INSTRUMENT HANDBOOK

Applicable to Serial No. 1.4. 0.5.5.

MODEL bwd 582

T.V. VIDEO WAVEFORM MONITOR

SECTION	PAGE	CONTENTS
1	1.	GENERAL
2	1.	SPECIFICATION
3	3	INSTALLATION INSTRUCTION
4	3	OPERATING INSTRUCTIONS
5	4	FIRST TIME OPERATION
6	5	CIRCUIT DESCRIPTION
7	7	ALIGNMENT AND MAINTENANCE
8	10	REPLACEMENT PARTS
9	10	WARRANTY

B.W.D. ELECTRONICS PTY.LTD. 331-333 BURKE ROAD, GARDINER VICTORIA 3146 AUSTRALIA B.W.D. ELECTRONICS PTY.LTD. 127 BLUES POINT ROAD, NORTH SYDNEY NEW SOUTH WALES 2060 AUSTRALIA

Telephone: 25-4425

Telephone: 929-7452

INSTRUMENT HANDBOOK

MODEL bwd .582

GENERAL. Model bwd 582 Video Waveform Monitor is a portable self contained, all solid state instrument suitable for both black and white or colour monitoring.

The vertical amplifier is provided with a network that can be switched in to limit the high frequency response to conform to the IRE standard. The normal response provides a 5% level from 50Hz to 4.5MHz.

Internal calibrator produces a selectable _714 or 1V P-P 40kHz square wave for calibrating the vertical amplifier.

The cabinet design is based on a 7" x $\frac{1}{2}$ rack module size permitting bench mounting. 19" x 7" rack mounting or two units side by side in a 7 x 19" rack utilizing bwd rack adaptors.

2. VERTICAL DEFLECTION SYSTEM.

2.1Deflection Sensitivity :Continuously variable from 0.4V to 4V for 140 IRE
units (7cms).Frequency Response :(Sensitivity 1V for 140 IRE units).Normal.50Hz to 4.5MHz +0 -5%
3.5Hz to 8MHz - 3db.

IRE

P10 582 138 235–1 standard. Flat to 350kHz – 2% 20db down at 4MHz.

NOTE: Amplifier response is adjusted for optimum at a sensitivity of IV for 140 IRE units. Sensitivity range from .5V to 1.5V for 140 IRE units will not affect the Normal response by more than 5%. Maximum variation over the entire sensitivity range will not exceed 10% of the specified frequency response at IV.

	Linearity:	within 2% on the screen.
	DC Restorer:	Back porch clamping, does not affect colour burst signal.
	Signal or Video Input:	Bridged 75Ω compensated signal input via two Fernsh sockets. Input socket provides a 75Ω terminated input. Output socket provides a high impedance (1MΩ approximately) termination.
		Signal may be applied with negative going sync pulses (Panel select to Normal) or positive going sync pulses (Panel switch to inverted).
2.2	HORIZONTAL DEFLECTION	SYSTEM.
·	Sweep Rates: (Uncalibrated)	1 Line, 2 lines, 1 frame or 2 frames. X5 magnifier available for both line and frame selection.
٥	Unblanking:	DC coupled to CRT unblanking electrode.
0	The second secon	

-1-

2. VER

	· .	
VERT	ICAL DEFLECTION SYSTEM (Contd.)
	Sync: Internal.	Sync obtained from vertical amplifier signal.
·	External.	Ext trigger input is fitted to rear panel a .5V to 5V composite or non composite negative going sync pulse is required. Rear panel switch selects Internal-External Sync source.
	AMPLITUDE CALIBRATOR.	Frequency approximately 40kHz amplitude selectable, .714 or 1V, accuracy 2%.
		External calibrator may be applied through signal OUTPUT socket ($1M\Omega$ termination).
2.3	CRT.	5" flat face PDA operating at 2.9kV . Viewing area 8 x 10cm .
	<u>Graticule:</u>	Calibrated display area 7 x 10 cm Engraved from -40 to +100 every 10 units. Other graticules available to special order. Graticule is provided with variable edge illumination and a green filter to increase contrast ratio.
2.4	POWER PEQUIREMENTS.	90V to 135V or 185 to 265V 48 to 65Hz . Internal tappings located on Power Transformer . 30 watts max .
	DIMENSIONS.	Bench mounted 7 ³ / ₄ " high x 8 ¹ / ₄ " wide x 17 ¹ / ₄ " deep overall feet knobs etc. Rack mounted – single or dual units. 7" high x 19" x 16 ¹ / ₂ " deep behind panel. Weight 15 lbs.

3. INSTALLATION INSTRUCTIONS.

3.1 Modelbwd 582 utilises convection cooling to reduce internal temperature rise, Installation should be arranged to ensure ventilation holes in bottom cover are not obstructed nor hot air from other equipments below it allowed to enter and thus increase the internal operating temperature.

3.2 Power supply voltage should be checked against the transformer tapping. If instrument is supplied with standard Australian 3 pin plug on cord and no label attached to power cord transformer will be set to 235V tapping. If tapping has been set for other voltages a label attached to power cord will indicate this.

Transformer tappings are shown below and should be adjusted to suit supply if necessary. Fuse is a .5Amp for 230V use or 1A for 110V operation. Fast blow.

理,此可 (4)。《行人心》 Horizontal Position X5 mag. When control knob is pulled out trace is expanded X5 irrespective of selection of Time Base switch. Rotation of knob in OUT position move the trace horizontally to permit examination of any point on the display. Vertical Position . Moves trace vertically over display area. Normal - Invert. Switch permits correct display of video signal irrespective of input polarity. Two position switch selects amplifier response. Normal - flat from 50Hz to 4.5MHz - 5% IRE - -20db at 4MHz. Cal. (Preset) Screwdriver control to set the instrument sensitivity over a 10-1 range.

> Three position switch selects either 1V or .714V amplitude calibrate signal or the input video signal to display on CRT..

When switched to Internal sync selector uses internal signal display for locking. In Ext. position internal sync is disconnected and composite video or non-composite sync signals applied to Ext. sync socket lock trace. Input should be .5V to 5V amplitude.

Fernsh input socket with internal 75Ω termination.

Fernsh socket fitted with switch controls which open 75 Ω termination when plug is pushed in.

