Service Manual

Genelec 1031A Monitoring Speaker

Notice

The information in this document is subject to change without notice.

GENELEC OY makes no warranty of any kind with regard to this material. GENELEC OY shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopies, reproduced, or translated without prior written consent of GENELEC OY.

Copyright 1991, 1992, 1993 by GENELEC OY

This Service Manual is valid from S/N 3000

1031A Revision history

S/N 510	C18 10 UF/25V> 1 UF/35 V	Improves muting at switch-off
S/N 794	IC1 (on crossover filter board) TL072> NE5532	Improves distortion properties at high frequencies
S/N 1198	 added R129 1k00 0.6W on main board added support for PA-driver boards and power supply capacitors 400 added to crossover filter board component numbering (R1> R401 etc). 	PC-board changed to version A
S/N 2300	 added places for components needed in 1032A 	PC-board changed to version B
S/N 3000	 Bass driver changed and bass ring added 	Bass driver fixed with 6 screws

Genelec Oy, Tehtaantie 17 SF - 74100 IISALMI, FINLAND Phone: + 358 - 77 - 13311 Telefax: + 358 - 77 - 12667

Table of Contents

-

-

....

--

-

-

....

4

.

-

.

· • .

1. General Information	
1.1 Description	. 1 - 1
1.2 Technical specifications	. 1 - 2
1.2.1 System specifications	. 1 - 2
1.2.2 Amplifier section	. 1 - 3
1.2.3 Crossover section	. 1 - 3
2. Functional description	2 - 1
2.1 General description	2 - 1
2.2 Circuit Description	2 - 2
2.2.1 Input amplifier and crossover network	2 - 2
2.2.2 Treble and bass driver protection circuit	2 - 2
2.2.3 Power Amplifiers	2 - 3
2.2.4 Power supply	-
	- 0
3. Adjustments	3 - 1
3.1 Test configuration	
3.2 Adjustment points	
3.3 Adjustment procedures	
3.3.1 Bass amplifier offset voltage and bias current adjustment	3 - 2
3.3.2 Treble amplifier offset voltage and bias current adjustment	3 - 2
3.3.3 Crossover network level control adjustment	3 - 2
4. Servicing	4 - 1
4.1 Safety considerations	
	4 - 1
4.2 Servicing facilities	
4.3 Disassembly instructions	
4.3.1 Removing the rear panel	4 - 2
4.3.2 Detaching the amplifier deck	4 - 2
4.3.3 Detaching the circuit board	
4.4 Troubleshooting	
4.4.1 Checking crossover filter response	4 - 3
4.4.2 Checking the total voltage gain values	4 - 4
4.4.3 Voltage gain adjustment procedure	4 - 4
4.4.4 Checking the protection circuits	4 - 7
4.4.5 Changing the Power Amplifier Driver Board	4 - 8
4.4.6 Changing the Power Transistors	4 - 8
5. Spare Parts	5 - 1
5.1 Ordering Information	5 - 1
5.2 Recommended spare parts stock	5 - 1
6. Drawings	6 - 1
List of drawings	

11

1. General Information

1.1 Description

The 1031A is a compact monitoring speaker designed for broad band high output and low coloration.

Due to its small cabinet, this speaker is ideally suited to applications such as: high powered Near Field monitoring, TV broadcast monitoring and mobile vans This speakers precision even allows for CD mastering. It may be either horizontally or vertically mounted, by simple rotation of the Directivity Control Waveguide (DCW). Designed as an active speaker, this unit includes drivers, power amplifiers and active crossover filtering. This provides a totally dedicated and reliable system which simply requires a signal input and a mains supply.

The amplifier unit is mounted to the rear of the speaker cabinet on quick release vibration isolators, to ensure long term reliability. This unit incorporates power amplifiers, bass and treble driver overload protection, amplifier thermal overload protection, active crossover filter, treble tilt, bass tilt and bass roll-off controls.

By use of active tone controls, this speaker may be exactly matched to any application. These include free field mounting, near field on top of console, wall mounting in control room and even corner mounting. These versatile controls allow for precise alignment of the speaker to differing acoustic environments, making it a true all rounder.

The 1031A uses DCW technology in conjunction with some of the finest driver technology.

The woofer unit is a high efficiency 210 mm polymer composite cone, custom optimized for use in a small active cabinet. The tweeter unit is a 25 mm metal dome with pure piston behavior upto 23 kHz. When mounted in the DCW this driver offers superior transient and off axis response to conventional direct radiating soft domes.

These has resulted in perfect driver directivity matching as well as phase and delay uniformity at the crossover frequency.

DCW technology also ensures low diffraction and constant directivity in addition to providing higher driver sensitivity. The speakers response is thus flat upto an angle of 60 degrees.

The cabinet is constructed of veneered MDF, which is heavily braced to eliminate structural resonance.

Carefully placed damping remove internal standing waves which might lead to coloration in the midrange.

Non resonant port techniques have been employed to eliminate the effects of port ringing found in conventional designs.

