

MEGGER

Operating Instruction.

Safety in the Use of Electrical Equipment

It should be understood that any use of electricity inherently involves some degree of safety hazard.

Various safety regulations and recommendations are in existence and new ones are being formulated in an attempt to reduce the extent of such hazard. This is achieved principally by defining, as far as possible, the levels of voltage and current above which there is significant hazard; by establishing certain principles in the design of equipment and by recommending specific visual warnings of any residual hazard, to be placed on the equipment.

We, in common with other responsible manufacturers, take all reasonable steps to ensure that our products comply with relevant approved safety standards. However, it must be emphasised that certain types of

2

electrical testing essentially involve the use of voltages and currents above the limits defined as 'safe' values. For example, insulation testing and flash testing generally require the use of high voltages well above the safe limit and it may not always be possible to restrict the currents available from the test equipment to within the defined safe values.

It is recommended that the user of electrical equipment of any sort should always ensure that he understands, in detail, the equipment's characteristics so that he is aware of the degree of safety hazard which may be involved.

Safety in the use of Electrical Equipment

Whilst every effort is made by responsible manufacturers to reduce the hazards and to warn of any hazard remaining, it still rests with the user to play his part in ensuring his own safety.

The best way to achieve this is:-

- * UNDERSTAND THE EQUIPMENT YOU ARE PROPOSING TO USE, AND ITS RATINGS.
- * UNDERSTAND THE APPLICATION TO WHICH THE EQUIPMENT IS TO BE PUT.
- * ENSURE THAT ALL REASONABLE SAFETY PROCEDURES ARE FOLLOWED.
- * TAKE NO CHANCES, NOR SHORT-CUTS IN SAFETY PROCEDURES.

The equipment described in this booklet has been examined, both in design and manufacture, to ensure that safety hazards are minimised.

Any known remaining hazards are explained in the paragraphs headed "Warning" on page 8 and "SAFETY PRECAUTIONS FOR ALL LIVE EARTHS" on page 10.

If, for some specific application, it is found that the information provided is not adequate, then please contact the manufacturer for further details and assistance.

Index

Safety in the use	of Ele	ctrica	l Equi	pm <mark>en</mark> t				2
General Descript	ion	•••	•••	•••	•••	•••	***	4
Applications	•••	•••			•••	•••		5
Specification		•••	•••			•••		6
Instrument Open	ation							
General	•••	•••	•-•			•••	•••	8
Changing F	^E uses a	nd Ba	ttery	•••	•••	•••	•••	9
Safety Pred	autior	ns for	Live E	arths		•••	•••	10
Measuring Techn	iques							
Testing Ea	rth Ele	ctrod	es	•••		•••		12
Determinir	ng Tou	uch Pc	otentia	l' and	'Step	Poten	tial	'17
Measuring	Resisti	ivity o	of the S	Soil	•••	•••		19
Continuity	Testir	ng	•••	•••	•••	•••	•••	22
Circuit Description	on	•••	•••	•••	•••	***		23
Conversion Table	}	•••	•••		•••	•••	•••	24
Accessories	•••	•••	•••	•••		•••	•*•	28
Instrument Repa	irs and	Spare	e Parts	•••	•••	•••	•••	29
Components List		•••	••• •	•••	•••	•••	••••	30
Circuit Diagrams		•••						33

General Description

The DET2 Digital Earth Tester is a completely selfcontained instrument designed to give accurate measurements of earth electrode resistance, soil resistivity etc. It uses the reversing d.c. technique.

The instrument is housed in a robust insulated portable case, which being yellow in colour is easily visible from a distance. All the controls, the terminals and the liquid crystal display digital panel meter are mounted on the panel underneath the hinged cover. The instrument is 'splash proof' and suitable for outdoor use in most weather conditions.

Power for the instrument is provided from re-chargeable cells contained within the instrument. Alternatively the power source may be an external 12V battery and the terminals for its connection are on the panel.

The Range switch selects 'OFF' or one of the four resistance ranges, 2Ω , 20Ω , 200Ω or 2000Ω and the digital panel meter indicates the measurement directly in ohms. One switch selects either 'LOW', 'NORMAL' or 'HIGH' test current and another switches 'IN' or 'OUT' the added filter circuit available. Visual indication is given, by lamps glowing, of a high current spike resistance or a high input noise level. Also when the batteries are on charge a neon lamp illuminates, to show that a mains supply is connected. The lead fitted through the panel and stored in the hinged cover is for connection to a mains supply for battery charging. This should be 200V-240V, 50 or 60Hz for the DET2 and 100V-120V, 50 or 60Hz for the DET2/110.

Applications

Same that to reach the second

1

The installation of satisfactory earthing systems and their maintenance has become an essential part of electrical supply, wiring safety and installations economics.

In order that an earth electrode may perform satisfactorily it is necessary that it should have a low total resistance. The value will be influenced by the specific resistance of the surrounding soil. This in turn depends on the nature of the soil and its moisture content. Before sinking an electrode, therefore, it is often advantageous to survey the surrounding sites before choosing the final site for the electrode. It is possible with this instrument to measure from the surface the resistivity of the soil at different levels beneath the ground. This may indicate the advisability of driving electrodes to a greater depth, rather than increasing costs by having to add further electrodes and associated cables, in order to reach a specified total earth system resistance.

After installation, checks may be made of each element of an earth system which will yield information on the resistance under different soil moisture conditions. Also such checks will indicate whether there is a need for the maintenance of the installation, if the required resistance to earth has been exceeded.

The instrument may be used also for checking the 'touch potential' and 'step potential' relating to earthing systems.

For archaeological and geological purposes, an investigation of soil structure and building remains can be carried out at varying measured depths. Detailed methods of obtaining soil resistivity readings are given in later pages. In every case the accuracy of the instrument readings may be taken to be higher than the natural variables in soil characteristics.

A further application of the instrument is continuity testing e.g. checking the resistance of conduit used as an earth path.

