THE "AVO" TRANSISTOR ANALYSER Mk 2

E

(6)

6

OPERATING INSTRUCTIONS

SECOND EDITION

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

PUBLISHED BY

УО LTD.

AVOCET HOUSE, 92-96 VAUXHALL BRIDGE ROAD, LONDON, S.W.1 Telephone: VICtoria 3404 (12 lines)

GROUP

FOREWORD

CR more than a quarter of a century we have been engaged in the design and manufacture of "AVO" Electrical Measuring Instruments. Throughout that time we have consistently pioneered the design of modern multi-range instruments and have kept abreast of, and catered for, the requirements of the epoch-making developments in the fields of radio and electronics.

The success of our steadfast policy of maintaining high standards of performance in instruments of unexcelled accuracy, and making such instruments available at reasonable cost, is reflected in the great respect and genuine goodwill which "AVO" products enjoy in every part of the World.

It has been gratifying to note the very large number of instances where the satisfaction obtained from the performance of one of our instruments has led to the automatic choice of other instruments from the "AVO" range. This process, having continued over a long period of years, has resulted in virtual standardisation on our products by numerous Public Bodies, The Services, Railway Systems, Post Office and Telegraph Undertakings throughout the World.

C

Our designers have thereby been encouraged to ensure that new instruments or accessories for inclusion in the "AVO" range fit in with existing "AVO" apparatus and serve to extend the usefulness of instruments already in use. Thus, the user who standardises on "AVO" products will seldom find himself short of essential measuring equipment, for, by means of suitable accessories, his existing equipment can often be adapted to meet unusual demands.

It is with pleasure that we acknowledge that the unique position attained by "AVO" is due in no small measure to the co-operation of so many users who stimulate our Research and Development staffs from time to time with suggestions, criticisms, and even requests for the production of entirely new instruments or accessories. It is our desire to encourage and preserve this relationship between those who use "AVO" instruments and those who are responsible for their design and manufacture and correspondence is therefore welcomed, whilst suggestions will receive prompt and careful consideration.

CONTENTS

and the second

												Tage
For	eword	••	••	••	••	••	••	•••	••	••	••	5
Intr	oduction	••	••	••	••	•••	••	••	••	••		8
1.	Symbol	s and l	Equival	ents use	ed in th	is Man	ual	••	••	••	••	8
2.	Specific				••		••			••	• • ·	9
	2.1 Mai	ns Pov	ver Unit	t	••	••	••	••	••	••	••	9
3.	Basic M	lethod	s of cha	racteris	stic che	cking	••	••	••	••	••	11
	3.1 Me	asuren	lent of I	co, 1c	, ID, VC			••	••	••	••	11
	3.2 Me					••	••	••	••	••	••	11
	3.3 Me	asuren	ient of I	Noise (N.F.)	••	••	••	••	••	••	11
4.	The cor	itrols,	their fu	nctions	and or	peration	ı	••				13
	4.1 Bet	a and]	Noise C	ontrol		•••		••				13
	4.2 Bas	e curre	ent cont	rols				••				13
	4.3 Me	ter Sw	itch									15
	4.4 Pres						•••	••				15
	4.5 Gai				••	••			••	••	. • •	15
	4.6 Che				••		••	••	••	••	••	15
	4.0 Chi					••	••	•••	••	••	••	15
	4.7 Ful 4.8 Col					••	• •	••	••	••	••	
	4.8 COI	lector	voits co	ontrol	• • .	• •	••	••	• •	••	••	16
5.	General 5.1 Me				g a Tra	nsistor		••	••	••	••	16 16
	5.2 Me											16
	5.3 To	measu	re Beta	(6)				••		••	••	18
	5.4 To	measu	re Noise	N F). <i>.</i>	•••	••	••				19
	5.5 To	measu	re Turn	over vo	ltage		•••		••	••	••	19
	5.6 To	measu	re Satur	ation v	oltage	(V_{CS})			••	••	••	19
	5.0 10	incasu.	ie oatui	ation	onage	(Yes)	•••	•••	••	••	••	19
6.	Measure				, β, β̄, `	Vcs and	l Noise	using	externa	l suppl	ies	21
7.	The use	of He	at Sinks	i	••	••	••	••	••	••	•••	22
8.	Other fa	cilities	s availat	hle								22
0.	8.1 Use	of me	ter for e	vterna	 I voltar	·· re and c		measur	•• emento	••	••	22
	8.2 Use	of the	intorno	1 ampl	i vonaž	se and c					••	22
	8.2 Use	of the	internal					••	••	••	••	22
	0.5 USI	ng the	micina	oscina	101	••	••	••	••	••	••	22
9.	Checkin 9.1 To 9.2 To	check	the inter	nal am	plifier/	oscillat	or batt	eries		••	ler	23 23
			••						••			23
	9.3 Rep	lacem	ent of ir	ternal	batteri	es	••	••	••	••	••	23
10.	Abbrevi	ated C)peratin	g Instr	uctions	•••	•••	••	••	••	••	23
App	endix I.	Schee	dule of S	Spare P	arts	••	••	••	••	••	••	27

6

Ċ

C

D.

ILLUSTRATIONS

						Page
Fig. 1	Basic circuit for the measurement of Beta (β)	••	•••	••		10
Fig. 2	Basic circuit for the measurement of Noise	••	••	• •	· •	12
Fig. 3	Layout of the front panel controls	••	••	•••	•••	14
Fig. 4	Interior of the instrument	••	••		••	17
Fig. 5	Interior of the Battery Power Unit	••	•••		••	20
Fig. 6	β to α Conversion Chart	••			••	25
Fig. 7	Circuit diagram of Battery Power Unit	••	••	••	••	41
Fig. 8	Circuit diagram of Mains Power Unit			••	••	42
Fig. 9	Circuit diagram of the Transistor Analyser Mk	2	••	••	•••	43

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:-01844-351694 Fax:-01844-352554 Email:-enquiries@mauritron.co.uk

The "AVO" International Transistor Data Manual

This instrument will produce maximum information when used in conjunction with the transistor manufacturer's graphs and technical data, but to enable rapid checks to be made relative to a transistor's general efficiency, the "AVO" International Transistor Data Manual has been produced.

This instruction book refers throughout to the "AVO" International Transistor Data Manual, a copy of which should always be kept with the instrument. New editions of this manual will be published from time to time. Watch our advertisements in the technical press for further announcements.

INTRODUCTION TO THE AVO TRANSISTOR ANALYSER

The rapid increase in the use of transistors in electronic equipment, has resulted in the need for a versatile and comprehensive instrument capable of measuring the basic characteristics of a transistor. The instrument should also be capable of assisting the designer in determining whether any given transistor is suitable for a particular application. With these ideas in mind the "AVO" Transistor Analyser has been introduced. The instrument is capable of measuring the more generally useful transistor parameters. It is portable, and may be operated either from the Mains Power Unit or from a Battery Power Unit which can be inserted in place of the Mains Power Unit.

The instrument will normally be used in conjunction with the "AVO" International Transistor Data Manual which contains test data for approximately 5,000 transistors (both obsolete and current types), and enables I'co, β or $\overline{\beta}$ and noise measurements to be made without the necessity to consult manufacturers' data. This publication includes maximum ratings and a diagram of transistor terminations, thus reducing the possibility of damage due to overloads, or incorrect connections.

The products of more than sixty manufacturers are listed, providing a useful guide to the selection of a suitable transistor for any given application; also included are test data for service type transistors, together with service equivalents of commercial products.

1. SYMBOLS AND EQUIVALENTS USED IN THIS MANUAL

The large number of symbols adopted by transistor manufacturers has given rise to considerable confusion. Therefore, to assist the user, a list of symbols and equivalents is listed below. The symbols printed in heavy type are used in the "AVO" International Transistor Data Manual and this publication.

Vce Collector to emitter voltage.

Vce_(sat) Collector to emitter voltage under saturation conditions.

hre h21e α' I'co I_{CEO} βα' hrs Ico Icbo VT BV_{CEO}

Small signal current gain in the grounded-emitter configuration.

Collector to emitter leakage current.

Large signal or d.c. current gain = $\frac{Ic - I_{CBO}}{Ib + I_{CBO}} \xrightarrow{\circ} \frac{Ic}{Ib}$

Collector to base leakage current with emitter open circuit.

Turnover or breakdown voltage.

Noise figure.

а hfb h21b

NF

Small Signal Current gain in the grounded-base figuration.

2 SPECIFICATION

The instrument has in general been constructed to meet the requirements of the United Kingdom Inter-Service Specification K.114, and will enable measurements to be made on PNP, NPN and Point Contact transistors.

Range of Collector Volts

Using the Battery Power Unit: 1.5, 3, 4.5, 6, 10.5V of either polarity.

Using an external supply in conjunction with the Battery Power Unit or the Mains Power Unit on its own:

0-12V of either polarity (for all measurements).

Using an external supply in conjunction with either the Battery Power Unit or the Mains Power Unit:

0-150V (for dc characteristics, $\overline{\beta}$ and turnover voltage (V_T) only.

Range of Collector Current

0-250mA using the Battery Power Unit.

0-1A using the Mains Power Unit or an external supply.

Range of Base Current

0-1mA and 1-40mA in two ranges.

Small signal current gain (β) 0–25 and 0–250, in two ranges.

Noise Measurements (NF)

1-40db in two ranges.

Collector Emitter leakage current (I'co) First indication 2 micro-amperes.

2.1 Mains Power Unit

The unit provides stabilised outputs for the transistor under test and for the internal circuits of the Transistor Analyser. It is mechanically and electrically (except for collector supplies) interchangeable with the battery power unit.

The mains unit operates from mains supplies of 110V-128V or 190-250V ac, 50/60 c/s. Instructions for changing the voltage tapping are printed on the side of the mains transformer.

Collector voltage is continuously variable over the range 0.05V to 12V at a collector current of 1 amp. max. The stability of collector voltage is better than $\pm 0.25\%$ for a 10% change in mains input and the ripple voltage does not exceed 5mV peak to peak.