• =		General Inform	nation	
■ <u>-</u>	1.2 Technical specific	cations		
-		1.2.1 System specification	าร	
		Lower cut-off frequency, -	-3 dB:	47 Hz
		Upper cut-off frequency, -	3 dB:	22 kHz
-				
		Free field frequency respo	nse	
-		of system:	48 - 22 kHz (2	2 dB)
y =	States and a	Maximum short term sine	wave	
		acoustic output on axis in half space, averaged fro	m	
1 =		100 Hz to 3 kHz:		@1m >110 dB
				@0.5m >116 c
1 =		Maximum long term RMS		
		acoustic output in same c with IEC-weighted noise:	onditions	
1		-	@1m >101 c @0.5m >107	
			@0.5m >107	OD SPL
1		Maximum peak acoustic o per pair on top of console		
		@ 1m from the engineer	1	
1		with music material:		>120 dB
	Martin Contractor	Selfigenerated noise level	in a constant	
-		free field @ 1m on axis		<10 dB
, =		Harmonic distortion at 85 at 1m on axis:	dB SPL freq. <300 H	z<1%
			freq. >300 H	
_ =				
		Drivers	Bass 210mm	
			composite co Treble 25mm	ne wooter (1") metal dome
		Weight:	12 Kg (26 lb)	
-		-		
		Dimensions:	Height Width	390mm 250mm
_ =			Depth	290mm

1 - 2

@1m >110 dB SPL @0.5m >116 dB SPL

	General Inform	ation		1 - 3
	1.2.2 Amplifier section			
	Bass amplifier output powe	er with an 8 o momentary	hm load: 120 W	
-	Treble amplifier output pov	ver at 8 ohm lo momentary	oad: 120 W	
	Long term output power is unit protection processor. Protection level:	limited by driv Bass	ver 15 VRMS	
:	Slew rate	Treble	4.5 VRMS 80 V/us	
		THD SMPTE-IM CCIF-IM DIM100	≤ 0.05 % ≤ 0.1 % ≤ 0.1 % ≤ 0.1 %	
	Signal to Noise ratio, from a nput to channel output, ref		n	
	output:	bass treble	100 dB 100 dB	
	Mains voltage: Voltage Operation Range:		100/200V or 115/230 <u>+</u> 10 %	v
F		idle full output	30 VA 160 VA	
	1.2.3 Crossover section	a a start		
h	nput connector:	XLR female	pin 2 + pin 3 -	
h	nput impedance:	10 k balanced		
S	Subsonic filter below 45 Hz	:	18 dB/octave	
ι	Jltrasonic filter above 25 kl	Hz:	12 dB/octave	
С	Crossover frequency:		2.2 kHz	
С	Crossover acoustical slopes	:	24 dB/octave	
Т	reble tilt control operating	range in 2dB s from +2 to -4		
B	ass roll-off filter in 2 dB st	eps: from 0 to -8 dI	3	
. В	lass tilt control in 2 dB step			
т	he 'CAL' position is with a	Il controls set	to 'off'.	
	GENELEC			

• =

W

2. Functional description

2.1 General description

A simplified block diagram of GENELEC 1031A Monitoring System is shown in Figure 2.1 below. The signal from the XLR input connector is taken via a balanced amplifier, attenuator, and buffer amplifier to the active crossover filter. The signal is divided in the filter into the bass and treble channels and finally amplified with separate power amplifiers for each driver unit. The bass and treble driver units are protected against excessive power levels by a special protection.circuit.

Figure 2.1 Functional Block Diagram of Genelec 1031A Monitoring System

2.2 Circuit Description

Refer to the circuit diagrams in Section 6 of this manual.

2.2.1 Input amplifier and crossover network

The circuitry of the input amplifier is shown in Figure 6.5. Balanced input with a soft high-frequency roll-off is provided by operational amplifier IC1A. Next to the input amplifier is the volume control and a buffer amplifier IC1B to feed the active crossover filter.

2 - 2

The circuitry of the active crossover filter is shown in Fig.6.2. The filter consists of four dual-operational amplifier ICs mounted on a seven separate plug-in circuit board. The filter board is attached to the main board by a 10-pin connector and two fasteners. The component layout of the filter section is shown in Fig. 6.4.

The crossover filter includes three calibrating trimmers TR1 ... TR3 and three DIP-switches SW101 (BASS ROLL-OFF), SW102 (BASS TILT) and SW103 (TREBLE TILT). The switch controls are mounted on the main board and can be accessed by an user via holes on the rear panel. The switches are used for balancing the room response in different speaker mounting locations. Flat anechoic response is achieved with all controls in OFF-positions.

The calibrating trimmers are set by the manufacturer and a special measuring equipment is needed during adjustment. The crossover filter response curves and total voltage gain curves of the amplifier channels are shown in Figures 4.2 and 4.3 in section 4 of this manual.

2.2.2 Treble and mid-range driver protection circuit

Driver protection and muting circuits are shown in Figure 6.1. Signals from treble and bass power amplifier outputs are rectified by diodes D5 and D7. If the signal amplitude exceeds the safe level of the driver, transistor T11 begins to conduct and supplies current to analog opto isolator IS1. The output side of the opto isolator is connected in parallel to the feedback resistor R111 of IC1B at the input stage. When the value of feedback resistor is reduced, the gain of the input stage is decreased, and signal level at the power amplifier output is lowered. Components R25-R27, C13, C14 and R37, R39, C15, C16 form two delaying networks simulating the thermal time constants of the treble and bass drivers. If the protection circuit is activated the time constants of the delaying network is reduced by switching capacitors C14 and C16, off from the circuit with comparator IC2. This is needed to reduce the effect of short term signal peaks to rise the temperature of driver voice coils during continuous overdrive condition.

