MEGGER[®] Digital Earth Testers DET3 & DET5

Operating Instructions

MEGGER®

SAFETY WARNING

- ★ The earth spikes, test leads and their terminations must not be touched if an installation earth-fault can arise, unless adequate precautions are taken.
- ★ When working near high tension systems rubber gloves and shoes should be worn.
- ★ Special precautions are necessary when "live" earths may be encountered, and isolation switches and fuses are needed in this situation.
- ★ The terminals of the DET5 must be disconnected from any external circuit while its battery cells are being charged.
- ★ Before charging the DET5 battery ensure that the correct supply fuse is fitted and the voltage selector is set correctly.

Refer also to page 14 for further explanations and other precautions.

The warnings and precautions must be read and understood before the instrument is used. They must be observed during use.

NOTE

2 The instrument is only to be used by a suitably trained and competent person.

Safety Warning General Description

CONTENTS

Applications Specification Accessories Operation Warnings Precautions Display symbols Setting-up the te Basic test proce Battery charging Replacing the c **Brief Operating Inst** Brief Operating Inst Measuring Techniq Testing earth e Fall-of-Pote The 61.8% The Slope Chart for u Method us 15th Editio

CONTENTS

\$

Safety Warning	2	Other methods 45	ō
General Description	5	Determining 'Touch' and 'Step' potential 46	3
Applications	8	Measuring soil resistivity	3
Specification	9	Typical variations in soil resistivity 48	8
Accessories	13	Line traverse 48	3
Operation	14	Calculation of resistivity 49	Э
Warnings	14	Continuity Testing 5	1
Precautions	15	Circuit Description 52	2
Display symbols	16	Instrument Repairs and Spare Parts 53	3
Setting-up the test spikes etc.	19		
Basic test procedure	19	Illustrations	
Battery charging (DET5)	20	Fig. 1 DET3 and DET5 Earth Testers	7
Replacing the current source protecting fuse	20	Fig. 2 Earth testing kit 13	3
Brief Operating Instructions in French	21	Fig. 3 A method of connection where fault	
Brief Operating Instructions in Spanish	27	conditions may occur 1	5
Measuring Techniques		Fig. 4 Low cranking speed and low battery voltage	c
Testing earth electrodes	33	maloutiono	-
Fall-of-Potential method	33	rig.o neteroe polarity of moor	-
The 61,8% Rule	34	rigto ringit canon opino realeance opiniser	
The Slope method	36	Fig. 7 High potential spike resistance symbol 18	
Chart for use with Slope method	39	Fig. 8 Excessive noise interference symbol 1	
Method using 'dead' earth	44	Fig. 9 Over-range symbol 11	8
0	-4-4	Fig. 10 Fall-of-Potential method for measuring	
15th Edition IEE Wiring Regulations requirement	45	resistance of an earth electrode 3	3
lequinitient			

e touched if an are taken.

hoes should

encountered,

'ernal circuit

vly fuse is fitted

ŧ

ns. re the

etent person.

CONTENTS

4

đi.

Fig. 11	Fall-of-Potential method using single lead to the earth electrode	34
Fig. 12	Resistance areas associated with electrode	<u> </u>
	and current spike	35
Fig. 13	The 61,8% Rule method	35
Fig. 14	Connection for the Slope method	37
Fig. 15	Resistance curve from the Slope method	
	tests	37
Fig. 16	Possible results from several Slope method	
	tests	38
Fig. 17	"Dead" earth method	44
Fig. 18	Test spike positions for the 15th Edition	
	IEE Wiring Regulations	45
Fig. 19	Determining 'Touch' and 'Step' potential	46
Fig. 20	Connections for resistivity testing	48
Fig. 21	Nomogram for resistivity calculations	50
Fig. 22	Continuity testing	51
Fig. 23	Block diagram of instrument circuit	52

GENERAL DESCRIPTION

The DET3 and DET5 MEGGER® Digit are compact instruments designed to electrode resistance, earth continuity also make earth resistance tests whimeasurement of soil resistivity. The I by a hand cranked generator whereainternal rechargeable battery, with ar unit.

TEST METHOD

ą.

1

ε

Each instrument uses the well known method of measurement in which the the current circuit test leads does not In the DET3 and DET5 the resistance circuit test leads can also be ignored stage is incorporated to prevent the r from loading the earth resistance und A reversing d.c. test current, generat from a "floating" constant current sc instrument, is passed via the 'C1' anthrough the earth being tested. The p developed across the earth is compa current and, after filtering and phase detection, the resistance is given dindisplay.

GENERAL DESCRIPTION

The DET3 and DET5 MEGGER® Digital Earth Testers are compact instruments designed to measure earth electrode resistance, earth continuity etc. They may also make earth resistance tests which lead to the measurement of soil resistivity. The DET3 is powered by a hand cranked generator whereas the DET5 has an internal rechargeable battery, with an integral charger unit.

TEST METHOD

Each instrument uses the well known four-terminal method of measurement in which the resistance of the current circuit test leads does not affect the result. In the DET3 and DET5 the resistance of the potential circuit test leads can also be ignored because a buffer stage is incorporated to prevent the measuring circuit from loading the earth resistance under test. A reversing d.c. test current, generated electronically from a "floating" constant current source within the instrument, is passed via the 'C1' and 'C2' terminals through the earth being tested. The potential developed across the earth is compared with the current and, after filtering and phase sensitive detection, the resistance is given directly on the digital display.

The test frequency is 128 Hz and in the interests of safety the maximum test voltage at the terminals is limited to 30 V (peak) with respect to earth. Short circuit current is either 10 mA, 1 mA or 100 μ A depending on the range in use.

INSTRUMENT DESIGN

The instruments are very robust and have tough cases moulded in ABS plastic. Each case is fitted with a folddown carrying handle and four right-angled adaptors are supplied to connect the test leads to the instrument terminals. Test leads are not supplied with an instrument but form part of an earth testing field accessory kit which is available as an additional option. This kit also includes test spikes (electrodes), a hammer and spike extractors.

Both instruments have simple controls; mounted on the front panel is a rotary range selector and a pushbutton switch for checking the potential circuit resistance prior to a measurement being made. The instrument's 3½ digit liquid crystal display shows the test result and also indicates a high current circuit resistance, a high potential circuit resistance, (both usually caused by a high test spike resistance), a "noisy" environment within the earth making up the

GENERAL DESCRIPTION

test sample, and a low battery voltage in the case of the DET5, or low generator cranking speed in the case of the DET3. As these factors can influence the measurement being made, noise and the current circuit resistance are continuously monitored during a test, while a check of the potential circuit resistance can be made at any time. The display shows all measurements directly in ohms with the decimal point automatically positioned. It also gives an over-range indication to instruct the user to change to a higher range, and a negative sign to show that the current and potential test leads are reversed.

These testers have been designed to comply with the performance specifications of both the CP 1013 (1965) specification (from BSI) and the VDE 0413 Part 7 (1982) German specification. For this reason each terminal is marked in a dual way i.e.:—

C1	P1	P2	C2
Е	ES	S	Н

6

The terminal C1(E) is for the current connection to the earth electrode to be tested.

The terminal P1(ES) is for the potential connection to the earth electrode to be tested. The terminal P2(S) is for the connection to the remote

potential test spike.

The terminal C2(H) is for the connection to the remote current test spike.

In terms of safety the instruments meet, in general, the requirements of BS 4743 (1979), IEC 348 (1978) and VDE 0411 (1981).

ootential connection to d.

a'

nnection to the remote

onnection to the remote

ants meet, in general, 1979), IEC 348 (1978)

APPLICATIONS

The installation of satisfactory earthing systems is an essential part of electricity supply, wiring safety and installation economics. It is also of great importance in many communications systems.

The primary application of the DET3 and DET5 is in the testing of earth electrodes, whether these take the form of a single electrode, multiple electrodes, mesh systems, earth plates or earth strips. All earthing arrangements should be tested immediately after installation and at periodic intervals thereafter.

CHOICE OF ELECTRODE SITE

For an earth electrode or system to perform satisfactorily it must always have a low total resistance to earth. This value will be influenced by the specific resistance of the surrounding soil. This in turn depends on the nature of the soil and its moisture content. Before sinking an electrode or electrode system therefore, it is often helpful to survey the surrounding area before choosing the final position for the electrode. It is possible with these instruments to obtain the resistivity of the soil over an area and at different levels beneath the surface of the ground. These resistivity surveys may show whether any advantage is to be gained by driving electrodes to a greater depth, rather than increasing the cost by having to add further electrodes and associated cables, in order to obtain a specified total earth system resistance.

