INSTRUCTION MANUAL FT-480R For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-35254 Email:- enquiries@mauritron.co.uk Downloaded by□ □ Amateur Radio Directory YAESU MUSEN CO., LTD. # TABLE OF CONTENTS | | (Page) | |-------------------------------------|-------------| | GENERAL DESCRIPTION | | | SPECIFICATIONS | (2) | | SEMICONDUCTORS/ACCESSORIES | (3) | | FRONT PANEL CONTROLS AND SWITCHES | (4) | | REAR PANEL CONNECTIONS AND SWITCHES | (6) | | UNDER CABINET SWITCHES | (7) | | INSTALLATION | (8) | | OPERATION | (10) | | CIRCUIT DESCRIPTION | | | MAINTENANCE AND ALIGNMENT | | | PARTS LIST | (28) | # FT-480R MICROPROCESSOR CONTROLLED 2 METER ALL-MODE TRANSCEIVER #### GENERAL DESCRIPTION The FT-480R is a revolutionary, high performance USB, LSB, FM, and CW transceiver for the most demanding 2-meter operator. Controlled by a NMOS 4-bit microprocessor, the FT-480R features full PLL synthesis in 10 Hz, 100 Hz, 1 kHz, 20 kHz (US model), and 100 kHz steps. The extremely compact size of the FT-480R makes this model particularly well suited for mobile use. The microprocessor chip allows never-before-possible operating flexibility. As many as four memory channels may be programmed to your favorite frequencies, and by switching to the MEMORY SCAN position, all four memory channels will be scanned. Digital display of the operating frequency is provided. The front panel meter consists of a string of bright LED's, for easy monitoring of the received signal strength and transmitter output. The standard microphone features a PTT switch and up/down scanning controls plus a tone call button for repeater operation. Among the convenience features of your FT-480R are receiver offset tuning for CW and SSB, and a digitally synthesized dual VFO system. We recommend that you read this manual in its entirety, so as to derive maximum benefit from your new FT-480R, an exciting breakthrough from the communications experts . . . Yaesu. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-35254 Email:- enquiries@mauritron.co.uk #### **SPECIFICATIONS** **GENERAL** Frequency coverage: *143.500-148.500 MHz Modes of operation: SSB (USB, LSB), CW, and FM Synthesizer steps: SSB, CW 10 Hz, 100 Hz, 1 kHz *FM 1 kHz, 20 kHz, 100 kHz Power requirements: 13.8 volts DC, negative ground Current consumption: DC 0.5 amps receive DC 3.0 amps transmit Antenna impedance: 50 ohms Case size: 60 (H) x 180 (W) x 240 (D) mm Weight: Approx. 2.9kg **TRANSMITTER** Power input: SSB 30 watts PEP FM/CW 30 watts DC Carrier suppression: Better than 40 dB Unwanted sideband suppression: Better than 40 dB Spurious emission(SSB): At least 60 dB down Frequency response: 300-2700 Hz (-6 dB) FM Deviation: ±5 kHz Microphone impedance: 600 ohms RECEIVER Sensitivity: SSB, CW $0.5 \mu V$ for 20 dB S/N FM $0.35 \mu V$ for 20 dB QS Selectivity: SSB, CW 2.4 kHz at 6 dB down 4.1 kHz at 60 dB down FM 14 kHz at 6 dB down 25 kHz at 60 dB down Image response: Better than -60 dB Audio output impedance: 8 ohms nominal Audio output: 2.0 watts @ 10% THD * USA Model (Model A) | | Frequency | | | Synthes | Tone Burst | Preset | | | | |-------|-----------------|----|---------|---------|------------|--------|------|------|-----------| | Model | Range | | SSB, CW | I | | FM | | | Frequency | | | (MHz) | S | М | F | S | M | F | (Hz) | (MHz) | | A | 143.5—
148.5 | 10 | 100 | 1 K | 1 K | 20K | 100K | 1800 | 147.00 | | В | 144.0-
146.0 | 10 | 100 | 1 K | 1 K | 25K | 100K | 1750 | 145.00 | | С | 143.5-
148.5 | 10 | 100 | 1K | 1K | 25K | 100K | 1750 | 147.00 | | D | 144.0-
146.0 | 10 | 100 | 1K | 1K | 12.5K | 25K | 1750 | 145.00 | | Е | 143.5-
