

Limiter Amplifier Card type 179-300

The limiter was designed according to an entirely new principle, involving a combination of a relatively long attack time with a symmetric logarithmic clipping circuit. This design eliminates the well known transient noise during striking. The recovery circuit is program dependent based on the dual time constant principle, eliminating pumping and similar effect. An ImA instrument may be connected to indicate the actual gain reduction. An external control voltage may be supplied.

TECHNICAL SPECIFICATIONS

Supply Voltage Symmetrical Maximum Ripple Voltage

Current Consumption Steady State Current Consumption during Heat-Up Current Consumption without Oven Temperature Range Frequency Range within 0,5 dB Input Impedance, high Level Input +6 dBu Input Impedance, low Level Input -28 dBu Output Impedance Minimum Load Impedance Basic Amplification high Level Input Basic Amplification low Level Input \pm 15 V dc \pm 10% OV common 20 mV pp 20 Hz-to 1 kHz Derate with 6 dB per getave above 1 kHz 60 mA approx. 225 mA in 45 sec. 35 mA -20°C to +60°C (-4 to +140°F) 20 Hz to 20 kHz 22 kohms in series with 100µF 460 ohms in series with 100µF less than 1 ohm in series with 100µF 100 ohms 0 dB \pm 0.5 dB +34 dB \pm 0.75 dB

NTP ELEKTRONIK A/S

Theklavej 44Reg. No. 32426DK-2400 Copenhagen NVTelegram-address ElectrolabTelephone (45-1) 10 12 22Telex 16378 ntp dk

11.76

Limiter Amplifier Card

type 179-300

Limiting Level ref. to Output	Note 1	+6 dBu
Limiting Range		more than 30 dB
Distortion under Static Conditions up to 20 dB Limiting 40 Hz to 20 kHz		less than 0.2%
Signal to Noise Ratio at Limiting Threshold		82 dB A-Curve
Control Voltage Output (Instrument etc.)	Note 2	1 Volt per 5 dB ref. to OV
Indicator Output (LED Indicator)		14 mA
Attack Time	Note 1	1.5 millisecond combined with a full-wave logarithmic clipping circuit.
Recovery Time	Note 3	Dual time constants 200 msec. upon 15 seconds.
Weight		0,07 kg.

Note 1: The limiting level stated above applies to steady state conditions. Peaks shorter than 1.5 msec. will be limited at a level max. 3 dB above steady state conditions.

Note 2: Stereo Operation: The Control Voltages of two units may be linked together to obtain equal gain reduction in the two stereo channels. By cutting the connection between the two terminals E and F it is possible to apply an external control voltage giving a gain reduction of 5 dB per Volt up to 30 dB reduction.

Note 3: It is not recommended to change recovery and delay times when the card is used as a limiter. For override and other special functions, various time constants may be obtained by changing R 32 and R 44, and by changing R 52. For further information please contact the factory.

Card size: 115 x 60 mm Height: 20 mm

1				
			$3 \circ (P4) \circ + C1 \circ (R1) \circ (R1$	12 De ex R 48 ye d (2) (1)
			(10 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +	
4/12-71 BM/1W (R428 R43 crst. m. strap) 99/12-80 Q128ndret 2614-72 IW 25/5-72 IW / R53 0g C13 monteret: 27/2-75 BM/1W		ہر () ا	$\begin{array}{c c} A2 \\ A2 \\ C \\ R 31 \\ R 32 \\ R 32 \\ R 32 \\ R 32 \\ C \\ $	ⓐ ④ ④ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1/m 10 10				
1/42-71 BM/11 26/4-72 IW 25/5-72 IW	·			
	Målestok 2:1		INGENIØRFIRMA N. TØNNES PEDERSEN ^A /s	Tegn. 31-8-71 1.W.
Rettelser	Tolerance + mm Materiale	n + ?	Limiter Amplifier 179-300-C	Godk.
Rei	Behandl.			TECNING NR.
	Del·af Antal		Component Layout	<u> 179 - 3041-C - 4</u>

Normally the Limiter Amplifier will stay correctly adjusted, except when a component has failed and has been replaced; then it may be necessary to make certain adjustments. Before attempting to make any adjustments, note the permissible indication errors stated in Technical Specifications.

The functions of the trimpotentiometers are as follows:

Pl Bias adjustment of Op. amp Al

P2 Compensates for individual pinch-off of the F.E.T.(Q1)

P3 Compensates for individual slope Δ^{R}_{SD} of the F.E.T. Δ^{V}_{GD}

P4 Linearity adjustment of the FET Attenuator circuit.

P5 Adjustments for minimum distortion of the FET Attenuator.

Do not attempt to make any adjustments untill the current consumption has fallen to a steady level approx. 50 mA after 60 sec. Correct sequence of adjustments is as follows:

a. Bias adjustment of Pl

Conditions: No input signal.