Overload protection is provided by an electronic cut-out which is pre-set to operate where a collector current of 1.1A is exceeded. This protects both the Transistor Analyser and the Mains Unit, should a transistor under test develop a short circuit. The cut-out may try (a) when changing from voltage to current measurement (b) when the mains unit is switched off and on again (c) when the collector voltage switch is changed from 9-12 PNP to 9-12 NPN or vice versa. This is due to the smoothing capacitors taking current during charging and has no harmful effect. In the event of this happening the cut-out should be reset by depressing the reset button.

An indication that the cut-out has tripped is given by very low values of Vc and Ic. The instrument may be re-set by depressing the re-set button provided.

Fig. 1. Basic circuit for the measurement of Beta (β)

Ó

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

BASIC METHODS OF CHARACTERISTIC CHECKING

The parameters of most general use relating to transistors whether for design purposes or routine testing are, an indication of the leakage current, means of checking change of collector current with changes in base current, i.e. dc current gain (hFE) and the measurement of the ac current gain (β) at any given point on the dc characteristic.

Another useful indication of a transistor's condition is that of noise. Normally the first indication of a ruptured junction is that there is a marked increase in the noise developed within the transistor.

With these requirements in mind, methods were devised for obtaining this information, bearing in mind that the instrument should be simple and straightforward to operate, even when used by a relatively unskilled operator.

A brief outline of the methods employed for the measurement of parameters follows.

3.1 Measurement of I'co, Ib, Ic, Vc and Vcs

These are direct measurements of dc current and voltage, Conventional metering methods are used, the necessary switching is provided to enable the internal meter to measure the appropriate current or voltage. Provision is made for an external load to be inserted in the collector circuit, under which conditions the meter may be switched to read the actual collector voltage, so that saturation voltage (Vcs) can be measured.

3.2 Measurements of Beta (β)

In accordance with techniques used by leading transistor manufacturers, small signal current gain is measured at 1 kc/s. The procedure employed is as follows:

Referring to Fig. 1, an output from the 1 kc/s oscillator is fed into a phase splitting network, the outputs of which have a ratio of 10 : 1. The smaller output V_1 is fed via a series resistor R3, to provide a fixed input of 0.5 microampere into the base of the transistor under test.

With S1 in the Set position, a current of 0.5 microampere times Beta (where Beta is the test transistor gain) develops a voltage across R1. This voltage is fed into the amplifier. The gain control of the amplifier is then adjusted to give an arbitrary reading on the meter M1.

NOTE. β measurements are taken with a collector load of 10 Ω (R1). The voltage drop across this resistor may have to be taken into account when setting VCE.

Switch S1 is now set to the Read position. The output voltage V₂ from the phase splitting network is fed into series resistors R2 and R1 via the potentiometer RV1, the voltage developed across resistor R1 being fed into the amplifier. The gain control of the amplifier is left unaltered. RV1 is then adjusted to give the same meter deflection as previously obtained. If the ratio of the two currents I_1 and I_2 is known, then Beta will also be known. Therefore, RV1 which varies current I_2 and thus the ratio, may be directly calibrated in terms of Beta.

Using this method, the accuracy of measurement is dependent on the phase splitting network and associated resistors, which provide the two signal currents. Should the phase splitter or oscillator output voltage change due to variation in supply voltage, accuracy of measurement will not be impaired, since the ratio of the currents I_1 and I_2 will remain constant. 3.3 Measurement of Noise (N.F.)

Noise figures quoted by leading manufacturers are in general measured at 1kc/s over a very narrow bandwidth. This presents difficulties in design, for example it would be necessary to use a narrow band selective amplifier, and the oscillator providing the reference signal would require to be very stable as far as frequency was concerned. These design requirements are obviously outside the scope of a portable measuring instrument.

((

((

((

It has been found that noise measurements using a 1kc/s reference signal. together with an amplifier having a bandwidth covering the normal audio range, are substantially the same as results obtained by the standard methods of noise measurement.

The method of noise measurement in the "AVO" Transistor Analyser is as follows:

Referring to Figure 2, with switch S1 in the Set position the voltage developed across R1 consists entirely of wide band noise generated within the transistor under test. This voltage is fed into the amplifier, the gain being adjusted to give a meter reading of half full scale deflection or less.

S1 is then set to the Read position. This results in a 1kc/s signal being fed into the base of the transistor under test, via R2. RV1 is now adjusted until the original meter reading is doubled.

If the level of signal current being fed into the base of the transistor is known, then the equivalent peak noise figure current is known. However, since most manufacturers quote noise in decibels it is necessary to give the readings accordingly.

It has been found that a noise figure of 6 db is equivalent to a signal current fed into the base of the transistor of 0.45 millimicroampere. This figure has been used as a reference point. Thus RV1 which controls the level of current fed into the transistor may be directly calibrated in db.

The amplifier bandwidth extends from 800c/s to 10kc/s. To compensate for the increase in 1/f noise within the transistor under test, the amplifier response has been designed to fall off below 800 c/s. This in effect gives a flat output characteristic of noise, without this fall off below 800c/s the increase in noise would give misleading results.

Adequate filtering of the voltage and current supply circuits ensures that spurious noise is not injected into the measuring circuits.

THE CONTROLS, THEIR FUNCTIONS AND OPERATION 4.

All the controls necessary for carrying out the essential transistor testing functions are situated on the front panel of the instrument. By manipulating these controls, and the use of the "AVO" International Transistor Data Manual, or manufacturers data, the following tests can be undertaken:

(i) Measurement of I'co.

(ii) Measurement of Ic, Ib, Vc and β.
(iii) Measurement of Beta (β).

(iv) Measurement of Noise (NF).

(v) Measurement of Saturation Voltage (Vcs).

(vi) Measurement of Turnover Voltage (VT).

The separate functions of the controls available are as follows:

4.1 Beta and Noise Control

(

This calibrated control enables direct readings of beta and noise to be taken. 4.2 Base Current Controls

- Base current may be varied by means of three associated controls as follows:
 - (i) A two position switch to select the appropriate range required, i.e. either 0–1mA or 1–40mA.
 - (ii) A continuously variable control which is calibrated $0-1000\mu A$.
 - This calibration applies only to the 0-1mA range and is very approximate. (iii) A fine control continuously variable.

Fig. 3. Layout of the front panel controls (mains operated version)

 $\widehat{}$

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor, Oxon OX9 4QY Tel:-01844-351694 Fax:-01844-352554 Email:-enquiries@mauritron.co.uk

4.3 Meter Switch

This selects the voltage or current range of the meter required for testing transistors (using either internal or external supplies) as well as for using the instrument for external measurement of voltage and current on transistorised equipment.

4.4 Press Buttons

With the controls set so that the meter is reading collector current Ic, by pressing the appropriate button leakage current I'co or base current Ib may be measured instead. When the 1.5V meter range is in use, pressing the 150mV button will change the range to 150mV full scale.

4.5 Gain Control

This is used when setting the instrument up for the measurement of Beta or Noise, or when using the amplifier for external measurements.

The gain of the amplifier may be varied by means of this control, thus ensuring that a suitable reading can be obtained on the meter.

4.6 Check/Set/Read Control

This is a five-position switch and when used in conjunction with the Function Switch, enables the instrument to be set up for all tests.

- (i) Check/H.T. The ht voltage of the internal amplifier and oscillator may be monitored.
 - (ii) Check/Ib. Vc. Ic. Enables all of the dc conditions to be set up and monitored on the meter.
- (iii) Set. Used for the initial setting up of the internal amplifier for the measurement of Beta and Noise.
- (iv) Read β Noise. Two positions for the measurement of Beta and Noise are provided as follows:
 - (a) $\hat{x}1 + 0db$ for the measurement of Beta over the range 0-25 and Noise from 1-2db.
 - (b) x10 + 2db for the measurement of Beta over the range 0-250 and Noise from 21-40db.

4.7 Function Switch

This is used in conjunction with the Check/Set/Read control.

- (i) Meter. At this setting the instrument is switched Off and the sockets marked Meter are connected to the internal meter, enabling it to be used for the measurement of external voltage and current (Section 8.1).
- (ii) Ic/Ib. This position enables the dc conditions to be set up.
- (iii) $\beta/10 \Omega$. This position is used for setting up the instrument when measuring small signal current gain(β), the collector load being 10 Ω .
- (iv) Noise/10 Ω . This position is used for setting up the instrument when measuring noise with collector currents exceeding 9mA, the collector load being 10 Ω .
- (v) Noise/1000 Ω . When noise measurements are being made on transistors having collector currents of 9mA or less, this position is used for the initial setting up of the instrument. The higher collector load (1000 Ω) will enable larger meter deflections to be obtained.

4.8 Collector Volts Control

This switch enables the collector volts to be set up using the internal power supplies over the voltage range quoted in the Specification (Section 2). With this control set to any PNP position (except EXT) Collector and Base supplies are only available at the PNP socket, likewise for NPN the reverse occurs. When it is required to use an external voltage supply, this switch must be set to one of the two positions marked Coll. Ext. or Ext. and a suitable voltage injected into the equipment via the sockets marked Collector Volts External Supplyor External Volts, either between Neg. and + 12 Max. or Neg. and + 150 Max. or — and + (see Section 6).

5. GENERAL PROCEDURE FOR TESTING A TRANSISTOR

The following procedure is intended as a general guide when using the "AVO" International Transistor Data Manual. The user will obviously be able to carry out measurements of his own, such as plotting complete characteristics or measuring β at any required point on the characteristic.

Before carrying out tests on a transistor it is advisable to check the condition of the internal power supplies (if using a Battery Power Unit) as outlined in Section 9.0.

If using a Mains Power Unit check that the fuse (250mA delay type) is inserted in the correct clips on the voltage selector panel for the mains supply available. NOTE. The voltage selector panel will be found at the rear of the Mains Unit. Should

it be necessary to alter the position of the fuse, remove the two screws to release the transparent plate which covers the selector panel.

A neon indicator lamp provides visual indication that the mains supply is applied when the mains ON/OFF switch is in the "ON" position.

If replacing a Battery Power Unit by a Mains Power Unit care should be taken, when connecting the unit to the Transistor Analyser, to ensure that the plugs are inserted the correct way round and they should be secured by means of the retaining clips provided.