8

EARTHING SYSTEM MAINTENANCE

After installation, checks may be made on an earthing system to see if there is any significant change in the resistance over a period of time or under different soil moisture conditions, (e.g. brought about by changing weather conditions or different seasons of the year). Such checks will indicate when there is a need for maintenance of the installation because the required resistance to earth has been exceeded by changing conditions or the ageing of the system.

OTHER APPLICATIONS

For archaeological and geological purposes, an investigation of soil structure and building remains can be carried out at varying measured depths, by the resistivity survey technique.

In all cases the accuracy of the instrument readings may be taken to be higher than the changes caused by natural variables in soil characteristics.

A further application is in continuity testing, e.g. checking the resistance of conductors used in an earthing circuit.

Resistances between 0,01 Ω and 1999 Ω can be measured with an accuracy of $\pm 2\%$ of reading ± 2 digits (nominal). Individual test spike resistances of up to 1 k Ω (total for either current loop or potential loop = 2 k\Omega), can be tolerated on the lowest range and on the higher ranges greater values can exist.

SPECIFICATION

Earth Resistance Range

Accuracy (23 °C ± 2 °C)

Comply With Standard

Test Frequency Test Current

Interference

Max. Current Spike Res

Max. Potential Spike Re

AINTENANCE

may be made on an earthing any significant change in the of time or under different soil J. brought about by changing iferent seasons of the year). when there is a need for illation because the required een exceeded by changing of the system.

ological purposes, an ture and building remains can measured depths, by the ue.

of the instrument readings er than the changes caused by naracteristics.

continuity testing, e.g. of conductors used in an

)1 Ω and 1999 Ω can be icy of ±2% of reading ridual test spike resistances of or current loop or potential rated on the lowest range greater values can exist.

SPECIFICATION

Accuracy $(23^{\circ}C \pm 2^{\circ}C)$

Test Frequency

Test Current

Interference

Earth Resistance Ranges 0,01 Ω to 19,99 Ω 0.1Ω to 199.9 Ω 1,0 Ω to 1999 Ω ±2% of reading ±1 digit Total service error $\pm 5\%$ of reading ± 1 digit. **Comply With Standards** BS CP1013 (1965) VDE 0413 Part 7 (1982) 128 Hz 20Ω range 10 mA a.c. r.m.s. 200 Ω range 1 mA a.c. r.m.s. $2 k\Omega$ range 100μ A a.c. r.m.s. Test current (= short circuit current) is constant throughout the range. Interference voltages of 5 V a.c. r.m.s. 50 Hz/60 Hz in the potential circuit will have a max. effect of $\pm 0.5\%$ on the reading obtained. Max. Current Spike Resistance The typical limit of resistance of the external current circuit is:--- 20Ω range $2 k\Omega$ 200Ω range $5 k\Omega$ 2 kΩ range $48 k\Omega$ Max. Potential Spike Resistance The typical limit of resistance of the external potential circuit is:- 20Ω range 2,2 kΩ 22 kΩ 200 Ω range $2 k\Omega$ range 53 kΩ

SPECIFICATION

Ì

Max. Output Voltage		30V	Safety
Display		3½ digit l.c.d. maximum reading 1999	
Temperature Effect		$<\pm0.02\%$ /°C over the temperature range – 15 °C to +55 °C	Υ.
Temperature Range	operating storage	−15 °C to +55 °C −40 °C to +70 °C	Dimensions
Humidity	operating storage	95% RH max. at 40 ℃ 93% RH max. at 55 ℃	Weight
Flash Test		3 kV a.c.	aacidiir
Voltage Withstand		In the event of a system fault the instrument will withstand 240 V a.c. applied between any two terminals.	
Fuses	DET3 and DET5	100 mA ceramic HBC 20 mm x 5 mm IEC 127/1 (for current source protection) Internal 100 mA ceramic HBC 20 mm x 5 mm IEC 127/1 (for potential circuit protection) 50 mA ceramic HBC 20 mm x 5 mm IEC 127/1 for	The VDE 0413 part 7 specification st these instructions should contain a c the maximum value which the instru indicate in certain conditions. An ear
		240 Va.c. supply, 100 mA ceramic HBC 20 mm x 5 mm IEC 127/1 for 120 Va.c. supply (for circuit protection during battery charging). Internal 500 mA ceramic HBC 20 mm x 5 mm IEC 127/1 (for battery protection)	performed on any electrode system be carried out to a particular specific even at the instrument's worst accu indicated should be such that the ac above the limiting value required by
Power Supply	DET3	Internal hand-cranked a.c. generator (Minimum cranking speed 120 r.p.m.)	specification in question.
10	DET5	Internal rechargeable sealed lead acid cells 12 V, 0,8 Ah capacity. Battery voltage range over which basic accuracy is maintained, 10,0 V to 13,5 V. Battery life, 1750 x 10 s tests (4 1/2 hours continuous use). Battery charging time, 10 hours max. (from completely exhausted). Charging supply required, 200 V to 255 V a.c.	
		or 100 V to 130 V a.c. 50 Hz/60 Hz.	

٤

.

−15°C to +55°C

ent will y two terminals. 127/1 (for

mm IEC 127/1

27/1 for 0 mm x 5 mm protection

mm IEC 127/1

ilmum cranking

Is 12 V, 0,8 Ah h basic accuracy 1750 x 10 s tests

m completely 0 V to 255 V a.c. Safety

specification in question.

	DET5
Dimensions Weight	DET3 DET5 DET3 DET5

The VDE 0413 part 7 specification stipulates that these instructions should contain a diagram showing the maximum value which the instrument must indicate in certain conditions. An earth test being performed on any electrode system would normally be carried out to a particular specification. Therefore, even at the instrument's worst accuracy, the reading indicated should be such that the actual value is never above the limiting value required by the particular

DET3

Safety Class III

battery charging.

1 kg (21/4 lb approx.)

1,32 kg (27/s lb approx.)

The curve on page 12 shows the maximum value which shall be indicated by the instrument (at its maximum error) to ensure that the limiting value of the earth resistance given in the relevant earth electrode test specification is met.

The instruments will, in general, meet the requirements of BS 4743, IEC 348 and VDE 0411 specifications.

Safety Class III while operating, Safety Class II while

210 mm x 128 mm x 125 mm (81⁄4 in x 5 in x 5 in approx.) 180 mm x 128 mm x 125 mm (7 in x 5 in x 5 in approx.)

11

ŝ.

SPECIFICATION

ACCESSORIES

SUPPLIED WITH THE INSTRUMENT

Four right-angled terminal adaptors to enable leads with spade connectors (as in the field k leads with bare ends to be used. Mains supply lead for battery charging (DET5 Operating instruction book.

AVAILABLE OPTIONALLY

- Carrying case (for instrument only) part no. Earth testing field accessory kit (ref. ET/KIT). part no.
- comprising a yellow bag and pouch containir a 1,13 kg (2½ lb) hamm four galvanised steel spikes 12 mm (½ in a
- four galvanised steel spikes 12 min (22 min square section, 450 mm (17 in approx.) lor two spike extractors
- 30 m (981⁄2 ft approx.) of cable on a cablecomplete with connector and clip
- 50 m (164 ft approx.) of cable on a cable-w complete with connector and clip
- two 3 m (10 ft approx.) leads complete wi connectors and clips.
- Reel of cable, 50 m long C1–P1 shorting bar

part no part no

ACCESSORIES

SUPPLIED WITH THE INSTRUMENT

Four right-angled terminal adaptors to enable test leads with spade connectors (as in the field kit) or test leads with bare ends to be used. Mains supply lead for battery charging (DET5 only). Operating instruction book.

AVAILABLE OPTIONALLY

Carrying case (for instrument only) part no. 6420-043 Earth testing field accessory kit (ref. ET/KIT), part no. 6310-755

comprising a yellow bag and pouch containing: a 1,13 kg (2½ lb) hamm

four galvanised steel spikes 12 mm (1/2 in approx.) square section, 450 mm (17 in approx.) long two spike extractors

30 m (981/2 ft approx.) of cable on a cable-winder, complete with connector and clip 50 m (164 ft approx.) of cable on a cable-winder,

complete with connector and clip two 3 m (10 ft approx.) leads complete with

connectors and clips.

