SERVICE MANUAL TEAC Tascam Series

4-Channel Multitrack Recorder/Reproducer

TEAC CORPORATION

5704007200

TABLE OF CONTENTS

MAIN SECTION

1	Introduction
2	Specifications 4
3	Parts location
4	Removal of external components
5	Maintenance
5-1	Test equipment
5-1-1	Standard equipment
5-1-2	Test tapes
5-2	Mechanical adjustments and checks
5-2-1	Capstan thrust clearance
5-2-2	Shut-off switch position
5-2-3	Brake mechanism
5-2-4	Brake torque
5-2-5	Reel motor torque
5-2-6	Pinch roller pressure 11
5-2-7	Reel table height 11
5-2-8	Tape speed
5-2-9	Wow and flutter (playback) 12
5-2-10	Head and tape path alignment 12
5-2-11	Voltage and frequency conversion
5-2-12	Lubrication
5-3	Electrical adjustments and checks 14
5-3-1	Precautions
5-3-2	Monitor performance 14
5-3-3	Playback performance 15
5-3-4	Recording performance 16
5-3-5	SIMUL-SYNC performance 19
5-4	Adjustment and test point locations 20
5-5	Level diagram
5-6	Block diagram

TABLE OF CONTENTS (Continued)

CIRCUIT DESCRIPTION SECTION

6	Tape transport circuit description	24
6-1		24
6-1-1		24
6-1-2	Performances proper to respective inputs	25
6-1-3	Change of operating mode	25
6-1-4	Multiple input	26
6-1-5		26
6-2		27
6-3	Capstan motor circuit.	27
6-4		28
6-4-1		28
6-4-2	Power off mute	28
6-5		29
6-5-1		29
6-5-2	Rec/play mode	29
6-5-3	the restriction of the providence of the provide	30
6-5-4		31
6-6		32
6-6-1		32
6-6-2		32
6-6-3		32
6-7		33
6-7-1		33
6-7-2		33
6-7-3		33
6-8		33 34
6-8-1		34
6-8-2		34
6-9		35
7		35 36
7 7-1		36
7-1		30 36
7-1-1		
	• •	36
7-1-3		36
7-2	- 영화 방송 방법에 가지 않는 것 같은 것 같	36
7-2-1	그 동안을 가장에서 잘 집에서 이야기에서 있다. 그는 것 같아요. 이는 것 같아요. 이는 것 같아요. 이는 것 같아요. 이는 것 같아요. 이야기에서 가지 않는 것 같아요. 이는 것 같아요. 이야기 가지 않는 것 같아요. 이야기 있는 것 같아요. 이야기 가지 않는 것 같아요. 이야기 있는 것 않	36
7-2-2	- 2 중 중 MERSY 2019 2027 🖢 2027 500	36
7-2-3		36
7-3	Therefore the second of the property of the second of the	36
7-3-1	Constant and The particular is a second rate of a constraint second resident second second second second second	36
7-3-2		37
7-3-3		37
7-4	•	37
7-4-1	C C	37
7-4-2	Relay driver circuit	38

PARTS LIST SECTION

8	Exploded views and parts list	40
9	PC boards and parts list	49

22-4

1 INTRODUCTION

The TEAC Tascam Series 22-4 recorder/reproducer is a 4-track, 4-channel tape deck designed for professional-type recording set-ups, in which mixers, master recorders, microphones, auxiliary signal processors, and other equipment are used in conjunction as a complete recording system. The 22-4 features a 4-track, 4-channel format to allow recording flexibility and creativity, and via its special SIMUL-SYNC function, provides such professional recording capabilities as punch-in recording, overdubbing, ping-pong recording using a mixer, and the control and monitoring of individual tracks. Other special features such as selection of 15 ips and 7-1/2 ips with seven-inch reels, independent controls for individual track recording and/or monitoring, expanded-scale VU meters, manual cueing, three-motor, three-head design, variable pitch control, full remote-control capability, full IC logic control, built-in interface for optional dbx unit, and a memorystop function provide complete professional-type multitrack recording capability in a cost-effective compact design.

Before beginning and after completing any checks or adjustments, make sure that the entire tape path has been properly cleaned and demagnetized. Even microscopic amounts of dust, dirt, and oxide build-up, as well as even a small degree of magnetization can degrade performance and invalidate any checks or adjustments. Always remember to turn the deck off before demagnetizing. If not, the signals produced by the degausser will register at extremely high VU levels, with the possibility that serious damage to the deck's circuitry and/or VU meters could be caused. Also remember never to turn the degausser on or off while in close proximity to the heads, as this may put a permanent charge on the heads, requiring them to be replaced.

NOTES: 1. In this manual, 0 dB is referenced to 1V.

2. Parts marked with this sign (\triangle) are critical to electrical safety. ALWAYS replace these with identical parts. Refer to the parts listing in this manual to ensure exact replacement.

2 SPECIFICATIONS

MECHANICAL

22-4

Tape Track Format Reel Size Tape Speeds Speed Accuracy

Pitch Control Wow and Flutter

Fast Wind Time Start Time Capstan Motor Reel Motors Head Configuration Dimension Weight

1/4", 1.0 mil, low noise, high output tape 1/4 track, 4 channel, track width 0.036 inch (0.9 mm) 7 inch maximum per EIA/ANSI standard 15 and 7-1/2 inches per second, switchable 15 ips \pm 0.5% deviation 7-1/2 ips $\pm 0.5\%$ deviation ± 6% 15 ips⁽¹⁾ ±0.07% peak (IEC/ANSI weighted) ±0.10% peak (IEC/ANSI unweighted) 0.04% RMS (NAB weighted) 0.07% RMS (NAB unweighted) 7-1/2 ips⁽²⁾ ±0.09% peak (IEC/ANSI weighted) ±0.12% peak (IEC/ANSI unweighted) 0.05% RMS (NAB weighted) 0.08% RMS (NAB unweighted) 120 seconds for 1,800 feet 15 ips: less than 0.5 sec. to reach standard wow and flutter FG (frequency generator) DC servo motor 2-AC outer rotor induction motors 3 heads; erase, record and reproduce See Fig. 2-1 40 pounds (18 kg), net

Fig. 2-1 Dimensions

ELECTRICAL

Line Input : Input impedance 50k ohms, unbalanced Maximum source impedance 10k ohms or less -10 dBV (0.3 V)Nominal input level Minimum imput level -20 dBV(0.1 V)Line Output : **Output** impedance 1k ohms, unbalanced Minimum load impedance 10k ohms or higher Nominal output level -10 dBV(0.3V)Maximum output level 0 dBV (1 V) Headphone Output 100mW maximum at 8 ohms, stereo headphones **Bias Frequency** 100 kHz Equalization ∞ + 35µsec. at 15 ips $3180\mu \sec + 50\mu \sec at 7-1/2 \text{ ips}$ Frequency Response (3) 40 Hz-22 kHz, ± 3dB at 0 VU 15 ips (Record/Reproduce) 35 Hz-25 kHz, ± 3dB at -10 VU 7-1/2 ips 40 Hz-16 kHz, ± 3dB at 0 VU 40 Hz-20 kHz, ± 3dB at -10 VU Sync Responce 50 Hz-8 kHz, ± 3dB 15 ips 7-1/2 ips 40 Hz-6.3 kHz, ± 3dB **Total Harmonic Distortion** 1.0% at 0 VU, 1,000 Hz, 185 nWb/m (THD) 3.0% at 10dB above 0 VU, 1,000 Hz, 585 nWb/m Signal to Noise Ratio (3) At a reference of 1 kHz, at 10 dB above 0 VU, 585 nWb/m 15 ips 61 dB A weighted (NAB) 56 dB unweighted 88 dB A weighted (NAB), with dbx 78 dB unweighted, with dbx 60 dB A weighted (NAB) 7-1/2 ips 55 dB unweighted 88 dB A weighted (NAB), with dbx 78 dB unweighted, with dbx **Adjacent Channel Separation** Better than 40dB down at 1,000 Hz Erasure Better than 70dB at 1,000 Hz, + 10 VU reference Recording Amplifier-Better than 23dB above 0 VU Headroom Playback Amplifier-Better than 23dB above 0 VU **Power requirements** 100/117/220/240 V AC, 50/60 Hz, 70 W (General Export Model) 117 V AC, 60 Hz, 70 W (USA/Canada Model) 220 V AC, 50 Hz, 70 W (Europe Model) 240 V AC, 50 Hz, 70 W (UK/AUS Model)

In these specifications, 0dBV is referenced to 1.0 Volt

- Specifications were determined using TEAC Test Tape YTT-2004
- (2) Specifications were determined using TEAC Test Tape YTT-2003
- (3) Specifications were determined using TEAC Test Tape YTT-8013
- * dbx is a trademark of dbx, Inc.

Chages in specifications and features may be made without notice or obligation.

3 PARTS LOCATION

Disassemble in number-order

5 MAINTENANCE

5-1 TEST EQUPMENT

5-1-1 STANDARD EQUIPMENT

J-	I-I STANDAND	
1.	Spring scale (3)	 A 3-kg (7-lbs) or 4-kg (9-lbs) scale for checking pinch-roller pressure A 500 g (1.5-lbs) scale for checking reel torque A 1-kg (2.5-lbs) scale for checking brake torque
2	Empty tape reels	-
2.	Empty tape reels	1) TEAC RE-701 (7" or 178 mm, large
		hub) or equivalent
		2) TEAC RE-702 (7" or 178 mm, small
		hub) or equivalent
2	Wow and flutter	
5.	wow and nutter	MK-668D (Megro Denpa Sokki K.K.,
		Japan) or Model 8155 (3M Co., Mini- com Division, USA)
4	1-MHz digital fre	
	1-MIL2 digital fie	Sensitivity: 0.1 V (RMS)
		Impedance: Greater than 1M ohms,
		less than 25 pF
5.	10 Hz to 100 kH	
		Hewlett-Packard 204C or equivalent
6.	AC voltmeter	$-80 \text{ dB to } +40 \text{ dB} (100 \ \mu \text{ V} \text{ to } 100 \text{ V})$
		Impedance: Greater than 1M ohms,
		less than 25 pF (HP400GL or equiva-
		lent)
7.	DC voltmeter	-40 dB to +40 dB (10 mV to 100 V)
		Impedance: Greater than 1M ohms,
		less than 25 pF
	General-purpose	attenuator
9.	Distortion meter	
		400 Hz and 1 kHz frequencies
	General-purpose	
	1-kHz narrow bar	-
12.	Test load resistor	
		4 ohms, 1 W, non-inductive (for check-
12	A division to a	ing headphones jack)
	Adjustment tool Head degausser (
14.	neau uegaussei (TEAC E-1, TEAC E-3, or equivalent
15	Cleaner	TEAC TZ-261 tape recorder cleaner
13.	Cleaner	kit (TZ-261A for metal parts, TZ-261B
		for rubber parts), or TEAC HC-1 head
		cleaner*, TEAC RC-1 rubber cleaner*,
		or pure alcohol.
16	Oil	TEAC Spindle Oil (from TEAC TZ-
		255 Oil Kit), SAE 10W non-detergent
		oil, or Mobil D.T.E. Oil Light, etc.
17	Bulk tape eraser	TEAC E-2 or equivalent

Note: *USA market only

Fig. 5-1 Adjustments tool (Plastic)

5-1-2 TEAC TEST TAPES

Note: When ordering, allow for the time required for delivery.

For tape speed and wow-and-flutter test

1. YTT-2003	For playback at 7-1/2 ips (19 cm/s)
	3,000 Hz/-5 dB
2. YTT-2004	For playback at 15 ips (38 cm/s)
	3,000 Hz/-5 dB

3. YTT-8013 For record-playback method (blank tape)

For playback head alignment

4. YTT-1044	15 ips (38 cm/s)
	Reference flux: 185 nWb/m
	Equalization: IEC
	$\infty + 35 \ \mu s$
5. YTT-1003	7-1/2 ips (19 cm/s)
	Reference flux: 185 nWb/m
	Equalization: NAB
	3180 µs +50 µ s
Eastene neth and	I recording hand alignment (blank ton

For tape path and recording head alignment (blank tape)6. YTT-8013Alternate test tape: MAXELL UD35
Thickness = 35 μm
Used with TEAC RE-701 (7-inch reel
with large hub)

5-2 MECHANICAL ADJUSTMENTS AND CHECKS

5-2-1 CAPSTAN THRUST CLEARANCE

1. There must be a clearance of 0.1 to 0.3 mm between the capstan shaft and the thrust plate. Check to see that the clearance is within this range. If not, loosen the two screws on the flywheel, adjust the clearance, and retighten the screws.

Fig. 5-3

5-2-2 SHUT-OFF SWITCH POSITION

There must be a clearance of 1 to 1.5 mm between the cam and actuator (A) when the microswitch is off, and 0.5 mm between the microswitch housing and actuator (B) when the microswitch is on. Check to see that the clearance is within these values. If not, adjust as necessary.

Fig. 5-4

5-2-3 BRAKE MECHANISM

- Note: Be sure that the power is turned off prior to making any adjustments to the brakes.
- 1. Screw (A) for the left brake (as viewed from the front) must be adjusted so that there is a clearance of 1 mm between lever (C) and lever (E). Screw (A) for the right brake must then be adjusted so that lever (B) is parallel to lever (C).
- 2. Push the plunger until there is contact at (a); i.e., until the clearance has been eliminated, but make sure that the plunger is not pushed so strongly that the levers (E), (C), and (B) are deflected-they must remain in a horizontal plane.
- 3. Position the solenoid housing, while the plunger is pushed as described in step #2 above, so that the gap at (f) (the distance between the leftmost edge of the plunger and the leftmost edge of the solenoid housing) is between 11 to 12 mm. When the solenoid housing is so positioned, the plunger should be able to be depressed between 1 to 2 mm when pushed strongly.

