POWER SUPPLY UNIT

REPAIR MANUAL

02R96

CONTENTS

2
10
14
15
16

ANALYSIS-REPAIR FLOW CHART

Main transistor operating waveform

Test Conditions Input voltage: 276 V Load: Rated

> 1) +/-15A, +/-5A series main operating waveform

PKG 2 Q23 (Between D-S) 2SK2641

V:100V/Div H:2µs/Div

3) +12D series main operating waveform

V:100V/Div H:2µs/Div

2) +48A, +20A, +12A series main operating waveform

PKG 3 Z5 (Between 14-12) STR-Z1508

V:100V/Div H:1µs/Div

4) +5D, +5LED series main operating waveform

Control IC voltage waveform

Test Conditions Input voltage: 276 V Load: Rated

graph, etc.

PKG2 Z2 between 1-4 (+5D, +5LED circuit control IC)

V: 5V/div H: 0.5S/div

PKG3 Z4 between 1-4 (+/-15A, +/-5A circuit control IC)

- * As necessary, visual inspection of internal areas of power supply.
- * Check that the output voltage of each circuit is being output normally.
 Refer to the Voltage Confirmation Table provided on a separate sheet for the measuring points and voltage ranges. (refer to page 9)
- * Check if output operates normally when there is AC input and ON/OFF operation. Refer to the Voltage Confirmation Table provided on a separate sheet for the measuring points and voltage ranges. (refer to page 9)
- * The output at the SW1 on/off should be normal. Refer to the Voltage Confirmation Table provided on a separate sheet for the measuring points and voltage ranges. (refer to page 9)
- * Operate Power on/off and SW on/off and confirm that there normal signal transmission. Refer to the Voltage Confirmation Table provided on a separate sheet for the measuring points and voltage ranges. (refer to page 9)
- * Perform the tapping test while monitoring the output voltage waveform by OSC to check the waveform changes.

* The edging test conditions should be implemented based on the conditions occurring in the claim.

Circuit name	Rated voltage	Output voltage range	Measuring point
+5D	5.0V	4.85V - 5.25V	CN101 From between pin 3-8 to 9-14
+12D	12.0V	10.8V - 13.2V	CN102 From between pin 1-7 to 8-14
+5A	5.0V	4.5V - 5.5V	CN103 From between pin 9-10 to 12-14
-5A	-5.0V	4.5V - 5.5V	CN103 Between pin 15-16
+15A	15.0V	13.5V - 16.5V	CN103 From between pin 1-2 to 3-4
-15A	-15.0V	13.5V - 16.5V	CN103 From between pin 5-6 to 3-4
+12A	12.0V	10.8V - 13.2V	CN104 From between pin 1-2 to 3-4
+20A	20.0V	18.0V - 22.0V	CN104 Between pin 5-6
+48A	48.0V	46.08V - 49.92V	CN104 Between pin 7-8

Voltage Confirmation Table

• Confirm signal sending (AC OFF signal)

Measuring point From CN104 pin 9 to between pin 3,4

■ 2H032W AC-DC POWER SUPPLY

Primary side inverter block

Input filter section

Input fuse (F1 Ceramic fuse 50CT063H)

PFC circuit block

+5V system circuit block

ABOUT ANALYSIS AND REPAIR OPERATIONS

1. Test Equipment

1-1. Equipment used for analysis and inspection

 Measuring equipment and 	d equipment required during analysis					
1) Input equipment:	Input insulation transformer Ensurin	Ensuring safety during investigation				
	Input autotransformer Ensurin	g safety during investigation (Implementing analysis while				
	raising	the input from 0V to the rated capacity.)				
2) Load equipment:	Simple inspection equipment For che	cking output and performance operation confirmation				
3) Measuring equipment: Synchroscope, DMM, Tester, etc. — For confirming waveform						
	Since the synchroscope input performs the primary circuit measuring, the insulation of the input line					
	requires a 1:1 insulation transformer. In addition, it is recommended that a autotransformer be used for					
secondary damage prevention during analysis.						

1-2. Part replacement and assembly jig preparation

Since this power supply uses a through-hole type printed circuit board, conventional soldering is difficult and an electric suction type tool is required. Moreover, a torque driver or similar equipment that can control tightening torque is required to control the torque during the mounting of the semiconductor and the assembly operations.

1-3. Confirming function and operation after repair

After repair and analysis, it is necessary to electrically confirm the repaired parts and the faulty locations that have been repaired as well as check that the operating functions have been completely repaired. Well it is possible to make the confirmation using the inspection jig for the analysis, simple testing equipment is probably required. While the items to be confirmed will vary according to the areas that failed and the conditions of repair, it is necessary to confirm the general characteristics and function operations by introducing a simple checker.

