
ue*adret electronique*adret electronique*adret electronique*adret el

Point de rencontre de deux techniques, celle des générateurs à cavité et celle de la synthèse de fréquence, le 7100 est un instrument à hautes performances qui se différencie des générateurs classiques évolués, par une simplicité d'emploi et les avantages inhérents aux systèmes numériques : reproductibilité des mesures et intégration dans des systèmes de mesures automatiques couvrant tous les domaines des télécommunications.

Cet appareil, géré par un microprocesseur qui lui confère une grande facilité d'utilisation, aussi bien en manuel qu'en programmation, est doté d'une gamme de fréquence étendue, d'un niveau de sortie calibré sur une large dynamique et des modulations AM, FM, ØM et impulsions.

GENERATEUR VHF / UHF UNIVERSEL

L'emploi d'un microprocesseur associé à une technique nouvelle de synthèse de fréquence procurent :

100 KHz à 1300 MHz

DES POSSIBILITES MULTIPLES...

Une seule gamme de fréquence : 100 KHz à 1300 MHz

Un générateur AF interne de modulation : 10 Hz à 100 KHz

Pas de canaux standard : 12,5 - 20 - 25 - 50 KHz

Modulation simple ou simultanée :

AM: 0 à 95 %

FM : \pm 1 KHz à \pm 300 KHz en 3 grammes Φ M : \pm 300°

Impulsions (fréquence de récurrence) : 10 Hz à 2,5 MHz

Niveau de sortie élevé : + 20 dBm / 50 Ω

Atténuateur à grande dynamique : + 20 à — 140 dBm

Haute résolution de niveau : 0,1 dB

 Programmation par BUS IEEE - standard IEEE - 488 de 1975 - de toutes les fonctions et paramètres

Fréquence RF au pas de 1 Hz

Fréquence AF au pas de 1 Hz, 10 Hz ou 100 Hz selon la gamme

Niveau au pas de 0,1 dB

AM au pas de 1

FM au pas de 10 Hz, 100 Hz ou 1 KHz selon la gamme

D M au pas de 1º

Mode de fonctionnement : CW, signal modulé, sortie inhibée.

- Protection des circuits de sortie par disjoncteur électronique à réarmement auto-
- Grande facilité d'utilisation obtenue par une disposition simple et rationnelle des commandes.

... DES PERFORMANCES ELEVEES

- Grande stabilité de la fréquence de sortie, par asservissement sur un pilote à quartz de classe 10-8, à la manière d'un synthétiseur, ce qui exclut tout "phase-lock" manuel.
- \bullet Haute pureté spectrale 136 dB/Hz à 10 KHz de la porteuse, plancher de bruit à 150 dB
- Large bande passante de modulation :

AM : du continu à 100 KHz (compatibilité modulation VOR)

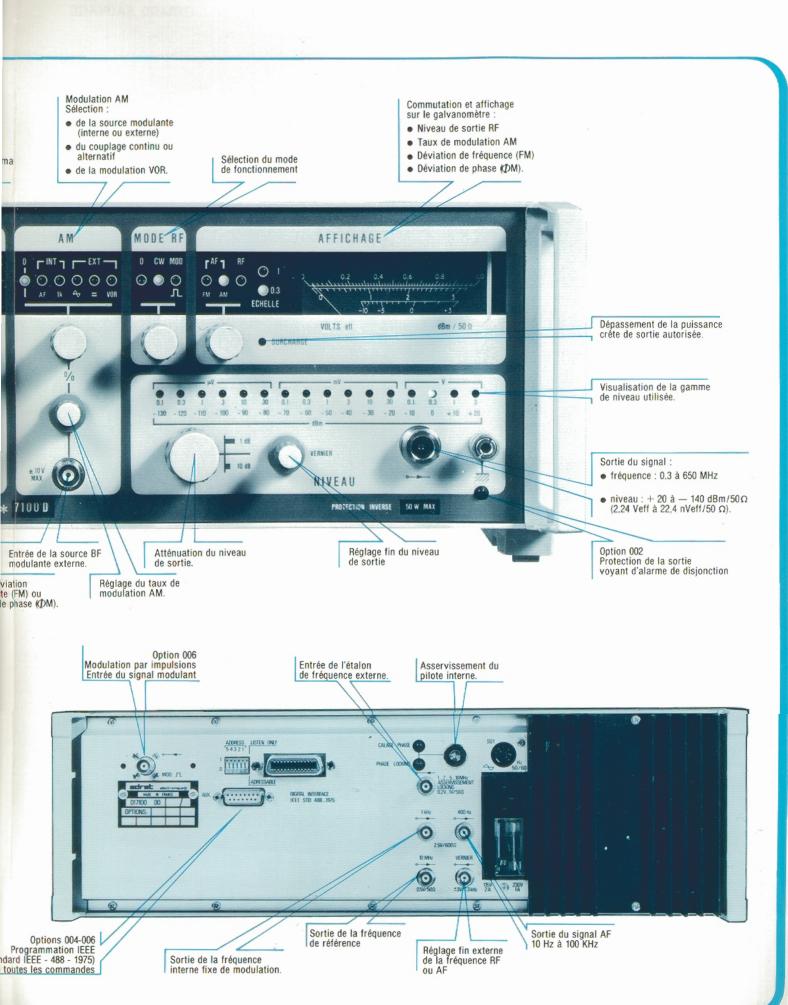
FM: du continu à 150 KHz Φ M : du continu à 50 KHz

