:		0	4

Notice all segments of each digit are lit in turn to verify that each digit operates independently. The sample rate pot will change the rate, and may be adjusted. **KEYBOARD TEST**

PRESS: 0 5

Notice display is 05. Press any key and display will indicate a two digit number showing the position of that key within the matrix thus checking keyboard operations.

TO EXIT TESTS

PRESS:

to exit a test and return to normal operation.

To exit tests 1 through 4, 6 and 7 you can press any function key. This will exit the test and enter the function selected,

Tests 6 through 10 are used for calibration and troubleshooting. See section 6 and 7.

SET-UP FOR BASIC FREQUENCY MEASUREMENT

Choose the input band by pressing and a number key corresponding to the band. Choose resolution **RESOL** by pressing and a number key corresponding to required resolution. The signal coupled to the selected input Band Connector will be automatically displayed to the resolution chosen.

NOTE: When pressing the RESOL key the display will go blank for approximately 1/4 second.

FREQUENCY OFFSETS

Frequency OFFSETS can be added or subtracted from the measured value. These OFFSETS can be entered via the front panel keyboard to 1 Hz resolution:

PRESS:	FREQ Notice the flashing annunciator.	
PRESS:	Number keys corresponding to desired frequency OFFSETS. If OFFSET is to be subtrapress $\begin{bmatrix} \pm \\ \end{bmatrix}$ and notice polarity sign indicator at far left of display.	cted
PRESS:	MHz or GHz to integrate Programmed OFFSET into actual frequency mea ment. Notice solidly lit annunciator indicating instrument memory is loaded.	sure-
PRESS:	FREQ Recalls OFFSET to display, FRQ and OFFSET annunciators flashing.	
PRESS:	CLEAR Notice frequency displayed includes OFFSET; annunciators are lit continu DISPLAY	ously.
PRESS:	FREQ Recalls OFFSET to display, FRQ and OFFSET annunciators flashing.	
	CLEAR Clears data memory and clears offset.	
PRESS:	FRQ and OFFSET annunciators are out.	
	DATA Display is actual frequency without offset,	

DISPLAY ERROR MESSAGES

When an error occurs the error number will be displayed. The probable cause of each error is listed below.

- 01 Illegal Key Sequence.
- 02 A Resolution Number Was Not Entered; Or The Number Entered Was Too Small.
- 03 A Band Number Was Not Entered; Or The Number Entered Was Too Large.
- 04 No Power Reading In Current Band.
- 05 Frequency Limit High > 18.5 GHz (545), 27 GHz (548).
- 06 (Freq. Limit Hi) (Freq. Limit Lo) < Min. (100 MHz) Difference.
- 07 Frequency Limit Low < .95GHz (545, 548).
- 80
- 09 Illegal Test Mode Key Sequence.

10 Illegal DAC operation.

31	Check sum Error	PROM 1	(C800 - CFFF)	A105, U20
32	Check sum error	PROM 2	(D000- D7FF)	A105, U8
33	Check sum error	PROM 3	(D800 -DFFF)	A105, U7
34	Check sum error	PROM 4	(E000-E7FF)	A105,U6
35	Check sum error	PROM 5	(E800 - EFFF)	A105,U13
36	Check sum error	PROM 6	(F000-F7FF)	A105, U12
37	Check sum error	PROM 7	(F800-FFFF)	A105, U11
38	Check sum error	PROM 8	(4000 - 47FF)	(Power Meter PROM)

Section 4 Theory of Operation

GENERAL

The 545 and 548 counters automatically measure and display the frequency of an input signal within the range of 10 Hz to 18 GHz for the 545, and 10 Hz to 26.5 GHz for the 548. In both models the frequency range is divided into three bands.

BAND 1 operates from 10 Hz to 100 MHz. An impedance converter provides an input impedance of 1 M ohm, shunted by 20 pF.

BAND 2 operates from 10 MHz to 1 GHz, using a hetrodyne down converter which converts the input signal into an output signal with a range of 10 MHz to 190 MHz.

BAND 3 operates in the microwave range of 1 to 18 GHz (or 26.5 GHz) and uses a YIG tuned hetrodyne converter to translate the input frequency downward to an intermediate frequency (IF) of 125 MHz.

Figure 4-1. Counter Block Diagram, Simplified

BASIC COUNTER

Overall operation is controlled by the Microprocessor Assembly A105. This assembly contains an eight bit microprocessor, its control logic, and the system memory. It communicates with all other assemblies in the instrument by means of a triple bus system: the data, address, and control bus. On each assembly there is a Peripheral Interface Adaptor (PIA) which provides the interface between the bus system and the instrument hardware.

Frequency measurements are performed by comparing an unknown signal to a reference frequency, namely the time base. A 10 MHz crystal oscillator is used as the internal reference and is a part of the Gate Generator Assembly A107. For increased accuracy and stability, ovenized oscillator options are available, or the user may select an external 10 MHz reference.

A frequency measurement is made by generating a time interval (Gate Time) consisting of a number of cycles of the reference. This Gate Time is then used as an interval during which the input signal is counted by the Count Chain Assembly A106.

Initially, the microprocessor selects one of several available inputs to the Count Chain Assembly and the appropriate Gate Time based on user input information; band selection, resolution, etc. The microprocessor then initiates the measurement cycle by resetting the Count Chain to zero and allowing a gate to be generated. During the gate interval, the Count Chain accumulates the number of cycles of the input signal. At the end of the gate time, the microprocessor reads the stored information in the Count Chain and performs any required calculations necessary to convert the measurement into a direct reading of the unknown frequency. The front panel display is then updated with the new measurement results. Figure 4-1 shows a simplified block diagram of the counter.

BAND 2 CONVERTER

An input signal is applied to the mixer along with an appropriate local oscillator (L.O.) to generate an IF frequency in the range of 10 MHz to 190 MHz. This signal is filtered and amplified to a level suitable for direct measurement by the Count Chain.

The L.O. frequency is generated by the Voltage Controlled Oscillator (VCO) of the Band 3 Converter. This frequency is phase locked to the counter's time base and controlled by the microprocessor. A VCO multiplier serves to either pass along the signal directly or double it. It can also turn off the signal and pass only a DC bias to the mixer.

Two detectors provide outputs proportional to the amplitudes of both the applied RF signal and the resulting IF signal. These outputs are compared in the Signal Comparator, which provides a digital output when the IF amplitude exceeds the RF amplitude.

Figure 4-2 Band 2 Converter Block Diagram, Simplified

The output frequency of the system is the difference between the input signal and the L.O. applied to the mixer. Since the L.O. frequency is a harmonic (N) of the VCO frequency, the unknown input frequency can be expressed as $F_{IN}=N F_{VCO} \pm F_{IF}$. There are three primary functions of the software operating the converter:

- To select the appropriate harmonic number N.
- To select an appropriate VCO frequency.
- To determine whether the IF frequency is added to, or subtracted from the L.O. frequency.

These functions are accomplished by selecting N and F_{VCO} and looking for an IF signal of the appropriate amplitude and frequency. Overall system gain is such that whenever the correct L.O. frequency is applied, the IF power will exceed the RF power. This is the primary information used in determining the correct VCO frequency and harmonic number. Once an IF is obtained, the harmonic number is verified and the +/- sign in the equation is determined by shifting the VCO frequency and observing the magnitude and direction of the resulting IF shift. Converter operation is diagrammed in figure 4-3.

Figure 4-3. Band 2 Converter Operation

The L.O. frequencies being used, except the range of direct counting (< 190 MHz), have been selected so only IF frequencies from 25 MHz to 185 MHz are required. Since the counter can count signals less than 10 MHz, the restricted operating range provides margin for frequency modulation on the input signal, and for incrementing the VCO frequency.

Figure 4-4 shows the operating ranges for the various harmonics and VCO frequencies used.

Input Frequency Range FIN(MHz)	VCO Frequency FVCO(MHz)	Harmonic Number N	IF Frequency Range FIF(MHz)
10 - 190	and a f	0	10 - 190
185 - 345	370	1	185 - 25
345 - 400	425	1	80 - 25
400 - 560	375	1	25 - 185
560 - 610	425	1	135 - 185
610 - 725	375	2	140 - 25
725 - 825	425	2	125 - 25
825 - 935	375	2	75 - 185
935 - 1035	425	2	85 - 185
1035 - 1164.8	489.9	2	55.2 - 185

Figure 4-4. Band 2 Operating Ranges

Figure 4-5 Band 3 Converter, Simplified.
BAND 3 CONVERTER

Measurement of a signal in Band 3 is accomplished by down converting from the microwave range to approximately 125 MHz. This is accomplished by mixing the input signal with a known reference frequency which is found by selecting a VCO harmonic in the range of 400 to 500 MHz. The VCO frequency can be selected in 50 KHz increments by using a microprocessor controlled phase lock system, while retaining the accuracy and stability of the counter's time base reference.

A simplified diagram of the Band 3 converter is shown in figure 4-5. There are two major assemblies. The Converter Control assembly (A108) and the Converter Assembly (A203).

CONVERTER CONTROL A108

The Converter Control assembly contains the interface between the microprocessor bus system and the Converter (A203). A digital-to-analog converter and a precision current (YIG) driver provide a 2 MHz frequency resolution for setting the YIG filter of A202.

A108 also contains the programmable VCO phase lock control system. This system lets the microprocessor interface select any VCO frequency between 400 and 500 MHz, in increments of 50 KHz.

CONVERTER A203

The Converter assembly consists of three subassemblies.

- A201A, Voltage Controlled Oscillator (VCO) Assembly
- A201B, IF Amplifier Assembly
- A202, Microwave Assembly (yig)

The A202 Microwave Assembly contains the YIG filter, mixer and comb generator.

The input signal (1 GHz - 18 GHz/26.5 GHz) passes through a YIG filter on A202. The filter is an electronically tunable bandpass filter, with an operating frequency proportional to its tuning current. This filter determines the approximate frequency of the input signal, and filters out any undesired signals, making it possible to count a signal at one frequency even if a larger signal is present at another frequency.

When tuning the YIG filter to the input signal, the mixer is used as an RF detector, and its output is amplified in the video amplifier on the IF assembly.

The output of the Video amplifier is maximum when the YIG filter is tuned to the input signal. In the case of multiple input signals, the video amplifier output determines which signal is largest.

Figure 4-6. Band 3 Operation, Simplified.

On units equipped with the Power Measurement Option (02), accurate frequency correction factors are stored in the counter's memory. This allows absolute power calibration of the video amplifier output.

Once the YIG filter is tuned to the input signal, the appropriate harmonic number (N) and VCO frequency (F_{VCO}) are selected to produce an IF frequency (F_{IF}) at approximately 125 MHz. An approximation of the input signal is found by using:

$$F_{IN} = N F_{VCO} \pm F_{IF}$$

The IF frequency produced in the mixer is amplified by the high gain IF amplifier and sent to the count chain (A106). The IF threshold detector (A201B) insures sufficient IF amplitude for count accuracy.

OPERATION

First the YIG filter is stepped, (in 64 Mhz steps), from its low to high limits. During this search the RF detected output is fed, through a microprocessor controlled step attenuator to a threshold detector. After each step the threshold detector is checked. If triggered, the search mode is halted until the amplitude of the signal is determined. This is done by stepping the filter back and forth through the signal and stepping the attenuator until the signal is attenuated below the threshold. The counter then returns to the search mode to look for any larger signals. After searching the entire frequency range, it returns to the largest signal and begins to center the YIG filter precisely on the input frequency. See Figure 4-6 for a simplified diagram of Band 3 operation. For more detailed descriptions of Band 3 operation see Figures 4-7 through Figure 4-11.

The centering process consists of slowly stepping the YIG filter down (in 2 MHz increments) until a level of 3-6 dB below the peak is reached. This frequency is stored and the process is repeated from the other side by stepping the filter up in 2 MHz steps. The average of the two frequencies obtained is the center of the passband. This is the frequency which is used to determine the N and F_{VCO} .

After centering, N is determined from N = $\underline{FYIG} \cdot \underline{125}$ and then rounded up to the next highest integer. From this, F_{VCO} is calculated using $F_{VCO} = \underline{FYIG} \cdot \underline{125}$. Should this yield $F_{VCO} < 400$ MHz, then F_{VCO} is recalculated using $F_{VCO} = \underline{FYIG} + \underline{125}$.

Since FYIG is only approximately equal to FIN, the IF frequency will not be exactly 125 MHz. Therefore, the next step in operation is a VCO frequency adjustment to shift FIF into the middle of the IF passband.

VCO frequency correction is achieved by counting F_{IF} and changing F_{VCO} by $\pm \frac{F_{IF} - 125}{N}$. If the error is large enough to be outside the IF passband (IF threshold is not triggered) then a series of steps (shifting the IF in ± 20 MHz increments) are taken until the signal falls within the passband.

Once the VCO corrections have been made, the converter has acquired the signal and the counter is ready to count and display the input frequency.

After each measurement, the frequency of the IF is examined. If the input frequency has shifted more than 10 MHz, new frequencies for the YIG and VCO are calculated to restore the IF to 125 MHz. This method provides rapid tracking of a signal being tuned.

Figure 4-7, Band 3 Search For Signal

Figure 4-8. Determine Largest Signal

Figure 4-9. YIG Centering

Figure 4-10. Calculate N and VCO Frequency

Figure 4-11. Band 3 Signal Tracking

Section 5 Maintenance and Service

This section contains instructions and information to maintain your counter.

FUSE REPLACEMENT

The counter uses one fuse. It is located on the rear panel next to the voltage select switch.

- For 100/120VAC operation use a 0.75A slow-blow MDL type fuse.
- For 220/240VAC operation use a 0.40A slow-blow FST type fuse.

The voltage select switch should be set to the proper line voltage. To change line voltage:

- 1. Be sure the counter is disconnected from the power line.
- 2. With a flat edged screwdriver, rotate the voltage select switch until the arrow points to the desired line voltage.
- 3. Change to a fuse with the value specified for the line voltage selected.

NOTE:

Always be sure that the fuse is the type and value specified for, and that the voltage select switch is set to correspond to the AC power input voltage, or the counter may be damaged.

AIR CIRCULATION

Air circulates through the vents in the rear panel of the counter. These vents must not be obstructed or the temperature inside the counter may increase enough to reduce the counter stability and shorten the component life.

PERIODIC MAINTENANCE

No periodic preventive maintenance is required. To maintain accuracy, it is recommended that the counter be recalibrated every six months.

CAUTION

Do not attempt repair or disassembly of the Microwave Converter or Time Base Oscillator Assemblies. Contact EIP or your sales representative. If the following assemblies are repaired or replaced the counter may require recalibration for proper operation.

- Power Supply, A101
- Gate Generator, A107
- Converter Control, A108
- Microwave Converter, A203

Care should be taken when removing any assemblies to prevent damage to components or cables.

FACTORY

If the counter is being returned to EIP for service or repair, be sure to include the following information with the shipment.

- Name and address of owner.
- Model and complete serial number of counter.
- A COMPLETE description of problem (Under what conditions did problem occur? What was the signal level? What equipment was attached or connected to the counter? Did that equipment experience failure symptons?)
- Name and telephone number of someone familiar with the problem that may be contacted by EIP for any further information, if necessary.
- Shipping address to which the counter is to be returned. Include any special shipping instructions.
- Pack the counter for shipping (Refer to Section 2).

FIELD

EIP has an assembly exchange program. All plug in assemblies, modules, and the front panel assembly may be exchanged.

After identifying the faulty assembly, call EIP with the assembly number and shipping information. A replacement will be shipped within 24 hours. After the replacement assembly has been received, return the faulty assembly to EIP for credit.

Section 6 Troubleshooting

This section defines troubleshooting aids that are incorporated in the 545/548 counter. They are:

- Signature analysis
- Self diagnostics
- Keyboard controlled circuit tests

The procedures and tables are provided for troubleshooting to a functional circuit level.

SIGNATURE ANALYSIS

Signature analysis is a technique used to troubleshoot complex logic circuitry. It uses data compression to reduce any data pattern to a 4 character alpha-numeric word.

The start and stop inputs define the measurement window. Each time a transition within the measurement window occurs on the clock input, the probe is sampled, and the logic level is shifted into the analyzer. This information is used to generate a signature unique to that data string. That signature can then be compared to a reference signature, taken from a known good product, to determine if the data string is correct. The counter implements signature analysis in either a free running or program controlled manner.

FREE RUNNING

This mode of signature analysis is essential for troubleshooting problems that could prevent the program from running. A CLRB instruction can be forced by breaking the data bus at A105 SW1 and grounding A105 TP11, effectively "free running" the microprocessor. "Free running" means forcing a simple instruction (such as NOP or CLRB) on the data bus, which the microprocessor sees at every address location. This causes the microprocessor to continually cycle through its entire address range, accessing everything on the address bus as it does. By strategically placing the start and stop connections the entire bus system can be probed for bad signatures. Figures 6-1 through 6-7 reflect the signatures at the "L" revision. For later revision levels of the software please refer to the manual change sheet.

	START	STOP	CLOCK
CONNECTIONS	A105 TP5	A105 TP5	A105 TP2
BUTTONS	IN ↓	IN ↓	IN ↓

LINE	SIGNATURE	LINE	SIGNATURE
A0 (P1 Pin 54)	υυυυ	U2 Pin 9	75HA
A1 (P1 Pin 53	FFFF	U3 Pin 12	75HA [*]
A2 (P1 Pin 52)	8484	U4 Pin 4	75H9
A3 (P1 Pin 51)	P763	U9 Pin 15	CA13
A4 (P1 Pin 50)	1U5P	U9 Pin 14	H75C
A5 (P1 Pin 49)	0356	U9 Pin 13	A3UU
A6 (P1 Pin 48)	U759	U9 Pin 12	AA68
A7 (P1 Pin 47)	6F9A	U9 Pin 11	A713
A8 (P1 Pin 46)	7791	U9 Pin 10	S4F7
A9 (P1 Pin 45)	6321	U9 Pin 9	6039
A10 (P1 Pin 44)	37C5	U9 Pin 7	826H
A11 (P1 Pin 43)	6U28	A15 (U4 Pin 8)	0002
A12 (P1 Pin 42)	4FCA	A14 (U4 Pin 10)	9UP2
A13 (P1 Pin 41)	4868	U3 Pin 8	755P
A14 (P1 Pin 40)	9UP1	U4 Pin 6	755H
A15 (P1 Pin 39)	0001		

+ 5V 0003 phase 0003*

* Due to the sycronous qualities of the signature analyzer, phase 2 will read the same as +5V but the logic probe will be flashing. Likewise anything gated with phase 2 may have the same signature as the ungated signal (U2 Pin 9 and U3 Pin 12).

Figure 6-1. Microprocessor Free Running Signatures

	START	STOP	CLOCK
CONNECTIONS	A105 U7 Pin 20	A105 U11 Pin 20	A105 TP2
BUTTONS	IN ↓	ουτ †	IN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A105 S1 Pin 9	32F2	A105 S1 Pin 13	50U8
A105 S1 Pin 10	07H9	A105 S1 Pin 14	4343
A105 S1 Pin 11	C5A0	A105 S1 Pin 15	8H7C
A105 S1 Pin 12	C7F2	A105 S1 Pin 16	7F7P
+ 5V CCPC			

Figure 6-2. Signatures, Basic PROM Set

	START	STOP	CLOCK
CONNECTIONS	A105 U7 Pin 20	A105 U7 Pin 20	A105 TP2
BUTTONS	IN ↓	OUT ↑	IN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A105 S1 Pin 9	A88A	A105 S1 Pin 13	C068
A105 S1 Pin 10	A544	A105 S1 Pin 14	C7UP
A015 S1 Pin 11	3C26	A105 S1 Pin 15	F0H7
A105 S1 Pin 12	9F38	A105 S1 Pin 16	P2FA
+ 5V 826P			

Figure 6-3. Signature, U7 PROM 3

	START	STOP	CLOCK
CONNECTIONS	A105 U6 Pin 20	A105 U6 Pin 20	A105 TP2
BUTTONS	IN ↓	OUT 1	IN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A105 S1 Pin 9	H81A	A105 S1 Pin 13	2367
A105 S1 Pin 10	4352	A105 S1 Pin 14	240U
A105 S1 Pin 11	57UH	A105 S1 Pin 15	P892
A105 S1 Pin 12	256A	A105 S1 Pin 16	94AF
+ 5V 826P			

Figure 6-4. S	Signatures.	U6	PROM 4
---------------	-------------	----	--------

	START	STOP	CLOCK
CONNECTIONS	A105 U13 Pin 20	A105 U13 Pin 20	A105 TP2
BUTTONS	IN ↓	OUT ↑	IN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A105 S1 Pin 9	3818	A105 S1 Pin 13	4UCH
A105 S1 Pin 10	3626	A105 S1 Pin 14	5376
A105 S1 Pin 11	UA26	A105 S1 Pin 15	6U31
A105 S1 Pin 12	6A22	A105 S1 Pin 16	4C0F
+ 5V 826P			

Figure 6-5. Signatures, U13 PROM 5

	START	STOP	CLOCK
CONNECTIONS	A105 U12 Pin 20	A105 U12 Pin 20	A105 TP2
BUTTONS	IN ↓	OUT ↑	IN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A105 S1 Pin 9	F459	A105 S1 Pin 13	4P95
A105 S1 Pin 10	07F5	A105 S1 Pin 14	C462
A105 S1 Pin 11	485U	A105 S1 Pin 15	COHP
A105 S1 Pin 12	3AU8	A105 S1 Pin 16	C99A
+ 5V 826P			

Figure 6-6.	Signatures,	U12 P	ROM 6
-------------	-------------	-------	-------

	START	STOP	CLOCK
CONNECTIONS	A105 U11 Pin 20	A105 U11 Pin 20	A105 TP2
BUTTONS	IN ↓	OUT ↑	IN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A105 S1 Pin 9	9UA5	A105 S1 Pin 13	P8C4
A105 S1 Pin 10	6C99	A105 S1 Pin 14	P17F
A105 S1 Pin 11	4H5U	A105 S1 Pin 15	8822
A105 S1 Pin 12	201A	A 105 S1 Pin 16	14F9
+ 5V 826P			

Figure 6-7. Signatures, U11 PROM 7

PROGRAM CONTROLLED

If the counter is working sufficiently to access the test functions, program controlled signature analysis can be used. In program controlled signature analysis the start and stop (and therefore the signature) are controlled by software. This allows the signature anlayzer to be used, in many cases, to troubleshoot the hardware outside the bus system.

SELF DIAGNOSTICS

At turn on the counter performs several internal diagnostic checks, checking ram, prom, and the associated decoding circuitry. The displays shows dashes during these checks. If the counter passes the tests it then enters the normal operating mode. If it fails ram check the display will show all E's and a unique signature will be generated. If the counter fails any of the prom checks an error message will be displayed, and a signature will be generated. Please refer to figure 6-8.

	STOP	START	CLOCK	PROBE
CONNECTION	A106 TP5	A106 TP5	A105 TP2	A105 TP12 (+ 5V)
BUTTONS	OUT ↑	IN ↓	IN ↓	

PROBLEM	ERROR SIC	ERROR SIGNATURE	
Ram Bad	All E's	007U	
Prom 1 (A105 U20) Bad	31	1UFP	
Prom 2 (A105 U8) Bad	32	P390	
Prom 3 (A105 U7) Bad	33	P673	
Prom 4 (A105 U6) Bad	34	PFP8	
Prom 5 (A105 U13) Bad	35	6A6U	
Prom 6 (A105 U12) Bad	36	8AF9	
Prom 7 (A105 U11) Bad	37	P340	
* Prom 8 (A107 U2) Bad	38	825P	

Figure 6-8. Self Diagnostic Error Indications

KEYBOARD CONTROLLED CIRCUIT TESTS

There are ten keyboard controlled circuit tests (01 thru 10). All tests are accessed by pressing and then the two digit test number. Tests which do not require keyboard inputs to function (tests 01, 02, 03, 04, 05, 06, 07) can be exited by pressing any key. The counter will exit the test and enter the functions selected. Tests which use the keyboard in their operation (tests 05, 08, 09, 10) can be exited by pressing

TEST

any key not used by the test. All tests can be exited by pressing ______. The counter will return to DISPLAY

normal operation. Some tests require hexidecimal coded keyboard inputs (tests 08, 09, 10). For those tests the keyboard is defined in figure 6-3.

КЕҮ	HEX EQUIV.	KEY	HEX EQUIV.
0	0	9	9
1	1	MHz	А
2	2	GHz	В
3	3	CLR DATA	С
4	4		
5	5		D
6	6	+/	E
7	7	RESET	F
8	8	CLR DISPLAY	EXITS TEST

Figure 6-3. Keyboard Configuration For Tests Requiring Hexidecimal Inputs.

	START	STOP	CLOCK	PROBE
CONNECTION	OUT ↑	IN ↓	IN ↓	
BUTTONS	A106 TP5	A106 TP5	A105 TP2	A105 TP12 (+ 5V)

BUTTON	COORDINATES	SIGNATURE
Reset	47	U68C
Power ON/OFF	46	U7HA
Power Offset	36	20P6
dB	16	U2F9
DAC	26	811P
7	41	A19C
8	42	66PU
9	43	CCH7
MHz	44	U5PU
4	31	PUPH
5	32	UC70
6	33	HF3A
GHz	34	UPA2
1	21	APH1
2	22	C45H
3	23	1766
CLR DATA	24	H9C8
+/	11	375U
0	12	H7PC
•	13	UAHH
CLR DISPLAY	EXIT TEST	C75U

Figure 6-10. Keyboard Test Signatures.

TESTS

- **200 MHz Self Test** This test sets the VCO to 400 MHz, divides it by two, and counts the 200 MHz output from the divider. It checks the count chain, VCO and VCO phase lock circuitry, and the gate generator.
- **8's Test** This will light all LED's, annunicators, and decimal points. It checks that everything on the display is lit, the intensity of the display, and the alignment of the LED's and annunciators.
- **Display Segment Test** This lights one segment of each digit, and one annunciator at a time, cycling through all segments. The cycle rate can be adjusted with the sample rate pot. It verifies that each segment of the display, segment drivers and display multiplexer, operate properly and independently.
- **Display Digit Test** This lights one entire digit, and its decimal point, at a time. It cycles through all digits and annunciators. The cycle rate is determined by the sample rate pot. It checks each digit and digit driver independently, and verifies operation of the display multiplexer.
- 05 Keyboard Test This will display the coordinates of each key as it is pressed. It also generates a unique signature for each key, so the keyboard can be checked without the display. Test 05 may be entered by keyboard or by momentarily tying A108 TP1 to A105 TP2 (or to A108, U5, pin 25). This makes it possible to enter the keyboard test for troubleshooting even if the keyboard is not operating well enough to enter the test in a normal manner. Test 05 checks the keyboard, keyboard interrupt, and keyboard decode circuitry. The coordinates and signatures for each key are shown in figure 6-10.
- **Converter Ramp Test** Test 06 continuously ramps the Band 3 Converter DAC from 0 to 27 GHz, in 2 MHz (LSB). It also generates a signature for each of the inputs to the DAC. (See figure 6-11). It can be used to test the yig DAC, yig drivers, yig, and Band 3 RF level circuits.

