Electro-Voice® # OWNER'S MANUAL P 3000 PRECISION SERIES # DESCRIPTION Thank you very much for choosing an EV PRECISION SERIES amplifier. We are sure it will give you many years of satisfying performance. EV power amplifiers of the PRECISION SERIES meet the stringent requirements of tough touring applications. They are protected against over-temperature, overload, shorted outputs, radio frequency interference and DC faults. The power transistors are protected from damage from reverse feeding of electrical energy by means of an additional special protective circuit. For the so-called soft-start, the power outputs are switched on delayed via relays. An inrush current limiter circuit prevents the mains fuses from being blown. Maximum precision is also guaranteed as regards mechanical construction and finish. The robust steel chassis features remarkable torsion resistance and is specially designed to cope with the tough wear and tear associated with going on tour. Thermal stability is guaranteed by several low noise 3-stage fans which also means that they can be used inside the studio. Comparator circuits constantly compare the power amplifiers' input and output signal and control the limiters under non-linear operating conditions. They protect the loudspeakers from overload due to power stage clipping. The PRECISION SERIES power amplifiers feature excellent transmission properties. The power amplifier topology also makes for extremely low distortion rates. Distortion factor (THD), intermodulation distortion (SMPTE-IM) and transient intermodulation distortion (DIM 30 and DIM 100) are so low that they are only detectable with the most sophisticated measuring equipment. Generously dimensioned power supplies with low-leakage toroidal-core transformers provide considerable headroom well above the nominal ratings. V/I foldback limiter circuits were deliberately not included in the PRECISION SERIES power amplifiers to facilitate operation at complex loads up to a phase angle of +/-90°. The inputs are electronically balanced on XLR connectors. (Isolation transformers can be retrofitted). Direct Outs in the form of XLR connectors (male), to loop the signal through, are also standard features. The modes DUAL/Stereo or PARALLEL/Mono can be selected via the Input Routing Switch. Furthermore, the PRECISION SERIES power amplifiers can also be operated in "Mono Bridged" mode. The front panel accommodates the dB-calibrated input Gain controls which are designed as especially precise and safe-to-operate detented potentiometers. The LED display provides information about the power amplifers' operating status. For the two channels, they demonstrate readiness to operate, whether there is a signal at the input or output, when the Limiters have been activated and whether one of the protective features has been triggered. The power outputs Channel A, Channel B and Bridged Out are available on Speakon connectors. The rear side of the unit accommodates the ON/OFF switches for the integrated Hi and Lo cut filters, a groundlift switch which separates the housing from the circuit ground thus helping to prevent hum loops and the operating modes selector to mono bridged operation. They also feature extremely quiet fans with front-to-rear airflow, facilitating operation in large and narrow amplifier racks. This Owner's Manual is meant to help you familiarize yourself with all the PRECISION SERIES' other features. Please read it through carefully and we guarantee that your new power amplifier of the PRECISION SERIES from EV will give you great pleasure. #### 1. Level Control Calibrated detented potentiometers to alter the total gain of the power amplifier. In order to avoid distortion in mixing consoles upstream, these controls should normally be positioned between 0 dB and -6 dB. The calibrated markings show the additional attenuation directly. ## 2. Power ON indication This LED lights up when the mains switch is pressed. If it does not light up, the unit is not connected to the mains or the mains fuse has blown. ## 3. Input indication This LED lights up if a signal is present at the power amplifier input. The indicator does not light up when the input controls are turned down completely. # 4. Output indication This LED lights up if a signal is present at the power amplifier output. The indicator goes off when the speaker line has shorted or a protective circuit has been activated thus indicating that there is no signal at the speaker output terminals. ## 5. LIMIT This LED lights up if the limiter has been activated and the power amplifier is being operated at the clip level. If the LED flashes briefly, this is not a cause for concern. If this LED is lit permanently, the volume should be reduced to avoid overload damages to the connected loudspeaker systems. ## 6. PROTECT When this LED lights up during operation, one of the protection circuits against over-temperature, overload, shorted outputs, radio frequency interference or DC faults has been triggered. The cause of the error e.g. a shorted loudspeaker line must be remedied. In case of overheating, wait a little until the amplifier switches back to operating mode itself. ## 7. POWER Switch The unit is switched on via the power switch. The loudspeaker outputs are switched on via delayed relays so that no startup transients are audible. A current limiter prevents startup peaks on the mains line and prevents the mains fuse from blowing. REAR SIDE CHANNEL A # Power amplifier input connectors XLR connectors (male) are provided for "Looping" the signal to other power amplifiers. These are wired parallel to the XLR input connectors