Reel of cable, 50 m long C1–P1 shorting bar

Fig. 2 Earth testing kit

OPERATION

WARNINGS

- As a precaution when working near high tension systems where accidental high potentials on the structure and in the ground are possible, it is recommended that the operator wears rubber gloves (to BS 697: 1986) and stands on a rubber mat or wears rubber shoes. (See para. 3 below).
- It is preferable that the earth system to be tested is first isolated from the circuit it is protecting. This is not always possible and so the precaution below is most important.
- 3. Safety precautions for all live earths

Safety precautions are necessary when any live earths may be encountered e.g. when testing the earth of a "live" substation. If a fault occurs at the substation while a test is being conducted, dangerous voltages may exist between the site earth and remote earths established for test purposes. Therefore:—

- a) The instrument must be used within the perimeter fence of the substation where the test is being conducted, and/or in an area where the voltage difference from the earth under test does not exceed 50 V in any circumstances. If this is not possible then rubber gloves and mats must be used.
- b) The P1 and C1 (or ES and E) terminals must be connected to the earth electrode being tested.

- c) The P2 and C2 (or S and H) terminals must be connected to an isolation switch, whose rating will cope with the maximum fault voltages (refer to Fig. 3).
- d) With the isolation switch open, connections to the remote test spikes (electrodes) may be established. Make the connections to the isolation switch first and then connect the remote test spikes (electrodes).
- When the remote test spikes have been established the isolation switch may be closed and a test made.
- f) Whilst the test is in progress care must be taken that no one comes into contact with the remote electrodes or the leads running to the P2 and C2 (or S and H) terminals via the isolation switch.
- g) The isolation switch must be open whilst any personal contact is made with the remote test spikes or the connecting leads, e.g. when changing their positions.
- h) If a fault occurs while a test is being made the instrument may be damaged. Incorporating fuses at the isolation switch, of rating 100 mA and able to cope with the maximum fault voltage, will provide some protection for the instrument (see Fig. 3).

Fig. 3 A method of connection conditions may occur

(or S and H) terminals must be in isolation switch, whose rating the maximum fault voltages

ion switch open, connections to st spikes (electrodes) may be fake the connections to the h first and then connect the pikes (electrodes). iote test spikes have been e isolation switch may be closed

le. tis in progress care must be one comes into contact with the odes or the leads running to the S and H) terminals via the sh.

witch must be open whilst any act is made with the remote test connecting leads, e.g. when positions.

s while a test is being made the ay be damaged. Incorporating olation switch, of rating 100 mA be with the maximum fault rovide some protection for the se Fig. 3).

Fig. 3 A method of connection where fault conditions may occur

4. When charging the DET5 battery:---

- a) Ensure that the instrument is disconnected completely from any external circuit.
- b) Make sure before switching the supply on, that the correct setting of the voltage selector has been made and also that the correctly rated fuse for that supply has been fitted (see the Specification page 9).
- c) The socket to which the instrument is connected for battery charging should have an on/off switch.
- Repairs to these instruments must only be carried out by suitably trained and qualified personnel.
 If an instrument's protection has been impaired it should not be used and must be sent for repair. The protection is likely to be impaired if, for example, it shows visible damage, it fails to perform the intended measurements, it has been subjected to prolonged storage under unfavourable conditions,

or it has been subjected to severe transport stresses.

PRECAUTIONS

 The instrument circuit contains static sensitive devices. If the instrument casing is opened for any reason, care must be exercised in handling the printed circuit board. This should be done in accordance with DEF STAN 59-98 and BS 5783, specifications for handling electrostatic sensitive devices.

OPERATION

- Note:— Opening the casing will automatically invalidate any warranty covering the instrument unless carried out by an approved repair organisation (see page 53).
- It is advisable that, when working with the DET5 instrument, the battery is fully charged before embarking upon a test sequence. It can be extremely inconvenient if the battery voltage becomes too low while a field test is in progress.

DISPLAY SYMBOLS

The 3½ digit l.c.d. shows the reading directly and the operator can simply refer to the range switch position for the units of measurement. The instrument's display symbols can also help the operator make certain that the reading is valid. The meaning of each display symbol is given in the following paragraphs.

Low Generator Cranking Speed (DET3)

If the generator handle on the DET3 is turned too slowly such that there is insufficient output for a test to be performed properly, an arrow '~' appears on the left of the display pointing at the 'Slow Wind' mark on the graphics panel. Any reading on the display should be ignored and the generator turned faster until the arrow disappears before a measured value is accepted.

Low Battery Voltage (DET5)

Similary on the DET5, if the battery voltage is too low the arrow on the left of the display will appear pointing at the ' \dashv **I**— Lo' mark on the graphics panel. In this case the battery holds only enough power for possibly one or two more measurements and must be recharged before further tests are undertaken.

DET3

DET5

Fig. 4 Low cranking speed and low battery voltage indications.

Reverse Polarity

When the potential test leads are reversed with respect to the current test leads, the reading on the

display is preceded by a negative sign. T still valid, but the potential connections s reversed to remove the negative sign. F measurement the 'C1' and 'P1' (or 'E' ar connections should go to the electrode t i.e. to one end of the resistance, and the (or 'S' and 'H') connections should go to spikes, i.e. the other end of the resistance

Fig. 5 Reverse polarity symbol

High Current Spike Resistance

To indicate that the resistance of the cur too high, a display segment illuminates c 'Rc' mark on the graphics panel. This hap automatically while the tester is switche during a test. Its appearance may be cau open circuit or a poor connection in the t current spike, or, more likely, high resistr ground in the vicinity of the current spike contact with that spike. Whatever the ca symbol's appearance it must be remove test can be regarded as valid. Moistening

5)

battery voltage is too low display will appear pointing he graphics panel. In this enough power for possibly pents and must be sts are undertaken.

Æ13

DETS 3d and low battery

eads are reversed with st leads, the reading on the display is preceded by a negative sign. The reading is still valid, but the potential connections should be reversed to remove the negative sign. For a positive measurement the 'C1' and 'P1' (or 'E' and 'ES') connections should go to the electrode being tested, i.e. to one end of the resistance, and the 'C2' and 'P2' (or 'S' and 'H') connections should go to the test spikes, i.e. the other end of the resistance.

Fig. 5 Reverse polarity symbol

High Current Spike Resistance

To indicate that the resistance of the current circuit is too high, a display segment illuminates opposite the 'Rc' mark on the graphics panel. This happens automatically while the tester is switched on, even during a test. Its appearance may be caused by an open circuit or a poor connection in the test lead to the current spike, or, more likely, high resistance in the ground in the vicinity of the current spike and poor contact with that spike. Whatever the cause of the symbol's appearance it must be removed before a test can be regarded as valid. Moistening the ground around the current spike, re-siting the spike in a new position or using more than one spike may solve the problem.

Fig. 6 High current spike resistance symbol.

High Potential Spike Resistance

To indicate that the resistance of the potential circuit is too high a display segment illuminates opposite the 'Rp' mark on the graphics panel. This does not happen automatically but should be a preliminary test carried out by the operator pressing the push-button marked 'Test Rp'. The reasons for its appearance may be the same as for the high current spike resistance symbol, and, as in that case, the problem must be removed before a test can be regarded as valid. Again the solution may be moistening the ground or re-siting the potential test spike.

Note:— Operating the 'Test Rp' button will cause the display to go blank except for the decimal point and high potential spike resistance symbol (when relevant).

OPERATION

Fig. 7 High potential spike resistance symbol.

Excessive Noise Interference

A display segment will automatically appear opposite the 'Noise' mark on the graphics panel when the interference voltage in the earth being measured is beyond the level which can be rejected by the tester. A valid measurement cannot be made in this condition. The solution may be to wait until the interference has subsided if it is transient in nature or, to choose a different position for the test spikes.

Fig. 8 Excessive noise interference symbol.

Note:— This symbol may also appear with the overrange indication if the resistance being measured is very much greater than the range selected.

Over-range

To indicate that the resistance being measured is above the range selected, the over-range symbol appears. This is a '1' as the left hand digit with the remainder of the display blank except for the decimal point. When this symbol appears switch to a higher range. If it appears on the '2 kΩ' range there is something seriously wrong with the earth electrode under test, (make sure in this case that the high current spike indicator is not showing — see page 17).

Fig. 9 Over-range symbol.

SETTING-UP THE

For earth electrode surveying, the instr to spikes hammere connections are ma being undertaken a the next section, 'N

Test spikes and lon types of earth testin Accessory Kit, ET/K the basic equipmer Recommended tes diameter 460 mm k can be driven to a d from a 1 kg hamme use as test leads is reasonably flexible : 100 m length will be

When connections right angled adapto supplied with the in terminals to take hc wires, or 4 mm pluc

104/0,1 mm is suita

y much greater than the

tance being measured is d, the over-range symbol he left hand digit with the blank except for the decimal lappears switch to a higher e '2 40' range there is ong with the earth electrode this case that the high not showing — see page 17).

rer-range symbol.