The noises that occur when switching the amplifier on and off are eliminated by a muting circuit consisting of T12 with surrounding components (see Figure 6.10). When the power is first turned on, the

Functional Description

+15 V supply voltage rises quickly. Capacitor C17 charges and supplies base current to switching transistors T101 and T102 biasing them on momentarily. Capacitor C18 charges via D10 to a positive voltage and biases T12 off. During switch-off, C18 discharges quickly via R49 and T12 start to conduct, keeping transistors T101 and T102 conducting long enough to suppress filter switch-off noises.

2.2.3 Power Amplifiers

The power amplifier consists of two similar channels for bass and treble as shown in figures 6.7 and 6.8. The input and voltage amplification stages of each power amplifier channel are located on two separate circuit boards connected to main board via a 10-pin connectors J1 and J2. The circuit boards are made using surface mount technology (SMT) and service of the board is not recommended. The circuit board can easily be changed if any service is needed.

The circuitry of the two channel power amplifier is shown to the right of driver blocks. Both channels are similar and only treble channel is reviewed here. Audio signal from the driver module is brought to the power amplifier via connector J1 pins 2 and 6. Darlington transistor T1 is thermally coupled to power transistor heat sink and its function is to keep the bias current of the power transistors constant during temperature variations. The bias current can be set by trimmer potentiometer TR1. Transistors T2 and T3 form a darlington driver stage for output transistors T4 and T5.

Comparator stage IC2A (see Figure 6.9) is driven by CLIP-signal generated on the power amplifier driver boards. If the driver stage is overdriven this signal contains pulses which pull IC2A output to ground and the CLIP-LED mounted on the front panel of the speaker enclosure is illuminated.

Comparator IC2D detects if the driver protection is activated and illuminates the same LED via a common CLIP/PROTECT-line.

2.2.4 Power supply

The circuitry of the power supply is shown in Figure 6.10. The primary side of toroidal transformer T1 has two windings of 100 or 115 V which can be connected in parallel for 100/115 V mains voltages or in series for 200/230 V mains voltages. The RC-network R301, C301 is a suppressing circuit to damp voltage peaks generated during closing or opening mains switch K301.

The secondary voltage of mains transformer is rectified by BR201 and filtered with capacitors C201 and C202 to power amplifier operating voltages . The voltage of \pm 15 V for the crossover filter and input stages is rectified by BR1 and stabilized with the aid of regulators IC4 and IC5. Both voltages have their own windings in the transformer secondary.

3. Adjustments

3.1 Test configuration

The test equipment required for making adjustments is listed in table 3-1 below. Equipment other than listed may be used if critical specifications are met.

Equipment	Specification
True RMS Voltage Meter	Frequency Range 20 Hz 20 kHz
DC Digital Voltage Meter	Input Voltage Range 200 mV 200 V
Oscilloscope	Bandwidth DC 20 MHz Input Sensitivity 0.1 V 10 V/div Time Base 0.1us/div 0.5 s/div
Audio Generator	Frequency Range 20 Hz 20 kHz THD < 0.1 %

Table 3-1 Recommended Test Equipment Set

3.2 Adjustment points

The location of all adjustment points is shown in Figure 3.1 at the end of this section. The adjustment trimmer potentiometers are mounted on the circuit board; gaining access to the controls only requires opening the rear panel. Instructions for dismantling the rear panel are given in paragraph 4:3.1. See section 4.1 Safety considerations before opening the rear panel.

The main circuit board is equipped with a 16-pin diagnostic connector J5. The connector is used by the manufacturer during final inspection, and a dedicated set of test equipment is needed for this test.

When measuring the power amplifier output DC voltages, a digital voltage meter or an oscilloscope is needed and it is connected between ground and a proper pin in speaker connector J3 where all power amplifier output signals are found. Because the treble amplifier has a series capacitor (C31) at its output, the offset voltage of it must be measured directly at emitter resistor R6. When measuring the bias currents, a digital voltage meter is connected over the corresponding emitter resistor (R6 or R17). The speaker cable must be disconnected from the speaker output connector before measuring the bias currents. This precaution is mandatory because the bass and mid-range amplifiers are DC coupled and DC current through the driver element causes measurement error when the offset voltage of the channel under test deviates from zero.

3.3 Adjustment procedures

Refer to Figure 3.1 in the next page.

- 3.3.1 Bass amplifier offset voltage and bias current adjustment
- a. Disconnect the speaker cable from connector J3.
- b. Allow the amplifier to warm up for 15 minutes.
- c. Set the DVM to 200 mV range. Connect the DVM to output pin B+ (pin 2 in connector J3) and ground.
- d. Adjust trimmer marked B-OFFSET on lower PA-Driver board to a DVM reading of zero volts.

TALE REPORT Connect the DVM across resistor R17.

f. Adjust trimmer marked B-BIAS (TR2 on the main board) to a DVM reading of 10 + 1 mV.

3.3.2 Treble amplifier offset voltage and bias current adjustment

- a. Repeat steps (a) above. Connect a DVM across treble amplifier direct output (upper end of R6) and ground. The DC voltage cannot be measured from J3 because there is a series capacitor at the treble amplifier output.
- b. Adjust trimmer marked T-OFFSET on upper PA-Driver board to a DVM reading of zero volts.
- c. Connect a DVM across resistor R6.
- d. Adjust trimmer marked T-OFFSET (TR1 on the main board) to a DVM reading of 10 + 1 mV.