Fig. 5-5

5-2-4 BRAKE TORQUE

- Note: 1. Before making any brake adjustments or measurements, make sure the power is off.
- 1. Mount an empty 7" reel onto either reel table and attach a spring scale to the reel with a string.
- 2. Smoothly pull the scale away from the reel under test and note the torque value when the reading on the scale is steady. The proper torque values are given in the chart below.
- Follow steps 1 and 2 for each measuring condition; i.e.,
 (A) through (D) in Fig. 5-6.
- 4. If the forward-direction torque is not correct, change the hooking position of the spring hanger [reference (D) in Fig. 5-5] for the corresponding brake requiring adjustment. If, after the forward-direction torque has been properly adjusted and the reverse-direction torque is not correct, or the forward-direction torque is still not correct, check to see if the brake felt pad is worn, and also check that the brake mechanism is properly aligned as explained in Section 5-2-3, "Brake Mechanism". If necessary, replace the entire reel table.

Forward direction (B) (C)	1200—1400 g·cm (16.7—19.4 oz-inch)
Reverse direction (A) (D)	500—700 g·cm (6.94—9.72 oz-inch)
Left/Right deviation	150 g-cm (2.08 oz-inch)

Torque calculating formulas:

- 1. Torque (in g-cm or oz-inch)
- =Force or Weight (in g or oz) x Radius (in cm or inch) 2. Conversion of g-cm to oz-inch:
- g-cm x 0.0139 = oz-inch

Fig. 5-6

5-2-5 REEL MOTOR TORQUE

Note: For torque calculation, refer to the formulas above.

(1) TAKE-UP TORQUE

- 1. Hold the right tension arm up using a rubber band.
- 2. Mount an empty 7" reel onto the take-up (right) reel table, and attach a spring scale to the reel with a string.
- 3. Place the deck in the play mode.
- 4. Allow the rotation of the reel to slowly pull the scale toward the reel.
- 5. Hold the spring scale with enough force to allow a steady reading.
- 6. The proper value is between 420 g-cm (5.83 oz-inch) to 550 g-cm (7.64 oz-inch).
- 7. There is no specially-provided adjustment for take-up torque, so if correction is needed, repair or replace the defective part and/or circuit.

(2) BACK TENSION

- 1. Hold the right tension arm up using a rubber band.
- 2. Mount an empty 7" reel onto the supply (left) reel table, and attach a spring scale to the reel with a string.
- 3. Place the deck in the play mode.
- 4. Using a steady, smooth motion, pull against the motor torque to draw the scale away from the reel.
- 5. After making sure that the reel motion is smooth (the string should not be rubbing against the reel flanges), note the value indicated on the scale.
- 6. The proper value is between 220 g-cm (3.06 oz-inch) to 280 g-cm (3.89 oz-inch).
- 7. If necessary, adjust the slider of the resistor (R701) until the proper torque value is obtained. See Fig. 5-8.

Fig. 5-8

5-2-6 PINCH ROLLER PRESSURE

- 1. Hold the right tension arm up using a rubber band, string, etc.
- 2. Place the deck in the play mode without threading any tape.
- 3. Attach a spring scale to the pinch roller as shown in Fig. 5-9.
- 4. Pull the pinch roller away from the capstan shaft (on a plane intersecting the center of the capstan shaft and the pinch roller) until the capstan shaft and the pinch roller are separated.
- 5. Ease pressure on the scale until the pinch roller just begins to turn. The scale should then read 1.8 kg to 2.0 kg (3-15/16 lbs. to 4-7/16 lbs.).

5-2-7 REEL TABLE HEIGHT

- 1. As a general reference, the height of the reel table should roughly correspond to a distance of 38 mm (1-1/2") between the chassis of the deck and the rubber mat on the reel table. If checking reveals any large deviation from this value, loosen the two adjustment screws on the reel table, adjust the height, and retighten the screws.
- 2. For fine-adjustment, check that, while in fast-forward (forward direction) or rewind (reverse direction) modes starting at the beginning of the tape, the tape does not touch the upper or lower reel flanges. If it does, fine-adjust accordingly.

Fig. 5-10

5-2-8 TAPE SPEED

- 1. Connect a frequency counter to either OUTPUT jack (see Fig. 5-11).
- 2. Load a TEAC YTT-2004 test tape containing a 3000 Hz test tone, and set the SPEED switch to HIGH (38 cm/sec or 15 ips).
- 3. Play the middle of the test tape and adjust the HIGH speed trimmer resistor until the frequency counter indicates a reading of 3000 Hz. See Fig. 5-12. (CAUTION: Use an insulated screwdriver to prevent shorting.)
- 4. Playing the tape at both the beginning and the end, check that the tape speed does not vary any more than the limits prescribed in the specifications, so that there is never a total deviation of more than ± 15 Hz from the 3000-Hz test tone, nor a drift of more than 15 Hz at any given time.
- 5. Using a TEAC YTT-2003 test tape, repeat steps #3 and #4 above with the SPEED switch set to LOW (19 cm/sec or 7-1/2 ips). In step #3, the speed may be adjusted for the proper initial setting by using the LOW speed trimmer resistor.

5-2-9 WOW AND FLUTTER (PLAYBACK)

- 1. Connect a wow-and-flutter meter to the deck as shown in Fig. 5-11.
- 2. Load a TEAC YTT-2004 test tape to check the wow and flutter when the deck is set to HIGH speed, or a YTT-2003 test tape to check when set to LOW speed.
- Play the beginning and end of the respective test tape for each speed setting. The measured wow and flutter should be no greater than 0.04% (WRMS) and 0.07% (RMS) for the HIGH speed setting and 0.05% (WRMS) and 0.08% (RMS) for the LOW speed setting.

5-2-10 HEAD AND TAPE PATH ALIGNMENT

Note: For detailed alignment principles, refer to the TEAC CORPORATION publication, AUDIO FUNDAMENTAL, TAPE DECK, Section 8, "Mechanical Adjustments".

(1) HEAD CONFIGURATION

Fig. 5-12

(2) ALIGNMENT CONDITIONS

Adjust each head to satisfy each of the following conditions:

Condition	Example of Misalignment
TILT The head surface should be parallel to the tape guide pin surface.	
AZIMUTH The gap of the head core should be perpendicular to the tape path.	
HEIGHT The distance from the top head core to the top edge of the tape and from the bottom head core to the bottom edge of the tape should be equal.	
TANGENCY The dotted line should be perpendicular to the surface of the tape.	
Fig. 5-14	

(3) ALIGNMENT PROCEDURE

- 1. By visual observation, align the erase, record, and play heads so that the proper tilt is obtained for each.
- 2. Coarse-adjust the azimuth of the erase, record, and play heads by observing each without a tape threaded.
- 3. Load a TEAC YTT-8013 test tape and play it.
- 4. Find-adjust the height of all heads, referring to the explanation in Fig. 5-14. This adjustment should be made by equally turning all the appropriate screws so as not to alter the tilt and azimuth adjustments previously made.
- 5. If required, make a coarse adjustment of any head requiring tangency correction, while the tape is running.

5-2-11 VOLTAGE AND FREQUENCY CONVERSION (For general export models only)

ALWAYS DISCONNECT POWER LINE CORD BEFORE MAKING THESE CHANGES.

- 1. Remove the rear metal cover of the deck by removing the five securing screws.
- 2. Locate the voltage selector, shown in the illustration, at the center of the deck as seen from the rear.
- 3. Turn the slotted center post of the selector until the desired voltage is indicated by the selector.
- 4. Locate the frequency selector slide switch which is on the control PCB near the center of the rear section of the deck.
- 5. Set the slide switch to the left for 50 Hz or to the right for 60-Hz operation. Proper frequency adjustment is required for the AC reel motors. The capstan motor of the 22-4 is a DC motor and therefore does not require adjustment to match the AC line frequency.
- 6. Replace the cover and retighten the screws.

5-2-12 LUBRICATION

Oiling is needed after every 1,000 hours of operation, or once a year if the deck is used infrequently. TEAC spindle oil (from the TEAC TZ-255 oil kit), Mobil D.T.E. Oil Light, and similar types of oil are recommended. Lubrication is normally not necessary except at the points shown. To lubricate, follow the steps below.

- 1. Place the deck in a horizontal position.
- Apply a few drops of oil to the spindles indicated in Fig. 5-16, except the capstan and the reel motors. Spread the oil evenly on the spindle surfaces using a cotton cloth or similar applicator.
- 3. For the capstan and reel motors, apply a few drops to the indicated positions but do not spread the oil.
- 4. After oiling all points, operate the deck for 1 to 2 hours until the oil is thoroughly absorbed.

Fig. 5-16

5-3 ELECTRICAL ADJUSTMENTS AND CHECKS

5-3-1 PRECAUTIONS

- 1. Check that the deck is properly set for the voltage in your locality.
- 2. The AC voltmeter used in the procedures must have an input impedance of 1M ohms or more.
- 3. 0 dB is referenced to 1 V. If using an AC voltmeter with 0 dB referenced to 0.775 V, appropriate compensation should be made.
- 4. All the procedures refer only to channel 1, the same procedures also apply to channels 2, 3 and 4 unless explicitly stated otherwise.
- 5. Unless otherwise stated, use the basic test setup (Fig. 5-17), where the 1-kHz filter is bypassed.
- 6. When the 1-kHz filter in the basic test setup is switched ON, note the following:
 - 1) The test signal from the AF oscillator should be tuned to the filter used.
 - 2) Do not overlook filter loss when making measurements.

-70 dB or more . . . What does it mean?

In reference to some specifications, you may come across an expression like: "-70 dB or more". This means that the lower the value of this specification, the greater the absolute value of the specification and the better the performance of the deck. For instance, a noise floor of -76 dB is better than -70 dB, because this means that the level of noise is lower. So in this case, "-70 dB or more" means at least as good a value as -70 dB and maybe even better, i.e., -71 dB.

5-3-2 MONITOR PERFORMANCE

Initial switch/control settings:

FUNCTION SELECT switches #1 to #4 . OFF
OUTPUT SELECT switches SOURCE
INPUT controls #1 to #4 Minimum
OUTPUT controls #1 to #4 Minimum

(1) LINE INPUT LEVEL

Connection: Designated in the procedure.

- 1. Remove the special U-link plug connecting ENCODER SEND jack 1 and ENCODER RCV jack 1.
- 2. Connect an AF oscillator via an attenuator to LINE IN jack 1, and an AC voltmeter to ENCODER SEND jack 1.

- 3. Set INPUT control 1 to position "7".
- 4. Apply a 400-Hz, -10 dB (316 mV) signal to LINE IN jack 1.
- 5. Adjust R194 for -10 dB (316 mV) at ENCODER SEND jack 1.
- 6. Turn INPUT control 1 to the maximum position.
- 7. Check that the AC voltmeter reading is $0 dB \pm 3 dB$ (708 mV to 1.41 V).
- 8. Return INPUT control 1 to position "7" so that the AC voltmeter reads -10 dB. This is the specified INPUT control setting.

IMPORTANT:

Do not alter the INPUT control during subsequent checks.

(2) OUTPUT AMPLIFIER GAIN

- 1. Check that the special U-link plug is inserted between ENCODER SEND jack 1 and ENCODER RCV jack 1.
- 2. Depress OUTPUT SELECT: SOURCE.
- 3. Set the OUTPUT control to position "7".
- Apply a 400-Hz, -10 dB (316 mV) signal to LINE IN jack 1.
- 5. Adjust R149 for -10 dB (316 mV) at OUTPUT jack 1.
- 6. Turn OUTPUT control 1 to position "10".
- 7. Check that the AC voltmeter reads 0 dB \pm 3 dB (708 mV to 1.41 V).
- Return OUTPUT control 1 to position "7" so that the AC voltmeter reads -10 dB. This is the specified OUT-PUT control setting.

IMPORTANT:

Do not alter either the INPUT control setting made in step 5-3-2 (1) nor the OUTPUT control setting until all the rest of the adjustments have been completed.

(3) VU METER

9. Adjust R159 so that the VU meter reads 0 VU.

(4) OUTPUT LEVEL AT PHONES JACK

Connection: Designated in the procedure.

- 1. Set the MONITOR control to position "10".
- 2. Connect a 4-ohm non-inductive resistor to the 2-conductor phone plug as shown in Fig. 5-18, and insert this plug into the PHONES jack.
- 3. Depress the MONITOR selector button for channel 1.
- 4. Using an AC voltmeter, measure the output level across the test load resistor.
- 5. The AC voltmeter should indicate $-15.7 \text{ dB} \pm 3 \text{ dB}$ (116 mV to 232 mV).
- 6. Depress all 4 MONITOR selector buttons.
- 7. The AC voltmeter reading should be $-3.7 \text{ dB} \pm 3 \text{ dB}$ (462 mV to 923 mV).

Fig. 5-18 Test connections for PHONES output check

5-3-3 PLAYBACK PERFORMANCE

Initial switch/control settings:

OUTPUT SELECT siwtches.	PLAY
INPUT controls #1 to #4	.Specified position
	[See 5-3-2 (1)]
OUTPUT controls #1 to #4.	.Specified position
	[See 5-3-2 (2)]

(1) PLAY HEAD AZIMUTH

Connection: Fig. 5-19

Note: Before beginning the following head alignment procedure, be sure that the heads have been properly mounted with reference to height, tilt and tangency. See pages 13.

SPEED switch: LOW

- 1. Remove the head housing covering the head assembly.
- 2. Thread a YTT-1003 test tape.
- 3. Visually check that the head wire/phase is correct.
- 4. Play the 16-kHz, -10 dB test tone in the 2nd test section of the test tape.
- 5. Slowly rotate the azimuth screw until the AC voltmeter approximates the maximum value at each track.
- 6. Playing 400-Hz to 6-kHz frequencies, adjust the azimuth screw until the oscilloscope shows that the signals between tracks 1 and 3 (then between tracks 2 and 4) are less than 45 degrees out of phase for these signals.

SPEED switch: HIGH

7. Repeat the above steps, but use the following substitutions:

8. Secure the screw with a drop of locking paint.

Fig. 5-19 Head phase check setup

Fig. 5-20 Confirming phase relationship

(2) PLAYBACK LEVEL

Connection: Designated in the procedure.

