APPENDIX F: Trouble Diagnosis and Correction

This Appendix is the first place you should go to obtain information on what to do if OPTIMOD-FM develops a fault. Many problems experienced in the field can be resolved or conclusively diagnosed with the following diagnostic routines. Even if the repair cannot be done in the field, the information provided by these diagnostic routines can speed the work of the factory service department in making the repair. Please perform these routines and make notes if you observe anything exceptional or unusual.

1) Use systematic troubleshooting techniques to positively determine that the problem is in fact being caused by OPTIMOD-FM, and not by other equipment. If a standby processor/stereo generator chain is available, it should be substituted for the supposedly faulty OPTIMOD-FM to see if the problem vanishes. If a standby processor/stereo generator is <u>not</u> available, audio quality at the OPTIMOD-FM audio input terminals should be checked with a high-quality monitor system. Note that even slight distortion can be seriously exaggerated by "heavy" processing, and that this sort of processing can only be successful if the input audio is extremely clean. A relatively minor problem which develops in the station's audio chain or STL can therefore be magnified by the action of OPTIMOD-FM, even if OPTIMOD-FM is in no way defective.

If the audio is clean going into OPTIMOD-FM, problems can still arise in the exciter. If a standby exciter is available, it should be substituted to see if the problem vanishes. If no standby exciter is available, you can connect the baseband output of the 8100A/1 stereo generator directly into the baseband input of your stereo monitor (bypassing the FM monitor) to see you still observe the problem on the monitor. (Be sure that the problem is not in the stereo monitor by verifying that the problem can be observed on more than one receiver.)

If the problem vanishes when you observe the stereo monitor, the exciter (or composite STL) is strongly suspect. An exciter, for example, may appear to work in mono mode (with OPTIMOD-FM bypassed), yet exhibit noise and/or distortion when asked to pass stereo signals. Some exciters have well-known characteristic problems!

Changes in or deterioration of grounding and/or exterior lead dress can sometimes cause RFI or hum problems to appear in a good OPTIMOD-FM.

If it seems impossible to conclusively isolate the problem to OPTIMOD-FM, yet no other definite cause is found, then performing the Field Audit-Of-Performance procedure in Appendix D may help diagnose a problem.

2) If the fault has been positively isolated to OPTIMOD-FM, the **Problem** Localization Routine described below should be performed to identify the faulty PC card.

The installation and servicing instructions in this manual are for use by qualified personnel only. To avoid electric shock, do not perform any servicing other than that contained in the Operating Instructions unless you are qualified to do so. Refer all servicing to qualified personnel.

(per UL 813)

PROBLEM LOCALIZATION ROUTINE

General Principles: The most powerful and general technique for localizing a problem within OPTIMOD-FM is <u>signal tracing</u>. This simply means that the signal is observed at various points as it passes from OPTIMOD-FM's input to its output. If the signal is normal at some point "A" in the circuit, and is abnormal at a point "B" further towards the output, then the problem clearly lies in circuitry between points "A" and "B".

Signal tracing in OPTIMOD-FM is facilitated by the fact that much of the circuitry is duplicated for stereo, and is arranged so that the bad channel can be readily compared with the good one, which serves as a "normal" reference.

Power Supply Tests: Some circuitry is common to both channels, and failures will therefore affect both channels in a symmetrical way. In particular, problems in the power supply may affect many OPTIMOD-FM circuits simultaneously. For this reason, the first step in any troubleshooting procedure is to check the power supply for normal output. <u>Gross</u> changes in power supply voltage can be detected with the "+15VDC" and "-15VDC" positions on the VU meter. Normal readings are 0VU ± 0.5 VU. If normal readings are obtained, skip to the next section on **VU Meter Technique.**

If either "+" or "-" power supply output is significantly low, it could indicate a defect in the supply itself. But it is more likely to indicate a shorted IC or capacitor somewhere in the circuit that is overloading the supply and causing it to current-limit.

The power supply is electronically protected against excessive current demand by other parts of the circuitry. If a failure causes a high current demand on the power supply, its output voltage will drop as far as necessary to reduce output current to approximately 0.75A. If the power supply voltage is observed to be abnormally low, unplug each circuit card in turn and check if the power supply recovers by observing the "-15VDC" meter position. (The negative regulator tracks the +15V supply. So the -15V supply will go down if the +15V supply does, even if the -15V supply or load is completely normal. A normal "-15VDC" reading thus assures a normal "+15VDC" reading.) If recovery occurs, then troubleshoot the unplugged board. Ordinarily, the defective component will become very hot, and is easily detected by touch. (Wet your finger first to avoid burns!) If all cards are removed and an undervoltage problem does not disappear, examine the meter card, motherboard, and chassis wiring before suspecting the supply itself. (A wiring problem will be indicated by an ohmmeter's indicating very low resistance between the "+15V" or "-15V" power busses with AC power OFF.)

Even if power supply voltages appear normal on the VU meter, subtle problems such as hum, noise, or oscillation may still exist with the supply. To check for this, test the regulated DC with a well-calibrated DVM, scope, and AC VTVM with 20-20k Hz bandpass filter. Voltages should be +15.00V $\pm 0.075V$, -15.00V $\pm 0.375V$. Ripple must be less than 2mV rms, 20-20,000Hz. There must be no high frequency oscillation.

VU Meter Technique: If one channel goes dead, the VU meter provides a means for fast signal tracing. Note, however, that problems other than gross gain changes or total failure to pass signal may not be detected by the meter alone.

First, switch through the first six VU meter functions (which monitor the audio processing) to see where the signal disappears (or the VU meter pegs, implying that a defective IC opamp has latched up to the power supply rail.) Refer to the block diagram (p. J-21) to locate the exact points in the signal path monitored by the meter.

If the signal is normal at the input terminals and abnormal in either INPUT BUFFER position, then the problem lies with Card #3 (left channel) or Card #4 (right channel), or with the incoming audio circuitry prior to these cards.

If the signal is normal at the INPUT BUFFER positions but abnormal in the COMPRESSOR OUT position, then the problem probably lies with Card #3 (left channel), with Card #4 (right channel), or, if both channels are equally affected, with Card #5.

If the signal is normal at the COMPRESSOR OUT positions, but abnormal in either FILTER OUT position, then the problem may lie with Card #6 (which contains <u>both</u> channels), Card #8 (left channel), or Card #9 (right channel). The **Card Swap Technique** (below) must be used to localize the problem more precisely.

Abnormal readings in the three Stereo Generator positions on the VU meter switch (19KHZ OSC; 38KHZ AGC, 38KHZ PLL) are almost always due to problems with Card #7, or with the power supply. (L-R can read abnormally if the rear-panel NORMAL/TEST switch is left in TEST, and no inputs are provided to the rear-panel TEST jacks.)

The instructions below provide more detailed information on troubleshooting at the "card exchange" level. Servicing on the "component replacement" level requires more profound understanding of OPTIMOD-FM circuit operation, which is provided by **Appendix A** (SYSTEM DESCRIPTION) and **Appendix B** (CIRCUIT DESCRIPTION). If the technician wishes to troubleshoot OPTIMOD-FM 8100A/1 at the component level, he should first use **Appendix A** to help track down the fault to a given subsystem, and then refer to **Appendix B** for an extremely detailed explanation of the circuitry at the component level.

Card Swap Technique: If the defective card has not yet been conclusively identified and if the fault appears on one channel only, the next step involves a card swap technique. The PC cards in OPTIMOD-FM Model 8100A/1 have been specifically configured to aid troubleshooting if a fault appears in one stereo channel <u>only</u>. Cards #3 and #4 are identical, as are Card #8 and #9. Therefore, these card pairs can be interchanged one pair at a time to see if the problem moves from one channel to the other (implying that the fault is with one of the cards just moved), or stays the same (implying that the problem lies elsewhere in the system).

If interchanging these card pairs fails to affect the location of the problem, then Card #6 should be investigated. This card passes both left and right audio. To aid troubleshooting, a jumper is provided at the output of the card to interchange the outputs of the left and right channels (See Fig. F-1). If this jumper is moved and the fault moves from one channel to the other, then Card #6 is probably faulty.

Fig. F-1: Card #6 Left and Right Jumpers

Cards Common To Both Channels: Cards #1 (Power Supply), #5 (Compressor Control Circuitry), and #7 (Stereo Generator) are common to both channels. Card #6 contains the common +4.2V clipper bias supply used by Cards #8 and #9.

Diagnosis of power supply problems was discussed above.

A failure in Card #5 (the common processing control card that controls both Card #3 and #4) can manifest itself <u>on both channels</u> as distortion (too <u>little</u> gain reduction), low loudness (too <u>much</u> gain reduction), pumping or other dynamic problems (failure in the timing circuitry), or failure of the gating circuitry (which is usually indicated by abnormal behavior of the front-panel GATE lamp). First-order problems in card #5 are often indicated by a failure to produce the "standard level" under "standard control setup" conditions. (See c.1 and c.2 in **Appendix D** for instructions on how to make this test.)

Problems in Card #7 (Stereo Generator) can be isolated by use of the rear-panel TEST jacks. When the rear-panel TEST/NORMAL switch is in NORMAL, these jacks carry the output of the audio processing. If on-air problems are observed (and you have determined that they are <u>not</u> due to the exciter, monitor, or other external causes), yet audio from these jacks (listened to through standard deemphasis) sounds normal, suspect the stereo generator (or possibly the power supply.)

FAILURES WHICH CANNOT BE DIAGNOSED BY CARD-SWAPPING **Phase Corrector Failures:** One possible problem which is difficult to diagnose by means of a card swap is failure of a phase corrector on Cards #6, #8, or #9. Some failures can grossly change the phase response of a given channel without significantly affecting the frequency response. While each channel sounds normal by itself, the mono sum will exhibit gross frequency response aberrations due to phase cancellations. If the 8100A/1 is driven by mono material, the "L-R" meter position will fail to null.

The principal difficulty is determining <u>which</u> channel is abnormal, since phase corrector failures will cause audible problems (most often increased distortion) only with certain types of program material. The following describes listening tests to detect phase corrector failures. If the ear can detect the usually subtle effect of the corrector failure by listening to one channel only, then the card-swap technique can be successfully applied to isolate the problem. In these tests, it is important to drive both channels with <u>identical</u> program material, as the usual differences between the left and right channels can totally mask any differences due to phase corrector failure. The easiest way to assure identical L and R drive is simply to drive both L and R inputs in parallel from a single signal.

A phase corrector failure on Card #6 will cause slightly more high frequency clipping than would otherwise be expected, so the failed channel may sound slightly grittier when program material containing large amounts of high frequency energy is processed.

A phase corrector failure in the Smart Clipper (first part of Cards #8 and #9) will cause the distortion cancellation function to work incorrectly, and will result in sibilance distortion (splattered "ess" sounds on voices).

A phase corrector failure in the FCS Overshoot Compensator (second part of Cards #8 and #9) will result in inaccurate overshoot cancellation. This will result in overdriving the safety clipper when significant high frequency energy is present, which will in turn cause out-of-band frequency components to be generated. These components will cause aliasing distortion when decoded in a stereo receiver.

To test for this, drive one channel at a time with bright program material. Check separation by listening to the undriven channel as decoded by your stereo monitor. If one channel causes notably more "garbage" in the other (undriven) channel, then the channel causing the high amounts of "garbage" is suspect.

CATALOG OF TYPICAL SYMPTOMS AND PROBABLE CAUSES This troubleshooting guide is a catalog of some possible failure modes in the 8100A/l. It should be used in conjunction with **Appendices A** and B to aid troubleshooting at the component level.

ALWAYS BE SURE THAT THE PROBLEM IS NOT IN THE SOURCE MATERIAL FEEDING OPTIMOD-FM.