in each channel. The inputs of the power amplifier are electronically balanced and wired according to IEC 268. Isolation transformers can be retrofitted in order to avoid hum interference in larger sound reinforcement systems. Please contact your dealer if you have any problems. # Input wiring XLR PIN 1: SHIELD PIN 2: a, +, hot PIN 3: b, -, cold The inputs are electronically balanced. The input sensitivity is set to 0dBu (775 mV) by the factory. Please contact your local dealer if you want to change to 6dBu or 26 dB gain. # INPUT ROUTING ## **PARALLEL MONO** If the mode selector is in position PARALLEL MONO, the input connectors channel A und B are directly wired in parallel, but the volume for channel A or B can be adjusted independently using the input controls A or B. #### **DUAL STEREO** If the mode selector is in position DUAL STEREO, channel A and B are amplified separately. Many mixing consoles have XLR connectors in the outputs, but are wired in such a way that they are unbalanced. If a mixer is used with unbalanced outputs, PIN 1 and PIN 3 of the power amplifier's input connectors must be connected by a jumper or PIN 3 must not be connected to the connection cable. If signals are taken from unbalanced units via PIN 3 (b, -, cold) and PIN 2 (a, +, hot), strange hum interference or high frequency oscillations can occur. These effects can cause power amplifiers or loudspeakers to malfunction. LIMITER SLOW BRIDGED FAST BRIDGED MODE HI-LO-CUT FILTER ON OFF NORMAL ## POWER AMPLIFIER OUTPUT CONNECTORS SPEAKON output connectors are provided for the power amplifier channels A (left) and B (right). The Bridged Out connector for bridged operation is sealed with a plastic cover to prevent connection errors. ## WARNING: Please make sure not to hook Speakers up to the BRIDGED OUTput in NORMAL mode or damage will result. ## LIMITER The time constant of the built-in limiter to avoid overdriving is adjustable. Position "SLOW" is the factory preset and this should also be the normal position. If the power amplifier is used as a MID/HI-frequency amplifier in active multi-way systems, the limiter switch should be set to "FAST". If the power amplifier is used as LOW-frequency amplifier in active multi-way systems, the limiter switch should be set to "SLOW". ## **BRIDGED MODE** Slide switch to change from Normal Stereo mode to Bridged mode. In Bridged mode the built-in power amplifiers operate in "push-pull" and the double output voltage from channel A and B appears at the Bridged output connector. The phases of Channel A and B are in opposite and therefore the individual channels must not be used as loudspeaker outputs. ## HI-LO-CUT FILTER This filter attenuates subsonic and high frequency signals so that the power amplifiers are not modulated with these signals. This switch should normally always be in position ON. The OFF position is only for applications where an upstream unit, e.g. a crossover or a equalizer, has integrated HI-Cut and LO-Cut filters. # GROUNDED ## **GROUNDLIFT SWITCH** Hum loops can be avoided with the groundlift switch. If the power amplifier is operated together with other units in one 19" rack, the switch should be in GROUNDED position. If the power amplifier is used with units which have different earthing potentials, the switch should be adjusted to the UNGROUNDED position. ## TECHNICAL SPECIFICATIONS at rated output power 80hms, one channel driven, unless otherwise specified Output Power (20Hz - 20kHz / THD ≤ 0,1%) P 3000 into 8 Ohms 2 x 750 W into 4 Ohms 2 x 1200 W into 8 Ohms bridged 1 x 2400 W **Output Power** (1kHz / THD = 1,0%) into 8 Ohms 2 x 850 W into 4 Ohms 2 x 1300 W into 8 Ohms bridged 1 x 2600 W **Technical Specification** Frequency Response 0dB-1dB / 20Hz......20kHz Max. Output Level 91V / RMS before clipping, no load reference 1 KHz / THD = 1% Voltage Gain 26 dB (constant gain option) reference 1kHz Input Sensitivity 0 dBu/0.775 V at rated output power 6 dBu/1.55 V reference 1 kHz Maximum Input Level 21 dBu / 8.7 V Input Impedance 20 kOhm active balanced THD < 0.05% at rated output power MBW = 80 kHz, f = 1kHz IMD - SMPTE < 0.01% 60 Hz, 7 kHz, typical IMD - SMPTE < 0.01% 60 Hz, 7 kHz, at rated output power Signal / Noise Ratio > 105 dB A-weighted, RMS to rated output level, Input sensitivity + 6dBu Crosstalk <-70 dB at rated output power reference 1 kHz Damping Factor > 300 internal, 1kHz DIM 30 < 0.01% DIM 100 < 0.01% Slew Rate internal > 40 V / μs Power Consumption 1650 W 1/8 rated output power 4 Ohm Dimensions (WxHxD) 483 x 132.5 x 426 mm 19 x 5.2 x 16.77 (in) Weight 29 kg (63.9 lbs) Optional Input Transformer 90176 Dimensions in mm (inch) 131 (5.16") 0 0 426 (16.77") 5,5 (0.22°) O 375,5 (14.78") 0 440,5 (17.34") 483 (19") 0 0 132,5 (5.22*) Q # SPECIFICATIONS: P 3000 complete unit Standard specifications: IEC 268 part 3, IHF-A 0 dBu = 775 mV (RMS) # A. POWER SUPPLY | Type of power supply: | AC | |--|------------| | Rated power supply voltage: | 120 V | | Rated power supply frequency: | 60 Hz | | 4. Power drawn under rated conditions (1200W/4 ohms) | 4100 watts | | Power drawn under standard test conditions (120W/4 ohms) | 1500 watts | | 6. Power consumption at 1/8 rated output power (150W/4 ohms) | 1650 watts | | 7. Tolerance of power supply voltage variations: | -10%+10% | ## **B. INPUT CHARACTERISTICS** ^{*} Level controls fully clockwise | Input | Rated Input Leve | el (rated source e | .m.f) | Rated
Output
Power | Rated
Load
Impedance | |---|---|---|---|--------------------------|----------------------------| | | odBu sele | ect Jumper interna
+6dBu | l
26 dB | | | | CHANNEL A/B
CHANNEL A/B
CHANNEL (Bridged) | +1dBu (870mV)