When a feed through connection is required feed input cable to Input socket and output to output socket. 75 Ω termination is removed but feed through components retain a constant 75Ω impedance.

FIRST TIME OPERATION. 5.

Connect instrument to correct AC power source (see para. 3.2) and set controls 5.1 as follows:

Time Base	Line 2.
Horizontal Position	Pushed in.
Vertical Position	Centred.
Normal-Invert	Normal
Normal-IRE	Normal
Cal – Use	.714 (centre position).
Focus.	Centre.
Intensity	 ¹/₄ rotation clockwise .
Graticule	Switch on by rotating clockwise.
	- 1 -

: 582 138

Input Socket.

Output Socket.

REAR PANEL:

Int.-Ext. Sync

Normal - IRE.

Cal. - Use.

INSTRUMENT HANDBOOK

Applicable to Serial No. 1.4. 0.5.5.

MODEL bwd 582

T.V. VIDEO WAVEFORM MONITOR

SECTION	PAGE	CONTENTS
		CONTENTS
1	1.	GENERAL
2	1,	SPECIFICATION
3	3	INSTALLATION INSTRUCTION
4	3	OPERATING INSTRUCTIONS
5	4	FIRST TIME OPERATION
6	5	CIRCUIT DESCRIPTION
7	7	ALIGNMENT AND MAINTENANCE
8	10	REPLACEMENT PARTS
9	10	WARRANTY
	•	

B.W.D. ELECTRONICS PTY.LTD. 331–333 BURKE ROAD, GARDINER VICTORIA 3146 AUSTRALIA

Telephone: 25-4425

B.W.D. ELECTRONICS PTY.LTD. 127 BLUES POINT ROAD, NORTH SYDNEY NEW SOUTH WALES 2060 AUSTRALIA

Telephone: 929-7452

6. CIRCUIT DESCRIPTION (Contd)

Current flowing through the output stage is applied to a 10V zener diode D15 to provide a 10V stabilised rail to drive Q1 and Q2, the sync separator circuits and the calibrator. C13 filters signals present in the emitter load of Q8 and 10 and those generated by the calibrator and sync separator circuits.

6.2 Input signals from the vertical amplifier feed via C3 to Q14 phase splitter. Signals appearing at the emitter are in phase with the input whilst those at the collector are inverted. The appropriate signal with negative going sync pulses is selected by S4C which is part of the polarity selector switch S4A & B coupling the input of Q3 and Q4 amplifiers to the input signal. The negative going sync pulses are applied to Q15 grounded emitter stage via C24 and R58. As R58 is connected to ground Q15 is conducting with its collector around 9V. The negative going sync pulse tips will drive the stage further into conduction however, when the sync pulse rises back to black level it immediately cuts of Q15, its collector falls and an amplified, clean sync pulse is developed across R59.

Q16 is another grounded emitter stage which will further clip the sync pulse to ensure no video information is contained in the waveform appearing across R62. Three outputs are taken from R62. The line sync pulses are taken directly to S6A whilst frame pulses are integrated by R67-68 and C28 before connecting to S6A. The third signal is taken via C26 R64 to Q17. The line pulses are differentiated by C26 and clipped by D7, R62 and R63. Equal positive and negative pulses are produced by Q17 across the low impedance loads R66 and R65 with a pulse width of approximately 1 u Sec.

These pulses are fed to the DC restorer via C5 & ó.

6.3 DC Restorer.

To ensure the signal remains stable on the CRT irrespective of variations in the video content or even sync pulse amplitude particularly when monitoring 'off the air' signals from a T.V. receiver, the signal must be clamped to a particular level. In this model clamping is held at the level of the back porch, directly following the sync pulse but short enough to not intertere with a colour sync burst when present.

The two symetrical 1y Sec pulses drive D1 and D2 hard into conduction producing a low impedance at the junction of the diodes ana C4, the clamp voltage being at ground potential. Therefore following each line sync pulse the signal back porch level is clamped to ground and due to the long time constant of the circuit formed by C4, the leakage of D1 and D2 and the gate current of Q3 or Q4 no drift of this level will occur between successive sync pulse. The vertical amplifier is DC coupled from the DC restorer to the deflection plates so restoration is maintained throughout the deflection system.

6.4 The Time Base consists of a sync shaping circuit Q18 - Q20, sweep gate Q22 and 23, Miller Sawtooth generator Q24-26, Auto gate circuit Q21 and horizontal amplifier Q28-30.

Line or frame sync pulses selected by S6A are coupled to Q18 emitter follower isolation stage which drives at low impedance the pulse shaping Schmitt Trigger pair Q19 and 20. Irrespective of the shape or rise time of the input, the signal developed across R77 has a constant amplitude and fast fall time. The negative pulse is differentiated by C35 and used to trigger the time base gate Q22 and Q23. In the quiescent condition awaiting

582

6. CIRCUIT DESCRIPTION (Contd)

The time base sawtooth is taken from the junction of R104 and R106 via R107 and C43 to the base of Q28. Shift voltages are added to the signal via R100, R109 and RV16 panel preset and in the X5 magnified position by R108, S7 and RV15 front panel shift control. The horizontal amplifier is similar to the vertical output stage being a high voltage balanced cascode stage with preset gain controls between the emitters of Q28 and 30.

Gain is increased by X5 when RV18 is paralleled across RV17.

6.5 The calibrator is an emitter coupled multi vibrator Q11 and Q12 oscillating at approximately 50kHz. The output waveform is clipped on the positive face to eliminate tilt by D16 which conducts at 3.3V when D17 sener conducts. This charges C22 and provides a low impedance clamp source.

RV11 and 12 presets are adjusted for .714 and 1V P-P output.

6.6 Transformer T1 supplies all voltages to the instrument. Low voltages are + and - 50V approx. and +200. -55 is half wave rectified by D6 and filtered by C19, R43 and C20. A further stage of filtering by R119 and C29 reduces the rail to -45V +50V is similarly obtained from half wave rectifier D5 with C17, R42, C18 filters. A further stage of filtering is obtained from R22, R21 and C9 for the +24 rail in the vertical amplifier.

The high voltage for the deflection amplifiers is obtained by doubling an 82V winding by D3, D4, C14 and 15. Separate filters are used for each amplifier. R44 and C10 for the vertical amplitier, R41 and C16 for the horizontal.