Specification

6

ų

Earth Resistance Ranges	0,001 1,999Ω 0,01 19,99Ω
	$0,1 - 199.9\Omega$ 1 - 1999 Ω
Accuracy (20°C)	±2% of reading ±2 digits.
Temperature Effect	±0,1% per °C.
Working Temperature Range	-15°C to +50°C.
Storage Temperature Range	-30°C to +70°C
Humidity	95% R.H. combined with cyclic temperature changes of 25°C to 40°C (BS2011: Part 2.1, Db: 1977, IEC 68-2-30: Test Db: 1969)
Test Frequency	128Hz reversing d.c.
Interference	Steady interference voltages at d.c., 50 or 60Hz will be rejected. The effect of transient noise is minimised by a switched filter. Maximum interference:— 2Ω range low current \pm 5V peak 2Ω range normal current \pm 10V peak all other ranges and currents \pm 20V peak
Filter Time Constant	Normal (filter switch 'OUT') 1 second. Long (filter switch 'IN') 10 seconds.
Test Current	High 40mA Normal 10mA Low 5mA
Maximum Current Spike Resistance	The maximum permissible resistance of the current loop depends on the test current selected:- High current 800Ω Normal current $3,5k\Omega$ Low current $7,5k\Omega$

Maximum Potential Spike Resistance	The input impedance between the potential terminals is 2M Ω . A maximum potential loop resistance of $10k\Omega$ will give an additional error of 0,5%.
Output Voitage	50V maximum from the C1,C2 terminals.
Display	3½ digit l.c.d. maximum reading 1999.
Power Supply	Internal, rechargeable Ni Cd cells. Battery life:— 6 hours minimum continuous on 'NORMAL' or 'LOW' test current. 2 hours minimum continuous on 'HIGH' test current. Battery charging supply:— 200V—240V, 50 or 60Hz for the DET2 and 100V—120V, 50 or 60Hz for the DET2/110. Battery charging time:— 12 hours for full charge. Alternative power supply:— external 12V source, e.g. car battery.
Fuses	Battery fuse: — 3,15A (T) 20x5mm glass (slow blow) Mains supply: – DET2 – 100mA 20x5mm ceramic. DET2/110–250mA 20x5mm glass.
Safety Class	Class I when cells are being charged. Class III when operated. (IEC 348 2nd. Edition 1978).
Dimensions	260 x 225 x 220mm approx. (10¼ x 8¼ x 8‰ in. approx).
Weight	3,5kg (7,7lb)

¢

7

-

Instrument Operation

GENERAL

- Warning: As a precaution when working near high tension systems where accidental high potentials on the structure and in the ground are possible, it is recommended that the operator wears rubber gloves, and stands on a rubber mat or wears rubber shoes.
- The digital panel meter reveals the state of the battery because, with the instrument switched on the display will not illuminate if the cells are not charged. If the battery condition is satisfactory, with nothing connected to the terminals, the display digits will illuminate with random numbers and all the decimal points will be visible. Also the high spike resistance i.e.d. will light up.

It is advisable that the cells be charged fully before going out into the field to make tests (i.e. charge overnight). This is because the battery can change from an usable state to a non-usable state in a very short space of time, which would be inconvenient if it occurred while field tests were in progress.

TO CHARGE THE BATTERY connect the flying lead stored in the instrument lid, to a suitable mains supply (see specification page 6). The mains neon will illuminate while the battery is being charged.

The instrument MUST NOT be used whilst connected to a mains supply.

For earth testing, the leads are connected from spikes hammered into the ground, to the instrument terminals, (refer to Measuring Techniques page 12). The instrument may be used out of doors in almost any weather conditions.

- . 3. Switch the instrument on and select the correct range by rotating the RANGE switch and reading the measurement in ohms from the digital panel meter display. Over-range is indicated by a 1 as the left hand digit with the remainder blank. Always use the most sensitive range possible.
- 4. If the input noise level is too high, indication is given by the 'INPUT NOISE' lamp (and all the decimal points in the digital display) illuminating. The TEST CURRENT must then be increased.

If the current loop (spike) resistance is too high indication is given by the 'SPIKE RESISTANCE' lamp (and all the decimal points in the digital display) illuminating. The TEST CURRENT must then be reduced.

5. If either the 'INPUT NOISE' lamp or the 'TEST CURRENT' lamp illuminates (and also the decimal points in the digital display), on all test currents, this means that the test cannot be made with the test spikes (electrodes) in that condition. The spike resistance can be improved, either by moistening the ground into which they are hammered or else repositioning them; alternatively larger spikes can be used or more than one spike used at the same distance. Input noise may be reduced by re-positioning the test spikes and test leads avoiding possible causes of interference. For the majority of readings the TEST CURRENT switch should be in the 'NORMAL' position.

- 6. If there is a lot of "flicker" on the digital panel meter display whilst a measurement is being taken, the FILTER switch may be turned to the 'IN' position. This increases the amount of filtering and the reading should be taken after one minute to allow the filter to obtain its steady state value. The reading will then be more stable.
- If the rechargeable batteries are exhausted, the instrument may be supplied from a 12V external battery, e.g. a car battery. Connect the battery to the 12V EXT. BATTERY + and - terminals on the lefthand side of the front panel. Take care to observe the correct polarity.
- 8. Turn the RANGE switch to 'OFF' when measurements are not being made.

CHANGING FUSES AND BATTERY REPLACEMENT 1. Changing Fuses

Two fuses, a mains supply fuse and a battery fuse, are located within the instrument. Access to them is obtained by removing the instrument from the case. With the instrument disconnected from the mains supply, the mains cable unwound from its holder, the terminals disconnected and the range switch set to 'OFF', release the six fixing screws securing the instrument into the case, and remove them. Lift the instrument out of the case carefully and lay it face downwards on a clean bench.

The mains supply fuse (DET2 – 100mA 20x5mm ceramic, DET2/110 – 250mA 20x5mm glass) is held in a fuse clip and located on the main p.c.b. next to the mains supply transformer.

The battery fuse (3,15A(T) 20x5mm glass) is located on the chassis, adjacent to a relay and near the external battery terminals.

Replace the instrument carefully into the case after the necessary fuse change has been made. Ensure that the sealing gasket is fitting correctly around the panel edge, then replace the screws and tighten them down. Note:- If a fuse ruptures, it is indicative of a fault in the instrument circuit which requires investigation.

2. Battery Replacement

The rechargeable batteries are located within the instrument; access to them is obtained in the same way as described above for replacing the fuses. However, the working life of a rechargeable battery is expected to be many years, and when it needs replacing the instrument should be returned to the manufacturer or a distributor. 9

Instrument Operation

1

1

SAFETY PRECAUTIONS FOR ALL LIVE EARTHS

Safety precausions are necessary when any live earths may be encountered e.g. when testing the earth of a live substation. If a fault occurs at the substation while a test is being conducted, dangerous voltages may exist between the site earth and remote earths established for test purposes.