Whistle is heard on air, perhaps only in stereo reception.

1. Power supply oscillation. Suspect C111, C112, IC101, IC102.

 IC711 oscillating due to value shift in passive component. 38kHz no longer phaselocked to 19kHz. 38KHZ PLL and 38KHZ AGC meter positions will read abnormally.
Whistle on one stereo channel only probably due to oscillating IC. Use signal tracing techniques to isolate defective IC.

Buzz or hum.

1. Improper grounding. Chassis not properly grounded to rack. Circuit and chassis grounds connected through excessively long path. No direct connection between 8100A/1 circuit ground and circuit ground of exciter with balanced input.

2. RFI. Improve grounding scheme. Relocate 8100A/1 chassis. Change length of baseband output coax to retune it.

3. Low line voltage causing regulator to drop out and pass ripple.

4. C101, C102 in unregulated power supply failed, resulting in extremely high ripple. Power supply regulator drops out on each ripple cycle which instantaneously goes lower than 17.5 volts.

Loss of modulation control.

1. Make sure LIMITER PROOF/OPERATE switch (on Card #6) is in OPERATE.

2. Check for tightly-controlled peak levels at rear-panel TEST jacks. If levels not well-controlled, check $\pm 4.2V$ supply on Card #6.

3. If levels are well-controlled, check stereo generator. Loss of modulation control will be accompanied by gross failures to meet separation and/or crosstalk specifications. Alternately, there may be a large spurious output, like 38 or 76kHz.

Bass incorrectly balanced.

1. It is normal when operating the 8100A/1 "independent" to have it accentuate bass on many records (particularly older ones). If you want the frequency balance between "Air" and "Program" to be substantially identical, operate the BASS COUPLING control closer to "wideband".

2. Possible misalignment or failure in exponential converter circuitry for either "Master" or "Bass" compressors. This will cause frequency response to be non-flat even in PROOF mode. If this is the case, check circuitry associated with IC501, IC502, IC506, IC507.

3. Failure in Input Conditioning Filter (on Cards #3 and #4). This will be revealed in PROOF mode.

4. Failure in either "Bass" or "Master" VCA, causing gain shift.

Insufficient high frequency response.

1. Due to the FM preemphasis curve, some high frequency loss is inevitable when the 8100A/1 is operated aggressively for maximum loudness (i.e., large amounts of clipping, and fast release time). To obtain more highs, back off both the CLIPPING and RELEASE TIME controls.

2. In "independent" mode, the increase in bass response on certain records may cause an <u>apparent</u> loss of highs. Try operating "wideband" temporarily to see if the highs are then balanced like the input material.

3. R626 (left channel) or R660 (right channel) misadjusted, such that IC603A (left channel) or IC603B (right channel) is always turned ON, thus partially defeating the preemphasis.

4. HF limiter working too hard. Check IC605B, IC607 (left channel); IC611B, IC612 (right channel) for correct rectifier action and correct hf limiting threshold. (These circuits are independent. Thus, the bad channel can be compared to the good channel with a mono source.)

Gross distortion.

1. Power supply voltage low. (Check AC power line voltage first.)

2. IC opamp failure. This must be diagnosed by signal tracing.

3. Failure in clipper-diode bias supplies. Low bias voltage will cause excessive clipping, and will also result in abnormally low modulation. Check IC806B, IC808 and associated circuitry (on Cards #8 and #9) to make sure that the output is approximately ± 1.5 VDC under no-signal conditions, and approximately ± 1.35 VDC when a 5kHz sinewave at level sufficient to cause gain reduction is applied to the input of the appropriate channel. Check IC613 and associated circuitry (on Card #6) to make sure that the output is approximately ± 4.2 VDC under all OPERATE conditions.

4. Gross failure in a sidechain, such as IC latchup. This will either misbias the main signal path, or add distortion to the main signal, without causing the main signal to disappear. IC's in sidechains include IC601A, IC608A, IC602B, IC609B, IC604, IC610 (on Card #6); IC802A, IC802B, IC803A, IC804A, IC804B (on Card #8 and Card #9). 5. Exponential converter(s) IC501, IC502, IC506, IC507, or timing module(s) A1, A2 (on card #5) defective, causing very low (or no) control current to VCA's on Cards #3 and #4, thus causing these VCA's to take very high gain. Timing module failure will be indicated by MASTER COMPRESSOR G/R or BASS G/R meter's pegging at the top of the scale (beyond 0).

Moderate to Subtle Distortion.

1. Distorted program material and/or distortion problems in studio or STL (see Appendix K for further discussion).

2. Check points listed in "Gross Distortion" (immediately above), for moderate deviations from normal parameters.

3. CLIPPING control misadjusted.

4. Failure in rectifiers IC503A, IC504, IC503B, IC505, IC508A, IC509, IC508B, IC510, or in timing modules A1, A2 on card #5. These problems will usually be indicated by failure to produce standard level under standard conditions (see c.1 and c.2 in Appendix D).

5. Safety clipper misalignment (R841). This alignment is most unlikely to drift by <u>itself</u> from its factory-adjusted condition. But humans with alignment tools sometimes do strange things. If you are in doubt about this alignment, it can be checked (and readjusted if necessary) by performing Part 7 of **Appendix E.**

6. Phase corrector failure. See "Phase Corrector Failures" earlier in this Appendix for a further discussion.

7. Failure in distortion-cancel sidechain on Cards #8 and #9. This is indicated by a "gritty" high end with severe sibilance splatter.

L-R does not null on mono material.

1. This is caused by gain, frequency response, or phase response differences between the left and right channels. So before assuming that the problem is <u>internal</u> to OPTIMOD-FM, make sure that the feed is <u>really</u> 100% mono. This can be reliably assured by driving both left and right OPTIMOD-FM inputs in parallel from a single signal source.

2. If L-R <u>will not</u> null in PROOF mode, then the problem is static, and is caused by abnormal frequency and/or phase response in one channel. If the frequency response is normal, suspect the phase correctors on Cards #6, #8, and #9 (including A1, the phase delay network module).

3. If L-R <u>will</u> null in PROOF mode, then the left and right VCA's or high frequency limiter circuitry are failing to track dynamically under gain reduction conditions. In the case of the VCA's, the dual gain block (IC305, for example) is suspect. In the case of the HF limiter, the rectifiers or timing modules are suspect.

Lack of 38kHz suppression.

1. Drift in power supply voltage.

2. Excessive offset in IC701. Extreme offset or latchup of this IC will be indicated

by a constant deflection of the VU meter in the L-R mode.

3. Failure of IC805A, IC806A or IC905A, IC906A (on Card #8 or #9) such that considerable DC offset appears between the left and right audio processing outputs. If the offset changes by only 40mV, this is sufficient to change the 38kHz from being perfectly nulled to being suppressed only -40dB.

4. Defective L-R modulator IC702, IC703.

Pilot phase unstable.

- 1. Leaky Q710.
- 2. Bad IC704B or leaky C716.
- 3. R769 intermittent.
- 4. Power supply voltage unstable.
- 5. Bad phase detector IC708.

Separation unstable.

- 1. Power supply voltage unstable.
- 2. R772 intermittent
- 3. IC710 defective.

SCA interference.

1. Loss of suppression of 76kHz or its sidebands. (See 7.h in Appendix B for a complete discussion.)

2. Out-of-band emissions caused by FCS overshoot compensator failure forcing safety clipper to perform overshoot compensation. This will also cause loss of dynamic separation.

3. Power supply oscillation.

Sibilance Distortion.

- 1. Source material at OPTIMOD-FM input terminals distorted.
- 2. Failure of distortion-cancelling sidechain on Cards #8 or #9.

3. Failure of the HF limiter. If the HF limiter isn't working at all, then even a properly-operating distortion-cancelling clipper may generate some audible distortion.

Unit drops out of stereo mode.

- 1. Logic failure in IC713, IC714.
- 2. False pulses such as noise or rectified RF on remote terminals.

Unit drops out of mono mode.

- 1. See "Unit drops out of stereo mode", immediately above.
- 2. CROSSTALK TEST switch accidentally left in a TEST mode. Both TEST modes will force the logic into STEREO mode.

19kHz frequency out-of-tolerance.

1. It is <u>normal</u> for the frequency to be somewhat "off-center", as long as it is within ± 2 Hz of 19kHz per specifications and government requirements. If the problem is verified by your monitor service or by a high-precision calibrated frequency counter, then replace crystal Y701. (No frequency trim is provided.)

FACTORY ASSISTANCE

Orban maintains a Customer Service Department to help Orban product users who experience difficulties. Orban Customer Service is supplied at two levels. The first is telephone consultation. Often, a problem is due to misunderstanding, or is relatively simple and can be fixed by the customer aided by phone advice from the factory. Telephone consultation should <u>always</u> be the first step in any factory service transaction. Units will be accepted for factory service (the second level) <u>only</u> after consultation, and only after a Return Authorization (RA) code number has been provided by phone or letter. The RA number flags the returned unit for priority treatment when it arrives on our dock, and ties it to the appropriate information file.

The purpose of this formality is to save both the customer and the factory time and trouble by attempting to weed out problems which are caused by equipment other than OPTIMOD-FM, misapplication, or environment, and to identify those problems that lend themselves to quick field repair.

Before calling Customer Service, be prepared to give the model number (8100A/1) and <u>serial number</u> of your unit. If the unit is in its warranty period and the Registration Card was never returned, we will also need the name of the dealer from which the unit was bought, the invoice number, and the invoice date.

Be prepared to accurately describe the the problem. What is the complaint? Is it constant or intermittent? If it is intermittent, can it be correlated to environmental conditions like line voltage, temperature, humidity, electrical storms, vibration, etc? Do problems only occur with certain program material (live voice, very bright music, music with heavy bass transients, etc.)? What about source: cart, disc, reel-to-reel, live microphone?

Be prepared to describe any unusual observations made during the **Problem** Localization Routine you performed using the instructions above.

Then, contact the Customer Service Department by telephone, letter, or Telex (see title page for numbers). A Customer Service Engineer is ordinarily available during local business hours, Monday through Friday. The Customer Service Engineer will do everything practical to help correct the fault and have your OPTIMOD-FM up and running again as quickly as possible.

In many cases, field repairs can be effected by merely exchanging a single circuit card, rather than by returning the entire OPTIMOD-FM chassis for repair. The factory ordinarily maintains a small number of "loaner cards". One of these may be provided as a spare circuit card for use while your card is being repaired at the factory. In most cases, factory service of defective cards is preferable to field service because the factory maintains a supply of exact-replacement spare parts, and has the experienced technicians and special test fixtures necessary to assure that the repaired card meets factory specifications in all respects. Instructions for packing and shipping cards or the complete chassis are found at the end of this Appendix. DIAGNOSIS AT THE After following the above diagnostic procedure to localize the problem to a single card, you may want to troubleshoot the card on the component level instead of returning the card to the factory for service.

Here are some suggestions....

Troubleshooting IC Opamps

IC opamps are operated such that the characteristics of their associated circuits are essentially independent of IC characteristics and dependent only on external feedback components. The feedback forces the voltage at the "-" input terminal to be extremely close to the voltage at the "+" input terminal. Therefore, if the technician measures more than a few millivolts between these two terminals, the IC is probably bad.

Exceptions are IC's used without feedback (as comparators) and IC's whose outputs have been saturated due to excessive input voltage because of a defect in an earlier stage. However, if an IC's "+" input is more positive than its "-" input, yet the output of the IC is sitting at -14 volts, this almost certainly indicates that it is bad. The same holds if the above polarities are reversed. Because the characteristics of OPTIMOD-FM are essentially independent of IC opamp characteristics, an opamp can usually replaced without need for recalibration.