The CRT operates on approximately equal + and – voltages. Negative 1400 is full wave doubled by D201 and 202, C201, 2, 3 and 4. +1500 by half wave doubling via C209, D203 and D204.

CRT intensity and focus controls are placed in a divider chain across the -1400 rail. Astigmatism and geometry controls are connected into the low voltage supplies.

7. ALIGNMENT AND MAINTENANCE.

7.1 Access to Model WF 582 can be obtained by removing two screws holding down the handle, this enables the top portion of the cover to be lifted off. Removal of the 4 feet underneath enables the bottom cover to be removed for complete access to all parts.

Complete alignment can be made using a video waveform generator or the video output from a T.V. receiver plus a square wave generator (10 nSec rise time) and a constant amplitude sine wave generator.

7.2 The first adjustment is to set the DC level of the vertical output stage. Switch to 2 frames on Time Base switch with no input. Centre trace vertically. Measure with a $20,000\Omega/V$ olt meter the average voltage on Q27 and Q29 collectors (approximately +95V). Now adjust RV4 (RH rear of board) until average voltage on Q7 and 9 collectors is within 5V of the horizontal amplifier voltage.

200-240V CONNECTIONS

100-120V CONNECTIONS

UNIVERSAL TRANSFORMER CONNECTION

3.3 19" Rack mounted versions will require rack adaptors to convert them for 19" use. For single unit mounting, bwd R76 adaptors are required. For dual mounting, bwd R75 rack adaptor is required. Holes in angle bolting faces conform to standard 19" rack dimensions.

4. OPERATING INSTRUCTIONS.

4.1 FRONT PANEL CONTROLS:

Graticule - OFF

Intensity

Focus.

Astigmatism . (Preset)

Time Base .

Horizontal Position (Preset)

Fully anticlock this control switches off the AC power. Clockwise rotation increases graticule illumination.

Controls CRT brightness.

Control to adjust the beam for maximum trace sharpness.

Used initially with focus control to obtain a uniform focus over most of the screen area.

Selects 1 or 2 frame signals or 1 or 2 line signals.

Adjusts horizontal position of trace when non magnified.

- 3 -

5. FIRST TIME OPERATION (Contd.)

5.2 Adjust the intensity when display appears to a suitable intensity for good viewing and focus for a sharp overall display.

5.3 If an external calibration signal is to be used feed it into the OUTPUT socket on rear panel (input impedance $1M\Omega$) and switch selector to USE. Input frequency of ext. CAL waveform must be greater than 1kHz.

5.4 As Internal calibrate waveform is at 50kHz approximately only two horizontal lines will be displayed in the frame positions of the Time Base switch.

5.5 When a video signal is fed in it should appear with the sync pulses at the bottom of the display, if inverted charge over the Normal-Inverted switch for correct display and recentre trace.

5.6 If it is desired to match the display to the graticule adjust the CAL preset until the sync pulses are equal to 40 divisions with the top of the sync pulse i.e. back and front porch level located on the graticule 0 line. Maximum white video signal should not exceed 100 IRE units on the graticule.

6. CIRCUIT DESCRIPTION.

The monitor will be divided into the following sections:

1.	Vertical amplifier.
2.	Sync Separator.
3.	DC restorer.
4.	Time Base and Horizontal Amplifier.
5.	Calibrator.
6.	Power Supplies and CRT.

6.1 Input signals applied to the rear panel sockets are taken by co-ax. cable to the Input-Calibrator Selector switch. In the Use position signals are taken through a protection divider R2 C44 and R3 to Q1 FET source follower. Two outputs are taken from the FET, one via C3 to the sync phase splitter and the second via C2 to the front panel CAL control RV1. Output from RV1 drives the base of Q2 emitter follower. This provides a low output impedance to drive the pulse clamp restoration circuit, the IRE filter when switched in by S3A & B and the input amplifiers Q3 & Q4 via Normal-Inverting Switch S4A & B.

Q3, Q4 long tailed pair produces a balanced output across the drain loads which is directly coupled to emitter followers Q5 and Q6.

Vertical positioning is applied to Q3 and Q4 drains via R11 and 16 from RV3 front panel Vertical Position control.

The CRT output deflection amplifier is a high voltage wide band cascode stage consisting of Q7 - 10. Balanced signals applied to Q8 and Q10 bases are amplified and driven into the emitters of Q7 and Q9 high voltage deflection plate drivers high frequency compensation is provided by RV5, C11 and C12. DC levels at the collectors are set by RV4 common emitter resistor.

- 5 -

- 9A -

7. ALIGNMENT AND MAINTENANCE (Contd.)

Now feed in a 350kHz sine wave and adjust deflection to equal 140 IRE units.

Adjust FOCUS AND ASTIGMATISM for best focus over entire viewing area, then adjust RV6 geometry preset (RH rear of board) for best trace geometry with minimum pin-cushioning or barrel distortion. Turn intensity control fully clockwise, adjust RV19 on rear EHT board until flare is removed from display.

7.3 Feed in a IV square wave calibration signal and adjust vertical gain (Front panel CAL preset) for 140 IRE units. Switch over to 1V CAL waveform, adjust RV12 (RH front of board) for 140 IRE DIV. Switch to .714 cal waveform adjust RV11 for 100 IRE units. The calibrator is now correct.

7.4 VERTICAL AMPLIFIER ALIGNMENT. - Do not move CAL preset during following tests.

Switch input to USE, feed in a 15kHz square wave 100 IRE units amplitude, Time Base at 2 line position. Adjust C44 (front LH side of board) for level tops to square wave – no rounding or overshoot.

Increase frequency to 100kHz square wave. Pull out X5 magnification control.

Adjust C12 and RV5 for optimum square wave with flat top. A slight single ring of approximately 2mm will be present when response is optimised.

Check operation of IRE response, waveform should be rounded with no ringing.

Replace square wave input with sine wave. Set level equal to 100 IRE units at 50kHz. In the normal position, bandwidth should not be greater than 5% down at 4.5MHz and 3db at 8MHz.

In the IRE position bandwidth should be 2% down at 350kHz and greater than 20db down at 4MHz. i.e. 5 IRE division max.