148.5 | 10 | 100 | 1 K | 1K | 12.5K | 25K | 1750 | 147.00 | #### **SEMICONDUCTORS** | ICs: | | 2SK19TMGR | 3 | MPSA13 | 7 | |---------------|---|--------------|----|----------------------|-----| | MC1496G | 1 | 2SK30AY | 1 | MF3AT3 | 5 | | MC14011B | 4 | 2SK51 | 1 | Diodes: | | | MC14560B | 2 | 3SK59Y | 1 | IS188FM | 18 | | MC14028B | 1 | 3SK70 | 1 | 1S1007 | 4 | | MC14069B | 1 | 3SK73Y | 8 | 1S1555 | 1 | | MC14002B | 1 | | Ŭ | 1S2209 | 14 | | μA78L05 | 3 | Transistors: | | U05B | 1 4 | | μPC7808H | 1 | 2SA715C | 1 | 1SS53 | 91 | | μ PC577H | 1 | 2SA733P/Q | 20 | 10D1 | 4 | | μPC1037H | 1 | 2SC535A | 5 | MV104 | 2 | | μ PC2002V | 1 | 2SC535B | 3 | HZ11B-1 | 1 | | μPC7805H | 1 | 2SC732TMBL | 1 | 112110 1 | 1 | | μPD4094B | 3 | 2SC945P | 1 | LEDs: | | | μPD1511-11 | 1 | 2SC945Q | 37 | TLG-205 | 2 | | TC9122P | 2 | 2SC945K | 1 | TLR-205 | 2 | | TC5081P | 2 | 2SC1383R | 3 | TLR-226 | 3 | | TC5082P | 2 | 2SC1583 | 3 | TLY-226 | 2 | | SN16913P | 2 | 2SC1674L | 2 | TLG-226 | 5 | | SN76514N | 1 | 2SC1815Y | 5 | 120 220 | J | | HD10551 | 2 | 2SC1815GR | 3 | FCD: | | | MB8718A | 1 | 2SC1945 | 1 | LD8231/F1P9C5 | 1 | | TA7612AP | 1 | 2SC2002L | 1 | 22 0 20 1,1 11 7 0 3 | • | | | | 2SC2053 | 1 | | | | FETs: | | 2SC2166 | 1 | | | | 2SK19TMY | 1 | 2SC2785E | 1 | | | Specifications subject to change without notice or obligation. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 Email: enquiries@mauritron.o.uk #### **ACCESSORIES** | 1. | Microphone | (M3090028) | l ea. | |----|------------------------|-------------|-------| | 2. | Power Cord | (T9002805) | l ea. | | 3. | Spare Fuses (5A) | (Q0000005) | 2 ea. | | 4. | Stand | (R0062300A) | l ea. | | 5. | Miniature Phone Plug | (P0090034) | 2 ea. | | 6. | Mobile Mounting Bracke | t(R0062900) | 1 ea. | | 7. | TONE IN Connector | (P0090174) | l ea | #### FRONT PANEL CONTROLS AND SWITCHES The FT-480R has been designed for ease of operation. However, the operator may not be familiar with some controls since the FT-480R utilizes modern computer technology. Be sure you thoroughly understand the function of each control and indicator before operating this equipment. #### (1) SQL The squelch control quiets the receiver in the absence of a signal on FM. It should be set to the point where the background noise just disappears, in order to provide maximum sensitivity. #### (2) VOL This control is the main ON/OFF switch for the transceiver, and it also sets the audio output level to the speaker. Clockwise rotation increases the audio output level. #### (3) STEP The 3 positions of this switch control the tuning rate of the Main dial, as shown in Table 1. | STEP SWITCH | MAIN DIAL FREQUENCY
COVERAGE PER STEP | | | | | |-------------|--|----------|--|--|--| | POSITION | SSB/CW | FM | | | | | S | 10 Hz | 1 kHz | | | | | М | 100 Hz | *20 kHz | | | | | F | I kHz | *100 kHz | | | | Table 1 #### (4) MEMORY This switch selects the MS mode (Memory Scan) or one of the four frequencies that the operator has programmed into memory. Memory scan control is exercised via the UP/DOWN switches on the microphone. #### (5) MAIN TUNING KNOB The tuning knob is used to control the receive and transmit frequencies over the entire 2 meter amateur band. It is activated when the DIL button is pushed. When the transceiver is initially turned on, the display will indicate 147.000.0 MHz, and the dial may be turned from that point to the desired operating frequency. #### (6) MODE This switch selects the mode of operation: USB (upper sideband), LSB (lower sideband), CW (code operation), and FM (frequency modulation). This switch also selects the FM transmitting frequency. - : The transmitting frequency is 600 KHz lower than the receive frequency. SIMP: Simplex operation. + : The transmitting frequency is 600 KHz higher than the receive frequency. #### (7) MIC The MIC jack is used for microphone input, PTT control, and scanner control lines. ^{*} USA Model (Model A) #### (8) S/PO A string of LEDs provides indication of signal strength and relative power output. #### (9) ON AIR This indicator lights up during transmission. #### (10) BUSY/MOD This indicator has a dual function: it will light up when the channel is occupied, or indicate modulation during FM transmissions. #### (11) CLAR Indicator This lamp lights when the clarifier switch is pushed. #### (12) LOW This lamp lights when the HI/LOW