

SERVICE MANUAL

SB120A/CE AMPLIFIER

'CE' CERTIFIED SB120A SERVICE NOTES

The EV Sb120a/CE amplifier consists of two PCB assemblies; a switching power supply, and a switching (Class D amplifier). All of the power supply circuitry on the primary side of the power transformer is not isolated from the AC mains, thus an isolation transformer is HIGHLY RECOMMENDED when servicing this assembly. The ±80VDC power supply output *is* isolated, so the amplifier's 'ground' *is* Earth Ground when used with the power supply. The amplifier's back plate and output return lug are also earth ground connections.

Switching Power Supply Description:

The power supply schematic indicates two 'ground' symbols: (live mains) and (earth). If an isolation transformer is used, the oscilloscope probe grounds may be connected to either of these nodes, **but not at the same time** as these two grounds are separated by high voltage. Oscilloscope measurements can be meaningless or even dangerous if the scope's ground is connected to anything other than earth and an isolation transformer is not used.

The power supply topology is a special type which corrects the Power Factor of the mains while at the same time providing an isolated and loosely regulated ±80VDC to the amplifier. The topology is a unique combination of a 'boost' topology commonly used for as a power factor corrected 'preregulator' and a 'push-pull forward converter' topology. This hybrid topology has the advantage of supplying an isolated and regulated high power ±80VDC with a power factor corrected input, but requiring far fewer components than a traditional switch-mode solution providing both these features. As shown in figure 1, the mains voltage is rectified, then fed through an energy storage power inductor (L2, used as a 'boost' inductor). The output of the inductor is fed to the center tap of a 'push-pull' power transformer. In a normal push-pull converter the transistors, Q1 and Q2 are switched on and off with a specific dead time, feeding the transformer with a high frequency alternating voltage.

In the push-pull boost topology, the transistors are never both off at the same time. When operating is the 'boost' state, the conducting time of the transistors is overlapping and thus shorting the transformer primary. This is the same condition as when a standard boost converter has it's single transistor on and is charging the boost inductor, L2.

The switching durations and overlap times (determined by the control IC, U2) serve to correct the power factor and regulate the output voltage. In this case 'power factor' does not refer to a phase shift of mains voltage and current, but to the high harmonic content present in the input current waveform caused by the large electrolytic bulk input capacitors. (These capacitors and poor power factor are also present in amplifiers with traditional linear power supplies). The Sb120a/CE power supply topology serves to control how the mains input current charges the bulk capacitors, C3 and C4. It's goal is to make the input current's shape look exactly the same as the input voltage's shape - sinusoidal. Figure 2 shows two mains current waveforms for equivalent power delivery, one with poor PF, the other with corrected PF.

The secondary voltage of the transformer is rectified and directly fed to the bulk storage capacitors, which charge to the peak secondary voltage, unlike the traditional push-pull converter which would need two large inductors in the output filter.

Figure 2 — Mains input current waveforms for corrected and uncorrected power supplies

a) Mains U and I with Poor Power Factor

b) Mains U and I with very good Power Factor

AMPLIFIER DESCRIPTION:

The Sb120a/CE amplifier operates very similarly to the original non-certified Sb120a, but the use of a special control IC ,U3, has replaced much of the discrete circuitry. The topology is termed 'Class D' because the power stage operates in a non-linear mode. There are disadvantages to this (circuit complexity, RF interference, etc.), but in a powered speaker application it's advantages outweigh the disadvantages. Because the output devices in a class D amplifier act like open or closed switches, the power devices only experience high voltage and high current for nanoseconds each switching cycle, rather than continuously like the familiar class AB audio amplifier. Because of this, class D amplifiers are at least three times more efficient than their linear equals.