NOTE

THE DUAL CURRENT-CONTROLLED GAIN BLOCKS EMPLOYED IN THE VCA'S AND STEREO GENERATOR L-R MODULATOR (IC 305, 309, 405, 409, & 703) ARE <u>NOT</u> OPAMPS. IF THEY ARE REPLACED, RECALIBRATION IS ABSOLUTELY NECESSARY.

A defective opamp may appear to work, yet it may have extreme temperature sensitivity. If parameters appear to drift excessively, freeze-spray may aid in diagnosing the problem. Freeze-spray is also invaluable in tracking down intermittent problems. But, <u>use sparingly</u>, because it can cause resistive short circuits due to moisture condensation on cold surfaces.

SELECTING AND ORDERING REPLACEMENT PARTS

Nearly all parts used in Optimod-FM have been very carefully chosen to make best use of both major and subtle characteristics. For this reason, parts should always be replaced with <u>exact duplicates</u> as indicated on the Parts List. It is <u>very risky</u> to make "close-equivalent" substitutions because of the possibility of materially altering performance and/or compliance with FCC requirements. The Factory is ordinarily able to supply any replacement part rapidly at an uncommonly reasonable price.

Specifically, such parts include all FET's and precision metal-film resistors, almost all capacitors, trimmer resistors, and integrated circuits, most transistors, and certain diodes.

Certain cards contain potted modules which, if diagnosed as defective, must be replaced as a unit. Ordinarily, this requires return of the entire card to the factory.

Certain parts are selected by the factory to tighter-than-normal specifications in order to obtain circuit performance which meets our exacting standards. Such parts are footnoted in the Parts Lists.

Certain parts, if replaced, require partial recalibration which may or may not be practical in the field. Such parts are footnoted in the Parts Lists. The recalibration requirements are outlined in the appropriate section of **Appendix B** (Circuit **Description**) and/or **Appendix E** (Alignment).

Service in areas involving selected parts or recalibration is best referred to the factory, which, as a result of training, experience, availability of special equipment, and availability of exact replacement parts, is generally far better qualified to perform repairs efficiently and correctly.

Ordering Parts From The Factory: If parts are ordered from the factory, we require all of the following information:

- -- The Orban part number, if ascertainable from the Parts List
- -- The Reference Designator (e.g., R503)
- -- A brief description of the part
- -- And, from the serial label on the rear of the unit:
 - the exact Model Number
 - the Serial Number
 - the "M" number, if any

REPLACEMENT OF COMPONENTS ON PRINTED CIRCUIT CARDS

It is important to use the correct technique for replacing components mounted on PC cards. Failure to do so may result in circuit damage and/or intermittent problems.

Many components, if replaced, will cause a change in calibration which will require returning the affected circuit card to the factory for recalibration. Also, some components are selected for characteristics which are not indicated by the manufacturer's part number. Most of these components are listed as "selected" on the parts list, but not all. In addition, the selection criteria are not generally described. It is therefore almost always wiser to return the defective card to the factory for service.

Most circuit cards used in OPTIMOD-FM are of the double-sided plated-through variety. This means that there are traces on both sides of the card, and that the through-holes contain a metallic plating in order to conduct current through the card. Because of the plated-through holes, solder often creeps 1/16" up into the hole, requiring a sophisticated technique of component removal to prevent serious damage to the card.

If the technician has no practical experience with the elegant and demanding technique of removing components from double-sided PC cards without card damage, it is wiser to cut each of the leads of an offending component from its body while the leads are still soldered into the card. The component is then discarded, and each lead is heated independently and pulled out of the card with a pair of long nose pliers. Each hole may then be cleared of solder by carefully heating with a low-wattage soldering iron and sucking out the remaining solder with a spring-activated desoldering tool. THIS METHOD IS THE ONLY SATISFACTORY METHOD OF CLEARING A PLATED-THROUGH HOLE OF SOLDER IN THE FIELD!

The new component may now be installed by following the directions below starting with step (4).

Otherwise, use the following technique to replace a component:

1) Use a 30-watt soldering iron to melt the solder on the solder side (underneath) of the PC card. Do not use a soldering gun or a high-wattage iron! As soon as the solder is molten, vacuum it away with a spring-actuated desoldering tool like the Edsyn Soldapullt^R. AVOID OVERHEATING THE CARD; overheating will almost surely damage the card by causing the conductive foil to separate from the card base.

Even with care, you are likely to blister the enamel solder-mask coating on the card, which, in most cases, is no cause for concern. The coating exists mainly to prevent moisture from condensing between the traces and to simplify wave-soldering.

2) Repeat step (1) until each lead to be removed has been cleared of solder and freed.

3) Now release the component by gently wiggling each of the leads to break solder webs. Then lift the component out.

4) Bend the leads of the replacement component until they will fit easily into the appropriate PC card holes. Using a good brand of <u>rosin-core</u> solder, solder each lead to the bottom side of the card with a 30-watt soldering iron. Make sure that the joint is smooth and shiny. If no damage has been done to the plated-through hole, soldering of the topside pad is not necessary. However, if the removal procedure did not progress smoothly, it would be prudent to solder each lead at the topside as well in order to avoid potential intermittent problems.

5) Cut each lead of the replacement component close to the solder (underneath) side of the PC card with a pair of diagonal cutters.

6) Remove all residual flux with a cotton swab moistened with a solvent like 1,1,1 trichloroethane, naptha, or 99% isopropyl alcohol. The first two solvents are usually available in supermarkets under the brand name Energine^R Fire-proof Spot Remover and Regular Spot Remover, respectively. The alcohol, which is less effective, is usually available in drug stores. Rubbing alcohol is highly diluted with water and is ineffective.

It is good policy to make sure that this defluxing operation has actually removed the flux and has not just smeared it so that it is less visible. While most rosin fluxes are not corrosive, they can slowly absorb moisture and become sufficiently conductive to cause progressive deterioration of performance.

SHIPPING INSTRUCTIONS

Circuit Cards: A circuit card is best shipped in the special Orban Associates shipping carton used to supply loaner cards. If you wish to ship a card without this carton, cut two pieces of 1" or thicker soft foam to 6.5" x 9" (17cm x 23cm) or larger. Sandwich the card between the two foam pieces, and ship the foam "sandwich" in a rigid cardboard carton.

A "JIFFY-BAG" OR SIMILAR SOFT MAILING BAG DOES NOT PROVIDE SUFFICIENT PROTECTION FOR THE CARD, AND MUST NOT BE USED!

Shipping The Complete Chassis: If the original packing material is available, it should be used. Otherwise, a sturdy, double-wall carton of at least 200 pounds bursting test and no smaller than $22" \times 15" \times 12"$ (56 x 38 x 31 cm) should be employed.

OPTIMOD-FM should be packed so that there is at least 2" of packing material protecting every point. A plastic wrap or bag around the chassis will protect the finish. Cushioning material such as Air-Cap, Bubble-Pak, foam "popcorn", or thick fiber blankets are acceptable. Folded newspaper is <u>not</u> suitable. Blanket-type materials should be tightly wrapped around OPTIMOD-FM and taped in place to prevent the unit from shifting out of its packing and contacting the walls of the carton.

The carton should be packed evenly and <u>fully</u> with the packing material filling all voids such that the unit cannot shift in the carton. Test for this by closing but not sealing the carton and shaking vigorously. If the unit can be felt or heard to move, use more packing. The carton should be well-sealed with 3" (8 cm) reinforced fiber glass or polyester sealing tape applied across the top and bottom of the carton in an "H" pattern. Narrower or parcel-post type tapes will not stand the stresses applied to commercial shipments.

The package should be marked with the name of the shipper, and the words in red: DELICATE INSTRUMENTS, FRAGILE!. Even so, the freight people will throw the box around as if it were filled with junk. The survival of the unit depends almost solely on the care taken in packing!

After a formal Return Authorization (RA) number is obtained from the factory, units should be shipped to the Service Manager at the address shown on the title page.

YOUR <u>RETURN AUTHORIZATION</u> NUMBER MUST BE SHOWN ON THE LABEL, OR THE PACKAGE WILL NOT BE ACCEPTED!

INSURE YOUR SHIPMENTS APPROPRIATELY!

SHIP PREPAID -- DO NOT SHIP COLLECT!

DO NOT SHIP PARCEL POST!

(Otherwise, have a nice day.)

APPENDIX G: Changing Preemphasis

Unless specially ordered with a different preemphasis, the OPTIMOD-FM Model 8100A/1 is normally configured with 75us preemphasis. If your country's standard is 50us and you therefore wish to change the preemphasis on your unit from 75us to 50us, you must replace resistors and capacitors on card #6, as indicated in the following table. Refer to **Appendix J** for location of components.

The parts required may be obtained as kit **OPT-11** from the factory at nominal charge. When ordering, please specify both the model number and the preemphasis desired.

If you have not had much experience reworking double-sided printed circuit boards, see **Replacement of Components on PC Boards** in **Appendix F.** Verify correct operation when the modification has been completed (see **Appendix D** for a suggested method of verification).

COMPONENTS TO BE CHANGED ON CARD #6

		<u>75us</u>		<u>50us</u>	
Component	Notes	Value	ORBAN Part #	Value	ORBAN Part #
R602, R636	1	27 . 4k	20042.274	26 . 7k	20042.267
R603, R637		23 . 7k	20042.237	23 . 2k	20042.232
R604, R638	2	5 . 90k	20051.590	1.24k	20051.124
R605, R639		4.99k	20041.499	1.05k	20041.105
R607, R641		4.02k	20041.402	4.32k	20041.432
R608, R642		165 . 0k	20043.165	261 . 0k	20043.261
R614, R648		9 . 09k	20041.909	8.87k	20041.887
R617, R651		51.1k	20042.511	49 . 9k	20042.499
R619, R653		1 . 37k	20041.137	2 . 00k	20041.200
C603, C615	3	0.01uF	21702.310	0.047uF	21702.347
C604, C616	4	150pF	21018.115	100pF	21018.110

NOTES:

1) All resistors are Metal Film, 1/8-Watt, 1%, Style RN55D, except as noted.

G

- 2) R604 and R638 must be within 1/2% of their nominal values.
- 3) 2%, Polypropylene, 50V (Noble CQ15P style).
- 4) 1%, Mica, 500V (CM05 style CD-15).

Detailed Exciter Interface Instructions

This Appendix provides instructions on interfacing OPTIMOD-FM to certain exciters requiring special wideband interfaces. Most exciters have straightforward wideband inputs, and no special considerations are involved.

Collins 310Z-1(B)

Prior to installing the required Continental 785-1 Wideband Interface card, this exciter must be modified using a kit of parts and instructions provided by Continental. Once this modification has been performed, proceed as in the case of the Continental 510R-1 (immediately below).

Continental 510R-1 (Collins 310Z-2)

1. Obtain a 785E-1 interface card directly from Continental.

2. Remove the 53kHz phase-linear baseband filter (FL-1), Continental Part # 673-1162-020. The filter is located on the opposite side of the chassis under the protective grill in the rear of the exciter. To access this filter, first remove the entire rear grill of the exciter. Next, the circuit board that covers the screws that secure the filter in its socket must be removed. The filter is plugged into an octal socket and can be readily unplugged once its hold-down screws are removed.

Despite the inconvenience, it is <u>IMPERATIVE</u> that this filter be removed as it shunts the baseband input to the FM modulator and its continued presence would seriously degrade separation.