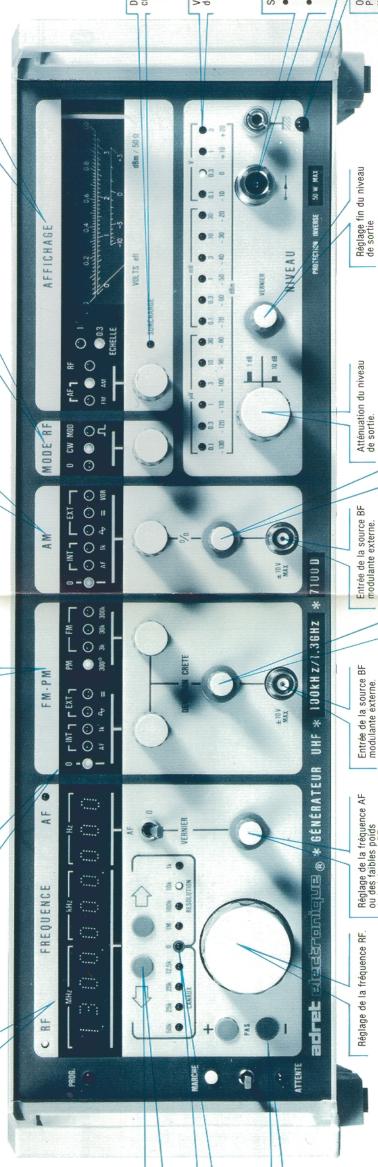
 Modulation par impulsions très performante et compatible avec les systèmes de radionavigation civile et militaire

20 ns minimum Temps de montée Temps de descente 30 ns minimum Durée de l'impulsion $0.2 \mu \text{ s minimum}$ Rapport de protection : > 100 dB à 1200 MHz

- Très faible intermodulation en mesure à 2 générateurs
- Des performances fidèles d'un appareil à l'autre, grâce à un étalonnage rigoureux de chaque appareil et un contrôle final réalisé sur banc de test automatique.

Modulations FM- Φ M Sélection • de la source modulante (interne ou externe) Modulations FM- Φ M Affichage de la fréquence RF (10 digits à LED) ou de la fréquence AF (4 digits) Sélection des déviations maxima du couplage continu ou alternatif. de fréquence et de phase. FM-PM C RF FREQUENCE AF LINT J LEXT J PROG 000 0 \bigcirc Sélection du pas de résolution RF, de l'espacement de canal standard et de la gamme AF. . VERNIER CRETE MARCHE Verrouillage de la commande de réglage de la fréquence RF. (m) Variation «pas à pas» et automatique de la fréquence RF. ATTENTE adret 리크리카드레트[비료 * GÉNÉRATEUR UHF * 100kHz/1.36Hz * 7100 B Entrée de la Réglage de la fréquence AF Entrée de la source BF Réglage de la fréquence RF. modulante e ou des faibles poids modulante externe. de la fréquence RF.


Le nouveau générateur 7100 D est muni d'un générateur AF interne, principalement destiné à servir de source de modulation; la fréquence, obtenue à partir de 3 gammes, est disponible avec un niveau fixe de 2,5 Veff / $600~\Omega$ et une constance de 0,2 dB.