Most class D amplifiers use Pulse Width Modulation (or PWM) to encode the audio signal into a 'digital' (this term used loosely) format. The theory behind PWM is simple. It cannot be argued that the 'average DC value' of a perfect bi-polar square wave is zero, not matter how high the voltages are. If the

positive half period of the square wave is 100 volts for 1uS and the negative half period is -100 volts for 1uS, the average is still zero. Because of this symmetry, a square wave is said to have 50% 'duty cycle'. What if the duty cycle were instantly change to 60%? This means that the positive portion of the pulse would now be longer than the negative portion. The average is no longer zero, but some value greater than zero. A pulse width modulator is a circuit which instantly changes a pulse train's duty cycle greater or less than 50% in direct response to the audio input. Switching power supplies operate in much the same way except that the duty cycle doesn't change in response to an audio signal, but a DC 'reference signal' which changes in response to line and load conditions.

The resulting high-power PWM pulse train is continuously 'averaged' by a two pole LC output filter to convert the high-voltage, high-frequency signal back into a high power amplified version of the original audio signal.

POWER SUPPLY DETAILS: (REFER TO ATTACHED SCHEMATIC DIAGRAM)

Mains voltage is supplied through the IEC/RF filter assembly mounted to the amplifier back plate. Referring to the power supply schematic further RF filtering is performed by C8-12 and L4. The SCR, D25, and surrounding circuitry comprise a soft-start function. At turn-ON power is delivered to the Sb120a/CE assembly through R7, a 56 power resistor. C13 will eventually charge through R8, causing D25 to latch ON, thus bypassing the 56 soft-start resistor. If D25 has failed, R7 will become very hot, and limit the amplifier output power.

The rectified (but still not filtered) mains voltage is supplied to the center tap of the push-pull power transformer through the 'boost' energy storage inductor (as well as RF filter inductor L4).

When both ends of the transformer primary are pulled low through Q1 andQ2, the transformer will look like a closed switch, thus causing the boost inductor's current to ramp up, storing energy in it's magnetic field. If either Q1 or Q2 now opens (not both!) the boost inductor's field will begin collapsing, thus coupling energy through the transformer and into the bulk capacitors, C3 and C4.

The center tap of the power transformer sees extremely high voltage spikes (several hundred volts) associated with the leakage inductance of the topology. C6,R37, D1 and D16 serve as snubbers to protect Q1 and Q2. the power FET, Q3, and all associated circuitry act as a powerful 'active' snubber. If the voltage spikes get large enough, they trigger the gate of snubber FET Q3, causing it to turn on. This effectively shunts the spike energy to ground.

Mains current is sensed by R5. This information is delivered to the control IC via the 'shunt' line.

The power supply circuitry is powered by a slave winding on the power transformer (pins 8 and 9) which steals enough energy to power the control electronics. This +22Vdc source is supplied through D11, D17, and filtered by C1. Since this winding is located on the same transformer core as the output winding, any increase in output voltage will also cause an increase in the voltage present at transformer pins 8 and 9. Overvoltage conditions are sensed by the D12 network connected to pin 8. If this voltage gets too high (which would destroy the amplifier), SCR D13 is latched on, thus shutting down the entire power supply. The supply can only be restarted by cycling the mains power off and then on to reset the SCR.

To provide voltage regulation, the ±80VDC output voltage is sensed across R35,36 and used to drive the shunt regulator U5, which is in turn used to provide a control current to the TL191 opto-isolator. An isolated feedback voltage directly proportional to

the ±80V output is now present across R34.

The specialized power factor correction control IC, U2, uses mains voltage level, mains voltage shape, mains current shape, and voltage feedback from R34 as control inputs. It's output is a pulse stream from pin 16 that is used in conjunction with the IC's clock signal to provide necessary gate drive signals to the power IGBT's, Q1 and Q2. Logic circuits U3 and U4 help accomplish this as well as make sure that both gate drive signals are never both low at the same time. This is especially necessary at start-up, when the control IC has not had a chance to stabilize.

Q4 and Q5 are simply buffered and semi-regulated voltage sources derived from the +22V source.

AMPLIFIER DETAILS:

It is recommended that during troubleshooting the amplifier PCB assembly be powered by a ± 15 VDC bench supply and a variable 0 to ± 80 VDC bench supply. It is not required that the high voltage supply be regulated, but it should be fused. Before connecting the ± 15 VDC supply, one should disable the resistor/zener regulator by disconnecting one leg of both R37 and R38. The control section can now be powered-up independently from the power section.