SPEED switch: LOW

- 1. Check that the specified output level setting is used. See item 5-3-2 (2), step 8.
- 2. Remove the special U-link plug connecting the DE-CODER SEND and RCV jacks (channel 1) at the rear of the deck.
- 3. Connect an AC voltmeter to the DECODER SEND jack 1.
- 4. Play the 400-Hz, 0 dB tone in section 1 of the YTT-1003 test tape.
- 5. Adjust R143 for -10 dB (316 mV) at DECODER SEND jack 1.
- 6. Insert the special U-link plug between the DECODER SEND and RCV jacks (#1).
- 7. Change the AC voltmeter connection to OUTPUT jack 1.
- 8. Check that the output level is -10 dB (316 mV) at OUT-PUT jack 1.

(3) VU METER

9. Check that VU meter 1 reads 0 VU.

(4) FREQUENCY RESPONSE

Note: The prescribed specifications are shown in Fig. 5-21.

SPEED switch: HIGH

- 10. While playing a YTT-1044 test tape, adjust R117 so that the reading on the AC voltmeter is within the prescribed specifications.
- **Note:** If the response is not uniform, the head should be checked for accumulated dirt or oxide. If clean, head azimuth should be readjusted.

SPEED switch: LOW

11. Using a TEAC YTT-1003 tape, adjust R122 in the same way as above.

(5) SIGNAL-TO-NOISE RATIO

SPEED switch: HIGH

- 1. The OUTPUT controls should be set to the specified positions. See 5-3-2 (2),
- 2. Hold the shut-off arm (right) in the up position with no test tape threaded.
- 3. Depress the play button.
- 4. The AC voltmeter should indicate a minimum value of -60 dB (or more), or 1.00 mV (or less).
- 5. This corresponds to a minimum signal-to-noise ratio of 50 dB. This is the difference between the inherent noise of -60 dB and the specified output level of -10 dB (316 mV).

SPEED switch: LOW

6. Repeat steps 4 to 5. The prescribed specifications are the same as that for the HIGH speed setting.

5-3-4 RECORDING PERFORMANCE

Initial switch/control settings:

FUNCTION SELECT switches #1 to #4 .. ON
OUTPUT SELECT switches PLAY
INPUT controls #1 to #4
Specified position [See 5-3-2 (1)]
OUTPUT controls #1 to #4
Specified position [See 5-3-2 (2)]

(1) BIAS TRAP

Connection: Designated in procedure

- 1. Remove all input signals.
- 2. Thread a YTT-8013 test tape on the deck and simultaneously press the RECORD and PAUSE buttons, enabling the RECORD/PAUSE mode.
- 3. Connect an AC voltmeter or oscilloscope from ground to the BIAS TRAP test point on the REC/PLAY AMP PCB assembly. For the test point location, see Fig. 5-24.
- 4. Adjust L103 so that a minimum reading is obtained on the scope or AC voltmeter. Use a plastic adjustment tool.
- 5. Set the deck in the REC/PLAY mode.
- 6. Connect an AC voltmeter to the OUTPUT jacks.
- 7. Adjust L101 so that the bias leakage is -42 dB (or more), or 7.94 mV (or less).

(2) RECORD HEAD AZIMUTH

Connection: Fig. 5-19

SPEED switch: HIGH

- 1. Check that the play head azimuth adjustment is correct. See 5-3-3 (1).
- 2. Visually check that the head wire/phase is correct.
- 3. Apply and record a 16-kHz, -30 dB (31.6 mV) signal on a YTT-8013 test tape.
- 4. Adjust the azimuth screw (see Fig. 5-13) so that the phase relationship between tracks 1 and 3, then between tracks 2 and 4, is within 45 degree on the oscilloscope, and so that the maximum value in on both tracks is approximated on the AC voltmeter.
- 5. Check that the phase relationship from 400 Hz to 5kHz is within 45 degree.
- 6. Secure the screw with a drop of locking paint.

(3) RECORD BIAS

SPEED switch: LOW

- 1. Apply a 7-kHz, -20 dB (100 mV) signal.
- 2. Turn C381 (for track 1 the points for the other tracks are indicated below) fully counterclockwise.
- 3. While recording on a YTT-8013 test tape, slowly turn C381 clockwise until the reading on the AC voltmeter peaks, and continue turning clockwise until the reading backs off 2 to 3 dB.
 - C382: for track 2
 - C383: for track 3
 - C384: for track 4

(4) RECORD LEVEL

SPEED switch: LOW

- 4. Check that the INPUT and OUTPUT controls are still at their specified positions.
- 5. Apply a 400-Hz, -10 dB (316 mV) signal.
- 6. While recording, adjust R206 so that an output level of -10 dB (316 mV) is obtained at the OUTPUT jacks.

(5) FREQUENCY RESPONSE

Note: The prescribed specifications are shown in Fig. 5-22.

SPEED switch: LOW

- 7. Record a signal sweeping from 40 Hz to 20 kHz at -20 dB (100 mV) on a YTT-8013 test tape.
- 8. During recording, monitor the off-the-tape signal and adjust L102 so that a reading within the prescribed specifications is obtained.
- 9. With FUNCTION SELECT switch #1 in the OFF position (but #2, #3 and #4 are in the ON position), adjust L381 so that the frequency response of all channels except channel #1 are within the prescribed specifications.

10. Repeat the above procedure 3 times, successively setting switch #2, then #3, then #4 to OFF. The adjustment point changes each time, corresponding to the particular switch that has been set to OFF as follows:

Switch #2 for channel 2			•			. L382
Switch #3 for channel 3						. L383
Switch #4 for channel 4						. L384

SPEED switch: HIGH

- Repeat the above procedure (steps 7 to 10), but record a test signal sweeping from 40 Hz to 22 kHz at -10 dB (316 mV).
- 12. Continue steps 7 to 11 until the frequency response at both speeds is within specification.
- **Note:** If the response is not within the prescribed specifications, the heads should be checked for accumulated dirt and oxide and the bias readjusted.

Fig. 5-22 Frequency response (Overall)

(6) TOTAL HARMONIC DISTORTION

SPEED switch: LOW

- 1. Thread a YTT-8013 test tape.
- 2. With the INPUT and OUTPUT controls set to the specified positions, apply a 1-kHz signal at -10 dB, 316 mV (0 VU) to the LINE IN jacks.
- 3. Place the deck in the record mode for approximately 10 seconds.
- 4. Rewind and play this recorded section of the tape.
- 5. The distortion factor read on the distortion meter should be 1.0% or less.

(7) SIGNAL-TO-NOISE RATIO

SPEED switch: HIGH

- 1. The INPUT and OUTPUT controls should be at the specified positions.
- 2. Record a 1-kHz signal at -10 dB (316 mV) on a YTT-8013 test tape, then make a "no signal" recording.
- 3. Rewind the recording made in step 2 to the beginning and play it back.
- 4. Make sure the playback output level of the previously recorded 1-kHz signal is -10 dB (316 mV), and measure the level of the "no signal" portion of the tape.
- 5. Note the difference in the output level between the 1-kHz portion and the "no signal" portion.
- 6. The signal-to-noise ratio should be at least 45 dB.

SPEED switch: LOW

- 7. Repeat the above sequence with the deck set to LOW speed to obtain the S/N ratio at this setting.
- 8. The signal-to-noise ratio should be at least 46 dB.
- Note: If the output is connected to the AC voltmeter through a band-pass filter (with cut-off frequencies of 20 Hz and 20 kHz), and a NAB weighting network device, the signal-to-noise ratio measurement will yield higher values. For example, at the HIGH speed setting, it would be improved from 45 dB to 51 dB. This 51 dB value corresponds to 61 dB, weighted, at a 3% THD level (10 dB above 0 VU).

(8) ERASE EFFICIENCY

Connection: The same as in Fig. 5-17, but switch on the 1-kHz filter.

SPEED switch: HIGH

- 1. Check that the INPUT and OUTPUT controls are set to their specified positions.
- 2. Thread a YTT-8013 test tape on the deck.
- 3. Apply a 1-kHz signal at 10 dB above the specified level of -10 dB (316 mV); i.e., 0 dB (1 V).
- 4. Make a 30-second recording of this signal and rewind to the beginning of the recording.
- 5. Disconnect the 1-kHz signal source from the LINE IN jacks.
- 6. Put the deck in the record mode and erase a portion of the previous recording, then rewind to the beginning again.
- 7. Put the deck in the play mode and monitor the output on the AC voltmeter.
- 8. The AC voltmeter reading of the erased portion should be a minimum of -70 dB (or more), or $316 \ \mu\text{V}$ (or less). This is equivalent to a minimum erasing ratio of 70 dB; i.e., the difference between the reference output level of 0 dB and residual signal level of -70 dB.

(9) CHANNEL SEPARATION

Connection: Fig. 5-17 with 1-kHz filter switched ON.

SPEED switch: HIGH

- 1. Be sure that all FUNCTION SELECT switches are the ON position and that the OUTPUT and INPUT controls are still at their specified positions.
- 2. Thread a YTT-8013 test tape.
- 3. Apply a 1-kHz signal at -10 dB (316 mV) to all channels except channel 2.
- 4. Place the deck in the record mode for several seconds then rewind the tape to the beginning of the recorded portion.
- 5. Play the tape and measure the output from channel 2 with an AC voltmeter. The level should be a minimum of -50 dB (or more) or 3.16 mV (or less). That is the channel separation should be at least 40 dB (the difference between the specified output level of -10 dB and the level of signal leakage from channel 2 of -50 dB).
- 6. Repeat the above steps, substituting channel 3 for channel 2.

5-3-5 SIMUL-SYNC PERFORMANCE

Initial switch/control settings:

FUNCTION SELECT switches #1 to #4 ON
OUTPUT SELECT switches SYNC
INPUT controls #1 to #4Specified position
[See 5-3-2 (1)]
OUTPUT controls #1 to #4Specified position
[See 5-3-2 (2)]

(1) PLAYBACK LEVEL

SPEED switch: LOW

- 1. Play the 400-Hz, 0 dB tone in section 1 of the YTT-1003 test tape.
- 2. Adjust R345 for -10 dB (316 mV) at the OUTPUT jack for channel 1, and R346 for channel 2, R347 for channel 3, and R348 for channel 4.

(2) FREQUENCY RESPONSE

Note: The prescribed specification is shown in Fig. 5-23.

SPEED switch: HIGH

- 3. Apply a signal sweeping from 50 Hz to 8 kHz at -10 dB (316 mV) and record it on the YTT-8013 test tape.
- 4. Rewind the tape to the starting portion of the recording.
- 5. Play the tape and check that the frequency response is within the prescribed specification.

SPEED switch: LOW

6. Repeat the above steps, but apply a test signal at -20 dB (100 mV).

Fig. 5-23 Frequency response (SYNC performance)

(3) SIGNAL-TO-NOISE RATIO

SPEED switch: HIGH

- 1. The OUTPUT control should be at the specified output level setting.
- 2. Hold the shut-off arm (right) in the up position with no test tape threaded.
- 3. Press the play button.
- 4. The AC voltmeter connected to OUTPUT jack 1 should indicate -55 dB (or more) or 1.78 mV (or less).
- 5. This corresponds to a signal-to-noise ratio of 45 dB; i.e., the difference between the residual noise of -55 dB and the specified output level of -10 dB (316 mV).

SPEED switch: LOW

6. Follow the above procedures with the deck set at LOW speed. The specifications are the same as for HIGH speed.

(4) CHANNEL SEPARATION

1. With the OUTPUT SELECT: SYNC button depressed, repeat the procedures described on page 18, section 5-3-4 (9).

(5) SYNC CROSSTALK

- 1. Apply a 1-kHz, -10 dB (316 mV) signal from the AF oscillator to LINE IN jacks 1, 3 and 4.
- 2. Place the deck in the REC/PAUSE mode.
- 3. Ensure that the FUNCTION SELECT switch for channel 2 is OFF.
- 4. Note the difference in level between the output from OUTPUT jack 2 and the specified output level of -10 dB (316 mV). The difference should be 11 dB or more.
- 5. Repeat this procedure by appling signals to LINE IN jacks 1, 2 and 4, and measuring the output at OUTPUT jack 3.

5-4 ADJUSTMENT AND TEST POINT LOCATIONS

Fig. 5-24

20

5-5 LEVEL DIAGRAM

RECORD PERFORMANCE

22-4

5-6 BLOCK DIAGRAM

Fig. 5-26

CIRCUIT DESCRIPTION SECTION

6-1 SYSTEM CONTROL IC

6-1-1 TERMINAL ASSIGNMENTS AND BLOCK DIAGRAM

Fig. 6-1 Terminal configuration

	Terminal No.	Terminal name	Function			
Operating inputs	1	PLAY	Inputs a signal to initiate playback Active level: LOW			
	2	STOP	Inputs a signal to stop operation in any mode			
	3	F.FWD	Inputs a signal to initiate fast-foward winding			
	5	REW	Inputs a signal to initiate rewinding			
	6	PAUSE	Inputs a signal to initiate PAUSE mode			
	7	REC	Inputs a signal to initiate record mode			
Control inputs	4	MEMO	Inputs a memory signal (when LOW, REW mode is reset)			
	9	AR	Inputs a signal controlling recording status (LOW: recording is disabled.			
			HIGH: recording is enabled.)			
	10	REC	Outputs a HIGH signal in REC/PLAY or REC/PAUSE modes			
	11	PAUSE	Ouptuts a HIGH signal in PAUSE mode			
Outputs	12	PLAY	Outputs a HIGH signal in PLAY mode			
	13	REW	Outputs a HIGH signal in REW mode			
	14	FAST	Outputs a HIGH signal in REW or F.FWD modes			
	15	F.FWD	Outputs a HIGH signal in F.FWD mode			
Power	8	GND	Grounding			
	16	+B	Power reception (nominal: +5 V ±10%, absolute maximum: +7.0 V)			

Output Input signal	REC	PAUSE	PLAY	REW	FAST	F.FWD	Operating mode
PLAY	L	L	Н	L	L	L	PLAY mode
STOP	L	L	L	L	L	L	STOP mode
F.FWD	L	L	L	L	Н	н	F.FWD mode
REW	L	L	L	Н	Н	L	REW mode
PAUSE	L	H	L	L	L	L	PAUSE mode
REC and PLAY	н	Ĺ	Н	L	L	L	REC/PLAY mode
REC and PAUSE	н	Н	L	L	L	L	REC/PAUSE mode

6-1-2 PERFORMANCES PROPER TO RESPECTIVE INPUTS

Note 1: The operating mode begins on the falling edge of the input signal.