La version de base de ce générateur est pilotée par une source thermostatée, possédant un vieillissement à long terme de 5.10^{-8} /jour, après 3 mois de fonctionnement ininterrompu; sur option, l'appareil peut recevoir un pilote haute stabilité dont le vieillissement, sur la même période, est de 5.10^{-9} /jour, la dérive thermique étant $\leq 2.10^{-10}$ /° C.

Des performances supérieures pour des caractéristiques essentielles, comme la précision du niveau de sortie, la précision des modulations et la distorsion de la courbe enveloppe AM, permettent à tout utilisateur de disposer d'un instrument encore plus efficace, qui peut, par l'adjonction de différentes options, convenir à de multiples applications par le choix de la configuration la plus appropriée.

Option: Programma standard IEEE - 48 de toutes les con

Réglage de la déviation de fréquence crête (FM) ou de la déviation de phase (DM).

PRESENTATION ET SIGNIFICATION DES COURBES TYPE

La plupart des paramètres qui caractérisent un instrument de mesure sont représentés par des valeurs qui s'écartent sensiblement de la valeur idéale, d'où la nécessité d'établir des spécifications faisant apparaître des "tolérances".

L'écart par rapport à la valeur théorique peut être dû à une interaction entre le paramètre considéré et un ou plusieurs autres paramètres, à une non-linéarité, à des dérives, des défauts d'étalonnage, etc.

La tolérance garantie par le constructeur du matériel indique à l'utilisateur les valeurs extrêmes que peut atteindre l'écart et résulte le plus souvent du cumul de toutes les erreurs possibles, ce qui constitue un cas "possible", mais improbable en terme de statistique.

Il est donc intéressant, de manière à mieux renseigner l'utilisateur soucieux de tirer le maximum de son matériel, de faire intervenir des paramètres statistiques lui permettant de prévoir les performances probables de ce matériel.

Tout d'abord, la MOYENNE ARITHMETIQUE des valeurs obtenues sur un nombre important d'instruments donne la valeur la plus probable, celle qui correspond au maximum de la courbe de distribution statistique, le sens de l'erreur, le tout par rapport à la valeur théorique. Cette moyenne est donc intéressante, mais insuffisante, elle ne donne aucune information sur la dispersion des écarts par rapport à cette valeur centrale.

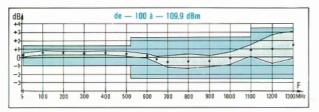
L'ECART TYPE, calculé à partir des mêmes mesures utilisées pour définir la moyenne arithmétique, permet à condition que la courbe de distribution soit gaussienne, ce qui est pratiquement toujours le cas, d'apprécier la dispersion des instruments.

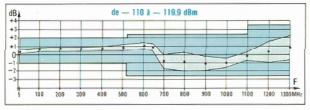
L'écart type, qui a la dimension de la grandeur étudiée, donne la

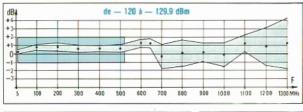
garantie que, statistiquement, 68 % des instruments auront des écarts inférieurs à cet écart type et que 95 % seront compris dans deux fois l'écart type.

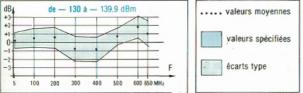
Pour prendre un exemple concret dans le cas de la précision d'un taux de modulation AM à 30 %, la valeur moyenne peut être de 29 % avec un écart type de 0,8 %, ce qui signifie que 68 % des appareils de la population prise en compte donnent, pour un réglage à 30 %, un taux compris entre 28,2 et 29,8 %.

Afin d'appréhender directement l'évolution de la VALEUR MOYENNE et de l'ECART TYPE, les résultats peuvent avantageusement être présentés sous forme de courbes, et ceci en fonction du principal facteur de variation.

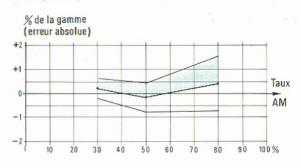

Dans cet esprit sont présentées, pour le générateur 7100 D, des courbes de valeurs moyennes et d'écarts type de la précision du niveau de sortie en fonction de la fréquence, et ce pour des niveaux faibles pour lesquels la dispersion est la plus importante.

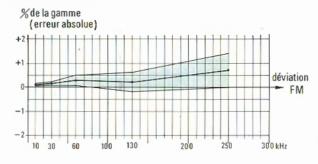

Sont présentées également, des courbes caractérisant la précision du taux de modulation AM en fonction de sa valeur, ainsi que celles qui représentent la précision de la déviation FM.