The audio input is applied to connectors on the small PCB (amplifier schematic), and is passed through RF filters before being applied to the differential input U1/A. Buffering, gain adjustment, and high pass filtering is accomplished by U1/B and U1/C. R54 provides +0, -6dB gain control before passing through the uniquely configured hard-knee compressor circuit, U5/A and U7. U7 has no effect until the output of U5/A (pin 1) surpasses either reference voltage present at the U6 comparator pins 5 and 6. When this happens, C23 will begin charging, causing U7 to 'suck' a mirror image current from U5 pin 2's input node. This serves to attenuate the audio signal, and prevent hard clipping of the audio waveform, regardless of how bad the ±80V power supply rail voltages are sagging. Compressors are typically noisy, therefore this one is configured to pass audio only when necessary to prevent clipping, not all the time, when it's output noise would be more objectionable.

Op-amp U5/B is configured as a comparator, to change the bi-color LED from green to red during hard limiting conditions.

Back to the amp schematic the low pass signal is passed on to the error amplifier inside the PWM control IC, U3, to be converted to two 'digital' signal streams delivered out U3 pins 4 and 7. These two ± 15 volt, approximately 130khz signals (one is an inverted replica of the other) are fed to the highspeed optocouplers, U1 and U2. Resistors R20-23 serve to assure a finite 'dead time' between the fall of one output pulse and the rise of the corresponding pulse. This is insurance that both power FETs will never turn on at the same time. The input side of both optocouplers is referenced to earth ground. The output of U1 is referenced to -80VDC, the output of U1 is referenced to the source pin of FET Q4 - this 'pseudo-ground' bounces back and forth between ±80V at 130Khz, with Q4's gate drive signal riding on top. This signal is not easily measured without a differential oscilloscope probe, but it is usually not necessary to do so.

The optically isolated gate drive signals are buffered by Q1,6 and Q2,5 before being applied to the gates of the power FETs, Q3 and Q4. The modulated switching action of Q3,4 causes a variable duty cycle square wave to be applied to the left side of the output filter, L1. C3 and C4 finish the LC filter section, with a -3dB point at about 7.6 KHz. C30,31 and L3 are RF filters. The gate drive circuitry is powered by the \pm 80V rails, through R1 and R2, and regulated and filtered by D3,6 and C5-8.

Comparator output U6-14 serves as a start-up delay, to keep both gate drive outputs inactive for a few seconds until all power sources have stabilized. After a few seconds, the U6-14 output will fall to approximately -15V to enable the amplifier.

U3's triangle wave present on pin 2 bounces back and forth between the threshold voltages set at pins 1 and 3. The resistor on pin 18 programs the input current into the internal clock circuit which then sets the frequency of the triangle wave (approximately 130khz).

All passive components surrounding and including U4/D comprise the 'error amplifier' and 'feedback compensation.' This frequency dependent circuit adjusts the amount of feedback gain so as to maximize feedback within the audio passband but at the same time provide an adequate margin of stability. As gain is increased, THD+N is improved, but too much causes the amplifier to oscillate.

Be aware that the presence of the feedback loop will usually prevent **any** circuit operation unless everything is functioning correctly. It is usually very helpful during troubleshooting of the amplifier to use $\pm 15V$ bench power supplies across D9 and D10 (lift one end of R41 and R14), and then bring the high voltage up slowly with an isolated, rectified, and filtered variac output. While bring up the high voltage, use a scope probe to monitor the center point of L2. If a DC voltage proportional to the variac output is seen, this indicates a fault. The problem should be solved before increasing the variac any further.

A normal amplifier should display a stable rounded 130khz 'square' wave, with the square wave's corners becoming increasingly sharper as the voltage increases. You should connect an 8 load to the amplifier's output to damp the Q of the LC output filter. Otherwise the output square wave may not appear stable.