0dBu (775mV)
0dBu (755mV) | +7dBu (1.74V)
+6dBu (1.55V)
+6dBu (1.55V) | 14dBu (3.87V)
13dBu (3.46V)
13dBu (3.46V) | 750 W
1200W
2400W | 8 ohms
4 ohms
8 ohms | Maximum Input Level +21dBu (9V) # C. OUTPUT CHARACTERISTICS * Rated output power at THD = < 0.1%, 20 Hz...20 kHz, MBW = 80 kHz # **OUTPUT POWER** | Output socket | Rated Load
Impedance | Rated Output
Power
Dual Mode | Maximum Output
Power, Dual Mode | Single
Channel
Output
Power)1 | Rated
Output
Voltage | |-----------------|-------------------------|------------------------------------|------------------------------------|--|----------------------------| | SPEAKER (A/B) | 8 ohms | 750 W | 850 W | 950 W | 77.5 V | | SPEAKER (A/B) | 4 ohms | 1200 W | 1300 W | 1700 W | 69.3 V | | SPEAKER BRIDGED | 8 ohms | 2400 W | 2600 W | 3400 W | 138.6 V | ⁾¹ measured with "Dynamic Headroom" test signal according IHF-A: 1 kHz tone burst, 20ms ON, 480 ms OFF # D. MAXIMUM OUTPUT VOLTAGE (NO-LOAD) | Output socket | SPEAKER A/B | SPEAKER BRIDGED | | |-------------------------------|-------------|-----------------|--| | Max. output voltage (no-load) | 91 V (RMS) | 182 V (RMS) | | ^{*} Maximum Output Power at 1kHz / THD = 1% ## E. STABILIZATION with rated load impedance, Dual Mode, standard test conditions 8 ohms 4 ohms Stabilization 0.325% 0.686% Stabilization level 0.028 dB 0.059 dB ## F. FREQUENCY RESPONSES # Gain frequency response: * -3 dB drop against level at norm frequency 1 kHz Input Output f(l) f(u) Comment INPUT A/B SPEAKER A/B <10Hz 75 kHz HI-LO-CUT Off INPUT A/B SPEAKER A/B 20Hz 35 kHz HI-LO-CUT On # Distortion-limited effective frequency range (power bandwidth): * THD = 0.1%, 1/2 rated power into 4 ohms, MBW = 500 kHz Input Output f(I) f(u) Comment INPUT A/B SPEAKER A/B <10Hz 48 kHz HI-LO-CUT Off ## G. PHASE-FREQUENCY RESPONSE +/- 30 degrees (20 Hz-20 kHz, HI/LO-CUT Off) ## H. INPUT IMPEDANCE 20 kohms (20 Hz ... 20 kHz) ## I. AMPLITUDE NON-LINEARITIES | | Amplitude Non-Linearities | Comment | |---|---------------------------|-------------------------| | Rated total harmonic distortion | < 0.05% | MBW = 80 kHz, f = 1 kHz | | Total harmonic distortion under
standard test conditions | < 0.02% | MBW = 80 kHz, f = 1 kHz | | IMD - SMPTE | < 0.01% | 60 Hz, 7 kHz | | DIM 30 | < 0.01% | 3.15 kHz, 15 kHz | | DIM 100 | < 0.01% | 3.15 kHz, 15 kHz | # J. CROSSTALK - at f = 1 kHz <-70 dB # K. DAMPING FACTOR > 300 - internal at f = 1 kHz ## L. SLEW RATE > 40 V/µs - internal ## M. NOISE - -R(S) = 50 ohms - Power amplifier input sensitivity 0dBu - E(F) = Noise voltage, unweighted with B = 22 Hz ... 22 kHz, RMS (IEC 268-1) - E(G) = Noise voltage, frequency weighting filter according CCIR-4683, quasi peak-weighted (IEC 268-1) - E(A) = Noise voltage, dB(A) frequency-weighted, RMS (IEC 268-1) - S/N ratios ref. to rated output voltage 69.3 V (1200W/4ohms) - HI/LOW-CUT ON, GND LIFT = GROUNDED - i.s. = Input Sensitivity | | Noise Out-
put Voltage | S/N-
Ratio | Equiv. input noise voltage | Equiv. input noise level | Residual noise
output voltage | |----------------|---------------------------|---------------|----------------------------|--------------------------|----------------------------------| | E(F) | < 615μV | > 101 dB | < 6.9µV | <- 101dBu | < 435μV | | E(G) | < 3.65mV | > 85.5 dB | < 41µV | <- 85.5dBu | < 1.55mV | | E(A) i.s.=0dBu | < 490µV | > 103 dB | < 5.5μV | <- 103dBu | < 345μV | | E(A) i.s.=6dBu | < 245μV | > 109 dB | < 5.5μV | <- 103dBu | < 170μV | | E(A) Gain=26dB | < 110μV | > 116 dB | < 5.5μV | <- 103dBu | < 90µV | # N. Dimensions Height : 132.5mm (3 HU) Width: 483 mm Depth: 426 mm # O. Weight 29 kg # TEST DATA: P 3000 complete unit General measuring conditions unless specified otherwise elsewhere: * Measuring Tolerance: $\Delta X = 1.5 \, dB$ * Test Frequency: f = 1 kHz * All Levels referred to: E = 775 mV (0 dBu) * Level controls fully clockwise * Pin assignment of the XLR-socket: PIN 1 = SHIELD, GROUND PIN 2 = + INPUT PIN 3 = - INPUT * Source impedance for feed-in via XLR socket: R(S) = 50 ohms The pcbs 86211 (MAIN PCB) and 84157 (POWER AMP) are equipped with service connectors. Pin assignment of service connectors: | 84157
CNSERV | Assignment | 86211
CNASERV | Assignment | 86211
CNBSERV | Assignment | |-----------------|------------------|------------------|---------------------|------------------|--------------------| | 1 | Coding | 1 | limiter A/B OFF | 1 | n.c. | | 2 | BIAS Hot-Side+ | 2 | Service Limiter A | 2 | Service Limiter B | | 3 | BIAS Hot-Side- | 3 | - 15V | 3 | -15V | | 4 | Hot - Out | 4 | GND | 4 | Fan voltage | | 5 | BIAS Cold-Side + | 5 | +15V | 5 | Service Fan Switch | | 6 | BIAS Cold-Side - | 6 | Heat sink temp. A/B | 6 | Service Fan Switch | | 7 | GND | 7 | +U1 Frontend A | 7 | +U1 Frontend B | | 8 | Floating + | 8 | -U1 Frontend A | 8 | -U1 Frontend B | | 9 | Floating - | 9 | Coding | 9 | Coding | 1. Power supply voltage: E(0) = 120V / 60 Hz 2. Tolerance of power supply voltage variations -10% +10% 3. Power consumption: 3.1. without load P(0) = 180 - 260 watts 3.2. Power drawn under rated conditions (1200W/4 ohms) P(0) = 4100 watts 3.3. Power drawn under standard test conditions (120W/4 ohms) P(0) = 1500 watts 3.4. Power consumption at 1/8 rated output power (150W/4 ohms) P(O) = 1650 watts # 4. Adjustments: ## 4.1. ADJUSTMENT OF IDLE CURRENT: Connect a DC voltmeter to the two test points (see table) and adjust the idle current with the trimmer (on PCB 84157). Perform adjustment for both power amplifier sides A&B. | Adjustment | Test point 1 | Test point 2 | E(DC) | BIAS Trimmer | | |------------|--------------|--------------|-------|--------------|--| | BIAS HOT