3.3.3 Crossover network level control adjustment

The crossover filter has three calibrating trimmer potentiometers TR1 ... TR3, mounted on the filter board. Different driver element sensitivities can be compensated for by these trimmer potentiometers. The trimmer potentiometers are set for flat acoustic response at the factory and readjustment is required only after driver replacement. Special acoustic measurement equipment is needed during the adjustment.

It is possible to 'coarse ' calibrate the channel gains by using total voltage gain check as shown in section 4.4.2. The calibrating is not exact because it does not observe driver sensitivity variations.

Adjustments

1 . . **. .** .

Figure 3.1 Adjustment points and connector locations

4. Servicing

4.1 Safety considerations

Although GENELEC 1031A Monitoring System has been designed in accordance with international safety standards, this manual contains information, cautions and warnings which must be followed to ensure safe operation and to maintain 1031A Monitoring System in safe operation condition. Maintenance and adjustments should be performed only by a qualified service personnel.

Any adjustment, maintenance or repair of the opened 1031A Amplifier unit while the mains supply is connected should be avoided as far as possible, and when inevitable, should be carried out by a qualified person who is aware of the hazard involved.

WARNING !

Any interruption of the protective ground conductor (inside or outside 1031A Amplifier Unit) or disconnection of the protective ground terminal is likely to make the instrument dangerous. intentional interruption of the protective ground conductor is strictly prohibited.

It is possible for capacitors inside 1031A Amplifier Unit to still be charged even if the mains power supply is disconnected.

Ensure that only fuses with appropriate current rating and the specified type are used for replacement. Using repaired fuses or short-circuiting a fuse is strictly prohibited.

WARNING !

The maintenance information presented in this manual is applicable with protective covers removed and mains power applied to 1031A Amplifier Unit. Energy available at many points may, if contacted, result in personnel injury.

4.2 Servicing facilities

The test equipment required for servicing the 1031A Amplifier Unit is listed in table 3-1 in section 3 page 1.

4.3.1 Removing the rear panel

- a. Disconnect the mains cable and input cable.
- b. Release the three screws marked 'A' in figure 4.1.
- c. Swing the rear panel outward.

4.3.2 Detaching the amplifier deck

- a. Disconnect the speaker cable from connector J3.
- b. Loosen the three screws marked 'B' in figure 4.1. and remove

only the center one completely.

- c. Lift the amplifier slightly upwards and remove it from the enclosure.
- d. When assembling, reverse the above steps.

4.3.3 Detaching the circuit board

- a. Remove the deck from the enclosure (see steps above).
- b. Disconnect the transformer leads from connector J4 and XLR input jumper from connector J103 by pushing the connector locking collar near wires.
- c. Release the two screws marked 'C' in figure 4.1.
- d. Remove the amplifier circuit board by loosening the four nylon spacer going through holes on the board near corners.

Figure 4.1 Location of rear panel fixing screws

4.4 Troubleshooting

Troubleshooting information on the 1031A Monitoring System incorporates voltage level values and notes included as part of the circuit diagrams and level diagrams. The curves in figure 4.2 show the frequency responses of crossover filter channels. The vertical scale shows directly the AC voltage gain of bass and treble channels, measured between the XLR-input connector and the test points on the crossover filter board.

Figure 4.3 shows the total voltage gain between XLR input connector and speaker output connector J3 for bass and treble channels. The location of test points is shown in Figure 4.4.

Note that the total voltage gain values shown in Figure 4.3 depend on the sensitivity of the driver elements, because the channel gain calibrating trimmers TR1, TR2 and TR3 affect the gain and they are set for flat acoustic response. However, the variation should not be more than a few decibels from the values presented.

When comparing the actual gain values to those shown, proceed as follows:

- a. Open the rear panel (see section 4.3.1).
- b. Disconnect the speaker cable from connector J3.
- c. Set the rear panel level control to CAL position (fully clockwise).
- d. Set all rear panel tone control switches (BASS ROLL-OFF, BASS TILT, TREBLE TILT) to OFF-positions.
- e. Switch the power on.

4.4.1 Checking crossover filter response

Bass channel

- Connect an audio generator to the XLR input connector. If unbalanced generator output is used make sure that XLR pin 1 and pin 3 are connected together and used as ground.
- Set the generator frequency to 1 kHz and output level to 100 mV (RMS).
- Measure the AC voltage levels at crossover filter test points TP6 TP9 (see Figure 4.4) at different bass frequencies between 20 Hz and 3 kHz and compare the results to the values read from the response curves in figure 4.2. If a dB scaled AC voltage meter is available the gain values can be read directly from meter scale after referencing the meter to input level of 100 mV RMS. Otherwise a simple calculation is needed (gain in dB = 20 x log U_{meas}/0.1V).

Treble channel

- Measure the AC voltage levels at the test points TP2 ... TP5 at different treble frequencies between 1 kHz and 20 kHz and compare the results to the values read from the response curves in figure 4.2.

4.4.2 Checking the total voltage gain values

- Repeat steps above but use the main board test points TP5 (pin 2, bass out) and TP6 (pin 4, treble out) at power amplifier output connector J3. Compare the results to the values read from the response curves in figure 4.3. Be sure that no load is

Because of negative output impedance used in bass amplifier output, the voltage gain depends on the load impedance.