NOTE. To avoid damaging the transistor ensure that the variable base current controls are set to zero, and that the base current switch is set to the 0-1mA position.

A transistor may now be connected to the instrument (using NPN or PNP sockets as required), without fear of damage. Reference to columns 3 and 4 of the "AVO" International Transistor Data Manual and to the diagram of transistor connections will enable the transistor to be correctly connected to the instrument.

5.1 Measurement of I'co

Set the collector voltage to the figure quoted in the "AVO" Internationa Transistor Data Manual, switch the Check/Set/Read control to the Check/ Ib. Vc. Ic. position, and the Function Switch to the Ic/Ib position. Select a suitable current range on the meter by means of the Meter Switch, and depress the push button marked I'co. The value of I'co is given by the meter reading. It must be borne in mind that I'co is very temperature dependent.

5.2 Measurement of Ic, Vc, Ib, B

Switch the Check/Set/Read control to the Check/Ib. Vc. Ic. position and the Function Switch to the Ic/Ib position. The Meter will now monitor either Ic or Vc depending on whether a current or voltage range is selected on the Meter Switch. To set up for the required Ic as indicated in the "AVO" International

Transistor Data Manual or from Manufacturers' data sheets, select an appropriate current range on the Meter Switch and with the base current range switch left in the 0-1mA position adjust the Coarse and Fine Base Current Controls for the required Ic.

If it is impossible to obtain the required Ic return the Coarse and Fine controls to zero and switch to the 1-40mA position on the base current range switch. Readjust the Coarse and Fine Controls.

NOTE. The maximum collector current taken from the Battery Power Unit should be limited to 250mA. Collector currents above this should be obtained from the Mains Power Unit or an external supply, and limited to 1A to avoid overloading the meter. (See section 6).

The calibrations on the Coarse Base Current Control apply only when the Base Current Range Switch is in the 0-1mA position. These calibrations will also be affected by the setting of the Fine Base Current Control. Therefore, when using the 1-40mA range, or to determine the value of Ib more accurately on the 0-1mA range, with the controls set as above, depress the push button marked Ib. The meter now indicates the value of Ib. It will be necessary to select a suitable current range on the Meter Switch.

An approximate value for the dc current gain (h_{FE}) is obtained by dividing Ic by Ib (provided Ico is small). If Ico is known an exact figure can be obtained using

the formula
$$h_{FE} = \frac{Ic - Ico}{Ib + Ico}$$

Having set up the collector volts and collector current, it is possible to obtain an approximate figure for $\bar{\beta}$ as follows: Readjust Ib by a known amount and note the change in Ic. $\bar{\beta}$ is then given by dividing the change in Ic by the change in Ib.

5.3 To Measure Beta (β)

The figures for β , quoted in the "AVO" International Transistor Data Manual, are for the same settings of Vc as those given for measurement of I'co and $\overline{\beta}$. Therefore, with the instrument set up as outlined in sections 5.1 and 5.2 measurement of β may be carried out. However, if it is required to measure β at some other setting of Vc and Ic the controls will need to be reset, using the foregoing procedure. Having decided on the required Vc and Ic conditions β is measured as follows:

Set the Function Switch to the $\beta/10\Omega$ position and check that the collector voltage and current have not altered from the original settings, due to the inclusion of the 10 Ω collector load. If the current has fallen readjust the base current controls and/or the collector volts to give the required values^{*}. Having checked these settings, switch the Check/Set/Read Control to position Set and adjust the Gain Control for an arbitrary meter reading, for example 80. (This meter reading is not critical and in fact in some cases it may be possible to obtain only 1/10 full scale deflection). Set the Check/Set/Read Control to position Read $\beta \times 1$ or $\times 10$ as required, and obtain an identical meter reading by operation of the β /Noise Control. β is then given by the reading on the outer scale of the β /Noise Control, multiplied by the range factor, x1 or x10, for the chosen setting of the Check/Set/Read Control.

* A slight increase of collector current reading may occur, this should be ignored. The increase is due to the leakage current of the capacitor introduced into the circuit when measuring β .

5.4 To Measure Noise (N.F.)

Manufacturers quote a noise figure as being measured at a particular Vc and Ic. These are the figures given in the "AVO" International Transistor Data Manual, and in most cases are different from the values of Vc and Ic quoted for measurement of β . Before measuring noise therefore it will be necessary to set up the instrument for the correct Vc and Ic as outlined in sections 5.1 and 5.2. Having set the Vc and Ic proceed as follows:

Set the Function Switch to one of the two noise positions either 10Ω or 1000Ω depending on the collector current. (See sections 4.7 (iv) and 4.7 (v)). Recheck the collector current and voltage, readjusting the Base Current and Collector Volts Controls if necessary (as in section 5.3). Set the Check/Set/Read Control to position Set and adjust the Gain Control for a meter deflection of half full scale or less.

The meter reading is not critical and in some cases a meter deflection of only one-tenth of full scale may be obtained. It will also be noted that the meter reading will fluctuate a small amount, this is normal owing to the random nature of the noise from the transistor. Therefore, in setting the meter reading, the average indication of the pointer should be observed. Having obtained this meter reading, set the Check/Set/Read Control to one of the Read Noise positions, selecting the + 0 db or + 20 db position as required. Adjust the β /Noise Control to obtain a meter reading of twice the original indication. The noise figure may then be read from the calibrated dial of the β /Noise Control in decibels, adding the dial reading in decibels to the Check/Set/Read Control indication.

5.5 To Measure Turnover Voltage

((

Connect the transistor collector to the collector socket and the base connection to the emitter socket leaving the emitter open circuit. An external dc supply should be connected to the sockets marked Collector Volts External Supply (+150 Max. and Neg. on the Battery Power Unit) via a suitable limiting resistor. Set the Meter Switch to select a suitable current range and the Collector Volts Control to an external position (PNP or NPN as required). Set the Check/Set/Read Control to position Ib. Vc. Ic. and set the Function Switch to the Ic/Ib position. The external voltage should now be increased until a sharp rise in the meter reading is noted. Set the Meter Switch to the 150V position. The value of $V_{\bar{T}}$ is given by the meter reading. If it is desired to monitor the current and voltage simultaneously it will be necessary to connect a voltmeter across the external volts sockets on the instrument.

5.6 To Measure Saturation Voltage (Vcs)

For saturation measurements it is usually best to use the highest available collector supply voltage, provided that this does not exceed the Vc rating for the transistor with collector current flowing. In the AVO Transistor Analyser up to 10.5 volts are available using the Battery Power Unit, or up to 12 volts using the Mains Power Unit.

If the collector-emitter saturation voltage is quoted at a given base current and collector current, one can proceed as follows:

Disconnect the link between the two collector link terminals. Connect a variable resistor between the terminals (a resistance box may be suitable if it will carry the current), and set to zero resistance. Turn the coarse and fine base current controls fully counter clockwise. Insert the transistor into the appropriate socket (PNP or NPN), and select the collector volts. Set the Check/Set/Read Control to Check/Ib. Vc. Ic. and the Function Switch to Ic/Ib. Press the Ib button, and while

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 Email: enquiries@mauritron.co.uk

((((

(((

((()

keeping it pressed, set the Meter Switch to a range suitable for measuring the desired base current. Still keeping the Ib button pressed select the appropriate base current range and adjust the coarse and fine base current controls until the desired base current is attained. It will usually be found that subsequent adjustments affecting collector current and voltage hardly alter this base current. Still keeping the Ib button pressed, turn the Meter Switch to a range suitable for reading the quoted collector current at not more than half f.s.d., and then release the Ib button. The meter now reads the collector current, which must not be less than the value quoted for the saturation condition. Now increase the variable resistor until the collector current has fallen to the value given by the manufacturers. The meter current range may be changed to enable the current to be read more accurately. Then turn Meter Switch until a voltage range is reached which enables the collector voltage to be read. If the collector voltage is so low that less than 10% of f.s.d. is obtained on the 1.5V range, press the 150mV button to obtain a more accurate reading.

The reading thus obtained is the collector saturation voltage Vcs for the given conditions. When taking this reading, the meter is drawing extra current through the variable resistor. The meter current when it is acting as a voltmeter is proportional to the deflection, amounting to 40μ A at full scale, and is usually an unimportant fraction of the collector current.

Remember to reduce the variable resistor to zero or replace the Collector Link before making any other of the measurements described in these instructions.

6. MEASUREMENT OF I'co, Ib, Ic, β , $\overline{\beta}$, Vcs AND NOISE USING EXTERNAL SUPPLIES

When carrying out continuous or inspection testing of transistors requiring measurements with a collector current in excess of 250mA but not above 1 amp, in conjunction with the Battery Power Unit, or voltages in excess of 12V in the case of the Mains Power Unit, it will be necessary to use an appropriate external dc voltage supply. There are two positions on the Battery Power Unit for connecting an external supply, as follows:

- (i) Neg. ... + 12 Max. This will enable all characteristics to be measured as outlined in Section 5. A similar procedure should be adopted with the exception that the Collector Voltage Control should be set to the appropriate external position, i.e., PNP or NPN as required, adjusting the external supply to the collector voltage required.
- (ii) Neg. ... + 150 Max. This position can be used for dc measurements only, that is I'co, Ib, Ic; Vc and Vcs as outlined in Sections 5 to 5.2 inclusive and 5.6, again switching to the EXT positions on the Collector Volts Control as required. This position is also used for measurement of turnover voltage. (See Section 5.5).

On the Mains Power Unit there are only two sockets marked Collector Volts External Supply. These can be used in the same way as the Neg. and 150 Max. sockets on the Battery Power Unit.

NOTE. When switched to the external position on the Collector Volts Control, base current is still supplied by the internal supply. The external supply is always connected to the instrument with the same polarity, i.e., The + ve line to either the + 12 Max. or + 150 Max. or + socket and the negative line to the socket marked Neg. or -. The polarity to the test transistor is reversed by the Collector Volts Control by switching to the appropriate Ext. position. Also when switched to the Ext. positions, the internal amplifier and oscillator are still operated by the internal supplies.