A | CNSERV2 | CNSERV3 | 15mV | VR1 | | | BIAS HOT A | CNSERV5 | CNSERV6 | 15mV | VR2 | | | BIAS HOT B | CNSERV2 | CNSERV3 | 15mV | VR1 | | | BIAS HOT B | CNSERV5 | CNSERV6 | 15mV | VR2 | | The adjustment of the idle current must be done at room temperature, i.e the unit must be left to cool down for several hours, after it has been in operation. ## 4.2. FLOATING SYMMETRY The symmetry of the floating voltage must be checked immediately after the idle current adjustment. The power amplifier is operated without load. Connect DC voltmeters between test point 1, test point 2 or test point 2 and test point 3. The floating voltage must be adjusted symmetrically against ground via the FLOATING trimmers on PCB 86211. The symmetry of the + floating voltage and the - floating voltage against ground is decisive, the absolute value of the voltage is not so important. | Adjustment | Test point 1 | Test point 2 | Test point 3 | E(DC) | Trimmer | |---|--------------|--------------|--------------|-----------------|---------| | FLOATING SYMMETRY A FLOATING SYMMETRY B | CNSERV8 | CNSERV7 | CNSERV9 | approx. +/-67 V | VR102 | | | CNSERV8 | CNSERV7 | CNSERV9 | approx. +/-67 V | VR202 | ## 4.3. VCA - OFFSET: Open and close service switches S101 or S201 on PCB 86211 rhythmically and adjust with VR101 or VR201 to a minimum offset (with oscilloscope to minimum peak or by ear to minimum noise volume) at the amplifier output. The function of the service switches can also be executed via the service connectors with a short between CNASERV 2 and CNASERV 3 for the power amplifier A or a short between CNBSERV 2 and CNBSERV 3 for the power amplifier B. ## 4.4. ADJUSTMENT OF INDICATIONS * Level control fully clockwise, f = 1 kHz, input sensitivity = 0 dBu Feed in a signal (E(I) approx. -34 dBu) via Input A or B, until the IN LED lights up. Adjust the corresponding OUT LED to the same brightness via trimmer VR600 or VR601 on PCB 86211. ## 4.5. FAN ADJUSTMENT Close service switch S001 on PCB 86211 or insert jumper between CNBSERV 5 and CNBSERV 6. Adjust the voltage at CNBSERV 4 with VR700 to 27.5 V (DC). Open switch or jumper again. ## 4.6. GAIN SELECTION The input sensitivity of the power stage can be adjusted via the jumpers J11 ... J13 or J21 ... J23. The ratings for the Input Sensitivity or Gain refer always to fully opened level controls. | CHANNEL A | CHANNEL B | SELECTION | |-----------|-----------|--------------------------| | J11 | J21 | Input Sensitivity 0 dBu | | J12 | J22 | Input Sensitivity +6 dBu | | J13 | J23 | Gain +26 dB | The Input Sensitivity is set to 0 dBu from the factory. ## 5. Function Test: ## 5.1. OUTPUT Offset Voltage DC measurement at the loudspeaker outputs CHANNEL A/B $U(DC) \le \pm 10 \,\text{mV}$ ## 5.2 LIMITER # 5.2.1. Attenuation Test Drive both channels with 1 kHz until E(O) = 89 V (without load); increase input voltage by 10 dB. The LIMITER LED will light up, the output voltage will only rise by approx. 0.5 dB to 91 V and is slightly clipped. The THD of the limited signal is approx. 1% ... 2%. If the input voltage is increased further up to +21 dBu, the output signal must not clip more. # 5.2.2. LIMITER FAST/SLOW Test - * Test both power amplifier channels separately, perform test without load resistors - 1) Drive the power amplifier with a burst signal (f = 1 kHz, 1 10 cycles, rate = 0.5 sec.) and E(I) = 10 dB higher than nominal input voltage. - 2) Monitor the output signal with an oscilloscope and operate the FAST/SLOW switch - * SLOW: after 2 3 signal periods the limiter responds to the strong distortion and regulates it to a small residual distortion (THD = 1% ... 2%) - * FAST: after 1-2 signal periods the limiter has already regulated the strong distortion to a small residual distortion (THD = 1% ... 2%) The factory preset position is SLOW! ## 5.3. POWER-ON DELAY After approx 2 sec. from operating the Power On switch the relays E1 and E3 on pcb 86211 and the relays E1 on the pcbs 84157 (channel A/B) will pick up together. ## 5.4. FAN CONTROL: The fans run for approx. 2 seconds after switching the power amplifier on and then stop if the power amplifier is cold. The fans toggle between stage 1 and stage 0 in stand-by mode of the power amplifier (Power On, no signal), depending on the temperature of the heat sinks. If the switch S001 at PCB 86211 is closed, the fans run in stage 3. The function of the fan control can be tested by connecting a variable resistor (approx. 100 kohms) to CNBSERV 5 and CNBSERV 6. Via CNASERV 6 the heatsink temperature can be monitored during operation. | Fan stage | E(DC) CNASERV 6 | E(DC) CNBSERV 4 | Comment | |-----------|-----------------|-----------------|------------------------| | Stage 0 | <6.5 V | 0 V | Fans do not run | | Stage 1 | 6.5 V 7.5 V | 12.5 V | | | Stage 2 | 7.5 V 9 V | 19.5 V | | | Stage 3 | 9 V 12.5 V | 27.5 V | | | Protect | > 12.5 V | 27.5 V | Power amp switches off | Note: S001 is opened from the factory! ## 5.5. SOAR PROTECTION CIRCUIT TEST Drive both channels separately to 69.3 V into 4 ohms. Connect a 0.1ohms resistor parallel; protection circuit responds and always tries to switch on again! The Protect LED flashes at the same rhythm. # 5.6. SHORT CIRCUIT - CURRENT LIMITER TEST Test the two amplifier channels individually - drive the power amplifier to (E(O) = 89 V) with a burst signal (f = 1 kHz, 1 10 cycles, rate: = 1 sec.), without load - terminate with load resistor 1 ohm - the short circuit current limiter limits the output voltage over the load resistor symmetrically (monitor with oscilloscope!) to a peak value of approx. 45 V (approx. 