The importance of 'dead time' becomes evident when one observes that unlike the power supply circuitry, an immediate failure would occur if both amplifier FETs were ON at the same time. Therefore the gate drive signals are delayed in such a way that prevents this from occurring. A short time exists between every switching cycle when both FETs are OFF.

A small 1 volt 130 KHz signal will be 'leftover' at the amplifier's output and will harmlessly ride along with the audio signal. This normal 'residual' signal should not be misdiagnosed as an oscillation.

If the power FETs fail, they will usually fail as a short circuit, applying high voltage out of the gate pin back into the gate drive circuitry. Typically, one should make certain that all the semiconductors in each gate drive circuit are functional before replacing the FETs and powering up the amplifier.

Keep in mind that the IRF630 power FETs are extremely rugged devices, however they will fail under the following conditions:

- **1.** If the amplifier output is short circuited or ap plied to an abnormally low impedance.
- 2. The devices are not properly mounted to the heatsink (loose bolts or insulation failure)
- 3. An overvoltage condition occurs from the power supply
- 4. ESD precautions are not followed (NOTE: Damage caused by ESD may not show up for days, weeks or months!)

DESCRIPTION	PART NUMBER
CONN XLR FEMALE VERTICAL PC MOUNT (J1)	21-01-051067
CONN MALE XLR VERTICAL PC MOUNT PLASTIC (J2)	21-0151375
CONN IEC FILTERED (FL1)	21-05-050981
PC BOARD ASSEMBLY POWER SUPPLY	27-01-050672
CAP 100UFD/25V RAD AL ELECT (C1)	15-01-026794
CAP 220 MF 35V ELEC AL RAD (C17)	15-01-028924
CAP 10MF 35V ELEC RADIAL (C16, C30, C28, C33)	15-01-037019
CAP 1UF 250V (C14, C34)	15-01-051004
CAP 0.1UF 630V (C6)	15-01-051007
CAP 1000UF 100V ELECT (C3, C4)	15-01-051008
CAP 1UF 400V (C8, C12)	15-01-051009
CAP 0.1UF (C9)	15-01-051010
CAP 2500PF (C10, C11)	15-01-051011
CAP 22UFD/50V AL ELECT (C13)	15-01-124504
CAP 100PF 10% 50V (C19)	15-02-027455
CAP 270PF 10% 100V (C18)	15-02-028025
CAP 10PF 5% 500V NON POLAR (C20)	15-02-100009
CAP 100NF 20% 50V-X7R CER (C7, C15, C24, C25, C27, C32, C35)	15-02-122891
CAP .001SMFD, 5%, 50V MYLAR (C23)	15-06-027320
CAP 0.33UF POLY 50V 5% (C31)	15-06-051005
CAP 0.0033UF 400V POLY/FOIL (C2, C5)	15-06-051006
CAP 0.47UF POLY 5% 63V (C22)	15-06-051012
CAP 0.1UF POLY 5% 63V (C21, C29)	15-06-051048
IC UC3854N PFC CONTROL (U2)	17-01-050723
IC TC4427 FET DRIVER DUAL (U1)	17-01-050727
IC CD14093BE QUAD NAND (U3)	17-01-050730
IC TL431ACLP SHUNT REG TO92 (U5)	17-01-050731
IC TIL191 OPTO-COUPLER (U6)	17-01-050733
IC 14013 CMOS DUAL D-FLIP (U4)	17-01-125047
NUT KEPS HEX 4-40	28-02-027389
NUT HEX 4-40 STL CD	28-02-102413
WSHR LK-SPLIT #4 .025THK	28-03-110502
RESISTOR .18 OHM 3W 5% (R5)	47-01-051015
RESISTOR 33 OHM 5% (R3, R4)	47-01-102042
RESISTOR 330K OHM 1/4W 5% (R10, R44, R46)	47-01-104541
RESISTOR 100 OHM 3W 10% (R11)	47-02-051014
RESISTOR 150K OHM 1/4W 1% MF (H19, H26)	47-03-026837
RESISTOR 100K OHM 1/4W 1% MF (R8, R21, R30)	47-03-028173
RESISTOR 2.74K OHM 1/4W 1% MF (R35)	47-03-028174
RESISTOR 200K OHM 1/4W 1% MF (R36)	47-03-028230