- The instrument must be used within the perimeter fence of the substation where the test is being conducted, and/or in an area where the voltage difference from the earth under test does not exceed 50V in any circumstances. If this is not possible then rubber gloves and mats must be used.
- 2. The P1 and C1 terminals must be connected to the earth electrode being tested.
- 3. The P2 and C2 terminals must be connected to an isolation switch, whose rating will cope with the maximum fault voltages (refer to fig. 1).
- 4. With the isolation switch open, connections to the remote electrodes may be established. Make the connections to the isolation switch first and then connect the remote electrodes.
- 5. When the remote electrodes have been established the isolation switch may be closed and a test made.
- 6. Whilst the test is in progress care must be taken that no one comes into contact with the remote electrodes or the wires running to the P2 and C2 terminals via the isolation switch.

The isolation switch must be open whilst contact is made with the remote earths or the connecting wires, e.g. when changing their positions.

If a fault occurs while a test is being made the instrument may be damaged. Fusing of the remote electrodes at the isolation switch with 100mA fuses, of suitable rating to cope with the maximum fault voltage, will provide protection for the instrument (see fig. 1).

REMOTE EARTHS

ŗ

Figure 1 A method of connection where fault conditions may occur

Measuring Techniques Testing Earth Electrodes

 NORMAL METHOD OF TEST FOR SMALL EARTHING ELECTRODES (see fig. 2) (employing the fall of potential method) The terminals C1 and P1 are connected to the earth electrode being tested. A test spike is hammered into the ground 30m to 50m away and is connected to the C2 terminal. This is the remote current electrode. Another test spike is hammered into the ground midway between the remote current electrode and the earth electrode under test and in line with them, and is connected to the P2 terminal. This is the remote potential electrode. When running wires out to remote electrodes it is preferable not to lay them close to each other in order to minimize the effect of mutual inductance.

The earth electrode resistance is measured as described in 'Instrument Operation' on page 8.

Two more tests are made with the remote potential electrode at distances 3m either side of the mid-way position. If the resistance readings agree with each _ other within the required accuracy, the mean value is used. If the readings disagree beyond the required accuracy then the method using the 61,8% rule must be employed.

Figure 2 Resistance to earth of an earth electrode

2. THE 61,8% RULE FOR SINGLE EARTH SYSTEMS

(medium size earthing systems) If the method of test given above yields unsatisfactory results, this method of test must be used. To obtain a sensible reading, the remote current electrode must be correctly sited in relation to the earth electrode being tested. Since both possess 'resistance areas', the former must be sufficiently remote to prevent these areas from overlapping (see fig 3). Furthermore, the remote potential electrode must lie between these two areas. Theoretically both the current and potential electrodes should be at an infinite distance from the earth electrode. In practice, the dimensions of the resistance areas of E and C are unknown and to allow a sufficient margin, the distance EC may be impractically high. However, the 'true' resistance of the earth electrode is obtained when the measurement is taken with the potential electrode 61,8% of the distance between the earth electrode and the current electrode, away from the earth electrode. This rule applies when all electrodes are in a straight line, the soil is homogeneous and the earth electrode covers a small area and can be approximated to a hemispherical electrode, e.g. a single rod, plate, etc. Test Electrode Spacing

For most purposes the current electrode connected to C2 should be 30 to 50 metres from the centre of the earth electrode under test. The potential electrode, connected to P2 should be inserted in the ground 61,8% of this distance between, and in a straight line with, the other two electrodes. If the earth electrode system is large, containing several rods, these distances must be increased. For ease of use in the field the following table gives a range of distances which follows

this rule. In the first column "Maximum Dimension" is defined as the maximum distance across the earth electrode system to be measured.

Maximum dimension in metres	Distance to potential electrode in metres from centre of earth system	Distance to current electrode in metres from centre of earth system
5	62	100
10	93	150
20	124	200

For greater accuracy the current electrode (connected to C2) should be moved say 10m towards and away from the earth electrode system and the potential electrode should be moved in accordance with the 61,8% rule. Further measurements are made. The average of the three readings is then calculated.

Measuring Techniques Testing Earth Electrodes

3. THE SLOPE METHOD OF TEST

(for large earthing systems, i.e. substations, main stations or large factory sites)

(This is a summary of the slope method established and described by Dr. Tagg in his paper 6297S dated 24th August 1970. The paper was published in IEE Proceedings Vol. 117 No. 11 November 1970. Copies may be obtained from the IEE).

This technique should be used when testing earth electrode systems which cover a large area. The method is useful when the position of the centre of the earthing system is either unknown or inaccessible (e.g. if the system is beneath the floor of a building). The method yields results of greater accuracy than those detailed above.

- (a) The terminals C1 and P1 on the instrument are connected to the earth electrode (see fig. 4)
- (b) Connect terminal C2 to a current electrode inserted in the ground 50m or more away. The distance from the earth electrode to the current electrode is EC.
- (c) The potential electrode, connected to terminal P2, is inserted at several positions between the earth and current electrodes, starting from near the earth electrode. (The electrodes must be in a straight line.) At each position the resistance is measured, and the earth resistance curve plotted from the results e.g., (see opposite), at least 6 readings are needed. Drawing the curve will show up any incorrect points which may be either rechecked or ignored.

Figure 4 Instrument connection for slope method

14

IF

- (d) From the curve the equivalent resistance readings to potential electrode positions 0,2EC, 0,4EC and 0,6EC can be found. These become R1, R2 and R3 respectively.
- (e) Calculate the slope coefficient μ

where
$$\mu = \frac{R3-R2}{R2-R2}$$

which is a measure of the change of slope of the earth resistance curve.

From the table shown on page 24 obtain the value of

for this value of μ .

 P_{τ} is the distance to the potential electrode at the position where the true resistance would be measured.

Multiply the value of $\frac{P_T}{EC}$ by EC to obtain the distance P_T

From the curve again read off the value of resistance that corresponds to this value of P_{T} . The value obtained is the earth system resistance.

Notes

, (i) If the value of μ obtained is not covered in the table (on page 24) then the current electrode will have to be moved further away from the earthing system.

(ii) If it is required, further sets of test results can be obtained with different values of EC, or different directions of the line of EC.