SETTING-UP THE TEST SPIKES ETC.

For earth electrode testing and for earth resistivity surveying, the instrument's test leads are connected to spikes hammered into the ground. The way the connections are made depends on the type of test being undertaken and the details of these are given in the next section. 'Measuring Techniques'.

Test spikes and long test leads are necessary for all types of earth testing and the Earth Testing Field Accessory Kit, ET/KIT, (available as an option) contains the basic equipment.

Recommended test spikes are 13 mm square, or diameter 460 mm long and made of mild steel. These can be driven to a depth of 300 mm with rapid blows from a 1 kg hammer. The size of the cable suitable for use as test leads is not critical but, it should be reasonably flexible and MUST be insulated. At least 100 m length will be needed and a cable size of about 104/0,1 mm is suitable.

When connections are made to the instrument the right angled adaptors should be used. These are supplied with the instrument and they have screw terminals to take hook or spade connectors, bare wires, or 4 mm plugs.

BASIC TEST PROCEDURE

After the test spikes have been set-up and connected to the instrument for the type of test to be carried out (refer to 'Measuring Techniques'), proceed as follows:—

- Select the measuring range required. Choose the lowest range if it is uncertain which is correct; this may produce the over-range symbol when the instrument is operated, if so switch to the next range.
- 2. Turn the generator handle at 120 r.p.m. (minimum) for the DET3.
 - Note:--The DET5 energizes the test circuit as soon as the range is selected.
- Check that the display shows no adverse test conditions, i.e. that the high current circuit resistance and excessive noise symbols are not showing. Also check that the low battery voltage symbol (DET5) or low cranking speed symbol (DET3) is not illuminated.
- Press the 'Test Rp' push-button to check the potential spike resistance. The high potential circuit resistance symbol should not appear. Release the push-button.
- If all the conditions for a test are satisfactory the reading given on the display may be accepted as the earth resistance. If any of the display symbols, (except reverse polarity), illuminate, the cause of the adverse condition must be removed before the reading can be accepted.

OPERATION

BATTERY CHARGING (DET5)

The battery should be charged as soon as the low battery indicator appears on the display. If the display remains blank when the instrument is switched on, it may be that the battery has become completely exhausted. In this case charge the battery fully before performing any tests.

Note:— It is unwise to allow the battery to become completely exhausted for fear of causing it damage.

Before connecting to the mains supply ensure that the correctly rated fuse is fitted and that the voltage adjuster is set to the right value for the supply to be used. For a 240 V a.c. supply the fuse should be 50 mA and for a 120 V a.c. supply the fuse should be 100 mA. (Type and size of the fuses are given in the Specification). The mains supply fuse is located in the holder which is part of the recessed input plug on the side of the case. Simply slide the holder out to reveal two fuses, the inner one is the working fuse; the outer one is a spare fuse. The voltage adjuster is located on the bottom of the casing. Use a screwdriver to turn the appropriate voltage mark to the indicating arrow.

When the fuse and voltage selector are correctly set, plug the mains supply lead into a suitable socket outlet and switch on. An I.e.d. lighton the front panel marked ' – – – CHARGE' will illuminate to show that the instrument is connected to a mains supply. Leave the battery to charge for 10 hours approximately.

Caution:— Do not leave the test leads connected to the terminals while the instrument is being supplied with mains power.

REPLACING THE CURRENT SOURCE PROTECTING FUSE

In addition to the DET5 mains supply fuse, both the DET3 and DET5 are fitted with a fuse to protect the output current source from input overloads, i.e. voltages applied to the C1 and C2 terminals. This fuse is rated at 100 mA and is located in a holder in the base of the instrument case. To change this fuse use a screwdriver to unscrew the cap of the fuseholder; the fuse is clipped into this cap. Fit a new fuse and replace the cap.

Caution:— Any replacement fuse must be of the correct type and rating, (see the Specification).

MODE D'EMPLOI

AVERTISSEMENTS

- Lors de travaux à proximité de struct tension où il est possible de rencont potentiels dangereux sur les appare le sol, il est conseillé que l'opérateur des gants en caoutchouc et se tienr en caoutchouc (voir paragraphe 3 ci
- Il est préférable que la terre à mesur du circuit qu'elle protège. Ceci n'éta possible, prendre les précautions in ci-après.
- Précautions vis-à-vis des terres e Il est nécessaire de prendre certain lors de mesures de terres en servic pour la terre d'une sous-station en Si un défaut se produit dans la sous un essai, des tensions dangereuse apparaitre entre la terre du site et lé auxiliaires établies pour les essais. a) L'appareil doit être utilisé dans
 - de protection de la sous-statio réalisé et/ou dans une zone ou potentiel de la terre à mesurer 50 V. Si ce n'est pas possible u et des tapis en caoutchouc. b) Les bornes P1 et C1 sont relié
 - b) Les bornes F F
 mesurer.

MEASURING TECHNIQUES Testing Earth Electrodes

FALL-OF-POTENTIAL METHOD

This is the basic method for measuring the resistance of earth electrode systems. However, it may only be practicable on small, single earth electrodes because of the limitation of the size of the area available to perform the tests.

Hammer the current test spike into the ground some 30 metres to 50 metres away from the earth electrode ('E') to be tested. Connect this spike to the instrument terminal 'C2' (or 'H').

Hammer the potential test spike into the ground midway between the current test spike and the earth electrode. Connect this spike to the instrument terminal 'P2' (or 'S').

Note:— It is important that the current spike, the potential spike and the earth electrode are all in a straight line. Also, when running the test leads out to these spikes (remote electrodes), it is preferable not to lay the wires close to each other in order to minimise the effect of mutual inductance.

Connect the 'C1' (or 'E') and the 'P1' (or 'ES') instrument terminals to the earth electrode 'E'. The diagram of Fig. 10 shows the connections.

Operate the DET3 or DET5 as explained in the 'Basic Test Procedure' on page 19, and note the resistance measurement obtained.

Fig. 10 Fall-of-Potential method for measuring resistance of an earth electrode.

Move the potential spike 3 metres farther away from the earth electrode and make a second resistance measurement. Then move the potential spike 3 metres nearer the earth electrode (than the original position) and make a third resistance measurement.

33

var a cabo la ED incluida en el para mostrar que el suministro de la red. rante 10 horas

uctores de prueba pornes mientras el e energía de la red.

TECTOR DE LA

o de la red del DET5, provistos de un e corriente de salida .e. voltajes aplicados a

l de 100 mA y va ido en la base del ita este fusible, usar car la tapa del o a esta tapa. Colocar ilar la tapa.

es de repuesto deben cuanto a tipo y e la sección s).

MEASURING TECHNIQUES Testing Earth Electrodes

If the three resistance readings agree with each other, within the required accuracy, then their average may be taken as the resistance to earth of the electrode. If the readings disagree beyond the required accuracy then an alternative method should be used e.g. the 61.8% Rule or the Slope method etc.

Fall-of-Potential Method With Short 'E' Lead

Another way of making connections to the earth electrode 'E' is to join the 'P1' and 'C1' (or 'E' and 'ES') instrument terminals together and then connect both to the earth electrode 'E' using only one test lead, (as shown in Fig. 11). This should ONLY be done if the test lead can be kept short because its resistance will be included in the measurement.

Note:--- Earth electrode test lead resistance can be determined separately. First remove it from the electrode 'E' and connect it to the 'C2' and 'P2' (or 'H' and 'S') terminals joined together, then measure its resistance in the normal way. This lead resistance can then be deducted from the earth resistance measurements. This procedure is not, of course, necessary if the 'C1' and 'P1' (or 'E' and 'S') terminals are connected by separate test leads.

15 m to 25 m

Fig. 11 Fall-of-Potential method using single lead to the earth electrode.

THE 61,8% RULE

-15 m to 25 m

To obtain a sensible reading using the Fall-of-Potential method the current spike must be correctly sited in relation to the earth electrode. Since both possess "resistance areas", the current spike must be sufficiently remote to prevent these areas overlapping. Furthermore, the potential spike must be between these two areas, see the diagram of Fig. 12. If these requirements are not met, the Fall-of-Potential method may give unsatisfactory results.

Fig. 12 Resistance areas associated with electrode and current spike.

Theoretically, both the current and potential spikes should be at an infinite distance from the earth electrode! However, by graphical considerations and by actual test it can be demonstrated that:—

The "true" resistance of the earth electrode is equal to the measured resistance when the potential spike is positioned 61,8% of the distance between the earth electrode and the current spike, away from the earth electrode.

using single lead

the Fall-of-Potential correctly sited in nee both possess pike must be se areas tential spike must be a diagram of Fig. 12. t, the Fall-of-Potential esults.