9. CHECKING THE CONDITION AND REPLACEMENT OF THE INTERNAL BATTERIES

When using the battery operated version of the instrument, in order to give satisfactory performance under all conditions of use, it is necessary to maintain the internal batteries in a reasonable condition. Therefore, a brief procedure for checking their condition follows:

9.1 To Check the Internal Amplifier/Oscillator Batteries

Switch the Function Switch to any position except Off and the Check/Set/ Read Control to the Check/H.T. position. Under these conditions the Meter has a full scale deflection of 10V regardless of the Meter Switch position. With a new set of batteries a reading of 9V should be obtained. If the voltage falls to 7.2V., or less, the batteries should be replaced.

9.2 To Check the Condition of the Internal Supplies for the Transistor under Test

Set the Meter Switch to the 15V range, switch the Check/Set/Read Control to position Check/Ib. Vc. Ic. and the Function Switch to Ic/Ib. A 220Ω 1 Watt resistor should be connected between the collector and the emitter connections on the PNP sockets.

Set the Collector Volts Control to the 10.5V position on the PNP section. The meter should now indicate 10.5V. If the voltage is 9V or less then the batteries should be replaced.

9.3 Replacement of Internal Batteries

((()

(()

(()

The internal power supplies of a battery operated instrument consist of a number of U10 batteries (U7 in the United States of America and Canada), which are arranged to provide the internal oscillator and amplifier h.t. as well as the supply for the transistor under test.

Reference to Figure 5 will show that the batteries are held in position by means of spring loaded retainers. The batteries (B1 to B6) for the internal amplifier and oscillator are located in the single row below the Collector Volts Control and the batteries for the transistor test supplies (B7 to B14) are in sets of four on either side of the Collector Volts Control.

NOTE. WHEN THE INSTRUMENT IS LIABLE TO BE OUT OF USE FOR LENGTHY PERIODS, IT IS DESIRABLE TO REMOVE THE BATTERIES TO AVOID CORROSION OF THE COMPONENTS.

To remove the battery Power Unit from the main instrument the four captive screws at the corners should be unscrewed until free, and the battery Power Unit lifted away from the main panel. The necessary replacements can now be made.

10. ABBREVIATED OPERATING INSTRUCTIONS FOR THE "AVO" TRANSISTOR ANALYSER

1. Check condition of the internal supplies.

- 2. Set the variable Base Current Controls to zero, and the range switch to 0-1mA position.
- 3. Referring to the "AVO" International Transistor Data Manual for the diagram of connections and columns 3 and 4, connect the transistor to the instrument.
- Set the collector volts to value indicated in the "AVO" International Data Manual.
 Switch the Check/Set/Read Control to the Check/Ib. Vc. Ic. position, and the

Function Switch to the Ic/Ib position.

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554

Email: enquiries@mauritron.co.uk

- 6. Select a suitable current range on the Meter.
- 7. Depress the Press Button marked I'co and read value of I'co from the Meter.
- 8. Release the Press Button and select a current range on the Meter Switch to read the collector current.
 - 9. Adjust the Base Current Controls for the value of collector current in the "AVO" International Transistor Data Manual.
- 10. Read the value of base current by depressing the Press Button marked Ib, selecting a suitable current range on the Meter Switch.

Measurement of B

1. Readjust Ib by a known amount, and note the change in Ic. $\overline{\beta}$ is then given by dividing the change of Ic by the change in Ib.

Measurement of **B**

- 1. Set the Function Switch to $\beta/10\Omega$ and check that Vc and Ic have not altered from the values already set up.
- 2. Switch the Check/Set/Read Control to Set.
- 3. Adjust the Gain Control for an arbitrary meter reading.
- 4. Set the Check/Set/Read Control to Read: $\beta \times 1$ or $\beta \times 10$.
- 5. Adjust the β /Noise Control for the same meter reading.
- 6. Read off β from calibrated β /Noise Control dial and multiply by x1 or x10 as required.

Measurement of Noise

- 1. Reset Vc and Ic to values quoted in "AVO" International Transistor Data Manual for the measurement of noise.
- 2. Set the Function Switch to either the 10Ω or the 1000Ω position, and recheck dc conditions.
- 3. Set the Check/Set/Read Control to Set.
- 4. Adjust the Gain Control for a meter reading of one half full scale deflection or less.
- 5. Set the Check/Set/Read Control to either + 0 db or + 20 db.
- 6. Adjust the β /Noise Control for twice the original meter reading.
- 7. Read off the noise figure in db's from the calibrated dial of the β Noise Control adding + 0 db or + 20 db as indicated on the Check/Set/Read Control.

If using the Battery Power Unit, after carrying out measurements, the instrument should be switched off to avoid exhausting the batteries.

NOTE. WHEN THE INSTRUMENT IS LIABLE TO BE OUT OF USE FOR LENGTHY PERIODS, IT IS DESIRABLE TO REMOVE THE BATTERIES TO AVOID CORROSION OF THE COMPONENTS.

APPENDIX I

(1)

()

()

THE "AVO" TRANSISTOR ANALYSER

Schedule of Spare Parts

INTRODUCTION

Throughout the past decade the Avo instruments have proved themselves to be unrivalled for versatility and reliability. It is, however, inevitable that this instrument will fail from time to time and, when it does, we are anxious to ensure that it is repaired to the highest possible standard. We have, therefore, produced this schedule of spares which will form a useful guide to the trained engineer who has the task of servicing this instrument.

Procedure for ordering spare parts.

If you will kindly follow the procedure set out below, delays will not occur due to the exchange of unnecessary correspondence.

- 1. State the part number of the items required, also the quantity.
- 2. State the serial number of the instrument. This will be found on an identification label attached to the base of the instrument.

Overseas users of our instruments should send their requirements to our Agents on their territory.

If the spares are required for use in Great Britain, application should be made direct to our Spares Department in London.

MOVEMENT SERVICING

Due to modifications in movement design it will now be necessary in some circumstances to return the complete assembly to Avo, Ltd., for overhaul.

Movements in this category can be identified by the letter "T" incorporated in the serial number on the scale-plate.

UNDER NO CIRCUMSTANCES SHOULD ANY ATTEMPT BE MADE TO SERVICE BASIC MOVEMENT ASSEMBLIES OF THIS TYPE AS IT IS NOT POSSIBLE WITHOUT SPECIALISED EQUIPMENT.

The part number for this type of movement complete is 40650-L.

The spare parts shown in this schedule under assembly 40650-G, items 6, 9, 15, 18, 19, 21, 22, together with assemblies 40651-F and 21124-D are not therefore applicable to "T" type movements.

MAIN ASSEMBLY 40695-D

Ć

()

irouit

Item No.	Part No.	Description	Ref.	Off
1	40703-E	Case Assembly. See page 37 for breakdown detail		1
2	40717-C	Chassis Assembly. See below for breakdown		1
3	21214-A	Flying Lead Assembly. See page 38 for breakdown detail		1
	S1535	Round Head Screw, $4 \text{ BA} \times \frac{11}{16}$ ", chromium plated		8
5	10072-355	Operating Instruction Manual		1
6	10072-349	International Transistor Data Manual (2nd Edition)		1

CHASSIS ASSEMBLY 40717-C

Item No.	Part No.	Description	Ref.	Qty. Off
1	407072	Front Panel less battery container		1
*2	40650G	Movement and Case Assembly ($32\mu A 3250\Omega$). See page 35		
		for breakdown detail	M .1	1
3	40706A	Battery Power Unit. See page 32 for breakdown detail		1
4	40716C	Battery Power Unit Container. See page 35 for breakdown		1
		detail		1
5	15837–A	Function Switch Assembly. See page 32 for breakdown detail		1
6	40719-A	Oscillator Assembly. See page 33 for breakdown detail		1
ž	15839–A	Meter Switch Assembly. See page 33 for breakdown detail		1
8	21216-A	Component Board Assembly. See page 33 for breakdown		
		detail		1
9	21242-A		L.1	1
10	15220–A	Knob Assembly, with skirt (engraved marker line). See		5
		page 34 for breakdown detail		5
11	15220–F	Knob Assembly (Function switch). See page 34 for break-		1
		down detail		
12	15220-E	Knob Assembly (β /noise control). See page 35 for break-		1
10	15714 1	down detail Masking Block (Function switch)		
13	15714–1 14829–3	Socket (red)		2 3
14	148293	Socket (black)		2
15 16	14829-4	Socket (white)		- 1
17	14630-2	Cover, circular, black (β /noise control)		1
18	14559-3	Dial (β /noise control)		1
10	15716-2	Cursor Block (marked inner/outer scale)		1
20	15160-1	Push Button for item 32, 150 mV/I'co/Ib		3
20	20006-2	Gasket, between movement and panel		1
22	14941-26	Bush, Stand-off, for item 18.		2
23	15842–A	Support Plate, between item 35 and item 57		4
24	11310–A	Tag Board Assembly, 8 tags		ļ

* See note regarding Movement Servicing on page 29

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 Email: enquiries@mauritron.co.uk