45 amps). # 5.7. DC VOLTAGE PROTECTION CIRCUIT TEST - * HI/LO CUT OFF - * Limiter in position SLOW Test the two channels individually: - drive the power amplifier with a test signal (f = 7 Hz, without load resistor) - the protection circuit responds at a input voltage of approx. 3 V peak and always tries to switch on again! The Protect LED flashes at the same rhythm. Repeat test with f = 14 Hz, the power amplifier may not switch off. ## 5.8. RF PROTECTION CIRCUIT TEST - * Switch HI/LO CUT OFF - * Fan service switch on - * Note: Operate power amplifiers absolute without load resistors. Switch off limiter via S102 or jumper between CNASERV 1 and CNASERV 3. Feed in burst signal (f = 60 kHz, 100 msec On, 900 msec. Off) with E(I) 7 V rms into always one channel. The protection circuit must respond. The power amplifier always tries to switch on again! The Protect LED flashes at the same rhythm. Repeat test with f = 30 kHz and Limiter On, the power amplifier may not switch off. ## 6. Levels CHANNEL A and B - * Level control fully clockwise - * INPUT ROUTING switch into position DUAL/STEREO - * HI-LOW-CUT switch: ON (factory preset) - * BRIDGED MODE: NORMAL - * LIMITER: SLOW (factory preset) - * THD 0.1% # 6.1. Rated Levels | Input | E(I) | Test point | E(0) | R(L) | Comment | |---------|---------|-------------|--------|--------|----------------| | CH. A/B | 0 dBu | SPEAKER A/B | 69.3 V | 4 ohms | select J11,J21 | | CH. A/B | +6 dBu | SPEAKER A/B | 69.3 V | 4 ohms | select J12,J22 | | CH. A/B | +13 dBu | SPEAKER A/B | 69.3 V | 4 ohms | select J13,J23 | | CH. A/B | +1 dBu | SPEAKER A/B | 77.5 V | 8 ohms | select J11,J21 | | CH. A/B | -2 dBu | SPEAKER A/B | 54.8 V | 2 ohms | select J11,J21 | 6.2. Max. Input Level: E(1) = +21 dBu (8.7 V rms) ## 7. INPUT ROUTING Switch DUAL/STEREO (factory preset!) - Channels A and B must be driven separately # PARALLEL/MONO - Channels A and B are switched in parallel at the input; both channels can be driven by one signal source. ## 8. Level BRIDGED MODE * Level control fully clockwise * HI-LOW-CUT switch: ON (factory preset) * BRIDGED MODE: BRIDGED * LIMITER: SLOW (factory preset) * THD 0.1% Factory preset: NORMAL BRIDGED: The double output voltage is available at the BRIDGED OUT socket. The CHANNEL A input socket must be used; the CHANNEL B input socket has no function. | Input | E(I) | Test point | E(0) | R(L) | Comment | |-------|--------|-------------|---------|--------|----------------| | CH. A | -2 dBu | BRIDGED OUT | 109.5 V | 4 ohms | select J11,J21 | | CH. A | 0 dBu | BRIDGED OUT | 138.5 V | 8 ohms | select J11,J21 | ## 9. GROUND LIFT Switch Factory preset: GROUNDED Check the correct function of the switch with an ohm-meter: - Circuit ground (at the input or output socket) is connected or disconnected with chassis ground (contact at the earth-terminal screw at the rear or protective-conductor of the mains cable) # 10. Amplitude non-linearities - * Input Sensitivity 0 dBu - * Measurements with load resistor 8 ohms - * MBW = 80 kHz - * Power amplifier in factory preset condition (HI/LO Gut On, Limiter Slow) | Measurement | at rated output level
E(0) = 77.5 V | at output level under
standard test conditions
E(O) = 24.5V | Comment | |-----------------|--|---|----------------| | THD+N (f=1kHz) | < 0.005% | < 0.005% | MBW=80kHz | | THD+N (f=10kHz) | < 0.02% | < 0.01% | MBW=80kHz | | DIM 30 | < 0.007% | < 0.005% | 3.15kHz, 15kHz | | DIM 100 | < 0.009% | < 0.005% | 3.15kHz, 15kHz | | SMPTE | < 0.01% | < 0.01% | 60Hz, 7kHz | ## 11. Frequency response * plot 1: HI/LO CUT On * plot 2: HI/LO-CUT Off # 12. Noise levels - Input Sensitivity = 0. dBu - E(F) = Noise voltage, unweighted with B = 22 Hz ... 22 kHz, RMS (IEC 268-1) - E(G) = Noise voltage, frequency weighting filter according CCIR-4683, quasi peak-weighted (IEC 268-1) - E(A) = Noise voltage, dB(A) frequency-weighted, RMS (IEC 268-1) - S/N ratios ref. to rated output voltage 69.3 V (1200W/4ohms) - HI/LOW-CUT ON, GND LIFT = GROUNDED | | Noise Out-
put Voltage | S/N-
Ratio | Equiv. input noise voltage | Equiv. input noise level | Residual noise
output voltage | |------|---------------------------|---------------|----------------------------|--------------------------|----------------------------------| | E(F) | <-615μV | >101dB | < 6.9µV | <-101 dBu | < 435μV | | E(G) | < 3.65mV | >85.5dB | < 41µV | <-85.5 dBu | < 1.55mV | | E(A) | < 490μV | >103dB | < 5.5μV | <-103 dBu | < 345μV | # 13. Crosstalk < -70 dB - at f = 1 kHz # 14. Damping factor > 300 - internal at f = 1kHz # 15. Slew rate > 40 V/µs - internal # 16. Factory Preset Condition * Check settings | Function | Position | Control element | Condition | Setting | |------------------------|-----------|----------------------------|-------------|--------------| | Input sensitivity | PCB 86211 | Jumper J11/12 | plugged | 0 dBu | | Limiter Off switch | PCB 86211 | bow-type switch S102 | open | Limiter On | | Limiter Service switch | PCB 86211 | bow-type switch S101/S2012 | open | | | Service fan switch | PCB 86211 | bow-type switch S001 | open | | | Input Routing | Rear side | slide switch | Dual/Stereo | Dual Mode | | HI/LO CUT filter | Rear side | slide switch | On | Filter On | | Bridged Mode | Rear side | slide switch | Normal | Not bridged | | Limiter | Rear side | slide switch | Slow | Limiter slow | | CIR.GND to CHASSIS | Rear side | slide switch | Grounded | | | Pos. i | Pos. in diagram | | Pos. | in diagram | | |----------------|---|------------------|---------|----------------------------------|------------------| | | description | Part-No. | | description | Part-No | | B0010 | | 241242 | 1 00025 | triac MAC 223-6 | 22007 | | C0013 | speaker socket 4pol.