4.4.3 Voltage gain adjustment procedure

If the shape of channel response curves are right but the gain level is wrong, it is possible that the channel gain calibrating trimmer positions have been changed. It is possible to 'coarse ' calibrate the channel gains by adjusting the channel voltage gain to average value. The calibrating is not exact because it does not observe driver sensitivity variations.

- Repeat steps (a) to (e) above.

Bass channel

- Set the generator frequency to 1 kHz and the generator output level to 100 mV (RMS).
- Measure the AC voltage level at the output connector J3 across pin 2 (bass out) and ground. Adjust the AC output voltage to 1.58 V (RMS) by trimmer TR3 (B-CAL) located on the crossover filter board. This is a voltage gain of 24 dB.

Treble channel

- Change the generator frequency to 10 kHz. Set trimmer TR1 (EHF-CAL) to center position.
- Measure the AC voltage level at the output connector J3 over pin 4 (treble out) and ground. Adjust the AC output voltage to 2 V (RMS) by trimmer TR2 (T-CAL) located on the crossover filter board. This is a voltage gain of 26 dB.

The calibration process is now completed.

4 - 4

Servicing

Figure 4.2 Crossover filter response curves

ł

Figure 4.3 Total voltage gain curves and the effect of the crossover controls

Figure 4.4 The location of test points

- 4.4.4 Checking the protection circuits
- a. Open the rear panel (see section 4.3.1).
- b. Disconnect the speaker cable from connector J3.
- c. Set the level control on the rear panel to CAL positions (fully clockwise).
- d. Set all rear panel tone control switches (BASS ROLL-OFF, BASS TILT, TREBLE TILT) to OFF-positions.

e. Connect an audio generator to the XLR input connector. If unbalanced generator output is used make sure that XLR pin 1 and pin 3 are connected together and used as ground.

f. Switch the power on.

Bass channel

- Set the generator frequency to 1 kHz and output level to 100 mV (RMS).
- Measure the voltage level at the bass power amplifier output (test point TP5 in figure 4.4) with an oscilloscope or RMS voltage meter. Slowly increase the generator output level and see that the power amplifier output level increases accordingly up to 15 V RMS. This corresponds a generator level of 1 V (RMS). Raise the generator level to 2 V (RMS), which corresponds the clipping level of bass power amplifier, and note that the output level does not exceed 15.5 V (RMS).

Treble channel

- Change the generator output level to 100 mV (RMS) and frequency to 10 kHz.
- Measure the voltage level at the treble power amplifier output (test point TP6 in figure 4.4) with an oscilloscope or RMS voltage meter. Slowly increase the generator output level and see that the power amplifier output level increases accordingly up to 4.5 V RMS. This corresponds a generator level of 230 mV (RMS). Raise the generator level to 1.5 V (RMS), which corresponds the clipping level of treble power amplifier, and note that the output level does not exceed 5 V (RMS).

Note that the measurement is done with constant sine wave signal. With actual music os speech signals the output voltage of mid and treble amplifiers is allowed to go to clipping level as far as the thermal capacity of speaker drivers is not exceeded.

4.4.5 Changing the Power Amplifier Driver Board

- Remove the main circuit board from the amplifier unit (see Section 4.3.3).
- Unsolder connector J1, or J2 (bass or treble) depending on which channel PA-driver board is to be removed.
- Remove the PA-Driver board involved carefully by lifting it upwards.
- Push new PA-driver Board into connector holes and resolder.
- After assembling the amplifier check the offset voltage and bias current as shown in sections 3.3.1 3.3.2.

4.4.6 Changing the Power Transistors

The power transistors are mounted to the cooling plate with the aid of U-bracket and aluminum bar. The power transistors are compressed between the bracket and the bar with two M4x20 mm screws which also mount the amplifier board to the back plate. It is only necessary to remove these screws and one M3x12 mm screw inside the bracket to see the transistors. See the exploded view (Fig.6.11) for details.

The power transistor usually is shorted after failure. The transistor can be checked with an ohm-meter by measuring the resistance between emitter and collector wires. With good transistor the measuring value is high. If the meter shows low resistance (0-10 ohms) the transistor is probably faulty. Remove the transistor and recheck the resistance. Most Digital Ohm Meters also measure the diode junction voltage (forward biased) with constant current. With good transistor this value should be around 500 mV in base-emitter and base-collector diodes.

If replacement is required always change both of the PNP-NPN pair. Also check the driver transistor pair by measuring them respectively.

To remove the power transistors proceed as follows:

- remove the main circuit board from the amplifier unit (see Section 4.3.3).
- remove the driver transistor mounting springs from the side wall of the U-bracket by compressing the spring inside the bracket.
- remove the crossover filter mounting screws on other side of the bracket.
- remove the M3 screws inside the bracket and lift the bracket off from the board. The transistors can now be replaced.
- When assembling mount all washers in original locations. Note that the circuit board is grounded to the chassis via the top M3 screw, and the washer between PCB and aluminum bar for this screw must not be removed.

5. Spare parts

5.1 Ordering Information

Most of the electronic components used in 1031A Monitoring System are commercially available by local distributors. However, because of the high standard of 1031A specifications, there are components which are specified by GENELEC and thus available only from there. The use of GENELEC order code will make the order processing faster and help minimizing the delivery mistakes.

When ordering a spare driver unit it is extremely important to add the serial No of the 1031A under repair in the order form. To maintain the acoustical specifications of 1031A, in some cases the channel gain alignment is needed when an element is replaced.