Note 2: The output signals remain unchanged until an input signal changes the operating mode.

Note 3: The REC output signal stays LOW as long as the AR input signal is LOW.

Note 4: The REW output signal stays LOW as long as the MEMO input signal is LOW.

6-1-3 CHANGE OF OPERATING MODE

The following table shows how the operating modes are changed by the respective inputs signals.

Present mode Input signal	STOP	F.FWD	REW	PLAY	PAUSE	REC/PLAY	REC/PAUSE
STOP		STOP	STOP	STOP	STOP	STOP	STOP
F.FWD	F.FWD		F.FWD	F.FWD	F.FWD	F.FWD	F.FWD
REW	REW	REW		REW	REW	REW	REW
PLAY	PLAY	PLAY	PLAY		PLAY		REC/PLAY
PAUSE	PAUSE			PAUSE		REC/PAUSE	
REC and PLAY	REC/PLAY	REC/PLAY	REC/PLAY	REC/PLAY	REC/PLAY		REC/PLAY
REC and PAUSE	REC/PAUSE			REC/PAUSE	REC/PAUSE	REC/PAUSE	

Note: a square with a slanted line indicates there is no change in the operating mode.

6-1-4 MULTIPLE INPUT

The deck is in the operating mode, given in the table below, when more than one input signal is received simultaneously. When a multiple input has been received, the input signal which remains uncancelled last, becomes effective and the associated mode is entered, except in the following cases: regardless of the sequence of cancelling input signals, the REC/PLAY or REC/PAUSE mode is entered after multiple input of REC and PLAY or PAUSE has been released, and the F.FWD (REW) mode is entered after release of multiple input of F.FWD (REW) and REC or PAUSE.

Input signal A	Input signal(s) B	Resulting mode	
STOP	Any combination of F.FWD, REW, REC, PAUSE, and/or PLAY	STOP mode	
	REW	STOP mode	
F.FWD	REC and/or PAUSE	F.FWD mode	
	PLAY	STOP mode	
REW	REC and /or PAUSE	REW mode	
inem inem	PLAY	STOP mode	
	PAUSE	REC/PAUSE mode	
REC	PLAY	REC/PLAY mode	
	PAUSE and PLAY	REC/PAUSE mode	
PAUSE	PLAY	REC/PLAY mode	

6-1-5 INPUT/OUTPUT LEVELS

Input/output levels and power requirements are summarized below.

Type of voltage	Minimum	Nominal	Maximum	Absolute maximam
Supply	4.5 V	5.0 V	5.5 V	7.0 V
Input	Contrast - Contraged	<u> </u>	-	5.5 V
Input (LOW)	-	-	0.8 V	-
Open input	3.2 V	-	—	-
Output (HIGH)	2.9 V	- tr	-	-
Output (LOW)	-	_	0.4 V	-

6-2 INITIAL RESET CIRCUIT

When no tape is threaded on the deck, the safety switch is set to OFF. This condition is the same as when the STOP button is pressed, whereby the deck is placed in a nonoperating status. In the following description, it is assumed that a tape is threaded and the safety switch is set to ON. When the POWER switch is turned on, noise suppressing

capacitors C512 to C516 of the U502's operating input circuits are charged by current applied from U502, causing

the terminals to change to a HIGH state. Approximately 20 milliseconds are required for the PLAY, PAUSE, F.FWD, REW and REC input terminals to change to a HIGH state after the deck has been turned on, while approximately 100 milliseconds are required for the STOP terminal to change to a HIGH state, due to C517's higher capacitance.

Therefore, the U502 memory (flip-flop) is reset and the STOP mode is activated approximately 100 milliseconds after power is applied. U502 becomes active when the STOP terminal is placed in a HIGH state.

6-3 CAPSTAN MOTOR CIRCUIT

Q505 is cut off when the safety switch stays in the OFF position. Consequently, no capstan motor revolution is available because no power is supplied to the capstan servo control circuit. Q505 is conductive when the safety switch stays in the ON position. Then, the capstan servo control circuit goes on and the capstan motor turns the capstan.

Fig. 6-3 Capstan motor circuit

6-4 POWER MUTING CIRCUIT

The power muting circuit prevents any noise at the OUT-PUT terminals or the PHONES jack when the deck is powered on or off.

6-4-1 POWER ON MUTE

When the deck is powered on, the output of 6 V AC is developed across the secondary winding of the power transformer, T701, between its BLU-BLU terminals. This voltage is half-wave rectified on D501, smoothed on C501, and applied to charge C502 by way of R502. When C502 is charged to its charging potential of approximately 1.4V, D503 gains its conductivity and Q501 turns conductive with K433 and K434 relays put to their activity. Closed contacts in K433 and K434 will cause the output circuit of the output amplifier to gain its connection to the output terminal and the phone amplifier. A delay time of approximately 5 seconds is needed before the relay is actuated after the deck has been powered on.

6-4-2 POWER OFF MUTE

Immediately after the deck is switched off, Q501, K433 and K434 are turned off since C501 and C502 are quickly discharged by respective way of direct route and D502 to the meter lighting circuit. Consequently, noise transmission due to transients on power disconnection can be prevented since the output terminal and the phone amplifier are disconnected from the output amplifier.

Fig. 6-4 Power muting circuit

6-5 DECK MODES

This item describes the outline on how the control circuit works in any particular mode of the deck. Further descriptions will be made in and after item 6-6 on detailed performances with such driver circuits as relays, reel motors, solenoids, LEDs and other related components.

6-5-1 PLAY MODE

When the deck is put in play mode, H-levelled output signals are available from pin 12, or play out, on U502.

- The voltage required for the status of PLAY is applied to the reel motor by turning the PLAY relay, K501, to the ON position.
- Momentarily-activated K502 aids in driving the right reel motor by applying a higher voltage for a brief period.
- The activated brake solenoid releases brakes from the right and left reel tables and, at the same time, activates the flashing circuit to ensure a switch-over of supply voltages to the brake and capstan solenoids.
- The activated capstan solenoid ensures secure contact of the pinch roller with the capstan.

6-5-2 REC/PLAY MODE

In REC/PLAY mode, H-level signals are available from both pins of 12 (PLAY OUT) and 10 (REC OUT). PLAY OUT signals drive the tape in movement with the deck put in PLAY mode.

The follwing activities are available from the REC OUT signal.

• The RECORD LED (D801 RED) is illuminated.

• Both Q513 and Q514 are conductive, resulting in H-level record signal transmission to the amplifier section. Record signal functions are described in the item on the amplifier section.

Fig. 6-6 REC/PLAY mode

6-5-3 PAUSE MODE

The H-level is available at pin 11, PAUSE OUT, on U502 only, when the PAUSE button is depressed in STOP or PLAY mode. The status of the deck in this situation is equivalent to that in STOP mode. The PAUSE LED, or D802 green, is not illuminated. The H-level is available at both pins 11 and 12 on U502. When both RECORD and PAUSE buttons are simultaneously depressed in STOP mode, or when the PAUSE button is depressed in REC/ PLAY mode. The output from pin 10 on U502 not only illuminates the RECORD LED and transmits the RECORD signal to the amplifier section as described in previous items, but also provides H-level signals to pin 12 on U504. In this situation, since the pin 11 on U502 stays at H-level, Q518 turns conductive and the PAUSE LED is illuminated with pin 11 on U504 and pin 8 on U504 staying on L- and H-levels, respectively. This status is the REC/PAUSE mode.

Fig. 6-7 REC/PAUSE mode

6-5-4 FAST MODE

Both F.FWD and REW modes are called FAST mode. Hlevel output signals are available at pins 14 and 15 on U502 in F.FWD mode, and at pins 13 and 14 in REW mode, respectively. The reel motors are supplied with the proper voltage required in F.FWD or REW mode, with K502 or K503 actuated, depending on the output from pin 15 or 13. The output from the pin 14 releases the brakes from the reel tables with the brake solenoid actuated. The delay circuit shown in Fig. 6-8 is a tape protection circuit in transition from FAST to PLAY or REC/PLAY mode. Performance with this delay circuit are described as follows.

As shown in the figure, U503 is a comparator. An H- or L-level output is available at pin 1 because the minus terminal, pin 2, will have either a lower or higher potential than the plus terminal, pin 3. U503 works as a Schmidt trigger circuit since R546 provides feedback effect from pin pin 1 to pin 3. Yet, for example, when the deck is working in F.FWD mode, both pins 14 and 15 on U502 are H-levelled. The H-levelled pin 14 on U502 turns Q506 conductive and puts pin 2 on U503 to L-level. Consequently, since pin

1 on U503 is put to H-level with both Q507 and Q508 conductive, muting is applied to both PLAY OUT and REC OUT on U502. Now, if the PLAY button is depressed. F.FWD mode is reset and PLAY mode is stored on U502. Despite the stored PLAY mode, pin 12 on U502 stays on Llevel since Q507 is conductive. In the meantime, the reset F.FWD mode, with both pins 15 and 14 on U502 L-levelled. cause the reel motor to stop with the reel tables braked, the same as in STOP mode. Yet, with pin 14 on U502 L-levelled, Q506 is cut off and charging on C525 is initiated by way of +5V, R542 and R543 as sequenced. When the potential at pin 3 on U503 is exceeded by that of the charged C525, or the potential at pin 2 on U503, the output from pin 1 on U503 is inverted from H- to L-level. Consequently, both Q507 and Q508 are cut off. With Q507 cut off, muting is released from pin 12 on U502 and the deck is put in PLAY mode with the PLAY OUT H-levelled. As mentioned above, this delay circuit is designed for suspending the starting of the next mode in transition from FAST to PLAY or REC/PLAY mode until the tape entirely stops, where its delay time is approximately two seconds. Fig. 6-9 illustrates the performance for an example of transition from F. FWD to PLAY mode.

Fig. 6-8 FAST mode

Fig. 6-9 F.FWD→PLAY

6-6 REEL MOTOR DRIVER CIRCUIT

6-6-1 PLAY MODE

In PLAY mode, the H-level output signal is available from pin 12 on U502 with both Q509 and K501 conductive. When K501 is active, its contact point of K501-1 shifts to N.O. side. Then, the right reel motor is directly supplied with 68 V AC, producing take-up torque. The left reel motor is supplied with voltage available from the AC source (approximately 50 V) on proper adjustment by means of R701.

At the point of a rising edge in PLAY mode, Q510 and K502 are conductive for about 100 milliseconds immediately after the status of pin 12 on U502 is inverted from L- to H-level. When K502 continues its conductivity, its contact point of K502-1 shifts to N.O. side so as to supply the right reel motor at the initial stage of PLAY mode and prevents its shutoff due to the loosened tape.

6-6-2 F.FWD MODE

In F.FWD mode, H-level output signals can be obtained from pin 15 on U502 with Q511 and K502 conductive, while the contact of K502-1 on K502 shifts to N.O. side. At this moment, the right reel motor is directly supplied with 100 V AC to develop a high tension winding torque and a high-speed tape winding process sets in. Since the left side reel motor is supplied with approximately 25 V AC by way of R702, a slight back tension torque is available.

6-6-3 REW MODE

In REW mode, pin 13 on U502 is put to H-level with Q512 and K503 conductive. Consequently, the left reel motor is directly supplied with 100 V AC, while the right reel motor is provided with a lower voltage through R702.

Fig. 6-10 Reel motors driver circuit

6-7 SOLENOID DRIVER CIRCUIT

A pair of the capstan and brake solenoids are employed in the 22-4.

Capstan solenoid

The tape should be set closely to the head with the lifter held up. The tape should set in motion with the pinch roller pressed against the capstan.

Brake solenoid

The brakes on both right and left reel tables should be released.

6-7-1 CAPSTAN SOLENOID DRIVER

The capstan solenoid can be conductive in PLAY mode only.

In PLAY mode, pin 12 of U502 goes HIGH, sending current to Q521 via D519 and R566, turning Q521 on. Consequently, Q524 turns conductive with the capstan solenoid also activated.

6-7-2 BRAKE SOLENOID DRIVER

The brake solenoid is actuated in both PLAY and FAST, F.FWD or REW modes. In PLAY mode, Q522 turns conductive due to the current from pin 12 on U502, while, in FAST mode, Q502 turns conductive due to the current from pin 14 on U502. As Q522, or Q523, turns conductive, Q525 turns conductive with the brake solenoid also actuated.

6-7-3 FLASHING CIRCUIT

In STOP mode, Q519 to Q525 are cut off.

In PLAY or FAST mode, when Q525 turns conductive, the base current of Q520, i.e., the charging current on C528, flows from the source of +30V through the emitter to the base of Q520, R562, C528, and the collector to the emitter of O525 in the abovementioned sequential order, resulting in supported conductivity of Q520 for approximately 100 msec. until C528 is charged up. As long as Q520 is conductive, Q519 also turns conductive and the solenoid is supplied with +30 V. When Q520 turns non-conductive after C528 is charged up, Q519 also turns non-conductive, where the solenoid is retained with the power available through D517 from the source of +13 V. The abovementioned combination of the higher voltage impressed on the solenoid at its initial stage of operation and the reduced potential applied in its holding is aimed at solenoid heating prevention.

Fig. 6-11 Solenoid driver circuit

6-8 LED DRIVER CIRCUIT

6-8-1 RECORD LED

When all function switches of S432b to S435b are turned off, or opened, Q403 and Q515 turn nonconductive and conductive, respectively. As long as Q515 is nonconductive, both pin 9 on U502 and pin 2 on U504 are retained at L-level.