	START	STOP	CLOCK	PROBE
CONNECTIONS	A106 TP5	A106 TP5	A105 TP2	A105 TP12 (+5V)
BUTTONS	OUT 1	IN ↓	IN ↓	

NODE	SIGNATURE	NODE	SIGNATURE
A108 U5 Pin 2	2694	A108 U5 Pin 9	077F
A108 U5 Pin 3	8792	A108 U5 Pin 10	A3H5
A108 U5 Pin 4	5287	A108 U5 Pin 11	28PU
A108 U5 Pin 5	P082	A108 U5 Pin 12	7180
A108 U5 Pin 6	P588	A108 U5 Pin 13	U577
A108 U5 Pin 7	2HU2	A108 U5 Pin 14	F979
A108 U5 Pin 8	UPFO	A108 U5 Pin 15	7823
+ 5V	8142		

- **07 GPIB** Address Test This test will display the decimal address of the GPIB option. If a GPIB option does not exist, test 07 will display a non valid address.
- **08** Power Meter Offset Test This makes it possible to set the power meter zero DAC to any setting. The setting is entered as a four digit hexidecimal number (figure 6-9). The first two digits are used to program the course offset DAC, and the last two digits program the fine offset DAC. Test 08 enables the power meter zero DAC to be tested, and can provide a DC level signal to aid in testing the power meter circuit.
- **09 Power Meter Gain Test** This makes it possible to set the power meter sensing circuit to any number. The number is entered as a five digit hexidecimal number (figure 6-9) in the following format.

1st digit	A107 U10 bits 4-7
2nd digit	A107 U10 bits 0-3
3rd digit	A107 U12 bits 4-7 (Power Meter Option only)
4th digit	A107 U12 bits 0-3 (Power Meter Option only)
5th digit bit 0	Sets Amp marked "15 dB Gain" to high gain
5th digit bit 1	Sets Amp marked "30 dB Gain" to high gain

Digit 5 is a 2 bit number, so any number entered for digit 5 will be justified to a number from 0-3. Test 09 checks the RF level and power meter circuits.

10 Information Read/Alter Routine Test 10 can read any microprocessor address and, if that address is RAM or I/O, change its contents. The desired address is entered as a 4 digit hexidecimal number (see figure 6-9). When the 4th digit is entered the counter will display the contents of the desired address. The contents are then changed by entering a two digit hexidecimal number.

NOTE

Test 10 can change any temporary storage in the counter, including locations that are essential to the operation of the counter. Changing the wrong location will not damage the counter permanently, but it can cause improper operation. To return the counter to proper operation turn the counter off then back on.

SIGNIFICANT ADDRESSES, I/O PORTS

If an I/O bit is configured as an output, the number read by test 10 will be the same number that is programmed. If an I/O bit is configured as an input, the number read by test 10 will be the input signal level on the I/O line. Therefore, if an I/O port is programmed, and then read, the number displayed may not correspond to the number programmed because some bits of the I/O port may be configured as inputs.

DESCRIPTION	ADDRESS OF PA PORTS		ADDRESS OF PB PORTS
PIA on Count Chain (A106)	AC00		AC02
PIA on Gate Generator (A107)	9900		9902
Frequency Control PIA on Converter Control A108	9840		9842
Programmable Counter PIA on Converter Control (A108)	9820		9822
PIA on Band 2 Converter (A109)	9880		9882
PIA on Front Panel Logic (A111)	9808		980A
PIA on BCD/Remote (A102)	9A00		9A02
PIA on DAC Board (A103)	A820		A822
DESCRIPTION		ADDRESS	
GPIB Address	Switch	9C04	

Figure 6-12. I/O Addresses.

Two important I/O port locations are the yig frequency control (address 9840, 9842) and the VCO freguency control (address 9820, 9822).

To convert from the desired yig frequency to the PIA program number :

- 1. Round the desired frequency to a multiple of 2 MHz (The yig DAC resolution is 2 MHz).
- 2. Divide the desired frequency in MHz by 2 (F/2).
- 3. Convert F/2 from decimal to hexidecimal.
- 4. The two most significant digits are programmed to address 9842, and the two least significant digits are programmed to address 9840.

To convert from the desired VCO frequency to the PIA program number :

EXAMPLE (420. 75 MHz)

- 1. Round the desired frequency to a multiple of 50 KHz (The resolution of the VCO frequency is 50 KHz).
- 3. If the result contains no fractional part, go to step 8.
- 4. Multiply only the fractional part by 16......75 X 16 = 12
- 5. Add the result to the most significant digit from step 2.....MSD of 2103. 75 = 2 2 + 12 = 14
- 6. Convert the result to hexidecimal..... $14_{10} = E_{16}$
- 8. The two most significant digits are programmed to address 9822, and the two least significant digits are programmed to address 9820.

SIGNIFICANT ADDRESSES, RAM

All frequency storage registers in RAM are in the following format.

ADDRESS	SIGN	100 GHz	
ADDRESS + 1	10 GHz	1 GHz	
ADDRESS + 2	100 MHz	10 MHz	
ADDRESS + 3	1 MHz	100 KHz	
ADDRESS + 4	10 KHz	1 KHz	
ADDRESS + 5	100 Hz	10 Hz	
ADDRESS + 6	1 Hz		

For the sign digit:

8 = minus

0 = plus

REGISTER	ADDRESS
L.O. frequency	0140
I.F. frequency	01D2
Frequency output to display	0149
Frequency limit low (local)	0218
Frequency limit low (remote)	01F5
Frequency limit high (local)	0211
Frequency limit high (remote)	01EE
Frequency offset (local)	0203
Frequency offset (remote)	01E0

Figure 6-13. RAM Frequency Storage.

All power storage registers are in the following format.

ADDRESS	SIGN	
ADDRESS + 1		
ADDRESS + 2		
ADDRESS + 3		
ADDRESS + 4		100 dB
ADDRESS + 5	10 dB	1 dB
ADDRESS + 6	.1 dB	

For the sign digit: 8 = minus

0 = plus

RESISTER	ADDRESS
Power output to display	0150
Power offset (local)	020A
Power offset (remote)	01E7

Figure 6-14. RAM Power Storage.

TROUBLESHOOTING TREES

Troubleshooting trees are intended only as a guide, and do not describe every possible failure situation. Turn power off before removing or installing any P.C. boards or connectors. If the following assemblies are repaired or replaced, recalibration of the counter will be necessary.

- A101 Power Supply
- A107 Gate Generator
- A108 Converter Control
- A203 Converter Assembly

CAUTION

Do not attempt to repair or disassemble the A203 hybrid assembly.

MANUFACTURER	MODEL	DESCRIPTION	CRITICAL PARAMETERS
Tektronix	475	Oscilloscope	100 MHz min. Bandwidth
Fluke	8050A	D.V.M.	4½ digit resolution
H.P.	182C, 8559A	Spectrum Analyzer	125 MHz
H.P.	5004A	Signature Analyzer	
H.P.	651B	Signal Generator	10 Hz - 10 MHz
Wavetek	2002	Sweeper	10 MHz - 2 GHz
Wiltron	610D, 6237D	Microwave Sweeper	2 GHz - 18 GHz
H.P.	8690A, 8696A	Microwave Sweeper	18 GHz - 26. 5 GHz

Figure 6-15. Troubleshooting Test Equipment Required

To use the troubleshooting trees:

- 1. Refer to the main troubleshooting tree.
- 2. Step through the main troubleshooting tree, performing all necessary checks, until the failure mode is noted.
- 3. Refer to the appropriate troubleshooting tree for that failure mode.

Figure 6-16. Main Troubleshooting Tree

Figure 6-17. Program Inoperative

Figure 6-18. Keyboard

Figure 6-19. Band 1

Figure 6-20. 200 MHz Test

Figure 6-21. Band 2

PHOTO A.

Figure 6-15. Band 3

Figure 6-22. Band 3, continued

Figure 6-23. Power Meter and Power Meter Zero DAC

 $\left(\right)$
Section 7 Adjustments and Calibrations

GENERAL

To correctly adjust the 545 or 548 counter use the following procedures. Adjustments should only be made if the counter does not operate as specified, or following the replacement of components. If the adjustments do not result in the performance specified then refer to the troubleshooting section of this manual. The test equipment required is:

MANUFACTURER	MODEL	DESCRIPTION	CRITICAL PARAMETERS
Tektronix	475	Oscilloscope	General Purpose
Fluke	8050A	D.V.M.	4½ digit resolution
H,P.	182C, 8559A	Spectrum Analyzer	125 MHz
Wavetek	2002	Sweeper	10 MHz - 2 GHz
Wiltron	610D, 6237D	Microwave Sweeper	2 GHz - 18 GHz
H.P.	8690A, 8696A	Microwave Sweeper	18 GHz - 26.5 GHz

POWER SUPPLY ADJUSTMENTS

Prior to making any adjustments to the power supply the counter should "warm up" at least 20 minutes.

Voltages are measured on the back of the Interconnect board (A100), or on the back of the Power Supply board (A101).

- 1. Connect the Digital Volt Meter (DVM) between ground and +12V.
- 2. Adjust A101 R5 until the voltage measures +12.000 VDC ± .010 VDC.
- 3. Connect the DVM between ground and -12 V.
- 4. Adjust A101 R17 until the voltage measures -12.000 VDC ± .010 VDC.

Figure 7-1. Adjustment Locations.

CONVERTER CALIBRATION

COURSE ADJUSTMENT

- 2. Set the microwave sweeper at 2.00 GHz \pm 10 MHz, about -10 dBm.
- 3. Connect the sweeper output to band 3 of the counter.
- 4. Connect the oscilloscope to A201B-E5 (RF level).
- 5. Adjust A108R14 until A201B-E5 is at maximum negative voltage.
- 6. Set the sweeper to 15.00 GHz ± 10 MHz.

7.	On the counter press:	9	8	4	2		• (D)
		9	8	4	0	4	CLEAR DATA

8. Adjust A108R11 until A201B-E5 is at maximum negative voltage.

9. Set the sweeper to 2.00 GHz ± 10 MHz.

10. On the counter press:	9	8	4	2	03
	9	8	4	0	± (E) 8

11. Adjust A108R14 until A201B-E5 is at maximum negative voltage.

12. On the counter press:

CLEAR DISPLAY

FINE ADJUSTMENT

- 1. Set the sweeper to 1.0 GHz ± 10 MHz.
- 2. Connect the spectrum analyzer to A109J2 (IF output).

RESET

- 3. The counter should be counting the incoming signal. The spectrum analyzer should be displaying the IF (125 MHz).
- 4. On the counter press . When the converter finds the incoming signal an IF is generated which is near 125 MHz at first, then shifts to exactly 125 MHz (see figure 7-2). If the first IF is more than 5 MHz from 125 MHz, adjust A108R14 until the first IF (at an input frequency of 1 GHz) is 125 MHz ± 5 MHz.
- 5. Slowly tune the microwave sweeper from 1 to 26.5 GHz (to 18 GHz for 545), while pressing on the counter.
- 6. Every time the converter finds the incoming signal the first IF should be 125 MHz ± 20 MHz. If not, adjust A108R11 until the first IF is always 125 MHz ± 20MHz.

CENTER FREQUENCY: 125 MHz SCAN WIDTH: 5 MHz/div

7-4

TIME BASE CALIBRATION

It is important to note that the precision of the time base calibration directly affects overall counter accuracy. Reasons for recalibration, and the procedures to be used, should be thoroughly understood before attempting any readjustment.

The fractional error in the frequency indicated by the counter, is equal to the negative of the fractional frequency error of the Time Base Oscillator with respect to its true value. That is:

where f_s is the true frequency of the measured signal, and f_t is the true frequency of the Time Base Oscillator. Thus, the inaccuracy associated with a frequency measurement is directly related to the quality of the Time Base Oscillator, and a measure of the precision with which it was originally adjusted.

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR (TCXO)

The standard Time Base Oscillator used in the counter is a TCXO (A116). The range of the actual measured frequencies of this oscillator will differ by no more than 2 parts in 10^6 if the temperature is slowly varied from 0 to +50 degrees C.

With a stable input frequency, the measurement indicated by the counter will fluctuate proportionally to the TCXO drift. To center this fluctuation on the true value of the measured signal, each TCXO has imprinted on its side the frequency setting required at +25 degrees C.

At approximate room temperature (+25 degrees C.), the slope of the frequency vs. temperature curve is normally no worse than $\pm 1 \times 10^{-7}$ parts per degree C. When the counter is used in an ordinary laboratory environment, the TCXO may be set as close to 10,000,000 Hz as desired. In this environment, a peak-to-peak temperature variation of 5° C. will result in a measured signal error of no more than $\pm 2.5 \times 10^{-7}$ parts. This signal error is due to the temperature characteristics of the Time Base Oscillator.

The natural aging characteristics of the crystal in the Time Base Oscillator can also cause inaccurate signal measurements. Aging refers to the long term, irreversible change in frequency (generally in the positive direction) which all quartz oscillators experience. The magnitude of this frequency fluctuation in the TCXO is less than 3×10^{-7} parts per month as specified. This may improve to at least 1×10^{-6} parts per year when in continuous operation.

Error due to aging adds directly to error due to temperature. The number of times the counter requires recalibration depends on the environment in which the counter operates, and upon the level of accuracy required.

For example, if the counter is subjected to the full operating temperature range one month after proper initial adjustments, the inaccuracy could vary from $+1.3 \times 10^{-6}$ parts to -0.7×10^{-6} parts.

TCXO CALIBRATION PROCEDURES

METHOD 1 (with accurate frequency counter)

- 1. Remove top cover of counter. Connect counter to reliable power source. Note ambient temperature.
- 2. Measure the frequency of the TCXO (at the rear panel 10 MHz connector) with a second counter of known calibration accuracy.
- 3. Adjust the TCXO by turning the calibration screw on the TCXO case until the measured frequency equals that shown on the TCXO calibration label.

METHOD 2 (with accurate frequency source)

- 1. Apply a 10 000 000 Hz signal from a frequency standard (or other oscillator of suitable accuracy and stability) to the Band 1 input of the counter.
- 2. Press EESOL (1 Hz resolution)
- 3. Adjust the TCXO until the reading on the counter is offset from 10 000 000 Hz by the negative of the frequency shown on the TCXO. For example, if the TCXO calibration label shows a frequency of 10 000 003 Hz, adjust the TCXO until the counter displays 9 999 997 Hz.

DISPLAY INTENSITY

On the front panel logic assembly (A111) R4 may be adjusted to provide the most comfortable display intensity.

Section 8 Performance Tests

GENERAL

These tests are for the basic counter. Peformance tests for options are in section 10. These tests will enable the user to verify that the counter is operating within specifications.

VARIABLE LINE VOLTAGE

During the performance tests the counter should be connected to the power source, through a variable voltage device, so that line voltage may be varied $\pm 10\%$ from nominal. This will assure proper operating of the counter under various supply conditions.

REQUIRED TEST EQUIPMENT

(or equivalent)

MANUFACTURER	MODEL	DESCRIPTION	CRITICAL PARAMETERS
H.P.	651B	Signal Generator	10 Hz - 10 MHz
Wavetek	2002	Sweeper	10 MHz - 2 GHz
Wiltron	610D, 6237D	Microwave Sweeper	2 GHz - 18 GHz
H.P.	8690A, 8696A	Microwave Sweeper	18 GHz - 26.5 GHz

BAND 1 (10 Hz - 100 MHz)

- 1. Set the counter to band 1.
- 2. Connect the signal source output, through a 50 ohm shunt feedthrough resistor, to the band 1 input on the counter.
- 3. Set the signal level to 25 mv RMS (-19 dBm into 50 ohms).
- 4. Vary the signal from 10 Hz to 100 MHz (changing signal source as required).

The counter should display the correct input frequency.

BAND 2 (10 MHz - 1 GHz)

- 1. Set the counter to band 2.
- 2. Connect the signal source output to the band 2 input of the counter.
- 3. Set the signal level to -20 dBm (22 mv RMS).
- 4. Vary the signal input from 10 MHz to 1 GHz.

The counter should display the correct input frequency.

BAND 3 (548: 1 GHz - 26.5 GHz) (545: 1 GHz - 18 GHz)

- 1. Set the counter to band 3.
- 2. Connect the signal source output to the band 3 input of the counter.
- 3. Vary the signal frequency from 1 GHz to 18/26.5 GHz (changing the signal source as required) at the following levels.

1 GHz – 12.4 GHz	-30 dBm (7 mv RMS)
12.4 GHz — 18 GHz	-25 dBm (12 mv RMS)
18 GHz — 26.5 GHz	-20 dBm (22 mv RMS)

The counter should display the correct input frequency.

Section 9 Functional Description and Illustrated Parts Breakdown

This section contains a functional description, a parts list, an illustration and a schematic diagram for each printed circuit board used in this counter.

The parts list is broken down by types of components, listed in alphanumeric sequence. The components that have a different reference designator (REF DES), but have the same EIP part number, are described for the first such component listed. Subsequent descriptions of that component will refer to the first entry. The total number of like components used on the same assembly will be listed with the first entry in the column identified as UNITS PER ASSY.

The last two columns of the parts list wil supply the name of the manufacturer and their Federal Supply Code for manufacturers (FSCM) number. A list of manufacturers names, addresses and their Federal Supply Code for Manufacturers (FSCM) number are given in Appendix A. The FSCM number is used in the parts list as a guide to the manufacturer or supplier of a part.

Pages 9-3 through 9-5 contain the top assembly of the counter and other basic information. After page 9-5 you will note that the page numbers have a three digit first number followed by a dashed number. The three digit number reflects the number of the assembly being described on those pages. The dashed number is the page sequence for the description of that assembly. For example, pages 105-1 through 105-5 all relate to the A105 printed circuit board. This page numbering system facilitates simple, modular page replacement when an assembly revision makes a manual update necessary.

REFERENCE DESIGNATORS

A	Assembly
В	Battery or Fan
С	Capacitor
CR	Diode
DS	Indicator (display)
F	Fuse
J	Jack or Connector
К	Relay
L	Inductor
Р	Plug or PCB contacts
Q	Transistor
R	Resistor
S	Switch
Т	Transformer
TP	Test Point
U	Integrated Circuit
х	Socket or Holder
Q1-3	Q1 through Q3
Q1/2	Q1 and Q2 (matched pair)

٦

ABBREVIATIONS

CBN	Carbon	MTCH PR	Matched Pair
CER	Ceramic	PC	Printed Circuit
CMT	Cermet	PCB	PC Board Assembly
CNTR	Counter	pF	Picofarad
CONV	Converter	PREC	Precision
COMP	Composition	RSTR	Resistor
CONN	Connector	RT AN	Right Angle
ELEC	Electrolytic	S.A.T.	Value or type selected
FDTH	Feedthrough		during factory test.
FLM	Film		Part may not be used.
FML	Female	SW	Switch
GP	General Purpose	TANT	Tantalum
IC	Integrated Circuit	TRIM	Trimmer
к	Kilo (x 1,000)	uF	Microfarad
LED	Light-emitting-diode	uH	Microhenry
М	Meg (x 1,000,000)	VAR	Variable
MET OX	Metal Oxide	WPRF	Waterproof
mF	Metal Film	WW	Wirewound
mH	Millihenry	XSTR	Transistor
ML	Male		

9-2

5580018

545/548 MICROWAVE COUNTER

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
	COUNTER, MODEL 545			EIP	
-1	FRONT PANEL ASSY Knob	2010133 5210223	1 1	5000160	31013
	Button set, 12 + 5	5210220	1	5230005 - 02	
	Panel	5210184 2010134	1		
	Sample Rate Control Assy Alignment Pin	5210134	2		
	Retainer Key	5210191	1		
	Switch, toggle, PWR	2010187	1		
-2	REAR PANEL ASSY	2010135	1		
	Panel	5210192	1	2554	05045
	Conn, Filter Switch, toggle, SPDT, 120V, 5A	2650005 4510001	1	3EF1 7101H	05245
	Fuse holder	5000170 5000079	1	031.1653/1666/1663 MDL - 3/4A	71400
	Fuse, .75A, SB Fuse, 0.4 A, S.B.	5000168	1	FST3X20mm	71400
	Conn, BNC	2610024	1	KC - 79 - 35	91836
	Voltage Select Switch Assy	2010159	1		
-3	FAN ASSY	2010136	1		
	Fan Conn Blug 2 nin	5000151 2620110	1	760/126LF/182/1115 03 - 06 - 2032	0000A
	Conn, Plug, 3 pin Contact, Male	2620038	2	02 - 06 - 2103	0000
	Spacer	5210016			
-4	FRAME KIT Panel, Side, Enclosure	2010151 5210210	1 2		
	Trim, Front Post	5220004	2		
	Trim, Handle	5220025	2 2 2		
	Frame Corner Post, Front	5210248 5250001	2		
	Corner Post, Rear	5250001	2 2		
	Handle, Enclosures	5250011	2		
-5	TRANSFORMER, ASSY, A1T1	2010155	1		
	Transformer, Power Conn, Plug, 9 pin	4900005 2620112	1	03 - 06 - 2092	0000A
	Conn, Housing, 6 pin	2620129	Ref	640427 - 6	AMP
	Contact, Male Contact, Female	2620038 2620036	7	02 - 06 - 2103 02 - 06 - 1103	0000A 0000A
-6	FRONT CARD GUIDE ASSY	2010156	1	5210199	
-7	REAR CARD GUIDE ASSY	2010157	1	5210200	
-8	TOP COVER ASSY	2010212	1		
-9	BOTTOM COVER	5210209	1		
-10	TILT BAIL	5000055	1		

545/548 MICROWAVE COUNTER, continued

			UNITS		TYP
REF	DESCRIPTION	EIP	PER	TYP MFG NO.	FSCM
DES		NO.	ASSY		NO.
-11	Foot, Plastic Enclosure	5220003	4		
-12	Line Cord Set - Domestic	5440002	1		
1 -	Line Cord Set - Export	5440017	1		
4400	PCB ASSEMBLIES	0000400	4	See Page No.	
A100 A101	Counter Interconnect Power Supply	2020180 2020131	1	100 - 1 101 - 1	
A105	Microprocessor	2020135	1	105 - 1	
A106	Count Chain	2020136	1	106 - 1	
A107 A108	Gate Generator Converter Control (Band 3)	2020137 2020138	1	107 - 1 108 - 1	
A100	Band 2 Converter	2020139	1	109 - 1	
A110	Display and Keyboard	2020140	1	110 - 1	
A111	Driver Logic	2020141	1	111 - 1	
A203 A201A	Microwave Converter Voltage Control Oscillator	2010142 2020142	1	200 - 1 201 - 1	
A201B	IF Amplifier	2020143	1	202 - 1	
A202	Microwave (YIG) not shown				
	CABLES :				
	Front Panel, Flat Ribbon	2040169	1		
	Front Panel, Harness	2040168	1		
	Rear Panel, Harness	2040167	1		
	(J111 - A109J8) Band 1, Coax	2040165	1		
	(A112-A109J4) Band 2, Coax (A108J1-N09J3), Coax	2040166 2040208	1		
	(A106J2-A109J7), Coax	2040200	1		
	VCO/IF, Harness	2040170	1		
	(A201J3-A106J1), Coax	2040172	1		
	(A201J4-A107J1), Coax	2040172	1		
	(A201J5-A108J2), Coax	2040174	1		
	(A201J6-A109J1), Coax	2040175	1		
	PROMS :			7	
<u>A105</u> —	BASIC PROM SET				
U7		6400001-03			
U6 U13		6400001-04 6400001-05			
U12		6400001-06			
U17 A105 —	GPIB/ BAND 4 OPTION	6400001-07			
U20	STREAME & OF HOR	6400001-01			
U8		6400001-02		FOR REFERENCE ONLY	
<u>A107</u> —	POWER METER OPTION			SEE PARTS LIST OF EACH	
U20		6400001-08		ASSEMBLY OR OPTION FOR PROM DESCRIPTION	
A103—	DAC OPTION				
U9		6400001-09			
A105 —	BCD REMOTE PROGRAMMING OPTION	040001-03			
U20		6400002-01			
U8		6400002-02			
A105	BAND 4 ONLY (548)	6400004 01			
U20		6400001-01	<u> </u>	<u>l</u>	L

Figure 9-1, 545/548 Block Dlagram

0-0 -0-

.

• • •

·

.

5580018

A100 COUNTER INTERCONNECT (2020130)

FUNCTIONAL DESCRIPTION NOT REQUIRED Ż

. .

PAGE LEFT BLANK INTENTIONALLY

100-2

A100 COUNTER INTERCONNECT ASSY

A100 C	OUNTER INTERCONNECT ASSY				2020100 - B
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A100	Counter Interconnect Assy	2020180	1		
J1	Header, Str, 26 pin	2620078	1	3429 - 2302	76381
J1 J2	Header, Str, 20 pin Header, Str, 50 pin	2620081	2	3433 - 2302	76381
J2 J3	J2	2020001	-		
J4	Friction Lock, 4 pin	2620061	1	09 - 65 - 1049	A0000
J5	Friction Lock, 6 pin	2620090	1	09 - 65 - 1069	
J6	Friction Lock, 7 pin	2620091	1.	09 - 65 - 1079	**
J7	Friction Lock, 10 pin	2620092	1	09 - 65 - 1109	**
J8	Friction Lock, 4 pin	2620068	1	640456-4	AMP
XA101	Conn, 11 position	2620101	1	583533 - 9	AMP
XA102	Conn, 50 position	2620103	1	4 - 583533 - 8	11
XA103					
thru					
XA109	Conn, 30 position	2620102	7	2 - 583533 - 8	
	Key Plug	5000155	8	.530286 - 2	11

	· · · · · ·				
			· ·		
			-		

Figure 100a. Counter Interconnect Component Locator

100-5

X XA103 THRU XA106 HAVE COMMON CONNECTIONS ON LINES SHOWN IN BEACKETS.