Ces résultats sont dignes de confiance car ils découlent du traitement d'un grand nombre de mesures, le processus étant rendu aisé grâce au banc de test automatique qui conserve en mémoire les données nécessaires.


Ainsi, en plus des tolérances garanties qui constituent des cas extrêmes, l'utilisateur du générateur dispose d'informations lui permettant de prévoir, à l'intérieur des tolérances, l'évolution des caractéristiques de son appareil, de manière à en tirer le meilleur parti possible.

COURBES DE MOYENNES ET D'ECARTS TYPE DE LA PRECISION DU NIVEAU DE SORTIE EN FONCTION DE LA FREQUENCE




VALEURS MOYENNES ET ECARTS TYPE DE LA PRECISION OU TAUX AM

Fréquence RF : 500 MHz; Niveau : 0 dBm; Signal modulant de 1 KHz (interne)

VALEURS MOYENNES ET ECARTS TYPE DE LA PRECISION DE LA

Fréquence RF : 160 MHz ; Gamme de déviation : $\pm\,300\,\mathrm{KHz}$; Signal modulant de 400 Hz

CARACTERISTIQUES TECHNIQUES

FREQUENCE

0.3 à 650 MHz en une seule gamme 0.1 à 1300 MHz avec options.

RESOLUTION (de 0.1 à 1300 MHz).

1 Hz à l'aide d'un vernier

1 KHz, 10 KHz, 100 KHz ou 1 MHz avec manivelle.

REGLAGE

Manivelle: roue codeuse optique 100 pas/tour.

Vernier: + 1500 Hz à - 500 Hz.

Pas à pas : 1 KHz - 10 KHz - 100 KHz - 1 MHz ou 12,5 KHz - 20 KHz -25 KHz - 50 KHz (espacements normalisés entre canaux). Le pas 12,5 KHz est uniquement utilisable de 0.1 à 650 MHz.

Analogique : env. \pm 3 V pour une déviation de \pm 3 KHz Programmation: IEEE-488 norme 1975 (voir options 004 et 005)

AFFICHAGE

Permanent: 6 digits LED poids 103 à 108 Hz.

7 digits LED poids 103 à 109 Hz (avec option Doubleur)

Vernier: 3 digits LED poids 10° à 102 (fréquencemètre incorporé) La précision de l'affichage est identique à celle du quartz thermostaté ± 1 Hz si le vernier est utilisé.

STABILITE

Mesurée à + 25° C \pm 1° C.

Facteurs d'influence	Sans vernier (version de base)	Avec vernier ou FM continue	Sans vernier (avec option 001)
Temps	± 1.10,3/jour après 1 heure de fonctionnement ± 5.10,8/jour après 3 mois de fonctionnement ininterrompu	± 1 Hz/10 mn après 30 mn de validation du vernier	± 2.10-8/jour après 48 h de fonctionnement ininterrompu ± 5.10-9/jour après 3 mois de fonctionnement ininterrompu
Secteur (variation de ± 10 %)	négligeable	négligeable	négligeable
Température	± 1.10-8/° C	± 0.2 Hz/° C	± 2.10-10/° C
Niveau (variation par pas de 10 dB)	négligeable	négligeable	négligeable
Effet de charge	négligeable	négligeable	négligeable

ASSERVISSEMENT DU PILOTE INTERNE

Par potentiomètre 10 tours et voyants LED, à partir d'un étalon extérieur de précision meilleure que ± 1.10-6.

Fréquence d'entrée : Tous sous-multiples de 10 MHz jusqu'à 1 MHz.

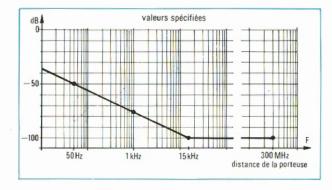
Niveau d'entrée : 0,2 V à 1 Veff/50 Ω.

Sortie fréquence de référence : 10 MHz (environ 0,5 Veff/50 \Omega).

PURETE SPECTRALE

Mesures effectuées en mode CW à + 10 dBm/50 Ω de 1 à 650 MHz et à + 0 dBm/50 Ω de 650 à 1300 MHz (OPTION DOUBLEUR).

COMPOSANTES HARMONIQUES ET SOUS-HARMONIQUES


Bande de fréquence	Harmoniques	Sous-harmoniques
1 à 650 MHz	< - 30 dB (- 35 dB typique)	<— 100 dB
650 à 1300 MHz	<- 25 dB (- 30 dB typique)	< — 25 dB (— 30 dB typique)

COMPOSANTES NON-HARMONIQUES

GAMME 1 à 650 MHz

La raie réseau 50 Hz ou 60 Hz est < - 50 dB.