3. Replace the hardware and grill removed in step (2).

4. Install the 785E-1 Interface Card in its designated slot in the card cage.

5. Be certain that the Interface Card is not being overloaded by OPTIMOD-FM. This can happen easily if the B/B LEVEL control on the modulator card of the Continental exciter is set excessively low and the OPTIMOD-FM output level is increased to make up the gain. The problem may not be immediately noticeable under test conditions, but will seriously degrade the normal operation of the system.

H

To avoid this condition, do not change the adjustment of the B/B LEVEL control from the setting appropriate for use with the Continental stereo generator. If there is any reason to suspect that this control has been misadjusted, it is worthwhile to check the input sensitivity. The B/B LEVEL control is correctly adjusted when a sinewave of 1.24V rms (3.5v p-p) applied to the Continental Wideband Input produces 100% modulation at any frequency.

Gates (Harris) TE-1 and TE-3

1. If you do not have a Gates (Harris) Wideband Interface Kit (P/N 994 6672 001), order the Orban ATE-3F Interface Kit (Orban P/N 04014-000-00) directly from Orban.

2. Both the Gates (Harris) and Orban interface kits contain complete instructions for installation. Bear in mind that the Gates (Harris) interface provides a <u>balanced</u> input. This means that the OPTIMOD-FM circuit and chassis grounds will ordinarily be jumpered together on the rear barrier strip. The Orban interface provides an <u>unbalanced</u> input, and the OPTIMOD-FM circuit and chassis grounds will ordinarily be <u>unjumpered</u>.

RCA BTE-15

1. If your exciter is not equipped with an RCA "Monaural Audio Module" (RCA P/N MI-561072), then order Orban Accessory RCA-1 (Orban P/N 05004-000) directly from Orban.

2. Install OPTIMOD-FM directly above the exciter, allowing at least 1 3/4" (1 rack unit) of air space between the units. You may want to switch the OPTIMOD-FM's LINE VOLTAGE selector to "230V" so that it can be operated from the same 230 volt circuit that ordinarily powers the exciter.

3. Using the BNC/BNC cable provided with your OPTIMOD-FM, connect the OPTIMOD-FM baseband output to the WIDEBAND BNC connector (J108) on the right rear apron of the exciter mainframe. The WIDEBAND input is the second BNC connector from the top. Be careful not to connect to the TELEMETRY input.

4. Remove the RCA BTS-1B stereo generator from the BTE-15 mainframe. If the RCA "Monaural Audio Module" is available, install it in place of the RCA stereo generator. S201, which is located on the Monaural Audio Module circuit board, must be in the EXTERNAL position.

If the "Monaural Audio Module" is <u>not</u> available, install the "RCA Jumper Plug" obtained in step (1) in the jack vacated by the RCA stereo generator.

5. If any of the following conditions are noted after installing OPTIMOD-FM, your BTE-15 probably has a defective varactor diode:

a) The peak modulation level, as indicated on your modulation monitor peak flasher, seems to vary several percent with transmitter room temperature.

b) Modulation is asymmetric.

c) OPTIMOD-FM cannot supply enough level to modulate the exciter to 100%.

Any of these conditions should make you suspect RCA modulated oscillator diodes CR2 and/or CR3. Replacement of these diodes and realignment of the modulator is critical, and should probably be left to RCA Service.

APPENDIX J: Schematics, Parts Locators, and Parts List

The documents in this Appendix reflect the actual construction of your unit as accurately as possible. If changes are made, they will be found in an Addendum inserted in the front of this Manual. If there is a disagreement between these drawings and your actual unit, it more likely reflects an error in documentation than an error in the construction of your unit.

If you intend to replace parts, please consult the section in Appendix F on Selecting And Ordering Replacement Parts.

Schematic drawings for the major cards face the corresponding Parts Locator Drawing.

Schematic Drawings and Parts Locator Drawings for miscellaneous assemblies and the chassis interwiring follow.

TABLE OF CONTENTS

SCHEMATICS WITH PARTS LOCATORS

Card #1 Card #2 Card #3/4 Card #5	POWER SUPPLY REGULATOR (includes AC and unregulated DC) (not used in system) L & R COMPRESSORS COMMON PROCESSING CONTROL (for Cards #3 & #4)
Card #6	PREEMPHASIS AND H-F LIMITERS (both L and R)
Card #7	STEREO GENERATOR
Card #8/9	FILTERS, CLIPPERS, AND OVERSHOOT COMPENSATOR
IF	INPUT FILTER (on rear panel)
MR	METER RESISTOR (on front panel) ACCESSORY PORT #2 (For 8100A/XT Accessory Chassis)

Notes

1) Chassis interwiring is indicated on the Schematics for the interconnected cards.

Complete information on the Studio Chassis Accessory (including the #3/4TX cards) is found in a separate Supplemental Manual shipped with the Accessory.
Connections for the Dolby connector and other such accessories are shown either in an Appendix of this manual or in a separate Supplemental Manual for the accessory.

PARTS LIST Indexed by assembly, by commodity, by Reference Designator. See first page for parts described only generally.

INS

PRIOR TO THE RETURN OF THIS APPLIANCE TO THE CUSTOMER, AND UPON COMPLETION OF SERVICING, SERVICE PERSONNEL ARE REQUIRED TO TEST THIS UNIT FOR ADEQUATE INSULATION RESISTANCE BETWEEN THE POWER SUPPLY AND EXPOSED PARTS.

A SELECTED : MATCHED TO 1/4 % NOTES :

REFE	ERENCE DE	SIGNATORS
ITEM	LAST USED	NOT USED
с	C114	C110
CR	106	-
IC	102	-
Q	104	-
R	111	-
5	102	-
VR	102	-
FL	101	-
τ	101	-
L	102	-
۴	103	-

J

}

1

1

)

ł

Ì

ļ

1

1

J

1

1

1

		POSITION								
		NORMAL	ALLESS 21.							
L u	А									
MPERS	в		0-0 0 0-0 0							
r 5	c	미 명 명	ß							

ţ

÷.

ł

}

ļ

١

J

1

ì

1

)

NOTES: MARK APPROPRIATE VERSION IN \$\$ NEXT TO CARD EJECTOR IN RED

1

1

1

ļ

ł

See Appendix G: Changing Preemphasis.

J

(. TRIMPOTS: R709, "MAIN: SUE XTALK" R714, "38 HAZ NULL" R717, "38 HAZ NULL" R717, "38 HAZ NULL" R720, "DIET, NULL" R725, "DE HAZ NULL" R728, "DE OFFSET NULL" NOTES :

1

÷

1

1

J

1

NOTES

1

I. VERSIONS : -OUI = CARD B BIDDA, 8180A, 8182A -OOZ = CARD 9 BIDDA, 8180A, 8182A

1

1

)

A REMOVE FOR BIODA IN TEST "AS NEEDED"

J

60038-000-08

- FERRITE BEADS TYP.

Ì

1

İ

COMPONENT SIDE VIEW

1

j

1

1

1

LAST REF. DES.	
C 14	
R 12	
L6	

ł

J

COMPONENT SIDE

ł

ł

ł

When used, the FM Filter Card (ACC-22, Card #0) is inserted between Card #7 and Cards #8 and #9 in this block diagram.

J

Parts List

Because special or subtle characteristics of certain components have been exploited to produce an elegant design at a reasonable cost, *it is unwise to make substitutions for listed parts*. Consult with Orban Customer Service (see page 5-18) if the parts list indicates that a part is specially selected, or that realignment is required when the part is replaced.

Orban maintains an inventory of tested, exact replacement parts that can be supplied quickly at nominal cost. Spare parts kits are also available. When ordering parts from Orban, please be ready to supply the following information:

Orban part number Reference designator (e.g., C#, R78, IC14) Description of part Model, serial, and M number of unit—see rear-panel (not all units have M numbers)

Parts are listed by card or assembly (except for widely used common parts, which are described below), and the parts on each card are grouped by type. See the assembly drawings for locations of components.

To facilitate future maintenance, we have used components from well-established manufacturers with worldwide distribution whenever possible. The abbreviations used for manufacturers are listed on page 6-59, along with their USA headquarters' addresses.

Widely used common parts:

- Diodes: Unless specified by reference designator in the following, all signal diodes are 1N4148 (Orban part number 22101-000). This is a silicon, small-signal diode with ultra-fast recovery and high conductance. It may also be replaced with 1N914 (BAY-61 in Europe). (BV: 75V min. $@I_r = 5\mu A$, I_r : 25nA max. $@V_r = 20V$, V_f :1.0V max. $@I_f = 100mA t_{rr}$: 4ns max.)
- Resistors: Resistors should only be replaced with the same style and with the *exact* value marked on the resistor body. If the value marking is not legible, check the schematic or contact Orban Customer Service (see page 5-18). Performance and stability will be compromised if you do not use exact replacements.

Unless specified by reference designator in the following, the resistors in this unit are:

Metal film resistors with conformally-coated bodies, value identified with five color bands or printed on body; rated ¹/₈-watt @70°C, with a ±1% tolerance, and with a temperature coefficient of 100 PPM/°C; Orban part numbers 20038-xxx through 20045-xxx, USA Military Specification MIL-R-10509 style RN55D, manufactured by R-Ohm (CRB-1/4FX), TRW/IRC, Beyschlag, Dale, Corning, Matsushita.

Carbon film resistors with conformally-coated bodies, value identified with four color bands; rated ¹/₄-watt @ 70°C, with a tolerance of ±5%; Orban part numbers 20001-xxx, manufactured by R-Ohm (R-25), Piher, Beyschlag, Dale, Phillips, Spectrol, Matsushita.

Carbon composition resistors with molded phenolic bodies, value identified with four color bands; rated ¹/₄-watt for the 0.09 x 0.25-inch (2.3×6.4 mm) size, and rated ¹/₂-watt for the 0.14 x 0.375-inch (3.6×9.5 mm) size @ 70°C, with a tolerance of ±5%; Orban part numbers 2001x-xxx, USA Military Specification MIL-R-11 style RC-07 or RC-20, manufactured by Allen-Bradley, TRW/IRC, Matsushita.

Cermet trimmer resistors with ${}^{3}/_{8}$ -inch (9mm) square bodies, value printed on side; rated ${}^{1}/_{2}$ -watt @ 70°C, with a tolerance of ±10%, and a temperature coefficient of 100 PPM/°C; Orban part numbers 20510-xxx and 20511-xxx, manufactured by Beckman (72P, 68W-series), Spectrol, Matsushita.