Connect a DC voltmeter (or DC-oscilloscope sens. approx. 20mV/div.) between terminal 8 and terminal 6. Pl is adjusted until the voltage measured is the same whether TP is connected to terminal 6 or not.

b. Pinch-off adjustment of P2

Conditions: Input signal +6dBu lkHz on terminal 2. P2 is adjusted until the output voltage is +6dBu (0dB amplification).

The adjustment range can be altered by connecting or disconnecting R15 and / or R16.

c. <u>Slope dB/V and Lincarity</u> adjustment of P3 and P4

Conditions: Like referred under pos. b.

A floating external DC-source 0-6 V is connected between terminal 6 and 16, terminal 16 positive. The DC voltage is set to 3.0 Volt, and P3 is adjusted so that the output level is -9dBu (15 dB attenuation). Now the DC voltage is set to 6.0 Volt, and P4 is adjusted until the output level is -24 dBu (30 dB attenuation). Because of mutual dependence between P3 and P4 the adjustments are repeated until correct output level is obtained.

e. <u>Distortion</u> adjustment of P5. Conditions: +16dBu 1KHz on term. 2.
 P5 is adjustede to minimum distortion.
 Because of interaction between P5 and P2, the adjustment mentioned under pos. b might be carried out once more.

LIMITER AMPLIFIER 179-300

Technical Specifications

179-3011-A-4

Supply Voltage symmetrical	: ⁺ 15 V dc ⁺ 10% 0V common
Maximum Ripple Voltage	
Current Consumption steady state	: 0.1 V pp : 60 mA
Current Consumption during heat-up	
	: approx. 225 mA in 45 sec.
Current Consumption without oven	35 mA
Temperature Range	: -20° C to $+60^{\circ}$ C (-4 to $+140^{\circ}$ F)
Frequency Range within 0,5 dB	: 20 Hz to 20kHz
Input Impedance high level input	: 22 kohms in series with $100 m LF$
Input Impedance low level input	: 460 ohms in series with 100uF
Output Impedance	: less than 1 ohm in series with
Minimum Load Impedance	: 100 ohms 100,2F
Basic Amplification high level input	t : OdB ⁺ 0.5
Basic Amplification low level input	: +34 dB $\stackrel{+}{=}$ 0.75
Limitation Level ref. to output	
Note l	: +6 dB
Limitation Range	: more than 35 dB
Distortion under steady conditions	
1 kHz 0 to 20 dB limitation	: less than $0.2~\%$
40 Hz 0 to 20 dB limitation	: less than 0.2%
Signal to Noise Ratio at Limitation Threshold flat respons RMS(Af23kHz)	: 73 dBu
RMS (△f23kHz) Control Voltage output (Instrument	
etc.) Note 2	: 1 Volt per 5 dB ref. to OV
Indicator Output (LED indicator)	: 14 mA
Attack Time Note 1	: 1.5 millisecond combined with a full-wave logarithmic clipping circuit
Recovery Time Note 3	: Dual time constants 200 msec. upon 15 seconds
Note 1: The limitation level stated	above applies to steady

<u>Note 1</u>: The limitation level stated above applies to steady state conditions. Peaks shorter than 1.5 msec. will be limited at a level max. 3 dB above steady state conditions.

Note 2: Stereo Operation:

The Control Voltage of two units may be linked so as to obtain equal gain-reduction in the two stereo channels.

By cutting the connection between the two terminals it is possible to apply an external control voltage giving a gain reduction of 5 dB per Volt up to 30 dB reduction.

<u>Note 3</u>: It is not recommended to charge recovery-and delay.times: when the card is used as a limiter. For override and other special functions, various time constants can be obtained by changing R 32 and R 44, and by changing R 52, See curves on 179-3019-A-4.