When pin 9, or AR, on U502 is held L, RECORD mode is disabled. Pin 3 on U504 is locked H when pin 2 is L. If any one of the function switches of S432b to S435b is conducting, pin 9 on U502 and pin 2 on U504 go H, with Q403 and Q515 conductive and cut off, respectively.

Meanwhile, U503 and its peripheral circuits comprise a square wave oscillator of approximately 1 second in period, from which alternating of H- and L-level signals are continuously available. Therefore, when pin 2 on U504 is H, an inverted oscillator output signal of L- and H-levels is available from pin 3 on U504.

When 22-4 is in any mode other than REC/PLAY or REC/-PAUSE, pin 10 on U502 goes L with Q516 cut off and pin 5 on U504 goes HIGH. Assuming the abovementioned status, when pin 4 on U504 is provided with an alternative signal of L- and H-levels, the RECORD LED flashes with Q517 alternatively turned conductive and cut off by means of the alternative output signals of H- and L-levels, or the inverted input signal, available from pin 6 on U504.

When 22-4 is put in REC/PLAY or REC/PAUSE mode, pin 10 on U502 turns H-levelled with Q516 conductive. Therefore, pin 5 on U504 and pin 6 on U504 are locked to L- and H-levels, respectively, with Q517 conductive, resulting in continued illumination of the RECORD LED.

6-8-2 PAUSE LED

When 22-4 is put in the REC/PAUSE mode, H-level appears at pin 11 on U502, or pin 13 on U504, and pin 10 on U502, or pin 12 on U504. Consequently, L- and H-levels appear at pin 11 and pin 8 on U504, respectively, with Q518 conductive, resulting in illuminated PAUSE LED.

Fig. 6-12 LED driver circuit

6-9 MEMORY CIRCUIT

In REW mode, when pin 4, i.e., the MEMO input terminal on U502 is set at L-level, the deck is put into STOP mode with the REW mode reset.

Counter switch S704 closes the circuit with 900 to 999 indicated on the index counter. When REW mode is specified on the deck with the MEMORY switch turned on, S704 is switched on at the moment where the counter indication arrives at 999 subsequent to 000 as the tape is rewound. Consequently, a momentary L-level appears at the MEMO input terminal via the sequenced route of R539, C524, S703, S704, and GND with the REW mode reset.

35
7 AMPLIFIER CIRCUIT DESCRIPTION

Four subsystems are included in RECORD, PLAY and MONITOR systems with the bias oscillator, function relay, and PHONES amplifier circuits excluded. Amplifiers in these systems are designed with particular emphasis on dynamic ranges in consideration of their probable connection to a dbx unit. Furthermore, since a simultaneous synchronization function is provided in 22-4, each channel is furnished with its separate SYNC amplifier which is useful when the recording head is used as a monitoring head. The following descriptions on the amplifier system are mainly related to channel 1.

7-1 PLAYBACK SYSTEM

7-1-1 PLAY EQ AMPLIFIER

This amplifier consists of Q101 to Q103. Since its initial stage includes a bootstrap circuit when the emitter-to-base positive feedback is available through the use of C104 and R105, Q101 presents a high input impedance of approximately 4.5 Ma, or higher, at 1 kHz. Since the amplifier presents such a high input impedance, any resistance value can be selected as an optimal load on the PLAY head. R101 is the loading resistance on the PLAY head with its value selected about ten times as high as that of the head impedance at 20 kHz. The PLAY equalizer amp. is a directcoupled amplifier in three stages where a double-staged amplifier with Q101 and Q102 is supplemented by an emitter-follower with Q103. Transistors Q101 and Q102 are NPN- and PNP-types, respectively. In this circuit design, the dynamic range and distortion properties are advantageous since higher collector-emitter voltages can be selected for initial stage transistors in particular. Furthermore, since the additional emitter-follower allows a selected higher resistance for loading Q102, a larger open loop gain is available from the amplifier consisting of Q101 and Q102. At the same time, any variation in amplifier open loop gains due to variation in negative feedback circuit impedance can be entirely prevented. The abovementioned features are useful for stability in high frequency range performance with amplifiers. Both transistors Q104 and Q105 are aimed at switching the negative feedback circuit where the high and low speed equalizers are switched over through the use of Q104 and Q105, respectively. Q104 and Q105 are furnished with their base circuits consisting of D101, D102, R118 to R126, C112, and C113, each of which is selected so that smoother transistor switching and minimum click noise may be ensured.

7-1-2 PLAY LINE AMPLIFIER

This amplifier consists of the U101-1/2 operational amplifier. This amplifier is aimed at amplifying any output from the PLAY EQ AMP up to the dbx use level of -10 dB. Since the amplifier gain roughly depends on the ratio of R144 to R142 + R143 together, the gain can be varied on

R143 to obtain the adjustable output level. The parallel resonance circuit on L101 and C119 is designed as a bias trap. The maximum impedance is available from this LC resonance circuit at 100 kHz with the amplifier gain reduced because of its large degree of negative feedback applied.

7-1-3 OUTPUT AMPLIFIER

This amplifier consists of the U101-2/2 operational amplifier. This amplifier is aimed at amplifying any signal attenuated on the OUTPUT control up to the nominal output level of -10 dB.

7-2 MONITOR SYSTEM

7-2-1 METER AMPLIFIER

This amplifier consists of Q111 and Q112. Since the meter amplifier input is connected to the input side of the OUTPUT control, no interlocking can be anticipated on the latter. A double-staged amplifier with a combined pair of NPN and PNP transistors is also employed in this amplifier so as to establish a higher performance efficiency within the limits of the specified source voltage.

7-2-2 PHONES AMPLIFIER

Q241 is a mixing amplifier on CH1 to CH4, with another function as a buffer to the PHONES amplifier. Q242 to Q244 comprise a complementary push-pull amplifier. This circuit can properly drive any low-impedance headphones.

7-2-3 SYNC AMPLIFIER

The SYNC amplifier consists of the U301-1/2 SYNC equalizer amplifier and U301-2/2 SYNC line amplifier. Both amplifiers are designed for any head output amplification in simultaneous SYNC where the recording head is used for monitoring. Since the tone, or frequency response, is not so important in any SYNC amplifier, the equalizer is fixed with no tape speed selection needed. Q301 and Q305 comprise a muting circuit. When any channel in SIMUL SYNC monitoring is set to RECORD mode, muting is available on the SYNC AMPL. with Q301 and Q305 conductive. Furthermore, since SYNC signals do not take any route via the terminal to the dbx unit, encoded signals are monitored for any tapes recorded on the dbx system.

7-3 RECORD SYSTEM

7-3-1 LINE AMPLIFIER

This amplifier consists of the U102-1/2 operational amplifier. This amplifier is aimed at amplifying any line input attenuated on the INPUT control up to the dbx level of -10 dB. R194 and C147 are aimed at amplifier gain control and high frequency range phase correction, respectively.

7-3-2 REC AMPLIFIER

This amplifier consists of U102-2/2 and drives the record head by supplying it with signal currents. Q123 or Q122 turns conductive depending on high or low speed operation with recording compensation properties available from the resonance circuit of L102 and C154, or L102 and C153. R218 is inserted with a view to providing a higher output impedance, or the source impedance, measured from the head side, so that the record head can be driven with a constant current basis. The parallel resonance circuit of L103 and C157 is a bias trap.

7-4 SIGNAL CONTROL CIRCUIT

This item describes the function relay circuit for monitor circuit selection and REC relay circuit for record head selection in REC mode. Both circuits are designed with particular emphasis on their performance timing to ensure recording with click noises of the lowest possible level. In the first place, descriptions are made on audio signal selection through the use of contact point circuits on both function and REC relays, and next on the performance of individual relay driver circuits and their related peripheral circuits.

7-4-1 AUDIO SIGNAL CIRCUIT

Reference is to be made on Fig. 7-1 in which channel 1 is illustrated. Fig. 7-1 shows FUNCTION SELECT switches and REC relays separately furnished on individual channels. Output selector switches and function relays are interlocked on CH1 to CH4. Function relays are actuated when the deck is working in REC/PLAY or REC/PAUSE mode with function selector switch conductivity available on at least one channel of CH1 to CH4. Contact points on

7-3-3 BIAS OSCILLATOR CIRCUIT

Switching transistors Q271 and Q272 are aimed at controlling both rising and falling edge performance in bias oscillator starts and stops. The oscillator consists of Q273, Q274, L271 and their peripheral circuits. The RECORD signal at H-level is sent to terminal J469-9 from the CONTROL PCB, turning Q272 ON after approximately 40 msec. of delay due to C271. Approximately 50 msec. is needed from when Q272 becomes ON to when bias rises. It takes about 120 msec. to obtain a complete bias shutdown after any RECORD signal has shifted to L-level.

function relays are actuated as follows when the OUTPUT selector switch is turned to its SYNC position.

- SOURCE signals can be monitored for any channels on which FUNCTION SELECT switches are turned on.
- Synchronization signals can be monitored for any channels on which function selector switches are turned off.

REC relays are actuated when the deck is put in REC/-PLAY or REC/PAUSE mode, for only those channels on which FUNCTION SELECT switches are turned on. Yet, neither REC/PLAY nor REC/PAUSE mode is available on the deck so long as all FUNCTION SELECT switches are turned off for CH1 to CH4. The contact point of K381-a on the REC relay assures that the recording head shifts from SYNC. AMPL. input to REC AMPL. output. The contact point of K381-b ensures that the bias oscillator output shifts from the dummy coil to the erase head. The dummy coil is the same as the erase head in impedance, and aimed at non valiable loading on the bias oscillator to prevent bias output variation.

Fig. 7-1 Signal shifting circuit

7-4-2 RELAY DRIVER CIRCUIT

Reference is to be made on Fig. 7-2 and Fig. 7-3.

(1) RECORDING STAND-BY

When any FUNCTION SELECT switch is turned on with the deck in STOP mode, LEDs on selected channels are illuminated (Route (1)). At the same time, the base current of Q395 flows in Route (2) with Q395 put in stand-by position. (Since Q391 is cut off, no collector current flows on Q395.)

When FUNCTION SELECT switch conductivity is obtained on at least one channel of CH1 to CH4, the base current of Q403 flows in Route ③ with Q403 conductive. Therefore, the low level REC MODE signal is supplied to the CON-TROL PCB. (This signal supplies the system control IC with recordable signals with the Q515 cut off on the CONTROL PCB, and causes the RECORD LED to flash... See item 6-8-1 and Fig. 6-12.)

(2) RECORDING START

When the deck is put in REC/PLAY or REC/PAUSE mode, the H-level record signal is supplied from the CONTROL PCB. This record signal is supplied to the control circuit in the bias oscillator to initiate its oscillation, and, at the same time, actuates the function relay of K391 with Q400 turned conductive in Route (4). Furthermore, C397 and C398 are charged with the record signal supplied in Routes (6) and (7). The combined circuits of Q401 and Q402 provide a Schmidt trigger circuit, which is designed for assuring snap action on the output of point (C), depending on its alternating levels with reference to some

particular value when the input signal of point (A) varies slowly. This circuit is aimed at ensuring the almost simultaneous actuation of REC relays on respective channels, even if their operating voltages, or sensitivity indices are not almost identical, while preventing any malfunction due to noise generation. In the meantime, when the potential of approximately 3.5 V is reached at point (A) in due charging process on C398, Q401 turns conductive with Q402 cut off at the same time, then the current in Route (9) flows with Q391 turned conductive. Since Q395 has already been brought into the status of stand-by, Q391 in its conductivity ensures the current flow of (10) with the REC relay of K381 actuated. As previously mentioned, the REC relay is aimed at shifting the bias oscillator output from the dummy coil to the erase head besides shifting the record head from SYNC. AMPL. input to REC AMPL. output. It takes about 30 msec. before the REC relay is actuated after the supply of REC signals. This delay time is designed for suspension until monitor circuit disconnection from the SYNC AMPL. output since a higher noise level is anticipated from the SYNC AMPL. when the SYNC AMPL. input is opened on shifting the record head. Furthermore, proper consideration is given to prevent recording any click noises in switching action with the record head since no sufficient rise in bias will be available at the exact moment of record head shifting. When Q391 and Q395 are conductive, or the REC relay is active, L-level SYNC AMPL, muting signals are supplied from the collector of Q391 and muting is active on the SYNC AMPL.

Fig. 7-2 Relay driver circuit

(3) RECORDING STOP

When the FUNCTION SELECT switch is turned off in REC/PLAY or REC/PAUSE mode, REC mode on selected channels is released. With the FUNCTION SELECT switch turned off, the REC relay of K381 is turned off since the current in Route (10) is shut off as Q395 turns nonconductive due to shutdown of the current in Route (2). At the same time, the FUNCTION LED is extinguished due to shutoff of the current in Route (1). When FUNCTION SELECT switches on all channels of CH1 to CH4 are turned off, REC mode signal transmission to the control PCB is suspended since Q403 is cut off. Consequently, Q515 on the control PCB turns conductive with the AR terminal on system control IC put into a L-level, resulting in released REC mode. Therefore, H-level record signals from the control PCB turn L-levelled. Yet, REC mode is also released with record signals L-levelled when the STOP, F.FWD or REW button is depressed in REC/PLAY or REC/PAUSE mode. When any record signal turns L-levelled, the following processes will result.

- The bias oscillator stops with ceased transmission of signals to the bias oscillator control circuit. It takes approximately 120 msec. before completed oscillation.
- •With the current in Routes (6), (7), and (8) cut off, a discharging process results in Route (11) from C397 and C398.

When the potential at point (A) falls to approximately 1 V, point (C) is L-levelled with the Schmidt trigger circuit inverted (i.e., Q401 goes OFF and Q402 goes ON). Therefore, the current in Route (9) stops with

Q391 cut off. When the FUNCTION SELECT switch is turned on, the REC relay of K381 turns off immediately after Q391 is cut off. A delay time of approximately 160 msec. is needed before the REC relay is turned off after the record signal has been L-levelled. This delay is aimed at recording no click noise on tapes with the recording head shifted after bias oscillation has stopped.