7.5 TIME BASE CALIBRATION.

Feed in a video waveform from a generator on an 'off the air' receiver. Set Time Base to 1 frame. Adjust RV17 preset (Rear LH side of board) for trace length equal to graticule calibration. i.e. 10cm approx. Centre trace with front panel Horizontal Position preset. Check trace position and length at other time base switch settings.

Reset Time Base switch to 1 frame, adjust RV14 until one complete frame signal is visible, switch to 2 frame position to check display. Set RV14 to optimise display between the two positions.

Change to 1 line and adjust RV13 for one complete line display. Switch to 2 lines and optimise setting of RV13 for best display in both positions.

Remove video signal and replace with square wave. Select 2 lines on Time Base, adjust external square wave for 5 complete waveforms equal to length of calibrated graticule. Pull out X5 mag knob then adjust RV18 (LH rear board) until one square wave equals length of calibrated graticule. Check that display can be tracked along to display both ends.

The instrument is now correctly aligned.

•••••••

a trigger pulse, Q22 will be conducting and Q23 cut off. Q22 has its collector at approximately -4V which causes D11 to conduct and via R87, R89 divider to bias off Q23. As the CRT blanking electrode on pin 11 is connected to Q22 collector the CRT is blanked off whilst D12 connected to Q23 collector is held above ground by the divider R92, R93 and R90. This causes Q24 source to rise, it turns on Q25 causing its collector and hence Q26 base and emitter to fall until the junction of R104, R106 and D13 falls to a voltage which causes D13 to conduct. Conduction of D13 causes the voltage at the anode of D12 to be reduced as current is now by passed through R106 and 105 to the -45V rail. A quiescent state is reached where the bypass current through D13 just holds the forward bias voltage on Q24 and hence Q25 at a level which keeps D13 conducting.

On the arrival of negative trigger pulse at Q22 base the transistor is cut off, its collector rises turning on the CRT beam blanking, Q23 turns on via the voltage divider D11, R87 and R88 permitting its emitter current to take over from Q22 so biasing it off completely.

Conduction through Q23 causes its collector voltage to fall reverse biasing D12 and D13 thus leaving the Miller circuit ready to operate. Q24 gate is returned to a negative voltage via the timing resistors R97-100 as selected by S6D. This tends to cut Q24 off and reduce the bias on Q25, its collector rises pulling up Q26 base, its emitter rises and via R104 and C42 change the selected timing capacitors C40 and 41. As the other end of the timing capacitors are taken back to Q24 gate the positive going charge applied is in opposition to the negative fall created by the charging resistors.

As a result of this feed back an extremely linear rising voltage is developed across the Miller transistor Q25 and by the emitter follower action across the output load R105 & 6. It will continue to rise until the voltage at the junction of these resistors and D14 reaches approximately -6V when D14 conducts and starts to charge C36 hold-off capacitor and C33 in the frame positions and increase the bias on Q22 base. When the base rises to about -3V Q22 conducts, its collector falls, blanks the CRT, and again cuts off Q23 so that its collector rises, D12 conducts, biases Q25 on hard, its collector falls together with Q26 until as previously described, D13 conducts and a quiescent condition is again established.

The base of Q22 will not fall immediately D14 disconnects as the hold off capacitor will require discharging through R81 and Q22 base current. This time delay is sufficient to prevent triggering before C40 or C41 have discharged to the quiescent condition.

If no trigger pulse is received the gate circuit Q22 and 23 are automatically operated at a rate slightly longer than the duration of two lines or two frames as selected by S6.

Q21 controls the auto circuit. During the time the sawtooth waveform is developed Q21 is turned on causing its collector to rise to zero and discharge C34 and C31 when switched to frame. At the commencement of the flyback Q21 is cut off and C34 and C31 can charge negatively via the divider R78, 79, 80 and 81. This steadily reduces the bias on Q22 base until it is unable to hold it in conduction its collector rises, unblanking the CRT and turning Q23 on thus initiating another trace where no sync signal was present.

	MODIFICATIONS	
	155UE 11-69	
	155UE 2 4-70	
020	<u>دا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>	
647	- ISSUE 3 5-70	
C.805		
	CALIBRATOR REDESIGNED	
No.	155UE 4 7-70	
	R44 WAS 3-9K4W RILO ADDED	
	C22 WAS .I	
1. A.	155UE 5 9-70	
I	TRACED	
	ISSUE G INT. EXT. SYNC. SKT.	
	ADDED S8.	
		1
	· · ·	I
		I
		i
		1
		F
		1
-		

Â

SWITCHES

51 7	5 & TERMINATION
52A 8	B USE/CALIBRATE
53A 8	B FLAT - IRE RESPONSE
54A-	C NORM - INVERT
5 5 A 8	LB POWER ON-OFF
56A-	E TIME BASE SELECTOR
57A 8	B x 5 MAGNIFICATION
58	INT EXT. SYNC.
	CONTROLS
RVI	CALIBRATE (AMPL. SENS.)
RV2	VERT. BALANCE
RV3	VERT. POSITION
RV4	AMPLIFIER DC LEVEL
RV5	AMPLIFIER RESPONSE
RV6	GEOMETRY (CRT)
RV7	ASTIGMATISM (CRT)
RV 8	FOCUS (CRT)
RV9	INTENSITY (CRT)
RVIO	GRATICULE ILLUMINATION
RVII	-714 V CAL SIGNAL
RV12	IV CAL SIGNAL
R V 13	FRAME TIME BASE PRESET
RV14	LINE TIME BASE PRESET
RV15	HORZ SHIFT - x5 MAG. ONLY
RV16	HORZ POSITION PRESET
RV17	HORZ WIDTH
RV18	HORZ WIDTH x 5 MAG
	SET MAX INTENSITY DIODE BALANCE