REF			VEN		ALTERNATE	
DES	DESCRIPTION	<u>ORBAN</u> <u>P/N</u>	<u>(1)</u>	VENDOR P/N	VENDORS(1)	NOTES

CARD #3/4

Capacitors

	C301,302 C303 C304,305 C306-308 C309	Not Used Met. Polycarb., 100V, 1%; 0.luF Met. Polycarb., 100V, 2%; 0.luF Polystyrene, 50V, 2%; 0.0luF Met. Polycarb., 100V, 2%; 0.12uF	21601-410 21602-410 21504-310 21602-412	ECI ECI SPR ECI		IMB IMB IMB	
	C310	Mica, 500V, 5%; 150pF	21020-115	œ	CD15-FD151J03	SAN	
	C311	Mica, 500V, +1/2pF -1/2pF; 5pF	21017-005	CD	CD15-CD050D03	SAN	
	C312	Mica, 500V, +1/2pF -1/2pF; 10pF	21017-010	œ	CD15-CD100D03	SAN	
	C313	Tantalum, 35V, 10%; 4.7uF	21307-547	SPR	196D475X9035JA1	MANY	
	C314	Met. Polycarb., 100V, 2%; 0.27uF	21602-427	ECI	652A1B274G	IMB	
	C315	Mica, 500V, 5%; 150pF	21020-115	Ð	CD15-FD151J03	SAN	
	C316	Mica, $500V$, $+1/2pF -1/2pF$; $5pF$	21017-005 21020-110	Ð	CD15-CD050D03 CD15-FD101J03	SAN SAN	
	C317 C318-320	Mica, 500V, 5%; 100pF Polystyrene, 50V, 2%; 0.01uF	21504-310	CD SPR		SAN	
	C321	Met. Polycarb., 100V, 2%; 0.luF	21602-410		652A1B104G	IMB	
	C322	Met. Polyester, 100V, 10%; 1.0uF	21441-510		60H105K100	WIM, SIE	
	C323-326	Monolythic Ceramic, 50V, 20%; 0.luF	21106-326		1C25Z5U104M050B		
	C327,328	Alum., Radial, 25V, -20% +100%; 100uF	21206-710	PAN	ECE-ALEV101S		
	C4xx	Subtract 100 and refer to C3xx series					
ר ג	Integrate	d Circuits					
	IC301	Linear, Dual Opamp	24207-202	SIG	NE5532N	TI,EXR	
	IC302,303	Linear, Dual Opamp	24206-202	TI	TL072CP	MOT	
	IC304	Linear, Single Opamp	24014-202		NE5534N	TI	
	IC305	Linear, Dual Opamp	24208-303		24208-303		
	IC306	Linear, Dual Opamp	24206-202	TI	TL072CP	MOT	
	IC307	Linear, Dual Opamp	24207-202		NE5532N	TI,EXR	
	IC308	Linear, Single Opamp	24014-202 24208-303	ORB	NE5534N 24208-303	TI	
	IC309 IC310	Linear, Dual Opamp Linear, Dual Opamp	24206-202	TI	24208-303 TL072CP	MOT	
	IC4xx	Subtract 100 and refer to IC 3xx Series	24200-202	11	110/201	MUL	
	10477	Subtract 100 and refer to 10 SAX Series					
	Resistors	<u>1</u>					
	R309	Pot, Single, 25K, (5010R)	20742-000	CTS	270-Series	AB, BRN	10% CCW Log
	R409	Pot, Single, 25K, (5010R)	20742-000		270-Series	AB, BRN	10% CCW Log

(1) (2)						Ci	Realignment may be required if replaced, see Circuit Description and/or Alignment Instructions					SPECIFICATIONS AND SOURCES FOR REPLACEMENT PARTS OPTIMOD-FM 8100a/1 CARD #3/4 CAPACITORS thru RESISTORS				
}	È.	1 k	\ \	١		Ę.)	×)	1	li	1		r		
		: }	1	1		} ! }	1	: · · ·								
------	--	---	--	---	--------------------------	--	--	---	-------	--------						
	REF DES	DESCRIPTION		ORBAN P/N	VEN (1)	VENDOR P/N	ALTERNATE VENDORS(1)	NOTES								
-	CARD #5 Capacitor C501	Ceramic Disc, 1KV		21113-222		DD-222	SPR									
	C502,503 C504 C505,506 C507 C508 C509 C510	Aluminum, Radial, Ceramic Disc, LKV Aluminum, Radial, Tantalum, 35V, 10 Tantalum, 35V, 10 Met. Polyester, 1 Ceramic Disc, LKV	7, 20%; 0.0022uF , 63V, -20% +100%; luF)%; 2.2uF)%; 4.7uF L00V, 10%; 0.1uF	21209-510 21113-222 21209-510 21307-522 21307-547 21441-410 21112-210	SPR SPR SPR WES	502D105G063BBIC DD-222 502D105G063BBIC 196D225X9035JA1 196D475X9035JA1 60C104K100 DD-102	MANY SPR MANY MANY MANY WIM,SIE									
	C511 C512,513 C514–517 C518	Tantalum, 35V, 10 Alum., Radial, 25 Monolythic Cerami)%; 2.2uF 5V, -20% +100%; 100uF ic, 50V, 20%; 0.1uF , 63V, -20% +100%; 1uF	21307-522 21206-710 21123-410	SPR PAN SPRC		MANY MANY MANY									
	Integrate	d Circuits														
	IC501 IC502 IC503 IC504,505	Linear, Single Op Multiple Discrete Linear, Dual Opan Multiple Discrete	e np	24002-202 24407-101 24206-202 24406-302	TI	UA741CJG IT131 TL072CP CA3096AE	ray Mot		20727	- C. C						
	IC504,505 IC506 IC507 IC508 IC509,510	Linear, Single Or Multiple Discrete Linear, Dual Opan Multiple Discrete	pamp e np	24002-202 24407-101 24206-202 24406-302	TI INS TI	UA741CJG IT131 TL072CP CA3096AE	ray Mot									
J-25	IC511 IC512 IC513 IC514	Linear, Single Op Linear, Dual Opan Linear, Dual Opan Linear, Dual Opan	np np	24003-202 24202-202 24203-201 24202-202	ray Mot	CA301CN 4558NB MC1458CPI 4558NB	NAT,TI MOT,FSC MOT,FSC									
	Modules	_														
	Al A2 Resistors	Module Assy, Mast Module Assy, Bass		30455-001 30455-002	ORB ORB											
	R509 R521 R537 R542	Pot, Single, 1 Me Pot, Single, 5K, Pot, Single, 1000 Pot, Single, 5K,	(5050) K, (5020R)	20737-000 20735-000 20736-000 20735-000	CTS CTS CTS CTS	270-Series 270-Series	BRN BRN	20% CW Log Linear 20% CCW Log Linear								
	Switches															
	S501	Switch, Toggle, N	Min.	26037–009	CK	7101 <i>S</i> YA										
	Transist	ors														
		ast page for abbre			may t	9 J174 De required if repl ion and/or Alignmen		SPECIFICATIONS AN REPLACEMENT								
	(3) Actua	al part is special listed, consult Fa	ly selected from	Instruction				OPTIMOD-FM 8100A/1 CARD #5 CAPACITORS thru TRANSISTORS								

C

J-25

REF DES	DESCRIPTION	1 1	VEN (1)	VENDOR P/N	ALTERNATE VENDORS (1)	NOTES
					<u>·····································</u>	

CARD #6

Capacitors

C6	01,602	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C6	603	Polystyrene, 50V, 2%; 0.01uF	21504-310	SPR	287P1032R5A3	
CG	04	Mica, 500V, 1%; 150pF	21018-115	CD	CD15-FD151F03	SAN
CG	05	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C6	06	Mica, 500V, 1%; 220pF	21018-122	ĊÐ	CD15-FD221F03	SAN
C6	608,608	Mica, 500V, 1%; 1000pF	21022-210	œ	CD19-FD102F03	SAN
C6	i09	Mica, 500V, 5%; 1800pF	21024-218	CD	CD19-FD182J03	SAN
C6	510	Met. Polycarb., 100V, 10%; 1.0uF	21604-510	ECI	652A1B105K	IMB
C6	11	Polystyrene, 50V, 2%; 0.01uF	21504-310	SPR	287P1032R5A3	
C6	12	Polyester, 100V, 10%; 0.047uF	21401-347	SPR	225P47391WD3	PAN, PAK
C6	13,614	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C6	15	Polystyrene, 50V, 2%; 0.01uF	21504-310	SPR	287P1032R5A3	
C6	16	Mica, 500V, 1%; 150pF	21018-115	Œ	CD15-FD151F03	SAN
-	517	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C6	18	Mica, 500V, 1%; 220pF	21018-122	CD	CD15-FD221F03	SAN
C6	19,620	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C6	21	Mica, 500V, 5%; 1800pF	21024-218	CD	CD19-FD182J03	SAN
C6	22	Met. Polycarb., 100V, 10%; 1.0uF	21604-510	ECI	652A1B105K	IMB
C6	23	Polystyrene, 50V, 2%; 0.01uF	21504-310	SPR	287P1032R5A3	
	24	Polyester, 100V, 10%; 0.047uF	21401-347	SPR	225P47391WD3	PAN, PAK
	25	Tantalum, 35V, 10%; luF	21307-510	SPR	196D105X9035HA1	MANY
	526 , 627	Alum., Radial, 25V, -20% +100%; 100uF	21206-710	PAN	ECE-ALEV101S	
C6	28-631	Monolythic Ceramic, 50V, 20%; 0.luF	21123-410	SPR	1C25Z5U104M050B	MANY
CG	32 , 633	Alum., Radial, 25V, -20% +100%; 100uF	21206-710	PAN	ECE-ALEV101S	
C6	34,635	Monolythic Ceramic, 50V, 20%; 0.luF	21123-410	SPR	1C25Z5U104M050B	MANY
C6	i36	Tantalum, 35V, 10%; luF	21307-510	SPR	196D105X9035HA1	MANY
	Diodes					

Diodes

1

1

J-26

CR604 Diode, Signal, Hot Carrier 22102-001 HP 5082-2800

 FOOTNOTES:
 (4) Realignment may be required if replaced, see
 SPECIFICATIONS AND SOURCES FOR

 (1) See last page for abbreviations
 (4) Realignment may be required if replaced, see
 SPECIFICATIONS AND SOURCES FOR

 (2) No Alternate Vendors known at publication
 Circuit Description and/or Alignment
 SPECIFICATIONS AND SOURCES FOR

 (3) Actual part is specially selected from part listed, consult Factory
 Instructions
 OPTIMOD-FM 8100A/1 -- CARD #6

4 -		} .			L I	
REF DES	DESCRIPTION	<u>orban</u> <u>p/n</u>	VEN (1)	VENDOR P/N	ALTERNATE VENDORS(1)	NOTES
Integrat	ed Circuits					
IC601,602 IC603	Linear, Dual Opamp Multiple Discrete	24206-202 24405-303	TI NAT	TL072CP AH5011CN	MOT	
IC604	Linear, Single Opamp	24014-202	SIG	NE5534N TL072CP	TI MOT	
IC605 IC606	Linear, Dual Opamp Linear, Dual Opamp	24206-202 24203-201	TI MOT	MC1458CPI	MOI	
IC607	Multiple Discrete	24406-302			MOT	
IC608,609 IC610	Linear, Dual Opamp Linear, Single Opamp	24206-202 24014-202	TI SIG	TL072CP NE5534N	MOT TI	
IC611	Linear, Dual Opamp	24206-202	TI	TL072CP	MOT	
IC612	Multiple Discrete	24406-302	RCA	CA3096AE	107 F22	
IC613	Linear, Dual Opamp	24202-202	RAY	4558NB	MOT, FSC	
Modules						
Al,2	Module Assy, H-F Limiter Release Time	30465-000	ORB			
Switche	<u>5</u>					
S602	Switch, Toggle, Min.	26037-009	CK	7101SYA		
Transis	tors					
Q601,602	Transistor, Signal, NPN	23202-101	MOT	2N4400	FSC	

J-27

 FOOTNOTES:
 (1) See last page for abbreviations
 (4) Realignment may be required if replaced, see
 SPECIFICATIONS AND SOURCES FOR

 (2) No Alternate Vendors known at publication
 Circuit Description and/or Alignment
 REPLACEMENT PARTS

 (3) Actual part is specially selected from part listed, consult Factory
 Instructions
 OPTIMOD-FM 8100A/1 -- CARD #6, Cont'd INTEGRATED CIRCUITS thru TRANSISTORS