From the results obtained of resistance for various values of the distance EC a curve may be plotted e.g.

Distance EC for each test.

This shows how the resistance is decreasing asymptotically as the distance chosen for EC is increased.

The curve indicates that the distances chosen for EC in tests (1) and (2) were not large enough; and that those chosen in tests (3) and (4) were preferable because they would give the more correct value of the earth resistance.

 (iii) It is unreasonable to expect an accuracy of readings of more than 5%. 10% is often adequate bearing in mind that this sort of variation could easily occur with varying soil moisture conditions or non-homogeneous soils.

Measuring Techniques Testing Earth Electrodes

4. ALTERNATIVE METHOD WHEN "DEAD" EARTH IS AVAILABLE

In congested areas it may not be possible to find suitable sites for the testing spikes, nor to run the required test leads. In these cases an alternative low resistance earth such as a water main is often available. It must be of very low resistance to earth. A water main etc. must not be used if there is any chance of a live earth being experienced. The connections are as shown in fig. 5. The resistance areas of the earth under test and the "dead" earth must not significantly overlap. The earth under test and the "dead" earth must not be bonded together.

This test will give the combined resistance of the two earths in series. If that of the "dead" earth is negligible then the reading may be taken as that of the earth electrode under test. However, care must be taken in using this method since non-metallic piping and jointing is commonly found in water main installations.

The results obtained by this method are not as accurate as the two-spike systems, detailed above, which should be used as the standard practice wherever possible. Readings are affected particularly if the distance between the two earths is not large enough; this causes serious distortions in the current flow.

Measuring Techniques Determining 'Touch' and 'Step' Potential

1. TOUCH POTENTIAL

Touch potential is the potential difference a person would experience across his body if he were, for example, standing on the ground outside the earthed perimeter fence of a substation and touching the fence at the time a fault to earth occurred at the substation.

(a) Connect the instrument in the following way:- (see fig 6)

Terminal C1 to the substation earth E. Terminal C2 to a remote current electrode C set up some distance away by a test spike inserted in the ground Terminal P1 to the structure being tested e.g. perimeter fence.

Terminal P2 to a potential electrode P e.g. a test spike inserted into the ground 1 metre away from the perimeter fence adjacent to the point of test (where a person might stand).

- (b) Operate the instrument and record the resistance indicated. This is the effective resistance between the point of test on the fence and the potential electrode as seen by the test current.
- (c) The maximum value of the current that would flow in the earth when a fault to earth occurred at the substation must be known. From Ohm's law V = IxR, the touch potential can be calculated.

2. STEP POTENTIAL

Step potential is the potential difference a person would experience between his feet as he walked across the ground in which a fault current existed.

- (a) Connect the terminals C1 and C2 as described for touch potential above.
 Connect terminals P1 and P2 to potential electrodes (test spikes inserted in the ground) at positions A and B respectively (A nearest to E, see fig. 6). Positions A and B are 1 metre apart, or the length of a step.
- (b) Operate the instrument and record the resistance indicated. This is the effective resistance across positions A and B, as seen by the test current.
- (c) The maximum value of the current that would flow in the earth when a fault to earth occurred at the substation must be known.

From Ohm's law V = IxR, the step voltage can be calculated.

i

Measuring Techniques Determining 'Touch' and 'Step' Potential

Figure 6 Method of use for determining touch potential and step potential

18

. '¥

Measuring Techniques Measuring Resistivity of the Soil

TYPICAL VARIATIONS IN SOIL RESISTIVITY The resistance to earth of an earth electrode is influenced by the resistivity of the surrounding soil. The resistivity depends upon the nature of the soil and its moisture content and can vary enormously as seen in the table below:—

1

ł

Material	Specific resistance in ohms-cms	Source of information
Ashes Coke Peat Garden earth50% moisture 20% moisture Clay soil40% moisture 20% moisture 20% moisture 20% moisture 20% moisture Very dry clay Sand90% moisture normal moisture Chalk Consolidated sedimentary rocks	350 20-800 4,500-20,000 1,400 4,800 770 3,300 400-2,000 5,000-15,000 13,000 300,000-800,000 5,000-15,000 1,000-50,000	Higgs

Because it is impossible to forecast the resistivity of the soil with any degree of accuracy it is important to measure the resistance of an earth electrode when it is first laid down and thereafter at periodic intervals. Before sinking an electrode into the ground for a new installation it is often advantageous to make a preliminary survey of the soil resistivity of the surrounding site. This will enable decisions to be made on the best position for the electrode(s) and to decide whether any advantage is to be gained by driving rods to a greater depth. Such a survey may produce considerable savings in electrode and installation costs necessary to achieve a required resistance.

2. INSERTING TEST ELECTRODES

The four test spikes are driven into the ground, in a straight line at equal distances 'a', and inserted to a depth of not more than $\frac{1}{20}$ of 'a'.

The instrument is connected to the test spikes as shown in fig. 7.

Figure 7 Connections for resistivity tests

Measuring Techniques Measuring Resistivity of the Soil

The measurement is made in the normal way. The resistivity may be calculated from the formula given below or from the nomogram shown on page 21. This is the average soil resistivity to a depth 'a'.

The four test spikes are re-positioned for further tests. If the spacing 'a' is maintained (and the depth of insertion $\frac{1}{20}$ 'a'), a directly comparative reading will be obtained each time, and thus areas of lowest resistivity located (at constant depth 'a').

Respacing test spikes at 'b', 'c', 'd', etc. will yield results from which a profile of the readings 'b', 'c', 'd', etc. can be obtained.

3. CALCULATION OF RESISTIVITY

Assuming the soil to be homogeneous the resistivity is given by the formula:

$p = 2\pi aR$

where R is the resistance measured in ohms, a is the electrode spacing in metres and ρ is the resistivity in ohm-metres.

For non-homogeneous ground the formula will give an apparent resistivity which is very approximately the average value to a depth equal to the electrode spacing 'a'.

Measuring Techniques Continuity Testing

To test the continuity of conduit or other earth conductors the instrument is connected as shown in fig. 8. It will measure metallic resistances of low inductance or capacitance. Make sure that the circuit to be tested is 'dead' before connecting the instrument for measurement.

Due to the inherently high accuracy of the instrument and the very low continuity resistance to be measured, the contact resistance between leads and conduit, etc., becomes an increasing factor in measurement and should be as low as possible.