This is the 61,8% Rule and strictly only applies when the earth electrode and both current and potential spikes are in a straight line, when the soil is homogeneous and when the earth electrode has a small resistance area that can be approximated by a hemisphere. Bearing these limitations in mind this method can be used, with care, on small earth electrode systems consisting of a single rod or plate etc. and on medium systems with several rods.

The diagram of Fig. 13 shows the layout for the 61,8% Rule.

Fig. 13 The 61,8% Rule method.

MEASURING TECHNIQUES Testing Earth Electrodes

For most purposes the current spike should be 30 metres to 50 metres from the centre of the earth electrode under test. The potential spike should be inserted in the ground 61.8% of this distance, between and in a straight line with, the current spike and the earth electrode. The distance is measured from the earth electrode.

If the earth electrode system is of medium size containing several rods, then these distances must be increased. The following table gives a range of distances which agree with the rule. In the first column "Maximum dimension" is the maximum distance across the earth electrode system to be measured.

Maximum dimension in metres	Distance to potential electrode in metres from centre of earth system	Distance to current electrode in metres from centre of earth system
5	62	100
10	93	150
20	124	200

For greater accuracy an average reading can be calculated by moving the current spike, say 10 metres, towards and then away from its first position and making further resistance measurements. (Remember that the potential spike must also be moved in accordance with the 61,8% Rule). The average of the three readings can then be calculated.

THE SLOPE METHOD

This method is more applicable to larger earth electrode systems or where the position of the centre of the earthing system is either unknown or inaccessible (e.g. if the system is beneath the floor of a building). The Slope method can also be used if the area available for siting the test spikes is restricted. It can be tried if the previous methods prove unsatisfactory and generally yields results of greater accuracy than those methods.

The equipment is set-up as shown in Fig. 14. The remote current spike is placed 50 metres or more away from the earth electrode system to be measured and connected to the instrument's 'C2' (or 'H') terminal. The potential spike is inserted at a number of positions consecutively, between the earth system and the current spike, and connected to the 'P2' (or 'S') terminal. The test spikes and the earth system should all be in a straight line.

The instrument's 'C1' and 'P1' (or 'E' and 'ES') terminals are connected separately to some point on the earth electrode system.

Fig. 14 Connections for

The earth resistance is m position of the potential plotted from the results. needed. The diagram of Drawing the curve will s which may be either re-o spike must also be 61,8% Rule). The can then be calculated.

e to larger earth he position of the centre er unknown or n is beneath the floor of l can also be used if the st spikes is restricted. It ethods prove rields results of greater

hown in Fig. 14. The d 50 metres or more e system to be measured vent's 'C2' (or 'H') is inserted at a number of veen the earth system and the earth system

1' (or 'E' and 'ES') arately to some point on

The earth resistance is measured at each separate position of the potential spike and the resistance curve plotted from the results. At least six readings are needed. The diagram of Fig. 15 shows an example. Drawing the curve will show up any incorrect points which may be either re-checked or ignored.

Fig. 15 Resistance curve from Slope method tests.

Suppose the distance from the earth electrode system to the current spike is EC. From the curve equivalent resistance readings to potential spike positions 0.2 EC, 0.4 EC and 0.6 EC can be found. These are called R1, R2 and R3 respectively.

Calculate the slope coefficient μ

where
$$\mu = \frac{R3 - R2}{R2 - R1}$$

which is a measure of the change of slope of the earth resistance curve.

MEASURING TECHNIQUES Testing Earth Electrodes

From the results obtained of the resistance for various values of the distance EC another curve can be plotted, as shown in Fig. 16 for example.

Test 4

Fig. 16 Possible results from several Slope method

This shows how the resistance is decreasing as the distance chosen for The curve indicates that the distances chosen for EC in tests (1) and (2) were not large enough, and that those chosen in tests (3) and (4) were preferable because they would give the more correct value of the earth resistance.

accuracy of more than 5%. This will usually be adequate, bearing in mind that this sort of variation occurs with varying soil moisture conditions or nonhomogeneous soils.

Chart for use with the S

μ	0	1	
0.40	0.6432	6431	64
0.41	0.6418	6416	64
0.42	0.6403	6402	64
0.43	0.6389	6387	63
0.44	0.6374	6373	63
0.45	0.6360	6359	63
0.46	0.6346	6344	63
0.47	0.6331	6330	63
0.48	0.6317	6315	63
0.49	0.6302	6301	63
0.50	0.6288	6286	62
0.51	0.6273	6271	62
0.52	0.6258	6256	62
0.53	0.6242	6241	62
0.54	0.6227	6226	62
0.55	0.6212	6210	62
0.56	0.6197	6195	61
0.57	0.6182	6180	61
0.58	0.6166	6165	61
0.59	0.6151	6150	61
0.60	0.6136	6134	61
0.61	0.6120	6118	61
0.62	0.6104	6102	61
0.63	0.6087	6086	60
0.64	0.6071	6070	60

Chart for use with the Slope method

re EC for each test.

sults from several Slope method

hows how the resistance is asing as the distance chosen for ncreased.

The indicates that the distances in for EC in tests (1) and (2) were not enough, and that those chosen in (3) and (4) were preferable because would give the more correct value of arth resistance.

nreasonable to expect a total acy of more than 5%. This will by be adequate, bearing in mind that ort of variation occurs with varying noisture conditions or non-

ogeneous soils.

μ	0	1	2	3	4	5	6	7	8	9
		0.401	6429	6428	6426	6425	6423	6422	6420	6419
0.40	0.6432	6431	6429	6413	6412	6410	6409	6408	6406	640
0.41	0.6418	6416	6400	6399	6397	6396	6395	6393	6392	639
0.42	0.6403	6402	6386	6384	6383	6382	6380	6379	6377	637
0.43	0.6389	6387	6372	6370	6369	6367	6366	6364	6363	636
0.44	0.6374	6373	6357	6356	6354	6353	6351	6350	6348	634
0.45	0.6360	6359	6343	6341	6340	6338	6337	6336	6334	633
0.46	0.6346	6344	6328	6327	6325	6324	6323	6321	6320	631
0.47	0.6331	6330	6314	6312	6311	6310	6308	6307	6305	630
0.48	0.6317	6315	6300	6298	6297	6295	6294	6292	6291	628
0.49	0.6302	6301			6282	6280	6279	6277	6276	627
0.50	0.6288	6286	6285	6283	6262	6265	6264	6262	6261	625
0.51	0.6273	6271	6270	6268	6252	6252	6248	6247	6245	624
0.52	0.6258	6256	6255	6253	6236	6235	6233	6232	6230	622
0.53	0.6242	6241	6239	6238		6220	6218	6217	6215	621
0.54	0.6227	6226	6224	6223	6221 6206	6204	6203	6201	6200	619
0.55	0.6212	6210	6209	6207	6191	6189	6188	6186	6185	618
0.56	0.6197	6195	6194	6192		6174	6172	6171	6169	616
0.57	0.6182	6180	6179	6177	6176 6160	6159	6157	6156	6154	61
0.58	0.6166	6165	6163	6162	6145	6144	6142	6141	6139	613
0.59	0.6151	6150	6148	6147		1		6125	6123	61
0.60	0.6136	6134	6133	6131	6130	6128	6126	6125	6107	61
0.61	0.6120	6118	6117	6115	6113	6112	6110	6092	6091	60
0.62	0.6104	6102	6100	6099	6097	6096	6094	6092	6074	60
0.63	0.6087	6086	6084	6083	6081	6079	6076		6058	60
0.64	0.6071	6070	6068	6066	6065	6063	6061	6060	0000	1 00.