F						
DEE			5 77 75 7			
REF			VEN		ALTERNATE	
DES	DESCRIPTION	ORBAN P/N	(1)	VENDOR P/N	VENDORS(1)	NOTES
					<u></u>	

CARD #7

Capacitors

	C701	Mica, 500V, +1/2pF -1/2pF; 2pF		21017-002	CD	CD15-CD010D03	SAN
	C702	Mica, 500V, 5%; 22pF		21020-022	CD	CD15-ED220J03	SAN
	C703	Ceramic, Trimpot, 0.5pF-3pF	:	21811-000	ME	2502A0R503V	
	C704	Met. Polyester, 100V, 10%; 0.luF		21441-410	WIM	MKS-4100V5.0.1	WES, SIE
	C705	Ceramic Disc, 25V, 20%; 0.luF		21106-410	CRL	UK25-104	•
	C706	Mica, 500V, +1/2pF -1/2pF; 3pF		21017-003	ĊĐ	CD15-CD030D03	SAN
	C707,708	Ceramic Disc, 25V, 20%; 0.luF		21106-410	CRL		
	C709	Tantalum, 35V, 10%; luF		21307-510	SPR		MANY
	C710	Monolythic Ceramic, 50V, 20%; 0.luF		21123-410		1C25Z5U104M050B	MANT .
							10117
	C711	Tantalum, 35V, 10%; luF		21307-510	SPR		MANY
	C712,713	Alum., Radial, 25V, -20% +100%; 100uF		21206-710	PAN		
	C714	Ceramic Disc, 50V, 20%; 0.015uF		21107-315	CRL	UK50-153	
	C715,716	Tantalum, 35V, 10%; luF		21307-510		196D105X9035HA1	MANY
	C717	Monolythic Ceramic, 50V, 20%; 0.luF		21123-410		1C25Z5U104M050B	
	C718,719	Mica, 500V, 1%; 1000pF		21022-210	œ	CD19-FD102F03	SAN
	C720	Mica, 500V, 5%; 430pF		21024-143	œ	CD19-FD431J03	SAN
	C721,730	Mica, 500V, +1/2pF -1/2pF; 39pF		21017-039	Œ	CD15-ED390G03	SAN
	C722	Mica, 500V, 5%; 430pF		21024-143	œ	CD19-FD431J03	SAN
	C723	Ceramic Disc, 25V, 20%; 0.luF		21106-410	CRL	UK25-104	
	C724,725	Alum., Radial, 25V, -20% +100%; 100uF		21206-710	PAN		
	C726-729	Monolythic Ceramic, 50V, 20%; 0.luF		21123-410	SPR	1C25Z5U104M050B	
	Inductors	<u>5</u>					
	L701	Inductor, RF Choke, 50mH		29504-350	MIL	70F502AF	
	Tabaanab	al Cinquita					
	Integrate	ed Circuits					
	1C701	Linear, Single Opamp		24008-202	TI	LM318P	NAT
	IC701			24008-202		NE5534N	TI
		Linear, Single Opamp					11
	IC703	Linear, Dual Opamp		24208-302		CA3280A	
	IC704	Linear, Single Opamp		24007-202	AD	AD518N	
	IC705	Linear, Single Opamp		24010-202		LF357	
	IC706	Linear, Single Opamp		24003-202		CA301AE	NAT,TI
	IC707,708	Special Function, Comparator		24701-302		LM711CN	RAY,TI
	IC709	Linear, Dual Opamp		24206-202	TI	TL072CP	NAT (LF353H)
	IC710	Linear, Single Opamp		24003-202	RCA	CA301AE	NAT, TI
	IC711	Linear, Single Opamp		24008-202	TI	LM318P	NAT
	IC712	Linear, Dual Opamp		24206-202	TI	TL072CP	NAT (LF353H)
	IC713	Digital, XOR Gate		24504-302	RCA	CD4030BE	SIG
	IC714	Digital, Nand Gate		24501-302	RCA	CD4011BE	MOT
	IC715-717	Optoisolator, NPN		25003-000	SIE	SFH-601-1	
I	r" ·						······
	FOOTNOTES:						
			(4)	Realignment	may h	e required if repla	and see
		ternate Vendors known at publication	(4)				
				Instruction		on and/or Alignment	-
		al part is specially selected from		Instruction	5		
	part	listed, consult Factory					
							11

SPECIFICATIONS AND SOURCES FOR REPLACEMENT PARTS

OPTIMOD-FM 8100A/1 -- CARD #7 CAPACITORS thru INTEGRATED CIRCUITS

J-28

ł

1

1

REF DES	DESCRIPTION	<u>ORBAN</u> <u>P/N</u>	VEN (1)	<u>VENDOR</u> <u>P/N</u>	ALTERNATE VENDORS (1)	NOTES		
Resistors								
R701,702 R708 R731 R738 R769 R772	Resistor Set, MF, 0.1% 4.99K Trimpot, Cermet, 20 Turn, 25K; 20% Trimpot, Cermet, 25K, "Pilot Inj" Trimpot, Cermet, 20 Turn, 25K; 20% Trimpot, Cermet, 20 Turn, 50K; 20% Trimpot, Cermet, 20 Turn, 1K; 20%	28520-001 20512-325 20520-325 20512-325 20512-350 20512-210	ORB BEK BEK BEK BEK	89PR25K 82PA25K 89PR25K 89PR50K 89PR1K	BRN BRN BRN BRN			
Switches								
S701 S702	Switch, Rotary, Min., 2P3T Switch, Toggle, Min.	26201-000 26037-009	STK CK	80-Series 7101SYA	Alt	:Electroswitch		
Transisto	ors							
Q701,702 Q703,704	Transistor, JFET/N Transistor, Signal, NPN Transistor, JFET/N	23403-101 23202-101 23406-101	NAT MOT NAT	J111 2N4400 J113	INS FSC			
Q705,706 Q707,708 Q709	Transistor, JFET/N Transistor, JFET/N	23403-101 23406-101	NAT NAT	J111 J113	INS			
Q710 Q711 Q712	Transistor, Signal, PNP Transistor, JFET/N Transistor, Signal, PNP	23001-101 23403-101 23002-101	MOT NAT MOT	2N4125 J111 2N4402	FSC INS FSC			

1

1

1

ļ

FOOTNOTES:

- See last page for abbreviations
 No Alternate Vendors known at publication
 Actual part is specially selected from part listed, consult Factory
- Realignment may be required if replaced, see Circuit Description and/or Alignment (4) Instructions

SPECIFICATIONS AND SOURCES FOR REPLACEMENT PARTS

OPTIMOD-FM 8100A/1 -- CARD #7, Cont'd RESISTORS thru TRANSISTORS

REF			VEN		ALTERNATE	
	DESCRIPTION			VENTOR P/N		
DES	DESCRIPTION	ORBAN P/N	100	VENDOR P/N	VENDORS(1)	NOTES

CARD #8/9

J-30

1

<u>Capacitors</u>

C801	Mica, 500V, 1%; 100pF	21018-110 21022-210	0	CD15-FD101F03	SAN SAN
C802	Mica, 500V, 1%; 1000pF		B	CD19-FD102F03	
C803	Mica, 500V, 1%; 160pF	21018-116	Ð	CD15-FD161F03	SAN
C804	Mica, 500V, 1%; 1000pF	21022-210	Ð	CD19-FD102F03	SAN
C805	Mica, 500V, 1%; 2400pF	21022-224	CD	CD19-FD242F03	SAN
C806	Mica, 500V, 1%; 560pF	21022-156	Ð	CD19-FD561F03	SAN
C807	Mica, 500V, 1%; 2700pF	21022-227	œ	CD19-FD272F03	SAN
C808-810	Mica, 500V, 1%; 1000pF	21022-210	CÐ	CD19-FD102F03	SAN
C811	Mica, 500V, 1%; 220pF	21018-122	CD	CD15-FD221F03	SAN
C812	Mica, 500V, 1%; 1000pF	21022-210	CĐ	CD19-FD102F03	SAN
C813	Mica, 500V, 1%; 100pF	21018-110	œ	CD15-FD101F03	SAN
C814	Mica, 500V, 1%; 220pF	21018-122	CD	CD15-FD221F03	SAN
C815	Polystyrene, 50V, 2%; 0.022uF	21504-322	SPR		
C816	Mica, 500V, 1%; 2700pF	21022-227	Ð	CD19-FD272F03	SAN
C817	Polystyrene, 50V, 2%; 0.0075uF	21504-275		287P7522R5A3	
C818	Mica, 500V, 1%; 2400pF	21022-224	CD	CD19-FD242F03	SAN
C819,820	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C821	Met. Polycarb., 100V, 10%; 1.0uF	21604-510	ECI		IMB
C822,823	Mica, 500V, 1%; 1000pF	21022-210	CD	CD19-FD102F03	SAN
C824	Mica, 500V, 1%; 41pF	21018-041	CD	CD15-ED410F03	SAN
C825	Tantalum, 35V, 10%; 0.47uF	21307-447	SPR	196D474x9035HA1	MANY
C826	Polyester, 100V, 10%; 0.0033uF	21401-233	SPR	225P33291WD3	PAN, PAK
C827,828	Alum., Radial, 25V, -20% +100%; 100uF	21206-710	PAN	EVE-ALEV101S	
C829-832	Monolythic Ceramic, 50V, 20%; 0.luF	21123-410	SPR	1C5Z5U104M050B	MANY
C833	Tantalum, 35V, 10%; luF	21307-510	SPR	196D105X9035HA1	MANY
C834,835	Aluminum Electrolytic, 50V, 100uF	21208-710	SPR	502D107F050DGIC	MANY
C9xx	Subtract 100 and refer to C8xx series				
Diodes					
CR803-806	Diode, Signal, Hot Carrier	22102-001	HP	5082-2800	
CR9xx	Subtract 100 and refer to CR8xx series				
Inductor	<u>s</u>				
L801,802	Inductor, Variable	29702-004			
L803	Inductor, Variable	29702-003			
L803	Inductor, Variable	29702-002			
L804 L805	Inductor, Variable	29701-002			
LOUS L9xx	Subtract 100 and refer to L8xx series	ADIVE OVE			
1177.2	publicate too and refer to how beiles				

FOOTNOTES: (1) See last page for abbreviations (4) Realignment may be required if replaced, see SPECIFICATIONS A (2) No Alternate Vendors known at publication Circuit Description and/or Alignment REPLACEMENT (3) Actual part is specially selected from part listed, consult Factory Instructions OPTIMOD-FM 8100A, CAPACITORS thru
--

ļ					1				
REF DES	DESCRIPTION	ORBAN P/N	VEN (1)	VENDOR P/N	ALTERNATE VENDORS(1)	NOTES			
1		- 6							
Integrated Circuits									
IC801-806	Dual Opamp	24206-402 24406-302	TI	TL072CJG CA3096AE	MOT				
IC807 IC808	Multiple Discrete Dual Opamp	24406-302 24206-402	RCA TI	TL072CJG	MOT				
IC9xx	Subtract 100 and refer to IC8xx series								
Modules									
Al A2	Module Assy, Phase Delay Network Module Assy, Distortion Cancel Module	30485-000 30490-001	ORB ORB						
H4	Multe Assy, Distortion cancer Multe	30490 001	0.0						
CHASSIS									
Inductors	3								
Ll,2	- Inductor, RF Choke, 7uH	29501-004	OHM	z-50	(2)				
					ζ_γ				
Miscellar		20000 304		12005					
M1 M2	Meter, Edge, 1mADC FS, 0-25dB Meter, Edge, 1mADC FS, 0-5dB	28009-104 28009-105		132D5 132D5		900 Ohms 900 Ohms			
мЗ	Meter, Edge, 1mADC FS, 0-25dB	28009-104 28009-102		132D5 132D5		900 Ohms			
M4 M5	Meter, Edge, 1mADC FS, 0-30dB Meter, VU, Brown/Tan	28009-102		132D5 330T	HOYT	900 Ohms			
NONE	Connector, BNC	27101-000	AM	31-3376					
NONE	Connector, Card Edge, 22 Pos.	27035-004	SAE	SAC 225/2-3	MANY				
CHASSIS (BAC	CK PANEL)								
Capacitor	<u>cs</u>								
C1-4	Ceramic Disc, 1KV, 10%; 0.0015uF	21112-215	CRL	DD-152					
Transist	ors								
Q101,102	Transistor, Power, NPN	23601-501	RCA	2N3055	FSC				
<i>Q</i> 2027,202									
CHASSIS (FI	LTER BOX)								
Capacito	rs								
C1-14	Ceramic, Feed-thru, 1000pF	21118-210	ERE	2404-000-Series	1	Alt: Murata			
·									
FOOTNOTES						SPECIFICATIONS AND SOURCES FOR			
(1) See]		 Realignment Circuit Des 	may b cripti	e required if repla on and/or Alignment	aced, see	REPLACEMENT PARTS			
(3) Actua	al part is specially selected from	Instruction		the grand of the granter					
part	listed, consult Factory		CHASSIS, CHASSIS (BACK PANEL),						
					(CHASSIS (FILTER BOX)			