Au-delà de la raie réseau et jusqu'à 15 KHz, le niveau des raies décroît de 6 dB/octave comme le montre la courbe ci-dessous. Les raies situées au-delà de 15 KHz et jusqu'à 300 MHz sont 100 dB.

GAMME 650 à 1300 MHz (avec doubleur) Le niveau des raies subit une dégradation de 6 dB par rapport aux valeurs données par la courbe de la gamme standard.

RAPPORT SIGNAL SUR BRUIT DE PHASE

Valeurs typiques mesurées dans une bande de 1 Hz (bande latérale unique) pour des fréquences de 160 MHz, 560 MHz et 1200 MHz.

Fr Distance porteuse		160 MHz	560 MHz	1200 MHz (option doubleur)
100	Hz	93 dB	86 dB	80 dB
1	kHz	122 dB	115 dB	110 dB
6,2	5 KHz	142 dB	136 dB	130 dB
10	KHz	142 dB ▲136 dB	136 dB ▲130 dB	130 dB
100	KHz	142 dB	136 dB	130 dB
1	MHz	145 dB	140 dB	134 dB
5	MHz	150 dB	150 dB	140 dB

▲ Valeurs spécifiées.

 \bullet AM RESIDUELLE (de 0.3 à 1300 MHz) : < — 85 dB dans la bande 300 Hz à 3 KHz (norme CCITT). < — 80 dB dans la bande 20 Hz à 15 KHz (norme CCIR).

FM RESIDUELLE

Norme Gamme	CCITT Bande 300 Hz à 3 KHz	CCIR Bande 20 Hz à 15 KHz
0,3 à 650 MHz	< 1 Hz	< 10 Hz
650 à 1300 MHz	< 2 Hz	< 20 Hz

RAYONNEMENT PARASITE

 $< 3 \,\mu\text{V}$ eff. de 0,3 à 650 MHz

<10 µV eff. de 650 à 1300 MHz (option DOUBLEUR) Appareil toutes sorties chargées, la mesure est effectuée aux bornes d'une boucle standard 1 spire & 3 cm placée à 2,5 cm de toutes les faces de l'instrument et chargée par 50 Ω. (Norme MIL-J-6181 D.)

NIVEAU

• NIVEAU DELIVRE : + 20 dBm à — 140 dBm/50 Ω . + 13 dBm à — 140 dBm/50 Ω de 650 à 1300 MHz (option Doubleur)

REGLAGE :

Pas de 1 dB ou 10 dB (atténuateur)

Ajustage par vernier avec position calibrée: 0 à + 2 dB

CONTROLE

16 voyants LED

Galvanomètre gradué en volts et dBm/50 Ω.

Indicateur de dépassement de la puissance crête maximum autorisée (+ 20 dBm/50 Ω ou + 10 dBm/50 Ω sur la gamme doublée)

CALIBRATION :

Effectuée à 50 MHz et 0 dBm/50 Ω : \pm 0.2 dB

CONSTANCE

Mesurée à 0 dBm par rapport à 50 MHz.

CONFIGURATION	GAMME	CONSTANCE
Base (sans options)	300 KHz à 1 MHz 1 à 650 MHz	$^\pm$ 1 dB $^\pm$ 0,5 dB
Base + Protection (Option 002)	1 à 650 MHz	\pm 0,7 dB
Base + DOUBLEUR (Option 003)	650 à 1300 MHz	\pm 1 dB
Base + Options 002 et 003	650 à 1300 MHz	\pm 1,5 dB
Base + Options 003 et modulation par impulsions (options 006)	1 à 650 MHz 650 à 1300 MHz	\pm 0.7 dB \pm 1 dB
Base + Options 002, 003 et 006	1 à 650 MHz 650 à 1300 MHz	± 1 dB ± 1,5 dB

PRECISION DE L'ATTENUATEUR

Niveau Fréquence	+ 20*à — 109,9 dBm	— 110 à — 119,9 dBm	— 120 à — 129,9 dBm
300 KHz à 1 MHz	+ 2 — 1,5	± 2	non spécifiée
1 à 520 MHz	+ 1 - 0,5		1,5 0,5
520 à 1100 MHz	+ 2 — 1,5	± 2	non
1100 à 1300 MHz	+ 3 - 2	± 3	spécifiée

* + 13 dBm de 650 à 1300 MHz (Option DOUBLEUR).