• Since the current in Route (4) stops, Q400 and Q399 are cut off. As long as Q399 was conductive, C395 and C396 must have been charged with the current in Route

(12) to the same potential as the voltage across teminals on the function relay of K391. When Q399 is cut off, a discharging process begins in Route (13) on charges accumulated in both C395 and C396. K391 is turned off when the gradually decreased discharge current falls to the holding current of K391, or lower. This discharging circuit establishes a delay time of approximately 200 msec. which is aimed at preventing any noise, which is anticipated in SYNC AMPL. input circuit switching, from being supplied to the monitor circuit after the connection of the record head to SYNC AMPL. by means of REC relay.

• In the meantime, when Q391 is cut off, a H-level state is available on its collector, and a muting release signal is supplied to SYNC AMPL. This signal releases muting after approximately 230 msec. of delay caused by C353 in SYNC AMPL. With this delay, muting cannot be released before SYNC AMPL. input circuit transfer is entirely completed, thus click noise transmission to the monitor circuit can be prevented.

Fig. 7-3 Timing chart on control circuit

SERVICE MANUAL CORRECTION NOTICE FOR 22-4

Please substitute this figure for Fig. 7-3 on page 39 for the correct control circuit timing.

UNIT: mSec

Fig. 7-3 Timing chart on control circuit

PARTS LIST SECTION 8 EXPLODED VIEWS AND PARTS LIST EXPLODED VIEW-1

Parts marked with *require longer delivery time.

REF. NO.	PARTS NO.	DESCRIPTION	REMARKS
1 - 1	*5800067001	Housing, Head	
1 - 2	*5581073000	Screw, Front Panel	X-10M
1 - 3	5800066200	Cap. Pinch Roller	The A Decision of the A
1 - 4	5014175100	Pinch Roller	A2300
1 - 5	*5800066000	Cap. Tension Roller	
1 - 6	5504843000	Roller Assy, Tension	
1 - 7	5534705000	Knob, VR; C	X-10R
1 - 8	*5800066700	Collar Nut	
1 - 9	*5800069100	Panel Assy, Front	
1 - 10	5800080600	Knob, F	X3
1 - 11	5534702000	Button, Power Switch	X-10R
1 - 12	*5534723000	Rod, Power Switch	X-7
1 - 13	*5786360500	R Pin, φ5	
1 - 14	*5533109100	Foot	A6600
1 - 15	*5800079600	Cover Assy, Bottom	
1 - 16	*5800071300	Cover, Top	
1 - 17	*5783114006	Screw, M4 x 6 (BLK Ni)	
1 - 18	*5800070300	Cover, Rear	
1 - 19	*5524292000	Spring, Stud	

INCLUDED ACCESSORIES

REF.NO.	PARTS NO.	DESCRIPTION	REMARKS
	* 5128093000	Cord, Input-output Connection	
	* 5534267000	Foot, H	A4700RX
	* 5085008300	Empty Reel, 7 inch	
	* 5062962000	Splicing Tape	
	* 5101337100	Open Reel Supplement	U
	* 5101708000	Open Reel Supplement	All except U
	* 5700007700	22-4 Owner's Manual	U
	* 5700007800	22-4 Owner's Manual	All except U

EXPLODED VIEW - 2

Parts marked with *require longer delivery time.

REF.NO.	PARTS NO.	DESCRIPTION	REMARKS
2 - 1	*5555927000	Plate, Head Base	
2 - 2	*5022050000	Spring, B	
2 - 3	*5785012000	Washer, t 0.4	
2 - 4	*5013437100	Bracket, Head	(A2300)
2 - 5	*5550151100	Spacer, Head; A	A4300
2 - 6	5066459000	Head, Playback	A2300SR
2 - 7	*5554949000	Case, Shield; Head	A6600
2 - 8	*5013439000	Spacer, Record Head	A2300
2 - 9	5066425100	Head, Record	
2 - 10	*5013659100	Spacer, Erase Head	A1340
2 - 11	5066411100	Head, Erase	A3340
2 - 12	*5524287000	Spring, Lifter Return	
2 - 13	*5504836001	Plate Assy, Lifte Base	
2 - 14	*5545190000	Stud, Housing	
2 - 15	*5545181000	Guide, Tape	
2 - 16	*5581038000	Clamper, Cord; A	
2 - 17	*5800067200	Plate, Lifter Base; B	
2 - 18	*5504831000	Plate Assy, Capstan Base	
2 - 19	*5555924000	Stopper, Lifter	
2 - 20	*5555925000	Arm, Joint; A	
2 - 21	*5524288000	Spring, Return	
2 - 22	*5581056000	Screw, Shoulder; A	A304
2 - 23	*5555926000	Arm, Joint; B	
2 - 24	*5545178000	Pole, Guide	
2 - 25	*5504835000	Arm Assy, Pinch Roller	
2 - 26	5504832000	Capstan Assy	
2 - 27	5534849000	Flywheel	
2 - 28	5534468000	Belt, Capstan Drive	A6100
2 - 29	*5534585000	Resistor Base	
2 - 30	*5181581000	Resistor, Nonflammable; $1K\Omega$	
2 - 31	*5181597000	Resistor, Nonflammable; 250Ω	
2 - 32	*5785254000	Washer, Bakelite; $\phi 4 \times \phi 15 \times t1$	
2 - 33	*5785024400	Washer, $\phi 4 \ge \phi 15 \ge +1$	
2 - 34	*5800069800	Flame, Side; R	
2 - 35	*5800090800	Holder, Chassis	
2 - 36	*5200012000	PCB Assy, FUSE	GE
	*5200012010	PCB Assy, FUSE	U, C
	*5200012700	PCB Assy, FUSE	E, UK, A
2 - 37	*5800069500	Bracket, CONTROL PCB; A	-//.
2 - 38	*5200011900	PCB Assy, CONTROL	GE
2 00	*5200011910	PCB Assy, CONTROL	U, C
	*5200011920		E, UK, A
2 - 39	*5800069600	Bracket, CONTROL PCB; B	
2 - 40	*5800069900	Chassis, Control	
2 - 41	*5200012300	PCB Assy, VOLUME	
2 - 42	*5200012200	PCB Assy, SPEED SW	
2 - 43	*5534713000	Rod, Joint; C	
2 - 44	5534701000	Button	
2 - 45	*5786360500	R Pin, ϕ 5	
2 - 45	*5800048000	Bracket, VOLUME PCB	
2 - 40	*5600017900	Cue Assy	
2 - 48	*5800066400	Bracket, Cue Assy	
2 - 48	*5800066300	Shaft	
2 - 49	*5800067500	Spring, Slide Plate Return	
2 - 50	*5800067600	Plate, Slide; Cue	
2 - 51	5534703000	Knob, Cue	
2 - 53	*5534850000	Cushion, Stopper	
2 - 54	*5500017800	Button Assy, Operation	
2 - 55	5800069000	Button; C	
2 - 56	5800068900	Button; B	
2 - 57	5800068800	Button; A	
2 - 58	*5200011800	PCB Assy, Operation SW	
2 - 59	*5800068600	Bracket, Button Assy	
2 - 60	*5370000700	Motor G Assy, DC; Capstan	

(Continued on page 45)

EXPLODED VIEW - 3

44

Parts marked with *require longer delivery time.

REF.NO.	PARTS NO.	DESCRIPTION	REMARKS
3 - 1	5786303012	Pin, Stopper	
3 - 2	*5504848000	Band Assy, Brake; B	
3 - 3	*5524286000	Spring, Pressure	
3 - 4	5163048000	Solenoid	
3 - 5	*5504847000	Band Assy, Brake; L	
3 - 6	*5555939000	Lever, Brake Actuating	
3 - 7	5058515000	Counter	A4300
3 - 8	5534853000	Belt, Counter	
3 - 9	*5555929000	Hook, Spring	
3 - 10	*5524291000	Spring, Brake	
3 - 11	*5555940000	Bracket, Counter	
3 - 12	*5210012400	PCB Assy, SW (PCB-104)	
3 - 13	5130003000	Switch, Micro	
3 - 14	*5550025100	Plate, Insulating	A450
3 - 15	*5524290000	Lever, Switch Actuating	
3 - 16	*5555932000	Bracket, Micro Switch	
3 - 17	*5555928000	Cam, Shut Off	
3 - 18	*5504842000	Arm Sub Assy, Tension	
3 - 19	*5534850000	Cushion, Stopper	
3 - 20	*5524106000	Hook Plate, Spring	A6700
3 - 21	*5524289000	Spring, Bias	
3 - 22	7104601001	Motor, AC; Reel	
3 - 23	₼ 5320002300	Transformer, Power	U, C
	1 5600017500	Transformer Assy, Power	GE
	₼ 5600017510	Transformer Assy, Power	E, UK, A
3 - 24	*5555919000	Bracket, Transformer	
3 - 25	*5555920000	Angle, Thrust	
3 - 26	*5555921000	Plate, Thrust	
3 - 27	5370000700	Motor G Assy, DC; Capstan	
3 - 28	*5800079701	Chassis Assy, Main	
3 - 29	*5555930000	Stopper, Arm	
3 - 30	*5534851000	Damper, Arm	
3 - 31	*5545182000	Shaft, Guide Roller	
3 - 32	*5504839000	Roller Assy, Guide	
3 - 33	*5800066100	Cap, Roller	
3 - 34	*5788200200	String	
3 - 35	*5800068400	Bracket, Damper Drum	
3 - 36	*5534684000	Drum, Damper	X-10R
3 - 37	*5524215000	Stopper, String	X-10R
3 - 38	*5800068100	Spring, Damper	
3 - 39	*5555948000	Cushion, Top Cover	
3 - 40	*5210012600	Joint PCB	
3 - 41	*5534130000	Washer, Oil Retaining	
3 - 42	*5800080100	Seat, Reel	
3 - 43	*5504852000	Table Assy, Reel	
3 - 44	*5534852000	Felt, Brake	

(Continued from page 43)

REF.NO.	PARTS NO.	DESCRIPTION	REMARKS
2 - 61	*5800069700	Flame, Side; L	
2 - 62	*5800066800	Escutcheon, Button	
2 - 63	*5545175000	Cap, Dust	
2 - 64	*5534850000	Cushion, Stopper	
2 - 65	*5555064000	Clamper, FUSE PCB	
2 - 66	*5210012000	FUSE PCB	J, U, C, GE
	- 61 *5800069700 - 62 *5800066800 - 63 *5545175000 - 64 *5534850000 - 65 *5555064000 - 66 *5210012000 *5210013000 - 67 *5131007000	FUSE PCB	E, UK, A
2 - 67	*5131007000	AC Voltage Selector AC 250V 5A	GE
2 - 68	*5800083600	Bracket, AC Voltage Selector	GE

EXPLODED VIEW - 4

Parts marked with *require longer delivery time.

REF.NO.	PARTS NO.	DESCRIPTION	REMARKS
4 - 1	*5800066600	Angle, Reinforcing	
4 - 2	*5800067400	Bracket, Power Switch	
4 - 3	₫ 5300019300	Switch, Push; Power	U, C
	1 5300019400	Switch, Push; Power	All except U, C
4 - 4	₼ 5052910000	Spark Killer, 0.033μF + 120Ω/125V	U
18 (18)	₼ 5052911000	Spark Killer, 0.033μF + 120Ω/250V	с
	1 5292002500	Spark Killer, 0.01μ F + 300Ω	GE
	1 5267702500	Spark Killer, 0.047µF/250V	E, UK, A
4 - 5	*5124053000	Jack, Pin; 8P	
4 - 6	*5122339000	Connector Socket, 6P	
4 - 7	*5200012100	PCB Assy, CONNECTOR	
4 - 8	*5800069300	Chassis, Connector; B	
4 - 9	*5330505000	Plug, Shorting; 2P	
4 - 10	*5534660000	Strain Relief, AC Power Cord	
4 - 11	A 5128027000	Cord, AC Power	GE
	A 5128075000	Cord, AC Power	U, C
	1 5128018000	Cord, AC Power	E
	1 5128047000	Cord, AC Power	UK
	₼ 5350083000	Cord, AC Power	А
4 - 12	*5200011100	PCB Assy, OSC	
4 - 13	*5200011300	PCB Assy, PHONE AMP	
4 - 14	*5786305000	R Pin, <i>φ</i> 5	
4 - 15	*5800070600	Flame, Amplifier; R	
4 - 16	*5800067800	Bracket, OSC	
4 - 17	*5122168000	Connecter Socket, 6P	
4 - 18	*5581038000	Clamper, Cord; A	
4 - 19	5296001500	Meter, VC	
4 - 20	*5200011600	PCB Assy, LED	S
4 - 21	*5800070500	Flame, Amplifier; L	
4 - 22	5800068300	Button	
4 - 23	*5800070100	Chassis, Amplifier	
4 - 24	5282009202	Var. Res., 100 KΩ (B)	
4 - 25	*5800068000	Collar, VR	
4 - 26	*5550176000	Bracket, Meter	
4 - 27	*5200011400	PCB Assy, FUNCTION SYNC	
4 - 28	*5200011000	PCB Assy, REC/PLAY AMP	
4 - 29	*5800067300	Bracket, PCB; B	
4 - 30	*5800069200	Chassis, Connector; A	
4 - 31	*5124052000	Jack, Pin; 4P	
4 - 32	*5550173000	Bracket, BIAS ADJ PCB	
4 - 33	*5800070200	Plate, Shield; A	
4 - 34	*5800067900	Plate, Shield; B	
4 - 35	*5200011200	PCB Assy, BIAS ADJ	
4 - 36	*5200011700	PCB Assy, AMP MOTHER	
4 - 37	*5800066900	Bracket, PCB; A	
4 - 38	*5200011500	PCB Assy, SWITCH	
4 - 39	*5122170000	Connector Socket, 8P	
4 - 40	*5122165000	Connector Socket, 3P	
4 - 41	*5122227000	Connector Socket, 8P (BLK)	
4 - 42	*5122286000	Connector Socket, 8P (RED)	
4 - 43	*5122171000	Connector Socket, 9P	
4 - 44	*5555063000	Washer, GND	

All screws conform to ISO'standards, and have crossrecessed heads, unless otherwise noted. ISO screws have the head inscribed with a point as in the figure to the right.