5590018

RMT/GPIB J2

N.C	TEO A TEO A TEO TET TET TET A A TET TET TET A A A A A TET TET A A A A A A TET TET A<	BCD J3	$\begin{array}{c} 10^{\circ} \text{C} \\ 0^{\circ} \text{C}$	
	FROM A102 A102 A102 A102 A102 A102 A102 A102		(a) (b) <td></td>	

.

.

. . .

A101 POWER SUPPLY (2020131)

The power Supply furnishes all basic operating voltages required by the counter. The supply consists of two basic sub-assemblies.

- PC Board (A101), containing the rectifiers, filter capacitors, and regulator circuitry.
- Chassis mounted components consisting of the power transformer (T1), primary wiring, F1 fuse; (100/120V), the 220/240V power programming switch; and the on/off power switch (S101) mounted on the front panel.

The basic voltages required by the counter are unregulated +18V, regulated +5V, -5.2, +12V and -12V.

The input AC voltage is full wave rectified and filtered to produce DC voltages of +9V and 18V.

The unregulated +18V is used directly as one supply voltage. The +18V is regulated to a +12V by the action of LM305, a series pass transistor (MJE3055), and foldback current limiting circuitry. The +18V is regulated to a -12V by LM304, a series pass transistor, and foldback current limiting circuitry.

The +9V current is regulated to +5V by a three terminal regulator containing current and thermal sensing circuitry. The +9V current is also regulated to -5.2V by a three terminal regulator that contains thermal and current shutdown circuitry.

Figure 101a. Power Supply Functional Diagram

PAGE BLANK INTENTIONALLY

101-2

A101 POWER SUPPLY ASSY

					2020131-D
REF	DESCRIPTION	EIP	UNITS PER	TYP MFG NO.	TYP FSCM
DES		NO.	ASSY		NO.
A101	Power Supply Assy	2020131	1		
C1 C2 C3	Tant. 10μF. 20%, 25V Mica, 47 pF, 5%, 500V C1	2300029 2260004	2 1	TAG 20 - 10/25(M) DM10 - 470J	14433 72136
C4 C5	Tant, 33µF, 20%, 20V Cer, .001µF, 20%, 20V	2300023 2150001	1	TAG 20 - 33/20 - 20 5GA - D10	14433 56289
C6 C7	Tant, 1.0μF, 20% 35V Elec, 14,000μF, 25V	2300008 2200017	3 1	TAG 20 -1.0/35 - 50 3110HB143U025	14433 80031
C8 C9	Elec, 9,500μF, 15V Elec, 32,000μF, 15V	2200016 2200019	1 1	3110HA952U025 3110RB323U015	80031 80031
C10 C11	Elec, 4,700µF, 16∨ C6	2200020	1	3050JJ4720U16B	80031
C12	C6				
CR1 thru					
CR4 CR5	Rectifier Zener, 12V	2704001 2720963	4 1	IN4001 IN963A	07263 04713
CR6	Rectifier Brdg	2710029	1	MDA970 - 1	04713
CR7	Rectifier, Brdg	2710028	1	MDA990 - 1	04713
J1	Conn, 6 pin (FRCTN Lock)	2620157	1	640445-6	0000A
01	NPN Power	4710001	2	MJE3055	04713
Q2 Q3	PNP Power Q1	4710002	2	MJE370	04713
Q4 Q5	Q2 PNP, General Purpose	4704126	1	2N4126	04713
R1	Comp, 68 ohms, 5%, 1/4 W	4010680	2	RC07GF680J	81349
R2 R3	Met Ox, 36 ohms, 2%, 1/4 W Wire Wound, .66 ohms, 3%, 4W	4130360 4110012	· 1	C4/2%/36	24546
R4	Prec, 14.7K ohms, 1%, 1/8 W	4061472	2 1	RS - 2 RN55D1472F	91637 81349
R5 R6	Var. Cer., 500 ohm Prec, 2.26K ohms, 1%, 1/8 W	4250014	1	72XR500	73138
R7	Met Ox, 820 ohms, 2%, 1/4 W	4062261 4130821	1	RN55D2261F C4/2%/820	81349 24546
R8 R9	R7 R3				
R10 R11	R1 Comp, 100 ohms, 5%, 1/4 W	4010101	1	RC07GF101J	81349
R12	Met Ox, 910 ohms, 2%, 1/4 W	4130911	2	C4/2%/910	24546
R13	Met Ox, 12K ohms, 2%, 1/4 W	4130123	1	C4/2%/12K	24546
R14 R15	Prec, 2.43K ohms, 1%, 1/8 W Prec, 4.7K ohms, 2%, 1/4 W	4062431 4130472	1	RN55D2431 C4/2%/4.7	81349 24546
R16	Met Ox, 1K ohms, 2%, 1/4 W	4130102	1	C4/2%/1K	24546
R17	Var, Cer, 2K ohms	4250016	1	72XR2K	73138
U1 U2	Voltage Regulator Voltage Regulator	3040305 3040304	1	LM305 LM304	0000X
U3	+5VDC Regulator	3040304	1	UA78H05A	0000X 07263
U4	-5.2 V Regulator	3057905	1	MC7905.2 CT	04713
	Heatsink	5210196	1	EIP	

2020131 - C

Figure 101 b. Power Supply Component Locator

.

.

The Microprocessor assembly controls the counter operation. The microprocessor (U1) contains an internal clock oscillator and 128 bytes of RAM. U1 has both an 8 bit data bus and a 16 bit address bus.

A 4MHz crystal (Y1) is connected between pins 38 and 39 of U1 to provide a 1MHz clock signal for U1 and the rest of the counter. A divide-by-4 circuit on U1 performs the frequency division. The 1 MHz clock, E (02), can be stretched integral multiples of half periods (500ns) by putting a logic 0 on the $\overline{\text{MEMORY}}$ READY (MR) input. The clock is stretched when interfacing with slow memories or I/O devices. See figure 105a.

Figure 105a. Memory Ready Timing Diagram

A one-shot retriggering circuit (U14) provides the signal required to stretch the clock E(02) by 500ns (1 half period). U14 is triggered whenever an I/O operation is performed. It can also be triggered by $\overline{\text{EXT}}$ MEMORY if the trace labeled 3 on the schematic is cut and jumpered to the $\overline{\text{EXT}}$ MEMORY input.

The microprocessor assembly contains seven 24-pin sockets for either seven 2KX8 or four 4KX8 PROM's (U6-U8, U11-U13, U20). The assembly is currently wired for 2KX8 PROM's. When 4KX8 PROM's are used, traces labeled \triangle on the schematic have to be cut and jumpers have to be added as indicated (total 10 places). When 4KX8 PROM's are used, only sockets labeled U6, U11-U13 are used. The PROM's on this assembly occupy address locations COO0-FFFF hex for 4KX8 PROM's and C800-FFFF hex for 2KX8 PROM's.

The address decoding for the PROM's is provided by U9. When the address on the address bus falls within the address range of a PROM, the chip select of that PROM will be enabled. The address range of each PROM is indicated on the shematic (for 2KX8 PROM's only).

This assembly also contains two 1KX4 RAM's. The RAM's are connected to form a 1KX8 block of random access memory. Address decoding for the RAM's is provided by a comparator (U2). For ease of address decoding, the 128 bytes of RAM in U1 are disabled. This is done by grounding the RAM ENABLE (RE) input on U1 pin 36. The 1024 bytes of RAM occupy address locations 0000 - 03FF hex.

The voltage comparator (U17) provides the RESET command during system power-up. When power is first turned on, the negative input of U17 is at ground. The reset command is at logic 0, resetting U1 and the rest of the counter. C6 will slowly charge towards +5V through the 2.2M ohm resistor (R3). When C6 is charged to more than 0.85V, the output of U17 will switch to logic 0, taking away the RESET command. The counter is now ready for normal operations.

U16, U18, and U19 are octal buss tranceivers. U18 and U19 are used for the address bus, and they are always enabled. U16 is used for the data buss. The R/W command signal from U1 determines whether U16 is in the receive or transmit state. U16 is enabled only when I/O SEL (true when active instruction is I/O) or EXT MEMORY is true.

The DIP switch SW1, diodes CR2 and CR3 are used for trouble-shooting. When trouble-shooting the A105 board with a signature analyzer, the microprocessor is put into a free-running mode by opening SW1 and grounding TP11. By doing so, the data bus of the microprocessor is disconnected from the rest of the board and a CLRB (HEX 5F) instruction is put on the data bus continuously. When the START, STOP & CLOCK inputs of the signature analyzer are properly connected, the signatures at various inputs or outputs can be obtained by using the logic probe of the signature analyzer. The signatures can then be compared with the signature chart for the microprocessor board to determine which component is faulty.

Figure 105b. Microprocessor Functional Diagram

105-3

PAGE BLANK INTENTIONALLY

A105 MICROPROCESSOR ASSY

2020135 - K

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A105	Microprocessor Assy	2020135	1	EIP	
C1 C2	Cer, .01µF, 20%, 100V C1	2150003	6	TG - S10	56289
C3 C4 C5	Mica, 12pF, 5%, 500V Mica, 15pF, 5%, 500V Not Used	2260013 2260014	1	CD120J03 CD150J03	72136 72136
C6 C7	Tant, .1µF, 20%, 35V C1	2300020	1	TAG20 - 0.10/35	14433
C8 C9 C10	Tant, 33μF, 20%, 10V C8	2300015	2	TAG20 - 33/10 - 50	14433
thru C12	C1				
CR1 CR2 CR3	General Purpose General Purpose CR2	2704154 2710004	1 2	IN4154 FH1100	07263
R1 R2	Comp, 1.2K, 5%, 1/8W Not Used	4010122	1	RC07GF122J	81349
R3	Comp, 1 M, 5%, 1/8 W	4010105	1	RC07GF105J	81349
R4 R5	Comp, 4.7K, 5%, 1/8 W Comp, 10 K, 5%, 1/8 W	4010472 4010103	1 1	RC07GF472J RC07GF103J	81349 81349
R6	Comp, 22K, 5%, 1/8 W	4010223	1	RC07GF223J	81349
R7	Comp, 4.3K, 5%, 1/8 W	4010432	1	RC07GF432J	81349
R8 thru					
R15 R16 R17	Comp, 10K, 5%, 1/4 W Comp, 4.7K, 5%, 1/4 W R16	4010103 4010472	8 2	RC07GF103J RC07GF472J	81349 81349
SW1	8 Dip	4540005	1	1008 - 692	
TP1 thru					
TP12	Conn, Pin, .04D, Gold	2620032	12	460-2970-02-03	71279
U1	Microprocessor/Clock/RAM	3056802	1	MC6802	04713
U2	6 Bit Comparator	3078136	1	8136	27014
U3	Tri, 31NP Cap and Gate	3087411	1	DM74LS11N	0000X
U4 U5	Hex Converter 1024X4 Bit RAM	3087404 3052114	1	DM74LS04N	0000X
U5 U6	Program PROM 4	6400001-04	2	TM2114 TM2516	01295
U7	Program PROM 3	6400001-03	1	TM2516	01295
U8	Program PROM 2 ——— GPIB Only	6400001-02		TM2516	01295
U9	Decoder 1	3084138	1	SN74LS138N	01295
U10	U5				
U11	Program PROM 7	6400001-07	1	TM2516	01295
U12	Program PROM 6	6400001-06	1	TM2516	01295
U13	Program PROM 5	6400001-05	1	TM2516	01295
U14 U15	Not Used Hex Buss Driver	3084365	1	SN74LS365N	01295
U16	Octal Buss Trans.	3084365	3	SN74LS365N SN74LS24SN	01295
U17	Voltage Comparator	3050311	1	LM311N	0000X
U18	U16				
U19	U16				
U20	Program PROM 1 ——— GPIB Only	6400001-01	REF	TM2516	01295
Y1	Crystal, 4 MHz	2030015	1	MP1PR4.00	

2020135 - P

Figure 105 c. Microprocessor Component Locator

105-7

.

. .

.....

A106 COUNT CHAIN (2020136)

The Count Chain Assembly receives IF signals from the Band 3 IF Amplifier (A201B) and the Band 2 Converter (A109). It also receives a gate signal and a 100 kHz reference signal from the Gate Generator (A107). The count chain assembly selects the appropriate IF signal, gates it, and counts it to produce a BCD output that represents the input frequency. It also produces one or two IF output signals to be used for options at J3 and J4.

The A106 board receives two IF input signals on J1 and J2. The appropriate input is selected by enabling one of two differential amplifiers (U1A or U1B). Enabling of the appropriate amplifier is achieved by turning on a transistor switch (Q11 or Q12). The appropriate transistor is turned on by the output of an open collector inverter (U7C or U7A) driven by a TTL signal from the PIA (U10).

The output of the input selector differentially drives a squaring circuit. The squaring circuit consists of a differentially driven current mirror (Q1) driving a tunnel diode (CR5). The voltage across the tunnel diode changes abruptly between two states (approximately 0.2V and 0.5V). The signal across the diode drives the pulse forming circuit. This circuit begins with a high speed differential amplifier (Q2 and Q3). The output of this amplifier drives Q4 which is a current switch. The square wave current, from Q4's collector, drives an inductor (L1). The voltage across the inductor is a series of pulses; a positive pulse when Q4 turns on and a negative pulse when Q4 turns off. Diode CR5 tends to remove the negative pulses and increases the damping to improve the amplitude of the positive pulses. The positive pulses from the generator drive a pulse inverter (Q6). The pulse inverter is a high-speed zero bias amplifier that is biased at cut off by diode CR6.

The output of the pulse inverter (Ω 6) drives the input to the first decade counter (U2). The bias for the U2 input is established by a tracking bias supply (U3, Ω 7). The voltage at TP2 is equal to the voltage on U2 pin 1, plus a fixed DC offset selected by R45. The BCD outputs from U2 are slew-rate limited, and can only be seen after the counting ends and comes to rest. The carry output on pin 9 is an ECL level U2 signal, and is always visible.

The ECL output of U2 drives an ECL to TTL converter (Q8, Q9 and Q10). This converter is a differential amplifier with a cascode output buffer (Q8). The response of Q8 is improved by inductive peaking provided by L2. The output of Q8 drives a decade counter (U4) which in turn drives a third decade counter (U5). The BCD outputs of U4 and U5 are connected to a 6 decade counter (U6) which derives its clock information directly from the BCD outputs of U5. When counting is finished, 8 decades of BCD data are read by the microprocessor (through the PIA U10) from U6 by a time multiplex process. The multiplexer (set to the first digit by the end of the previous reset clock) loads the multiplex latches with the Latch Load clock, and steps to the remaining 7 digits with 7 pulses on the Scan Clock line. The first decade of BCD data from U2 is read directly from the PIA.

A single reset line is used to reset all count stages to zero before the next count cycle begins.

35

A real-time clock (U8, U9) is also on the count chain assembly. This circuit takes the 100kHz reference signal, that is coming from the Counter Interconnect Assembly (A100), and divides it by 10,000 to give a 10Hz (100ms) clock. The output from this clock is fed to the PIA to allow the microprocessor to gather time information at a 10Hz rate for timing functions within the program.

Figure 106a. Count Chain Functional Diagram
A106 COUNT CHAIN ASSY

2020136 - F

REF		EIP	UNITS		TYP
DES	DESCRIPTION	NO.	PER ASSY	TYP MFG NO.	FSCM NO.
A106	Count Chain Assy	2020136	1		
C1 C2 C3	Tant, 33μF, 20%, 10V Cer., .01μF, 20%, 100V C2	2300015 2150003	5 18	TAG 20 - 33/10 - 50 TG - S10	14433 56289
C4 C5 C6 C7	C1 Mica, 10pF, 5%, 500V Tant, 10μF, 20%, 25V C2	2260012 2300029	1 4	DM15CD100J03 DF106M529	72136 NEC
C8 C9 C10 C11	C2 Cer., .001µF, 20%, 1KV C2 C2	2150001	3	5GA - D10	56289
C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 thru C28 C29 C30	C9 C2 C6 C6 C2 C9 Not Used C1 C2 C1 Not Used C2 C1 Not Used				
thru C33 C34	C2 C6				
CR1 CR2 CR3	General Purpose Zener, 6.2V CR1	2704154 2705234	3 1	IN4154 IN5234	07263 04713
	Tunnel, Switching Hot Carrier CR1 Not Used	2710033 2710016	1	G00010C 5082 - 2835	20754 28480
L1 L2	Part of Board Inductor, 1μΗ	3510003	1	DD-0.10	72259
Q1 Q2 Q3	PNP, RF NPN, RF SW Q2	4704959 4710017	1 3	2N4959 MMT3960	04713 04713
Q4 Q5 Q6	PNP, RF NPN, RF NPN, RF	4710010 4710024 4710026	1 1 1	MPS - H81 BFR90 NE73432B	04713 73445 0000S
07 08 09 010	02 NPN, RF 08 08	4705179	3	2N5179	04713
Q11 Q12	PNP, General Purpose Q11	4704126	2	2N4126	04713

A106 COUNT CHAIN ASSY, continued

2020136-F

REF DES	DESCRIPTION	EIP NO.	UNITS PER	TYP MFG NO.	TYP FSCM
			ASSY		NO.
R1	Comp., 1.5K, 5%, 1/4 W	4010152	2	RC07GF152J	81349
R2	Comp., 6.2K, 5%, 1/4 W	4010622	2	RC07GF622J	81349
R3	Comp., 51 ohm, 2%, 1/4 W	4130510	3	C4/2%/51	24546
R4	Comp., 5.1K, 5%, 1/4 W	4010512	2	RC07GF512J	81349
R5	Comp., 2.7K, 5%, 1/4 W	4010272	2	RC07GF272J	81349
R6	Comp., 51 ohm, 5%, 1/4 W	4010510	1	RC07GF510J	81349
R7	Met Ox, 2K, 2%, 1/4 W	4130202	3	C4/2%/2K	24546
	Comp., 510 ohm, 5%, 1/4 W	4010511	1	RC07GF511J	81349
R8		4010569	5	RC07GF5R6J	81349
R9	Comp., 5.6 ohm, 5%, 1/4 W	4010505	5	1007010100	01010
R10	R5				
R11	R9	4400000	4	04/00//60	24546
R12	Met Ox, 68 ohm, 2%, 1/4 W	4130680	1	C4/2%/68	24546
R13	Met Ox, 43 ohm, 2%, 1/4 W	4130430	1	C4/2%/43	
R14	Met Ox, 3.9K, 2%, 1/4 W	4130392	1	C4/2%/3.9K	24546
R15	R7				
R16	R4				
R17	R1				
R18	R2				
R19	Comp., 100 ohm, 5%, 1/4 W	4010101	1	RC07GF101J	81349
R20	Met Ox, 56 ohm, 2%, 1/4 W	4130560	2	C4/2%/56	24546
R21	R9				
R22	R20				
R23	Comp., 430 ohm, 5%, 1/4 W	4010431	1	RC07GF431J	81349
R24	R9				
R25	Met Ox, S.A.T. (2K, 2% Nom)	4130999	1	C4/2%/XX	24546
R26	Met Ox, 39 ohm, 2%, 1/4 W	4130390	2	C4/2%/39	24546
	Met Ox, 39 ohn, 2%, 1/4 W Met Ox, 200 ohn, 2%, 1/4 W	4130201	3	C4/2%/200	24546
R27		4130271	1	C4/2%/270	24546
R28	Met Ox, 270 ohm, 2%, 1/4 W	4130271		0472707270	24040
R29	R3				
R30	R3	4040400		D007CE1001	81349
R31	Comp, 10 ohm, 5%, 1/4 W	4010100	2	RC07GF100J	24546
R32	Met Ox, 47 ohm, 2%, 1/4 W	4130470	1	C4/2%/47	
R33	Met Ox, 20 ohm, 2%, 1/4 W	4130200	1	C4/2%/20	24546
R34	Met Ox, 510 ohm, 2%, 1/3 W	4130511	1	C4/2%/510	24546
R35	R9				
R36	Met Ox, 1K, 2%, 1/4 W	4130102	3	C4/2%/1K	24546
R37	R26				
R38	Comp., 390 ohm, 5%, 1/4 W	4010391	1	RC07GF391J	81349
R39					
thru					
R42	Comp, 10 K, 5%, 1/4 W	4010103	4	RC07GF103J	81349
R43	Met Ox, 20 K, 2%, 1/4 W	4130203	4	C4/2%/20K	24546
R44	R43				
R45	R36				
R46	R43	***			
R47	Met Ox, 18 ohm, 2%, 1/4 W (NOM) SAT	4130999	1	C4/2%/18	24546
R48	R43				
	Met Ox, 240 ohm, 2%, 1/4 W	4130241	1	C4/2%/240	24546
R49		7100241	1		
R50	R27				
R51	R27				
R52	R36	4400404		CA 100/ 1421	04E46
R53	Met Ox, 430 ohm, 2%, 1/4W	4130431	1	C4/2%/431	24546
			1		
]	
L	I	1	<u>+</u>	<u></u>	

5580018

A106 COUNT CHAIN ASSY, continued

2020136-F

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R54 R55 R56 R57	R7 Comp., 1.8K, 5%, 1/4 W Comp., 4.7K 5%, 1/4 W R31	4010182 4010472	1	RC07GF182J RC07GF472J	81349 81349
TP1 thru TP10	Conn., Pin, .040Đ	2620032	10	460-2970-0203	71279
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10	Dual/Diff Ampl UHF, BCD, Decade Counter Op Amplifier PST Decade Counter 4 Bit Decade Counter 6 Dec, Ctr/8 Dec. Latch Hex Inverter Decade Counter U8 Periph. Interface Adapter	3043049 3010637 3040741 3084196 3084160 3057031 3087404 3084490 3086820	1 1 1 1 1 2 1	CA3049T SP8637B LM741CN SN74LS196N SN74LS160N LS74031 DM74LS04N 74LS490N MC6820	07263 0000C 01295 01295 01295 0000X 01295 04713

Figure 106 b. Count Chain Component Locator

CR4 REF

Figure 106 c. Count Chain Schematic

106-7

8

5580018

4		Ļ.,										
		ON5		12		7	S	23	r	Ø		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 < 00	-	CA3049T	5P8637B	LM741CN	7415196	74L516D	74 LS7031	74LS04	7415490	MC6820	
	(2 2 1		۱۵	U2	U3	U4	U5	90	5	00'90	no	

. . .

A107 GATE GENERATOR (2020137)

This assembly performs the following functions.

- Reference Oscillator Control
- Gate Generation
- Band 3 Amplitude Determination
- Power Meter Control (Option 02 only)

REFERENCE OSCILLATOR CONTROL

This circuit selects, as the time base for the counter, either the internal reference oscillator or an external 10 MHz signal applied to the rear panel. This circuit provides a 100 kHz TTL level clock signal for the gate generator, a 50 kHz TTL level clock signal for the microwave converter and, in the internal oscillator mode, a 10 MHz signal (1 volt p-p into 50 ohms) to the rear panel.

The 10 MHz internal reference signal is applied to a switchable "analog to TTL" converter (Q1, Q2, Q3). When the Ref Int/Ext line is high the TTL converter is enabled. One output goes to drive Q4, giving a square wave (1V p-p into 50 ohms) on the 10 MHz Ref line. A second output goes to NAND gate U1 (also switchable for signal isolation). The output of U1 goes to the clock input of U2. U2 is a dual decade divider that divides by 100. The output of U2 is a 100 kHz TTL clock signal to the gate generator. The output of U2 also goes through inverter U7 to one half of U17 and provides a 50 kHz TTL signal for the microwave converter.

When the Reference Int/Ext line is set to external (low) the TTL converter ($\Omega 1$, $\Omega 2$, $\Omega 3$) and driver ($\Omega 4$) are disabled, TTL converter ($\Omega 5$, $\Omega 6$, $\Omega 7$) is enabled, and U1 is set to select the external input. An external reference signal applied to the 10 MHz reference line is then converted to the input of U2.

GATE GENERATOR

The Gate Generator must provide an accurate, stable, signal gate to the Count Chain. The gate must be switchable, in decade increments, between 100 micro sec and 1 sec. The gate generator consists of a programmable divide-by-N time base (U5), a dual flip-flop (U6A, U6B), and an ECL flip flop (U8). The divide ratio of U5, which determines the gate time, is set by U5 pins 12, 13, and 14 as follows.

Pin 12	Pin 13	Pin 14	Divide Ratio	Gate Time
0	0	1	10 ¹	100 µsec
0	1	0	10 ²	1 Msec
0	· 1	1	10 ³	10 Msec
1	0	0	10 ⁴	100 Msec
1	0	1	10 ⁵	1 sec

The outputs of U5 and U6 enable ECL flip-flop U8, but U8 is clocked directly from the 100kHz clock to insure gate accuracy.

When the gate is not active, U5 is permitted to free-run by holding U6A clear (T0). The gate is initialized by setting U6A. This clears U6B and clears U5 (T1). The next clock pulse sets U8 (T2). The gate is then enabled by momentarily clearing U6A (T3). The next clock sets U6B which enables U5 and U8 (T4). At T5 the gate is opened and U5 begins counting clocks (T5). Halfway through the gate, U5 pin 1 goes high (T6). After U5 has accumulated the proper number of clocks its output, pin 1, goes low. This sets U6A, which clears U6B, and sets U8 pin 7 high (T7). The next clock closes the gate (T8). The program next clears U6A (T9), which enables the gate to free-run again (T0). See figure 107a.

Figure 107a. Gate Generator Timing Diagram

BAND 3 AMPLITUDE DETERMINATION

This circuit consists of three main parts.

- THE POWER METER ZERO DAC is used to automatically zero offsets in the Power Meter. It consists of two 8 bit latching DACs (U3, U4), and a comparator (U14A). All the latching DACs are driven in parallel by shift register U16, with the appropriate DAC being written to by the four write lines (U15, pins 2, 4, 6, 8). The coarse DAC (U3) has a range of ± 200 micro amps, and the fine DAC (U4) has a range of ± 1.5 amps. The Power Meter Zero DAC is adjusted such that, on 1 step U14A is not set, but on the next step U14A is set. This adjusts the input to U14 to 0 volts, nulling any offsets in the power meter curcuit.
- THE POWER METER consists of a 15 dB switchable gain stage (U9), an 8 bit DAC used as a variable attenuator (U10), a 100 mV comparator (U14B), and a latch (half of U17). Two variable attenuators are used, on counters equipped with the option 02 power meter, to provide greater resolution (U10, U12).