5.2 Recommended Spare Parts Stock

To make the on site maintenance and workshop troubleshooting of 1031A Monitoring System quick and efficient the following stock of spare units is recommended.

<u>Oty</u>	Part Code	Description
MOD	ULES	
1	1031-300	Amplifier Unit
2	1035-311	Power Amplifier Driver Module
СОМ	IPONENTS	
5	142-3298	2SC3298B Driver Transistor NPN
5	143-1306	2SA1306B Driver Transistor PNP
5	142-3281	2SC3281 Power Transistor NPN
10	143-1302	2SA1302 Power Transistor PNP
20	181-0315	Fuse T315mA Slow Blow
20	181-1600	Fuse T1.6A Slow Blow
20	180-2500	Fuse F2.5A Fast Blow
1	320-1400	Mains switch

Spare Parts List

<u>Oty</u>	Part Code	Description
SPEA	KER ENCLOSURE	
1	342-3102	Bass Driver (new type) fixed with 6 screws used from S/N 3000
	342-3101	Bass Driver (old type) fixed with 4 screws used below S/N 2999
1	340-3101	Treble Driver

For component level spare parts refer to spare parts lists in the following pages.

1031-300 1031A Amplifier, Parts List

-

.

Ref	Part Code	Description	Ref	Part Code	Description
Canac	citors, 100 V u	nless otherwise noted	C203	122-3101	100N Polyester
C1	126-5100	10U/25V Tantal	C204		100N Polyester
C2	120-1100	1N Ceramic	C205	122-3101	100N Polyester
C3	120-0048	47P/500V Ceramic	C206	122-3101	100N Polyester
C4	120-0048	47P/500V Ceramic	C301	124-4010	100N/250VAC
C5	122-3101	100N Polyester			
C6	122-3101	100N Polyester	Conne		_
C7	126-5100	10U/25V Tantal	J301	316-0002	Mains Connector
C8	120-1100	1N Ceramic	XLR1	312-0002	Input Connector, XLR
C9	120-0048	47P/500V Ceramic	J103		Input Connector, PCB
C10	120-0048	47P/500V Ceramic	J3 J4	313-2421 313-2423	Output Connector, 10 AC Connector
C11	122-3101	100N Polyester	54	010 2120	
C12	122-3101	100N Polyester	Diode		
C13	126-3100	1U/35V Tantal	D1	161-4004	1N4004
C14	126-5100	10U/25V Tantal	D2	161-4004	1N4004
C15	126-3100	1U/35V Tantal	D3	161-4004	1N4004
C16	126-5100	10U/25V Tantal	D4	161-4004	1N4004
C17	126-5100	10U/25V Tantal	D5	161-4148	1N4148
C18	126-4100	1U/35V Tantal	D6	161-4148	1N4148
C19		1000U/35V Electrolytic	D7	161-4148	1N4148
C20		100N Polyester	D8	161-4148	1N4148
			D9	161-4148	1N4148
C21	120-2100	10N Ceramic	D10	161-4004	1N4004
C22		10N Ceramic	D11	161-4004	1N4004
C23		10N Ceramic	D12	161-4004	1N4004
C24		10N Ceramic			
C25	128-7101	1000U/35V Electrolytic	BR1	162-8517	W02
C26	128-7101	1000U/35V Electrolytic	BR20	01 162-0602	KBPC602
C27	126-5100	10U/25V Tantal			LED Green 5 mm
C28	126-5100	10U/25V Tantal	LED		LED Red 5 mm
C29	126-5100	10U/25V Tantal	LED	2 164-5001	LED Red 5 mm
C30	126-5100	10U/25V Tantal	-	_	
			Fuse	s 181-0315	T315mA Slow Blow
C31		15U/100V Polyester	F1	181-0315	T315mA Slow Blow
C32		10N Ceramic	F2		F2.5A Fast Blow
C33	3 122-4100	1U/50V Polyester	F20		F2.5A Fast Blow
			F20		F2.5A Fast Blow
C10		100P Ceramic	F20	-	F2.5A Fast Blow
C10		100P Ceramic 4N7 Polypropylene	F30		T1.6A Slow Blow
C10					(200/230VAC Mains
C10		6N8 Polypropylene 10U/25V Tantal	F30	1 181-3150	T3.15A Slow Blow
C10		100/25V Tantal			(100/115VAC Main
C10		220N Polyester		360-0001	Rear Panel Fuse Hol
C10		-		361-0001	PCB Fuse Holder
C10		2N2 Polypropylene			
C10		1N5 Polypropylene	Inte	grated Circuits	
C1	10 125-1680	6N8 Polypropylene	IC1	150-0072	TL072
C1	11 125-1330	3N3 Polypropylene	IC2		LM339
C1			IC3		TL072
C2			IC4		MC7815
	02 128-8163		IC5	155-7915	MC7915