capacitor SO 0.10 MF/250V | 341343
333014 | I Q0025 | | 33887
34842 | | C0013 | capacitor SO 0.10 MF/250V | 333014 | 1 00025 | | 34842 | | 50010 | power switch | 346720 | 1 Q0027 | | 34842 | | Z0080 | rubber foot | 335589 | 1 00020 | | 34842 | | 00030 | power button black | 341382 | Q0030 | | 33576: | | 00210 | handle 109mm | 349520 | Q0031 | | 34842 | | 00510 | fan | 348415 | Q0032 | trans. MJ 15023 | 33165 | | | | | 1 00033 | trans. MJ 15023 | 33165 | | 00005 | PCB | 841578 | Q0034 | | 33165 | | CNSER | connector 9pol | 306446 | Q0035 | trans. MJ 15023 | 33165 | | C0007 | safety component 0,22MF | 344934 | Q0036 | trans. MJ 15023 | 33165 | | C0015 | safety component | 341714 | 1 Q0037 | trans. MJ 15023 | 33165 | | D0001 | diode 1N 4148 | 301254 | Q0038 | trans. 2SA 1302 | 34842 | | D0002 | break down diode ZPD 7V5 | 307916 | Q0039 | trans. 2SA 1837 | 348408 | | D0003 | diode 1N 4148 | 301254 | Q0040 | trans. 2SA 1837 | 348408 | | D0004 | break down diode ZPD 7V5 | 307916 | Q0041 | trans. 2SA 1302 | 34842 | | D0005 | diode 1N 4148 | 301254 | Q0042 | trans. MJ 15023 | 331658 | | D0006 | diode 1N 4006 | 305739 | Q0043 | trans. MJ 15023 | 331658 | | D0007 | diode IN 4006 | 305739 | Q0044 | trans. MJ 15023 | 331658 | | D0008 | diode 1N 4006 | 305739 | Q0045 | trans. MJ 15023 | 331658 | | D0009 | diode 1N 4006 | 305739 | Q0046 | trans. MPSA 92 | 348423 | | D0010 | diode MR 752 | 328769 | Q0047 | trans. MPSA 92 | 348423 | | D0011 | diode MR 752 | 328769 | Q0048 | trans. MPSA 42 | 348422 | | D0012 | diode 1N 4002 | 304360 | Q0049 | trans. BC 550 B | 301184 | | D0013 | diode 1N 4148 | 301254 | Q0050 | trans. BC 550 B | 301184 | | D0014
D0015 | diode 1N 4148 | 301254 | Q0051 | trans. MJE 350 | 338869 | | D0015 | diode 1N 4148
diode 1N 4148 | 301254 | Q0052 | trans. MJE 350 | 338869 | | E0001 | relay ZD 22 | 301254
348634 | 1 | trans. MJE 350 | 338869 | | L0001 | coil | 348592 | Q0054 | trans. MJE 350
trans. MPSA 42 | 338869 | | 00001 | trans. MPSA 42 | 348422 | 00056 | trans. MPSA 42 | 348422
348422 | | 00002 | trans. MPSA 42 | 348422 | Q0057 | trans. MPSA 42 | 348422 | | Q0003 | trans. MJ 15022 | 331657 | Q0057 | trans. MJE 340 | 338868 | | 00004 | trens. MJ 15022 | 331657 | Q0059 | trans. MJE 340 | 338868 | | 20005 | trans. MJ 15022 | 331657 | Q0060 | trans. MJE 340 | 338868 | | 20006 | trans. MJ 15022 | 331657 | Q0061 | trans. MJE 340 | 338868 | | 20007 | trans. MJ 15022 | 331657 | Q0062 | trans. MPSA 92 | 348423 | | 20008 | trans. MJ 15022 | 331657 | Q0063 | trans. MPSA 92 | 348423 | | | trans. 2SC 3281 | 348305 | Q0064 | trans. MPSA 92 | 348423 | | 01000 | trans. 2SC 4793 | 348409 | R0070 | wire-wound resistor 4,70hm | 341713 | | 20011 | trans. 2SC 4793 | 348409 | R0071 | wire-wound resistor 4,70hm | 341713 | | 20012 | trans. MJ 15022 | 331657 | R0072 | wire-wound resistor 4,70hm | 341713 | | 20013 | trans. MJ 15022 | 331657 | R0074 | wire-wound resistor 4,70hm | 341713 | | 20014 | trans. MJ 15022 | 331657 | R0075 | wire-wound resistor 4,70hm | 341713 | | 20015 | trans. MJ 15022 | 331657 | 00035 | shorting plug | 306397 | | 00016 | trans. MJ 15022 | 331657 | | | | | 20017 | trans. MJ 15022 | 331657 | 00010 | PCB | 871288 | | 00018 | trans. 250 3281 | 348305 | D0019 | LED red 3mm | 336399 | | 0019 | trans. 2SC 4793 | 348409 | D0020 | LED red 3mm | 336399 | | 0020 | trans. MJ 15023 | 331658 | D0021 | LED red 3mm | 336399 | | 0021 | trans. MJ 15023 | 331658 | D0022 | LED green 3mm | 336398 | | 0023 | trans. 2SC 4793 | 348409 | D0023 | LED red 3mm | 336399 | | Pos. in diagram | | | Pos. i | n diagram | Dank W. | |-----------------|--------------------------|----------|-------------|-------------------------|----------| | | description | Part-No. | | description | Part-No. | | D0024 | LED green 3mm | 336398 |
 D0701 | diode 1N 4148 | 301254 | | D0024 | LED green 3mm | 336398 | D0702 | diode 1N 4148 | 301254 | | D0027 | LED green 3mm | 336398 | D0703 | diode 1N 4148 | 301254 | | D0028 | LED green 3mm | 336398 | 1 D0704 | | 301254 | | D0029 | LED green 3mm | 336398 | D0705 | diode 1N 4148 | 301254 | | VR001 | potentiometer 10kohm lin | 348430 | D0706 | diode 1N 4148 | 301254 | | VROOZ. | | 348430 | I D0707 | diode 1N 4148 | 301254 | | 00005 | shorting plug | 306397 | D0708 | diode 1N 4148 | 301254 | | | | | i D0710 | diode 1N 4148 | 301254 | | 00015 | PCB | 862118 | D0711 | diode 1N 4002 | 304360 | | B0001 | socket XLR 3pol. | 346791 | E0001 | relay ZD 22 | 348634 | | B0002 | connector XLR 3pol. | 346792 | E0002 | relay ZD 22 | 348634 | | B0003 | socket XLR 3pol. | 346791 | E0003 | relay ZD 22 | 348634 | | B0004 | connector XLR 3pol. | 346792 | H0001 | res.network RKL 8A 103J | 343457 | | CNASE | connector 9pol | 306446 | 1 Н0003 | res.network RKL 8A 103J | 343457 | | CNBSE | connector 9pol | 306446 | H0004 | res.network RKL 8A 103J | 343457 | | C0004 | safety component 0,22MF | 344934 | H0005 | res.network RKL 8A 103J | 343457 | | 00005 | safety component | 341714 | 1 10101 | IC NE 5532 N | 327197 | | C0702 | KO-EL 47MF 50V | 343530 | 1 10102 | IC CA 3080 E | 307421 | | C0707 | KO-FOL 0.33MF 63V | 340244 | 1 10104 | IC TL 072 CP | 331340 | | D0001 | diode. IN 4148 | 301254 | I 10105 | IC NE 5532 N | 327197 | | 00002 | diode 1N 4148 | 301254 | 1 10106 | IC LM 308 A | 338359 | | 00003 | diode IN 4148 | 301254 | 1 10201 | IC NE 5532 N | 327197 | | 00004 | diode 1N 4148 | 301254 | 1 10202 | IC CA 3080 E | 307421 | | D0005 | diode 1N 4148 | 301254 | 10204 | IC TL 072 CP | 331340 | | D0006 | diode 1N 4002 | 304360 | 1 10205 | IC NE 5532 N | 327197 | | D0007 | diode 1N 4002 | 304360 | 10206 | IC LM 308 A | 338359 | | B000B | diode 1N 4148 | 301254 | 10300 | IC NE 5532 N | 327197 | | D0040 | break down diode ZPD 6V8 | 304992 | 1 10301 | IC NE 5532 N | 327197 | | D0041 | break down diode ZPD 6V8 | 304992 | 1 10302 | IC NE 5532 N | 327197 | | D0101 | diode zener BZX 85C 15V | 334321 | 10600 | IC TL 072 CP | 331340 | | D0102 | diode 1N 4148 | 301254 | 10700 | IC TL 072 CP | 331340 | | D0103 | diode 1N 4148 | 301254 | 10701 | IC TL 074 CN | 332985 | | 00104 | diode 1N 4148 | 301254 | Q0001 | trans. BC 560 B | 306928 | | | diode zener BZX 85C 15V | 334321 | | trans. BC 560 B | 306928 | | 00106 | diode 1N 4148 | 301254 | Q0003 | trans. BC 560 B | 306928 | | 00107 | diode 1N 4148 | 301254 | Q0004 | trans. BC 560 B | 306928 | | 00108 | diode 1N 4148 | 301254 | Q0005 | trans. BC 560 B | 306928 | | 00109 | diode zener BZX 55C 2V4 | 329511 | Q0006 | trans. BC 560 B | 306928 | | 00201 | diode zener BZX 85C 15V | 334321 | Q0007 | trans. BC 337-25 | 307150 | | 00202 | diode 1N 4148 | 301254 | Q0008 | trans. BC 337-25 | 307150 | | 00203 | diode 1N 4148 | 301254 | Q0009 | trans. BC 550 B | 301184 | | 00204 | diode 1N 4148 | 301254 | Q0010 | trans. BC 560 B | 306928 | | | diode zener BZX 85C 15V | 334321 | Q0011 | trans. BC 560 B | 306928 | | | diode 1N 4148 | 301254 | . 19 | trans BD 242B | 301235 | | | diode 1N 4148 | 301254 | Q0041 | | 307430 | | | diode 1N 4148 | 301254 | Q0042 | | 307430 | | 00209 | diode zener BZX 55C 2V4 | 329511 | Q0043 | | 307150 | | 00233 | diode 1N 4148 | 301254 | 1 00044 | | 307150 | | | diode IN 4148 | 301254 | | trans. BD 241B | 301236 | | | diode 1N 4148 | 301254 | 7 | trans. J 111 A | 330264 | | | diode 1N 4148 | 301254 | | trans 2N 3904 | 335763 | | | diode 1N 4148 | 301254 | | trans 2N 3904 | 335763 | | Pos. | in diagram | | Pos. : | in diagram | | | |-------|----------------|----------|---------|------------------------------------|----------|--| | | description | Part-No. | 1 | description | Part-No. | | | 00104 | A NIE 250 | 220000 | 1 00225 | 1 MTR 2/0 | 22006 | | | Q0104 | | 338869 | Q0226 | trans. MJE 340 | 338868 | | | Q0105 | | 338869 | Q0227 | trans. MJE 340 | 338868 | | | Q0106 | trans. MJE 350 | 338869 | Q0228 | trans. 2N 3906 | 348421 | | | Q0107 | | 348422 | Q0229 | trans 2N 3904 | 335763 | | | Q0108 | trans. MPSA 42 | 348422 | Q0241 | trans. 2N 3906 | 348421 | | | Q0109 | trans. MJE 350 | 338869 | Q0242 | trans. 2N 3906 | 348421 | | | Q0110 | trans. MJE 350 | 338869 | Q0600 | trans. 2N 3906
trans. BC 327-25 | 348421 | | | Q0111 | trans. MJE 350 | 338869 | Q0601 | | 307430 | | | Q0112 | trans 2N 3904 | 335763 | Q0602 | trans. BC 337-25 | 307150 | | | Q0113 | trans 2N 3904 | 335763 | Q0603 | trans 2N 3904 | 335763 | | | Q0114 | trans 2N 3904 | 335763 | Q0610 | trans. 2N 3906 | 348421 | | | Q0115 | trans 2N 3904 | 335763 | Q0611 | trans. BC 327-25 | 307430 | | | Q0116 | trans. 2N 3906 | 348421 | Q0612 | trans. BC 337-25 | 307150 | | | Q0117 | trans. 2N 3906 | 348421 | Q0613 | trans 2N 3904 | 335763 | | | Q0118 | trans. 2N 3906 | 348421 | Q0620 | trans. BC 337-25 | 307150 | | | Q0119 | trans. 2N 3906 | 348421 | Q0621 | trans. BC 337-25 | 307150 | | | Q0120 | trans. MPSA 92 | 348423 | Q0700 | trans. BD 243C | 339860 | | | Q0121 | trans. MPSA 92 | 348423 | Q0701 | trans. BC 337-25 | 307150 | | | Q0122 | trans. MJE 340 | 338868 | Q0702 | trans. BC 337-25 | 307150 | | | Q0123 | trans. MJE 340 | 338868 | Q0703 | trans. BC 550 B | 301184 | | | Q0124 | trans. MJE 340 | 338868 | Q0704 | trans. BC 550 B | 301184 | | | Q0125 | trans. MJE 340 | 338868 | Q0705 | trans. BC 550 B | 301184 | | | Q0126 | trans. MJE 340 | 338868 | Q0706 | trans. BC 550 B | 301184 | | | Q0127 | trans. MJE 340 | 338868 | Q0707 | trans. BC 550 B | 301184 | | | Q0128 | trans. 2N 3906 | 348421 | SL001 | rotary switch | 348583 | | | Q0129 | trans 2N 3904 | 335763 | SL002 | rotary switch | 348583 | | | Q0141 | trans. 2N 3906 | 348421 | S0001 | control element on/off | 327947 | | | Q0142 | trans. 2N 3906 | 348421 | S0002 | rotary switch | 348583 | | | Q0201 | trans. J 111 A | 330264 | S0003 | sliding switch | 338886 | | | Q0202 | trans 2N 3904 | 335763 | S0004 | rotary switch | 348572 | | | Q0203 | trans 2N 3904 | 335763 | S0101 | control element on/off | 327947 | | | Q0204 | trans. MJE 350 | 338869 | 50102 | control element on/off | 327947 | | | Q0205 | trans. MJE 350 | 338869 | S0201 | control element on/off | 327947 | | | Q0206 | trans. MJE 350 | 338869 | VR101 | wire wound resistor 47 kohm | 348486 | | | Q0207 | trans. MPSA 42 | 348422 | VR102 | wire wound resistor 2.5 k | 348675 | | | | trans. MPSA 42 | 348422 | VR201 | wire wound resistor 47 kohm | 348486 | | | • | trans. MJE 350 | 338869 | VR202 | wire wound resistor 2.5 k | 348675 | | | 20210 | trans. MJE 350 | 338869 | VR600 | wire-wound resistor 4.70k | 348487 | | | 20211 | trens. MJE 350 | 338869 | VR601 | wire-wound resistor 4.70k | 348487 | | | 20212 | trans 2N 3904 | 335763 | VR700 | wire wound resistor 2.5 k | 348675 | | | 20213 | trans 2N 3904 | 335763 | 00025 | shorting plug | 306397 | | | 20214 | trans 2N 3904 | 335763 | | | | | | 0215 | trans 2N 3904 | 335763 | 00020 | PCB | 852428 | | | 20216 | trans. 2N 3906 | 348421 | C0012 | KO-EL 1000MF 25V | 337597 | | | 0217 | trans. 2N 3906 | 348421 | C0013 | KO-EL 1000MF 25V | 337597 | | | 0218 | trans. 2N 3906 | 348421 | C0015 | safety component | 341714 | | | 0219 | trans. 