The resistance of the test leads may be found by connecting them to the P1 and P2 terminals and joining their free ends together.

C1-P1 and C2-P2 are connected. The measurement is made and the result subtracted from the original reading to give the value of the continuity resistance.

Figure 8 Continuity testing

Circuit Description (see fig. 9)

An oscillator is used to produce a basic square wave signal, divisions of which are used in various parts of the instrument. This basic square wave signal passes to a frequency divider and waveform generating circuit. The purpose of this circuit is to provide the test signal at 128Hz, and also reference signal waveforms for the phase sensitive filter and phase sensitive detector networks.

The test signal controls a constant current a.c. source powered from a 'floating' supply and switched to provide the LOW, NORMAL and HIGH test currents. The test current is passed via terminals C1 and C2 through the earth under test.

The instrument employs the 4 terminal measurement principle, and so the potential drop across the earth resistance under test is fed to the measuring circuit via terminals P1 and P2. This measurement signal passes through a test current attenuator to be reduced in accordance with the test current selected. An input buffer stage follows which prevents the measuring circuit from loading the earth resistance being tested. After this the signal passes through a range attenuator to be modified in accordance with the display range required.

To remove noise signals imposed on the test signal as it passes through the earth under test, a phase sensitive filter is employed whose reference signal is derived as described above. A phase sensitive detector whose reference signal is also derived from the same source provides a suitable d.c. signal for the display.

Extra filtering of the d.c. signal is provided by switching in a low pass filter if required. The measurement signal is then displayed on the digital panel meter calibrated to read directly in ohms.

Figure 9 Block diagram

_

Chart for use with Slope Method

μ	0	1	2	3	4	5	6	7	8	9
		6421	6429	6428	6426	6425	6423	6422	6420	6419
.40	0.6432	6431 6416	6415	6413	6412	6410	6409	6408	6406	6405
).41	0.6418	0410	6400	6399	6397	6396	6395	6393	6392	6390
.42	0.6403	6402	6296	6384	6383	6396 6382	6380	6379	6377	6376
).43	0.6389	6387	6386 6372	6370	6369	6367	6366	6364	6363	6361
D.44	0.6374	6373	03/2	6356	6354	6367 6353 6338 6324	6366 6351	6350 6336 6321	6348	6347
).45	0.6360	63 59	6357	6341	6340	6338	6337	6336	6334	6333
0.46	0.6346	6344	6343 6328	6327	6325	6324	6323	6321	6320	6318
0.47	0.6331	6330 6315	0320	6312	6311	6310	6308	6307	6305	6304
0.48	0.6317	6315	6314	6298	6297	6295	6294	6307 6292	6291	6289
0.49	0.6302	6301	6300	0290	0237	ULUU				
			000E	6202	6282	6280	6279	6277	6276	6274
0.50	0.6288 0.6273	6286	6285	6283	6267	6265	6264	6262	6261	6259
0.51	0.6273	6271	6270	6268 6253	6252	6252	6264 6248	6247	6245	6244
0.52	0.6258	6256	6255	0233	6236	6235	6233	6232	6230	6229
0.53	0.6242	6241	6239	6238 6223 6207	6221	6235 6220 6204	6233 6218 6203	6217	6215	6214
0.54	0.6227	6226	6224	6223		6220	6203	6201	6200	6198
0.55	0.6212	6210	6209	6207	6206	6189	6188	6186	6185	6183
0.56	0.6197	6195	6194	6192	6191 6176	6174	6172	6171	6169	6168
0.57	0.6182	6180	6179	6177	01/0	6159	6157	6156	6154	6153
0.58	0.6166	6165	6163	6162	6160	6144	6142	6141	6139	6138
0.59	0.6151	6150	6148	6147	6145	0144	0174	0141	0.00	
						6128	6126	6125	6123	6121
0.60	0.6136	6134	6133	6131	6130	6112	6110	6108	6107	6105
0.61	0.6120	6118	6117	6115	6113	6096	6094	6092	6091	6089
0.62	0.6104	6102	6100	6099	6097	6079	6076	6076	6074	6073
0.63	0.6087	6086	6084	6083	6081	00/9	6061	6060	6058	6057
0.64	0.6071	6070	6068	6066	6065	6063	6045	6044	6042	6040
0.65	0.6055	6053	6052	6050	6049	6047		6027	6026	6024
0.66	0.6039	6037	6036	6034	6032	6031	6029	6011	6010	6008
0.67	0.6023	6037 6021	6019	6018	6016	6015	6013	5995	5993	5992
0.68	0.6006	6005	6003	6002	6000	5998	5997	5979	5977	5976
0.69	0.5990	5989	5987	5985	5984	5982	5980	39/9	0011	

24

: 2

ľ

I

ų

μ	0	1	2	3	4	5	6	7	8	9
				5000	5967	5965	5964	5962	5960	5959
0.70	0.5974	5973	5971	5969 5952	5950	5948	5947	5945	5943	5 9 42
0.71	0.5957	5955	5953	5935	5933	5931	5930	5928	5926	5924
0.72	0.5940	5938	5936	5918	5916	5914	5912	5911	5909	5907
0.73	0.5923	5921	5920	5900	5899	5897	5895	5894	5892	5890
0.74	0.5906	5904	5902	5883	5882	5880	5878	5877	5875	5873
0.75	0.5889	5887	5885	5866	5865	5863	5861	585 9	5858	5856
0.78	0.5871	5870	5868	5849	5847	5846	5844	5842	5841	5839
0.77	0.5854	5853	5851	5832	5830	5829	5827	5825	5824	5822
0.78	0.5837	5835	5834	5815	5813	5812	5810	5808	5806	5805
0.79	0.5820	5818	5817	0010						
1			5799	5797	5796	5794	5 792	5790	5788	5786
0.80	0.5803	5801	5785	5779	5777	5775	5773	5772	5770	5768
0.81	0.5785	5783	5762	5760	57 59	5757	5755	5753	5751	5749
0.82	0.5766	57 64	5744	5742	5740	5738	5736	5735	· 5733	5731
0.83	10.5748	5746	5725	5723	5722	5720	5718	5716	5714	5712
0.84	0.5729	5727	5725	5705	5703	5701	5699	5698	5696	5694
0.85	0.5711	5709	5688	5686	5685	5683	5681	5679	5677	5675
0.86	0.5692	5690	5670	5668	5666	5664	5662	5661	5659	5657
0.87	0.5674	5672	5651	5650	5648	5646	5644	5642	5640	5638
0.88	0.5655	5653	5633	5631	5629	5627	5625	5624	5622	5620
0.89	0.5637	5635	3033	5051			1	1		
	-	5048	5614	5612	5610	5608	5606	5604	5602	5600
0.90	0.5618	5616 5596	5594	5592	5590	5588	5586	5584	5582	5580
0.91	0.5598	5550	5574	5572	5570	5568	5565	5563	5561	5559
0.92	0.5578	5576	5553	5551	5549	5547	5545	5543	5541	5539
0.93	0.5557	5555	5533	5531	5529	5527	5525	5523	5521	5519
0.94	0.5537	5535	5513	5511	5509	5507	5505	5503	5501	5499
0.95	0.5517	5515 5495	5493	5491	5489	5487	5485	5483	5481	5479
0.96	0.5497	5495	5473	5471	5469	5467	5464	5462	5460	5458
0.97	0.5477	5454	5452	5450	5448	5446	5444	5442	5440	5438
0.98	0.5456	5454	5432	5430	5428	5426	5424	5422	5420	5418