When the detected signal from the microwave converter enters U9 the power meter is first set for maximum gain and minimum attenuation. Next the latch (U17) is reset. If the input to the comparator (U14B) is greater than 100mV, latch U17 will be set. The signal amplitude to the comparator is then reduced, and the process is repeated until latch U17 no longer gets set. The input amplitude can then be calculated from the switch and DAC settings. On counters without the power meter option the amplitude is calculated to a 3dB resolution. On counters with the power meter option the amplitude is calculated to a resolution of 0.1dB.

The POWER METER PROM (Option 02 only) contains a logic comparator (U21), a 2K X 8 prom (U20), and a bus driver (U19). The logic comparitor is connected to the microprocessor address bus, and is configured to decode the 2K address range from 4000 Hex to 47FF Hex. The comparator output drives the chip select of the Prom, and the bus driver. The prom contains the Power Meter program as well as the power correction factors. Bus driver U19 is used as a buffer for driving the microprocessor data bus.

PERIPHERIAL INTERFACE ADAPTER (PIA)

The Peripherial Interface Adapter (U18) is used as the microprocessor I/O port. It has an address range from 9900 Hex to 9903 Hex. Peripheral Port A is at address 9900, and Peripheral Port B is at address 9902.

Figure 107b. Gate Generator Block Diagram

A107 GATE GENERATOR

2020137 - L

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A107	Gate Generator Assy	2020137	1	EIP	
	A112 Crystal Oscillator Assy	2030002	1	EIP	
C1 C2	Cer, .01µF, 20%, 100V C1	2150003	14	TGS10	72982
C2 C3 C4 thru	Tant, 33µF, 20%, 10V	2300015	4	TAG20 - 33/10 - 50	14433
C7 C8	C1 Mica, 22pF, 5%, 500V	2260017	1	ED220J03	72136
C9	Tant, 1.0 μ F, 20%, 35V	2300008	1	TAG20-1.0/35-50	14433
C10	Mica, 33pF, 5%, 500V	2260021	1	ED330J03	72136 72136
C11 C12 C13 thru		2260034	1	ED101J03	72130
C15 C16 C17 C18 C19	C1 Tant, 10µF, 20%, 25V C1 C3 C3	2300029	2	NECDF106M25S	
C20 C21 C22 C23 C24	C1 C1 C3 C1 C1				
C25	C16				
CR1	Hot Carrier	2710004	1	FH1100	07263
CR2 CR3	Hot Carrier Not Used (Option 02 only)	2710006	1	5082 - 2800	
CR3 CR4	Zener, 6.2V	2700827	1	IN827	
Q1	NPN, General Purpose	4704124	4	2N4124	
02 03 04 05 06	PNP, General Purpose Q1 Q2 Q1 Q2	4704126	3	2N4126	
Q7 Q8	Q1 D-MOS FET SW	4710031	1	2D215	
R1	Comp, 1K, 5%, 1/4 W	4010102	2	RC07GF102J	81349
R2	Comp, 200, 5%, 1/4 W	4010201	2	RC07GF201J	81349
R3	Comp, 620, 5%, 1/4 W Comp, 2.2K, 5%, 1/4 W	4010621 4010222	2 2	RC07GF621J RC07GF222J	81349 81349
R4 R5	Comp, 2.2K, 5%, 1/4 W Comp, 220, 5%, 1/4 W	4010222	2	RC07GF221J	81349
R6	Comp, 510, 5%, 1/4 W	4010511	2	RC07GF511J	81349
R7 R8	R2 Comp, 27, 5%, 1/4 W	4010270	1	RC07GF270J	81349
R9	Comp, 300, 5%, 1/4 W	4010301	1	RC07GF301J	81349
R10	Comp, 4.7K, 5%, 1/4 W	4010472	6	RC07GF472J	81349
R11 R12 R13	R1 Comp, 390, 5%, 1/4 W R10	4010391	1	RC07GF391J	81349
R14 R15	R4 R5		*		
		· · · ·			

A107 GATE GENERATOR, continued

2020137 - L

1	DESCRIPTION	EIP NO.	PER ASSY	TYP MFG NO.	TYP FSCM NO.
R16	R6				
R17	R3				
	Met Ox, 5.6K, 2%, 1/4 W	4130562	1	C4/2%/5.6K	24546
	Comp, 3.3K, 5%, 1/4 W	4010332	1	RC07GF333J C4/2%/27	81349 24546
	Met Ox, 27 ohm, 2%, 1/4 W Comp, 2.7K, 5%, 1/4 W	4130270 4010272	1 1	RC07GF272J	81349
	R10	4010272	1	NC0/GI 2/25	01040
	R10				
	Comp, 1.5K, 5%, 1/4 W	4010152	2	RC07GF152J	81349
R25	R24				
	Comp, 1.6K, 5%, 1/4 W	4010162	1	RC07GF162J	81349
	Met Ox, 30K, 2%, 1/4 W	4130303	1	C4/2%/30K	24546
	Met Ox, 39K, 2%, 1/4 W	4130393	1 1	C4/2%/39K RN55C1691F	24546 81349
	Prec, 1.69K, 1%, 1/10 W Prec, 1.82K, 1%, 1/10 W	4051691 4051821	1	RN55C1821F	81349
	Prec, 57.6K, 1%, 1/10 W	4055762	1	RN55C5762F	81349
	Comp, 36K, 5%, 1/4 W	4010363	1	RC07GF363F	81349
	Comp, 15K, 5%, 1/4 W	4010153	1	RC07GF153F	81349
R34	· · · ·				
thru			_		
	Comp, 6.2K, 5%, 1/4 W	4010622	6	RC07GF622J	81349
	Met Ox, 750, 2%, 1/4 W	4130751 4056191	1 1	C4/2%/750 RN55C6191F	24546 81349
	Prec, 6.19K, 1%, 1/8 W Prec, 100, 1%, 1/8 W	4050191	1	RN55C1000F	81349
	R10	4031000	I	Throsof tools	01040
	R10				
R45	Met Ox, 10K, 2%, 1/4 W (Option 01 only)	4130103	2	C4/2%/10K	24546
R46	R45				
		2004422	1	CN141 C122	01295
1	Quad Schmitt NAND Dual Decade Counter	3084132 3084490	1 1	SN4LS132 SN74LS490N	01295
1	8 Bit DAC	3057524	3	AD7524JN	01200
	U3		-		
	Digital P Chan. MOS Divider	3035009	1	MK5009P	
	D Type Pos Flip-flop	3087474	2	SN74LS74N	01295
U7	Quad 2INP NOR Gate	3087402	1	SN74LS02N	01295
U8 U9	Digital Dual D Flip-flop Dual Low Noise Op Amp	3110131 3045532	1	MC10131L NE5532	04713
U10	8 Bit DAC (Option 02 only)	3057525	2	AD7524LN	
U10	U3	0007020	-		
U11	Op Amplifier	3040308	2	LM308AN	
U12	U10 (Option 02 only)				
U13	U11	0050000	4	1 M202N	
U14	Comparator	3050393 3007407	1	LM393N DM7407N	27014
U15 U16	Hex Buffer/Driver Dual 4 Bit Static S/R	3034015	1	MC14015B	04713
U17	U6	0004010			
U18	Periph. Interface Adaptor	3086820	1	MC6821	01295
U19	Oct. Buffer Option	3084244	1	SN74LS244	01295
U20		6400001	1	MCM2716	04713
U21	6 Bit Comparator only	3078136	1	DM8136	27014
	2			·	

PAGE BLANK INTENTIONALLY

2020137-01/02 - P

Figure 107 c. Gate Generator Component Locator

NOTE : If the counter contains option 02 this board is replaced with the 2020137-03/04. Refer to Section 10, Option 02 for the -03/04 version of the Gate Generator Assy.

Figure 107 d. Gate Generator Schematic

107-9

·

.

A108 CONVERTER CONTROL (2020138)

The Converter Control provides a precise YIG tuning current which is controlled by the microprocessor via PIA U5. It will also phase lock the VCO (A201A) in the Microwave Converter (A203) to a selected harmonic of a 50kHz reference signal so that it will provide a synthesized LO. The converter control assembly also permits the microprocessor to control the LO power amplifier and provide the microprocessor input for the IF Threshold signal.

FREQUENCY CONTROL DAC and YIG DRIVER

The yig tuning current is supplied by the yig driver (U3, Q1, Q2, & Q3) which is controlled by the DAC. The DAC is composed of a 12 bit monolithic DAC (U1), summing amplifier (U2) and resistors (R3, R4, R7, & R8) to provide a total resolution of 14 bits. R4 and R5 are pull up resistors for PA ports 0 and 1 of the PIA (U5) which directly drive the 2 least significant bits of the DAC. A change in the least significant bit of the DAC corresponds to a yig frequency change of 2MHz. A voltage analog of yig current appears across R20, and is compared to the DAC output at the summing junction of U3, with resistors R10 and R18.

The slope of yig current vs DAC voltage is adjustable using R11, and the offset is adjusted using R14.

Figure 108a. Converter Control Block Diagram

VCO CONTROL

The VCO control circuitry and the VCO (A201A) from a phase lock loop frequency synthesizer. The synthesizer frequency range is 370MHz to 500MHz.

An output signal from the VCO(A201A), via a buffer amplifier on the Band 2 Converter (A109), is applied to the programmable frequency divider (U6, U7, U8A, U10 thru U16). The frequency divider is programmed by the microprocessor (A105) via PIA U18. The output of the frequency divider is compared to the 50kHz reference signal from the gate generator (A107) by the phase detector (U8, U9). A phase difference between the divided down VCO and the 50kHz reference will result in an output from the phase detector. The phase detector has two output ports, a pump-up port and a pump-down port. Pump down is U8D pin 11. It is normally low, and goes high to reduce the VCO frequency. Pump-up is U9 pin 13. It is normally high, and goes low to increase the VCO frequency.

The outputs of the phase detector go to the charge pump, which converts them to a single tri-state output. The charge pump output is open with no pump command, sources about 2 mA with pump down, and sinks about 2 mA with pump up. The output of the charge pump is connected to the input of the loop amplifier (U4). The loop amplifier provides the proper gain and filtering to achieve the desired loop response. The output of the loop amplifier is the VCO tuning voltage. If the tuning voltage should fall out of the range of -2.25V to +9.50V, the output of window detector (U17) will go low to indicate that phase lock has been lost.

Figure 108b. Programmable Frequency Divider Block Diagram

PROGRAMMABLE FREQUENCY DIVIDER

The programmable frequency divider uses a two modulus (divide number) prescaler (U10, U11) and two programmable counters (A & B). The prescaler is used to divide the VCO frequency down to a lower frequency which can be handled by low power schottky TTL programmable counters. The two modulus prescaler permits prescaling without loss of resolution. At the start of the programmable frequency divider cycle, the prescaler is set to divide by the larger modulus (41), and both programmable counters have been loaded with their respective program numbers from the PIA (U18). The programmable counters have been loaded with their respective program numbers from the PIA (U18). The programmable counters each decrement 1 count for each output pulse from the prescaler. When programmable counter B (U15, U16) reaches the count of zero the 40/41 control flip-flop (U6B) changes state and causes the prescaler to divide by the lower modulus (40). When programmable counter A reaches the count of 2 the D input of the PL period flip-flop (U6A) goes high, so that on the count of 1 the flip-flop changes state, which causes both programmable counters to be reloaded with their respective program numbers and the 40/41 control flip-flop to reset (prescaler in \div 41 state). The very next count causes the PL period flip-flop to reset, starting the programmable frequency divider cycle over again. The equation for the divide ratio of the program-able frequency divider cycle over again.

 $N_d = 40 (N_{counter A}) + N_{counter B}$

will the condition that:

N counter B must not exceed N counter A

The weighting of the command bits is:

U12 P ₁ – 400MHz	U14 P ₁ – 4MHz
U12 P ₀ – 200MHz	U14 P ₀ — 2MHz
U13 P ₃ — 160MHz	U15 P ₃ — 1.6MHz
U13 P ₂ - 80MHz	U15 P ₂ – 0.8MHz
U13 P ₁ – 40MHz	U15 P ₁ – 0.4MHz
U13 P ₀ — 20MHz	U15 P ₀ - 0.2MHz
U14 P ₃ — 16MHz	U16 P ₁ – 100KHz
U14 P ₂ – 8MHz	U16 P ₀ — 50KHz

A108 CONVERTER CONTROL

2020138-N

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A108	Converter Control Assy	2020138	1	EIP	
C1 C2 C3	Cer, .01µF, 20%, 100V Mono, .022µF, 15%, 50V C1	2150003 2350027	14 1	TG - S10 2130X7R050R223K	56289 26654
C4 C5	Cer, .005µF, 20%, 100V Tant, 1µF, 10%, 35V	2150008 2300008	1 3	TG - D50 TAG20 - 1/35V	56289 14433
C6 C7 C8 C9 C10 C11	C5 Cer, .001μF, 20%, 1KV C1 C7 C1 C1 C1	2150001	4	SGA - D10	56289
C11 C12 C13 C14 C15 C16 C16 C17	C1 Tant, .47μF, 10%, 35V Cer, .047μF, 20%, 50V C1 Not Used C1 C7	2300005 2150016	1	TAG2047/35 6123X7R473KA50	14433 26654
C18 C19 thru	C7				
C24 C25 C26 C27	C1 Tant, 33μF, 10%, 10V C25 C5	2300015	3	TAG20 - 33/10V	14433
C28 C29 C30 C31	Tant, 10μF, 20%, 25V C28 C25 C1	2300029	2	DF 106M259	72136
CR1 CR2 CR3 CR4 CR5 CR6	Zener, 6.2V Hot Carrier General Purpose Zener, 51V Rectifier	2700827 2710004 2704154 2704757 2704001	1 1 5 1 1	1N827 FH1100 1N4154 1N4757 1N4001	07263 07263 07263 07263 07263 07263
thru CR8 CR9 J1 J2	CR3 CR3 Mini Jack J1	2610038	2	S1 - 451 - 0000	98291
01 02 03	NPN, General Purpose PNP, Amplifier PNP,	4704124 4710018 4710009	1 1	2N4124 MPSLS1 MJE350	04713 04713 04713
R1 R2 R3 R4 R5	Comp, 750, 5%, 1/4 W Comp, 10K, 5%, 1/4 W Comp, 82K, 5%, 1/4 W Comp, 160K, 5%, 1/4 W R2	4010751 4010103 4010823 4010164	1 4 1 1	RC07GF751J RC07GF103J RC07GF823J RC076F164J	81349 81349 81349 81349 81349
R6 R7 R8 R9 R10 R11	R2 Comp, 824K, 5%, 1/4 W Comp, 1K, 5%, 1/4 W Cmt Film, 4.99M, 1% Prec, 8.4K, 1%, Var, Cer, MT, 20K	4010824 4010102 4120017 4120019 4280011	1 3 1 1 2	RC07GF824J RC07GF102J CC4994F VAR - 1/10C - 61%, 8.45K 89PR - 20K	81349 81349 01121

A108 CONVERTER CONTROL, continued

2020138- N

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R12 R13	Prec, 49.9K, 1%, 1/4 W Met Ox, 10K, 2%, 1/4 W	4054992 4130103	1 2	RN55C4992F C4/2%/10K	81349 24546
R14 R15	R11 Prec, 1meg, 1%, 1/10 W	4051004	1	RN55C1004F	81349
R16	R13 Comp, 4.7K, 5%, 1/4 W	4010472	1	RC07GF472J UAR - 1/10 - C6 - 1% - 3.01K	81349
R18 R19 R20	Prec, 3.01K, 1%, 1/10 W Met Ox, 1.6K, 2%, 1/4 W Wire Wound, 5, 1%, 7 W	4120020 4130162 4110003	1 1 1	C4/2%/1.6K T7 (10PPM)	24546
R21 R22	Mile Wolnd, 5, 1%, 7 W Met Ox, 390, 2%, 1/4 W R21	4130391	2	C4/2%/390	24546
R23 R24	R8 R8				
R25 R26	Comp, 3.9K, 5%, 1/4 W Comp, 5.1K, 5%, 1/4 W	4010392 4010512	1 2 2	RC07GF392J RC07GF512J	81349 81349
R27 R28	Comp, 51, 5%, 1/4 W Factory Select	4010510	1	RC07GF510J	81349
R29 R30	Comp, 470, 5%, 1/4 W R26	4010471	1	RC07GF471J	81349
R31 R32	Comp, 1.5 meg, 5%, 1/4 W Comp, 220K, 5%, 1/4 W	4010155 4010224	1	RC07GF155J RC07GF224J	81349 81349 81349
R33 R34 R35	Comp, 680, 5%, 1/4 W Comp, 300, 5%, 1/4 W R27	4010681 4010301	1	RC07GF681J RC07GF301J	81349
R36 R37	Comp, 390, 5%, 1/4 W R36	4010391	3	RC07GF391J	81349
R38 R39	R36 R2				
R40 R41	Met Ox, 1K, 2%, 1/4 W Met Ox, 4.7K, 2%, 1/4 W	4130102 4130472	1	C4/2%/1K C4/2%/4.7K	24546 24546
R42 R43	Met Ox, 47K, 2%, 1/4 W Met Ox, 3.9K, 2%, 1/4 W	4130473 4130392	2 1	C4/2%/47K C4/2%/3.9K	24546 24546
R44 R45 TP1	R42 Comp, 6.2K, 5%, 1/4 W	4010622	1	RC07GF622J	81349
thru TP8	Pin, .04D, Gold	2620032	8	460 - 2970 - 02 - 03	71279
U1	12 Bit DAC	3057541	1	AD7541KN	0000X
U2 U3	Prec, J FET, Op Amplifier Op Amplifier	3041016 3040741	1	OP16F LM741CN	06665 0000X
U4 U5	Op Amplifier - BI/FET Peripheral Interface Adaptor	3040341 3086820	1	TL071CP MC6820	0000X 04713
U6 U7	Dual "D" Flip-flop 2 INP NOR Buffer	3070014 3070016	1	SN74LS74 DM74S02N	01295 01295
U8	2 IMP NAND Gate	3087400	1	DM74LS00N	0000X
U9 U10	Phase Freq. Detector Two-Mod Prescaler (-02)	3014044 3112013	1	MC4044P MC12013L	04713 04713
U11 U12	Digital Dual "D" Flip-flop	3110131	1	MC10131P	0000X
thru U15	UP/DN Counter	3084192	4	DM74LS192N	0000X
U16 U17	UP/DN Counter Comparator	3084193 3050393	1	DM74LS193N LM393	0000X 0000X
U18	05				
a ser a des principal de la constante de					

108 - 6

108-7

·

.

.

The Band 2 Converter accepts Band 1 and Band 2 RF signals from the front panel, and local oscillator (LO) signal from the Band 3 Converter (A203). The appropriate signal is selected and processed to produce an IF signal between 10 Hz and 200 MHz. The IF signal output is sent to the Count Chain board (A106), and lock information is routed through the PIA (peripheral interface adapter) U2 to the Microprocessor (A105).

IMPEDANCE CONVERTER

Band 1 input from the front panel enters the converter at J6 and is terminated by R75. The signal is coupled to the input of a field effect transistor (FET) amplifier (Q15) through an RC network (R73, C42). Two limiter diodes (CR4, CR5) protect the FET against large input signals. The FET is a source follower with slightly less than unity gain. The FET drives a buffer amplifier (Q14) which has enough gain to increase the impedance converter overall gain to near unity. A decoupling capacitor (C39) controls the amplifiers low frequency cutoff, and C41 provides high frequency peaking to keep the gain flat to frequencies above 100 MHz.

SIGNAL SELECT

The output of the impedance converter circuit drives one input of the signal select circuitry. Signal selection is made by enabling one of three differential amplifiers, U4A, U4B, or U5A. When Band 1 is selected, a logic high signal on the PIA (U2 pin 2) turns on Q16. Q16 biases on the current source in U4A. This current source generates an 11ma current which is split between the two differential amplifier transistors in U4A. The currents from pins 5 and 6 flow through matched collector loads (R94, L7/R95, L8). R94 and R95 are equal, and are selected for the proper low frequency gain during board alignment. Inductors L7 and L8 provide peaking to give an approximate flat gain through 200MHz. Diodes CR9 and CR10 provide limiting on very strong signals to prevent the next stage from being over driven.

The next stage is a differential amplifier similar to U4A, but it is driven differentially. To generate a single ended output signal, one output of U5B (pin 12) is passed through a current mirror (Q18). The output of the current mirror is then added to the second output of U5B (pin 11) at J5. The load for this stage is a 51 ohm resistor located on the A106 Count Chain board in order to terminate the coax for RF signals. In the quiescent state, the current from Q18 equals the collector current of the differential amplifier U5B, and the output current is zero. When a signal is applied, the current will be unbalanced to generate a signal at the load resistor. To provide frequency compensation of the current mirror, an RC network (R108, C34) is connected between the emitter of Q18 and ground.

BAND 1 LOCK DETECTOR

The output signal at J5 is coupled to detector CR12. Amplifier U6 is a threshold comparator that will produce a logic low signal when the IF output from J5 is more than -6dBm. The output of U6 goes through a resistor divider network to generate a 5V TTL logic signal for the PIA. R90 provides about 1 dB of positive feedback at threshold level to prevent eratic output from the comparator.

ISOLATION AMPLIFIER

The Band 2 input signal enters on J4. This RF signal is terminated in 50 ohms by the combination of R1 and the input impedance of the amplifier. The input signal level is detected by CR1, filtered by C3, and applied to one input of the Band 2 lock detector (U1).

The isolation amplifier is a common base amplifier with a gain of -10 dB. An input signal range of +10 to -20dBm is translated to a 0 to -30dBm range into the mixer so the mixer will be in its linear range for all signal input levels. The amplifier peaks slightly near 1 GHz to overcome an increase in mixer conversion loss at these frequencies.

MIXER OPERATION

The local oscillator (LO) is applied to the IF terminal and the IF is removed from the LO terminal. This swap allows the mixer (MX1) to be unbalanced and act as a low loss attenuator for signals between 10MHz and 200MHz where no mixing is necessary. The mixer has a nominal 400MHz LO for signals between 200MHz and 600MHz; and has a nominal 800MHz LO for signals between 600MHz and 1GHz. A 980MHz LO allows operation with input signals to 1160MHz.

IF AMPLIFIER

The output of the mixer drives an IF amplifier through a 7 section, 200MHz low-pass filter. The IF amplifier is a "feedback pair" amplifier whose gain is stabilized by feedback, to be equal to 24dB. Inductor L6 is used to extend the high frequency response to 200MHz. The 1 pF capacitor (C26) between R34 and R35 is a low pass filter to reduce the 1200 to 1500 MHz LO harmonics that reach the IF amplifier.

BAND 2 LOCK DETECTOR

The IF amplifier output goes to the signal select circuit and to the Band 2 Lock Detector. The Band 2 Lock Detector has a voltage proportional to the IF level on the positive input, and a voltage proportional to the RF signal on the Negative input. The conversion gain from RF input to IF amplifier output is a +6dB for all valid signals, and less than -6dB for all spurious signals. The output of U1 is positive only when a valid IF signal is present. A small offset is added by R12 and R13 to guarantee a non lock condition when no signal is present. Resistor R90 provides about 1dB of positive feedback to prevent eratic output from noise at the point of threshold.

LO BUFFER

The VCO signal from the Band 3 Converter (A201A, J2) enters on J1. The signal goes through a 6 dB attenuator (R111, R112, R114), and a low pass filter (L1, C63, C64 to attenuate high order harmonics), and is terminated by a 51 ohm resistor (R16). Two high input impedance signal splitters (Ω_2 , Ω_3) get their input signals from R16. Ω_2 and Ω_3 operate on the same basic principal. One output is taken from the emitter (acting as an emitter follower) which provides unity gain for the input signal. The AC terminating impedance on the emitter is adjusted to be 50 ohms so the amplifier will act as a unity gain amplifier for the 50 ohm load which terminates the collector when a coax cable is connected. U2 has an additional transformer (T1) in its collector lead to increase the signal output to J3 by about 4 dB.

DIVIDE-BY-TWO

The emitter output of Q3 drives the input of a divide-by-two IC (U3). The impedance is held at 50 ohms by two terminating/biasing resistors (R61, R62). The resistors keep the input bias to U3 below the emittercoupled logic (ECL) low level (approx. -2.0V). The microprocessor enables self-test by putting a low level signal on pin 5 of the PIA (U2). This turns on Q13, and raises the voltage at U3 pin 7 to the center of an ECL signal (approx. -1.2V). This allows U3 to divide the input signal by two. The output of U3 goes to the signal select circuits.

LO SELECT

The signal from the emitter of Q2 drives the LO select circuitry. The LO provides one (of three) signals to the mixer (MX1). In Band 2A a bias current is generated to unbalance the mixer and allow signals below 190MHz to pass. In Band 2B a 370MHz or 425MHz LO signal is generated that will mix with signals of 200 to 600MHz, and provide the 10 to 200MHz IF signal desired. In Band 2C a 750MHz, 850MHz or 980MHz LO signal is generated to mix with input signals between 600MHz and 1160MHz to provide the desired IF signal.

In Band 2A, the 3ma current to bias mixer MX1 is generated when Q12 is turned on by the PIA, to apply +12V to MX1 through R57. This will allow signals to pass that are less than the cutoff frequency of the low pass filter (200MHz). The LO signal to mixer MX2 from Q2 is not allowed to pass MX2 because of the inherent balance of the mixer. No signal can enter pin 2 of MX2 because Q7 has been saturated, removing bias from buffer Q5, and shunting any RF signals to ground.

When Band 2B is selected, Q12 is turned off thus balancing mixer MX1; Q6 is turned on to unbalance mixer MX2. With MX2 unbalanced, the LO signal from Q2 can pass through MX2 and be amplified by Q10 and Q11, and be applied to mixer MX1.

When Band 2C is selected both Q6 and Q12 are off, and both mixers are balanced. In this mode Q7 is shut off and an LO signal is applied to pin 1 and 2 of MX2. The sum output of MX2 is selected by a DC blocking capacitor (C31). This sum (that is two times the incoming LO frequency) is amplified by Q10 and Q11 and applied to MX1.