C

	<u> </u>	1			1	
REF DES	DESCRIPTION	ORBAN P/N	VEN (1)	VENDOR P/N	ALTERNATE VENDORS(1)	NOTES
POWER SUPPLY	AND REGULATOR BOARD	1	1	4		
Capacitor	<u>s</u>					
C101,102 C103,104 C105-107 C108 C109 C110	Alum., Electrolytic, CG, 40V, 5000uF Ceramic Disc, 50V, 20%; 0.05uF Ceramic, Feed-thru, 1000pF Tantalum, 10V, 10%; 33uF Mica, 500V, 5%; 470pF Not Used	21250-850 21107-350 21118-210 21303-633 21024-147	CD CRL ERE SPR CD	FAH-5000-40-A2 UK50-503 2404-000-Series 196D336X9010KE3 CD19-FD471J03	MAL MANY SAN	
C111,112 C113 C114	Alum., Radial, 50V, -20% +100%; 47uF Mica, 500V, 5%; 100pF Polyester, 100V, 10%; 0.01uF	21208-647 21020-110 21401-310	SPR CD SPR	502D476G050CD1C CD15-FD101J03 225P10391WD3	PAN SAN PAN, PAK	
Dicdes						
CR101-104 CR105,106	Diode, Rectifier, 400V, 3A Diode, Rectifier, 400V, 1A	22203-400 22201-400	MOT MOT	MR504 1N4004	MANY	
Inductors	<u>.</u>					
L101,102	Inductor, RF Choke, 7uH	29501-004	OHM	z-50	(2)	
Integrate	d Circuits					
IC101 IC102	D.C. Regulator Linear, Single Opamp	24301-302 24003-202		LM723CN CA301AE	NAT, TI	
Miscellar	neous					
F101 F102,103 T101 VR101,102	Fuse, 3AG, Slo-Blo, 1/2A Fuse, Pico, 1A, Axial Transformer, Power, 39.6VCT, 40VA Diode, Zener, 16V, 5W, 5%	28004-150 28011-210 55009-000 22005-160	LFE LFE ORB MOT			Use 1/4A Fuse for 230VAC Main) On P.S. regulator board)
Resistors						
R103,104 R106 R108,109	Resistor, Wirewound, 2W, 0.62 OHM; 5% Trimpot, Cermet, 18 Turn, 500 OHM; 20% Resistor Set, MF, .25% 20.0K	20028-862 20508-150 28521-001	IRC BEK ORB	BWF Series 68XR500	BRN	
Switches						
S101 S102	Switch, Toggle, SPST, AC Power Switch, Slide, AC Line	26002-001 26140-000	CH SW	8280K21C EPSI-SLI		
Transisto	<u>rs</u>					
Q103,104	Transistor, Signal, PNP	23002-101	MOT	2N4402	FSC	
(2) No Al (3) Actua	ast page for abbreviations (4 ternate Vendors known at publication al part is specially selected from listed, consult Factory	aced, see	PTIMOD-FM 8100A/1 POWER SUPPLY APACITORS thru TRANSISTORS			

FINITE FINITE FINITE

J-32

·]]	1	1	1	1		
REF DES	DESCRIPTION	ORBAN P/N	VEN (1)	VENDOR P/N	ALTERNATE VENDORS (1)	NOTES		
			<u> </u>					
FRONT PANEL								
Diodes								
CR1	LED, Red T-1 $3/4$	25103-000 25105-000	GI GI	MV5053 MV5353	MANY MANY			
CR2,3 CR4	LED, Yellow T-l 3/4 LED, Green T-l 3/4	25104-000	GI	MV-5253	MANY			
Miscellaneous								
м5	Meter, VU, Brown/Tan	28002-007	DIX	330т	HOYT			
Switches								
Sl	Switch, Toggle, Min., SPDT	26037-005	CK	7105P3				
TNPIP FILTE								
INPUT FILTER BOARD								
L1-4	Inductor, RF Choke, 1.2mH	29503-000	мтт.	73F123AF				
L5,6	Inductor, RF Choke, 7uH	29501-004	OHM	z-50	(2)			
METER RESISTOR BOARD								
Resistors								
R5,6	- Trimpot, Cermet, 1 Turn, 1K; 20%	20509-210	BEK	72xrlk	BRN			
Switches								
s2	Switch, Rotary, 1912T, NS	26078-306	CTS	212 SERIES				
OTHER								
Miscellaneous								
NONE NONE	Line Cord, IEC PCB Extender Board Assy	28102-002 30705-000	BEL ORB	17500	MANY			

FOOTNOTES: (1) See last page for abbreviations (2) No Alternate Vendors known at publication (3) Actual part is specially selected from part listed, consult Factory	(4) Realignment may be required if replaced, see Circuit Description and/or Alignment Instructions	SPECIFICATIONS AND SOURCES FOR REPLACEMENT PARTS OPTIMOD-FM 8100A/1 FRONT PANEL, INPUT FILTER BD, METER RESISTOR BD
		INPUT FILTER BD, METER RESISTOR BD

C

J-33

Vendor Codes

- AB Allen-Bradley Co., Inc. 1201 South Second Street Milwaukee, WI 53204
- BEL Belden Electronic Wire & Cable PO BOX 1980 Richmond, IN 47374
- CH Cutler-Hammer 4201 N. 27th Street Milwaukee, WI 53216
- CTS CTS Corporation 905 North West Blvd. Elkhart, IN 46514
- ELSW Electroswitch 180 King Avenue Weymouth, MA 02188
- FSC Fairchild Camera & Instr. Corp. 464 Ellis Street Mountain View, CA 94042
- IRC International Resistive Co., Inc. PO BOX 1860 Boone, NC 28607
- LT Linear Technology Corp. 1630 McCarthy Blvd. Milpitas, CA 95035
- ME Mepco/Centralab A North American Philips Corp. 2001 W. Blue Heron Blvd. Riviera Beach, FL 33404
- NAT National Semiconductor Corp. 2900 Semiconductor Drive PO BOX 58090 Santa Clara, CA 95052-8090
- PAN Panasonic Industrial Company One Panasonic Way PO BOX 1503 Seacaucus, NJ 07094
- SAE Stanford Applied Engineering, Inc 340 Martin Avenue Santa Clara, CA 95050
- SIG Signetics Corporation A Sub. of US Philips Corp. 811 E. Arques PO BOX 3409 Sunnyvale, CA 94088-3409
- TOS Toshiba America, Inc. 2441 Michelle Drive Tustin, CA 92680
- WIM The Inter-Technical Group Inc. Wima Division PO BOX 23 Irvington, NY 10533

- AD Analog Devices, Inc. One Technology Way PO BOX 9106 Norwood, MA 02062-9106
- BRN Bourns, Inc. Resistive Components Group 1200 Columbia Avenue Riverside, CA 92507
- CK C & K Components, Inc. 15 Riverdale Avenue Newton, MA 02158-1082
- CW CW Industries 130 James Way Southampton, PA 18966
- EMI Emico Inc. 123 North Main Street Dublin, PA 18917
- GI General Instruments Optoelectronics Division 3400 Hillview Avenue Palo Alto, CA 94304
- JEN Jensen Transformers, Inc. 10735 Burbank Blvd. North Hollywood, CA 91601
- LUMX Lumex Opto/Components Inc. 292 E. Hellen Road Palatine, IL 60067
- MID Midland-Ross Corporation NEL Unit/Midtex Division 357 Beloit Street Burlington, WI 53105
- NOB Noble U.S.A., Incorporated 5450 Meadowbrook Ct. Rolling Meadows, IL 60008
- PB Potter & Brumfield Division A Siemens Co.
 200 S. Richland Creek Dr.
 Princeton, IN 47671-0001
- SAN Sangamo Weston Inc. Capacitor Division PO BOX 48400 Atlanta, GA 30362
- SPR Sprague Electric Co. 41 Hampden Road PO BOX 9102 Mansfield, MA 02048-9102
- TRW TRW Electronic Components Connector Division 1501 Morse Avenue Elk Grove Village, IL 60007-57

- AM Amphenol Corporation 358 Fall Avenue Wallingford, CT 06492
- BUS Bussmann Division Cooper Industries PO BOX 14460 St. Louis, MO 63178
- COR Corcom, Inc. 1600 Winchester Road Libertyville, IL 60048
- DIX Dixson, Inc. PO BOX 1449 Grand Junction, CO 81502
- ERE Murata Erie North America 2200 Lake Park Drive Smyrna, GA 30080
- HP Hewlett-Packard Co. 640 Page Mill Road Palo Alto, CA 94304
- KEY Keystone Electronics Corp. 49 Bleecker Street New York, NY 10012
- MAL Mallory Capacitor Co. Emhart Electrical/Electronic Gr. 3029 East Washington Street Indianapolis, IN 46206
- MIL J.W. Miller Division Bell Industries 19070 Reyes Avenue Rancho Dominguez, CA 90224-5825
- OHM Ohmite Manufacturing Company A North American Philips Corp. 3601 Howard Street Skokie, IL 60076
- RCA RCA Solid State Division Route 202 Somerville, NJ 08876
- SCH ITT Schadow 8081 Wallace Road Eden Prairie, MN 55344
- SW Switchcraft A Raytheon Company 5555 N. Elston Avenue Chicago, IL 60630
- VARO Varo Quality Semiconductor, Inc. 1000 North Shiloh Road PO BOX 469013 Garland, TX 75046-9013

- BEK Beckman Industrial Corporation 4141 Palm Street. Fullerton, CA 92635-1025
- CD Cornell-Dubilier Elec. Wayne Interchange Plaza 1 Wayne, NJ 07470
- CRL Mepco/Centralab A North American Philips Corp. 2001 W. Blue Heron Blvd. Riviera Beach, FL 33404
- ECI Electrocube 1710 South Del Mar Avenue San Gabriel, CA 91776
- EXR Exar Corporation 750 Palomar Ave PO BOX 3575 Sunnyvale, CA 94088
- INS Intersil, Inc. 10600 Ridgeview Court Cupertino, CA 95014
- LFE Littelfuse A Subsidiary of Tracor, Inc. 800 E. Northwest Hwy Des Plaines, IL 60016
- MAR Marquardt Switches, Inc. 67 Albany Street Cazenovia, NY 13035
- MOT Motorola Semiconductor PO BOX 20912 Phoenix, AZ 85036
- ORB Orban a division of AKG Acoustics, Inc. 645 Bryant Street San Francisco, CA 94107
- ROHM Rohm Corporation 8 Whatney Irvine, CA 92718
- SIE Siemens Components Inc. 186 Wood Avenue South Iselin, NJ 08830
- TI Texas Instruments PO BOX 655012 Dallas, TX 75265
- WES Westlake 5334 Sterling Ctr Drive Westlake Village, CA 91361

APPENDIX K:

OMITTED

APPENDIX L: Specifications

Frequency Response (System in PROOF mode)

Follows standard 75us preemphasis curve ± 0.75 dB, 50-15,000 Hz. 50us preemphasis available on special order. All preemphasis networks include a fourth-order lowpass filter and fourth-order phase corrector prior to the high-frequency limiter and clipper to prevent these elements from processing out-of-band program material and to minimize overshoot, thus minimizing the amount of high-frequency limiting and clipping.