switch is in the LOW position. #### (13) Digital Display The digital display indicates the operating frequency. In the priority mode, the character "P" will be illuminated at the far right-hand side of the window. Also, the memory channel in use will be indicated for easy frequency reference. #### (14) T.CALL When this switch is pushed, the PTT line will close, and a 1750 Hz or 1800 Hz tone will be transmitted for accessing repeaters. #### (15) CLAR The clarifier switch allows ±10 kHz offset of the receive frequency from the dial or memory frequency. Clarifier tuning is accomplished via the main tuning dial. When the CLAR switch is pushed, the scanning step selector should be set to 10 Hz or 100 Hz; if not, control will be returned to the main dial, with the clarifier being disabled. #### (16) M (Memory) This switch is used for programming a frequency into memory. #### (17) VFO A/B TXA This switch, when pressed, allows split operation using the two internal VFOs. #### (18) PRI While operating in the dial tuning mode, the PRIORITY switch allows scanning of the main dial and one of the memorized frequencies every 5 seconds. The SCAN switch controls the stopping of the scanner on a busy or clear channel. #### (19) F.SET This switch, when pressed, clears all digits of the operating frequency below the step frequency you are using. #### (20) HI/LOW This switch, when pressed, reduces the transmitter power from 10 watts to 1 watt RF output. #### (21) MR (Memory Recall) This button transfers frequency control from the main dial to the memory channels. #### (22) NB (Noise Blanker) This switch, when pressed, activates the noise blanker for minimizing pulse-type noise. #### (23) DIL (Dial) This
switch, when pressed, transfers frequency control from the memory channels to the main tuning dial. YM-40 MICROPHONE CONNECTIONS # REAR PANEL CONNECTIONS AND SWITCH #### (1) ANT 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY This is the main antenna connec Tel # 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk **MAURITRON TECHNICAL SERVICES** #### (2) TONE IN CONNECTOR This connector is provided for the optional external FTS-64E Tone Encoder, which synthesizes 32 CTCSS or tone burst frequencies. #### (3) **KEY** This is the key jack for CW operation. The key-up voltage is 3.5 V, while the key-down current is approximately 1 mA. #### (4) EXT SP This is a miniature phone jack for connection to an external speaker. Insertion of a plug into this jack automatically cuts off the internal speaker. #### (5) BACKUP When this switch is placed in the ON position, and DC power is still connected to the POWER connector, the memory circuit will still be held in operating condition. If DC power is removed, though, the memorized frequency will be lost. TONE IN CONNECTOR #### (6) POWER This receptacle accommodates the power cord. A fuse rated at 5 amps is located in the power cord. #### WARNING WHEN REPLACING FUSES, BE CERTAIN TO USE A FUSE OF 5 AMP RATING. OUR WARRANTY DOES NOT COVER DAMAGE CAUSED BY USE OF AN IM-PROPER FUSE. EXTERNAL SPEAKER CONNECTIONS KEY CONNECTIONS #### UNDERSIDE CABINET SWITCHES #### (1) SAT (Satellite) This switch allows the operating frequency to be changed while transmitting. This feature is useful especially for satellite operation, for it allows the operator to zero on the proper frequency within the satellite passband. Neither VFO A/B TXA nor the CLARIFIER function works when the SAT switch is placed in the ON position. #### (2) SCAN This switch will select scanning stop on a busy or clear channel in the FM mode. Manual scanning stop is also provided on all modes. #### (3) BURST The BURST switch applies a short "tone burst" to the carrier at the start of each transmission in the "ON" position. This is normally used only for "tone access" repeater actuation. #### **CAUTION** THE WIRE STAND SHOULD BE INSERTED IN THE MOUNTING HOLES ON THE BOTTOM COVER IN ORDER TO PREVENT DAMAGE TO THE SWITCHES ON THE COVER. POWER