ABBREVIATIONS CONTINUED

PL	Plug	Se	Selenium
PS	Socket	SI	Slide
Preset	Internal Preset	SPDT	Single Pole Double Throw
PYE	Polyester	SPST	Single Pole Single Throw
pot	Potentiometer	si	Silicon
prec	Precision	Ta	Tantalum
PC	Printed Circuit	tol	Tolerance
PIV	Peak Inverse Voltage	trim	trimmer
PYS	Polystyrene	V .	Volt (s)
р-р	Peak to Peak	var	variable
P, Shaft	Plain Shaft	vdcw	Volts Direct Current Working
S.Shaft	Slotted Shaft	w .	Watt (s)
R	Resistor	ww	Wire Wound
rot	Rotary	Z	Zener
Rlog	Reverse Logarithmic Taper	* *	Factory Selected valve average valve
rms	Root Mean Squared		may be shown
•••••	•	**	Special Component, no part number assigned

ussigin

105

MANUFACTURER ABBREVIATIONS

AC	Allied Capacitors	J	Jabel
AEE	AEE Capacitors	MAS	Master Instrument Co. Pty.Ltd.
AN	Anodeon	MUL	Mullard (Aust.) Pty.Ld.
AST	Astronic Imports	MOR	Morganite (Aust.) Pty.Ltd.
AWA	Amalgamated Wireless of Aust.	MSP	Manufacturers Special Products (AWA)
ACM	Acme Engineering Pty.Ltd.	McM	McMurdo (Aust.) Pty.Ltd.
AMP	Aircraft Marine Products (Aust)P/L	NU	NU VU Pty.Ltd.
AR	A. & R. Transformers	NAU	A.G. Naunton Pty.Ltd.
AUS	Australux Fuses	PA	Painton (Aust.) Pty.Ltd.
AWV	Amalgamated Wireless Valve Co.	PAL	Paton Elect. Pty.Ltd.
ACA	Amplifier Co, of Aust.	PI	Piher Resistors (Sonar Electronics)
AL	Alpha	PW	Precision Windings Pty, Ltd,
ARR	Arrow	PH	Philips Electrical Industries Pty.Ltd.
BWD	B.W.D. Electronics Pty.Ltd.	PL	Plessey Pacific
BL	Belling & Lee Pty. Ltd.	PV	Peaston Vic
BR	Brentware (Vic) Pty.Ltd.	RP ·	Radio Parts Pty. Ltd.
CF	Carr Fastener	RC	Radio Corporation (Electronic Inds.)
CAN	Cannon Electrics Pty.Ltd.	RCA	Radio Corporation of America
CIN	Cinch	RHC	R.H. Cunningham
D	Ducon Condensor Pty.Ltd.	S a s	Sonic Electronics Pty.Ltd.
DAR	Darstan	STC	Standard Telephones & Cables
DIS	Distributors Corporation Pty.Ltd.	SI	Siemens Electrical Industries
ELN	Elna Capacitors (Sonar Elect.P/L)	SIM	Simonson Pty.Ltd.
ETD	Electron Tube Dist.	SE	Selectronic Components
F.	Fairchild Australia Pty.Ltd.	TR	Trimax Erricson Transformers
GRA	General Radio Agencies	TI	Texas Instruments Pty.Ltd.
GES	General Electronic Services	TH	Thorn Atlas
GL	Grelco	UC	Union Carbide
HW	Hurtle Webster	W	Wellyn Resistors (Cannon Elec . P/L)
HOL	R.G. Holloway	Y	F.L. Yott Pty.Ltd.
Н	Haco Distributors (National)	Z 2B	Zephyr Prod. Pty. Ltd.

CCT	T	· · · · · · · · · · · · · · · · · · ·					
Ref		DESCRIPTIO	NKT	1	Mfr. of		
Net				!	or Supplier	PART NO.	1
	1	RESISTOR	, <u> </u>		[<u> </u>	+
					1		
R42	1.2KΩ	$\frac{1}{2}W$	5%	CC	P.]		1
R43	_ 470Ω	¹ /₂w	5%	cc	PI		
R44				. 1	i '		
R45	5.6ΚΩ	$\frac{1}{2}W$	5%	сс	PI		/
R46	5.6KΩ	$\frac{1}{2}$ W	5%	СС	PI		1
R47	2.2ΚΩ	$\frac{1}{2}W$	5%	CC	PI	,	1
R48	4.7ΚΩ	¹ / ₂ w	5%	СС	PI		1 1
R49	5.6KΩ	$\frac{1}{2}$ w	5%	СС	PI		1 1
R50	4.7ΚΩ	$\frac{1}{2}W$	5%	CC	PI		1
R51	1.5K	$\frac{1}{2}W$	5%	CC	PI	1	1.1
R52	1		•		l '	1	
R53		_			l '	! '	!
R54	68KΩ	$\frac{1}{2}W$	5%	· cc	PI	1 '	!
R55	22ΚΩ	$\frac{1}{2}W$	5%	CC C	PI	l ,	1 1
R56	2.2KΩ	$\frac{1}{2}W$	5%	CC	PI	l '	
R57	2.2KΩ	¹ / ₂ w	5%	CC	PI	1 /	1
R58	3.3 MQ	$\frac{1}{2}W$	5%	cc	PI	1	
R59	18ΚΩ		5%	cc	Pi	1 1	1 1
R60	1ΜΩ	$\frac{1}{2}W$	5%	CC	PI	/	1 1
R61	4.7ΚΩ	¹ / ₂ w	5%	CC	PI		1 1
R62	4.7KΩ	$\frac{1}{2}W$	5%	cc	PI		
R63	2.2 ΚΩ	$\frac{1}{2}W$	5%	CC	PI	1 1	1 1
R64	10ΚΩ	$\frac{1}{2}W$	5%	cc	PI	1 1	1 1
R65	1ΚΩ	$\frac{1}{2}W$	5%	cc	PI	1 1	
R66	1ΚΩ	$\frac{1}{2}W$	5%	CC	PI	1 1	1 1
R67	22ΚΩ	$\frac{1}{2}w$	5%	CC	PI		1 1
R68	(00)/0	١			1	1 1	1 1
R69 P70	680KΩ	$\frac{1}{2}W$	5%	CC	PI	1 1	1]
R70	100KΩ	$\frac{1}{2}W$	5%	CC	PI	1 1	1 1
R71 P72	82KΩ	12W	5%	CC	PI	1 1	1
R72 P73	10ΚΩ 1ΚΩ	2 ₩ 1	5%	CC	PI	ľ	1
R73 R74		12W	5%	CC	PI	1	1
R74 R75	12KΩ 33KΩ	1 2 1 1	5%	CC	PI	1 1	1 1
R75 R76	33ΚΩ 82ΚΩ	12W	5%	CC	PI	1	1
к7о R77	82 KΩ 3.3KΩ	12W	5% 5%	CC	PI		1
R78	3.3κΩ		5%	CC	PI ·]	1
R78 R79	6.8K	12W	5%	CC	PI	1 1	1
R79 R80	1	12W	5%	CC	PI	1 1	1
R80 R81	2.2KΩ 220KΩ	12W	5%	CC	PI	i i i	í I
R81 R82	220KΩ 47KΩ	12w	5%	cc	PI		i - 1
NOZ	4/ 152	12w	5%	cc	PI		I
		And the second se				<u> </u>	

•.