<u>.</u>

25

ζ

Chart for use with Slope Method

	0	1	2	3	4	5	6	7	8	9
μ			ł		5407	5405	5403	5400	5398	5396
1.00	0.5416	5414	5412	5409		5383	5380	5378	5376	5374
1.01	0.5394	5391	5389	5387	5385	5360	5358	5356	5354	5351
1.02	0.5371	5369	5367	5365	5362	5338	5336	5333	5331	53 29
1.03	0.5349	5347	534 5	5344	5340	5316	5313	5311	5309	5307
1.04	0.5327	5325	5322	5320	5318	5310	5291	5289	5287	5 284
1.05	0.5305	5302	5300	5298	5296	5293	5 269	5267	5264	5262
1.00	0.5282	5280	5278	5276	5273	5271	5269 5247	5244	5242	5240
1.06	0.5260	5258	5255	5253	5251	5249	524	5222	5219	5217
1.07	0.5238	5235	5233	5231	5229	5229		5200	5197	5195
1.08	0.5235	5213	5211	5209	5206	5204	5202	5200	0.0.	
1.09	0.5415							5175	5173	5170
	0.5400	5190	5188	5185	5183	5180	5178	5150	5148	5145
1.10	0.5193	5165	5163	5160	5158	5155	5153		5122	5120
1.11	0.5168	5140	5137	5135	5132	5130	5127	5125	5098	5095
1.12	0.5143	5140	5113	5110	5108	51 05	5103	5100	5050	5070
1.13	0.5118		5088	5085	5083 -	5080	5078	5075		5045
1.14	0.5093	5090	5062	5060	5057	5055	5052	5050	5047	5020
1.15	0.5068	5065	5037	5035	5032	5030	5027	5025	5022	4995
1.16	0.5042	5040	5012	5010	5007	5005	5002	5000	4997	4970
1.17	0.5017	5015		4985	4982	4980	4977	4975	4972	4970
1.18	0.4992	4990	4987	4960	4957	4955	4952	4950	4947	4940
1.19	0.4967	4965	4962	4300	4007		Į.			1
			1	4933	4930	4928	4925	4922	4919	4916
1.20	0.4942	4939	4936	4904	4901	4899	4896	4893	4890	4887
1.21	0.4913	4910	4907		4872	4870	4867	4864	4861	4858
1.22	0.4884	4881	4878	4875	4843	4841	4838	4835	4832	4829
1.23	0.4855	4852	4849	4846	4814	4812	4809	4806	4803	4800
1.24	0.4826	4823	4820	4817		4783	4780	4777	4774	4771
1.25	0.4797	4794	4791	4788	4785	4754	4751	4748	4745	474:
1.26	0.4768	4765	4762	4759	4756	4725	4722	4719	4716	471:
1.27	0.4739	4736	4733	4730	4727	4/25	4693	4690	4687	4684
1.28	0.4710	4707	4704	4701	4698	4690	4664	4661	4658	465

μ	0	1	2	. 3	4	5	6	.7	8	9
1.30	0.4652	4649	4645	4642	4638	4635	4631	4628	4625	4621
.31	0.4618	4614	4611	4607	4604	4601	4597	4594	4590	4586
.32	0.4583	4580	4577	4573	4570	4566	4563	4559	4556	4553
.33	0.4549	4546	4542	4539	4535	4532	4529	4525	4522	4518
1.34	0.4515	4511	4508	4505	4501	4498	4494	4491	4487	4484
.35	0.4481	4477	4474	4470	4467	· 4463	4460	4457	4453	445
1.36	0.4446	4443	4439	4436	4432	4429	4426	4422	4419	441
.37	0.4412	4408	4405	4402	4398	4395	4391	4388	4384	438
.38	0.4378	4374	4371	4367	4364	4360	4357	4354	4350	434
.39	0.4343	4340	4336	4333	4330	4326	4323	4319	4316	431
.40	0.4309	4305	4301	4296	4292	4288	4284	4280	4275	427
.41	0.4267	4263	4258	4254	4250	4246	4242	4237	4233	422
.42	0.4225	4221	4216	4212	4208	4204	4200	4195	4191	418
.43	0.4183	4178	4174	4170	4166	4162	4157	4153	4149	414
.4	0.4141	4136	4132	4128	4124	4120	4115	4111	4107	410
.45	0.4099	4094	4090	4096	4082	4077	4073	4069	4065	406
1.46	0.4056	4052	4048	4044	4040	4035	4031	4027	4023	401
1.47	0.4014	4010	4005	4001	3997	3993	3989	3985	3980	397
1.48	0.3972	3968	3964	3959	3955	3951	3947	3943	3938	393
1.49	0.3930	3926	3921	3917	3913	3909	3905	3900	3896	389
	0.3888	3883	3878	3874	3869	3864	3859	3854	3850	384
1.50 1.51	0.3840	3835	3830	3825	3820	3816	3811	3806	3801	379
	0.3791	3786	3781	3776	3771	3766	3760	3755	3750	374
1.52	0.3740	3735	3730	3724	3719	3714	3709	3704	3698	369
1.53 1.54	0.3688	3683	3677	3672	3667	3662	3656	3651	3646	364
	0.3635	3630	3624	3619	3613	3608	3602	3597	3591	358
1.55 1.56	0.3580	3574	3569	3563	3557	3552	3546	3540	3534	352
1.30 1.57	0.3523	3517	3511	3506	3500	3494	3488	3482	3477	347
1.57	0.3465	3459	3453	3447	3441	3435	3429	3423	3417	341
1.56 1.59	0.3405	3399	3393	3386	3380	3374	3368	3362	3355	334

.