CORD CONNECTIONS #### INSTALLATION #### ANTENNA CONSIDERATIONS The FT-480R is designed for operation using an antenna presenting a 50 ohm resistive load. The automatic final transistor protection circuitry will reduce the power output to protect the transistors when a high antenna SWR is encountered. The SWR on the antenna should, if possible, be kept below 1.5: 1 at all times to secure full output from the transceiver. In most cases, coverage is a function of antenna height. The antenna for base station operation should be located as high and in the clear as possible. Vertical polarization is standard for FM communications in most areas, so be sure that your antenna is oriented appropriately. Popular antennas for base station use include the 5/8 wavelength vertical or one of the many stacked dipole arrays. For accessing repeaters a long distance away, a Yagi or other high gain directional array may be required. For mobile applications, the most popular antennas are the 1/4 wavelength vertical and the 5/8 wavelength vertical, which shows approximately 3 dB gain over the 1/4 wavelength vertical. Do not economize on coaxial cable, as much power can be wasted in lossy transmission line. For mobile use, the RG-58A/U type of coax may be used. To minimize loss, use the shortest length that is possible. For base stations, use type RG8A/ U coaxial cable. For very long runs, type RG17A/U, aluminum-jacketed "foamflex" coax, or air dielectric "heliax" cable may be used. The optional antenna duplexer AD-1 allows the operation on both 50 and 144 MHz using a single For Service Manuals Contact MAURITRON TECHNICAL SERVICES antenna (RSL-50 or RSL145). See your Yaesu dealer. #### MOBILE INSTALLATION For mobile service, the FT-480R should be installed where the digital display, controls, and microphone are easily accessible for operation. The transceiver may be installed in any position without loss of performance. A suitable location would be atop the transmission tunnel. A universal bracket is supplied with your transceiver for mobile installation. Refer to Fig. 1 for mounting details. - Use the universal mounting bracket as a template for positioning the mounting holes. Use a 3/16" diameter bit for drilling these holes, allowing clearance for the transceiver, its cables and microphone, and its controls. Secure the mounting bracket with the screws, washers, and nuts supplied, as shown in the drawing. - Ease the transceiver into the guide rail, and slide it into the desired position. Tighten the knobs on the outside of the universal bracket to secure the transceiver. - 3. The microphone hanger may be installed wherever convenient for access to the microphone. Power connections should be made directly to the automobile battery. Routing through the cigarette lighter may cause the lighter fuse to blow if the fuse is not of sufficient rating. As well, connection directly to the battery allows the memory circuits to remain activated when the ignition is turned off, using the BACKUP switch. **AD-1 ANTENNA DUPLEXER** 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Figure 1 Connect the RED lead of the power cord to the POSITIVE (+) battery terminal, and connect the BLACK lead to the NEGATIVE (-) terminal. If it is necessary to extend the power cable, use #16 AWG insulated copper wire, and use the minimum length practicable to reduce voltage drop. #### **WARNING** NEVER APPLY AC POWER TO THE REAR PANEL POWER JACK OF THE TRANSCEIVER. NEVER CONNECT A DC POWER SOURCE OF GREATER THAN 15 VOLTS TO THE REAR PANEL POWER JACK. ALWAYS REPLACE FUSES WITH A FUSE OF THE PROPER RATING. FAILURE TO OBSERVE THESE SIMPLE PRECAUTIONS WILL VOID ALL WARRANTIES ON THIS EQUIPMENT. Connect the power cable to the POWER receptacle on the rear apron, connect the coaxial cable from the antenna to the rear apron ANT receptacle, and connect the microphone to the jack appropriate for the microphone in use. An external speaker may be connected to the rear apron SP jack, if