NOTA: Les pas de 0,1 dB sont uniquement obtenus à partir de l'option "Programmation"

Précision des pas de 1 dB : ± 0,5 dB d'erreur relative maximum pour 10 pas.

 PRECISION ABSOLUE DE NIVEAU :
Valeurs comportant les erreurs dues à l'atténuateur, la constance de niveau et la calibration.

Niveau Fréquence	+ 20*à - 109,9 dBm	— 110 à — 119,9 dBm	— 120 à —129,9 dBm
300 KHz à 1 MHz	± 2	2,5	non spécifiée
1 à 520 MHz	+ 1,5 + - 1 -		1
520 à 1100 MHz	± 2,5		Non
1100 à 1300 MHz	+ 3,5 - 2,5) spécifiée

- + 13 dBm de 650 à 1300 MHz (Option DOUBLEUR)
- PRECISION DU GALVANOMETRE : 3 % de la pleine échelle.
- T0\$: mesuré sur une impédance de 50 Ω.

Gamme	Niveau de sortie	Sans protection	Avec protection (option 002)
0,3 à 650 MHz	+ 20 à + 3 dBm	2	2,2
	+ 2 à — 140 dBm	1,2	1,5
650 à 1300 MHz	+ 13 à — 7 dBm	2,2	2,2
	— 8 à — 130 dBm	1,5	1,8

 PROTECTION DE LA SORTIE (disjoncteur électronique - option 002). Niveau de déclenchement : environ + 25 dBm Puissance inverse maximum admissible: 50 W.

GENERATEUR AF

Fréquence : 10 Hz à 100 kHz

Gamme	Résolution
10 Hz à 1 KHz	1 Hz
100 Hz à 10 KHz	10 Hz
1 KHz à 100 KHz	100 Hz

REGLAGE ET AFFICHAGE :

Commande par VERNIER et affichage LED.

La précision de l'affichage correspond à celle du quartz thermostaté \pm 1 digit.

- NIVEAU: + 2,5 Veff/600 Ω, signal disponible à l'arrière de l'instrument
- CONSTANCE : \pm 0.2 dB de 10 Hz à 100 KHz
- TAUX DE DISTORSION mesuré à 1 KHz sur la gamme 1 KHz : ≤ 0,5 %.

MODULATION D'AMPLITUDE

- TAUX DE MODULATION : 0 à 100 % jusqu'à + 14 dBm/50 Ω de niveau de sortie.
- REGLAGE : Par potentiomètre ou commande programmée (option 005)
- CONTROLE : Galvanomètre avec commutation automatique de l'échelle de lecture.

Indicateur de dépassement de la puissance crête maximum autorisée à 100 % de taux de modulation (+ 14 dBm/50 Ω ou + 4dBm/ 50 Ω en gamme doublée).

SOURCES DE MODULATION :

1 KHz interne (stabilité du pilote thermostaté). Générateur AF interne 30 Hz à 100 KHz

Signal externe avec choix du couplage continu ou alternatif.

Bande passante	Couplage continu	Couplage alternatif
± 1 dB	0 à 60 KHz	100 Hz à 60 KHz
— 3 dB	0 à 100 KHz	30 Hz à 100 KHz

Les fréquences internes de modulation sont disponibles à l'arrière de l'appareil sous un niveau fixe d'environ 2,5 Veff/600 Ω

 \bullet SENSIBILITE D'ENTREE (source externe) : MODE LOCAL : env. 2 m Veff/600 Ω pour 1 % de taux de modulation MODE PROGRAMME (options 004 et 005): calibré à 1 Veff/600 Ω \pm 0,5 % pour 100 % de taux de modulation. Niveau maximum d'entrée : \pm 10 V crête.

PRECISION DE LA MODULATION :

Mesurée à 0 dBm/50 Ω pour une fréquence modulante de 1 KHz. MODE LOCAL (de 0 à 90 %) :

± 2 % de la déviation pleine échelle

± 5 % de la lecture de 0,3 à 650 MHz ± 8 % de la lecture de 650 à 1300 MHz (option DOUBLEUR).

MODE PROGRAMME (avec options 004 et 005) de 10 à 80 % \pm 5 % de la valeur programmée, sur la gamme 1 à 650 MHz \pm 8 % de la valeur programmée sur la gamme 650 à 1300 MHz (avec doubleur).