1031-300 1031A Amplifier, Parts List

Ref	Part Code	Description	Ref	Part Code	Description
IS101	150-0530	VTL 5C3	R20	113-2103	10 3W Carbon Film
			R21	111-5100	10K0
			R22	111-5100	10K0
Switcl	hes		R23	111-4301	3K01
K301	320-1400	Mains Switch	R24	111-5187	18K7
K302	329-0001	Mains Voltage Selector	R25	111-5402	40K2
	1 324-0004	DIP Switch	R26	111-5402	40K2
	2 324-0004	DIP Switch	R27	111-6205	205K
	3 324-0004	DIP Switch	R28	111-4100	1K00
			R29	111-5100	10K0
Coils			R30	111-4464	4K64
L1	190-0101	Output Inductance		111 4404	4104
L2	190-0101	Output Inductance	R31	111-6100	100K
	100 0101	Output inductance	R32	111-5100	10K
Transi	stors		R33	111-5100	10K
T1	144-0014	MPSA14 NPN-Darlington	R34	110-3100	
Т2	142-3298	2SC3298B-Y			100 0.25W Flame Pro
ТЗ	143-1306	2SA1306B-Y	R35	111-5162	16K2
T4	142-3281	2SC3281-0	R36	111-5100	10K
T5	142-3281	2SA1302-0	R37	111-6681	681K
T6					
T7	144-0014	MPSA14 NPN-Darlington	R39	111-7120	1M2 Carbon Film
	142-3298	2SC3298B-Y	R40	111-5100	10K
T8	143-1306	2SA1306B-Y			
Т9	142-3281	2SC3281-0	R41	111-6100	100k
T10	143-1302	2SA1302-0	R42	111-5100	10K
			R43	111-3750	750
T11	140-0546	BC546B	R44	111-5100	10K
T12	141-0556	BC556B	R45	111-5100	10K
T13	141-0556	BC556B	R46	111-6100	100K
T101	140-0546	BC546B	R47	111-4205	2K05
T102	140-0546	BC546B	R48	111-4100	1K00
			R49	110-6100	100K
Resiste noted	ors, Metal Filn	n 0.6W 1% unless otherwise	R50	111-5100	10K0
R1	110-4150	1K5 0.25W Flame Proof	R51	111-5681	46K4
R2	110-4180	1K8 0.25W Flame Proof	R52	111-5100	10K0
33	110-2470	47 0.25W Flame Proof	R53	111-5100	10K0
R 4	110-2470	47 0.25W Flame Proof	R54	111-5100	10K0
٦5	110-3100	100 0.25W Flame Proof	R55	111-5100	10K0
R 6	116-0330	0.33 4W Wire Wound	R56	111-5100	10K0
37	116-0330	0.33 4W Wire Wound	R57	116-0150	0.15 4W Wire Wound
78	113-2103	10 3W Carbon Film	R58	111-2274	27R4
19	113-2103	10 3W Carbon Film	R59	111-5464	46K4
10	111-5100	10K0	R60	111-4100	1K00
R11	111-5100	10K0		111-4100	TROO
312	110-4150	1K5 0.25W Flame Proof	D101	111 4464	AVEA
313	110-4180	1K8 0.25W Flame Proof	R101	111-4464	4K64
314	110-2470		R102	111-4464	4K64
314	110-2470	47 0.25W Flame Proof	R103	111-4464	4K64
		47 0.25W Flame Proof	R104	111-4464	4K64
R16	110-3100	100 0.25W Flame Proof	R105	111-4464	4K64
317	116-0330	0.33 4W Wire Wound	R106	111-4464	4K64
318 [.]	116-0330	0.33 4W Wire Wound	R107	111-5100	10K0
319	113-2103	10 3W Carbon Film	R108	111-5100	10K0

1031-300 1031A Amplifier, Parts List

Ref	Part Code	Description	Ref	Part Code	Description
R109		3K83 22K6			
R110					
R111	111-5464	46K4			
R112		82K5			
R113		36K5			
R114		21K5			
R115		14K7			
R116		2K05			
R117		40K2			
R118	111-6140	140K			
R119	111-6649	64K9			
R120	111-5402	40K2			
R121	111-4681	6K81			
R122	111-4154	1K54			
R123	111-3464	464			
R124	111-4100	1K00			
R125	111-4464	4K64			
R126	111-4464	4K64			
R127	111-5402	40K2			
R128	111-4205	2K05			
R129		1K00			
R201	111-5100	10K0			
R202		10K0			
R301		10 1/2W Carbon Film			
PTC1	179-0070				
	•	0			
	mer Potentiom	cermet Trimmer			
P1	172-5100				
TR1	173-3500	Cermet Trimmer			
TR2	173-3500	Cermet Trimmer			
	sformers				
M30	1 100-3101	Mains Transformer toroidal 100/115/200/230V Primary			
	100-3102	Mains Transformer C-ring			
		100/115/200/230V Primary			
	er Diodes				
ZD1	163-7905	BZX79C5V6			
Misc	ellaneous				
	237-0001	PCB spacer			
	243-3101	Silicon insulator 1			
	243-3102	Silicon insulator 2			
	272-3101	Rear Panel			
	273-3101	Power Transistor Bar			
	273-3102	U-Bracket			