FOR EXAMPLE:

В	М	3	x	ŝ
1	ł	i		
ļ	ł			Length in mm (L)
1		1		Diameter in mm (D) *
	L	-		Metric System
Ĺ			-	Nomenclature

* Inner dia. for washers and nuts

	Code	Name	Туре		Code	Name	Туре
MACHINE SCREW	R	Round Head Screw		TAPPING SCREW	вта	Binding Head Tapping Screw(A Type)	
	Р	Pan Head Screw			втв	Binding Head Tapping Screw(B Type)	
	т	Stove Head Screw (Truss)			RTA	Round Head Tapping Screw(A Type)	
	в	Binding Head Screw			RTB	Round Head Tapping Screw(B Type)	
	F	Flat Countersunk Head Screw		SETSCREW	SF	Hex Socket Setscrew(Flat Point)	\bigcirc
	ο	Oval Countersunk Head Screw			sc	Hex Socket Setscrew(Cup Point)	\odot
WOOD SCREW	RW	Round Head Wood Screw			SS	Slotted Socket Setscrew(Flat Point)	\bigcirc
TAPTITE SCREW	PTT	Pan Head Taptite Screw		WASHER	E	E-Ring (Retaining Washer)	$\langle \rangle$
	WTT	Washer Head Taptite Screw			w	Flat Washer (Plain)	\bigcirc
SEMS SCREW	BSA	Binding Head SEMS Screw(A Type)			SW	Lock Washer (Spring)	\bigcirc
	BSB	Binding Head SEMS Screw(B Type)			LWI	Lock Washer (Internal Teeth)	Every Every
	BSF	Binding Head SEMS Screw(F Type)			LWE	Lock Washer (External Teeth)	٤Ū}
	PSA	Pan Head SEMS Screw(A Type)			тw	Trim Washer (Countersunk)	0
	PSB	Pan Head SEMS Screw(B Type)		NUT	N	Hex Nut	

9 PC BOARDS AND PARTS LIST PC Boards shown viewed from foil side REC/PLAY AMPL PCB ASSY

AMP MOTHER PCB ASSY

49

FUNCTION SYNC PCB ASSY

CONTROL PCB ASSY

BIAS ADJ PCB ASSY

OSC PCB ASSY

PHONE AMPL PCB ASSY

REC/PLAY AMPL PCB ASSY

REF. NO.	PARTS NO.	DESCRIP	TION	REF. NO.	PARTS NO.	DESCRIPT	FION		
	5200011000	PCB Assy		R163 R164	5183114000 5183090000	22kΩ 2.2kΩ			
	5167782000	РСВ		R165	5183072000	390 Ω			
	IC's			R166 R192	5183086000 5183130000	1.5kΩ 100kΩ			
U101, U102	5147024000	JRC-4558	D-F	R193	5183108000	12kΩ			
	TRANSIST	ORS		R195 R196 R197	5183112000 5183058000 5183130000	18kΩ 100Ω 100kΩ			
Q101	5230770100		3L	R203	5183124000	56kΩ			
Q102 Q103~Q105	5042465000 5145151000	2SA721T 2SC18150	GR	R205	5183124000	56kΩ			
Q111	5145151000	2SC18150		R207 R208	5183094000 5183130000	3.3kΩ 100kΩ			
Q112 Q122, Q123	5145095000 5145151000	2SA826L 2SC18150		R209	5183088000	1.8kΩ			
	DIODES			R210	5183058000	100Ω			
				R211	5183070000	330Ω			
D101, D102 D106, D107	5224012510 5042213000	1S2076FA 1N60	4	R214 R215	5183114000 5183110000	22kΩ 15kΩ			
5100, 5107		11100		R216	5183058000	100 Ω			
All resiste	RESITORS ors are rated ±	5% tolera	nce, ¼ watt and	R217	5183138000	220kΩ			
of ca	arbon type un	less other	vise noted.	R218 R221	5183086000 5183086000	1.5kΩ 1.5kΩ			
R101	5183134000	150kΩ		R222	5183114000	22kΩ			
R102 R103	5183082000 5183118000	1kΩ 33kΩ		R223 R224	5183138000 5183114000	220kΩ 22kΩ			
R104	5240452400	$56k\Omega$	Low noise						
R105	5183122000	47 kΩ		R225 R226~R228	5183080000 5183106000	820Ω 10kΩ			
R106	5240452400		Low noise		1 5184249000	100Ω	Nonflamm	able	
R107 R108	5240452000 5240450800		Low noise Low noise		CAPACITO	RS			
R109	5183070000 5240454000	330Ω	Low noise	C101	5054656100	Dip. Tant.	10µ F	16V	
R111	5240454000		Low noise	C102	5173037000	Elec.	47µF	25V	(SM
R112 R113	5183084000 5183064000	1.2kΩ 180Ω		C103 C104	5173046000 5171598000	Elec. Elec.	100μF 47μF	25V 10V	
R114	5240450600	10kΩ	Low noise	C105	5173728000	Polypro.	470pF	100V	
R115 R118	5240448200 5183118000	1kΩ 33kΩ	Low noise	C106	5171594000	Elec.	22µF	25V	(LR
		EGLO		C108	5170429800 5173044000	Mylar Elec.	0.015µF 100µF	100V	(SM
R119 R120, R121	5183124000 5183106000	56kΩ 10kΩ		C110	5054382000	Dip. Mica	22pF	50V	10%
R123 R124	5183118000 5183124000	33kΩ 56kΩ		C112, C113	5173046000	Elec.	100µF	25V	(SM
R125, R126		10kΩ		C115	5171583000	Elec.	0.47µF		(LR
R131	5184265000	470Ω	Nonflammable	C117	5171583000 5260221910	Elec. Elec.	0.47μF 10μF		(LR (LL
R132	5183100000	5.6kΩ		C119	5170401800	Mylar	0.001µF		100/
R133 R134	5240453800 5183088000	220kΩ 1.8kΩ	Low noise	C120	5054742000	Dip. Mica	47pF	50 V	10%
R140	5240453800		Low noise	C121 C122	5171585000 5171584000	Elec. Elec.	2.2μF 1μF		(LR (LR
R141	5183134000	150kΩ		C123	5260222010	Elec.	10µF	35V	(LL
R142 R144	5183092000 5183120000	2.7kΩ 39kΩ		C124 C125	5054744000 5171585000	Dip. Mica Elec.	100pF 2.2μF		10% (LR
R145	5183058000	100 Ω							
R146	5183130000	100kΩ		C126	5260223110 5173046000	Elec. Elec.	47μF 100μF		(LL (SM
R147	5183128000	82kΩ		C128	5172992000	Elec.	1µF	50V	(SM
R148 R150	5183102000 5183120000	6.8kΩ 39kΩ		C129 C130	5173052000 5172996000	Elec. Elec.	220µF 2.2µF	6.3V 50V	(SM
R152, R153	5183106000	10kΩ	Newflowership						
R154 2	1 5184249000	100Ω	Nonflammable	C131 C132	5170413800 5173017000	Mylar Elec.	0.0033µF 22µF	100V 10V	(SM
R155	5183122000	47kΩ		C145	5171583000	Elec.	0.47µF	50V	(LR (LR
R156 R160	5183082000 5183130000	1kΩ 100kΩ		C146 C147	5171591000 5054351000	Elec. Dip. Mica	10µF 33pF	50V	10%
R161	5183108000	12kΩ		C148 C151	5171584000 5171584000	Elec. Elec.	1μF 1μF		(LR (LR
R162	5183130000	100kΩ			5171564000	LICC.	iμr	30 V	1LN

[A]: AUSTRALIA [E]: EUROPE

[UK]:U.K.

AMP MOTHER PCB ASSY

22422 STORES 2000 STORES	DESCRIPTION	REF. NO.	PARTS NO.	DESCRIPTION
5173037000 5170429800	Elec. 47μF 25V (SM) Mylar 0.015μF 100V		5200011700	PCB Assy
5170423800 5170453800	Mylar 0.0082µF 100V Mylar 0.15µF 100V		5210011700	PCB
5171590000	Elec. $10\mu F$ 16V (LR)	P101, P102	5122358000	Connector Plug, 6P
5173731000	Polypro 820pF 100V			Connector Plug, 8P Connector Plug, 4P
5173034000	Elec. 47µF 6.3V (SM)	P105	5122362000	Connector Plug, 10P
		P271	5122358000	Connector Plug, 6P
		P301, P302	5122358000	Connector Plug, 6P
VARIABLE	RESISTORS			Connector Plug, 5P Connector Plug, 10P
5280000802	Semi-fixed 5k Ω (B)	P381	5122360000	Connector Plug, 8P
		P382, P383	5122359000	Connector Plug, 7P
5280001102	Semi-fixed 20kΩ(B)	P384	5122360000	Connector Plug, 8P
				Connector Plug, 8P (WH Connector Plug, 3P (WH
5280000802	Semi-fixed $5k\Omega(B)$	P465, P466	5122189000	Connector Plug, 8P (BL
COILS		P467	5122305000	Connector Plug, 8P (RE
	Trop 2mH	P468	5122132000	Connector Plug, 8P (WH
5160044000 5160045000	Trap, 3mH Rec EQ, 1.5 ~ 2.4mH			Connector Plug, 9P (WH Connector Plug, 8P (WH
5160044000	Trap, 3mH	a second second		
MISCELLAN	NEOUS	K391 K433, K434	5290007700 5061137000	Relay, 12V; MR24-24S Relay, 12V; LAB2L
5122377000	Connector Socket, 6P		5200011500	PCB Assy, SW
		S431		PCB Switch, Push; 3-gang 4P
5724042000	Pin, F-3	S432	5300019100	Switch, Push; 4-gang DF
	5170429800 5170423800 5170453800 5171590000 5173731000 517304000 5260223110 5173046000 VARIABLE 528000802 528000802 528000802 528000802 528000102 528000102 528000102 5280001502 528000802 COILS 5160044000 5160044000 5160044000 5160044000 5160044000 5160044000 5160044000 5160044000 5160044000 5122377000 5122379000 5122381000	$\begin{array}{ccccccc} 5170429800 & Mylar & 0.015\mu F & 100V \\ 5170423800 & Mylar & 0.0082\mu F & 100V \\ 5170453800 & Mylar & 0.15\mu F & 100V \\ 5171590000 & Elec. & 10\mu F & 16V & (LR) \\ \hline \\ 5173731000 & Polypro. & 820p F & 100V \\ 5173034000 & Elec. & 47\mu F & 6.3V & (SM) \\ 5260223110 & Elec. & 47\mu F & 16V & (LL) \\ 5173046000 & Elec. & 100\mu F & 25V & (SM) \\ \hline \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

[GE]: GENERAL EXPORT [UK]: U.K.

FUNCTION SYNC PCB ASSY

REF.NO.	PARTS NO.	DESCRIPTION	1300	REF.NO.	PARTS NO.	DESCRIPTION		
	5200011400	PCB Assy		1121-110	CAPACITO	RS		
	5210011400	PCB		C301~C304	5170431800	Mylar 0.018µF 1		
	IC's			C305~C308 C309~C312	5260222010 5054656100		35V 16V	(LL)
				C313~C316	5170429800	Mylar 0.015µF 1	00V	
U301~U304	5147028000	JRC-4558D-D		C317~C320	5170413800	Mylar 0.0033µF 1	00V	5%
	TRANSIST			C321~C324 C325~C328	5171581000 5170401800	Mylar 0.001µF 1	00V	
Q301~Q304 Q305~Q308	5145095000 5145151000		1212	C329~C332 C333~C336	5173018000 5171581000			(SM) (LR)
2391~0398	5145151000	2SC1815GR	1011	C337~C340	5054737000		50V	
Q399 Q400~Q403	5145082000 5145151000			C341~C344	5171585000	Elec. 2.2µF	50V	(LR)
1400 4400		2001010011		C345~C348	5170401800	Mylar 0.001µF	10V	5%
	DIODES		1222	C349~C352 C353~C356	5173037000 5173017000			(SM (SM
D301~D303			1000	C357	5260223110			(SM
D391~D398 D399	5224012510 5143315000			C391~C394	5260085600	Elec. 1µF	50V	(EU)
D400	5224012510	1S2076FA		C395	5173019000	Elec. 22µF	25V	(SM)
D401	5042514000	Zener, WZ-061		C396 C397, C398	5173037000 5260085600			(SM) (EU)
All resisto	RESISTORS	5% tolerance, ¼ watt and	orand .		VARIABLE	RESISTORS		
of ca	irbon type un	less otherwise noted.		R345~R348	5280001502	Semi-fixed 50kΩ(B)		
R305~R308 R309~R312	5183130000 5183068000	100kΩ 270Ω			MISCELLA	NEOUS		
R313~R316		100kΩ						
R317~R320	5183138000	220kΩ 2.7kΩ	1.1	J301, J302 J303	5122377000	Connector Socket, 6P Connector Socket, 5P		
R321~R324	5183092000	2.7832		J304	5122381000		ê	
R325~R328 R329~R332	5183058000 5183106000	100Ω 10kΩ						
R333~R336	5183130000	100kΩ						
R337~R340 R341~R344	5183092000 5183130000	2.7kΩ 100kΩ		- 1 C				
R349~R352 R353~R356	5183114000 5183058000	22kΩ 100Ω						
R357~R360	5183130000	100kΩ						
R361~R364 R365~R368	5183078000 5183100000	680Ω 5.6kΩ						
R369~R372	5183124000	56kΩ						
n309 - n372	5185124000	JOK32						
R374, R375 R376	5183106000 5183090000	10kΩ 2.2kΩ						
R391~R394	5183098000	4.7kΩ						
R395~R402	5183122000	4.7kΩ						
R403~R410	5183106000	10kΩ						
R411 R412	5183082000 5183098000	1kΩ 4.7kΩ						
R413	5183086000	1.5kΩ		1				
R414	5183116000	27kΩ		1.1				
R415	5183122000	47kΩ						
R416 R417	5183106000 5183124000	10kΩ 56kΩ						
R418	5183122000	47kΩ						
R419	5183082000	1kΩ						
R420	5183104000	8.2kΩ						
R421 R422	5183122000 5183124000	47kΩ 56kΩ						
R423	5183104000	8.2kΩ						
R424 R425	5183124000 5183130000	56kΩ 100kΩ						
1420	5165150000							

[GE]:GENERAL EXPORT [UK]:U.K.