desired. Use the speaker plug supplied with the transceiver. Insertion of a plug into this jack automatically cuts off the internal speaker. #### BASE STATION INSTALLATION A base station mounting stand is supplied with your transceiver, to provide easier viewing of the display and controls. A power supply capable of supplying 5 amps at 13.8 VDC is required for operation from AC mains. The FP-80A AC power supply option provides the required 13.8 VDC for the FT-480R transceiver. See your Yaesu dealer. FP-80A POWER SUPPLY #### **OPERATION** The all solid-state design of the FT-480R means that tuning procedures are very simple. The following paragraphs will describe the tuning procedures for receiver and transmitter operation. #### INITIAL CHECK Before connecting the transceiver to the power supply, be certain that a fuse of the proper rating is in use, and that a 50 ohm antenna has been connected to the antenna jack. #### FREQUENCY SELECTION USING MAIN DIAL When the transceiver is initially turned on, the digital display will read the preset frequency 147.000.0 MHz, and frequency control will be via the main tuning dial. After memory, scanning, or priority operation, pressing the DIL button will return control to the main dial. Rotate the dial to secure the operating frequency desired. Since tuning steps depend on the combination of the MODE switch and STEP switch as shown in Table 1, use the synthesizer step for easy tuning. When the upper or lower bandedge is reached the next synthesizer step will automatically be to the opposite bandedge. Thus, after 148.499.9 MHz, the next step is 143.500.0 MHz. While transmitting, the operation frequency can not be changed in any operation modes except the satellite mode. #### RECEIVER OPERATION Preset the controls and switches as follows: | MODE Desired mode | |--| | SQL Fully counterclockwise | | STEP Desired synthesizer step | | VFO A/B TXA VFO"A" position | | SCAN MAN position | | All other switches should initially be turned off. | Rotate the VOL control clockwise to turn the transceiver on and adjust for a comfortable level. #### (1) SSB mode Using the main tuning dial, tune in an SSB signal. The STEP switch should be set to M or F position so that you can secure the operating frequency desired in 100 Hz or 1 kHz steps. When you get close to the desired frequency, set the STEP switch to S position for 10 Hz step in order to tune in the signal clearly. When pulse type noise such as ignition noise is encountered, press the NB (noise blanker) switch. #### (2) CW mode With the clarifier off, tune in a CW signal. When the incoming signal is tuned to a beat note of 800 Hz, your transmit frequency will coincide with that of the other station. If another beat note is desired, or if the other station drifts, then use the clarifier function. #### (3) FM mode Using the main tuning control, tune in an FM signal for a maximum and steady S-meter reading and a clear, natural voice output from the speaker. Set the STEP switch to the M (20 kHz) position, as almost all FM stations use 20 kHz steps. When you change the operating mode from SSB/CW to FM, you may clear the display and operating frequency to the next lowest 20 kHz step by pressing the F STEP button. All the digits of the operating frequency below 10 kHz will be set to zero by pressing the F.SET button. When the channel is clear, rotate the SQL control to the point where the background noise is just silenced. Do not rotate the SQL control much beyond this threshold point, or else the receiver will not respond to weak signals. The BUSY/MOD lamp will light up when the squelch circuit is opened. If the S-meter wobbles, or if it is impossible to