The Q10 and Q11 amplifier is a series shunt pair. Q10 applies most of the RF input signal across the emitter resistor R47. This determines the transistor emitter current, which will be the collector current if the output is terminated in a low impedance. Q11 is used as a current-to-voltage converter. The output voltage of this converter is the product of the input current times the feedback resistor (R51). Since the input of this stage is a summing junction, it appears very close to zero ohms to the previous stage, Q10. The voltage gain of the two transistors can be approximated by R51/R47, which is about 3 or 10dB. Since the gain required at 800MHz is slightly greater than required at 400MHz, a low pass matching network (consisting of L2 and C20 peaks the output signal current to MX1 at 800 MHz. The remaining components around Q10 and Q11 are used to bias the transistors. Shunt biasing is used to provide collector bias voltages of 3.4V for Q10, and 4.7V for Q11.

OPTION SELECTION

Provision has been made on this assembly for a set of jumpers that will let the microprocessor know when it has the components required for a 548 (26.5GHz) counter, and if it has an extended frequency option (Option 06). These jumpers are read by the microprocessor when the counter is turned on, and will select micro code which is applicable only when those options are available. A jumper from E1 to E3 (from pins 8 and 9 on the PIA U2) indicate that this is a 548 counter. A jumper from E2 to E4 indicates that Option 06 (Band 4) has been installed in the counter.

Figure 109a. Band 2 Converter Block Diagram

A109 BAND 2 CONVERTER

2020139-L

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A109	Band 2 Converter Assy	2020139	1	EIP	
C1	Cer, .01µF, 10%, 100∨	2150014	9	6123X7R103KA100	26654
C2 C3 C4 thru	C1 Cer, .001µF 10%, 100∨	2150015	11	6183X7R102KA100	26654
C6 C7 C8 C9 C10 C11 C12 C13 C14 C15	C1 Mica, 100pF, 5%, 500V Disc, .001μF, 20%, 1KV Disc, .01μF, 20%, 100V C8 C8 C7 C8 C7 C8 C7	2260034 2150001 2150003	3 8 11	FD101J03 SGA - D10 TG - S10	72136 56289 56289
thru C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34	C3 C8 Mica, 1pF, 5%, 500V Mica, 18pF, 5%, 500V C22 C21 C1 C20 Not Used C1 C9 C1 C3 C3 C3 C1	2260005 2260015 2260021	2 3 2	CD010C03 CD180J03 ED330J03	56289 56289 56289
thru C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47	C3 C9 C3 Tant, 100μ F, 20%, 6.3V C9 Mica, 22ρ F, 5%, 500V Mica, 47pF, 5%, 500V Tant, 33μ F,10%, 10V C9 C43 C8	2300024 2660017 2260004 2300015	1 1 1 6	TAG20 - 47/6.3 - 50 ED220J03 DM10 - 470J TAG20 - 33/10 - 50	14433 72136 72136 14433
thru C49 C50 C51 C52 C53 C54 C55 C56 C57	C9 Tant, 10µF, 20%, 25V C43 C9 C9 C9 C21 C8 C8 C8 C50	2300029	3	DF106M258	14433

A109 BAND 2 CONVERTER, continued

2020139 -L

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
C58 C59 C60 C61 C62	C43 C9 C43 C50				
C63 C64	C43 Mica, 8ρF, 5%, 500V C63	2660011	2	CD080J03	56289
CR1 CR2 CR3	Mix UHF Not Used CR1	2710038	2	ND4991	00005
CR4 CR5	General Purpose CR4	2704154	3	1N4154	07263
CR6 CR7 CR8 CR9 CR10 CR11 CR12	Not Used Not Used Not Used Not Used CR4 CR1				
L1 thru L5 L6	Part of Board Inductor, 0.47 =H	3510014	1	1025 - 10	99800
L7 L8	L1 L1				
MX1 MX2	Balanced Mixer MX1	2030016-00	2	TFM-2	
Q1 Q2	NPN, RF Q1	4710030	9	BFR-90	04713
03 04 05	Q1 PNP, General Purpose Q1	4704124	1	2N4124	04713
Q6 Q7	PPNP, General Purpose	4704126	6	2N4126	04313
thru Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19	Q1 Q6 Q6 NPN, RF NN-Channel, JFET Q6 Q6 Q14 Q6	4710023 4704416	21	A5T4261 2N4416	01295 04713
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13	Comp, 150, 5%, 1/4 W Met Ox, 75, 2%, 1/4 W Comp, 1.1K, 5%, 1/4 W Comp, 820, 5%, 1/4 W Comp, 33, 5%, 1/8 W Comp, 51, 5%, 1/4 W Comp, 10K, 5%, 1/4 W Met Ox, 8.2K, 2%, 1/4 W Met Ox, 30K, 2%, 1/4 W Met Ox, 43K, 5%, 1/4 W Met Ox, S.A.T., Nom, 15K Met Ox, 12, 2%, 1/4 W	4010151 4130750 4010112 4010821 4000330 4000510 4010103 4130822 4130303 4130433 4010433 4130999 4130120	1 2 1 3 1 1 3 2 1 2 1 1 1	RC07GF151J C4/2%/75 RC07GF112J RC07GF821J RC05GF330J RC05GF510J RC07GF103J C4/2%/822 C4/2%/30K C4/2%/43K RC07GF433J C4/2%/15K C4/2%/12	81349 24546 81349 81349 81349 81349 81349 81349 24546 24546 81349 24546 24546

2020139-L

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R14 R15 R16 R17 R18	Comp, 36, 5%, 1/4 W Comp, 11, 5%, 1/4 W Met Ox, 51, 2%, 1/4 W Comp, 1K, 5%, 1/4 W B4	4010360 4010110 4130510 4010102	1 2 2 5	RC07GF36J RC07GF110J C4/2%/51 RC07GF102J	81349 81349 24546 81349
R19 R20	R15 R17 Comp, 220, 5%, 1/4 W	4010221	2	RC07GF221J	81349
R21 R22 R23	Comp, 220, 5%, 1/4 W Comp, 20K, 5%, 1/4 W R4	4010221	1	RC07GF203J	81349
R24 R25 R26 R27 R28	Comp, 10, 5%, 1/8 W Met Ox, 750, 2%, 1/4 W Comp, 11k, 5%, 1/4 W Met Ox, 4.7K, 2%, 1/4 W Met Ox, 33, 2%, 1/4 W	4010100 4130751 4010113 4130472 4130330	11 2 3 1 2 2	RC07GF100J C4/2%/750 RC07GF113J C4/2%/4.7K C4/2%/33	81349 24546 81349 24546 24546
R29 R30	Comp, 4.7K, 5%, 1/4 W R26	4010472	2	RC07GF472J	81349
R31 R32 R33	Comp, 8.2K, 5%, 1/4 W R7 R7	4010822	2	RC07GF822J	01348
R34 R35	Met Ox, 27, 2%, 1/4 W Met Ox, 24, 2%, 1/4 W	4130270 4130240	1	C4/2%/27 C4/2%/24	24546 24546
R36 R37 R38	R24 Comp, 10, 5%, 1/8 W R8	4000100	1	RC05GF100J	81349
R39 R40 R41 R42	Met Ox, 1K, 2%, 1/4W Met Ox, 820, 2%, 1/4 W R24 R16	4150102 4130821	1 2	C4/2%/1K C4/2%/820	24546 24546
R43 R44 R45 R46	R24 Comp, 910, 5%, 1/4 W Comp, 3.9K, 5%, 1/4 W Comp, 27K, 5%, 1/4 W	4010911 4010392 4010273	1 2 1	RC07GF911J RC07GF392J RC07GF273J	81349 81349 81349
R47 R48 R49	R28 Comp, 3.3K, 5%, 1/4 W Comp, 390, 5%, 1/4 W	4010332 4010391	1	RC07GF332J RC07GF391J	81349 81349
R50 R51 R52 R53 R54 R55	Comp, 13K, 5%, 1/4 W Met Ox, 120, 2%, 1/4 W R24 R31 R26 R25	4010133 4130121		RC07GF133J C4/2%/120	81349 24546
R56 R57 R58	R24 Met Ox, 3.9K, 2%, 1/4 W	4130392	4	С4/2%/3.9К	24546
R59 R60	R17 R45 Met Ox, 560, 2%, 1/4 W	4130561	1	C4/2%/561	24546
R61 R62 R63	Met Ox, 82, 2%, 1/4 W Met Ox, 130, 2%, 1/4 W Comp, 510, 5%, 1/4 W	4130820 4130131 4010511	1 2 1	C4/2%/82 C4/2%/130 RC07GF511J	24546 24546 81349 81349
R64 R65 R66 R67	Comp, 51, 5%, 1/4 W Comp, 200, 5%, 1/4 W Comp, 160K, 5%, 1/4 W Met Ox, 1.8K, 2%, 1/4 W	4010510 4010201 4010164 4130182	2 1 1 1	RC07GF510J RC07GF201J RC07GF160J C4/2%/1.8K	81349 81349 81349 24546
R68 R69 R70	R24 Met Ox, 510, 2%, 1/4 W Met Ox, S.A.T. Nom 1.2K	4130511 4130999	2	C4/2%/510 C4/2%/1.2K	24546 24546
R71 R72	R29 R24		• •		

109-7

A109 BAND 2 CONVERTER, continued

ſ			UNITS		ТҮР
REF	DESCRIPTION	EIP	PER	TYP MFG NO.	FSCM
DES		NO.	ASSY		NO.
R73	Comp, 1M, 5%, 1/4 W	4010105	2	RC07GF105J	81349
R74 R75	R6 R73				
R76	Met Ox, 2.2K, 2%, 1/4 W	4130222	3	C4/2%/2.2K	24546
R77 R78	R57 Comp, 5.6K, 5%, 1/4 W	4010562	· 1	RC07GF562J	81349
R79	Comp, 3.6K, 5%, 1/4 W	4010362	3	RC07GF362J	81349
R80 R81	Met Ox, 7.5K, 2%, 1/4 W R76	4130752	3	C4/2%/7.5K	24546
R82	R24			04/00//000	04540
R83 R84	Met Ox, 200, 2%, 1/4 W R57	4130201	3	C4/2%/200	24546
R85	Met Ox, 330, 2%, 1/4 W	4130331	1	C4/2%/330	24546
R86 R87	Comp, 6.8K, 5%, 1/4 W R79	4010682	2	RC07GF682J	81349
R88	R80				
R89 R90	R8 Comp, 75K, 5%, 1/4 W	4010753	1	RC07GF753J	81349
R91	Met Ox, 33K, 2%, 1/4 W	4130333	1	C4/2%/33K	24546
R92 R93	Met Ox, 160, 2%, 1/4 W R21	4130161	1	C4/2%/161	24546
R94	Met Ox, S.A.T.	4130999	2	12NOM/2%	24546
R95 R96	R94 R83				
R97	R83				
R98 R99	R57 R86				
R100	R79				
R101 R102	R80 R10				
R103	R76	4010181	1	RC07GF181J	81349
R104 R105	Comp. 180, 5%, 1/4 W R24	4010101	8		
R106	Met Ox, 91, 2%, 1/4 W R62	4130910	1	C4/2%/91	24546
R107 R108	R24				
R109 R110	R69 R17				
R111	Comp, 160, 5%, 1/4 W	4010161	2	RC07GF161J	81349
R112 R113	R111 R94, S.A.T.				
R113	Met Ox, 2K, 2%, 1/4 W	4130202	1	C4/2%/2K	24546
R115 R116	R114 Met Ox, 9.1K, 2%, 1/4 W	4130912	1	C4/2%/9.1K	24546
R110	R116				
T1	RF Transformer Assy	4910001	1	EIP	
TP1					
thru TP16	Conn, Pin, .04D	2620032	16	460 - 2970 - 02 - 03	71279
			1		
U1 U2	Prec, JFET Op Amplifier Periph. Interface Adaptor	3041016 3086820	1	OP16FJ MC6820	06665 04713
U3	750MHz, D-Type Flip Flop	3001106	1	11C06	07263
U4 U5	Dual/Diff. Amplifier U4	3043049	2	CA3049	0000X
U6	Op Amplifier	3040741	1	LM741CN	0000X

PAGE BLANK INTENTIONALLY

.

.

109-9

Figure 109 b. Band 2 Converter Component Locator

109-11

A110 FRONT PANEL DISPLAY AND KEYBOARD (2020140)

The Front Panel Display and Keyboard assembly (A110) is divided into two functional sections.

- Numeric display and annunciators
- Keyboard

NUMERIC DISPLAY AND ANNUNCIATORS

This section of the assembly contains twelve common anode 7-segment numeric display units (DS1-DS12), two green LED's (DS37 and DS38), and a maximum of twenty-four yellow LED's (DS13-DS36).

The twelve 7-segment LED's are mounted side-by-side, with space between each third digit from the right. The corresponding cathode segments of the 7-segment LED's are connected, and the drive signals come from the segment drivers Q3 through Q10. The signals to drive the digits come from the digit drivers located on the Front Panel Logic board (A111).

The twenty-four yellow LED's (DS13-DS36) are divided into three groups of 8 LED's each. The anodes of all LED's in each group are connected. The cathode of each LED in a group are connected to one of the segment drivers (Q3-Q10). With this arrangement each group of annunciator lights can be regarded as similar to one 7-segment LED. The digit drives for the 3 groups of annunciator lights also come from the Front Panel Logic board (A111).

The two green LED's (DS37 and DS38) are driven by Q1 and Q2. When these LED's light they indicate that GATE and CONVERTER SEARCH are in operation.

KEYBOARD

This section of the assembly contains a maximum of twenty-five (single-pole double-throw) switches. The switches are arranged in a 4 row by 6 column matrix, with the extra switch taking the row 4 column 7 position. The columns are connected to +5V through the resistor network (RN1) on the Front Panel Logic board (A111).

The keyboard is continuously scanned. The signals scanning the keyboard are derived from A111. To scan the keyboard the 4 rows are grounded sequentially. When a row is grounded, and a key in that row is pushed, one of the columns will be grounded. This information is sent to the A111 board where key debouncing is performed.

PAGE BLANK INTENTIONALLY

2020140-B

A110 FRONT PANEL DISPLAY AND KEYBOARD

	REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
3	Q1 thru Q10	PNP, Amp.	4710019	10	MPS - D55	04713
	R1 R2 R3	Comp, 4.7K, 5%, 1/4 W Comp, 130, 5%, 1/4 W R1 P2	4010472 4010131	2 2	RC07GF472J RC07GF131J	81349 81349
	R4 R5 R7 R8 R9 R10 R11 R12 R13 R14	R2 Comp, 240, 5%, 1/4 W Comp, 18, 5%, 1/4 W R5 R6 R5 R6 R5 R6 R5 R6 R5	4010241 4010180	8	RC07GF241J RC07GF180J	81349 81349
	R15 R16 R17 R18 R19 R20	R5 R6 R5 R6 R5 R6			• •	
	DS1 thru DS12 DS13	LED, Numeric, Red	2800004	12	HP5082 - 7730	28480
	thru DS36 DS37 DS38	LED, Lamp, Yel LED, Lamp, Grn DS37	2800020 2080018	24 2	MV57124 MV5274	50522 50522
	S1 S2 thru S5 S6 thru S25	Not Used Switch, Mon, SPDT	4500013	21	REK	
	P1 P2 P3	9 pin Recept. 17 pin Recept. 13 pin Recept.	2620065 2620067 2620066	1 1 1	22 - 14 - 209 22 - 14 - 2171 22 - 14 - 212	0000A 0000A 0000A

2020140 - B

Figure 110a. Front Panel Display and Keyboard Component Locator

110-4

110 - 5

.

·

.

A111 FRONT PANEL LOGIC (2020141)

The Front Panel Logic assembly (A111) contains logic circuitry for control of two functions.

- Display Control
- Keyboard Control

The +5V power supply to the front panel assemblies (A110 and A111) is regulated by a voltage regulator that is located behind the A111 board. For heatsinking purposes, this voltage regulator is mounted on the chassis. Please refer to figure 111b. Front Panel Logic block diagram on page 111-3.

DISPLAY CONTROL

The twelve 7-segment LED's and the three groups of annunciator lights on A110 are multiplexed. To turn on a particular segment in a digit, both the digit driver for that digit and the segment driver for that segment must be on.

The display logic is in constant operation in either the self-scan mode or the memory update mode.

SELF-SCAN MODE

This is the normal operating mode. In this mode the display scan clock is clocking the display counter (U6). The state of the display counter determines which digit will be turned on.

The state of the display counter is decoded by 4 to 16 line multiplexer (U2), and the appropriate digit driver is turned on. At this time the display memory (U7 and U8) is read, and the on/off information (stored in the display memory for that specific digit), turns the segment drivers (A110) on or off.

The display intensity is controlled by varying the duty cycle of the multiplexing. This is done by varying the resistance of the potentiometer (R4) which, in turn, varies the length of time the decoder (U2) and the display memories (U7, U8) are disabled between each scan clock cycle.

At the start of each gate operation the GATE light control is triggered, and the GATE LED lights for the length of the GATE.

MEMORY UPDATE MODE

In this mode the multiplexer logic is disabled by setting the display scan/update control line (PA7) to logic 0. The microprocessor controlled clock (clock, PA1) is used to clock the display counter (U6).

Before updating the display memory (U7 and U8), the display counter is cleared by setting the clear/load control line (PA5) to logic 1, and clocking the clock input of U6. Update mode timing is illustrated in Figure 111a.

KEYBOARD CONTROL

The keyboard logic operates in either the self-scan mode or the read keyboard mode.

SELF-SCAN MODE

In this mode the keyboard is scanned by grounding the four rows of keys sequentially. This is done by shifting the contents of the shift register (U3).

When no key on the keyboard is pushed, all the inputs to the 8-input NAND gate (U13) are at logic 1 level. If the key being pushed is in a row that is grounded, the column containing that key will also be grounded. Then U13 output goes to logic 1 and stops the keyboard scan clock, and C7 (in the debounce circuit) starts to discharge. When the voltage across C7 reaches approximately +0.7V above ground, the debounce circuit will trigger the interrupt input on the PIA (U11, pin 18) indicating that a key is being pushed.

READ KEYBOARD MODE

In this mode a logic 1 is put on the keyboard read/scan control line (PAO). This enables the data buffer (U9), and selects the microprocessor controlled clock for clocking the shift register (U3). The keyboard is then scanned once, under microprocessor control, to determine which key is being pushed.

Figure 111b. Front Panel Logic Block Diagram

A111 FRONT PANEL DRIVER

2020141-F

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A111	Front Panel Driver Assy	2020141	1	EIP	
C1 C2 C3 C4	Tant, 0.1µF, 10%, 35V Cer, 2200pF, 10%, 100V Cer, 1500pF, 10%, 100V Not Used	2300020 2150020 2150019	1 1 1	TAG20 - 0.10/35 6183X7R222KA100 6183X7R152KA100	14433 80031 80031
C5 C6 C7 C8 C9 C10	Tant, 47μ F, 20%, 16V Tant, 2.2μ F, 20%, 16V Tant, 22μ F, 20%, 16V Tant, 23μ F, 20%, 16V Tant, 0.33μ F, 20%, 35V Tant, 33μ F, 20%, 10V	2300025 2300012 2300030 2300031 2300015	1 1 1 1	TAG20 - 47/16 - 20 TAG20 - 2.2/16 - 20 TAG20 - 22/16 TAG2033/35 - 50 TAGE20 - 33/10 - 50	14433 14433 14433 14433 14433 14433
thru C15 C16 C17	Cer, .01µF, 20%, 100V Not Used C10	2150003	6	TG - S10	56289
CR1	General Purpose	2704154	1	1N4154	07263
J1 J2 J3 J4 J5	9 pin male 13 pin male 17 pin male 4 pin FR Lock 3 pin male	2620062 2620063 2620064 2620068 2620121	1 1 1 1 1	22-03-2091 22-03-2131 22-03-2171 640456-4 AMP 640456-3 AMP	0000B 0000B 0000B
P2	26 pin, RT Angle	2620131	1	3493-1002	76381
Q1 thru Q15 Q16 Q17	PNP, Power NPN, General Purpose Q16	4710027 4704124	15 2	MPS-D54 2N4124	04713 04713
R1 R2 R3 R4 R5 R6 R7	Comp, 10K, 5%, 1/4 W Comp, 220, 5%, 1/4 W Comp, 75K, 5%, 1/4 W VAR. Cer, 200K Comp, 120K, 5%, 1/4 W Comp, 5.1K, 5%, 1/4 W	4010103 4010221 4010753 4250022 4010124 4010512	2 1 1 1 1 1	RC07GF103J RC07GF221J RC07GF753J 72XR200 RC07GF124J RC07GF512J	81349 81349 81349 73138 81349 81349 81349
thru R21 R22 R23 R24 R25 R26 R27	Comp, 1K, 5%, 1/4 W Not Used '4 W Comp, 15K, 5%, 1/4 W Comp, 390, 5%, 1/4 W Comp, 200, 5%, 1/4 W Comp, 820, 5%, 1/4 w R1	4010102 4010153 4010391 4010201 4010821	15 1 1 1 2	RC07GF102J RC07GF153J RC07GF391J RC07GF201J RC07GF821J	81349 81349 81349 81349 81349 81349
R28 R29 R30 R31 R32 R33 R34	Not Used Comp, 2.2K, 5%, 1/4 W R26 Comp, 27K, 5%, 1/4 W Comp, 39K, 5%, 1/4 W R32 R32	4010222 4010273 4010393	1 1 3	RC07GF222J RC07GF273J RC07GF393J	81349 81349 81349

A111 FRONT PANEL DRIVER

2020141 F

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCN NO.
RN1 RN2 RN3	Network, 10K RN1 Network, 10K	4170003 4170004	2 1	4310R - 101 - 103 4308 - 101 - 103	32997 32997
TP1 thru TP10	Conn pin, .04 D, Gold	2620032	10	460 - 2970 - 02 - 03	71279
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10	TTL, Monostable, MV 4-16 Line Decoder 4 Bit Shift Register AND - OR - INVERT Gates Quad, 2 INP NAND Gate Binary Sync Clear Bipolar RAMS U7 Oct Bus Trans U1	3084123 3074154 3084195 3087451 3084132 3084163 3057489 3084244	2 1 1 1 1 2 1	DM74LS123N DM74154N DM74LS195N SN74LS51N DM74LS132N SN74LS163 DM74LS189 SN74LS244N	0000X 0000X 01295 0000X 01295 0000X 01295
U11 U12 U13 U14	Periph, Interface Adapter Hex Inverter 8INP NAND Gates Pos. Voltage Regulator (reference only - U14 part of front panel power supply)	3086820 3087414 3087430 3057805	1 1 1 1	MC6820 SN74LS14N DM74LS30N MC7805CT	04713 01295 0000X 04713

111-5

111-7

.

5580018

A203 BAND 3 MICROWAVE CONVERTER

The A203 Microwave Converter consists of three sub-assemblies.

- A201A Voltage Control Oscillator
- A201B IF Amplifier
- A202 Microwave (yig)

CAUTION

Disassembly of the A202 Microwave assembly, or removal of it from the A201A VCO or A201B IF Amplifier will void the EIP warranty.

The assembly drawing and schematic for both the VCO and IF circuits are included only for reference. The entire A203 assembly must be tested as a complete unit to ensure proper performance of the counter. Repair of the A202 Microwave assembly can only be done at the factory. The VCO and IF Amplifier boards require special test equipment, therefore field repair is not recommended.

The Band 3 Converter is a complete microwave subsystem (see Figure 200a.) which converts an input signal in the 1 to 18 (26.5) GHz range down to an IF of 125MHz. Down conversion is achieved in this heterodyne system by combining the input signal with a harmonic of a precisely known reference signal (F_{VCO}). The mixer then produces a signal (F_{IF}) equal to the difference between the input and reference harmonic. If this difference is close to 125MHz, it is amplified to a level of about 0dBm and then counted. The input signal is then determined from the equation $F_{IN} = NF_{VCO} + F_{IF}$. F_{VCO} is set by the instrument program via a phase locked loop located on the converter control board (A108) and is thus known exactly. Harmonics of the VCO are produced by the comb generator and coupled to the mixer. The frequency ranges of the VCO and IF are such that for any VCO frequency and any input frequency, only one harmonic can produce an IF frequency. The YIG filter located between the RF input and the mixer is used to approximatley determine the input frequency and from this information the desired values of N, F_{VCO} and +/- are determined.

Two other outputs are obtained from the Band 3 Converter. The first is an anlaog signal which is a measure of input RF power. The second is a digital signal (IF THRESHOLD) which indicates that an IF signal exists at a level of --3dBm or greater.

Figure 203-1. Band 3 Microwave Converter Block Diagram

A201A VOLTAGE CONTROL OSCILLATOR (2020142)

The VCO Assembly contains three sub-functions as shown in Fig. 201A-1. The VCO consists of a transistor oscillator (Q1), whose frequency is determined by an inductor (L1) and a variable capacitor (CR2). The capacitance of CR2 is determined by the applied tuning voltage at J3. For increased stability and noise reduction, an internal voltage regulator (R3, C4, CR3) is used.

The second function is performed by a single stage common base amplifier that is broadly tuned and loaded with 50 ohms. The output level is approximately + 8 dBm over the range 370 - 500MHz. This output is the VCO reference.

The third function is performed by a three stage power amplifier consisting of a common base amplifier (Q3) and two class C stages, Q4 and Q5. This amplifier provides approximately 20dB of gain and 0.6 watts output over the tuning range 400 to 500MHz. The variable capacitors C17, C25, and C28 are adjusted to optimize output power and flatness. Output power is switched on or off by the Pin switch CR3, CR4 which is controlled by U1. On to off power ration is in excess of 50dB.