Item No.	Part No.	Description			Circuit Ref.	Qty. Off
25	13659-5	Insuloid Clip, ¹ / ₄ " dia		••		1
26		Insuloid Clip, $\frac{5}{16}$ " dia	••	• •		2
27	136594	Insuloid Clip, $\frac{3}{16}$ dia	••	••		2
28		Switch, Check/Set/Read β Noise	••	•••		1
29	13657–1	Toggle Switch, 1–40 mA, 0–1 mA	••	••		1
30	21027-27	Push Button Switch	••	••	SH SJ SK	
31	13483-61	Pillar, between item 32 and front panel	••	••		2
32	15838-2	Pillar, holding item 25	••	••		2
33	15841-4	Pillar, $\frac{3}{8}$, on push switch	••	••		1
34	13483–79	Pillar, Stand-off, holding movement fixing panel	••	••		4
35	15718-3	Cable Clip	••	••		1
36	15191–1	Dust Washer, on push buttons, item 20	••	••		2
37	15638–2	Cradle holding C.14, C.15, C.16	••	••		3
38	15638–5	Cip J ··	••	••		3
39	212192	Movement Board (main fixing panel)	••	••	· · · ·	1
40	15581–12	Silicon Diode, International Rectifier, type 2E1	••		MR.2 MR.3	2
41	10770-33	Potentiometer, $100k\Omega \log \ldots \ldots$	••		RV.3	1
42		Potentiometer, $1.5k\Omega - 250\Omega$	••		RV.4 ab	1
43		Potentiometer, $11k\Omega - 25M\Omega$	••'		RV.5 ab	1
44	12049-311	Resistor, $100\Omega \pm 1\%$, type C.22	••		R.51	1
45		Resistor, $1k\Omega \pm 10\%$, type 16	••		R.43	1
46		Resistor, $1.3k\Omega \pm 2\%$, type C.21	••		R.47	1
47		Resistor, $10k\Omega \pm 1\%$, type C.21	••		R.41	1
48		Resistor, $11k\Omega \pm 2\%$, type C.21	••		R.50	1
49	12049-342	Capacitor, $1\mu F 250V$	••		C.16	1
50	12049-731	Cupation, oper	••		C.18	1
51		Capacitor, $500\mu F 12V$	••	••	C.14, C.15	
52		Screened Cable, 1 ft	••	••		1
53	40707–2	Front Panel, less battery container.	••			1
54	30006-KJ	Resistance Bobbin for Push Button Switch, 1.38				1
55	16389–A	Link Assy. See page 37 for Breakdown details	••	••		1
56		Battery Power Unit Container	••	••		1 2
57	13845-16		••	••		
58		Handle Bush	••	••		4 4
- 59	N57	2 BA Hex. Stiff Nut for Handles	••	••		4
60	14013–2	Mod. Record Plate	•••	••		
61	50154-A	Mains Power Unit. See page 38 for Breakdown	details		D 52	1
62	30006–KJ	Wound Bobbin, $1.38k\Omega \pm 1\%$	• •	•••	R.53	1

()

(

((

BATTERY POWER UNIT ASSEMBLY 40706-A

Item	Part	DATTERT TO WER OTHER DATE	Circuit	Qty.
No.	No.	Description	Ref.	Off
1	21207-1	Panel (engraved)		1
2	21206–3	Box Cover, less item 1		1
3	21208-1	Gasket, sealing		1
4	138457	Handle, nickel plated		2 4
5	15708-2	Handle Bush		2
6	21199-A	Holder Assembly, NPN, PNP		4
7	15710-2	Socket, on item 6		2
8	15709-1	Overlay (perspex)	SKT.4	1
9	14829–2	DOCKCE (WINCE)	SKT.3	î
10	14829-4	BOCKET (DIRCK)	SKT.5	î
11	14829-3		SKT.1	ī
12	15639-2	Connector Socket, 6-way, battery connections	SKT.2	ī.
13	15639-4		SA	1
14	21027–19	Switch Plate (support plate at rear of item 14)		1
15	15717-4	Knob Assembly (collector volts switch)		1
16	15220-A	Switch Bush (collector volts switch)		1
17	15707-2	Hex. Nut (collector volts switch)		1
18	13908-2	Washer (collector volts switch)		- 1
19	13909–1 40705–1	Battery Power Unit Base, between battery Power Uni	t	
20	40705-1	base and front cover		4
21	13483–59	Pillar $0.75'' \times \frac{1}{4}$ AF		4
22	15712-2	Battery Contact, long, on battery Power Unit base		14
23	16019–A	Retainer, for battery complete with sleeve	•	14
24	15711-1	Skirt, for item 23	•	14
25	12379-4	Battery (Ever Ready, type U.10) (see item 33)	•	14
26	15295-7	Captive Screw, securing front cover	•	4
27	157152	Contact, short, on battery Power Unit base	•	3
28	15626-2	Tab, on rear of item 7	•	4
29	12049-587	7 Capacitor, 470 pF	•	2
30	14048-25	Sleeve on rear of transistor socket		6
31	10042-1	Sleeve, cut in two sections for battery connecting socket		7 14
*32	16025-A	Battery Tube Assembly	•	14 14
*33	1237916	Battery, Ever Ready, type U.7		14
34	14941–24		r	4
		Unit base	• .	
		FUNCTION SWITCH ASSEMBLY 15837-A		
Iten	1 Part		Circuit	Qty.
No.		Description	Ref.	Off
1		Function Switch	. SE.	1
2	15717-4	Switch Plate, support plates rear of item 1	•	1
- 3	12049-71	8 Peristor $0.530 \pm 2.5\%$. R.42	1
4	12049-71	8 Resistor, $0.53\Omega \pm 2.5\%$. R.49	
5	12049-72	0 Resistor, $10\Omega \pm 5\%$. R.44, I	
6	12049-72	0 Resistor, $10\Omega + 5\%$. R.46	1
7	12049-46	4 Resistor, $1k\Omega \pm 1\%$. R.45	1
8	12049-63	5 Resistor, $240k\Omega \pm 2\%$, type C.21	. R.42	1
9	12049-71	9 Resistor, $IM\Omega + 2\%$, type C.21	R.40	1
	*	* Used only on instruments for the United States of America and Car	ada	-
		22		

۰÷.

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

((((

METER SWITCH ASSEMBLY 15839-A

Circuit

Qty.

Item No.	Part No.	
		~

ltem No.	Part No.	Description					Öff
1	21027-20	Meter Switch	•	••		. SF.	1
2	15717-4	Switch Plate, support plate rear of it	em 1		••••••	•	1
3	30006BH	Wound Bobbin, $0.4\Omega \pm 1\%$	•	••		. R .39	1
4	30006-AH	Wound Bobbin, $3.58\Omega \pm 1\%$.	•	••	•••••	•	1
5	12049-725	Resistor, $35.8\Omega \pm 1\%$, type C.22 .	•	••	•••	. R.37	1
6	12049-724	Resistor, $358\Omega \pm 1\%$, type C.21		••		. R.36	1
Ť	12049-723	Resistor, $3.58k\Omega \pm 1\%$, type C.21.		••		. R.35	1
8	12049-722	Resistor, $6k\Omega \pm 1\%$, type C.21	•			. R.3 4	1
ğ	12049-721	Resistor, $35.3k\overline{\Omega} \pm 1\%$, type C.21.				R.33	1
10	12049-726	Resistor, $340k\Omega \pm 1\%$, type C.21.		••	••	R.32	1
11	12049-727	Resistor, $3.4M\Omega \pm 1\%$, type C.22.		••	••	. R.31	1

COMPONENT BOARD ASSEMBLY 21216-A

	COMPONENT BOARD ASSEMBLT 21210-A							C ::+	^
Item No.	Part No.	Descri	iption					Circuit Ref.	Qty. Off
1	21216-13	Component Board Tagged .	•	••	••	••	• •		1
2	15719–1	Transistor Holder	•	• •		••			3
3	12241-21	Germanium Diode, type GEX	K34		••			MR.1	1
4	15581-8	Transistor (Mullard, type OC	(75)			••		VT.3,	
4	10001-0	Transistor (Wunard, type ee	,,,,,	••	••			VT.4	2
F	15501 0	Transistor CV 2400						VT.5	1
Ş	10040 400	Transistor, CV.2400	•	••	••			C.13	1
. 6	12049-402	Cupation, the part of the	•	••	••			C.17	ĩ
7.	12049-709	Capacitor, $8\mu F 12V$	•	••	••	••		C.6, C.7,	•
8	12049-717	Capacitor, 0.1µF 150V	•	••	••	••	••		3
9	12049–708	Capacitor, $25\mu F 12V$.	•	•••	••	••		C.8 C.10, C.11 C.12	-
10	12049-707	Capacitor, 100µF 12V			••	••		C.9	1
11	12049-650	Resistor, $150\Omega \pm 2\%$, type C	2.21	••	••	••		R.19	1
12	12049 030	Resistor, $1k\Omega \pm 5\%$, type 16	5		• •	••		R.25, R.2	7,
12	12049-457			• •				R.29	3
13	12049-693	Resistor, 5.6k $\Omega \pm$ 5%, type	16	• •		••		R.17	1
14	12049 695	Resistor, $10k\Omega \pm 5\%$, type 1	16		••			R.20, R.2	2,
14	12049-010	$1 \times 10^{-1} \times $						R.24, R.2	
								R.28, R.3	
	10040 100	Desiston $241-0$ 1 5% type 1	16					R.23	1
15	12049188	Resistor, $24k\Omega \pm 5\%$, type 1	16	••	••	••	•••	R.16, R.1	8.
16	12049-184	Resistor, $120k\Omega \pm 5\%$, type	10	••	••	••	••	R.21	3

OSCILLATOR ASSEMBLY 40719-A

Item No.	Part No.	Desc	cripti	ion			Re	r. Öff
1	21218-2	Oscillator Container Front	and	Rear Pla	ates	••	••	2
2	40719-46	Oscillator Board Tagged	••		••	••	••	2
3	15144-4	Oscillator Container Body	••	•••	• •	•••	••	1
4	149288	Bush, on drive spindle	••	••	••	••	••	1

33

((

•*•

(()