2N 3906 | 348421 | D0001 | diode 1N 4148 | 301254 | | | 0220 | trans. MPSA 92 | 348423 | D0002 | diode 1N 4148 | 301254 | | | 0221 | trans. MPSA 92 | 348423 | G0001 | rectifier GBPC-W | 348714 | | | 0222 | trans. MJE 340 | 338868 | G0002 | rectifier GBPC 35-04 | 343270 | | | | trans. MJE 340 | 338868 | G0003 | rectifier B250 C1000 | 333719 | | | 0224 | trans. MJE 340 | 338868 | G0004 | rectifier B 80 C1500 M | 340791 | | | | | | **** | | 040121 | | | Pos. in diagram description Part-No. | | | Pos. in diagram description | Part-No. | | |--------------------------------------|------------------------|--------|-----------------------------|--|--| | | | 200000 | | radical visco visc | | | 00015 | fuse holder | 306838 | | | | | 00020 | fuse holder | 306838 | | | | | 00025 | fuse holder - | 306838 | | | | | 00025 | PCB | 852438 | | | | | 00012 | KO-EL 1000MF 25V | 337597 | | | | | 00014 | safety component | 341714 | | | | | 30001 | rectifier GBPC-W | 348714 | 1 | | | | 30002 | rectifier GBPC 35-04 | 343270 | | | | | 30003 | rectifier B250 C1000 | 333719 | i e | | | | 30004 | rectifier B 80 C1500 M | 340791 | | | | | 00010 | fuse holder | 306838 | | | | | 00015 | fuse holder | 306838 | | | | | 00020 | fuse holder | 306838 | | | | | 00030 | transformer power US | 348819 | | | | | 00035 | transformer power US | 348820 | | | | | | | | | | | | | | | 1 | | | | | | | 1 | | | | | | | I . | | | | | | | 1 | | | | | | | 1 | | | | | | | I . | | | | | | | | | | ## **# SERVICE INFORMATION** **WARNING:** No user serviceable parts inside. Extremely hazardous voltages and currents may be encountered within the chassis. The servicing information contained within this document is only for use by Electro-Voice Authorized warranty repair stations and qualified service personnel. To avoid electric shock DO NOT perform any servicing other than that contained in the Operating instructions unless you are qualified to do so. Otherwise, refer all servicing to qualified service personnel. **NOTICE:** Modification to Electro-Voice products is not recommended. Such modifications shall be at the sole expense of the person(s) or company responsible, and any damage resulting therefrom shall not be covered under warranty or otherwise. ## **#.1 ORDERING REPLACEMENT PARTS** TO ORDER REPLACEMENT PARTS, LOOK UP THE ORDERING NUMBER FROM THE COMPONENT PARTS LISTING AND CALL E. S. T. (616) 695-6831, FAX (800) 685-6386, OR WRITE: ELECTRO-VOICE SERVICE 600 CECIL STREET BUCHANAN, MICHIGAN 49107 U. S. A. # #.2 ELECTRO-VOICE UNIFORM LIMITED WARRANTY STATEMENT Electro-Voice products are guaranteed against malfunction due to defects in materials or workmanship for a specified period, as noted in the individual product-line statement(s) below, or in the individual product data sheet or owner's manual, beginning with the date of original purchase. If such malfunction occurs during the specified period, the product will be repaired or replaced (at our option) without charge. The product will be returned to the customer prepaid. Exclusions and Limitations: The Limited Warranty does not apply to: (a) exterior finish or appearance; (b) certain specific items described in the individual product-line statement(s) below, or in the individual product data sheet or owner's manual; (c) malfunction resulting from use or operation of the product other than as specified in the product data sheet or owner's manual; (d) malfunction resulting from misuse or abuse of the product; or (e) malfunction occurring at any time after repairs have been made to the product by anyone other than Electro-Voice or any of its authorized service representatives. Obtaining Warranty Service: To obtain warranty service, a customer must deliver the product, prepaid, to Electro-Voice or any of its authorized service representatives together with proof of purchase of the product in the form of a bill of sale or receipted invoice. A list of authorized service representatives is available from Electro-Voice at 600 Cecil Street, Buchanan, MI 49107 (616/695-6831or 800/685-2606). Incidental and Consequential Damages Excluded: product repair or replacement and return to the customer are only remedies provided to the customer. Electro-Voice shall not be liable for any incidental or consequential damages including, without limitation, injury to persons or property or loss of use. Some states do not allow the exclusion or limitation of incidental or consequential damages so the above limitation or exclusion may not apply to you. Other Rights: This warranty gives you specific legal rights, and you may also have other rights which vary from state to state. **Electro-Voice Electronics** are guaranteed against malfunction due to defects in materials or workmanship for a period of three (3) years from the date of original purchase. Additional details are included in the Unifom Limited Warranty statement. # #. 3 Technical Assistance For applications assistance or other technical information, contact the Applications Engineer. You can call (616) 695-6831, FAX (616) 695-1304, or write: Electro-Voice Applications Engineer 600 Cecil Street Buchanan, MI 49107 U. S. A. Electro-Voice a MARK IV company 600 Cecil Street, Buchanan, Michigan 49107, Phone (616) 695-6831, Fax: 616-695-1304 8234 Doe Avenue, Visalia, California 93291, Phone (209) 651-7777, Fax: (209) 651-0164 Mark IV Audio Canada. Inc. 345 Herbert St., Gananoque, Ontario, Canada K7G 2V1, Phone (613)382-2141, Fax (613)382-7466