obtain clear audio, it is possible that the incoming signal is on another mode such as SSB. #### TRANSMITTER Before transmission, be certain that the frequency on which you are going to operate is clear to prevent interruption of the other station's operation. It is important that an antenna or dummy load be connected to the antenna jack at all times. #### (1) SSB mode Set the MODE switch to SSB and close the microphone PTT switch; the ON AIR lamp should light up. Speak into microphone in a normal voice; the S.PO LEDs will light up according to the relative output power. #### (2) CW mode Plug a key into the KEY jack on the rear panel. In the key-down condition, the 8–9 LEDs of the indicator will light up. Since the semi-break-in circuit is furnished, when the key is closed, your keying activates the transmitter, and the 800 Hz side tone will be heard from the speaker. With the HI/LOW switch pressed, the power output of 10 watts may be reduced to 1 watt, and the LOW lamp will light up. #### (3) FM mode Set the MODE switch to FM, and close the microphone PTT switch. When transmitting, 8–9 LEDs which show relative output power will light up, and the BUSY/ MOD lamp will be illuminated according to the voice input. On this mode, 10 watts of RF output power can also be reduced to 1 watt by pressing the HI/LOW button. #### **MEMORY OPERATION** A total of four memory channels are available for operation. Storage and recall of memory channels allows considerable operating flexibility. The storage and recall procedure is extremely simple. - (1) Rotate the main tuning dial to the desired frequency, for example 144.640.0 MHz. Now rotate the MEMORY switch to position 1. Press the M button to store 144.640.0 MHz into memory channel position 1. - (2) Now rotate the main tuning dial to another frequency (for example 144.360.0 MHz). For instant return to 144.640.0 MHz, press MR button, the 144.640.0 l will be displayed on the digital readout. - (3) To return again to 144.360.0 MHz, press DIL, and you will be operating on 144.360.0 MHz. - (4) Memory channels 2, 3 and 4 may be programmed and recalled as above. - (5) When you push the MR button, the far right LED on the readout will illuminate, indicating the memory channel. - (6) To return frequency control to the main tuning dial, push the DIL button. - (7) Set the STEP switch to the desired step before activating the clarifier in the memory operation. Changing the synthesizer step with the CLAR switch ON will lock the operating frequency. #### SCANNER OPERATION Fingertip switches, located on the microphone, allow convenient frequency control, while driving. The simple operating procedure is described below. - (1) Set the bottom panel SCAN switch to the MAN position. Push the DIL switch to select operation on the dial frequency. - (2) Press the microphone UP switch for an instant to shift the frequency up by one step. If you hold the UP button for more than 1/2 second, the scanner will be activated. To stop the scan, press the PTT switch or one of the scanning controls on the microphone. If you push the PTT switch, no transmission will occur; release the PTT switch, then press it again for normal transmission. - (3) To scan lower in frequency, use the same procedure, but press the DWN button. - (4) In the FM mode, to halt the scan automatically on a busy channel, set the bottom panel SCAN switch to BUSY. In this mode, when the scanner encounters a signal strong enough to open the receiver squelch, scanning will stop. When the bottom panel switch is placed in the CLEAR position, the scan will stop when a clear channel (one where the squelch will not open) is found. - (5) To scan only the memory channels, rotate the MEMORY switch to the MS (memory scan) position. Now press the UP or DWN switch on the microphone. The scanning rate for memory scan will be approximately two channels per second. The scan may be halted in any of the ways discussed previously. The BUSY and CLEAR positions of the SCAN switch are particularly helpful when scanning the memory channels in the FM mode. #### PRIORITY CHANNEL OPERATION A priority channel may be used in conjunction with a memory channel for increased flexibility. Here is how to set up the FT-480R for priority operation. - (1) First program