CONTROL PCB ASSY

REF. NO.	PARTS NO.	DESCRIPTION	132	REF. NO.	PARTS NO.	DESCRIPT	FION		
	5200011900 5200011910 5200011920 5210011900			R540 R541 R542 R543 R544	5183118000 5183114000 5183134000 5183070000 5183070000 5183116000	33kΩ 22kΩ 150kΩ 330Ω 27kΩ			
	IC's			1 34 615-14/8					
U501 U502 U503 U504	5220405100 5147047000 5220012500 5147056000	μΡC-78M05H M-54410P μΡC393C HD-7400P		R545 R546 R547 R548, R549 R550, R551	5183122000 5183130000 5183094000 5183114000 5183122000	47kΩ 100kΩ 3.3kΩ 22kΩ 47kΩ			
	TRANSIST	OR\$		R552	5183134000	150kΩ			
Q501 Q502 Q503 Q504	5042383000 1 5145087000 5230771000 5042383000		4	R553 R554 R555 R556	5183122000 5183094000 5183114000 5183098000	47kΩ 3.3kΩ 22kΩ 4.7kΩ			
Q505 Q506~Q513 Q514	5230013000 5042383000 5042553000	2SA984KE 2SC536F		R557, R558 R559 R560 R561	5183100000 5183058000 5183122000 5183084000	5.6kΩ 100Ω 47kΩ 1.2kΩ			
Q515~Q518 Q519		2SC536F 2SD313E		R562	5183108000	12kΩ			
Q520 Q521~Q523 Q524, Q525	5230013000			R563 R564 R565, R566 R567	5180096000 5183120000 5183106000 5183068000	3.9kΩ 39kΩ 10kΩ 270Ω			
D501~D503 D504~D507		W03C ERB12-02G1		R567 R568 R569 R570~R572	5183068000 5183106000 5183068000 5183106000	270Ω 10kΩ 270Ω 10kΩ			
	5143153000 5143243000	ERB12-02G1			CAPACITO	RS			
D511, D512 D513 D514~D516 D517 D518, D519	5224013000 5224012510 5143315000 5143243000 5224012510	DSA26C 1S2076FA W03C ERB12-02G1 1S2076FA		C501 C502 C503 C504 C505	5172970000 5172959000 5172973000 5172936000 5172945000	Elec. Elec. Elec. Elec. Elec.	1000μF 470μF 1000μF 100μF 220μF	6.3V 50V 35V	(SM) (SM) (SM) (SM) (SM)
All resiste	5143315000 RESISTORS ors are rated ± arbon type un	5% tolerance, ¼ watt and less otherwise noted.		C506 C507 C508 C509 C510, C511	5172882000 5054204000 5172973000 5172978000 5172882000	Elec. Ceramic Elec. Elec. Elec.	1μF 0.01μF 1000μF 2200μF 1μF	50V 50V 25V	(SM) 10% (SM) (SM) (SM)
R505	5184201000 5183122000 5183114000 5184302000 5183102000	1Ω Nonflammable 47kΩ 22kΩ 1.5Ω 10% 2W Cement 6.8kΩ		C512~C516 C517 C518 C519~C521 C522, C523	5172886000 5172903000 5172890000 5172918000 5054204000	Elec. Elec. Elec. Elec. Ceramic	2.2μF 10μF 3.3μF 33μF 0.01μF	50V 50V 35V	(SM) (SM) (SM) (SM) 10%
R506 R507 R508 R509 R510	5183106000 5183096000 5183112000 5183102000 5183114000	10kΩ 3.9kΩ 18kΩ 6.8kΩ 22kΩ		C524 C525 C526 C527 C528	5172882000 5260086200 5172896000 5172880000 517280000 5172903000	Elec. Elec. Elec. Elec. Elec.	1μF 10μF 4.7μF 0.47μF 10μF	16V 50V 50V	(SM) (EV) (SM) (SM) (SM)
	 ▲ 5184233000 ▲ 5184294000 5183106000 5183046000 5183082000 	22Ω Nonflammable 0.68Ω 10% 2W Cement 10kΩ 33Ω 1kΩ		C529 C520, C531 C532, C533	5172896000 5171613000 5267702700	Elec. AC Film AC Film	0.5µF	250V	(SM) , C]
R522 R523 R524 R525, R526 R527	5183074000 5183080000 5183070000 5183106000 5183114000	470Ω 820Ω 330Ω 10kΩ 22kΩ		K501~K503 S501 Z501~Z505	MISCELLA 5061134000 5044456000 5052905000 5033295000	an church a			
R528, R529 R530~R532 R533~R536 R537, R538 R539	5183106000 5183078000 5183114000 5183082000 5183046000	10kΩ 680Ω 22kΩ 1kΩ 33Ω			5033291000	Plate, Insu			

[U]: U.S.A. [C]: CANADA [A]: AUSTRALIA [E]: EUROPE

[GE]:GENERAL EXPORT [UK]:U.K.

BIAS ADJ PCB ASSY

REF.NO.	PARTS NO.	DESCRIPTION	
	5200011200	PCB Assy	
	5210011200	PCB	
	DIODES		
D381~D384	5143116000	1SR34200VL	
	TRIMMER	CAPACITORS	
C381~C384	5170325000	10-100pF	
	COILS		
L381~L384	5160044000	Trap, 3mH	
	MISCELLA	NEOUS	
K381~K384 J381 J382, J383 J384	5061128000 5122379000 5122378000 5122379000	Relay, 24V LZN2-1 Connector Socket, 8P Connector Socket, 7P Connector Socket, 8P	

OSC PCB ASSY

					0.00.00000			
REF.NO.	PARTS NO.	DESCRIPTION		R255, R256 R257	5180034000 5180032000	10Ω ½ 8.2Ω	2W	
	5200011100	PCB Assy		R258 R259	5183082000 5183122000	1kΩ 47kΩ		
	5210011100	PCB			CAPACITO	DC		
	TRANSIST	ORS			CAPACITO	10		
				C241	5171582000	Elec. Elec.	0.33µF	50V 50V
Q271 Q272	5145151000 5145082000	2SC1815GR 2SC2060Q		C242, C243 C244	5172992000 5173037000	Elec.	1μF 47μF	25V
Q273, Q274	5042445000	2SC1226AR		C245	5054382000	Dip. Mica	22pF	50V
	RESISTOR	8		C246 C247	5173073000 5173011000	Elec. Elec.	470μF 10μF	25V 25V
All resist	ors are rated ±	5% tolerance, ¼ watt and		C248	5054742000	Dip. Mica	47pF	50V
of c	arbon type un	less otherwise noted.			MISCELLA	NOUS		
R271	5183118000	33kΩ						e.
R272 R273	5183084000	1.2kΩ 6.8kΩ		R249 S241	5282008302 5300019000		50kΩ(A	.)
R274	5183102000 5183118000	33kΩ		J241	5124046000	Jack, PHO		
R275	5183130000	100kΩ		J242	5122130000	Connector	Plug, 6P	
R276	5183108000	12kΩ						
R277	5183090000	2.2kΩ						
R278 R279	5183106000 1 5184225000	10k Ω 10 Ω Nonflammable						
R280	5180090000	2.2kΩ ½W						
R281, R282	5180098000	4.7kΩ ½W						
R283	5183058000	100Ω 22Ω ½W						
R284, R285	5180042000							
	CAPACITO	RS						
C271	5260086510	Elec. 22µF 16V (
C272 C273	5173037000 5170413800	Elec. 47µF 25V (Mylar 0.0033µF 100V 5						
C274	5170413800	Mylar 0.0056µF 100V 5						
C275	5170413800	Mylar 0.0033µF 100V 5	5%					
C276	5054404000	Mylar 4200pF 300V 1	0%					
	MISCELLA	NEOUS						
L271	5056323100	OSC Coil						
J271	5122377000	Connector Socket, 6P						
[U]: U.S.A. [A]: AUSTI		[C]: CANADA [E]: EUROPE	[GE]:0 [UK]:0	GENERAL EX	PORT			

PHONE AMPL PCB ASSY

	· ····································		÷			
1.	REF.NO.	PARTS NO.	DESCRIPT	ION		
		5200011300	PCB Assy			
		5210011300	РСВ			
		TRANSIST	ORS			
	Q241, Q242 Q243 Q244	5145151000 5145082000 5145084000	2SC2060Q			
		DIODES				
	D241, D242	5224012510	1S2076FA			
	All resisto of ca	RESISTORS ors are rated ± rbon type un	5% tolerand	e, ¼ wat se noted.	t and	
I2-1 et, 8P et, 7P et, 8P	R241~R244 R245 R246 R247 R248	5183130000 5183124000 5183102000 5183100000 5183064000	56kΩ 6.8kΩ			
	R250 R251	5183112000 5183114000	18kΩ 22kΩ			
	R253 R254	5183090000 5183138000	2.2kΩ 220kΩ			
	R255, R256 R257 R258 R259	5180034000 5180032000 5183082000 5183122000		źW		
		CAPACITO	RS			
4 watt and	C241 C242, C243 C244 C245 C246 C247 C248	5171582000 5172992000 5173037000 5054382000 5173073000 5173073000 5173011000 5054742000	Elec. Elec. Dip. Mica Elec.	470μF 10μF	50V 25V 50V 25V 25V	(SM) (SM) 10% (SM) (SM)
oted.	MISCELLANOUS					
	R249 S241 J241 J242	5282008302 5300019000 5124046000 5122130000	Switch, Pus Jack, PHO	NE	.)	
ammable						
2μF 16V (EU) 7μF 25V (SM) 3μF 100V 5% 6μF 100V 5% 3μF 100V 5% 0pF 300V 10%						
et, 6P						

FUSE PCB ASSY (PC Board omitted)

REF. NO.	PARTS NO.	DESCRIPTION
	5200012010 5200012700 5200012000	PCB Assy [U, C] PCB Assy [E, UK, A] PCB Assy [GE]
	5210012000 5210012700 5210012000	PCB [E, UK, A]
F601 F601 F602 F602 F602 F602	$ \begin{array}{c} \pounds 5307004100 \\ \pounds 5041140000 \\ \pounds 5041114000 \\ \pounds 5307004300 \\ \pounds 5142190000 \\ \pounds 5142211000 \\ \end{array} $	Fuse 2A 25V [U, C] Fuse T1A 250V [E, UK, A] Fuse 2A 250V [GE] Fuse 3A 250V [U, C] Fuse T2.5A 250V [E, UK, A] Fuse 3A 250V [GE]
F603 F603 F604, F605 F604, F605	☆5307004100 ☆5142188000 ☆5041114000 ☆5307003600 ☆5041140000 ☆5041140000	Fuse 2A 250V [U, C] Fuse T1.6A 250V [E, UK, A] Fuse 2A 250V [GE] Fuse 1A 250V [U, C] Fuse T1A 250V [E, UK, A] Fuse 1A 250V [GE]
	5041237000 5142087000 5041237000	Holder, Fuse (10 used) [U, C] Holder, Fuse (10 used)[E, UK, A] Holder, Fuse (10 used) [GE]

OPERATION SW PCB ASSY (PC Board omitted)

REF.NO.	PARTS NO.	DESCRIPTION
	5200011800	PCB Assy
	5210011800	РСВ
D801 D802 S801~S806	5143140000 5143139000 5138011000	LED, SLB-26UR1 Red LED, SLB-26GG1 Green Switch, Tact AKC-8C

LED PCB ASSY (PC Board omitted)

REF.NO.	PARTS NO.	DESCRIPTION
	5200011600	PCB Assy
	5210011600	PCB
	DIODES	
D481~D484	5225005400	LED, SLP-135B
	RESISTORS	5
R481~R484	5225005400	2.7kΩ 5% ¼W

SPEED SW PCB ASSY (PC Board omitted)

REF.NO.	PARTS NO.	DESCRIPTION	
	5200012200	PCB Assy	
	5210012200	PCB	
S702	5134090000	Switch, Push; 2-gang	

VOLUME PCB ASSY (PC Board omitted)

REF. NO.	PARTS NO.	DESCRIPTION	
	5200012300	PCB Assy	
	5210012300	РСВ	
S706	5150239000	Var. Res. w/Switch $5k\Omega(B)$	-

CONNECTOR PCB ASSY (PC Board omitted)

REF. NO). PARTS NO.	DESCRIPTION	
	5200012100	PCB Assy	
	5210012100	PCB-110	
J901	5334010100 5554099100	Connector Socket, 12P Bracket, Connector	
[U]: U. [A]: A	.S.A. USTRALIA	[C]: CANADA [E]: EUROPE	[GE]: GENERAL EXPORT [UK]: U.K.

TABLE OF SEMICONDUCTORS

TEAC CORPORATION

TEAC CORPORATION OF AMERICA TEAC AUSTRALIA PTY., LTD. 3-7-3 NAKA-CHO MUSASHINO TOKYO PHONE (0422) 53-1111

7733 TELEGRAPH ROAD MONTEBELLO CALIFORNIA 90640 PHONE (213) 726-0303 165-167 GLADSTONE STREET SOUTH MELBOURNE VICTORIA 3205 PHONE 699-6000

PRINTED IN JAPAN 1180 SYU 1.6 D-3562A