SB120A/CE AMPLIFIER	Replacement Parts List	
DESCRIPTION	PART NUMBER	
RESISTOR 15K OHM 1/4W 1% MF (R23, R24, R40, R42, R49 R50)	47-03-028238	
RESISTOR 47.5K OHM 1/4W 1% MF (R45)	47-03-028260	
RESISTOR 3.32K OHM 1/4W 1% MF (R13, R27)	47-03-037660	
RESISTOR 100 OHM 1/4W 1% MF (R39	47-0037770	
RESISTOR 182K OHM 1/4W 1% MF (R39)	47-03-038216	
RESISTOR 475K OHM 1/4W 1% MF (R16, R26)	47-03-038217	
RESISTOR 56 OHM 5W (R7)	47-03-051013	
RESISTOR 33 OHM 1W (R1, R2)	47-03-051058	
RESISTOR 33.2K OHM 1/4W 1% MF (R32)	47-03-109128	
RESISTOR 10K OHM 1/4W 1% MF (R14, R28, R33, R34)	47-03-109437	
RESISTOR 1K OHM 1/4W 1% MF (R9, R12, R46)	47-03-121532	
RESISTOR 22.1K OHM 1/4W 1% MF (R22, R29, R38, R41)	47-03-122953	
RESISTOR 1M OHM 1/4W 1% MF (R20, R37)	47-03-124488	
RESISTOR 1.82K OHM 1/4W 1% MF (R15)	47-03-124646	
RESISTOR 4.75K OHM 1/4W 1% MF (R6, R31, R47)	47-03-124672	
RESISTOR 3.92K OHM 1/4W 1% MF (R17, R18)	47-03-124838	
DIODE ZENER 16V 1N4745A (D32)	48-01-028045	
DIODE ZENER 6.2V 1N5234 (D30)	48-01-028163	
DIODE ZENER 15V 5% 1N5245B (D23, D33)	48-01-028580	
DIODE ZENER 22V 1/2W 1N5251B (D27)	48-01-038403	
DIODE ZENER 24V 1/2W 5% (D15)	48-01-050715	
DIODE ZENER 30V 3.25W BZT03 (D8)	48-01-050717	
DIODE BYV36E 1000V (D1, D7, D16)	48-01-050719	
DIODE BYV27-200 200V 2A (D11, D12)	48-01-050720	
DIODE BYT03-400 400V 3A (D3, D4, D5, D6)	48-01-050722	
DIODE 1N5819 45V 1A SCHOT (D14)	48-01-051016	
DIODE ZENER 200V 1W (D9)	48-01-051089	
DIODE ZENER 240V 1W (D10)	48-01-051090	
DIODE ZENER 15V 5% 5W 1N5352B (D2, D16)	48-01-121752	
DIODE 75V 10MA 1/2W 1N4448 (D17, D26, D31)	48-01-122601	
RECT SILICON CONTROLLED 400 AMP (D13)	48-02-051017	
RECT SILICON CONTROLLED 600 AMP SENSE GATE (D26)	48-02-051018	
XSTR 2N4401 SIL NPN (Q4, Q5)	48-03-028816	
XSTR IRF820 FET 2.5A 500V (Q3)	48-03-050726	
RECT IN5408 1000V 3A (D19, D20, D21, D22)	48-03-050729	
XSTR BUP202 IGBT 12A 1000V (Q1, Q2)	48-03-050736	
FUSE CLIP 5MM PC CLIP .016	51-04-038147	
FUSE 5X20MM NB 2A (F1)	51-04-051023	
FUSE 5X20MM 4A (F1)	100-130 vac version	
INDUCTOR 100UH 2.5A (L4)	56-01-051021	