μ	0	1	2	3	4	5	6	7	8	9
0.65	0.6055	6053	6052	6050	6049	6047	6045	6044	6042	6040
0.66	0.6039	6037	6036	6034	6032	6031	6029	6027	6026	6024
0.67	0.6023	6021	6019	6018	6016	6015	6013	6011	6010	6008
0.68	0.6006	6005	6003	6002	6000	5998	5997	5995	5993	5992
0.69	0.5990	5989	5987	5985	5984	5982	5980	5979	5977	5976
0.70	0.5974	5973	5971	5969	5967	5965	5964	5962	5960	5959
0.71	0.5957	5955	5953	5952	5950	5948	5947	5945	5943	5942
0.72	0.5940	5938	5936	5935	5933	5931	5930	5928	5926	5924
0.73	0.5923	5921	5920	5918	5916	5914	5912	5911	5909	5907
0.74	0.5906	5904	5902	5900	5899	5897	5895	5894	5892	5890
0.75	0.5889	5887	5885	5883	5882	5880	5878	5877	5875	5873
0.76	0.5871	5870	5868	5866	5865	5863	5861	5859	5858	5856
0.77	0.5854	5853	5851	5849	5847	5846	5844	5842	5841	5839
0.78	0.5837	5835	5834	5832	5830	5829	5827	5825	5824	5822
0.79	0.5820	5818	5817	5815	5813	5812	5810	5808	5806	5805
0.80	0.5803	5801	5799	5797	5796	5794	5792	5790	5788	5786
0.81	0.5785	5783	5781	5779	5777	5775	5773	5772	5770	5768
0.82	0.5766	5764	5762	5760	5759	5757	5755	5753	5751	5749
0.83	0.5748	5746	5744	5742	5740	5738	5736	5735	5733	5731
0.84	0.5729	5727	5725	5723	5722	5720	5718	5716	5714	5712
0.85	0.5711	5709	5707	5705	5703	5701	5699	5698	5696	5694
0.86	0.5692	5690	5688	5686	5685	5683	5681	5679	5677	5675
0.87	0.5674	5672	5670	5668	5666	5664	5662	5661	5659	5657
0.88	0.5655	5653	5651	5650	5648	5646	5644	5642	5640	5638
0.89	0.5637	5635	5633	5631	5629	5627	5625	5624	5622	5620

۲

ĩ,

Chart for use with the Slope method (contd.)

μ	0	1	2
0.90	0.5618	5616	561
0.91	0.5598	5596	559
0.92	0.5578	5576	557
0.93	0.5557	5555	555
0.94	0.5537	5535	553
0.95	0.5517	5515	551
0.96	0.5497	5495	549
0.97	0.5477	5475	547
0.98	0.5456	5454	545
0.99	0.5436	5434	543
1.00	0.5416	5414	541
1.01	0.5394	5391	538
1.02	0.5371	5369	536
1.03	0.5349	5347	534
1.04	0.5327	5325	532
1.05	0.5305	5302	530
1.06	0.5252	5280	527
1.07	0.5260	5258	525
1.08	0.5238	5235	523
1.09	0.5215	5213	521
1.10	0.5193	5190	518
1.11	0.5168	5165	516
1.12	0.5143	5140	513
1.13	0.5118	5115	511
1.14	0.5093	5090	508

40

4

ł

6	7	8	9
045	6044	6042	6040
029	6027	6026	6024
013	6011	6010	6008
997	5995	5993	5992
980	5979	5977	5976
364	5962	5960	5959
347	5945	5943	5942
330	5928	5926	5924
J12	5911	5909	5907
395	5894	5892	5890
378	5877	5875	5873
361	5859	5858	5856
144	5842	5841	5839
127	5825	5824	5822
:10	5808	5806	5805
92	5790	5788	5786
73	5772	5770	5768
55	5753	5751	5749
36	5735	5733	5731
18	5716	5714	5712
99	5698	5696	5694
81	5679	5677	5675
62	5661	5659	5657
44	5642	5640	5638
25	5624	5622	5620

μ	0	1	2	3	4	5	6	7	8	9
0.90	0.5618	5616	5614	5612	5610	5608	5606	5604	5000	
0.91	0.5598	5596	5594	5592	5590	5588	5586	1	5602	5600
0.92	0.5578	5576	5574	5572	5570	5568	5565	5584	5582	5580
0.93	0.5557	5555	5553	5551	5549	5547		5563	5561	5559
0.94	0.5537	5535	5533	5531	5529	5527	5545	5543	5541	5539
0.95	0.5517	5515	5513	5511	5509		5525	5523	5521	5519
0.96	0.5497	5495	5493	5491	5489	5507 5487	5505	5503	5501	5499
0.97	0.5477	5475	5473	5471	5469	5487	5485	5483	5481	5479
0.98	0.5456	5454	5452	5450	5448		5464	5462	5460	5458
0.99	0.5436	5434	5432	5430	5428	5446	5444	5442	5440	5438
1.00	0.5416	5414	5412		1	5426	5424	5422	5420	5418
1.01	0.5394	5391	5389	5409	5407	5405	5403	5400	5398	5396
1.02	0.5371	5369	5367	5387	5385	5383	5380	5378	5376	5374
1.03	0.5349	5347		5365	5362	5360	5358	5356	5354	5351
1.04	0.5327	5325	5345	5344	5340	5338	5336	5333	5331	5329
1.05	0.5305	5302	5322	5320	5318	5316	5313	5311	5309	5307
1.06	0.5252	5280	5300 5278	5298	5296	5293	5291	5289	5287	5284
1.07	0.5260	5258		5276	5273	5271	5269	5267	5264	5262
1.08	0.5238	5235	5255	5253	5251	5249	5247	5244	5242	5240
1.09	0.5235	5235	5233	5231	5229	5229	5224	5222	5219	5217
1	1		5211	5209	5206	5204	5202	5200	5197	5195
1.10	0.5193	5190	5188	5185	5183	5180	5178	5175	5173	
1.11	0.5168	5165	5163	5160	5158	5155	5153	5150	5148	5170
1.12	0.5143	5140	5137	5135	5132	5130	5127	5125		5145
1.13	0.5118	5115	5113	5110	5108	5105	5103	5125	5122	5120
1.14	0.5093	5090	5088	5085	5083	5080	5078	5075	5098 5073	5095 5070

¢

μ	0	Ţ	2	3	4	5	6	7	8	9
1.15	0.5068	5065	5062	5060	5057	5055	5052	5050	5047	5045
1.16	0.5042	5040	5037	5035	5032	5030	5027	5025	5022	5020
1.17	0.5017	5015	5012	5010	5007	5005	5002	5000	4997	4995
1.18	0.4992	4990	4987	4985	4982	4980	4977	4975	4972	4970
1.19	0.4967	4965	4962	4960	4957	4955	4952	4950	4947	4945
1.20	0.4942	4939	4936	4933	4930	4928	4925	4922	4919	4916
1.21	0.4913	4910	4907	4904	4901	4899	4896	4893	4890	4887
1.22	0.4884	4881	4878	4875	4872	4870	4867	4864	4861	4858
1.23	0.4855	4852	4849	4846	4843	4841	4838	4835	4832	4829
1.24	0.4826	4823	4820	4817	4814	4812	4809	4806	4803	4800
1.25	0.4797	4794	4791	4788	4785	4783	4780	4777	4774	4771
1.26	0.4768	4765	4762	4759	4756	4754	4751	4748	4745	4742
1.27	0.4739	4736	4733	4730	4727	4725	4722	4719	4716	4713
1.28	0.4710	4707	4704	4701	4698	4696	4693	4690	4687	4684
1.29	0.4681	4678	4675	4672	4669	4667	4664	4661	4658	4655
1.30	0.4652	4649	4645	4642	4638	4635	4631	4628	4625	4621
1.31	0.4618	4614	4611	4607	4604	4601	4597	4594	4590	4586
1.32	0.4583	4580	4577	4573	4570	4566	4563	4559	4556	4553
1.33	0.4549	4546	4542	4539	4535	4532	4529	4525	4522	4518
1.34	0.4515	4511	4508	4505	4501	4498	4494	4491	4487	4484
1.35	0.4481	4477	4474	4470	4467	4463	4460	4457	4453	4450
1.36	0.4446	4443	4439	4436	4432	4429	4426	4422	4419	4415
1.37	0.4412	4408	4405	4402	4398	4395	4391	4388	4384	4381
1.38	0.4378	4374	4371	4367	4364	4360	4357	4354	4350	4347
1.39	0.4343	4340	4336	4333	4330	4326	4323	4319	4316	4312

ť.

ς.

Chart for use with the Slope method (contd.)