1-4. Confirmation items for soldering operations accompanying the replacement of parts

The skill required for the soldering should not be a problem for an experienced soldering technician. However, temperature will have to be controlled during the soldering process (to prevent thermal stress to the parts) and steps must be taken to prevent the effects of static electricity on the IC, FET and other such parts (including the storage conditions as well).

1-5. Confirming the function of the insulation after assembly

Insulation and withstand voltage testing is required prior to re-shipping the product to ensure that secondary defects (such as foreign objects or the wire damage) from the re-assembly after repair do not cause insulation impediments, insulation and withstand voltage testing is required prior to re-shipping the product. Insulation and withstand voltage testing equipment, testing jigs and preparation of the environment for the operation are indispensable requirements for the implementation of these tests.

At the very minimum, checking the insulation resistance is required to prevent the secondary defects shown above. This test requires a device for measuring the resistance of the insulation and cable for connecting to the product for easy inspection.

1-6. Pre-shipment inspection

Use an inspection jig to inspect and check the general characteristics and operating functions. Sanken Electric Company can prepare the documentation for the inspection procedures, etc.

1-7. Steps for products where symptoms could not be recreated

We are investigating the establishment of rules and inspection guidelines for products for which the symptoms could not be recreated on the results of the primary diagnoses based on the complaint information of the final user.

1-8. Managing historical data about repair parts

It is necessary to record and manage historical data about the conditions surrounding the failure, symptom treatment, lot number of the failed parts and replacement part numbers.

I CIRCUIT DIAGRAM

PARTS LIST

REF NO.	PART NO.	DESCRIPTION			REMARKS	QTY RA	ANK
	AAX40870	PS UNIT PARTS KIT	02R96				
		Circuit Board	PKG1				
F1		Ceramic Fuse	AC250V 6.3A			1	
Q1		FET	2SK2915			1	
Q2		FET	2SK2915			1	
Q15		FET	2SK2641-01			1	
Q16		FET	2SK2641-01			1	
Q19		FET	2SK2698			1	
Q20		FET	2SK2698			1	
Q22		FET	2SK2641-01			1	
Q23		FET	2SK2641-01			1	
R2		Cement Resistor	5W 22 ohm			1	
R3		Cement Resistor	5W 22 ohm			1	
R4		Cement Resistor	5W 22 ohm			1	
R10		Cement Resistor	5W 0.02 ohm			1	
R11		Cement Resistor	5W 0.02 ohm			1	
R64		Metal Oxide Film Resistor	2W 0.22 ohm			1	
RC1		Rectifier	RBV-1506			1	
Z1		IC	L4981A			1	
Z2		IC	SMA-Z1001			1	
Z3			SMA-Z1001			1	
		Circuit Board	PKG2				
R65		Metal Oxide Film Resistor	1/2W 47 ohm			1	
R66		Metal Oxide Film Resistor	1/2W 22 ohm				
R68		Metal Oxide Film Resistor	1/2W 47 ohm	·····		1	
R69		Metal Oxide Film Resistor	1/2W 22 ohm				
R75		Carbon Resistor (chip)	1/10W 330 ohm				
R76		Carbon Resistor (chip)	1/10W 100 ohm				
R77		Carbon Resistor (chip)	1/10W 68 ohm				
R84		Metal Oxide Film Resistor	2W 0.22 ohm			1	
R85		Metal Oxide Film Resistor	1/2W 47 ohm				
R86		Metal Oxide Film Resistor	1/2W 22 ohm				
R88		Metal Oxide Film Resistor	1/2W 47 ohm				
R89		Metal Oxide Film Resistor	1/2W 22 ohm				
R95		Carbon Resistor (chip)	1/10W 180 ohm				
R96		Carbon Resistor (chip)	1/10W 47 ohm				
R97		Carbon Resistor (chip)	1/10W 68 ohm				
R102		Metal Oxide Film Resistor	2W 0.33 ohm				
R104		Metal Oxide Film Resistor	1/2W 10 ohm			1	
R106		Metal Oxide Film Resistor	1/2W 10 ohm			1	
R108		Carbon Resistor (chip)	1/10W 470 ohm			1	
R109		Carbon Resistor (chip)	1/10W 820 ohm			1	
R119		Metal Oxide Film Resistor	2W 0.68 ohm			1	
R132		Carbon Resistor (chip)	1/10W 330 ohm			1	
R133		Carbon Resistor (chip)	1/10W 470 ohm			1	
RX10		Carbon Resistor (chip)	1/10W 2.2 ohm - 1k ohm			1	
RX13		Carbon Resistor (chip)	1/10W 2.2 ohm - 1k ohm			1	
RX14		Carbon Resistor (chip)	1/10W 10 ohm -10k ohm			1	
RX16		Carbon Resistor (chip)	1/10W 10 ohm -10k ohm			1	
Z4		IC	SMA-Z1001			1	
Z5		IC	STR-Z1508			1	
1							
1							
				•••••••••••••••••••••••••••••••••••••••			
1							
			1				

*: New Parts

RANK: Japan only