Input Conditioning

Highpass Filter: Third-order Chebychev with 30Hz cutoff and 0.5dB passband ripple. Down 0.5dB at 30Hz; 10.5dB at 20Hz; 31.5dB at 10Hz. Protects against infrasonic destabilization of certain exciters' AFC's, as well as infrasonic gain modulation in the compressor.

Phase Scrambler: Allpass network makes peaks more symmetrical to best utilize the symmetrical peak overload characteristics of the FM medium.

Input

Impedance: greater than 10K ohms, electronically balanced by means of true instrumentation amplifier. Requires balanced source.

Common Mode Rejection: Greater than 60dB @60Hz.

Sensitivity: -10dBm produces 10dB "Master" Band gain reduction @lkHz. Removal of internal 20dB pad permits -30dBm to produce same effect.

Connector: Cinch-Jones 140-style barrier strip (#5 screw).

Noise

-75dB below 100% modulation, 50-15,000 Hz maximum; -81dB typical.

Total System Distortion (PROOF Mode; 100% Modulation)

Less than 0.05% THD, 50-15,000Hz (0.02% typical); less than 0.05% SMPTE Intermodulation Distortion (60/7000Hz; 4:1).

"Master" Band Compressor Characteristics

Attack Time: approximately 1ms.

Release Time: program-controlled -- varies according to program dynamics and amount of gain reduction (see text). Process can be scaled fast or slow by means of continuously variable RELEASE TIME control. Employs delayed release for distortion reduction.

Total Harmonic Distortion (measured at VCA output, OPERATE mode, RELEASE TIME control centered): Less than 0.1%, 50-15,000Hz, 0-25dB gain reduction Available Gain Reduction: 25dB

Metering: Three dB-linear edgewise-reading gain reduction meters --

<u>MASTER</u> is true peak-reading with electronic acceleration and peak-hold (0-25dB). <u>COMPRESSOR</u> indicates slow compression component of gain reduction (0-25dB). LIMITER indicates fast peak limiting component of gain reduction (0-5dB).

Gain Control Element: True VCA. Proprietary Class-A design eliminates crossover notch distortion, modulation noise, and slewrate limiting found in competitive Class-AB designs.

"Bass" Band Compressor Characteristics

Attack Time: program-controlled; not adjustable. Release Time: program-controlled; not adjustable. Incorporates delayed-release distortion reduction.

Total Harmonic Distortion (at VCA output, OPERATE mode): Less than 0.1% THD, 50-200Hz, 0-30dB gain reduction.

Available Gain Reduction: 30dB.

Metering: single dB-linear edgewise-reading gain reduction meter (0-30dB).

Gain Reduction Element: Proprietary Class-A true VCA.

Crosscoupling (U.S. patent #4,249,042): Enables gain of "Bass" band to track gain of "Master" band to any degree, from identical tracking to fully independent operation. Adjustable with BASS COUPLING control.

Crossover Characteristics

Control: 6dB/octave @200Hz.

Program: 12dB/octave @200Hz in unique "distributed crossover" configuration (U.S. patent #4,249,042).

High Frequency Limiter Characteristics

Attack Time: approximately 5ms.

Release Time: approximately 20ms. Delayed release included for distortion reduction.

Mode: Left and right channels operate independently to avoid high frequencies in one channel causing audible timbre modulation of opposite channel.

Control Element: Junction FET.

Metering: Two LED's indicate hf limiting in L and R channels.

Threshold of HF Limiting: User-adjustable over 3dB range to meet format requirements.

FM "Smart Clipper" Output Processor Characteristics

Nominal Bandwidth: 15.4kHz.

Distortion Cancellation: Clipping distortion (below overshoot compensator threshold) cancelled better than 30dB (40dB typical), 0-2200 Hz (U.S. patent #4,208,548).

Delay Correction: Fourth-order allpass.

Amount of Clipping: User-adjustable over 6dB range to match format requirements.

Frequency-Contoured Sidechain (FCS) Overshoot Compensator Characteristics (U.S. patent #4,460,871)

System Overshoot: The FCS circuit is best thought of as a "bandlimited safety clipper". It operates like a hard clipper, but does not produce out-of-band frequency components as a simple hard clipper would. Because the audio processing will sometimes limit steady-state material with high average energy (like sinewaves) or with very little high-frequency energy to levels below the threshold of clipping, it is difficult to state a clear and meaningful specification for the <u>system</u> overshoot performance of the FCS circuit.

The FCS circuit is followed by a safety clipper. The overshoot specification could be slightly improved if this safety clipper were set up to clip more frequently. However, the system is aligned at the factory such that the safety clipper is almost <u>never</u> active, thus fully preserving the bandlimiting provided by the FCS circuit. With this safety clipper alignment, the peak modulation will be controlled $\pm 3.5\%$ on arbitrary waveforms clipped to any degree by the FCS circuit (acting as a bandlimited safety clipper); peak modulation will not exceed this level on other material. With typical program material, peak modulation uncertainty is less than 2%.

Sinewave Modulation Ability: 93% modulation (i.e., 0.6dB below maximum overshoot level) at all sinewave frequencies, assuming sinewaves are applied to FCS input.

Dynamic Separation: better than 45dB.

Difference-Frequency Intermodulation: FCS circuit causes no more audible IM (such as sibilance splatter) than would a simple hard clipper clipping to the same depth. The entire 8100A/1 processing system is specifically configured to prevent the FCS circuit from audibly degrading the difference-frequency distortion-cancellation properties of the earlier FM "Smart Clipper".

System Separation

Greater than 45dB, 50-15,000Hz; 60dB typical.

Stereo Generator Characteristics

Crosstalk (Main Channel-to-Subchannel, or Subchannel-to-Main Channel):

better than -40dB, 50-15,000Hz as measured at input terminals to stereo generator, or using internal crosstalk test mode which applies left-channel audio to either <u>main</u> or <u>sub</u> stereo generator inputs. Crosstalk representing distortion components (nonlinear crosstalk) typically better than -80dB as measured on a baseband spectrum analyzer.

38kHz Subcarrier Suppression: Greater than 40dB below 100% modulation; 60dB typical.

Suppression of 76kHz and its Sidebands: Greater than 70dB below 100% modulation.

Pilot Frequency: 19.000kHz +2Hz.

Pilot Injection Adjustment Range: Less than 8% to greater than 10% modulation.

Composite (Baseband) Output

Source Impedance: 470 ohms, independent of OUTPUT ATTEN setting, unbalanced. Level: variable 0 to greater than 4V p-p by means of 15-turn OUTPUT ATTEN control.

Connector: Type BNC held floating over chassis ground to permit interface to various exciters without need for wideband transformer for ground loop suppression. RF suppressed.

Recommended Maximum Cable Length: 6ft (1.8m) RG-58A/U.

Auxiliary Input/Output (for Test use only)

Provides L and R lowpass filter output or L and R stereo generator input depending upon setting of rear-apron NORMAL/TEST switch. Connectors are RCA phono-type, unbalanced. Stereo generator requires approx. 3V RMS for 100% modulation, unbalanced, with source impedance of test generator less than 50 ohms.

Operating Controls

VU Meter Selector switches ASA-standard VU meter to read:

L or R Input Level L or R Compressor Output L or R Filter Out L-R Level 19kHz Oscillator Level 38kHz PLL Control Voltage 38kHz AGC Control Voltage +15 V Power Supply Voltages

Stereo/Mono Mode Switch: Momentary front panel switch may be conveniently strapped for either <u>left</u> or <u>right</u> mono by means of a plug-in internal jumper. Mode may be remote-controlled by application of 6-24 V AC or DC pulses to appropriate rear terminals. Terminals are optically isolated, and may be floated \pm 50 V above ground. Three pairs of remote terminals will select either <u>left</u> or <u>right</u> audio inputs in <u>mono</u> mode, or <u>stereo</u>. Another internal jumper selects which of the three modes will be entered on powerup.

Setup Controls (front-panel, behind lockable swing-down door -- see Fig. 4-5)

Compressor:

Left and Right Input Attenuators "Master" Band Release Time Gate Threshold Bass Coupling Clipping High-Frequency Limiter Threshold Stereo Generator: **Pilot** Injection Pilot Phase L-R Gain (Separation) Pilot ON/OFF Switch NORMAL/MAIN-TO-SUB/SUB-TO-MAIN Crosstalk Test Switch (see text) General: Output Attenuator **PROOF/OPERATE** Switches (to defeat gain reduction, hf limiting, clipping, and gating) Power ON/OFF 115V/230V Selector Switch

Power Requirements

115/230VAC, <u>+</u>15%, 50-60Hz, approx. 19VA. IEC mains connector with detachable 3-wire "U-Ground" power cord supplied. Leakage to chassis less than 0.5uA. AC is RF-suppressed.

Dimensions

19" (48.3cm) W x 7" (17.8cm) H x 12.5" (31.2cm) D -- 4 rack units.

Environmental

Operating Temperature Range: 0-50[°] C (32-122[°] F). **Humidity:** 0-95% R.H., non-condensing.

Warranty

One year, parts and labor. Subject to limitations set forth in our Standard Warranty.

All specifications subject to change without notice.

Functions of Jumpers on PC Cards

Several cards used in OPTIMOD-FM Model 8100A/1 are also used in other Orban products. These cards have jumpers which determine their mode of operation. This appendix provides a card-by-card quick reference to jumper functions and normal 8100A/1 jumper positions. See assembly drawings in **Appendix J** for jumper locations and diagrams.

- **Card #3/4:** The jumpers on these cards determine the gains of the 20dB pads ahead of the input differential amplifiers. They should be set according to the nominal levels of the lines driving the OPTIMOD-FM. (Shipped with pads IN.)
- **Card #5:** Jumper A converts the Master Release Time module from its normal timing mode to a slow averaging mode for use with the Model 8100A/XT Six-Band Limiter Accessory Chassis. Unless the 8100A/XT is installed, jumper A should be set to NORMAL mode (as shipped).

Jumper B determines the threshold of compression of the Master band control circuitry. Unless the 8100A/XT is installed, both links should be set to NORMAL mode (as shipped).

Jumper C determines the attack time of the Master band. Unless the 8100A/XT is installed, both links should be set to NORMAL mode (as shipped).

Card #6: Jumper A should always be in the 8100A,8180A position.

Jumper positions B and C are used to route the outputs of Card #6. When the two links are mounted in the NORMAL B position, the outputs are sent to the 8100A/XT through Accessory Port #2. When the links are mounted in the NORMAL C position (as shipped), the outputs are sent to 8100A/1 Cards #8 and #9. Note that NORMAL B orientation is not the same as NORMAL C orientation. The REVERSE B and C positions reverse the left and right channel outputs of Card #6, which may be useful for fault diagnosis.

Card #7: The Powerup Mode jumper determines whether the stereo generator comes up in STEREO (as shipped), MONO LEFT, or MONO RIGHT mode when AC power is applied.

The Mono Mode jumper selects whether MONO LEFT (as shipped) or MONO RIGHT mode is entered when the front-panel STEREO/MONO switch is set to MONO.