27

ŝ

Accessories

ACCESSORIES

Supplied with instrument

Operating Instructions

ACCESSORIES

Available as an optional extra

Earth testing accessory kit (ref. ET/KIT), part no. 6310-755 comprises a yellow bag and pouch containing:—

- a 1,13 kg (21⁄2 lb) hammer
- four galvanized steel spikes 12 mm (½ in approx.) squaresection, 450 mm (17 in approx.) long two spike extractors

30 m (981/2 ft approx.) of cable on a cable-winder, complete with connector and clip

50 m (164 ft approx.) of cable on a cable-winder, complete with connector and clip

two 3 m (10 ft approx.) leads complete with connectors and clips

Reel of cable, 50 m long, part no. 6121-119

Earth Testing Accessory Kit

Instrument Repairs and Spare Parts

WARRANTY

All products supplied by BIDDLE Instruments are warranted against all defects in material and workmanship for a period of one year following shipment. Our liability is specifically limited to replacing or repairing, at our option, defective equipment. Equipment returned to the factory for repair will be shipped Prepaid and Insured. The warranty does not include batteries, lamps or tubes, where the original manufacturer's warranty shall apply. WE MAKE NO OTHER WARRANTY.

The warranty is void in the event of abuse.

REPAIRS

BIDDLE Instruments maintains a complete instrument repair service. Should this instrument ever require repairs, we recommend it be returned to the factory for repair by our instrument specialists. When returning instruments for repairs, either in or out of warranty, they should be shipped Prepaid and Insured, and marked for the attention of the Instrument Service Manager

Main Components List

R1	Resistor		± 0,25%		R36	. Resistor	39kΩ		'5W
R2	Resistor		± 0,25%		R37	Resistor	120kΩ		1/4W
R3	Resistor		± 0,25%	%W	R38	Resistor	100kΩ		1⁄4W
R4	Resistor	10Ω	± 0,25%	%W	R39	Resistor	10kΩ		'SW
R5	Resistor	900	± 0,25%	%W	R40	Resistor		± 0,25%	
R6	Resistor		± 0,25%	%W	R41	Resistor		± 0,25%	%W
R7	Resistor	9kΩ	± 0,25%	%W	R42	Resistor		± 0,25%	
R8	Resistor	270kΩ	± 5%	⅓W	R43	Resistor		± 0,25%	
R9	Resistor	20kΩ	± 2%	%₩	R44	Resistor	56,2Ω		1/4W
R10	Resistor	9,1kΩ	±2%	½₩	R45	Resistor	15kΩ		%W
R11	Resistor			%₩	R46	Resistor		± 0,25%	
R12	Resistor	1MΩ	±5%	¥₃₩	R47	Resistor		± 0,25%	
R13	Resistor			1/4W	R48	Resistor		± 5%	'SW
R14	Resistor	51,1kΩ		1/4W	R49	Resistor		±5%	₩s₩
R15	Resistor	1.8kΩ		*3W	R50	Resistor	4,7kΩ		1⁄2W
R16	Resistor	10kΩ		WW	R51	Resistor	4,7kΩ		%₩
R17	Resistor		± 0,3%	%W .	R52	Resistor	10kΩ		₩ ₂ W
R18	Resistor	10kΩ		3W	R53	Resistor	1,5kΩ		3W
R19	Resistor	10kΩ		%W	R54	Resistor	100kΩ		'SW
R20	Resistor	511kΩ		1⁄4W	R55	Resistor	47kΩ		βW
R21	Resistor	10kΩ		5W	R56	Resistor	4,7ΜΩ		₩
R22	Resistor	909kΩ		1/4W	R57	Resistor		±5% _	's₩
R23	Resistor	47kΩ		1/4W	R58	Resistor		±1%	1⁄4W
R24	Potentiometer	10kΩ		% W	R59	Resistor		±1%	1/4W
R25	Resistor	68kΩ		₩¥	R60	Resistor	47kΩ		₩₃W
R25 R26	Resistor	2.2MΩ		'' ' 5W	R61	Resistor	47kΩ		₩a₩
R27	Resistor	1,5kΩ		¹ / ₃ W	R62	Resistor	1MΩ		₩£ ⁴
	Resistor	22kΩ		5W	R63	Resistor	820Ω	± 5%	'5W
R28	Resistor	100kΩ		3W	R64	Resistor	2,7kΩ	± 5%	₩
R29	Resistor	47kΩ		3W	R65	Resistor	47kΩ	± 5%	₩₃W
R30		10kΩ		3W	R66	Resistor	47kΩ		₩ť
R31	Resistor	10kΩ		'SW	R67	Resistor	560Ω		^{1⁄} ₃₩
R32	Resistor	47kΩ		3W	R68	Resistor	1,5kΩ		ЪW
R33	Resistor	39.2kΩ		1/4W	R69	Resistor		± 5%	۶w
R34	Resistor		± 10%	%W	003	. 10010101	00000		
R35	Potentiometer	IOK72	4 1070	/4 V V					