Item				Circuit	Qty.
No.		Description		Ref.	Õff
5	AS52	Socket Grub Screw, 4 BA $\times \frac{5}{16}$ " (for item 4)	••		2
6		o only only bound, connecting it one and ital plates			1
7	21213-A	Oscillator Transformer		L2	1
8	15581-10	Transistor, type OC.71		VT.1, VT.	.2 2
9	15719–1	Transistor Holder, for item 8			2
10	11982–3	Grommet	••		ī
11	15840-1	Insulation Strip, for item 3			1
12	14558-10	Potentiometer, $1k\Omega \pm 1\%$		RV.2	1
13	15832-1	Potentiometer, $4700\overline{\Omega}$		RV.1	1
14	12049-402	Capacitor, 0.04μ F		C.5, C.19	
15	12049-717	Capacitor, 0.1µF 150V		C.1, C.2	2
16	12049-709	Consister 9. E 10V		C.1, C.2 C.3	1
17	12049-707	Consisten 100. E 19V		C.4	1
18	12049-504	Periston 150 $\pm 20\%$ turne 0			-
19	12049-716	Desister 1000 1 19/ 4		R.52	1
20	12049-712	P eriotor 0000 ± 10 true C 21		R.7, R.13	
21	12049_464	Repreter 1k() / 19/ Anna CO1		R.12	1
22	12049-404	Resistor, $1k\Omega \pm 1\%$, type C.21		R.15	1
23	12049-457	Resistor, $1k\Omega \pm 10\%$, type 16 Resistor, $1.5k\Omega \pm 2\%$, type C.21		R.1	1
24	12049-031			R.14	1
24	12040 104	Resistor, $3k\Omega - 10k\Omega$, type C.21		R.5	1
	12049-194	Resistor, $3.9k\Omega \pm 5\%$, type 16		R.4	1
26	12049-/10	Resistor, $4.7k\Omega \pm 5\%$, type 16	••'	R.2, R.3,	
07	10040 714			R.6	3
27	12049-/14	Resistor, $16k\Omega \pm 1\%$, type C.21		R.10	1
28	12049-713	Resistor, $79k\Omega \pm 1\%$, type C.21		R .11	1
29	12049-715	Resistor, $160k\Omega \pm 1\%$, type C.21	••	R.9	1
30	12049-711	Resistor, $400k\Omega \pm 1\%$, type C.21		R.8	1
		KNOB ASSEMBLY 15220-A			
Item	Part	MICOD ADDEMIDET 15220-A		Circuit	<u></u>
No.	No.	Description		Ref.	Qty.
1	14267-1	TF 1		Kel.	Off
2	14266-6	Vnah Comion	••		1
3	14268-4	Knoh Skirt silver with merlen line	••		1
4	15066-2	Knob Skirt, silver, with marker line	••		1
5			••		1
	14207-4	Retaining Nut Spring dowel, $\frac{9}{16}'' \times \frac{1}{8}''$ dia	••		1
6	20245-52	Spring dowel, $\frac{1}{16}$ × $\frac{1}{8}$ dia	••		1
7	S745	Special Screw .	••	· · · · ·	1
8	W39	Spring Washer, 6 BA, phosphor bronze double coiled	••		1

6

KNOB ASSEMBLY 15220-F

Hem	rart		Circuit	Qty.
No.	No.	Description	Ref.	Ŏff
1	14267–1	Knob		1
2	142666	Knob Carrier		1
3	142687	Knob Skirt, silver, marker line, 2 coloured zones.		ī
4	15066-2	Knob Washer		1.
5	142694	Retaining Nut		1
6	20245-52			ī
7	S745	Special Screw		ī
8	W39	Spring Washer, 6 BA, phosphor bronze double coiled		i

34

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 Email: enquiries@mauritron.co.uk

Po

KNOB ASSEMBLY 15220-E

(((

((

(()

Item Par No. No	•		De	escriptio	on				Circuit Ref.	Qty. Off
1 1426 2 1467 3 2024 4 \$745 5 W39	0–2 Knob Car 5–52 Spring do	rier wel, 9 ″ rew			 bronze	 doubl	 le coiled	•••		1 1 1 1 1

BATTERY POWER UNIT CONTAINER ASSEMBLY 40716-C

Item No.	Part No.	Description	Circuit Ref.	Qty Off
1	40716-B	Battery Power Unit Container Assembly		1
2	15639-3	Connector Socket, 8-way	PL.2	1
3	15639-1	Connector Socket, 6-way	PL.1	. 1
4	15834-2	Connector Cover		2
5	14829-4	Socket Test Point	SKT.17	1
6	13483-75	Stand-off Pillars, for component board assembly (medium)		1
7	13483-77	Pillar, Stand-off, for component board assembly (short)		1
8	13483-73	Pillar, Stand-off, for component board assembly (long)		3
9	15979-2	Pillar (Tufnol)		2
10	13659-7	Insuloid Clip, ³ / ₄ " dia		1
11	13659-5	Insuloid Clip, $\frac{1}{4}$ dia		1
12	136596	Insuloid Clip, $\frac{5}{16}$ dia		4
13	139243	Screening Tube, for oscillator cableform		1
14	15718-1	Clip, securing item 13		2
15	119828	Grommet		2
16	N61	Hex. Nut, 6 BA, tin plated		11
17	R80	Rivet, $.090''/.094'' \times \frac{1}{4}''$, for securing battery Power Unit		
		to front panel		12

* MOVEMENT AND CASE ASSEMBLY 40650-G

Item No.	Part No.	Description	Circuit Ref.	Qty. Off
1	40537-2	Front Case		1
2	40538-B	Rear Case		1
3	Misc.139	Rubber, approx. 16", for sealing items 1 and 2		1
4	12730-2	Movement Glass		1
5	14823-2	Hex. Stud, for securing items 1 and 2		4
6	10054-1	Movement Zero Adjuster		1
. 7	100774	Main Fixing Stud, 2 BA		- 2
8	10064-1	Tag, for item 7		2
9	40651-F	Basic Movement Assembly. See below for breakdown	ł	
		assembly		1
10	N2	Hex. Locknut, 2 BA		2

* See note regarding Movement Servicing on page 29

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 Email: enquiries@mauritron.co.uk

			Email:- enq	uiries@	mauntron.c	o.uk			
Item No.	Part No.	Desc	ription					Circuit Ref.	Qty. Off
11 12 13	N4 N55 S751	Hex. Locknut, 4 BA Round Nut, 6 BA, for item Inst. Head Screw, 6 BA × 2	5 ", bras	s nic			••• ••		3 4 1 1
14 15	30006–W 15438–2	Wound Bobbin, 900Ω approximate Magnetic Shunt Movement End Stop		•••	•••	••	•••		1 1 2
16 17 18	12927–1 30008–10 15440–1	Washer, for bobbin (item 14	4)	•••		•••	•••		1 2
19	P.V.C.147	Friction Bush, $\frac{5}{32}$ " long		•••	••	••	••		1
Item	* BASIC MOVEMENT ASSEMBLY 40651-F Item Part Circuit Qty.								
No.	No.	Dese	cription					Ref.	Off
1 2	14824–8 15439–1	Scaleplate Mounting Plate, for item 1	••		••	••	••		1 1 1
3	15301–1 21122–2 15303–2	Magnet Support Plate, for item 3 Concentrator	••	••• ••	••	•••	•••		1
5 6 7	15305-2 15296-2 21121-1	Pole Piece	••	•••	•••	•••	•••		2 1
8	21124-D 21123-2	Moving Coil Assembly. See Yoke	e page 3				••		1 1
10 11	15436–1 15437–1	Zero Adjuster Movement Support Pillar		•••	••	• • • •	•••		1 2 1
12 13	10184–B 10194–B	Sprung Jewel Assembly Fixed Jewel Screw Assembl	у	•••		•••	••		1 1 1
14 15 16	101901 101882 101914	Insulator Bush, for rear hai Locknut, for item 14 Rear Hairspring Tag			••	••	••		1
17 18	10191-4 10069-1 10197-2	Spring Washer, for item 10 Locknut, for item 12	••	••	•••	••	•••		1 1
19 20	10189–1 10358–2		••	•••		••	•••		2 1
	,	* MOVING COIL	ASSEN	ABL	Y 2112	4-D			
Item No.	Part No.		cription			,		Circuit Ref.	Qty. Off
1	15304–3 10161–4	Moving Coil (less items 2– Pivot Plate		•••	•••	••	••		1 1
2 3 4	10159–1 10084–1	Pivot Holder Tag, for hairsprings		•••	•••	••			2 2
5	10162–1 10158–4	Pad, for items 2 and 8 Pivots, 0.020"	••	••	•••	••	••		4
7	10075–16 15300–2	Hairsprings Pointer Plate	••	••	••	••	•••		2
9	15433–1	Pointer	vement 9	 Servic	· · ing on n	 age 29	••		1

• •	••	••	••	••	
ngs and 8	• •	••	••	••	
and 8	••	••	••	••	
• •	••	••	••	••	
••	••	••	••	••	

20

C

. . * See note regarding Movement Servicing on page 29

36

Item	Part	CASE		MBLY	40703-	- E			rcuit Ref.	Qty. Off
No.	No.		Des	cription				I		1
	40703-A	Case Assembly, Top				••	••	••		
1		Case Assembly, Both	tom			••	••	••		1
2	40703-D	Handle Assembly			••	••	••	••		1
3	11727–A	End Cap, for handle	assem		••		••	••		2
4	11727-5	P.V.C. Strip, 3' 0"				• •		••		1
5	P.V.C.174	P.V.C. Suip, 5 V	•••		••	••				1
6	40704-1	Gasket Clasp Bottom (on b			••			••		4
7	15700-2	Clasp Plate (outside	hottor	n case)		• •	••	••		4
:8	15701-2	Clasp Plate (outside t Clasp Plate (inside t	ottom	case)				••		4
9	15702-2	Clasp Plate (Inside C				••	••	••		4
10	15700-1	Clasp Top		••	••	••		••		4
11	15702-4	Clasp Plate (on case			••			••		4
12	15706-2	Cover Washer	••	••	•••			••		8
13	15703-1	Panel Clamp	••	••	••					8
14	14235–1	Anchor Nut, 4 BA	. 1//	••		••				28
15	R66	Rivet, .090"/.094" >	× ‡.	••	••	••				1
16	15713-1	Strap		••	••	••	••	••		16
17	R65	Rivet, .090"/.094"		••	••			•••		1
18	12231-5	Name Plate	••	••	••	••	••			
		TINK	ASSI	EMBLY	16389)-A				-
		LIND	noor					· (Circuit	Qty.
Iten			De	escriptio	n				Ref.	Off
No				-						1
1	40467–2	Top Cap Escutched		••	••					1
2		Link	••	••	••					2 2
3		Screwed Socket	••	• •	••	•••				2
4	13834-A	Knob	••	••	••	••				1
5		Spring	••	••	••	••				2
6		Hex. Nut	••	••	••	••	••			2
7	14247–3	Spring Washer	•••	•.•	••	••				
		FLYING LE		NIT AS	SEMB	SLY 21	1214-A			0
- .	D 4	FLING HL							Circuit	Qty.
Ite			D	escription	on				Ref.	Off
No). No.							• •		1
		5 Lead, length 2' 6"	arkad k							1
		2 Marker Sleeve (ma	arked o), 2)		• •		••		1
	3 14048-3		arked e	<i>り</i> ・・	••					1
4	4 140483	3 Marker Sleeve (m	aikeu	5)	•••					3
1	5 15724-1	Crocodile Clip	••							2
	6 15721-1	Bakelite Base	••	•• '						4
	7 13483-6		• •	••	••					3
	8 15723-2		• •	••	••	••				1
	9 11982-7	Grommet	••	••	••	••				1
-1	0 15722-3	Case	 		- · ·	• •				-3
	1 15831-6	Contact (lead end	i cup co	Unnecio	r)	••	••			3 1 2 2
	2 15725-3	Contact (for croc	odile c	цр)	••	••	••			1
	3 15718-2	Cable Clip	••	••	••	••	••			2
	4 15295-6	Captive Screw	••	••	••	••	• •			2
	15 15843-2		screw	••	••	••	••	••		
-				- 7						

((*)*

 $((\cdot, \cdot))$

(()

MAINS POWER UNIT ASSEMBLY 50154

....