one or more memory channels for priority use. For example, store 144.640.0 MHz into memory channel 1. Set the bottom panel SCAN switch to MAN. Rotate the main dial to the desired frequency (for example 144.360.0 MHz). - (2) Now set the MEMORY switch to 1 and push MR to recall 144.640.0 MHz and then push the PRI (priority) switch. The display will indicate 144.360.0 P, and every 5 seconds the display will switch to 144.640.0 MHz allowing you to check it for activity. - (3) If you have other frequencies stored in memory, you may rotate the MEMORY switch to select one for use with the priority channel. - (4) In the FM you may use the SCAN switch tod advantage during priority operation, as described in SCANNER OPERATION. - (5) If you wish to return to normal operation from the priority mode, push the DIL button. Now control is shifted back to the main dial. #### REPEATER OPERATION - (1) Repeater shifts of +600 kHz, and -600 kHz are built into the FT-480R. To select these shifts, set the MODE switch to the + or position respectively. - (2) To cover unusual repeater splits, you can use the VFO A/B TXA feature. Example: receive frequency 144.640 MHz with 1 MHz split. Rotate the main tuning dial to the 145.640 MHz and press the VFO A/B TXA button on the front panel; now the transmit frequency, 145.640 MHz, is memorized. Rotate the main tuning dial to 144.640 MHz for receiving. If you close the PTT switch, your transmit frequency will be shifted to 145.640 MHz. (3) A 1750 or 1800 Hz tone generator is included with your transceiver for accessing a repeater requiring such a tone. With the BURST switch ON, pushing the microphone PTT will cause insertion of an 0.5 second tone at the begining of each transmission. When the T.CALL switch is pushed, a tone will be superimposed on the signal being transmitted, for as long as the switch is held. An optional external tone or burst generator, FTS-64E may be connected through the rear panel TONE IN connector. # INITIALIZING FREQUENCY/BACKUP FEATURE The FT-480R includes a backup feature which will hold all memory frequencies, as well as dial frequency, when the front panel power switch is turned off. So long as the DC power to the rear apron power jack is not interrupted, these frequency will be held. When the power is again turned on, the frequency and mode (memory priority, dial, etc.) last used will be recalled, but scanning mode is automatically reset to dial mode. However, if the power cord is connected to 13.8 VDC circuit that is switched off along with the automobile ignition, all memory channels as well as the dial frequency will be reset to the preset frequency. #### SATELLITE OPERATION The FT480R includes provision for changing the transmitting frequency while you are transmitting (some other synthesized transceivers lock up during transmission). The ability to change frequency in this manner is important during satellite operation, as Doppler shift may cause your downlink frequency to be $\pm 3-4$ kHz from a predicted value. While listening on the downlink, and sending a series of dots, satellite operators can usually find themselves quite quickly. To allow frequency change during transmission, set the bottom panel SAT (Satellite) switch to ON. For most satellite work on SSB or CW, the synthesizer step switch should be set to Slow or Medium. You may now close the PTT switch and vary your frequency as desired. Note that your receiver frequency will also change if you rotate the main dial. When the SAT switch is set to ON, the ± repeater shift and receive clarifier features are disabled. ### CIRCUIT DESCRIPTION The block diagram and circuit description to follow will provide you with a better understanding of this transceiver. Please refer to the block and schematic diagram for specific circuit details. #### **RECEIVER** The RF signal from the antenna jack is applied to the MAIN UNIT through a lowpass filter and the antenna relay, RL_{2001} . The signal is amplified by