	R70	Resistor	150Ω ±5%	₩	C24	Capacitor	10µF 100V electrolytic
	R71	Resistor	$10\Omega \pm 5\%$	5₩	C25	Capacitor	$10nF \pm 10\% - 100V$
	R72	Resistor	$100\Omega \pm 5\%$	۶W	C26	Capacitor	10nF ±10% 100V
	R73	Resistor	$270k\Omega \pm 5\%$	5W	C27	Capacitor	10nF ±10% 100V
	R74	Resistor	$1.5k\Omega \pm 5\%$	'5W	C28	Capacitor	10nF ±10% 100V
	R75	Resistor	$100\Omega \pm 5\%$	*5W	C29	Capacitor	10µF 100V electrolytic
	R76	Resistor	39Ω ±10%		C30	Capacitor	100µF 40V electrolytic
	R77	Resistor	$560\Omega \pm 5\%$	'5W	C31	Capacitor	220µF 16V electrolytic
	R78	Resistor	$560\Omega \pm 5\%$	'5W	C32	Capacitor	0,1µF 25V electrolytic
	R79	Resistor	$150\Omega \pm 5\%$	5W	C33	Capacitor	220µF 16V electrolytic
	R80	Resistor	$10k\Omega \pm 5\%$	5W	C34	Capacitor	0,1µF 25V electrolytic
	R81	Resistor	$2.7k\Omega \pm 5\%$		C35	Capacitor	100µF 40V electrolytic
	C1	Capacitor	100nF ± 109		C36	Capacitor	47pF ±10% 630 V
	C2	Capacitor	4,7µF ± 109		C37	Capacitor	10nF ±10% 100 V
	C3	Capacitor	4,7µF ± 109		C38	Capacitor	10µF 40 V electrolytic
	C4	Capacitor	220nF ± 109		C39	Capacitor	10µF 40 V electrolytic
	C4	Capacitor	1µF ± 109		C40	Capacitor	10nF ±10% 100V
	C5	Capacitor	$1\mu F \pm 109$		C41	Capacitor	10nF ±10% 100V
	C6	Capacitor	1µF ± 109		D1 to D6	Diode	1N4148
	C7		$4,7\mu F \pm 109$	-	D9 to D14	Diode	1N4148
	C8	Capacitor	470nF ± 109		D15	Light emitting	
	C9	Capacitor	4,7μF ± 109		D15	Light emitting	
	C10	Capacitor		electrolytic	D10	Zener diode	1N5366B
	C11	Capacitor			D18 to D22	Diode	1N4004
	C12	Capacitor		• • • • •	D18 to D22 D23	Diode	1N4148
-	C13	Capacitor	$47pF \pm 2\%$			Diode	1N4004
	C14	Capacitor	10nF ± 109		D24	Diode	1N4004
	C15	Capacitor	15nF ± 109		D25	-	1N4148
	C16	Capacitor	15nF ± 109		D26	Diode Transa dia da	BZY88C27V
-	C17	Capacitor		electrolytic	D27	Zener diode	1N4004
	C18	Capacitor	47pF ± 29		D29 to D31	Diode Diode	1N4004
	C19	Capacitor		electrolytic	D34	Diode Diode	BA158
	C20	Capacitor		electrolytic	D35	Diode Diode	BA158
	C21	Capacitor		electrolytic	D36	Diode Diode	1N4004
	C22	Capacitor		electrolytic	D37	Diode	
••	C23	Capacitor	33nF ± 10	% 100V	•		

*Matched to within ± 1%

Character and the second

.....

Main Components List

2

1

			IC5	Integrated circuit	4066 CMOS	
D39	Zener diode	BZY88C27V	IC6	Integrated Circuit	CA3140E	
D40	Lener diver	BZY88C27V	IC7	Integrated circuit	4066 CMOS	
D41		BZY88C7V5	IC8	Integrated circuit	CA3140E	
D42	Zener diode	BZY88C7V5	IC9	Integrated circuit	741 8PIN	
D43	Zener diode	BZY88C5V1	IC10	Integrated circuit	4011 CMOS	
D44	Zener diode	BZY88C5V1	IC11	Integrated circuit	4027	
U			IC12	Integrated circuit	4001	
			IC13	Integrated circuit	SFH601-2	
704	Transistor	BC213	IC17	Integrated circuit	SFH601-2	
TR1	Transistor	BC183	IC21	Integrated circuit	78L05CP	
TR2	Transistor	BC183	iC21	Integrated circuit	79L05CP	
TR3	Transistor	BC213		Fuse	3,15A(T) Type F	286
TR4 to TR6	Transistor	MPSU60	FS1		100mA Type 1	9180
TR7	Transistor	2N5401	FS2	Fuse DET2	-250mA Type F	270
TR8	Transistor	BC213				2/0
TR9	Transistor	BC183	Digital Par	nel Meter Compo	nents	
TR10	Transistor	2N5551			$470k\Omega \pm 5\%$	5W
TR11	Transistor	MPSU10	R1	Resistor	$1M\Omega \pm 5\%$	Y2W
TR12		BC183	R2	Resistor	$20k\Omega \pm 10\%$	¥W
TR13 to TR1	Transistor	BC213	R3	Potentiometer	$18k\Omega \pm 5\%$	'4W
TR16		BC213	R4	Resistor	10K16 - 070	
TR17	Transistor	BC183	R5	Link	$100k\Omega \pm 5\%$	₩.
TR18	Transistor	BC213	R6	Resistor		* ₃ W
TR19	Transistor	BC183	R7	Resistor	$100k\Omega \pm 5\%$	₩s₩
TR20	Transistor	BC183	R8	Resistor	$100k\Omega \pm 5\%$	¹ 3W
TR21	Transistor	BC337	R9	Resistor	$100k\Omega \pm 5\%$.344
TR22	Transistor	BDX36			000 F + 100	100V
TR23	Transistor	2N5551	Ć C1	Capacitor	220nF ± 10%	
TR24	Transistor		C2	Capacitor	47nF ± 10%	250V
TR25	Transistor	BC213	C3	Capacitor	10nF ± 10%	400V
			C4	Capacitor	100nF ± 10%	100V
		- MC1426CC	C5	Capacitor	100pF ± 2%	63V
IC1	Integrated circui					
IC2	Integrated circui		IC1	Integrated circu	ait ICL7106CPL	
1C3	Integrated circuit	it CA3140E	IC2	Integrated circu	Lit CMOS 4070	
1C4	Integrated circuit	it CA3140E		· · ·		
	•					

32

Ł

Main Circuits Diagram

1

Panel Meter Circuit Diagram

.

•

Biddle INSTRUMENTS

510 Township Line Road, Blue Bell, Pennsylvania 19422 215-646-9200/Cable: BIDDLE/Telex: 685 1045 JGBCO. Sales offices in principal cities.

A THORN EMI company This instrument is manufactured in the United Kingdom The company reserves the right to change the specification or design without prior notice MEGGER is the registered Trade Mark of THORN EMI plc. This data uses the comma as the decimal marker to align with general European usage Copyright ©, THORN EMI Instruments Limited 1984 Part No. 6170-787 Edition 6 Printed in England SL/0,2k/3S