Item No.	Part No.	Descrip	otion				Circuit Ref.	Qty. Off
	21206-5	Front Panel Mounting Plate		••		••		1
1	21200-5	Front Panel, Engraved				••		<u> </u>
2 3	15295-11	Mounting Block		••				2
	16879–1	Mounting Block Captive Screw						4
4 5	16882–1	Bracket for item 4	••					2
5	16887-1	Bracket, for item 4 Coil Spring, for item 7						1
7	16888-2	Plug Retainer Clip				••		1
8	16891–3	Cable Clip	••		••			1
°9	16883–A	Pin Connection Board	••					1
10	21527–1	Insulation Sheet Top, locate	ed beneath					1
11	21199–A	Transistor Holder Assembly	v	••				2
12	15710-2	Retaining Stud for Flying I	ead Assem					4
12	15220–A	Indicator Knob Assembly (see page 3	4 for		wn		
. 15	1 <i>322</i> 0-A	details)			••			1
14	157082	Handle Bush		••				4
14 15	137082	Handle		•••				2
15	15029–B	Handle Fuse Board Assembly			••		SKT.6	1
10	13029-B 14829-3	Socket (red)					SKT.10,	
17	14029-3	Socket (Itu)	••	••			SKT.12	2
10	14829-4	Socket (black)					SKT.9,	
18	14629-4	Socket (black)		••			SKT.11	2
10	156392	Six-way Connector Socket					SKT.7	1
19		Eight-way Connector Socket					SKT.8	1
20	15639-4	Strap located round C101/0	C102		••			1
21	16387-2	Printed Circuit (large), less	componen					1
22	21531-1	Printed Circuit (small), less	componer	nts				1
23	21530-1	Resistor, $10 \pm 5\%$	componer				R.101	1
24	12049-1017	Resistor, $470\Omega \pm 7\%$ T.E.	••				R.130,	
25	12049-994	Resistor, 47022 ± 770 1.2.	••	••		•••	R102	1
24	120/0 005	Resistor, 2.2k $\Omega \pm$ 7% T.E		•••			R123,	
26	12049-995	Resistor, 2.2K32 $\pm 1/_0$ 1.2		••	•••		R.103,	
							R.104	2
07	10040 006	Resistor, $100k\Omega \pm 7\%$ T.E	Ξ				R.105	1
27	12049-996	Resistor, $100 \text{K}^{22} \pm 7^{\circ}$ T.F.					R.106	1
28	12049-997	Resistor, $68\Omega \pm 7\%$ T.E. Resistor, $10k\Omega \pm 7\%$ T.E.					R.107	1
29		Resistor, $4.3k\Omega \pm 1\%$					R.108	· 1
30		Resistor, $4.5K_{22} \pm 1/_{0}$	· ··		••		R.109	1
31	12049-1013	Resistor, $3.5k\Omega \pm 1\%$ Resistor, $3.5k\Omega \pm 1\%$ Resistor, $2.7k\Omega \pm 7\%$ T.E Resistor, $1k\Omega \pm 7\%$ T.E.			•••		R.110	- 1
32	12049-999	Resiston, 2.7K2 \pm 7% TE		•••			R.111	1
33	12049-1000	Resistor, $1K_{22} \pm 1/_{0}$ 1.2.	••	•••			R.112	1
34		Resistor, $330\Omega \pm 7\%$ T.E. Resistor, $8.2k\Omega \pm 7\%$ T.E			••		R.113	1
35		Resistor, $0.2K_{12} \pm 7_{0}$ 1.0			•••	•••	R.114	1
36		Resistor, $5.5K_{22} \pm 1/_{0}$ 1.1		••	•••	•••	R.115	1
37		Resistor, $3.3k\Omega \pm 7\%$ T.E Resistor, $15k\Omega \pm 7\%$ T.E Resistor, $47k\Omega \pm 7\%$ T.E Resistor, $47k\Omega \pm 7\%$ T.E Resistor, $220k\Omega \pm 7\%$ T.E	• ••	••	••	••	R.116	1.
38		Resistor, $4/K_{22} \pm 1/_{0} 1.E$	 F	••		••	R.117	1
39		Resistor, 220K32 ± 1.0	E	••		• •	R.118	1
40	· · · · · · · · · · · · · · · · · · ·	Resistor, $0.5\Omega \pm 10\%$. Resistor, $560k\Omega \pm 10\%$.	• ••	••	••	• •	R.119	1
41		Resistor, $500K22 \pm 10\%$.		••	••	• •	R.120	1
42	12049-1017	Resistor, $1\Omega \pm 5\%$	• ••	••	• •	• •		
		· · · · · · · · · · · · · · · · · · ·	_					

38

• 1.2

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

Item No.	Part No.	Description			Circuit Ref.	Qty. Off
43	12049-1014	Resistor, $9.5k\Omega \pm 2\%$ Resistor, $330k\Omega \pm 10\%$ Resistor, $39\Omega \pm 7\%$ T.E		••	R.121 R.122	1 1
44	12049-1007	Resistor, $330k\Omega \pm 10\%$	••	••	R.122	1
45	12049-1008	Resistor, $39\Omega \pm 7\%$ T.E.	••	••	R.125	1
46	12049-1009	Resistor, $1.8k\Omega \pm 7\%$ T.E Resistor, $1.2k\Omega \pm 7\%$ T.E	••	••	R.126	1
47	12049-1010	Resistor, $1.2k\Omega \pm 7\%$ T.E.	••	••	R.127	1
48	12049-1016	Resistor, $10\Omega \pm 5\%$ Resistor, $10k\Omega \pm 7\%$ T.E.	•••	••	R.128	1
49	12049-998	Resistor, $47k\Omega \pm 7\%$ T.E.		••	R.129	1
50	12049-1004 12049-981	Capacitor, 2000μ F 25V (electrolytic)			C.101,	
51	12049-981	Capacitor, 2000µ1 25 V (electrorytic)	••	••	C.102	2
50	12049-982	Capacitor, 50µF 25V (electrolytic)	• •		C.103,	
52	12049-902		••	• •	C.109,	
					C .110,	
					C.113,	
					C.114,	
	•				C.115	6
53	12049402	Capacitor, 0.04µF 250V	• •		C.105,	
55	12047-402	Cupucitor, etc. pr. 200			C.107	2
54	12049-984	Capacitor, 25µF 25V (electrolytic)	••	• • ·	C.106	1
55	12049-985	Capacitor, 250µF 25V (electrolytic)		••	C.108	1
56	12049-587	Capacitor, 470–500pF	••	•••	C.111,	
50	12019 001				C.112	2
57	12049-1021	Capacitor, 0.25µF 150V		••	C.116	1
58	15581-51	Diode, type OA81		••	MR.101,	
•••		,			MR.102,	
					MR.103,	
					MR.104,	
					MR.105,	
					MR.106,	
					MR.107,	•
					MR.108	8
59	15581-52	Zener Diode, type NEZ 18T5	••	••	MR.109	1
60	15581–54	Zener Diode, type SX 561	••	••	MR.110	1 1
61	15581–55	Zener Diode, type SX 8.2 (Sel.)	••	••	MR.111	-1
62	15581-53	Zener Diode, type SX 4.7	••	••	MR.112	1
63	15581-56	Diode, type ZS 72	••	••	MR.113,	
					MR.114, MR.115,	
					MR.115, MR.116	4
					SB	1
64		Switch for Collector Volt supply	••	••	SD SC	1
65	16897–1	"On/Off" Switch	••	••	SD	1
66		Cut-out Re-set Switch	••	••	FS.1	1
67		Fuse, 250mA delay type	••	••	ILP.101	1
68		Neon Indicator Lamp	••	••	RV.101	1
69	16903–1	Collector Voltage Potentiometer	••	••	1/1/1/1	

39

(1

(6

(6

ltem No.	Part No.	Des	cripti	on			Circuit Ref.	Qty. Off
70	12049-1019	Potentiometer, $1k\Omega \pm 2$	0%,	wire wou	ind	•.•	RV.102	1
71	12049–1016	Potentiometer, $100\Omega \pm$	20%,	wire wo	ound	••	RV.103	1
72	15581–57	Transistor, type GET 53	35			••	VT.101,	
							VT.102	
							VT.103	
							VT.106	
	* * *						VT.107	
							VT.108	
	л.						VT.110	7
73	15581-58	Transistor, type GET 11	16			••	VT.104	
• -		, J.K.					VT.109	2
74	15581-59	Transistor, type OC 35			••	••	VT.105	1
75	409258	Mains Transformer	••		••	••	T.101	1
76	16899-1	Mains Input Socket		••				1
77	16899-2	Mains Input Plug						1
78	12049-983	Capacitor, 50µF 50V		••			C104	1
79	12049-982	Capacitor, 50μ F 25V	••	••	••	••	C117	ī

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

Printed in England for Messrs. Avo Ltd. by Creaseys of Hertford Ltd.

Part No. 10072/355

.

FIGURE 7

1

.