A201A VOLTAGE CONTROL OSCILLATOR

2020142-F

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A201A	Voltage Control Oscillator Assy P/O VCO/IF Module Assy 203	2020142 2010142	1 Ref		
C1	Cer, .001µF, 10%, 100V	2150015	16	UR1515S100X7R102K	80031
C2 C3 C4	C1 Cer, 4.7pF, 25%, 500V Tant, 33µF, 20%, 20V	2160013 2300023	1	301000C0H0479C TAG20 - 30/20%	72982 14433
C5 C6 C7	C1 Cer, 6.8pF, 25%, 500V	2160014	1	301000C0H0689C	72982
thru C10 C11 C12	C1 Cer, 100pF, 10%, 180∨ Cer, 33pF, 10%, 100∨	2150056 2150069	1	6183X7R101KA100 6183C0G330KA100	80031 80031
C13 C14 C15	C1 Cer, .01μF, 10%, 100V C1	2150014	4	6123X7R103KA100	80031
C16 C17 C18 thru	C14 Var, 2-8pF, 250V	2350001	1	10S - T - 22 - 2/8	0000B
C21 C22 C23 C24 C25	C1 C14 C14 C1 Var, 5.5 - 18pF, 250V	2350002	2	10S - T - 22 - 02	0000B
C26 C27 C28	C1 Cer, 22ρF C25	2150067	1	6183COG220KA100	80031
C29 C30 C31 CR1 CR2 CR3 CR4	C1 X7R, 47pF 5pF Nom. S.A.T. Zener, 9.1V Tun, UHF/VHV HYPERABRPT Pin CR3	2150039 2260999 2730960 2710037 2710024	1 1 1 1 2	6183C0G470KA100 DM10 1N960B ZC800 MA47123	80031 56289 04713 18518
L1 L2 L3 L4	Part of Board .39μΗ 1.0μΗ L1	3150014 3150003	3 1 4	1025 - 10 DD - 1.00	72259 72259
L5 L6 L7 L8 L9 L10	Ferrite Bead 0.1µH L3 L1	3500011 3510001	1 2	56 - 590 - 65/33 DD - 0.10	72259
thru L11 L12 Q1 Q2 Q3 Q4 Q5	L3 L7 Microwave Transistor NPN, RF Q2 Q2 Q2 UHF/VHF NPN Power	4710032 4710030 4710029	1 3	NE02137 BFR - 90 - MOT NE050391 - 12	0000S 04713 0000S
		+7 10020	•		

A201A VOLTAGE CONTROL OSCILLATOR, continued

2020142 -F

	REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
	R1 R2 R3 R4	Met Ox, 5.1K, 2%, 1/4 W Met Ox, 10K, 2%, 1/4 W Met Ox, 100, 2%, 1/4 W Met Ox, 360, 2%, 1/4 W	4130512 4130103 4130101 4130361	2 2 2 1	C4/2%/5.1K C4/2%/10K C4/2%/100 C4/2%/360	24546 24546 24546 24546
	R5 R6 R7	R1 Met Ox, 430, 2%, 1/4 W Met Ox, 560, 2%, 1/4 W	4130431 4130561	2 2	C4/2%/430 C4/2%/560	24546 24546
	R8 R9	R7 Met Ox, 1K, 2%, 1/4 W	4130102	2	C4/2%/1K	24546
	R10 R11 R12	R2 Met Ox, 2K, 2%, 1/4 W Comp, 22 ohm, 5%, 1/8W	4130202 4000220	2 1	C4/2%/2K RC05GF220J	24546 81349
	R13 R14 R15	R9 Met Ox, 470, 2%, 1/4 W R3	4130471	1	C4/2%/470	24546
	R16 R17	R11 Comp, 10 ohm, 5%, 1/2 W (SAT)	4020999	1	RC07GFXXX	81349
	R18 R19	R6 Carbon, 22, 5%,	4010220	1		· · · · · · · · · · · · · · · · · · ·
	U1	Lin. Op Amplifier	3040741	1	LM741CN	0000X
)						
					· · · · · · · · · · · · · · · · · · ·	

201A-3

2020142 - F

BOARD.

201A-5

Figure 201A-3. Voltage Controlled Oscillator Schematic

VCO TUNING VOLTAGE

<u>+</u>(Alos J2)

N0:

ելը

+(]+ ⊳⊽8_

ڑ<u>ہ۔</u>

L.O. PWR CONTROL (TO A108 VIA 10017) E8 | E2 +12V EI 0 >> 0

U2 | VC0 REF

± (10,410,911)

A TART OF P.C.

•

A201B IF AMPLIFIER (2020143)

The IF Amplifier performs three major functions.

- Amplifies the down-converted intermediate IF frequency to ± 0dBm.
- Provides a digital threshold output when the IF power exceeds -3dBm.
- Provides an analog signal that is proportional to the total power at the Band 3 input. A gain scaling control alters the output by 15dB (=X30).

The Microwave assembly mixer output is the input to the IF board. The IF goes through a high pass filter to three similar amplifier stages. Stage 1 consists of transistors Q1 and Q2 operating under closed loop feedback via R4. Resonant peaking of the output at 125MHz using L4 and C8 gives a power gain of 23dB. Successive stages are similar except that stagger tuning is used for optimum response shape. Inductors L4, L5, and L7 are printed on the circuit board and are adjusted by means of shorting bars placed across portions of the spiral. The IF output signal is sampled by a detector CR3. It's level is compared to a voltage corresponding to -3dBm. When this level is exceeded, the IF threshold output goes low.

The low frequency signal from the mixer is the current caused by rectification of the input power. This is converted to a voltage in U2. To provide a larger dynamic range, a gain change is made by switching the Field Effect Transistor (FET) Q7, thus lowering the feedback resistor. Assemblies used in -02 converters (26.5 GHz) also include transistors Q8 & Q9 to translate a TTL input to \pm 12V necessary to drive FET Q10. This circuit sets the mixer bias current to 0 when the VCO power amplifier is enabled.

Figure 201B-1. IF Amplifier Functional Diagram

A201B IF AMPLIFIER

2020143-K

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A201B	IF Amplifier Assy P/O VCO/IF Mod Assy	2020143 2010142	1 Ref		
C1 C2 C3 C4 C5	Mica, 8pF, 13%, 500V Mica, 100pF, 5%, 500V Mica, 12pF, 5%, 500V Not Used Not Used	2260011 2260034 2260013	1 5 2	CD080C03 FD101J03 CD120J03	56289 72136 56289
C6 C7	Cer, .01µF, 20%, 100V C6	2150003	6	TG - \$10	56289
C8 C9 C10 C11	Mica, 33pF, 5%, 500∨ C2 C6 C6	2260021	1	ED330J03	56289
C12 C13 C14	Mica, S.A.T. (47pF, 5%, NOM) C2 C6	2269999	1	DM - 10	72136
C15 C16 C17 C18 C19 C20 C21 C22	Tant, 10μF, 20%, 25V Mica, S.A.T. (39pF, 5%, NOM) C2 C3 C6 C15 Not Used C2	2300029 2269999	2	TAG20 - 10/25(M) DM - 10	14433 72136
C23	Cer, .001µF, 10%, 100V	2150015	1	UR1515S100X7R102K	80031
CR1 CR2	Hot Carrier CR1	2710004	2	FH1100	07263
CR3	Zero Bias Shottky	2710038	1	ND4991	21843
L1 L2 L3 L4 L5 L6 L7 L8 L9	Inductor, 0.1µH Inductor, 0.47µH L1 Part of Board Part of Board Not Used Part of Board Inductor, 1µH L8	3510001 3510006 3510003	2 1 2	DD - 0.10 DD - 0.47 DD - 1.00	72259 72259 72259
Q1 thru Q6 Q7	NPN, RF D - MOS FET Switch	4710026 4710031	6 1	NE73432B SD215	0000S 18324
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12	Met Ox, 51, 2%, 1/4 W Prec, 1.82K. 1%. 1/10 W Comp, 1K, 5%, 1/4 W Met Ox, 510, 2%, 1/4 W Comp, 10, 5%, 1/4 W Met Ox, 82, 2%, 1/4 W R5 Met Ox, 47, 2%, 1/4 W Met Ox, 470, 2%, 1/4 W R5 Met Ox, 75, 2%, 1/4 W	4130510 4051821 4010102 4130511 4010100 4130820 4130470 4010202 4130471 4130750	1 1 2 1 5 2 2 1 2 1 2 1	C4/2%/51 RN55C1821F RC07GF102J C4/2%/510 RC07GF100J C4/2%/82 C4/2%/47 RC07GH202J C4/2%/470 C4/2%/75	24546 81349 81349 24546 81349 24546 81349 24546 81349 24546 24546

A201B IF AMPLIFIER, continued

2020143-K

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24	R5 R8 R3 R10 R5 R6 Comp, 180K, 5%, 1/4 W Comp, 4.7K, 5%, 1/4 W Comp, 470K, 5%, 1/4 W Comp, 560K, 5%, 1/4 W Comp, 6.8K, 5%, 1/4 W R20	4010184 4010472 4010474 4010564 4010682	1 2 1 1 1	RC07GF184J RC07GF472J RC07GF474J RC07GF564J RC07GF682	81349 81349 81349 81349 81349 81349
R25 R26 R27 R28 R29	Not Used Prec, 56.6K, 1%, 1/10 W Met Ox, 100, 2%, 1/4 W Comp, 100K, 5%, 1/4 W Comp, 15K, 5%, 1/4 W	4055762 4130101 4010104 4010153	1 1 1 1	RN55C5762F C4/2%/100 RC07GF104J RC07GF153J	81349 24546 81349 81349
U1 U2	Dual Comp, Low Power Lin Op Amp	3050393 3041458	1	LM393 MC1458P1	0000X 0000X

2020143 - A

.

Section 10 Options

Section 10 provides descriptions, specifications (where applicable), schematic diagrams and component locators for the options available for use with the Model 545 or 548 counter.

OPTION

01 D TO A CONVERTER

DAC will convert any three consecutively displayed digits into an analog voltage output on rear panel.

02 POWER MEASUREMENT

1 to 18/26.5 GHz will measure sine wave amplitude to 0.1 dBm resolution and display simultaneously with frequency. Power offset to 0.1 dB resolution, selectable from front panel. Option will not degrade the basic performance of the counter.

- 03 TIME BASE OSCILLATOR $< 5 \times 10^{-9}$ (2010143-03).
- 04 TIME BASE OSCILLATOR $< 1 \times 10^{-9}$ (2010143-04).
- 05 TIME BASE OSCILLATOR < 5 X 10-10 (2010143-05).
- 06 EXTENDED FREQUENCY CAPABILITY 548 Use in conjunction with: Mod. 591 Remote Sensor
- 07 REMOTE PROGRAMMING/BCD output
- 08 GENERAL PURPOSE INTERFACE BUS (GPIB)
- 09 REAR INPUT
- 10 CHASSIS SLIDES

OPTION 01 DIGITAL TO ANALOG CONVERTER

Option 01 will convert three consecutive digits to an analog voltage, available on the rear panel. The output will be reflect the display, substituting zeros for any non-numeric characters that appear. The output will be updated after every display update.

SPECIFICATIONS

Output Voltage Accuracy (25° C) Temp. Stability (0-50° C) Resolution Load Impedance Connector Protection 0.000 volts to 0.999 volts ± 0.5 % ±1 mV ± 0.01 % / °C 1 mV 1 K ohm minimum BNC female (on rear panel) ± 10 V AC or DC applied to output connector will not cause damage. No damage will occur by any load.

OPERATION

On power up the DAC is in off state.

LOCAL OPERATION WITH KEYBOARD

A three key sequence selects the location of the three digits desired, by entering the most significant digit wanted. Digits are numbered 01 through 12.

After pressing ______, the display will show the present DAC status, like DAC OFF or DAC XX, and three decimal points will show the locations of the currently selected digits (if DAC is on).

After pressing the first $\begin{bmatrix} x \end{bmatrix}$, the display will show the temporary entry, like DAC X , but the three decimal points will still show the previous DAC status.

After pressing the second $\begin{bmatrix} x \\ x \end{bmatrix}$, the display will show the new entry, like DAC X X, and the three decimal points will move to the new places. The DAC output will start to be updated accordingly. Release of the button pressed will return the display back to normal frequency display.

Any wrong key pressed will result in displaying ERROR 10. The operator must restart the key sequence to enter the correct data.

CLEAR

DISPLAY

To clear display from DAC data, ERROR display, or ignoring half-sequence entered, press Display will return to normal and DAC status will not be changed.

To shut off DAC press		or	DAC	0	0
	C				

REMOTE OPERATION

For remote operation through GPIB refer to the GPIB (Option 08) section of this manual.

For remote operation through BCD/RMT refer to the BCD/RMT (Option 07) section of this manual.

THEORY OF OPERATION

A simplified block diagram of the DAC board is shown in figure 01-1.

Figure 01-1. DAC Board, Simplified

HARDWARE

MEMORY BLOCK

All the DAC program is contained in the U9 PROM on the DAC board. Refer to the MEMORY block in figure 01-1. U8 is used to drive the data bus back to the counter. U10 is an address decoder that enables U9 on addresses between hexidecimal 4800 and 4BFF.

PIA AND LATCH DRIVER BLOCKS

The three selected digits are manipulated by the program and sent to the PIA. First the two LSD's are sent to port A, then the third digit (MSD) plus a positive-going pluse (on pin 14 of U7) that triggers the latch U6 so that the complete 12 bit word appears to the DAC inputs (U2). U4 and U5 are level translators from T^2L to CMOS for the DAC.

ANALOG BLOCKS

The DAC is referenced to a 1 volt reference voltage that is generated by CR1 zener and U1 Operational Amplifier. Gain adjustment is provided to calibrate the 1 volt. The DAC U2 converts the 12 bit digital inputs to an analog voltage (0.000 V up to 0.999 V). The output amplifier U3 provides the necessary I/V conversion, output isolation and protection. Zero offset adjustment is provided for calibration purposes, also.

SOFTWARE

The DAC software is described in figures 01-2 and 01-3.

Figure 01-2. Keyboard Control

5580018

Figure 01-3. DAC Board Update

CALIBRATION

The following instruments or their equivalents are required to perform calibration of the DAC board. Calibration is required every six months or after the board has been repaired.

BRAND	MODEL	ТҮРЕ	SPECIFICATIONS
Fluke	8050A	DVM	4 ½ digit resolution

ZERO OFFSET CALIBRATION

- 1. Turn on the counter with no input, so that the display shows all zeros.
- 2. PUSH 0 3
- 3. Connect digital volt meter to the rear DAC output.
- 4. Adjust R6 to reach 0.000 volts on the DVM display.

FULL SCALE CALIBRATION

- 1. Short TP3 to TP4.
- 2. Adjust R4 to reach 1.000 volts on the DVM display.
- 3. Remove the short.

The calibration for the DAC board is complete.

PERFORMANCE TESTS

Refer to the instruments table in Calibration for the required test equipment.

Connect the DVM to the DAC output (rear panel). Connect rear 10 MHz output to Band 1 input.

ENTER :		1		2	Display shows 10.000 0 MHz .
ACCURACY	TEST				
ENTER :	ו (DAC	0	6	DVM should read 0±1mV.
ENTER :] 💽	9	9 9	MHz	DVM should read 0.999 ± 0.006 V.

Repeat the second test in accuracy for entries between .888 and .111. DVM should read the entry \pm 1 mV \pm 0.5 % of entry.
TROUBLESHOOTING

- 1. If zero offset calibration cannot be achieved check that all digital inputs to U2 (pins 3 to 15) are at "low" levels (< +0.5 V). If they are, try to replace U2 or U3.
- If full scale calibration cannot be achieved check that there is 6.2 volts at TP1. If voltage is wrong, replace CR1 or R1 after verifying the + 12 V supply. If the voltage at TP1 is correct check TP2. The voltage at TP2 should read 1.000 volts. If wrong the failure is in U1 or the resistors R2, R3 or R4. If still wrong replace U2.
- 3. The digital lines in the DAC board can be checked in three ways.
 - A static test by connecting the rear time base 10 MHz output to Band 1 input.

ENTER :	RESOL 2	Display shows 10.000 0 MHz
	6	
Now entering		MHz will cause a display of 10.XXX0 MHz.
OFFSET		

The XXX are selected to the DAC board, so the three BCD's should appear on U7, pins 2 to 13 (pin 2 is the LSB). On pin 14 there should be positive pulses. Checking two combinations like 777 and 888 can locate a fault in the digital path between U7 outputs and U2 inputs.

• A dynamic test that is provided with the DAC option.

A continuous count ramp from 000 to 999 is sent to the DAC board, regardless of DAC status or display.

Connect the DAC rear output to an oscilloscope. A ramp should be observed going from 0 to .999 volts. The ramp is built with 1 mV amplitude steps. Any failure in one or more digital lines in the board will cause either breaking in the ramp or a multiple amplitude steps (2mV, 4 mV, ect.). Careful analysis will show the bad line or lines.

 By Signature analysis while operating in the dynamic test just described, and checking the following signatures.

DAC OPTION SIGNATURES

	START	STOP	CLOCK
CONNECTIONS	A106 TP5	A106 TP5	A105 TP2
BUTTONS	OUT †	IN 🖡	IN Į

LI	SIGNATURE		LINE
U4 pin	1915	+5 V	4
	0F91	2	U7 pin -
	7F31	3	
	4CA3	4	
	3241	5	
	U738	6	
	5UPU	7	
U10 pl	0659	8	
010 h	5HHF	9	
	7U60	10	
	4F30	11	
U9 pir	9115	12	
	17HP	13	
	30UC	14	
	2597	2	U6 pin -
	7P0U	5	OU phi -
	U8A9	6	
	P1C0	9	
	7808	12	
	7C4C	15	
U8 pli	46F0	16	
	79HH	19	
	0507		U5 pin -
	2597 7POU	2 4	00 pin •
	U8A9	4 6	
	P1C0	8 .	
	7808	8 10	
		12	
	7C4C	14	

LINE	SIGNATURE
U4 pin - 2	46F0
4	79HH
6	7U60
.8	4F30
10	9115
12	17HP
U10 pin - 9	1757
U9 pin - 9	67A1
10	1H57
11	78UF
13	2678
14	15HH
15	9578
16	1U65
17	A799
U8 pin - 18	C570
16	8008
14	9A4C
12	074F
3	82FF
5	F34U
9	C1F5

OPTION 01 – DIGITAL TO ANALOG CONVERTER

DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A103	Digital to Analog Converter Assy	2020145-01	Ref.	EIP	
C1	Cer, .01 µ F, 20%, 100V	2150003	6	TG-S10	56289
C2 C3 C4	C1 Mica, 10pF, 5%, 500V C1	2260012	1	DM15CD100J03	56289
C5 C6 C7 C8 C9	C1 Tant, 33 μ F, 20%, 10V C1 C1 C6	2300015	3	TAG20-33/10-50	14433
C9 C10 C11 C12	C6 Tant, 10 μF, 20%, 25V C10 C6	2300029	2	TAG20-10/25-20	14433
CR1	Zener, 6.2V	2700827	1	IN827	
CR2	Shottky, Barrier	2710004	1	FH1100	07263
R1	Comp, 750, 5%, ¼ W	4010751	1	RC07GF751J	81349
R2	Prec, 39.2K, 1%, ¼ W	4053922	1	RN55C3992F	81349
R3	Prec, 6.19K, 1%, ¼ W	4056191	1	RN55C6191F	81349
R4	Variable, 500 ohm	4280009	1	89PR500	01240
R5 R6	Comp, 10K, 5%, ¼ W Variable, 10K ohm	4010103 4280006	1 1	RC07GF103J 89PR10K	81349
R7	Comp, 1K, 5%, ¼ W	4010102	1	RC07GF102J	81349
RN1 RN2	Network of 7,10K RN1	4170004	2	4308R-101-103	32997
U1	Op Amplifier	3040318	1	LM318N	0000X
U2	DAC	3050752	1	AD7525KN	0000X
U3	Prec, Op Amplifier, JFET	3041016	1	OP16FP	06665
U4	Hex Buffer	3007404	2	DM7407N	0000X
U5	U4				
U6	8 Bit Latch	3034373	1	MM74C373N	
U7	PIA	3086820	1	MC6821	04731
U8	Oct. Driver	3084244	1	SN74LS244N	01295
U9 U10	Program PROM 9 6 Bit Comparitor	6400001-09 3078131	1	TM2708 DM8131	01295 0000X
010	o Bit Comparitor	3078131	ł	DIMOTST	0000

Figure 01-4. DAC Component Locator

01-11

Figure 01-5. DAC Schematic

.

OPTION 02 POWER MEASUREMENT

Option 02 measures the power of signals applied to Band 3. The power is displayed (to 0.1 dB resolution) simultaneously with frequency (to 100 kHz max. resolution). For A.M. and F.M. averaging purposes, gate time is controllable in the power meter mode, from the resolution switches. Power gate time mirrors frequency gate time. For example, in resolution 0 the frequency gate time is 1 second, and the power gate time is 1 second. In resolution 1 the frequency gate time is 100 msec., and the power gate time is 100 msec. Option 02 allows power offsets from -99.9 dB to 99.9 dB, with a 0.1 dB resolution and will not degrade the basic performance of the counter.

SPECIFICATIONS

ACCURACY	± 1.2 dB Typical 0-50° C
	± 0.5 dB Typical 25° C
TIME ADDED	1 GATE TIME + 50 msec.
RESOLUTION	0.1 dB POWER, Selectable 100 kHz - 1 GHz Frequency
RANGE	ENTIRE OPERATING RANGE OF BAND 3

POWER METER on/off

OPERATION

To turn the power meter on press:

If the counter is displaying only frequency it will begin displaying frequency and power. If the counter is displaying frequency and power it will begin displaying frequency only.

Turn the power meter on. Observe the display. Frequency is displayed on the left, and power is displayed on the right. The POWER dBm annunciator lights to indicate power meter operation. If the signal is too small to measure the power, the display will show EE.E in the power meter digits. (Since 0 dBm is a valid power, 00.0 can not be used as a no power indicator.)

Power meter offsets are entered and displayed in the same manner as other data. Refer to the Display and Data Entry Sequence in Section 3.

To turn the power meter off press:

THEORY OF OPERATION

The power meter uses the schottky diode in the microwave converter as its power sensor. The output of the diode detector is connected to a programmable gain attenuator, which consists of two switchable gain stages (one is in the IF Amplifier A201B and one is on the Gate Generator A107) and two 8 bit attenuators. A comparitor, set to 100 mV, and a TTL latch provide output information to the micro-processor. See figure 02-1.

After the counter has a signal, and has taken a frequency reading, it starts the power meter task. This triggers the gate time counter, resets the TTL power latch, moves the yig ± 50 MHz (to insure that the signal peak is passed through), then checks the TTL power latch. If the latch is set, the attenuation is increased in 3 dB steps (until the signal is attenuated below the level of the comparitor), then back one step. If maximum attenuation is reached, and the latch is still being set, the word OVERLOAD is displayed and the task is exited.

When the latch is first checked, if it is still reset, the attenuation is decreased in 3 dB steps until the comparitor level is reached. If minimum attenuation (maximum gain) is reached, the display is set to EE.E, and the task is exited.

After the attenuation is adjusted to a 3 dB resolution a successive approximation is performed to find the attenuation to a 0.1 dB resolution. The attenuation is stored, and if the gate time counter is not finished, the cycle is repeated. If the gate time counter is finished all the readings are averaged to eliminate the effects of AM on the signal.

Figure 02-1. Power Meter Hardware

5580018

The "power vs power" and "power vs frequency" corrections are added, and the sum is displayed. A detailed flowchart of the power meter is shown is figure 02-2.

Figure 02-2. Power Meter Task

5580018

Figure 02-2. Power Meter Task, continued

Figure 02-2. Power Meter Task, continued

CALIBRATION

The power meter contains 690 correction factors, stored in PROM.

The 150 "power vs power" correction factors compensate for variations from square law in the detector and power meter circuits. They are divided into three tables. The first table corrects variations below 10 GHz. The second corrects variations between 10 and 20 GHz. The third corrects variations above 20 GHz.

The 540 "power vs frequency" correction factors compensate for variations in the detector output at different frequencies. "Power vs frequency" corrections cover 0-27 GHz every 50 MHz.

The power meter is calibrated at the factory using specialized automatic test equipment. Because of the accuracy required, recalibration in the field is not recommended. If, however, recalibration is required, use the procedures given herein.

The test equipment required for calibration is:

MFG	MODEL	DESCRIPTION	CRITICAL PARAMETERS
H.P.	435A	Power Meter	Measures -30 to +15 dBm
Wavetek	2002	Sweeper	950 MHz - 2 GHz
Wiltron	6100	Microwave Sweeper	2 GHz - 18 GHz
Wiltron	6100	Microwave Sweeper	18 GHz - 26.5 GHz
E.H.		PROM Programmer	Programs TI 2516 PROMS

CAUTION

Be sure all connections are clean and tight. Loose or dirty connections will cause calibration errors.

- 1. Duplicate the power meter PROM, zeroing all corrections (address 0000-02B2 in the PROM). Install the uncorrected PROM in the counter.
- 2. Set the Wavetek to 2 GHz ±1 MHz. Connect the Wavetek to band 3 of the counter. Adjust the output until the counter reads -35 dBm.
- 3. Connect Wavetek to the power meter. Subtract the counter reading from the power meter reading. Round the result (R₁) to 0.1 dBm.
- 4. Using the following formulas, justify the correction to a number between 10 and 20.

int $(R_1) - 1 = N$; (int $(R_1) =$ Whole number portion of R_1)

$10(R_1 - N) = CORR_{10}$

Convert CORR 10 (decimal) \rightarrow CORR 16 (hexidecimal)

$(R_1 \text{ is the result of step 3.})$

02-6

5. Program the correction in these locations.

0000 - 0005 inclusive 0032 - 0037 inclusive 0064 - 0069 inclusive

- 6. Connect the Wavetek to the counter. Increase power until the counter reads 1 dB higher.
- 7. Connect the Wavetek to the power meter. Subtract the counter reading from the power meter reading. Round the result (R₂) to 0.1 dBm.
- 8. Using the following formulas, calculate the correction.

 $10 (R_2 - N) = CORR_{10}$

Convert CORR 10 → CORR 16

(R₂ is the result of step 7, and N was found in step 4.)

9. Program the correction in the 3 addresses found by the following formulas.

 $40 + P = Add 1_{10}, Add 1_{10} \rightarrow Add 1_{16}$

 $40 + P + 50 = Add 2_{10}, Add 2_{10} \rightarrow Add 2_{16}$

 $40 + P + 100 = Add 3_{10}$, Add $3_{10} \rightarrow Add 3_{16}$

(P is the power the counter was set at in step 6.)

10. Repeat steps 6 through 9 until overload is reached on the counter.

- 11. Install the partially corrected PROM in the counter.
- 12. Set the Wavetek to 950 MHz, about -15 dBm.
- 13. Measure the power on the counter and power meter. Subtract the counter reading from the power meter reading. Round the results to 0.1 dBm. Multiply the results by 10 and convert to hex.
- 14. Program the correction in the address found by the following formula.