5.71

ENT

	POS.	TEGN. NR.		BETEGN	IELSE			MATE	RIALE	ANT.	
	R1 R2		Resistor "	22 ku 680 u	5% "	1/8		Resist	a SK Ž		
	R3		11	12 K2	n	**		11	11		
	R4		11	470 🎗	H	*1		11	11		
	R5 R6		18	3K9 KΩ	. 11 · 11	11 11		11	11		
	R7		11	10 K⊋ 1 MΩ	"	, , , , , , , , , , , , , , , , , , ,		17	**		
	R8		Ħ	3,9 KΩ				"	11		
	R9		11	470 Ω		11		tt	łt		
	R10		17	220 N	11	**		29	**		
	R11		11	18 KΩ	11 17	17 17			**		
	R12 R13		11	33: KΩ 22 Ω	H			11	- 11		
	R14		¹ H	68 KΩ	н.	**		11	. 18		
	R15		11	8 5 KY	. 11	11		11	11		
	R16		**	47 Ks	"	11		11	*1		
	R17		11	3,1 K3		11		11			
	R18		11	10 KΩ	19	11		11	**		
	R19		· • •	10 K2	11	11		11	**		
	R20 R21		17	56 K	19 14	**		97 97	**		
	R21 R22		n	15 KQ 15 KQ		11		11	**		
	R23		18	56 KΩ	11	. 11		11	н		
	R24		17	82 K	;"	"		• 11	11		
	R25		11	47ο Ω	*n 11	99 89		· 11	**		
	R26			2,2 KΩ					••		
	R27 - R28		17	2,2 KQ	11 14	17 11		11	**		
	R29			2,2 KQ		**		11	"		
	R30		**	2.7 KQ 470 KQ	n	17		19	11		
	R31		17	10 KΩ	11	71		11	11		
	R32		**	220 KΩ	"	**		**	11		
	R33 R34		11	470 KΩ 100 KΩ	17 17	99 99		11	**		
_	R35		"	10 KQ	11	17		11	11		
.4.1974/BM/ua	R36		**	10 KQ	"			Π.	¥¥	1 1	
BM/	R37		- 11	2,2 KQ	n	11		11	11	·	
74/	R38		**	330 Q	11	. '		11	` н		
16.	R39 R40		97 99	$15 \text{ K}\Omega$	11 11	11 11		79 89	**		
4	R41		**	820 Q 820 Q	"	**		11	н Н		
6	R42		**	not used	H j	11		19	1		
	R43		**	not used	"	**		**	**		
	<u>R44</u>	1	17 . 11	820 K	+1 	łł 	<u> </u>		FF	<u> </u>	·
	R45 R46		•••	1,5 K2 47 2	" 5%	1/3W]				
死亡	R47		**	47 Ω	11	"		De	yschlag "		
74 B BN/ B.K.	R48		**	Not use			Î				
122	R49		97 70	100 KV	5%	1/8			a SK 2		
112- 15-1 1-72	R50 R51		17	10 KΩ		**		"	11		
25/	R52			1 KΩ	11 . 11 -	"		11	**		
	R52 R53			2k7 68 2		n	1	n			
Retteliser <u>\$4/12-71 BM</u> 25/5-72 BM/12 5/3-72 B.H.	SIG./DAT	0		The second s			S PEDF				
x	ac =	7.1		INGENIØRFIRMA N. TØNNES PEDERSEN 44			STYKLISTE				
	29.7		Limiter Amplifier 179-300-C Electrical Partslist								
	B.M./	d.n.	1	D1					179-30	<u>.</u>	

POS.	TEGN. NR.	BETEGNELSE	MATER	RIALE	ANT.	
P1		Trimpotmeter 10 KM 3329-1-103	Bo	urns		
P2		$\frac{1000}{1000} = 10000000000000000000000000000000$	Du	"		
P3		" $1 \text{ K}_{2} = 3329 - 1 - 102$		11		
P4		" 1 KM 3329-1-102		11		
P5		" $1 \ \text{K}_{22} \ 3329 - 1 - 102$		**		
C1		El.cap. 100µF/4QV EB	R	DE		
C 2		Tantal cap. $220\mu F/3V$ ETU5		30		
<u>_C3</u>		El.cap. 100µF/407 EB	R)E		
C4		Ceramic cap. 47pf 100V		iwatt		
C5		Polyester 0,22µF/250V 32234		mens		
C6 C7		$2,2\mu r/1000 10\%$:1813		
C8		Tantal cap. $1\mu F/35V$ ETP1 """ $10\mu F/35V$ ETP3		R0 "		
C9				17		
C10		" " 10μF/35V ETP3 " " 33μF/10V ETP3		••		
C11		" " 100µF/10V ET25		19		
C12		Not used				
C13		Ceramic cap. 22pf/100V	Mini	watt		
D1 D2		Diode BAX 13 IN 4152		XAS "		
D3		"BAX 13 IN 4152 "IN4148		**		
D3 D4		" 1N4148		11		
D5		" 1N4148				
D6		" not used.		**		
D7		" 1N4148		**		
D8		" lN4148		11		
D9		Zenerdiode IN 821	Moto	rola		
D10		" IN 821		π		
્રા		Transistor 2N5486 FET	Texa	S		
42		" BC 237 B(A)	Si	emens		
43		" BC 307 B(A)		19		
.24		" BC 237 $B(A)$		*1		
45		" <u>BC 307 B(A)</u>		17		
46		" BC 237 B(A)		11	Í	
Q7		" BC 307 B(A)		17		
48		BC = 237 B(A)		11		
ų9 1		BC 237 B(A)		"		
ų10-		$\begin{array}{c} " & BC 237 B(A) \\ " & 2N4302 FET \end{array}$		11		
11y		2N4502 FEI		ELCO		
Q12 A1				EXAS		
A2		Operationamplifier M-100 " LM-310 AH		NTP		
				onal Semi		
	-	Soldering tags		nit		
		Component oven 5 ST 1-2	JERN			
		Printed Circuit Board 179-3040-C	1	NTP		
SIG./DATO		INGENIØRFIRMA N. TØNNES PEDERSEN 3/4		STYK		
			2 Blade - Blad 2			
29.7	• 4 1	Limiter Amplifier 179-300-0 Electrical Partslist	C C	ZBlade	- Blad	2