8. REPLACEMENT PARTS.

As the policy of B.W.D. ELECTRONICS PTY. LTD. is one of continuing research and development, the company reserves the right to supply the latest equipment and make amendments to circuits and parts without notice.

9. GUARANTEE.

The equipment is guaranteed for a period of twelve (12) months from the date of purchase, against faulty materials and workmanship, with the exception of Cathode Ray Tubes, which are covered by their manufacturer's own warranty.

Please refer to Guarantee Registration Card No....92.98......which accompanied instrument, for full details of conditions of warranty.

B.W.D. ELECTRONICS PTY. LTD.

REPLACEABLE PARTS

- 1. This section contains information for ordering replacement parts, it provides the following details:-
 - (a) Description of part (see list of abbreviations).
 - (b) Typical manufacturer or supplier of the part (see list of abbreviations).
 - (c) Manufacturer's Part Number; and

2.

(d) Defence Stock Number, where applicable.

Ordering – Please quote Model Type No. e.g. bwd 511, Serial No., Circuit reference No. and component details as listed in parts list.

COMPONENT DESIGNATORS

Α	Assembly	н	Heater	RV	Resistor Variable
В	Lamp	J	Jack (socket)	S ·	Switch
С	Capacitor	L	Inductor	Т	Transformer
D	Diode	Μ	Meter	TH	Thermistor
DL	Delay Line	Р	Plug	V	Valve
E	Misc , Elect , Part	Q	Transistor	VDR	Voltage Dependent Resistor
F .	Fuse	R	Resistor		

ABBREVIATIONS

CCapacitorlinLinearccCracked CarbonLogLogarithmic_TapercCarbonmMilli = 10^{-3} cdDeposited CarbonMHzMega Hertz = 10^{6} HzcompCompositionMFMetal FilmCDSCeramic Disc CapacitormaMilli AmperecerceramicMQMeg Ohm = $10^{6}\Omega$ ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^{3} HzpPeak	Amp	Ampere	L	Inductor
ccCracked CarbonLogLogarithmic TapercCarbonmMilli = 10^{-3} cdDeposited CarbonMHzMega Hertz = 10^{6} HzcompCompositionMFMetal FilmCDSCeramic Disc CapacitormaMilli AmperecerceramicMQMeg Ohm = $10^{6}\Omega$ ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^{3} HzpPeak	•	•	lin	
c Carbon m Milli = 10^{-3} cd Deposited Carbon MHz Mega Hertz = 10^{6} Hz comp Composition MF Metal Film CDS Ceramic Disc Capacitor ma Milli Ampere cer ceramic MQ Meg Ohm = $10^{6}\Omega$ Com Common mfr Manufacturer DPST Double Pole Single Throw MO Metal Oxide DPDT Double Pole Double Throw MHT Polyester/Paper Capacitor elec Electrolytic MPC Metalised Polyester Capacitor F Farad Ne Neon f Fuse NPO Zero temperature co-efficient FET Field Effect Transistor nsr Not separately replaceable Ge Germanium NC Normally Closed H Henry (ies) NO Normally Open H.S. High Stability ns Nano second HTC High Temp Coating obd Order by Description ins Insulated OD Outside Diameter kHz Kilo Hertz = 10^{3} Hz P	CC	•		
cdDeposited CarbonMHzMega Hertz = 10° HzcompCompositionMFMetal FilmCDSCeramic Disc CapacitormaMilli AmperecerceramicMQMeg Ohm = $10^{\circ}\Omega$ ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^3 HzpPeak	с	Carbon	-	$Milli = 10^{-3}$
compCompositionMFMetal FilmCDSCeramic Disc CapacitormaMilli AmperecerceramicMQMeg Ohm = $10^{\circ}\Omega$ ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^3 HzpPeak	cd	Deposited Carbon	MHz	Mega Hertz = 10^{6} Hz
CDSCeramic Disc CapacitormaMilli Ampere MQcerceramicMQMeg Ohm = $10^{6}\Omega$ ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^3 HzpPeak	comp	Composition	MF	-
ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^3 HzpPeak	CDS	•	ma	Milli Ampere
ComCommonmfrManufacturerDPSTDouble Pole Single ThrowMOMetal OxideDPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^3 HzpPeak	cer	ceramic	MΩ	Meg Ohm = $10^{\circ}\Omega$
DPDTDouble Pole Double ThrowMHTPolyester/Paper CapacitorelecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10^3 HzpPeak	Com	Common	mfr	
elecElectrolyticMPCMetalised Polyester CapacitorFFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak	DPST	Double Pole Single Throw	MO	Metal Oxide
FFaradNeNeonfFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak	DPDT	Double Pole Double Throw	MHT	Polyester/Paper Capacitor
fFuseNPOZero temperature co-efficientFETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak	elec	Electrolytic	MPC	Metalised Polyester Capacitor
FETField Effect TransistornsrNot separately replaceableGeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak	F	Farad	Ne	Neon
GeGermaniumNCNormally ClosedHHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak	f	Fuse	NPO	Zero temperature co-efficient
HHenry (ies)NONormally OpenH.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak		Field Effect Transistor	nsr	
H.S.High StabilitynsNano secondHTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak		Germanium	NC	Normally Closed
HTCHigh Temp CoatingobdOrder by DescriptioninsInsulatedODOutside DiameterkHzKilo Hertz = 10 ³ HzpPeak		• • •	NO	Normally Open
ins Insulated OD Outside Diameter kHz Kilo Hertz = 10 ³ Hz p Peak -12			ns	
kHz Kilo Hertz = 10^3 Hz p Peak -12				
		n	OD	
KQ Kilohm = $10^{\circ}\Omega$ pf pico farad = $10^{\circ}F$				-1/
	ΚΩ	Kilohm = $10^{\circ}\Omega$	pf	pico farad = 10 F