SB120A/CE AMPLIFIER DESCRIPTION	Replacement Parts Lis PART NUMBER
INDUCTOR 7 MH E-E CORE (L2)	56-01-051345
XFMR POWER TRA-EV39 (L1)	56-08-051019
PC BOARD ASSEMBLY AMP	27-01-050673
CAP 2.2 MF 35V ELEC AL RAD (C32, C34)	15-01-028851
CAP 10MF 35V ELECT RADIAL (C6, C7, C13, C33)	15-01-037019
CAP 1UF 250V (C3, C4)	15-01-051004
CAP 1000UF 100V ELECT (C1, C2)	15-01-051008
CAP 0.1UF 250V 10% (C31)	15-01-051039
CAP 0.1UF 100V 7.5MM LD SP (C30, C35, C36)	15-01-051047
CAP 0: 10P 100V 7.5MM ED SP (C30, C33, C30)	15-01-051173
CAP 470 OF 25V AL ELEC NAD (C18, C17)	15-02-051063
CAP 100PF 10% 500 CERAMIC (C9, C20)	15-02-100035
CAP 470PF 10% 500-1000V CER (C11, C21, C39) CAP 100NF 20% 50V-X7R CER (C5, C8, C14, C15, C22, C23, C37)	15-02-122891
	15-06-026823
CAP .001 5% 50V (C10)	15-06-027367
CAP .047MF 5% 50V (C26, C27, C28, C29)	15-06-027395
CAP .01 MF 10% (C18, C19)	15-06-038151
CAP .0068UF 100V 5% (C12)	15-06-051012
CAP 0.47UF POLY 5% 63V 0.2" (C24, C25)	17-01-028867
	17-01-028907
IC NE5517N O.T.A. (U7)	17-01-050724
IC UC3637N (U3)	17-01-050732
IC HCPL2211 (U1, U2) IC TL074CN QUAD OP-AMP (U4)	17-01-124461
	17-01-124688
IC TL072CP DUAL OP-AMP (U5) NUT KEPS HEX 4-40	28-02-027389
NUT HEX 4-40 STL CD	28-02-102413
WSHR LK-SPLIT #4 .025THK	28-03-110502
WSHR EK-SPEIT #4 .023THK	28-04-125012
LED DUAL T1 3/4 RED/GRN (D12)	39-01-050261
RES 5.6 KHM 2W 5% CF OR MO (H1, H2)	47-01-051031
	47-01-051032
RES 47 OHM 2W 5% CF OR MO (H5, H6)	47-01-051033
RES 470 OHM 2W 55 CF OR MO (H14, H36, H37, H38, H39, H41)	47-01-051034
RES 475 OHM 1/4W 1% CF OR M (H46, H47)	47-01-051035
RES 392 OHM 1/4W 1% CF OR M (H67)	47-01-102066
RES 330 OHM 55 .25W CF AX (R9)	47-01-102088
RES 330 KHM 5% .25W CF AX (R50)	
RES 10 MHM 5% .25W CF AX (R70)	47-01-107373
RES 180 KHM 5% .25W CF AX (R24)	47-01-109298
RES 6.81 KHM 1% .25W MF AX (R4, R7)	47-03-027374 47-03-028175