 $\frac{FREQ (MHz)}{50} + 150 = Add_{10}$ Add 10 \rightarrow Add 16

15. Increase frequency by 50 MHz. Repeat steps 13 and 14. Adjust the sweepers as necessary, until the upper frequency limit of the counter is reached.

Refer to section 9, pages 107-5 through 107-9, for parts list and schematic diagram. The counter recalibration is now complete.

2020137-03/04 - P

Figure 02-3. Gate Generator (Option 02) Component Locator

Figure 02-4. Gate Generator (Option 02) Schematic

02-9

.

.

OPTIONS 03, 04, 05 TIME BASE OSCILLATORS

Three Time Base Oscillators are available as options for either the model 545 or 548. These high stability options enhance the accuracy of the counter by the addition of oven stabilized crystal oscillators. These oscillators improve counter operation by reducing both time temperature variations.

When any one of these options is installed, the TCXO is removed from the Gate Generator board (A107) and the following components are added.

- One of three Oven Oscillators (A114) mounted on the chassis.
- 28 VDC Power Supply board (A112).
- Power Supply Transformer (T1) mounted on A112.
- Time Base Adjustment Pot (J2) mounted on the rear panel.
- Related interconnecting cable harnesses.

CHARACTERISTIC	OPTION 03	OPTION 04	OPTION 05
AGING RATE/24 HOURS (After 72 hour warm-up)	< 5 x 10 ⁻⁹	< 1 x 10 ⁻⁹	< 5 x 10 -10
SHORT TERM STABILITY (1 second average)	< 1 x 10 ⁻¹⁰ rms	< 1 x 10 - 10 rms	< 1 x 10 ⁻¹⁰ rms
0° to + 50° C TEMPERA- TURE STABILITY	< 6 x 10 -8	< 3 x 10 -8	< 3 x 10 ⁻⁸
± 10% LINE VOLTAGE CHANGE	< 5 x 10 -10	< 2 x 10 -10	< 2 x 10 - 10

Figure 03/04/05-1. Time Base Oscillator Option Specifications

Figure 03/04/05-2. Component Location, Time Base Option

Figure 03/04/05-3. Time Base Option, Interconnection Diagram

OVEN OSCILLATOR POWER SUPPLY

The Oven Oscillator Power Supply board (A112) is a simple 28V regulated, current limited power supply. U1 and U2 provide voltage regulation, thermal protection and current limiting.

The transformer T1, CR1, C1 and C2 provide a 40V nominal unregulated DC voltage. The output voltage is set by voltage divider R5, R3 and R4. These resistors were selected so that 28V out provides 2.23V at U2 pin 2 (to U2 pin 1). Diode CR2 protects the supply from being pulled more negative than ground. See the schematic in figure 03/04/05-6.

The power supply (A112) is on and operating as long as the counter is connected to an active AC power source. The counter's POWER ON/OFF switch on the front panel does not control this assembly.

2020144 - A

SCREWED (256) TO PC BOARD.

Figure 03/04/05-4, Oven Oscillator Power Supply (A112) Component Location

OVEN OSCILLATOR CALIBRATION

When options 03, 04 or 05 are installed in the counter, the effects of temperature perturbations and aging must still be considered, although the magnitude of the inaccuracies associated with each oscillator are greatly reduced.

Full benefit of the oven stabilized oscillator characteristics can only be realized if the oscillator is running continuously (with counter always connected to a source of AC power). Under these conditions the perturbations in frequency will generally be in the positive direction for either an increase or decrease in temperature from + 25°C. The aging characteristic is also generally in the positive direction.

How frequently the oscillator is adjusted is determined by the level of accuracy required. To adjust the oscillator to an inaccuracy of less than 1 \times 10⁻⁹ parts, relative to a standard, use this procedure. The test is illustrated in figure 5.

Observe the drift of the oscilloscope pattern. The fractional frequency offset is computed from:

$$\frac{T_{drift of zero crossing}}{T_{observation time of drift}} = \frac{\Delta_{f}}{f}$$

If the pattern drifts, at a rate of .01 microsecond every 10 seconds, the frequency is in error by 1 part in 10⁹.

Figure 03/04/05-5. Time Base Calibration.

All frequency checks and adjustments should be made only after the oscillator has been connected to its power source for 24 hours. If the oscillator has been disconnected from its power source for more than 24 hours it may require 72 hours of continuous operation to achieve the specified frequency aging rate.

To measure oscillator frequency:

- 1. Connect the counter's internal oscillator output signal from the 10 MHz IN/OUT connector (on the rear panel of the counter) to the vertical input of the oscilloscope.
- 2. Trigger oscilloscope externally with the frequency standard. The VLF Comparator is used to determine the absolute frequency of the standard.
- 3. Set oscilloscope sweep rate to 0.1 μ sec/cm and expand X10; this results in a sweep rate of .01 μ sec/cm.
- 4. Adjust oscilloscope vertical controls for maximum gain.
- 5. Determine the frequency difference (see page 6-24).
- 6. Horizontal drift of oscilloscope display in μ sec/sec, is a measure of the difference between the frequency standard and the counter oscillator frequency. If the difference is excessive for the desired counter application, vary the TIME BASE ADJUST control on the rear panel of the counter until the pattern stops drifting.

NOTE

For highest accuracy, the counter should be operated for 72 hours prior to adjustment.

03/04/05 - 6

OPTION 06 EXTENDED FREQUENCY CAPABILITY

The frequency range extention option is available on the model 548 counter. This option, when used with a remote sensor (model 591 for example), enables the counter to count signals in the frequency range that exceeds 26.5 GHz. This option consists of the following.

- Band 4 Converter Module, A204
- Band 4 Software
- Modified Front Panel Overlay
- Coax Cables, 2

SPECIFICATIONS

BAND	FREQUENCY RANGE	SENSITIVITY	MAX. INPUT	REMOTE SENSOR MODEL
41	26.5-40 GHz	-20 dBm	+5 dBm	591
42	40-60 GHz			*
43	60-90 GHz			*
44	90-110 GHz			*

* NOT YET AVAILABLE

OPERATION

To operate the counter in the 26.5-40 GHz range, connect the short cable (supplied with the remote sensor) from the lower output jack on the front panel, to the Band 3 input. Connect the long cable from the upper output jack to the remote sensor.

PRESS:	BAND	BAND annunciator blinks
PRESS:	4	BAND 4 annunciator blinks
PRESS:	1	BAND 4 annunciator lights stays on

The counter is now in the proper mode for operation.

NOTE: Before connecting the remote sensor to the frequency source, verify that the power level is within the limits specified for the sensor. When you connect the sensor the counter will automatically display the reading.

THEORY OF OPERATION – HARDWARE

When measuring a signal frequency greater than 26.5 GHz the 548, using the Option 06 Frequency Extension with a model 59X remote sensor, down converts the input to approximately 1.0 GHz. This signal is then fed to the Band 3 input, where a second conversion produces a 125 MHz 1F.

A multiplier chain increases the VCO output frequency to the 5.28-6 GHz range, which is referenced to the time base. See Figure 06-1. This signal provides the local oscillator (LO) power, which is transmitted to the remote sensor, an external harmonic mixer. When the input frequency and harmonics of the LO, (generated in the mixer) combine, a first IF is generated in the range of 1.00-1.35 GHz.

A diplexer separates the LO and IF signals received from the harmonic mixer. The level of the IF is then increased to a minimum of -25 dBm via the IF amplifier, then supplied to the Band 3 converter input.

Figure 06–1. Frequency Extension Block Diagram

THEORY OF OPERATION - SOFTWARE

Band 4 acquires a signal by using a double conversion process. The microprocessor has control over the YIG filter and the VCO, thus making it possible to compute the approximate RF input signal, and down-convert the IF signal so it can be counted.

Figure 06-2. Down-conversion of Band 4 Signal

The following equations characterize this process.

RF INPUT = 12 N FVCO ±1st IF

Ist
$$IF = 2 FVCO + 2nd IF$$

therefore:

1

Where N = the harmonic number which is mixing with the RF to produce the first IF.

There are two main functions that the Band 4 program performs. It locks on to an incoming RF signal, and tracks an RF signal once it is locked.

The locking routine is called by the supervisor when any of the following conditions are met.

- 1. Selection of Band 4
- 2. Loss of IF threshold after being locked
- 3. Any reset condition

The tracking routine is used under the following two conditions.

- 1. After locking, the tracking routine is used to "fine tune" the locked signal.
- 2. When the RF signal is moving, the tracking routine is used to give a constant update of corrected parameters so that the YIG filter and VCO can stay locked onto the signal.

(START)

I BAND 4 TRACKING ROUTINE: CALLED FROM FREQUENCY SAMPLE TASK WHEN 115MHz < IF < 135MHz

EXIT

Figure 06–3. Band 4 Program, Flow Diagram

The process by which the program locks onto an RF signal is defined in the next six sections. Refer to Figure 06-3.

INITIALIZATION – The working table (BANDTP) for band 4 is cleared and the appropriate table of constants, used by the program for the particular Band 4 that has been selected, are loaded from PROM in this area. BANDTP is an area in RAM that is 27 bytes long.

VCO SWEEP – This routine steps the VCO frequency by a step size stored in BANDTP. After each step, the VCO frequency is checked for three stop points.

- 1. Top VCO frequency limit (500 MHz)
- 2. Wraparound frequency
- 3. Lockout frequency

If the top VCO frequency has been reached and no signal has been found, the program will return to the supervisor. If the top frequency is reached, and a signal has been detected, then the VCO is set to its low limit and the bottom range is searched until the wraparound frequency is reached.

If the wraparound frequency has been reached (the frequency at which the last VCO frequency has produced the strongest IF frequency), then the program will stay at this frequency, and will perform the centering and harmonic number determination routines.

If a lockout frequency (a VCO frequency at which erroneous locking results) is detected, the VCO frequency will be incremented by:

13 * STEP SIZE = NEW VCO FREQUENCY

and the program will continue from this frequency.

After each VCO step the YIG filter is swept to see if a signal is detected by the power DAC attenuator. If a signal was detected, the YIG is swept back and forth, and the attenuation is increased until the signal is lost. At this point a new VCO frequency is stepped and the process of signal detection continues, thus leaving the power DAC at the last setting to detect the next highest signal.

CENTERING AND HARMONIC NUMBER DETERMINATION – This routine will determine the harmonic number of the VCO which is causing the mix product to be in the proper range. (Refer to Figure 06-4).

First we obtain the proper step size for the calculation of the harmonic number (N). After the VCO sweep routine is complete and the VCO frequency is set, the incoming signal is mixed with a harmonic of the VCO frequency to produce a signal in a predetermined passband region. This signal is stepped to the outer edge of the passband (\pm step depending on whether the signal is high or low side mixed) by the following process.

- 1. Increment the VCO
- 2. Power level the IF signal
- 3. Center on the signal
- 4. Test for band limits

These steps are repeated until the edge of the passband is reached.

Harmonic	Input Frequency Ranges			
Number N	High Side Mixing (GHz)	Low Side Mixing (GHz)		
5	25,395 — 28,875	27,405 – 31,125		
6	30,675 - 34,875	32,685 - 37,125		
7	35,955 — 40,875	37,965 - 43,125		
8	41,235 - 46,875	43,245 - 49,125		
9	46,515 - 56,875	48,525 - 55,125		
10	51,795 - 58,875	53,805 - 61,125		
11	57,075 - 64,875	59,085 - 67,125		
12	62,355 - 70,875	64,365 - 73,125		
13	67,635 - 76,875	69,645 - 79,125		
14	72,915 - 82,875	74,925 - 85,125		
15	78,195 - 88,875	80,205 - 91,125		
16	83,475 - 94,875	85,485 - 97,125		
17	88,755 - 100,875	90,765 - 103,125		

Figure 06-4. Harmonic Mixing Ranges

Next the VCO is stepped back into the passband and a new centering takes place. This second center frequency is stored for later calculation of the harmonic number. Next the signal is stepped to the edge of the passband position it had just left, and it is centered. This center frequency is now compared to the first edge of the passband center frequency, and must be within 8 MHz. If it is not within 8 MHz it will be assumed that the signal is moving, and the Band 4 program is exited.

The IF frequency step size, caused by the VCO frequency step, is used to determine the harmonic number by the following equation.

$\frac{\Delta \text{ IF FREQ. DUE TO VCO STEP}}{\text{HARMONIC SPACING}} = \text{HARMONIC } \#(N)$

Where harmonic spacing = VCO step size X 12

CALCULATION ROUTINE – The calculation routine is used to find the approximate RF frequency Fin in the following manner.

- 1. Compute $F' = 12 N * F_{VCO}$
- 2. Center the YIG filter on the first IF
- 3. Convert the binary YIG frequency to BCD
- 4. Compute F_{IN} = F' ± F_{YIG} (where F_{YIG} gives the approximate value for the first IF).
- 5. Compute a corrected VCO frequency using the equation:

 $F_{VCO} = (F_{IN} \pm 125) / (12N \pm 2)$

Then tune the VCO with the corrected frequency and center the first IF frequency in the yig passband.

SHALLOW SEARCH – This routine tests for a signal in the IF passband. If a signal is present, the routine is exited. If a signal is not present, the routine will search an RF range of ± 60 MHz (in steps of 200 kHz), for the signal, and continues if a signal is found. If a signal is not found, the Band 4 program returns control to the supervisor.

06--6

BAND 4 TRACKING – The tracking routine centers the second IF in the following range.

This routine is called from outside of the Band 4 program to track a signal. A test is first made to determine if an IF threshold is present. If IF threshold is present it continues, if not the program returns to the supervisor to start the locking process from the beginning.

This routine reads the second IF frequency and computes the new VCO frequency so that the second IF is in the range given above. A new YIG frequency is calculated and the VCO and YIG are "tuned" to produce a new IF. A new FLO (frequency added to the second IF to produce the displayed frequency), is calculated. The equation for this process is:

$$F_{10} = F_{VC0} (12 \text{ N} \pm 2)$$

The YIG frequency is:

NEW F_{YIG} = 2 (NEW VCO) + 125 MHz.

PERFORMANCE TESTS

The Band 4 converter module is not field repairable. When a malfunction is suspected, its operation can be checked from the front panel as follows:

IF AMPLIFIER Apply a -50 dBm signal to the diplexer port (upper output jack) from 1.0 to 1.35 GHz. Output should be -3 dBm ±3 dB as checked on a spectrum analyzer connected to the IF output (lower jack).

LO SIGNAL

Connect a spectrum analyzer to the diplexer port (upper output jack). Using the following formula, set the VCO frequency between 440 and 500 MHz. The spectrum analyzer should show the 12th harmonic of the VCO frequency (5.28-6 GHz). The spectrum analyzer signal should be +3 dBm minimum, and free of breakup and spurious signals to -30 dBc.

To convert from the desired VCO frequency to the PIA program number:

EXAMPLE (440.75 MHz)

1.	Round the desired frequency to a multiple of 50 KHz (The resolution of the VCO frequency is 50 KHz).
2.	Multiply the desired frequency (in MHz) by 5 440.75 X 5 = 2203.75
3.	If the result contains no fractional part, go to step 8.
4.	Multiply only the fractional part by 16
5.	Add the result to the most significant digit from step 2
6.	Convert the result to hexadecimal $\dots \dots \dots$
7.	Replace the MSD from step 2 with the result from step 6 and drop the fractional part
8.	The two most significant digits are programmed to address 9822, and the two least significant digits are programmed to address 9820.

To remove a defective converter:

- 1. Remove the line cord and both the top and bottom cover of the counter.
- 2. Remove the two screws holding the converter in place from the bottom.
- 3. Remove coaxial cables and unplug DC harness.
- 4. Lift the converter out of the counter.

To replace, proceed in the reverse order. See Figure 06-5 for location of the converter in the counter.

- (1) Band 4 Converter 201094
- (3) Cable (FP to A204J1) 2040216
- (4) Cable (FP to A204J2) 2040215
- ⑦ Overlay for 26.5 GHz and Extended frequency – 5210238

OPTION 07 REMOTE PROGRAMMING/BCD OUTPUT

This option makes it possible to use a conventional printer or other readout device, and remotely program the functions that are normally done on the front panel of the counter.

SPECIFICATIONS

BCD OUTPUT

FORMAT	11 digits plus sign in parallel
"0" STATE	0.4 Volts at 4mA
"1" STATE	2.7 Volts at -400µA
NEGATIVE REF.	Ground
POSITIVE REF.	+5 Volts at 2K Ω Source Impedance
PRINT COMMAND	20 μ s wide TTL Low level logic signal
INHIBIT INPUT	2 to 50 Volts High level logic signal

REMOTE PROGRAMMING

INPUT LOADING	1 Low power Shottky TTL load plus 10 K pull up to +5 Volts
FUNCTIONS	All front panel controls except: Power ON/OFF, Sample rate, Clear Dis-
	play, and test functions greater than 01.
OUTPUT LEVEL	Refer to "0" State and "1" State for BCD.

OPERATION

BCD OUTPUT

This binary-coded decimal (BCD) output (plus sign information) represents any numerical data that would normally be displayed by the eleven digits on the front panel of the counter. When the information being displayed represents the frequency alone the minus sign refers to the frequency. When the information being displayed represents frequency and power the minus sign refers to the power.

A 20 microsecond print command is provided to indicate when the data is valid. An inhibit command is provided that will prevent the data from being altered.

BCD OUTPUT PIN CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
1 2 3 4 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 17 18 19 20	10 ⁸ B 10 ⁹ A 10 ⁹ B 10 ¹⁰ A 10 ¹⁰ B	31 32 33 34 35	10 ³ D 10 ⁴ C 10 ⁴ D 10 ⁵ C 10 ⁵ D	46 47 48 49 50	10°C 10°D Print Command Minus Sign Ground
6 7 8 9 10	10 ³ B 10 ⁴ A 10 ⁴ B 10 ⁵ A 10 ⁵ B	21 22 23 24 25	10° A Inhibit 10° B –Ref. +Ref.	36 37 38 39 40	10 ⁶ C 10 ⁶ D 10 ⁷ C 10 ⁷ D 10 ⁸ C	NOTE The 1	
11 12 13 14 15	10 ⁶ A 10 ⁶ B 10 ⁷ A 10 ⁷ B 10 ⁸ A	26 27 28 29 30	10 ³ C 10 ¹ D 10 ² C 10 ² D 10 ³ C	41 42 43 44 45	10 ⁸ D 10 ⁹ C 10 ⁹ D 10 ¹⁰ C 10 ¹⁰ D	А, В,	C, and D are the 1, 2, 4, and 8 bits ach binary coded decimal output

REMOTE PROGRAMMING

All front panel functions can be remotely programmed except the Power on/off, Sample Rate, Clear Display, and test functions greater than 01. All the inputs are activated by a ground contact closure, or a "0" level TTL signal (0 = true). The input load is equal to one low power shottky TTL load, plus a 10 K Ω pullup to +5 volts.

CONTROL LINE FUNCTIONS

REMOTE ENABLE – A low level on this line transfers counter control from the front panel keyboard to the rear panel remote programming connector.

INPUT DATA - A low level on this line initiates a data read cycle to read the function/program data contained on the 22 data input lines. If this line is held low the counter will continuously pole the input data.

DATA ACCEPTED – This signal is output from the counter to the controller. The line goes high when data is being read by the counter, and goes low upon completion of a data read cycle.

PROGRAM DATA - A low level on this line indicates that the 22 data lines will be interpreted as program data. A high level on this line indicates that these lines will be interpreted as function data.

DATA LINE FUNCTIONS

RESET COUNTER – A low level on this line will reset the counter and initiate a new search for a valid signal.

UPDATE READING - A low level on this line will cause the counter to take a new reading, update the front panel display, and update the BCD output.

BAND SELECT (3 lines) - These lines select the band, or Test 01, in accordance with the following:

		В		BAND
•	0	0	0	Test 01
	0	0	1	Band 1
	0	1	0	Band 2
	0	1	1	Band 3
	1	0	0	Band 4.1*
	1	0	1	Band 4.2*
	1	1	0	Band 4.3*
	1	1	1	Band 4.4*

*In counters that do not have Option 6, the C bit does not apply.

RESOLUTION (4 lines) — These lines program the remote resolution. A four digit BCD number (0 through 9) will indicate the number of digits that are blanked.

DAC SELECT (4 lines) – These lines select the most significant digit of the DAC option (01), when it is installed in the counter. A hexadecimal number (1 to B) will select digit 1 to 11 as the MSD of the 3 digits output to the DAC. Any other digit disables the DAC option.

HOLD MODE — A low level on this line will place the counter in the hold mode (data not updated until the counter is reset).

FAST CYCLE – A low level on this line will place the counter in the fast cycle mode (no display time).

POWER METER - A low level on this line will enable the power meter on counters with Option 02.

VIEW FUNCTION LINES (5 lines) – A low level on one of these lines will cause the counter to display the indicated function on the front panel and the BCD output. If more than one line is enabled at a time, the counter will display the first one found in the following order.

- 1. DAC Select
- 2. Frequency Limit Low
- 3. Frequency Limit High
- 4. Frequenty Offset
- 5. Power Offset

PROGRAM LINE FUNCTIONS

PROGRAM SELECT (2 lines) – These two lines select one of four functions to be programmed by the program data in accordance with the following.

SELECT	BIT	FUNCTION PROGRAMMED
b	a	
0	0	Frequency limit low
0	1	Frequency limit high
1	0	Frequency Offset
1	1	Power Offset

MINUS SIGN – When this line is low the four digits of programming data are interpreted as a negative number.

EXPONENT (3 lines) — These three lines are interpreted as a BCD number (0 to 7). This number is the power of 10 that is to be multiplied, times the four digits of data (data X 10^{X}). This multiplier is used for all frequency input data, and is ignored for the power input data.

DIGIT 1 TO DIGIT IV (4 lines each) – These are four BCD digits that represent the input data. Digit 1 is the MSD and Digit IV is the LSD. For power input, a decimal point is located between Digit II and Digit III, and Digit IV is not used.

DATA ENTRY

Preceeding any data entry sequence, the counter must be placed in the remote mode (remote enable line low). Once in remote mode, the input data line is brought low to initiate a data read sequence. The data read is normally function data. When the program data line is brought low, the data read will be interpreted as program data. The data accept line will go high to indicate that the data has been latched in, and will remain high while the counter processes this data.

Figure 07-1 shows the data entry timing sequence. The input data line debounce time (1) is typically 16 to 18 ms. Data is latched into the counter 48 μ s before the data accept line goes high (2). As soon as the data accept line goes high, all data (except remote enable) can be removed. The data accept line stays high while the counter processes the input data. This process is data dependent, and can take from 1 to 140 ms (3). To prevent the counter from setting the pole mode, the input data line must go high within 100 μ s after the data accept line goes low (4). If pole mode is set, the next data read cycle will occur between 0 and 100 ms after the high to low transition of the data accept line. After this first data read cycle, all subsequent data read cycles will occur at 100 ms intervals.

Figure 07-1. Data Entry Timing

DATA ENTRY EXAMPLE

The following example remotely programs the counter to be in Band 3 with 1 kHz resolution, and a -160 MHz frequency offset.

- 1. Put counter in remote mode by bringing the remote enable line low.
- 2. Set the program data to be entered by bringing the program data line low.
 - a. Set digit 1=1
 - Set digit 2=6
 - Set digit 3=0
 - Set digit 4=0
 - b. Set the exponent = 5 (1600×10^5)
 - c. Set program select A=0, B=1 (frequency offset)
 - d. Set minus sign low (negative offset)
- 3. Enter program data by bringing the input data line low until the data accept line goes high.
- 4. Set the remote function data.
 - a. Return all lines high except the remote enable line.
 - b. Set the resolution A and B lines low (resolution 3).
 - c. Set the Band select C line low (Band 3).

NOTE: Counters that do not have Option 06 (Band 4) will set Band 3, even with the select line C high.

5. Enter function data by bringing the input data line low until the data accept line goes high.

REMOTE PROGRAMMING PIN CONNECTIONS

PIN	FUNCTION DATA	PROGRAM DATA		
1-5	BCD Data (Do not use these pins)			
6–12	Ground			
13	DAC Select A	Digit II A		
1		Digit II B		
14	DAC Select B	-		
15	DAC Select C	Digit II C		
16	DAC Select D	Digit II D		
17	Resolution A	Digit I A		
18	Resolution B	Digit I B		
19	Resolution C	Digit I C		
20	Resolution D	Digit I D		
21-24	No connection			
25	Program Data)	Program Data)		
26	Remote Enable	Remote Enable		
27	Input Data)	Input Data)		
28	Data Accepted)	Data Accepted)		
20				
29	View Power Offset	Digit IV A		
30	View Frequency Offset	Digit IV B		
31	View Frequency Limit High	Digit IV C		
32	View Frequency Limit Low	Digit IV D		
33	View DAC Select	Digit III A		
34	Power Meter Enable	Digit III B		
35	Fast Cycle Mode	Digit III C		
36	Hold Mode	Digit III D		
37	Ground	Ground		
38-44	No connection			
45	Band Select A	Exponent A		
46	Band Select B	Exponent B		
47	Band Select C	Exponent C		
48	(No function)	Minus Sign		
49	Update Reading	Program Select A		
50	Reset Counter	Program Select B		
~~				

THEORY OF OPERATION

The BCD/REMOTE programming board takes data from the display and formats it as parallel data output for the rear panel. It also receives counter control and programming information from the 26 line input on the rear panel to provide for remote control of the counter.

BCD THEORY OF OPERATION

During each update cycle, the counter checks for the existence of the BCD/RMT board. If the board exists, the program checks the state of the inhibit input. If the inhibit input is true (+2 to +50V on the input), the program jumps past the BCD output but the counter continues to update the display. If the input is low, the program scans through each of the 11 digits (LSB to MSB). Each digit is checked, and any non-numerical digit is replaced by a zero. The resulting BCD digit is then sent to U2 through 4 bits of port B of the PIA (U14). After each digit is made available to U2, 4 clock pulses (BCD Clock) are sent to U2 (through U7) to shift all the data in the shift registers to the right by 4 bits (1 digit). At the end of these data shift pulses, a BCD load pulse enters the new data into U2. When the last digit (MSB) is entered into U2, the sign bit is simultaneously entered into U1. After all the data has been entered into the shift register, the program sends out a 20 microsecond print command.