DISTORSION DE LA COURBE ENVELOPPE

Signal modulant interne de 1 KHz et vernier de niveau sur position calibrée.

Taux de modulation	1 à 520 MHz et Niv. de + 10 dBm/50 Ω	520 à 1300 MHz et Niv. de 0 dBm/50 Ω
0 à 30 %	≤ 1,2 %	≪ 2 %
30 à 50 %	≤ 2 %	≪ 3 %
50 à 80 %	≤ 3 %	≤ 5 %

MODULATION VOR-ILS

Caractéristiques identiques à celles énoncées en modulation AM.

• DEPHASAGE DE L'ENVELOPPE (par rapport à une fréquence modulante de 30 Hz): 0,2°.

MODULATION DE FREQUENCE

DEVIATION DE FREQUENCE :

0 à \pm 300 KHz en trois gammes 0 à \pm 3 KHz, 0 à \pm 30 KHz et 0 à \pm 300 KHz.

Par potentiomètre ou commande programmée (option 005).

Galvanomètre avec commutation automatique de l'échelle de lecture qui détermine 3 sous gammes 0 à \pm 1 KHz, 0 à \pm 10 KHz

En modulation externe avec transmission de la composante continue, le décalage de la fréquence moyenne peut être lu sur le fréquencemètre du panneau avant.

SOURCES DE MODULATION

1 KHz interne (stabilité du pilote thermostaté) Générateur AF interne 30 Hz à 100 KHz

Signal externe avec choix du couplage continu ou alternatif. Bande passante à - 3 dB :

Déviation de Fréquence		
Couplage	△ F = 75 KHz	∆ F = 300 KHz
Continu Alternatif	0 à 150 KHz 30 Hz à 150 KHz	0 à 50 KHz 100 Hz à 50 KHz

Les fréquences internes de modulation sont disponibles à l'arrière de l'appareil sous un niveau fixe d'environ 2,5 Veff/600 Ω.

SENSIBILITE D'ENTREE (Source externe)

MODE LOCAL

Environ 3 Veff/600 Ω pour une déviation pleine gamme Environ 1 Veff/600 Ω pour \pm 1 KHz, \pm 10 KHz ou \pm 100 KHz de déviation suivant la gamme sélectionnée.

MODE PROGRAMME (options 004 et 005): Calibrée à 3 Veff/600 Ω ± 0,5 % pour une déviation pleine gamme. Niveau maximum d'entrée : ± 10 V crête.

PRECISION FM (pour 75 KHz de déviation)

MODE LOCAL: ± 5 % de la pleine échelle, en alternatif. MODE PROGRAMME (avec options 004 et 005): de 300 KHz à 1300 MHz avec un signal modulant de 1 KHz.

± 3 % de la déviation programmée.

• DISTORSION FM :

Pour une fréquence modulante inférieure à 20 KHz :

0,5 % pour une déviation ≤ 30 KHz 1 % pour une déviation ≤ 75 KHz. 1 % pour une déviation ≤

MODULATION D'AMPLITUDE PARASITE

1 % de 10 à 650 MHz, pour un signal modulant inférieur à 20 KHz et \pm 75 KHz de déviation.

MODULATION DE PHASE

DEVIATION DE PHASE :

0° à 300° crête soit environ 5 rd.

REGLAGE :

Par potentiomètre ou commande programmée (option 005)

CONTROLE :

Galvanomètre avec commutation automatique de l'échelle de lecture qui détermine 1 gamme intermédiaire (0 à 100°)

SOURCES DE MODULATION

1 KHz interne (stabilité du pilote thermostaté). Générateur AF interne 30 Hz à 100 KHz

Signal externe avec choix du couplage continu ou alternatif; Bande passante à — 3 dB: 0 à 50 KHz en couplage continu

30 Hz à 50 KHz en couplage alternatif.

Les fréquences internes de modulation sont disponibles à l'arrière de l'appareil sous un niveau fixe d'environ 2,5 Veff/

SENSIBILITE D'ENTREE (Source externe).

MODE LOCAL, environ 3 Veff/600 Ω pour 300° de déviation MODE PROGRAMME, calibré à 3 Veff/600 $\Omega\pm$ 0,5 % pour 300° de déviation

Niveau maximum d'entrée : ± 10 V crête

PRECISION Ø M.

MODE LOCAL: ± 10 % de la pleine échelle

MODE PROGRAMME (avec options 004 et 005): ± 5 % de la déviation programmée.