μ	0	1	2
1.40	0.4309	4305	430
1.41	0.4267	4263	4251
1.42	0.4225	4221	421
1.43	0.4183	4178	417,
1.44	0.4141	4136	413:
1.45	0.4099	4094	4091
1.46	0.4056	4052	404
1.47	0.4014	4010	400!
1.48	0.3972	3968	396
1.49	0.3930	3926	392
1.50	0.3888	3883	387:
1.51	0.3840	3835	383(
1.52	0.3791	3786	378
1.53	0.3740	3735	3731
1.54	0.3688	3683	367
1.55	0.3635	3630	362
1.56	0.3580	3574	356:
1.57	0.3523	3517	351
1.58	0.3465	3459	345:
1.59	0.3405	3399	339:

- %

42

-6

6	7	8	9
052	5050	5047	5045
027	5025	5022	5020
002	5000	4997	4995
977	4975	4972	4970
952	4950	4947	4945
925	4922	4919	4916
896	4893	4890	4887
867	4864	4861	4858
838	4835	4832	4829
809	4806	4803	4800
780	4777	4774	4771
751	4748	4745	4742
722	4719	4716	4713
693	4690	4687	4684
664	4661	4658	4655
631	4628	4625	4621
597	4594	4590	4586
563	4559	4556	4553
529	4525	4522	4518
494	4491	4487	4484
460	4457	4453	4450
426	4422	4419	4415
391	4388	4384	4381
357	4354	4350	4347
323	4319	4316	4312

ĩ

6

μ	0	1	2	3	4	5	6	7	8	9
1.40	0.4309	4305	4301	4296	4292	4288	4284	4280	4275	4271
1.41	0.4267	4263	4258	4254	4250	4246	4242	4237	4233	4229
1.42	0.4225	4221	4216	4212	4208	4204	4200	4195	4191	4187
1.43	0.4183	4178	4174	4170	4166	4162	4157	4153	4149	4145
1.44	0.4141	4136	4132	4128	4124	4120	4115	4111	4107	4103
1.45	0.4099	4094	4090	4086	4082	4077	4073	4069	4065	4061
1.46	0.4056	4052	4048	4044	4040	4035	4031	4027	4023	4018
1.47	0.4014	4010	4005	4001	3997	3993	3989	3985	3980	3976
1.48	0.3972	3968	3964	3959	3955	3951	3947	3943	3938	3934
1.49	0.3930	3926	3921	3917	3913	3909	3905	3900	3896	3892
1.50	0.3888	3883	3878	3874	3869	3864	3859	3854	3850	3845
1.51	0.3840	3835	3830	3825	3820	3816	3811	3806	3801	3796
1.52	0.3791	3786	3781	3776	3771	3766	3760	3755	3750	3745
1.53	0.3740	3735	3730	3724	3719	3714	3709	3704	3698	3693
1.54	0.3688	3683	3677	3672	3667	3662	3656	3651	3646	3640
1.55	0.3635	3630	3624	3619	3613	3608	3602	3597	3591	3586
1.56	0.3580	3574	3569	3563	3557	3552	3546	3540	3534	3528
1.57	0.3523	3517	3511	3506	3500	3494	3488	3482	3477	3471
1.58	0.3465	3459	3453	3447	3441	3435	3429	3423	3417	3411
1.59	0.3405	3399	3393	3386	3380	3374	3368	3362	3355	3349

4

•

43

£.

MEASURING TECHNIQUES Testing Earth Electrodes

METHOD WHEN "DEAD" EARTH IS AVAILABLE

The techniques using test spikes explained earlier are the preferred methods of earth testing. In congested areas it may not be possible to find suitable sites for the test spikes, nor sufficient space to run the test leads. In these cases an alternative low resistance earth such as a water main may be available. This is referred to as a "dead" earth.

This must be of very low resistance to earth and connections are as shown in Fig. 17. This test will give the combined resistance of the two earths in series. If that of the "dead" earth is negligible then the reading may be taken as that of the electrode under test.

However, great care must be taken before deciding to adopt this method and its use is not to be encouraged. This is because non-metallic piping and jointing materials are commonly found in water main and other installations nowadays and such materials are totally unsuitable as a substitute earth spike. Before employing this method, the user must be quite sure that no part of the "dead" earth installation contains plastic or other non-metallic materials.

The Star-Delta method is therefore preferable for use in congested urban areas and it is explained (along with the other methods referred to here) in the book "A Simple Guide to Earth Testing" published by MEGGER INSTRUMENTS LIMITED.

Fig. 17 "Dead" earth method.

If only two test leads are used as shown in the diagram, the resistance of both leads will be included in the measurement. The resistance of the leads can be found by joining their ends together, operating the instrument and taking the reading in the usual way. This value should be subtracted from the total to obtain the combined resistance of the earth electrode and the "dead" earth.

15th EDITION IEE WIRING REGULAT REQUIREMENT

Regulation 613-4 of the 15th Edition IE Regulations specifies that the resistant electrodes must be measured and the used is described in Appendix 15 Item basically the Fall-of-Potential method, I that the potential spike must be moved either side of the central position for th third resistance measurements (see Fi three results are in substantial agreem average of them is taken as the resista electrode. If there is no agreement the spike must be moved farther away from and the tests repeated.

Fig. 18 Test spike positions for the 15 IEE Wiring Regulations.

1.

I as shown in the h leads will be included stance of the leads can together, operating the ding in the usual way. ed from the total to the earth electrode

15th EDITION IEE WIRING REGULATIONS REQUIREMENT

Regulation 613-4 of the 15th Edition IEE Wiring Regulations specifies that the resistance of earth electrodes must be measured and the method to be used is described in Appendix 15 Item 4. This is basically the Fall-of-Potential method, but specifies that the potential spike must be moved 6 metres either side of the central position for the second and third resistance measurements (see Fig. 18). If the three results are in substantial agreement, the average of them is taken as the resistance of the earth electrode. If there is no agreement then the current spike must be moved farther away from the electrode and the tests repeated.

Fig. 18 Test spike positions for the 15th Edition IEE Wiring Regulations.

OTHER METHODS

There are other earth electrode resistance testing methods among which are the Four Potential method, the Intersecting Curves method and the Star-Delta method which is suitable for congested urban areas. MEGGER INSTRUMENTS LIMITED have produced a book entitled "A Simple Guide to Earth Testing" which explains all these test methods and gives other helpful information about earth testing. It is available from the instrument manufacturer or one of his approved distributors and has the part no. 6171-230.

MEASURING TECHNIQUES Determining 'Touch' and 'Step' Potential

TOUCH POTENTIAL

Touch potential is the potential difference a person would experience across his body if he were, for example, standing on the ground outside the earthed perimeter fence of a substation and touching the fence at the time a fault to earth occurred.

Connect the instrument in the following way:— Terminal 'C1' (or 'E') to the substation earth. Terminal 'C2' (or 'H') to the current spike inserted in the ground some distance away.

Terminal 'P1' (or 'ES') to the structure being tested e.g. the perimeter fence.

Terminal 'P2' (or 'S') to a potential spike inserted in the ground 1 metre away from the perimeter fence adjacent to the point where a person might stand.

Operate the instrument and record the resistance indicated. This is the effective resistance between the point of test on the fence and the potential spike as seen by the test current.

The maximum value of the current that would flow in the earth when a fault to earth occurred at the substation must be known. The maximum fault current has to be calculated from the parameters associated with the substation ratings involved. From Ohm's Law ($V = 1 \times R$), the Touch potential can be calculated.

Fig. 19 Determining 'Touch' and 'Step' potential

STEP POTENTIAL

Step potential is the potential differen would experience between his feet a: across the ground in which a fault cur flowing.

Connect the 'C1' and 'C2' (or 'E' and ' described for touch potential measure Connect the 'P1' and 'P2' terminals to inserted in the ground at positions A α respectively, (see Fig. 19); A is neare: substation earth. Positions A and B at or the length of a step.

Operate the instrument and record th indicated. This is the effective resista positions A and B, as seen by the tes

The maximum value of the current the the earth when a fault to earth occurr substation must be known (as is the potential). From Ohm's Law (V = 1×1 potential can be calculated.

tep' Potential

Touch' and 'Step' potential.

STEP POTENTIAL

Step potential is the potential difference a person would experience between his feet as he walked across the ground in which a fault current was flowing.

Connect the 'C1' and 'C2' (or 'E' and 'H') terminals as described for touch potential measurement above. Connect the 'P1' and 'P2' terminals to test spikes inserted in the ground at positions A and B respectively, (see Fig. 19); A is nearest to the substation earth. Positions A and B are 1 metre apart, or the length of a step.

Operate the instrument and record the resistance indicated. This is the effective resistance across the positions A and B, as seen by the test current.

The maximum value of the current that would flow in the earth when a fault to earth occurred at the substation must be known (as is the case with Touch potential). From Ohm's Law ($V = I \times R$), the Step potential can be calculated.