REMOTE PROGRAMMING THEORY OF OPERATION

When the remote enable line is high, none of the other remote programming lines can effect the counter. When the remote enable line is brought low, the counter changes from local to remote operating conditions and switches control for the counter from the front panel keyboard to the rear panel remote programming connector. When in the remote mode, the counter waits for an input from the INPUT DATA request line. When the input data line is brought low, the data direction control line is sent low to put U9 in the low impedance buffer mode. The RMT LOAD line is then toggled to load all remote input data into the input registers (U8-U12). The counter then changes the data accepted output from a low to a high to indicate that the data has been read. The 8 bits of data into U14 (from U8 and U10), are read by the microprocessor. Groups of 4 clock pulses are then sent out (on the RMT CLOCK line), to shift the input data into U10 where the data is read by the microprocessor through U14. When all the data has been read, the data direction control line is returned to a high level, and the data accept line is returned to low, indicating the data has been accepted by the counter.

When the INPUT DATA line is held low, the counter sets a flag and returns to read the input data at approximately 100 millisecond intervals. This continues until the INPUT DATA line is returned to high, at which time the counter returns to the condition where it is waiting for a high to low transition on the IN-PUT DATA line.

When the remote enable line is returned to the high state (local mode), the counter exercises a clear display function and then returns to the (previous) local mode condition.

Figure 07-2. Remote Programming/BCD Output Simplified Block Diagram

LEFT BLANK INTENTIONALLY

5580018

OPTION 07 - REMOTE PROGRAMMING / BCD OUTPUT

2020141 - A

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
07	REMOTE PROGRAMMING / BCD	2010141		EIP	
-1	Bail Mount Kit	5000195	1	3475-1	76381
-2	Cable, Flat Ribbon	2040176	2		
-3	PCB Assy, A102 A	2020132	1	EIP	ana a a a a a a a a a a a a a a a a a a
C1 C2	Tant, 33uF, 10%, 10V	2300015	1	TAG-20-33/10-50	14433
thru C5	Cer, .01uF, 20%, 100V	2150003	4	TAG-S10	56289
Q1	Transistor, NPN	4704401	1	2N4401	04713
R1 R2 R3 R4	Comp, 1 K, 5 %, ¼ W Comp, 5.6K, 5%, ¼ W Comp, 10K, 5%, 1/8 W R2	4010102 4010562 4010103	1 4 1	RC07GF102J RC07GF562J RC07GF103J	81349 81349 81349
R5 R6 R7 R8	Comp, 2.7K, 5%, ¼ W R5 R2 R2	4010272	2	RC07GF272J	81349
RN1 thru RN3 TP1	Network, 10 pin , 10K, <i>+</i> 2%, 1.25W	4170003	3	4310R-101-103	32997
thru TP11	.040 Dia. Conn. Pin	2620032	11	460-2970-02-03	71279
U1 U2 U3	4 bit Shift Register U1	3084195	4	SN74LS195AN	01295
thru U7	Serial IN/Parellel OUT Register	3084164	5	SN74LS164	01295
U8 U9	U1 Line Driver/Octal Buffer Inverter	3084244	1	SN74LS244N	01295
U10 U11	U1 8 bit Shift Register	3084166	2	SN74LS166N	01295
U12 U13	U11 Hex Inverter/Schmitt Trig.	3087414	1	SM74LS14N	01295
U14	P.1.A.	3086821	1	MC6821	04713

(28 ŝ 1 8 8 17P7 0000 60 80 Ŵ., Qia o õ , danmence 0 20 (UN) (6)(19)(10) -(2211222) 30 11 11 忆 distanti ್ಷ ಭ -NN R-mann 熬 hand in the second 000 -RNJ a Ter <u>ærnannun</u> 2500 1 3 es Cos Ć ຄິ \$ 杠 1. X. N Ó 23 63 63 83 83 83 \$ P ¢ □ 8 G. 80 10-Ö 0 ž 2020132 24. 29 000 Q., 20000 0

2020132 - A

Figure 07.3. Remote Programming / BCD Output, Component Locator

OPTION 08 GENERAL PURPOSE INTERFACE BUS

Option 08 makes the 545/548 microwave counters fully compatible with the General Purpose Interface Bus (GPIB). With this option the counters can respond to remote control instructions and can output measurement results via the IEEE 488-1978 Bus Interface. At the simplest level the 545/548 can output data to other devices such as the HP 5150A Thermal Printer. In more sophisticated systems a calculator or other system controller can remotely program the 545/548, trigger measurements, and read results. Of course, a calculator or computer adds other benefits to a GPIB based measurement system. The calculator can manipulate data to compute the mean and standard deviation, check for linearity, and compare results to limits, or perform many other functions.

This technical note describes how to use the HP 9825, 9845A, and TEK 4051 calculators to program the EIP 545/548 microwave counters. Before starting to operate a system it certainly helps to be familiar with the selected calculator, the capabilities of the GPIB, and the manual operation and capabilities of the 545/548.

EQUIPMENT

0000010

The procedures described in this note apply to a GPIB based system containing at least the following:

- EIP 545 or 548 microwave counter
- HP 9825A, 9845A, or TEK 4051 calculator
- HP 98034A GPIB calculator interface
- Appropriate interconnect cables

SETTING ADDRESS SWITCH

The EIP 545/548 automatic microwave frequency counters employ a decimal address switch located inside the units. These are set for decimal address 19 at the factory. To verify the switch setting without removing the top of the instrument, simply initiate test 10; enter 9C04 through the keyboard; and read the address right from the counters own display (see description of test 10). After reading the address, terminate test 10 by pushing the clear display key.

The examples given here assume an address setting of decimal 19 or ASCII talk address "S" and listen address "3".

The address switch is also used to put the 545/548 counter into the talk only (to) or listen only (lo) mode of operation. to put the counter into the listen only mode, simply set the address switch to any number 41 or higher.

ADDI				1	ADDR COD	ESS ES	
Listen	Talk		decimal				
		5	4	3	2	1	*
SP	@	0	0	0.	0	0	00
1	А	0	0	0	0	1	01
,,	В	0	0	0	1	0	02
#	с	0	0	0	1	1	03
\$	D	0	0	1	0	0	04
%	Е	0	0	1	0	1	05
&	F	0	0	1	1	0	06
,	G	0	0	1	1	1	07
(Н	0	1	0	0	0	08
) *	1	0	1	0	0	1	09
	J	0	1	0	1	0	10
+	к	0	1	0	1	1	11
,	L	0	1	1	0	0	12
-	М	0	1	1	0	1	13
•	N	0	1	1	1	0	14
1	0	0	1	1	1	1	15
0	Р	1	0	0	0	0	16
1	Q	1	0	0	0	1	17
2	R	1	0	0	1	0	18
3	S	1	0	0	1	1	19
4	Т	1	0	1	0	0	20
5	U	1	0	1	0	1	21
6	V	1	0	1	1	0	22
7	W	1	0	1	1	1	23
8	Х	1	1	Ó	0	0	24
9	Y	1	1	0	0	1	25
:	Z	1	1	0	.1	0	26
;	[1	1	0	1	1	27
<	1	1	1	1	0	0	28
]	1	1	1	0	1	29
>	^	1	1	1	1	0	30

* Decimal Talk/Listen Address is provided as a cross reference for those controllers which use decimal address.

Figure 08-1. Allowable Address Codes

The counter can be put into 4 different modes of operation in the talk only mode. The following is a list of the address settings for entering into the 4 modes of operation.

ADDRESS	MODE OF OPERATION
31	Continuous output determined by SAMPLE RATE control. Exponent in scientific format.
32	Continuous output - fast active. SAMPLE RATE control inactive. Exponent in scien- tific format.
33	Continuous output determined by SAMPLE RATE control. Exponent in zero output format.
34	Continuous output - fast active. SAMPLE RATE control inactive. Exponent in zero output format.

NOTE: In the Talk Only or the Listen Only mode, the address of the counter is always automatically set to decimal 0.

GPIB FUNCTIONS IMPLEMENTED

The GPIB interface function subsets implemented are:

- SH1 complete capability
- AH1 complete capability
- T5 basic talker, serial poll, Talk Only mode, unaddress if MLA
- L3 basic listener, Listen Only mode, unaddress if MTA
- SR1 complete capability
- RL2 no local lockout
- DC1 complete capability
- DT1 complete capability

NOTE: When DEVICE CLEAR or SELECTED DEVICE CLEAR GPIB bus command is received, the 545/548 counter will revert itself to the power on state.

When DEVICE TRIGGER GPIB bus command is received, the counter will initiate a new frequency reading cycle. The converter will not be reset.

PROGRAMMING THE 545/548

The 4051 uses PRINT and the 9845A uses the OUTPUT statement to program the 545/548. The 9825A uses the WRT (I/O address) (decimal address) to program the 545/548. The calculators address the counter to talk and listen, then transmits a series of program codes. The codes to control the operation of the 545/548 are listed in the program set. Suppose you have set one counter to decimal talk/listen address 19. Then typical statements to program the counter are:

- TEK 4051: PRINT @ 19: "B3R2F01. 44M"
- HP 9845A: OUTPUT 719: "B3R2F01, 44M"
- HP 9825A: WRT 719: "B3R2F01. 44M"

PROGRAM CODE SET

Codes underlined indicate start-up conditions. These conditions are set by the device clear or selected device clear, or power on.

DISPLAY

<u>HP</u> –	Hold Passive
-------------	--------------

- HA Hold Active
- DA Display Active: Output Frequency Reading to Front Panel and Bus
- DP Display Passive: Output Frequency Reading to Bus only
- DN Display Normal

BAND

B1	 Band 1:	10Hz - 100MHz
		101111 1011

- B2 Band 2: 10MHz 1GHz
- B3 Band 3: 1 GHz 18GHz (Model 545) / 26.5 GHz (Model 548)
- B4 Band 4: 26.5GHz 40GHz (Model 548/Opt. 06)

RESOLUTION

- $\underline{R0}$ Resolution 0 = 1Hz
- R1 Resolution 1 = 10Hz
- R2 Resolution 2 = 100Hz
- R3 Resolution 3 = 1KHz
- R4 Resolution 4 = 10KHz
- R5 Resolution 5 = 100KHz
- R6 Resolution 6 = 1MHz
- R7 Resolution 7 = 10MHz
- R8 Resolution 8 = 100MHz
- R9 Resolution 9 = 1GHz

MEASUREMENT FUNTION

- FA Fast Active (Ignore sample rate Pot)
- FP Fast Passive (Terminates FA)
- RS Reset Basic Counter and Converter. Take a new reading after reset.

OFFSETS

- FO Frequency Offset. Take a new reading after data entry.
- PO Power Offset. Take a new reading after data entry.
- * <u>OA</u> Offset Active: –Add Frequency Offset to Frequency Reading –Add Power Offset to Power Reading if Power Meter Function is active
 - OP Offset Passive (Terminates OA)
- * In Start-up Condition, although OA is Active, "0" (zero) Frequency and Power Offsets are programmed.

POWER METER

PA –	Power Meter	Option Activ	e. Initiate a new gate.	
------	-------------	---------------------	-------------------------	--

<u>PP</u> – Power Meter Option Passive (Terminates PA)

* MEASUREMENT PARAMETERS

- FH Frequency Limit High. Basic counter and converter will be reset after data entry.
- FL Frequency Limit Low. Basic counter and converter will be reset after data entry.

SELF-TEST FUNCTIONS

- TA Test Active. (200MHz self-test)
- <u>TP</u> Test Passive. (clear test function)

DATA FORMAT

- EZ Exponent Zero
- ES Exponent Scientific

DATA OUTPUT

- RA Stay in data output mode during data output
- <u>RP</u> Service other operations of the counter after outputting each BYTE.
- TS Service request enabled
- <u>TN</u> Service request disabled
- * Measurement parameters: Standard Software

Limits of 950MHz (LOW) and 18.5GHz (HIGH) (27GHz for Model 548) are featured in each counter at turn on.

TE	K 4051	– PRI	NT @ <u>1</u>	<u>9</u> : " <u>B3R</u>	<u>2F01,44M''</u>
LISTEN ADDRESS					
BAND 3]	
RESOLUTION 2 (100Hz)					
FREQUENCY OFFSET (1.44MHz)					
TERMINATOR (MHz)]

FORMAT OF GPIB INSTRUCTIONS

<OP CODE > < NUMBER > < TERMINATOR >

OPERATION CODE or OP CODE can take any of the following formats:

< LETTER > < LETTER > or < LETTER > < DIGIT >

Example = FH (Frequency limit high) or B3 (band 3)

The NUMBER portion of the statement can take the form of any of the following:

< SIGN > < DIGIT STRING > or < DIGIT STRING > < SIGN >

Example: -2457 or 2457 - = -2457

<SIGN> <DIGIT STRING>•<DIGIT STRING>

Example: -3.483

<DIGIT STRING>•<SIGN> <DIGIT STRING>

Example: 523. -416 = -523.416

<DIGIT STRING> • <DIGIT STRING> <SIGN>

Example: 478.231 - = -478.231

NOTE: Spaces, carriage returns and line feeds within the <NUMBER> portion of the instructions are always ignored.

The TERMINATOR allows the operator to choose the scale of a chosen input number as well as implement special functions.

TERMINATOR = G/M/K/H/D/P/C Example = G, M, K, H, represent GHz, MHz, kHz and Hz D = dB, P = clear data, (equivalent to "clear data" key on keyboard) C = clear display (equivalent to "clear display" key on keyboard)

DEFINITIONS

 $\langle SIGN \rangle = + \text{ or } - (\text{ or Omitted } = +)$

<DIGIT STRING> = < DIGIT >< DIGIT >< DIGIT >-----

< DIGIT > = 1/2/3/4/5/6/7/8/9/0

< LETTER > = A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z

< NUMBER > = < SIGN > < DIGIT STRING >

<DIGIT STRING> <SIGN >

<sign> <Digit string> • <Digit string>

<DIGIT STRING> • <SIGN> <DIGIT STRING>

<DIGIT STRING> • <DIGIT STRING> <SIGN>

<NULL

AVAILABLE COMMANDS

- FO FREQUENCY OFFSET Enables entry of frequency offsets. (1 Hz resolution available.) The basic counter and converter will be reset after the data entry.
- FH FREQUENCY LIMIT HIGH Indicates the numbers and scale factor will set frequency limit high (10 MHz resolution available). The basic counter and converter will be reset after the data entry.
- FL FREQUENCY LIMIT LOW Indicates the numbers and scale factor will set frequency limit low (10 MHz resolution available). The basic counter and converter will be reset after data entry.
- RS RESET BASIC COUNTER AND CONVERTER Takes a new reading after RESET operation. Does not affect offsets or programmed limits. Has the same function as manual reset button.
- HA HOLD ACTIVE The counter stops taking readings, data transmission is stopped, and the last frequency read is displayed and held.
- HP HOLD PASSIVE Terminates HA.
- DN DISPLAY NORMAL RESETS display only; used for clearing error messages on the display. Cannot be used after verifying preprogrammed data such as FREQUENCY OFFSETS or FRE-QUENCY LIMITS. This OPCODE affects only the display.
- B1 thru B4 Band 1 thru Band 4 Chooses the operating band of interest.
 Note: B4 (Band 4) requires an additional digit input to designate individual remote sensors (e.g. B41 = remote sensor 1 which covers range of 26.5 to 40 GHz).
- R0 thru R9 Resolution 0 thru 9 Picks the front panel resolution from 1 Hz to 1 GHz. Also chooses gate time which is related to resolution; 1 Hz = 1 Sec, 10 Hz = 100 Sec, 100 Hz = 10 msec, 1 kHz to 1 GHz = 1 msec.
- FA FAST ACTIVE Causes the counter to go into the fast cycle mode of operation. In this mode, the front panel sample rate/hold control is inactive and the fastest sample rate is attained. The counter will not go into the FAST ACTIVE mode of operation until HOLD ACTIVE is disabled.
- FP FAST PASSIVE Terminates FA.
- DA DISPLAY ACTIVE Outputs frequency reading to both front panel and GPIB Bus.
- DP DISPLAY PASSIVE Output frequency reading to GPIB Bus only but not to front panel display.
- OA OFFSET ACTIVE Add frequency and power offset to readings.
- OP OFFSET PASSIVE Does not add frequency and power offset to readings.
- RA Stay in data output mode during data output. This OPCODE increases output data rate.
- RP Service other operations of the counter after outputting each BYTE.
- TN Service request disabled.

- TS Service request enabled. Counter will pull service request line after each reading.
- EZ EXPONENT ZERO Output format.
- ES EXPONENT SCIENTIFIC Output format.
- PA POWER ACTIVE Enables power meter option.
- PP POWER PASSIVE Terminates power meter option.
- PO POWER OFFSET Enables entry of power offsets. Take a new reading after data entry.
- TA TEST ACTIVE Enables 200 MHz self test. TA mode will automatically be disabled when other OPCODES are entered.
- TP TEST PASSIVE Terminates test function.

MEASUREMENT OUTPUT FORMAT

The EIP 545/548 transmit the following string of characters to output a measurement.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Format																		
EZ (Exponent Zero)	b	+	D	D	D	D	D	D	D	D	D	D	D	D	E	0	CR	LF
ES (Exponent Sci) $*$	±	D	D	D	D	D	D	D	D	D	D	D	D	D	Ε	D	CR	LF
Freq. + Power **	(Fo ช	orma ත්	t for ත්	eith B	er E2 わ	くor E ち	ES) Ď	ъ	ъ	Ą	+	D	D	D	e	D	CR	LF
				15 D CR	_	Blanl Digit Carri Line	age I		irn	÷								
	*			onen	t Sci	entif	ic or	ne d		repre 6, or		the	positi	on o	f the	decii	nal p	oint.

** when both frequency and power information is output, two lines of data are presented. The first line is frequency information in either EZ or ES. The second line is the power information and the decimal point is always fixed for 0.1 dB resolution.

Note: including blanks, 18 characters are always transmitted.

READING A MEASUREMENT

To read a measurement from the counters to a calculate, the counter must first be addressed to talk and the calculator to listen. The examples below indicate how a calculator may read a measurement from the counter.

The EIP 545/548 can use two different modes. HA which takes one reading then waits for a reset command or a Device Trigger GPIB Bus Command. In this condition when addressed to talk the counter is sent a reset or Device Trigger and a new reading is output to the BUS. The counter will hold that particular reading on the display until another reset command or Device Trigger command is recieved. The other mode is HP or HOLD PASSIVE. In this mode data is read out in a normal BUS fashion. The display automatically updates corresponding to the sample rate chosen. In this condition successive readings can be output without generating a reset or Device Trigger command each time.

PROGRAM EXAMPLES

By addressing the counter to listen and sending the following program string, it sets up the following measurement conditions.

,	" <u>B</u> 3	R	<u>2FO</u>	79	.36.	<u>M F</u>	H1	2.	<u>3 G</u>	FL4	.260	<u>ì E</u>	<u>AD</u>	<u>P''</u>
					ļ			1						
BAND 3														
RESOLUTION 100 Hz														
FREQUENCY OFFSET 79.36 MHz	<u> </u>				J									
FREQUENCY LIMIT HIGH 12.3 G	iHz -							1						
FREQUENCY LIMIT LOW 4.26 GI	Hz –						.,							
FAST ACTIVE	······													
DISPLAY PASSIVE														l

The following programs illustrate how the controllers can control the EIP 545/548 counters. These programs cause the counters to make a series of frequency measurements. The calculators read the measurements into memory and prints the results. The programs assume the counter talk and listen address is decimal "19".

HP 9825A	0:	dim A (10)
	1:	rem 7
	2:	wrt 719, "B3R2FO-4.55M"
	3:	wait 300
	4:	for $I = 1$ to 10
	5:	red 719, A(I)
	6:	prt A (1)
	7:	next I
	8:	end
HP9845A	10:	output 719, "B3R2FO-4.55M"
	15:	wait 300
	20:	input 719, A
	30:	print "Frequency minus offset equals", A
	40:	Go to 20
TEK 4051	10:	print @19: ''B3R2FO-4.55M''
	20:	input @ 19: A
	30:	print "Frequency minus offset equals", A
	40:	Go to 20

The 9825A programs causes the 545/548 to take a series of ten readings, print them on the 9825A paper tape and stop. Notice that an offset of 4.55 MHz is subtracted from each reading.

The programs shown for the 9845A and TEK 4051 cause the counter to make a frequency measurement and print that measurement. To end the program, initiate a "STOP" command. This is accomplished on the 9845A with the key labeled "STOP". On the TEK 4051 use the key labeled "BREAK". To restart the program enter the RUN statement followed by the line number that is printed in the INTERRUPT message.

5580018

PAGE BLANK INTENTIONALLY

DETAIL A-A

CONTACT	SIGNAL LINE	CONTACT	SIGNAL LINE
1	DIO 1	13	D10 5
2	DIO 2	14	0106
ろ	010 3	15	DIO 7
4.	DIO 4	16	DIDB
5	EOI	17	REN
6	DAV	18	GND.(6)
7	NRFD	19	GND, (7)
8	NDAC	20	GND (8)
9	IFC	21	GND. (9)
10	SRQ	22	GND. (10)
н	ATN	23	GND. (11)
12	SHIELD	24	GND.LOGIC

2010140 - A

SEE G.P.I.B MANUAL FOR ADDRESS SETTING INSTRUCTIONS.

08-14

OPTION 08--GENERAL PURPOSE INTERFACE BUS

2010140

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
08	GPIB Option	2010140		EIP	
-1	PCB Assy, GPIB (A102B)	2020133	1	EIP	
C1 C2	Cer, .01µF, %, V C1	2150003	3	TG - S10	
C3 C4 C5	C1 Tant, 33μF, %, 10V C4	2300015	2	TAG20 - 33/10 - 50	
R1 thru R8 SW1A	Comp, 5.6K, 5%, W	4010562	8	RC07GF562J	
and SW1B	Thumbwheel Switch	4540004	1	2X2270 - 0000	
TP1 thru TP6	P.C. pin .040 diameter	2620032	6	460-2970-02-03	
U1 thru U5 U6 U7 U8	Quad 3-state Bus Transciever Hex Inverter General Purpose Interface Adaptor Tri Input NAND Gate Oct Bus Transciever	3053448 3087404 3058488 3087410 3084245	4 1 1 1	MC3448 74LS04 MC68488 74LS10 74LS245	
				· · ·	

.

2020133 - A

Figure 08-3. GPIB Component Locator

08-17

Figure 08-4. GPIB Schematic

OPTION 09 REAR PANEL INPUT

Option 09 provides rear panel input for 545/548 counters and counters equipped with option 06 in the following manner:

545/548 Counters:

- 1. Reversing the converter assembly so that the Band 3 input connector protrudes through the hole in the rear panel that is identified as J113.
- 2. Reversing the Band 1 and Band 2 connectors to the holes marked J111 and J112 respectively on the rear panel.

Option 06 Equipped Counters:

- 1. Reversing the converter assembly so that the Band 3 input connector protrudes through the hole in the rear panel that is identified as J113. Reversing the Remote Sensor and Band 3 jumper connectors to the holes marked J114A (Rmt. Sensor) and J114B (Band 3 connector) respectively.
- 2. Reversing the Band 1 and Band 2 connectors to the holes marked J111 and J112 respectively on the rear panel.

NOTE: The specifications for the counter do not change when the input is from the rear panel.

т. Т

.

. .

.

Ċ

Option 10 equips your counter with the hardware required to mount the unit in a standard 19" wide console. With the chassis slide installed the counter can be serviced without removing it from the rack.

The option consists of:

- 1. All MTG HDWR and hole spacing conforms to MIL-STD-189.
- To install slides in field; Remove top cover and top frame; Mount special side panels (5210179) on Std. enclosure.
- Item numbers within O symbol are on P/L 2010147. All other items assembled or exploded are shown for clarification or reference only.

Side View of Counter With Option 10 Installed

·

·

--

•

. .

APPENDIX A ACCESSORIES

REMOTE SENSORS

The remote sensor that is now available is the model 591 that provides a frequency range of 26.5 - 40 GHz, -20 dBm sensitivity, and maximum input of +7 dBm. The sensors for 40 - 60 GHz, 60 - 90 GHz, and 90 - 110 GHz will be available in the near future. Please contact EIP or your local representative for more information. The following is a copy of the label for the 591 sensor. It contains all the information you will require for operation and ordering.

SPECIFICATIONS - MODEL 591

 RANGE
 26.5 - 40 GHz

 SENSITIVITY
 -20 dBm

 CONNECTOR
 UG599/U Waveguide Flange (WR28 waveguide)

 MAX. INPUT LEVEL
 +5 dBm

 DAMAGE LEVEL
 +10 dBm

THIS KIT SHOULD CONTAIN :

LO Coax Cable, Long, part number 2040217 IF Coax Cable, Short, part number 2040218 26.5 - 40 GHz Sensor, part number 2030022

TO INSTALL :

Before connecting the remote sensor to the frequency source, verify that the power level is within the limits specified for the sensor.

Connect the long LO cable from the upper jack to the remote sensor.

Connect the short IF cable from the lower jack, on the front panel, to the Band 3 input.

CAUTION

To avoid static discharge that can damage or destroy the diode in the remote sensor, connect the LO cable to the counter first, then touch the shield to the body of the sensor.

TO OPERATE :

The 591 sensor is designated as Band 41 on the model 548 counter. On counters equipped with Option 06 Extended Frequency and the 591 remote sensor, Band 41 is selected by :

Frequency limits (low/high) and power meter function (Option 02) are operational only to 26.5 GHz.

TO REPAIR :

The remote sensor requires no maintenance. If loss of sensitivity is experienced, the diode in the mixer may be damaged. This diode can be replaced. Unscrew the knurled cap and pull out the diode. Replace It with a 1N53B type diode that can be ordered from the manufacturer.

> Alpha Industries, Inc. 20 Sylvan Road Woburn, Mass 01807

Or the diode can be ordered from EIP as part number 2730053.

Return this sensor to EIP for all other repairs.

SERVICE KIT

This service kit for the 545/548 counter contains the following:

2000017 - Service Kit

2020147 - GPIB/BCD extender board

2020184 – Standard extender board

2020185 - Band 2 extender board

2040221 - Cable, BNC to Select

2040222 - Cable, BNC to PC JK

2040225 - Cable, 3 way adapter

2610054 – Test Cable, BNC E/Z HK

5000094 - IC Extractor tool

The kit comes in a handy carrying case.