MODULATION PAR IMPULSIONS (OPTION 006)

Cette option ne peut être montée sans le doubleur de fréquence (option 003)

• FREQUENCE D'UTILISATION: 10 MHz à 1300 MHz.

SIGNAL DE MODULATION :

Fréquence de récurrence : 10 Hz à 200 KHz avec constance de

niveau inchangée. 200 KHz à 2,5 MHz avec dégradation de la constance de \pm 1 dB.

Commande externe avec entrée sur panneau arrière. Impédance d'entrée : $600~\Omega$ (couplage continu). Niveau de l'impulsion : $0~\grave{a} + 4~V$ min. avec seuils de transmission

à 0.4 V et 3.15 V. Durée de l'impulsion : 0,2 µs minimum.

SIGNAL DE SORTIE MODULE

Temps de montée/descente : Fonctions des caractéristiques de l'impulsion modulante avec un minimum de 20 ns typique pour la montée et 30 ns minimum pour la descente.

PROTECTION ON/OFF

Fréquence	Spécifiée	Typique
10 à 200 MHz	70 dB	75 dB
200 à 500 MHz	60 dB	65 dB
500 à 650 MHz	55 dB	60 dB
650 à 1300 MHz	90 dB	100 dB

Temps de réponse de la boucle de nivellement : < 2 secondes.

MODULATIONS SIMULTANEES

- AM FM Impulsions
- AM ΦM Impulsions
- Impulsions AM ou FM ou ΦM.

PROGRAMMATION (OPTIONS 004 - 005)

INTERFACE :

IEEE Standard 488, norme 1975.

• FONCTIONS: SH1, AH1, T6, TE0, L3, LE0, SR1, RL1, PP0, DC1, DT1, C0. Toutes les commandes du panneau avant sont programmables à partir de deux options exceptée la commande du galvanomètre.

OPTION PRINCIPALE (004)

FREQUENCE

Résolution : 500 Hz de 0,3 à 650 MHz 1 KHz de 650 à 1300 MHz (avec doubleur). Temps d'acquisition : 100 ms

· NIVEAU :

Résolution: 0,1 dB

Temps d'acquisition : 100 ms. **MODE DE FONCTIONNEMENT:**

CW, AM, FM, PM et inhibition du signal Gamme de déviation FM

Source modulante interne ou externe

Couplage continu et alternatif en modulation externe

Modulation calibrée pleine échelle ou ajustement par potentio-

SENSIBILITE D'ENTREE EN MODULATION EXTERNE

AM : 1 Veff/600 Ω pour 100 % de taux de modulation (réglage

externe)

: 1 Veff/600 Ω pour 1 KHz, 10 KHz ou 100 KHz de déviation

selon la gamme sélectionnée. 3 Veff/600 Ω pour une déviation pleine gamme.

 ΦM : 1 Veff/600 Ω pour 100° de déviation

3 Veff/600 Ω pour la pleine gamme (300°)

OPTION ADDITIONNELLE (005)

Option incorporable que si l'appareil est pourvu de l'option 04

 FREQUENCE RF Résolution: 1 Hz

Temps d'acquisition: 100 ms

FREQUENCE AF:

Résolution 1 Hz - 10 Hz - 100 Hz selon la gamme.

MODULATION AM

Résolution: 1 % de 0 à 100 %

MODULATIONS FM - ØM

Résolution: 1/300° de la gamme sélectionnée.

Déviation	Gamme	Résolution
	3 KHz	10 Hz
FM	30 KHz	100 Hz
	300 KHz	1 KHz
Фм	300° (5 rd)	1º

ALIMENTATION

Réseau : 115 V - 230 V \pm 15 % Fréquence : 50 Hz/60 Hz Consommation : 100 W

ENVIRONNEMENT

Température de fonctionnement : 0° à + 55° C Température de stockage : — 20° à + 70° C

DIMENSIONS

Adaptable au rack 19" Hauteur : 132 mm (3 U) Largeur : 440 mm Profondeur: 452 mm.

MASSE

Environ 23 kg.

OPTIONS

Option 001 : Pilote haute stabilité classe 10-9

Option 002 : Protection HF par disjoncteur électronique

Doubleur de fréquence Option 003:

Option 004: Programmation IEEE

Option 005: Programmation additionnelle Option 006: Modulation par impulsions

Option 010: Extension de fréquence à 100 KHz Option 011 : Alimentation réseau 50 à 400 Hz