DESCRIPTION	PART NUMBER
RES 7.5 KHM 1% .25W MF (R26, R27)	47-03-028234
RES 4.75 KHM 1% .25W MF (R17, R18, R49)	47-03-028242
RES 68.1 KHM 1% .25W MF (R13, R25)	47-03-028245
RES 47.5 KHM 15 .25W MF (R15)	47-03-028260
RES 3.32 KHM 1% .25MF AX (R10, R11, R42)	47-03-037660
RES 100 OHM 1% .25W MF AX (R3, R6)	47-03-037770
RES 27.4 KHM 1% .25 MF AX (R45)	47-03-038599
RES 8.25 KHM 1% .25 MF AX (R12)	47-03-039173
RES 40.2 KHM 1% .25W MF AX (R40)	47-03-109430
RES 20 KHM 1% .25W MF AX (R43, R44)	47-03-109434
RES 10 KHM 1% .25W MF AX (R20, R21, R28, R29, R60, R61)	47-03-109437
RES 100 KHM 1% .25W MF AX (R16, R19, R48, R52, R53, R68, R69)	47-03-119305
RES 1 KHM 1% .25W MF AX (R62)	47-03-121532
RES 23.2 KHM 1% .25W MF AX (R57)	47-03-123022
RES 15 KHM 1% .25W MF AX (R59)	47-03-124484
RES 1 MHM 1% .25W MF AX (R30, R31, R51)	47-03-124488
RES 60.4 OHM 1% .25W MF AX (R22, R23)	47-03-124607
RES 2.87 KHM 1% .25W MF AX (R56)	47-03-124650
RES 4.87 KHM 1% .25W MF (R71, R72)	47-03-125138
POT 10 KHM LINEAR TAPER (R54)	47-06-050071
DIODE ZENER 8.2V 400MA (D15)	48-01-026636
DIODE ZENER 15V 5% 1N5245B (D3, D6, D9, D10, D20, D21)	48-01-028580
DIODE BYW29-200 200V 8A 25 (D4, D5)	48-01-050721
DIODE 75V 10 MA .5W 1N4448 (D1, D2, D13, D16)	48-01-122601
DIODE ZENER 3.0V .5W 120MA (D11)	48-01-124636
(STR 2N4403 PNP SIL (Q5, Q6, Q7)	48-03-027334
(STR 2N4401 SIL NPN (Q1, Q2)	48-03-028816
(STR IRF630 FET 9.5A 200V (Q3, Q4)	48-03-050725
NDUCTOR 200UH (L1)	56-01-050060
NDUCTOR COUPLED (L2)	56-01-050061
NDUCTOR 1MH (L3)	56-01-051041
ERRITE BEAD 3L COIL (L4,L5)	56-01-051045
C BOARD ASSEMBLY INPUT	27-01-050758
CAP 470PF 10% 500-1000V CER (C1, C2)	15-02-100035
RES 7.5 KHM 1% .25W MF (R1, R2)	47-03-028234
CR MCH 6-32X1/4 PHP STL/ZN	28-01-115517
CR MCH 8-32X5/8 RHP STL	28-01-115729
CR MCH 4-40X3/8 PHP STL BO	28-01-124545
CR ROLOX 6-32X3/8 FTHD PHL	28-01-124965
IUT KEPS HEX 4-40	28-02-027389

SB120A/CE AMPLIFIER DESCRIPTION	Replacement Parts List
	PART NUMBER
NUT KEPS HEX 6-32X1/4	28-02-114116
NUT KEPS HEX 8-32 STL CD W*	28-02-114122
WSHR LOCK-EXT PT#6 .020THK	28-03-110480
WSHR LK-SPLIT #4 .025THK	28-03-110502
WSHR SHOULDER	28-04-051307
WSHR NYLON FLAT	28-04-051397
WSHR FL 1/4X9/16 OD STL CD	28-04-109340
WSHR FL SPCL NON-METALLIC	28-04-115911
WSHR FIBER THICK BLACK	28-04-124764
SPACER RD CLEAR HOLE 1/4" DIAMETER	28-07-050459
SPACER #6-32X0.25 1/4" DIAMETER	28-07-050980
STANDOFF 6-32X1.5 .25 HEX ALUM	28-08-037618
STANDOFF .75L X .25 HEX AL MALE/FEMALE	28-08-051263
STANDOFF .75L X .25 HEX AL FEMALE/FEMALE	28-08-051265
POWER SWITCH	51-02-124582

Sb120A CE Voltage Conversion

<u>100-130 Vac Version</u> Jumper Placement K1-K3, K2-K4, K4-K6, K5-K7 (K4 has two jumper holes) Install 4 Amp fuse Remove 200-250 Vac label if present

200-250 Vac Version Jumper Placement K2-K3, K5-K6

Install 2 Amp fuse Add 200-250 Vac label

<u>Notes</u>

.

<u>Notes</u>

600 Cecil Street, Buchanan, MI 49107 800/234-6831, 616/695-6831, 616/695-1304 Fax

©EVI Audio 1998 • Litho in U.S.A.