1031-303 Crossover Filter, Parts List

Ref	Part Code	Description	Ref	Part Code	Description
-		oylene 2.5% unless	R424	111-4100	1K00
	wise noted				
	125-2100	10N		er Potentiome	
	125-2100	10N		173-5100	10K
	125-1100	1N		2 173-5100	10K
	125-1100	1N	TR403	3 173-5100	10K
	125-1470	4N7			
	125-0150	150P	-	ated Circuits	
C407	125-1100	1N		150-5532	NE5532
C408	125-1100	1N		150-0072	TL072
C409	122-3221	220N Polyester	IC403	150-0072	TL072
C410	122-3221	220N Polyester	IC404	150-0072	TL072
C411	122-3221	220N Polyester	Conne	ctors	
C412	122-3221	220N Polyester		314-4455	PCB Connector 10-pin
C413	125-1470	4N7			
C413	B 125-1330	3N3			
C414	125-1680	6N8			
C415	5 125-1220	2N2			
C416	125-0220	220P			
	122-4100	1U Polyester			
	126-5100	10U/25V Tantal			
	126-5100	10U/25V Tantal			
) 120-2100	10N Ceramic	1		
C421		10N Ceramic			
Resis	tors, Metal Filr	n 1%			
R401		16K2			
	111-5110	11K0			
	3 111-5205	20K5			
	111-6274	274K			
R405		10K0			
R406		10K0			
R407		14K0			
R408		86K6			
R409		33K2			
R410		9K09			
R411	111-4464	4K64			
R412		4K64			
R412		OR			
	B 111-1000	10K0			
	111-4187	1K87			
R415		274K			
R416		8K25			
R417		8K25			
R418		82K5			
R419		82K5			
R420) 111-7100	1M00			
R421		10K0			
R422		4K64			
R423	3 111-4464	4K64			
			I		

1031-200 1031A Loudspeaker Enclosure, Parts List

L

Ref	Part Code	Description	Ref	Part Code	Description	
Drive	r Units					
	340-3101	Treble Driver				
	342-3101	Bass Driver (old type) S/N 1-2999				
	342-3102	Bass Driver (new type) S/N 3000 -				
Misce	llaneous					
	240-0102	Bass Driver Gasket				
	206-4025	Driver Fixing Screw M4X25 Black				
	270-1520	Amplifier Mounting Rubber				
	273-3103	Amplifier Mounting Bracket				
	292-3101 292-3102	GENELEC Sticker LED Sticker				

_

.

-

-

-

_

_

.

...

...

-

.

....

1031A Amplifier, circuit diagram 6-1
1031A Crossover network, circuit diagram
1031A Main board, component layout
1031A Crossover filter, component layout
Input amplifier, circuit diagram 6-5
Crossoverscontrols, circuit diagram 88
Treble power amplifier, circuit diagram
Bass power amplifier, circuit diagram 6-8
Protection and LED driver, circuit diagram
Power supply and connectors, circuit diagram
Exploded view of amplifier construction
Enclosure wiring diagram 6-12

Figure 6.1 1031A Amplifier, circuit diagram

6-2

Drawings

Figure 6.5 Input amplifier, circuit diagram

Figure 6.6 Crossover controls, circuit diagram

Figure 6.11 Exploded view of amplifier construction

Figure 6.3 1031A Main board, component layout , Rev A

Figure 6.3 1031A Main board, component layout

-

.

-

-

-

-

-

Figure 6.4 1031A Crossover filter, component layout, Rev A

and a state

ទ R10 R10 **°**() **613 ZLX** ទ **68** 79 88 89 89 5 86 H ខ 오 5 Ē 93 19 Ľβ ٤З వ . . 64 ū ŧza 20 2 2 TRJ Ω 822 Ŧ **R13** CENELEC a 824 1820 5 818 30 CI ม เย 123 619 33 E ទ **R**17 18 5 3 ้ไรเ 8 F,I8

Figure 6.4 1031A Crossover filter, component layout

2.3 Circuit Description of bass amplifier board

2.3.1 Bass power amplifier

The bass bridge connected bass amplifier is located on its own circuit board mounted center to the back plate. The circuitry is similar to that of midrange and treble channel except that there is no input stage and crossover filter board (see Figures 6.12, 6.13). Two parallel connected power transistors are also used at the power stages.

The input signal is taken from the mid/treble amplifier crossover filter output connector J103 by a jumper which is soldered to input connector J502 on the bass amplifier board. The signal from the input connector is routed to the PA-driver board and finally to power transistors via driver stages. The other half of the bridge is effectively an unity gain inverting power stage and it is driven from the output of the first stage via resistor R521. The outputs of the bridge halves are connected to the speaker output connector J704 via relays RL501 and RL601 which act as muting and short circuit protection relays.

2.3.2 Protection and muting circuit

The circuitry of protection and muting function of the bass amplifier is shown in Figure 6.14. The relays RL501 and RL601 are driven by flip-flop connected transistors T701, which is set to ON-state at switch on, and T702. T701 is switched to OFF-stage if speaker line short circuit condition is detected by T510 or T610 (see Figures 6.12, 6.13). The flip-flop T701/T702 stays in this condition till the power is switched off momentarily. The red fault LED on the enclosure front panel is illuminated during the malfunction and the bass channel is muted. Transistor T705 delays the relay closing during power on condition. The starting delay for the primary winding of mains transformer is done by relay RL701 which closes after capacitor C711 is charged during switching the power on. The primary current of the mains transformer is routed via resistor R716 and the relay RL701 shorts the resistor after switching the power on.

For driver protection function see section 2.2.2.

2.3.3 Power supply

The circuitry of the power supply is shown in Figure 6.14. The primary side of toroidal transformer T1 has two 115 V windings with 100 V taps which can be connected in parallel for 115 V mains voltage or in series for 230 V mains voltage. The selection is done with a voltage selection switch located on the amplifier rear panel. If 100/200 V mains voltage is needed, the 100 V taps are used in the primary windings and 115 V wires are left unconnected. Note that the mains fuse size is different for 115 / 230 V (or 100 / 200 V) settings. The RC-network R301, C301 is a suppressing circuit to damp voltage peaks generated during closing or opening mains switch K301.