MEASURING TECHNIQUES Measuring Resistivity of the Soil

TYPICAL VARIATIONS IN SOIL RESISTIVITY

The resistance to earth of an earth electrode is influenced by the resistivity of the surrounding soil. The resistivity depends upon the nature of the soil and its moisture content and can vary enormously as seen in the table below:—

Material	Specific resistance in ohm-cms	Source of information
Ashes	350	Higgs
Coke	20-800	
Peat	4,500-20,000	
Garden earth-50% moisture	1,400	Ruppel
" – 20% moisture	4,800	
Clay soil – 40% moisture	770	1 *
" "-20% moisture	3,300	-
London clay	400-2,000	-
Very dry clay	5,000-15,000	
Sand-90% moisture	13,000	Ruppel
" – normal moisture	300,000-800,000	-
Chalk	5,000-15,000	-
Consolidated sedimentary rocks	1,000-50,000	Broughton Edge & Laby

Because it is impossible to forecast the resistivity of the soil with any degree of accuracy it is important to measure the resistance of an earth electrode when it is first laid down and thereafter at periodic intervals. Before sinking an electrode into the ground for a new installation it is often advantageous to make a preliminary survey of the soil resistivity of the surrounding site. This will enable decisions to be made on the best position for the electrode(s) and to decide whether any advantage is to be gained by driving rods to a greater depth. Such a survey may produce considerable savings in electrode and installation costs incurred trying to achieve a required resistance.

LINE TRAVERSE

The most common method of measuring soil resistivity is often referred to as the line traverse. Four test spikes are driven into the ground in a stright line at equal distances 'a' and to a depth of not more than 1/20 of 'a'. The instrument is connected to the test spikes as shown in Fig. 20.

Fig. 20 Connections for resistivity testing.

The instrument is operated and the m made in the normal way. The resistivi calculated from the formula given opp nomogram shown in Fig. 21 on page ! average soil resistivity to a depth 'a'.

The four test spikes are then re-positi tests along a different line. If both the the depth '1/20 a' are maintained, a d comparable reading will be obtained of thus regions of lowest resistivity can given area (at the constant depth 'a').

Re-spacing the test spikes at separati etc. will yield results from which a proresistivity at new depths '1/20 b', '1/2 etc. can be obtained.

If the same line for the test spikes is the separation of them is progressive resistivity values at various depths ca this means depth surveys may be ma INSTRUMENTS LIMITED, publication Guide to Earth Testing" gives more in the line traverse and depth surveys.

Soil

n for the electrode(s) and to ntage is to be gained by lepth. Such a survey may rings in electrode and I trying to achieve a required

Ind of measuring soil ad to as the line traverse. Four o the ground in a stright line d to a depth of not more than int is connected to the test

nnections for resistivity testing.

The instrument is operated and the measurement made in the normal way. The resistivity may be calculated from the formula given opposite or from the nomogram shown in Fig. 21 on page 50. This is the average soil resistivity to a depth 'a'.

The four test spikes are then re-positioned for further tests along a different line. If both the spacing 'a' and the depth '1/20 a' are maintained, a directly comparable reading will be obtained each time, and thus regions of lowest resistivity can be located over a given area (at the constant depth 'a').

Re-spacing the test spikes at separations 'b', 'c', 'd', etc. will yield results from which a profile of the resistivity at new depths '1/20 b', '1/20 c', '1/20 d', etc. can be obtained.

If the same line for the test spikes is maintained, but the separation of them is progressively widened resistivity values at various depths can be obtained. By this means depth surveys may be made. MEGGER INSTRUMENTS LIMITED, publication "A Simple Guide to Earth Testing" gives more information about the line traverse and depth surveys.

CALCULATION OF RESISTIVITY

Assuming that the soil in which the tests were made is homogeneous the resistivity is given by the formula:---

 $\rho = 2\pi a R$

where R is the resistance measured in ohms, a is the test spike spacing in metres and ρ is the resistivity in ohm-metres.

For non-homogeneous soils the formula will give an apparent resistivity which is very approximately the average value to a depth equal to the test spike spacing 'a'.

MEASURING TECHNIQUES Measuring Resistivity of the Soil

Fig. 21 Nomogram for resistivity calculations.

MEASURING TECHNIQUES Conti

To test the continuity of conduit or other earth conductors the instrument is connected as shown i Fig. 22. It will measure metallic resistances of low inductance or capacitance. Make sure that the circu is 'dead' i.e. de-energized, before connecting the instrument for measurement.

Due to the inherent high accuracy of the instrument and the low continuity resistance to be measured, t contact resistance between the test lead clips and t conduit becomes a factor in the measured value. Contact resistance should therefore be kept as low possible.

The resistance of the test leads may be found by connecting them to the 'P1' and 'P2' (or 'ES' and 'S terminals and joining their free ends together. 'C1' a 'P1', and 'C2' and 'P2' (or 'E' and 'ES', and 'S' and 'F must be joined together before the measurement is made in the normal way. The test lead resistance is subtracted from the original reading to give the valu of the continuity resistance. Alternatively use of the four terminal technique will eliminate the test lead resistance.

tivity of the Soil

MEASURING TECHNIQUES Continuity Testing

To test the continuity of conduit or other earth conductors the instrument is connected as shown in Fig. 22. It will measure metallic resistances of low inductance or capacitance. Make sure that the circuit is 'dead' i.e. de-energized, before connecting the instrument for measurement.

Due to the inherent high accuracy of the instrument and the low continuity resistance to be measured, the contact resistance between the test lead clips and the conduit becomes a factor in the measured value. Contact resistance should therefore be kept as low as possible.

The resistance of the test leads may be found by connecting them to the 'P1' and 'P2' (or 'ES' and 'S') terminals and joining their free ends together, 'C1' and 'P1', and 'C2' and 'P2' (or 'E' and 'ES', and 'S' and 'H'), must be joined together before the measurement is made in the normal way. The test lead resistance is subtracted from the original reading to give the value of the continuity resistance. Alternatively use of the four terminal technique will eliminate the test lead resistance.

Fig. 22 Continuity testing.

CIRCUIT DESCRIPTION

The instrument employs the four terminal measurement principle, and so the potential drop across the earth resistance under test is fed to the measuring circuit via terminals 'P1' and 'P2' (or 'ES' and 'S'). An input buffer stage prevents the measuring circuit from loading the earth resistance being tested.

The test signal controls a constant current a.c. source powered from a 'floating' supply and switched to provide the three ranges. The test current is passed via the 'C1' and 'C2' (or 'E' and 'H') terminals through the earth under test. A crystal controlled oscillator is at the heart of the waveform generator circuit. The fundamental frequency so derived is then sub-divided to provide a test signal of 135,3 Hz. Waveforms are also generated to operate the phase sensitive filter and detector circuits.

To remove noise imposed on the test signal as it passes through the earth under test, a phase sensitive filter is employed. The measurement signal is shown on the display directly in the units of ohms.

INSTRUMENT REPAIRS AND SPARE PARTS

The manufacturer's service and spare parts organisation for MEGGER® instruments:----

MEGGER INSTRUMENTS LIMITED,

Archcliffe Road, Dover, Kent CT17 9EN, England. Tel: Dover (0304) 202620 Fax: Dover (0304) 207342 Telex: 96283 Avomeg G

Approved Repair Companies

instrument.

A number of independent instrument repair

companies in the U.K. have been approved for repair work on most MEGGER® instruments, using genuine

MEGGER® spare parts. Their names and addresses

are listed in the Warranty Card supplied with each new

consult the A country regar Distributor/Ac action to take If returning ar be sent, freig opposite. A c Note should I expedite clea A repair estin charges will k before work «

Overseas

Instrument 0\

NEW MEGG GUARANTE OF PURCHA

at the heart of the) fundamental o-divided to provide a rms are also generated ilter and detector

e test signal as it test, a phase sensitive ment signal is shown ts of ohms.

INSTRUMENT REPAIRS AND SPARE PARTS

The manufacturer's service and spare parts organisation for MEGGER® instruments:-----

MEGGER INSTRUMENTS LIMITED,

Archcliffe Road, Dover, Kent CT17 9EN, England. Tel: Dover (0304) 202620 Fax: Dover (0304) 207342 Telex: 96283 Avomeg G

Approved Repair Companies

A number of independent instrument repair companies in the U.K. have been approved for repair work on most MEGGER[®] instruments, using genuine MEGGER[®] spare parts. Their names and addresses are listed in the Warranty Card supplied with each new instrument.

Overseas

Instrument owners outside Great Britain should consult the Appointed Distributor/Agent for their country regarding spare parts and repair facilities. The Distributor/Agent will advise on the best course of action to take.

If returning an instrument to Britain for repair, it should be sent, freight pre-paid, to the address shown opposite. A copy of the Invoice and of the Packing Note should be sent simultaneously by airmail to expedite clearance through the U.K. Customs.

A repair estimate showing freight return and other charges will be submitted to the sender, if required, before work on the instrument commences.

NEW MEGGER® INSTRUMENTS ARE GUARANTEED FOR 12 MONTHS FROM THE DATE OF PURCHASE BY THE USER.