1B

108

dintal U

CCT Ref		DESCRIPTION		~	Mfr. or Supplier	PART No.	
R203 R204 R205	560 K 560 K 82Ω	$\frac{1}{2}W$ $\frac{1}{2}W$ $\frac{1}{2}W$	5% 5% 5%	CC CC CC	PI PI PI		
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22	0.47 yF 125 yF 10 yF 0.01 yF 0.01 yF 0.01 yF 120pf 32 yF 64 yF 40 yF 330pf 20-220pf 125 yF 50 yF 50 yF 50 yF 40 yF 50 yF 40 yF 100 yF 64 yF 100 yF 0.0056 0.220F	CAPACITOR 200V 16V 64V 100V 160V 160V 630V 64V 64V 200V 680V Trimmer 16V 150V 150V 150V 200V 64V 64V 64V 64V 64V 64V	10% 10% 10% 5% 5%	PYE ELEC PYE PYE PYS ELEC ELEC ELEC ELEC ELEC ELEC ELEC ELE	SON PH PH SOH PH AC PH	TYPE N C426AR/E125 C426AR/H10 TYPE N C296AR/A10K C296AR/A10K TCS106 C426AR/H32 C437AR/H64 C436AR/L40 TCS606 CWO C426AR/E125 C436AR/K50 C436AR/K50 C436AR/K50 C436AR/K50 C437AR/H64 C437AR/H64 C437AR/H100 C	
C23 C24 C25 C26 C27	0.1 پF 0.47 پF 100pf	100∨ 100∨ 500∨	10% 10% 10%N7	PYE PYE 50 CER	SON SON AC	TYPE N TYPE N CDS	
C28 C29 C30 C31 C32 C33 C34 C35 C36	0.01 yF 100 yF 0.01 yF 0.64 yF 22pf 0.1 yF 0.0047pf 10pf 0.0022	100V 64V 100V 64V 500V 100V 500V 500V	10% 10% 10%N7 10% 10% 10% 20%	PYE ELEC PYE ELEC 50 CER PYE PYE CER CER	SON PH SON PH AC SON SON AC AC	TYPE N C437AR/H100 TYPE N C426AR/H0.64 CDS TYPE N TYPE N CDS CDS	

A

CCT Ref	DESCRIPTION	Mfr. or Supplier	PART No.	
RV 14	<u>POTENTIOMETER</u> 100KΩ PRE SET POT C	РН	E097AC/100K	
R∨15	100KΩ LIN POT DPST Push Pull Switch C	DUC		
RV 16 RV 17 RV 18 RV 19 RV20	100KΩLIN POT SLOTTED SHAFT C10KΩPRE-SETC1KΩPRE-SETC100KΩPRE-SETC1MΩPRE-SETC	SON PH PH PH PH PH	E097AC/10K E097AC/1K E097AC/100K	
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19	DIODES75VPIV30mASi75VPIV30mASi400VPIV500mASi400VPIV500mASi400VPIV500mASi400VPIV500mASi400VPIV500mASi400VPIV500mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi75VPIV30mASi10VZENER400mASi3.3VZENER400mWSi	РН РН РН РН РН РН РН РН РН РН	IN4148 IN4148 EM404 EM404 EM404 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 BZ Y88/CIO OA91 BZ Y88/C3U3	
D20 D201 D202 D203 D204	SELENIUM RECTIFIERS	STC STC	K8/25 K8/25 K8/25 K8/25 K8/25	
Q 1 Q2 Q3 Q4	TRANSISTORS25VVdsNCHANNEL FETSi20VVce70 hfeNPNSi25VVdsNCHANNEL FETSi25VVdsNCHANNEL FETSi25VVdsNCHANNEL FETSi	PH	2N3819 BF 194 2N3819) 2N3819)	Matched pai

<u></u>	<u>i </u>			· · · · · · · · · · · · · · · · · · ·			i
ССТ			•	÷	Mfr .		
Ref		DESCRIPTION	4		or Supplier	PART No.	
	· · ·						
		RESISTOR		•			
R1	75Ω	TR5	2%	мо	ELECTRICAL		
R2	220ΚΩ	$\frac{1}{2}W$	5%	CC	PI		
R3	ΙΜΩ	² ¹ / ₂ w	5%	cc	PI	· · · ·	
R4	22ΚΩ	$\frac{1}{2}w$	5%	CC	ΡI		
R5	470Ω	$\frac{1}{2}w$	5%	CC	PI		
R6	47ΚΩ	1 2 W	5%	CC	PI		
R7	2.7M	1 2 w	5%	CC	PI		
R8	2.7M		5%	CC	PI		
R9	Ι.5ΚΩ		5%	CC	PI		
R10	82Ω		5%	CC	PI	×	
R11	100ΚΩ	$\frac{1}{2}w$	5%	CC	PI		
R12	1.8KΩ	$\frac{1}{2}w$	5%	CC	PI		
R13	470Ω	$\frac{1}{2}w$	5%	CC	PI -		
R14	1.8KΩ	<u>,</u> j w	5%	CC	PI		
R15	82Ω	$\frac{1}{2}w$	5%	CC	PI	•	
R16	100ΚΩ		5%	CC	PÍ		
R17	82Ω	¹ / ₂ w	5%	CC	PI		
R18		-					
R19	10ΚΩ	$\frac{1}{2}W$	5%	CC	PI		
R20	10ΚΩ	$\frac{1}{2}$ W	5%	CC	PI		
R21	1.5ΚΩ	$\frac{1}{2}W$	5%	CC	PI		
R22		$\frac{1}{2}W$	5%	CC	PI		
R23	82Ω	$\frac{1}{2}W$	5%	CC	PI		
R24	470Ω	$\frac{1}{2}W$	5%	CC	PI		
R25	5.6ΚΩ	lw	5%	CC	PI		
R26	5.6ΚΩ	lw	5%	CC	PI		
R27	470Ω	$\frac{1}{2}w$	5%	CC	PI	-	
R28	100Ω	$\frac{1}{2}W$	5%	CC	PI		
R29	100Ω	$\frac{1}{2}$ w	5%	CC	Pl -		
R30	47Ω	$\frac{1}{2}W$	5%	CC	PI		
R31	82Ω	$\frac{1}{2}$ W	5%	CC	PI		
R32				·			
R33	560ΚΩ	lw	5%	CC	PI		
R34		,					
R35	1.8ΜΩ	$\frac{1}{2}$ w	5%	CC	PI		
R36							
R37							
R38							
R39							
R40	1.010			~~			
R41	6.8KΩ	$\frac{1}{2}W$	5%	CC	PI		