	IIGOME /	
Circuit Ref.	Description	Remarks
C.201 C.202	470pF 470pF	
B1-B6 B7-B14	Battery Type U10 Battery Type U10	Type U7 in USA and Canada Type U7 in USA and Canada
SA	Collector Volt Switch	
SKT.1 SKT.2 SKT.3 SKT.4 SKT.5	6-way Socket 8-way Socket Neg. socket (black) 12V socket (white) 150V socket (red)	

(

(

•	Description	l	Ref.	Description
$1k\Omega +$	E 10%	,	C.7	0.1µF 150V
	± 5%		C.8	0.1µF 150V
4.71.0	1 5 %		C.9	
4./KS2	± 5% ± 5%			100µF 12V
			C.10	25μF 12V
3kΩ-1	0k Ω		C.1 1	25µF 12V
4.7kΩ	+5%		C.12	25µF 12V
1000	±5% ±1%		C.13	0.04µF 150V
4001-0			C.14	
400K12	$2\pm1\%$			500µF 12V
160KΩ	$2 \pm 1\%$		C.15	500μF 12V
16k Ω	$\pm 1\%$		C.16	1μF 250V
79kΩ	$\pm 1\%$		C.17	8μF 12V
9000	$\pm 1\%$		C.18	8μF 12V
1000	$\pm 10^{\circ}$		C.19	0.04µF
100Ω			0.19	0.04µ1
1.5K12	$\pm 2\%$		L.1	Earnayouba Chaka
$1k\Omega \pm$	E1%			Ferroxcube Choke
120kΩ	2 + 5 %		L.2	Oscillator Transformer
5.6kΩ	$\pm 5\%$		DV 1	47000
12010	$2\pm5\%$		RV.1	4700Ω
120832			RV.2	$1k\Omega \pm 1\%$
15012	$\pm 2\%$		RV.3	$100k\Omega \log$.
IOkΩ	$\pm 2\%$ $\pm 1\%$			1.5k Ω and 250 Ω
120kΩ	2±3%			11k Ω and 25M Ω
10k Ω	$\frac{\pm 1\%}{\pm 5\%}$		Kv.Ja, U	
24kO	$\pm 5\%$		SE	Function Switch
1010				
11.0	$\pm 1\%$		SF	Meter Switch
	E 2 %		SG	Check/Set/Read switch
$\frac{1k\Omega}{1k\Omega} \pm \frac{1}{1k\Omega} \pm $	E1%		SH	Push Ico
1kΩ +	⊦5%		SJ	Push Ib
10k0	\pm 1%		ŠK	Push 150mV
110	50/			
161-0	± 1%		SL	Base Current Switch
IUK12	$\pm 1\%$		MD 1	Germanium Diade
3.4M	$2 \pm 1\%$		MR.1	Germanium Diode,
340kΩ	$2 \pm 1\%$			type GEX 34
35.3ks	<u>2 % 1 %</u>		MR.2	Silicon Diode, type 2E1
6kΩ <u>+</u>	L 1 %		MR.3	Silicon Diode, type 2E1
2 591-0	1.1%			
3. JOK1	$2 \pm 1/_{0}$		SKT.13	Meter Input Socket (Red
358 Ω	$\pm 1\%$		SKT.14	Meter Input Socket (Whi
35.80	$\pm 1\%$		SKT.15	
3.58Ω	$\pm 1\%$		SK1.15	Amplifier Input Socket
0.4Ω -	+1%			(red)
1MO	$\frac{1}{1}$		SKT.16	Amplifier Input Socket
101-0	$\pm 2\%$			(black)
	±1/0		SKT.17	Test Socket
240kΩ	$\pm 1\%$ $2\pm 2\%$	1	SKT.18	Oscillator Output
$1k\Omega \pm$	E 10%		51.10	
10Ω <u>+</u>	- 5%		0.T.C. 10	Socket (black)
$1k\Omega$	L 1 %		SKT.19	Oscillator Output
100	50/			Socket (red)
$10\Omega =$			SKT.20	Test Socket 2 (White)
1.3K12	$\pm 2\%$			
0.53Ω	$\pm 2\%$ $\pm 2.5\%$		VT.1	Transistor, type OC 71
0.53Ω	+2.5%		VT.2	Transistor, type OC 71
11kΩ	+2%			Transistor, type OC 71
1000	$\pm 2\%$ $\pm 1\%$ $\pm 20\%$		VT.3	Transistor, type OC 75
10012	$\pm 1/0$		VT.4	Transistor, type OC 75
1277 7	20%		VT.5	Transistor, type
	$\Omega \pm 1\%$			CV 2400
0.1µF	150V			
0.1µF	150V		N I	Mater Movement
0. E 1'			M.1	Meter Movement

PL.1

PL.2

FIGURE 9

Circuit

Ref.

Description

30μΑ, 3250Ω

8-way Plug

6-way Plug

(

(

Circuit

Ref.

R.1 R.2 R.3 R.4 R.5 R.6 R.7

R.8 R.9 R.10 R.11 R.12 **R.13** R.14

R.15

R.16 **R.17 R.18** R.19 R.20

R.21

R.22 R.23

R.24 R.25

R.26 R.27

R.28

R.29

R.30

R.31

R.32

R.33

R.34 R.35

R.36 R.37

R.38 R.39

R.40 R.41

R.42

R.43

R.44

R.45

R.46

R.47 **R.4**8

R.49 R.50 R.51 R.52

R.53 C.1

C.2

C.3

C.4 C.5 C.6

8μ**F** 12V

100μF 12V 0.04μF

0.1µF 150V

Description

(

.	х.
F	r Service Manuals Contact RITRON TECHNICAL SERVICES
N	Cherry Tree Rd, Chinnor Oxon OX9 4QY
Tel:	01844-351694 Fax:- 01844-352554

R.101 R.102 R.103 R.104 R.105 R.106 R.107 R.108 R.109 R.110 R.110 R.111 R.112 R.113 R.114 R.115 R.116 R.117 R.118 R.119 R.120 R.121 R.122 R.123 R.124 R.125 R.126 R.127 R.128	$\begin{array}{ll} & \Omega \pm 5\% \\ & 470\Omega \pm 7\% \ T.E. \\ & 2.2k\Omega \pm 7\% \ T.E. \\ & 2.2k\Omega \pm 7\% \ T.E. \\ & 2.2k\Omega \pm 7\% \ T.E. \\ & 100k\Omega \pm 7\% \ T.E. \\ & 10k\Omega \pm 7\% \ T.E. \\ & 10k\Omega \pm 1\% \\ & 3.5k\Omega \pm 1\% \\ & 2.7k\Omega \pm 7\% \ T.E. \\ & 18\Omega \pm 7\% \ T.E. \\ & 18\Omega \pm 7\% \ T.E. \\ & 330\Omega \pm 7\% \ T.E. \\ & 33k\Omega \pm 7\% \ T.E. \\ & 15k\Omega \pm 7\% \ T.E. \\ & 15k\Omega \pm 7\% \ T.E. \\ & 15k\Omega \pm 7\% \ T.E. \\ & 10\% \ \pm 5\% \\ & 9.5k\Omega \pm 2\% \\ & 330k\Omega \pm 10\% \\ & 2.2k\Omega \pm 7\% \ T.E. \\ & 18k\Omega \pm 7\% \ T.E. \\ & 10\Omega \pm 5\% \\ & 10\Omega \pm 5\% \\ & 10K\Omega \pm 7\% \ T.E. \\ & 10K\Omega \pm 7\%$
R.129 R.130 C.101 C.102 C.103 C.104 C.105 C.106 C.107 C.108 C.109 C.110 C.111 C.112	$10k\Omega \pm 7\% \text{ T.E.} \\ 47k\Omega \pm 7\% \text{ T.E.} \\ 470\Omega \pm 7\% \text{ T.E.} \\ 2000\mu\text{F} 25\text{V} \\ 2000\mu\text{F} 25\text{V} \\ 50\mu\text{F} 25\text{V} \\ 50\mu\text{F} 25\text{V} \\ 50\mu\text{F} 25\text{V} \\ 0.04\mu\text{F} 250\text{V} \\ 25\mu\text{F} 25\text{V} \\ 0.04\mu\text{F} 250\text{V} \\ 250\mu\text{F} 25\text{V} \\ 50\mu\text{F} 25\text{V} $
C.112 C.113 C.114 C.115 C.116 C.117	470–500pF 50μF 50μF 50μF 0·25μF 50μF 25V

T.101

MR.101

MR.101 MR.102 MR.103 MR.104 MR.105 MR.106 MR.107 MR.109

MR.108

Circuit Ref.

FIGURE 8

8	
Circuit Ref.	Description
MR.109	Zener Diode, type NEZ 18T5
MR.110	Zener Diode, type SX 561
MR.111	Zener Diode, type SX 8.2 (Sel.)
MR.112	Zener Diode, type SX 4.7
MR.113 MR.114	Diode, type ZS 72
MR.115	Diode, type ZS 72 Diode, type ZS 72
MR.116	Diode, type ZS 72
SKT.6 SKT.7	Fuse Holder/Socket 6-way Socket
SKT.8	8-way Socket
SKT.9	Mains Output Socket (black)
SKT.10	Mains Óutput Socket (red)
SKT.11	Coll. Volt. Ext. Supply
SKT.12	Socket (black) Coll. Volt. Ext. Supply Socket (red)
SB	Collector Volt Switch
SC SD	On/Off Switch Cut-out Re-set
FS.1	250mA Delay
ILP.101	Neon Indicator Lamp
RV.101 RV.102	Collector Volts Pot. $1k\Omega \pm 20\%$ wire
DV 102	wound
RV.103	$100\Omega \pm 20\%$ wire wound
VT.101	Transistor, type GET 535
VT.102	Transistor, type GET 535
VT.103	Transistor, type GET 535
VT.104	Transistor, type
VT.105	GET 116 Transistor, type
VT.106	OC 35 Transistor, type GET 535
VT.107	Transistor, type GET 535
VT.108	Transistor, type
VT.109	GET 535 Transistor, type GET 116
VT.110	Transistor, type
	GET 535

Description

Mains Transformer

Diode, type OA 81 Diode, type OA 81

Email:- enquiries@mauritron.co.uk

C

Ş

۰.

Fig. 8. Transistor Analyser Mains Power Unit

Fig. 9. Transistor Analyser Mk. 2. Circuit Diagram