P8 139 •

CCT Ref		DESCRIPTION	1		Mfr. or	PART No.	
Ref R83 R84 R85 R86 R87 R88 R87 R90 R91 R92 R93 R94 R95 R94 R95 R96 R97 R98 R97 R98 R99 R100 R101 R102 R103 R104 R105 R106 R107 R108 R109	220Ω 220ΚΩ 6.8 ΚΩ 68ΚΩ 15ΚΩ 22ΚΩ 120ΚΩ 3.3ΚΩ 47ΚΩ 150ΚΩ 3.3ΚΩ 39 ΚΩ 47ΚΩ 56ΚΩ 1ΜΩ 2.2ΜΩ 2.2ΜΩ 2.2ΚΩ 150Ω 33ΚΩ 2.7ΚΩ 18ΚΩ 12ΚΩ 100ΚΩ 270ΚΩ 330ΚΩ	<u>RESISTOR</u> <u>1</u> <u>w</u> <u>2</u> <u>w</u> <u>x</u>	5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	33355555555555555555555555555555555555	or Supplier PI PI PI PI PI PI PI PI PI PI PI PI PI	PART No.	
R109 R110 R111 R112 R113 R114 R115	100KΩ 82Ω 68KΩ 22KΩ 39KΩ 39KΩ	$\frac{1}{2}$ W $\frac{1}{2}$ W $\frac{1}{2}$ W $\frac{1}{2}$ W $\frac{1}{2}$ W $\frac{1}{2}$ W $\frac{1}{2}$ W	5% 5% 5% 5% 5%	20 20 20 20 20 20 20 20	PI PI PI PI PI PI		
R116 R117 R118 R119 R120 R121 R201	18KΩ 18KΩ 82Ω 470Ω 12K 560K	$\frac{1}{2}w$ $\frac{1}{2}w$ $\frac{1}{2}w$ $\frac{1}{2}w$ $\frac{1}{2}w$ $\frac{1}{2}w$	5% 5% 5% 5% 5%	CC CC CC CC CC CC	PI PI PI PI PI PI	· · ·	
R202	560K	$\frac{1}{2}W$	5%	CC	PI		4. •

CCT		Mfr.	
Ref	DESCRIPTION	or PAR Supplier	TNo.
	······································		
	TRANSISTORS		
Q5	20V Vce 70 hfe NPN Si	PH BF 19	94
Q6	20V Vce 70 hfe NPN Si	PH BF 19	4
Q7	150V Vce 50mA 1.7W NPN Si	PH BF 17	8
Q8	20V Vce 70 hfe NPN Si	PH BF 19	4
Q9	150V Vce 50mA I.7W NPN Si	PH BF 17	8
Q10	20V Vce 70 hfe NPN Si	PH BF 19	4
Q11	-45V Vce 75 hfe PNP Si	PH BC 15	7 ·
Q12	-45V Vce 75 hfe PNP Si	PH BC15	7
Q13			
Q14	45V Vce 125 hfe NPN Si	PH BC14	
Q15	-45V Vce 75 hfe PNP Si	PH BC15	
Q16	45V Vce 125 hfe NPN Si	PH BC14	
Q17	45V Vce 125 hfe NPN Si	PH BC14	
Q 18	45V Vce 125 hfe NPN Si	PH BC14	
Q19	45V Vce 125 hfe NPN Si	PH BC14	
Q20	45V Vce 125 hfe NPN Si	PH BC14	
Q21	-45V Vce 75 hfe PNP Si	PH BC 15	•
Q22	45V Vce 125 hfe NPN Si	PH BC14	
Q23	45V Vce 125 hfe NPN Si	PH BC14	•
Q24	25V Vds N CHANNEL FET Si	TI 2N38	
Q25	45V Vce 125 hfe NPN Si	PH BC14	1
Q26	45V Vce 125 hfe NPN Si	PH BC14	
Q27	150V Vce 50mA I.7W NPN Si	PH BF 17	
Q28	45V Vce 125 hfe NPN Si	PH BC 14 PH BF 17	
Q29	150V Vce 50mAI.7W NPN Si 45V Vce 125 hfe NPN Si	PH BC14	
Q30	45V Vce 125 hfe NPN Si		7
	SUNDRIES		
L2	100 yH coil	Selectronics VPC	
VDR1	VDR (0.8w) RED/ORANGE/YELLOW		0/P234
	P/C/BOARD EPOXY GLASS	PROCEL 160/	107
	TO5 HEAT SINKS	GES	
	P/C/BOARD EPOXY GLASS	PW 160/	
I	LAMPS LES	GRA E 5/8	
	RED BRACKET LAMP	SON 3280	
S1	ON BACK OF INPUT SOCKET	PYROX FERM	
S2	2 POLE 3POS SL SW	HAYCO RQ1	
S3	2 POLE 2POS SL SW	SON 3570	
S4	3 POLE 3POS SL SW	McMURDO IRH	
S5	ON BACK OF POT 500 2W WW		

7A

.

CCT Ref	DESCRIPTION	Mfr. or Supplier	PART No.	
S6 S7	<u>SUNDRIES</u> 2 POLE 4 POS 3 DECK ON BACK OF POT 100KA with Push- Pull DPST	AWA DUC	TYPE F	
TI	POWER TRANSFORMER CRT D13-27GH WITH SOCKET SOCKET CO-AX SOCKET CO-AX WITH SWITCH FUSE CARTRIDGE 3AG POWER CORD c/w PLUG		TP5698 PH FERNSH FERNSH 0.5AMP	
	ALL OTHER ITEMS ORDER BY DESCRIPTION			
				3

A