Q_{1001} (3SK59Y), a dual gate MOS FET with excellent rejection of cross modulation and intermodulation. The amplified signal is fed to the 1st mixer, Q_{1002} (3SK51-03), where the RF signal is mixed with a local signal delivered from the PLL UNIT, resulting in a 10.81 MHz first IF signal. The first IF signal is passed through a monolithic crystal filter, XF_{1001} (108M30B), which has ± 15 kHz bandwidth, and amplified by Q_{1003} (3SK73Y), which acts as a switch driven by the NB (noise blanker) circuit. The amplified signal from Q_{1003} is fed to IF amplifiers for each mode. FM mode signal is fed to 2nd mixer Q_{1005} (2SC535B), where the signal is mixed with an 11.265 MHz local signal, resulting in a 455 kHz 2nd IF signal. The 2nd IF signal is passed through a ceramic filter, CF_{1001} , which has a ± 4.5 kHz bandwidth, and then fed to the FM mode IF amplifier. The filtered signal is amplified by Q_{1006} and Q_{1007} (2SC945Q) and passed through CF_{1002} , which has a ± 7.5 kHz bandwidth. The filtered FM signal is amplified by Q_{1008} ($\mu PC577H$) and demodulated by CD_{1001} and D_{1010}/D_{1011} (1S188FM). The demodulated FM signal is amplified by Q_{1012} (2SC1815GR) and then fed to the AF amplifier. SSB and CW mode signals from the Q_{1003} are passed through a crystal filter, XF_{1002} , which has a very high shape factor, to improve adjacent frequency selectivity. The filtered SSB signal is amplified by Q_{1014} and Q_{1015} (3SK73Y), and then fed to the balanced demodulator, Q_{1016} (μ PC1037H), where a carrier signal is applied from the carrier oscillator Q_{1041}/Q_{1042} (2SC945Q); the detected audio output is then fed to
the AF amplifier. The audio signals from each demodulator are passed to the active lowpass filter, which consists of Q_{1027} and Q_{1028} (2SC945Q) to eliminate the unwanted noise portion of the signal. The audio signal is then fed, through the AF gain control, to the audio output amplifier, Q_{1029} (μ PC2002V), providing about 2 watts of audio output to the speaker. #### AGC and S-METER CIRCUIT A portion of the IF signal from Q_{1015} is fed through C_{1080} to a buffer amplifier Q_{1017} (2SC-535B). The amplified signal is then applied to the AGC detector, D_{1025}/D_{1026} (1S188FM). The rectified signal is amplified by DC amplifier Q_{1018} (2SC1815Y). This amplified DC voltage controls gate 2 of MOS FET's in the RF and IF amplifier. A portion of the AGC signal is buffered by Q_{1021} (2SK30AY), and fed to the S-METER amplifier Q_{1022} (2SA733P). This amplified voltage is delivered to the front panel S.PO indicator to illuminate LEDs according to the input signal strength. #### SOUELCH CIRCUIT A portion of the demodulated FM signal from the ceramic discriminator (CD_{1001} , D_{1010} , D_{1011}) is fed to noise amplifiers Q_{1009} and Q_{1010} (2SC945Q) through VR_{1002} and the SQ Control (VR_{1b}), and then rectified by D_{1012} and D_{1014} , a voltage doubling circuit. The rectified signal is fed to the base of Q_{1011} (2SC1815Y), the squelch control circuit. When no carrier is present, the rectified DC voltage is applied to the base of Q_{1011} , to turn Q_{1012} (2SC1815GR) on. With conduction of Q_{1011} , the base of Q_{1012} is grounded, squelching the audio amplifier. When a carrier is present, the rectified DC voltage is reduced, and the audio amplifier Q_{1012} then recovers to normal operation. The BUSY lamp switch, Q_{1013} (2SC945Q), is also activated by the rectified voltage from the demodulator to illuminate the BUSY lamp when a carrier is present. FM A portion of the IF signal from monolithic filter XF_{1001} is amplified by Q_{1047} (2SC535B), Q_{1048} , Q_{1049} , and Q_{1050} (2SC1583). The output signal is rectified by D_{1059} and D_{1060} , producing a DC voltage. This DC voltage is amplified by Q₁₀₅₂ (MPSA13) and fed to gate 2 of Q_{1003} , the noise blanker gate. A portion of the DC voltage is amplified by Q_{1051} , and then fed to Q_{1048} , Q_{1049} (2SC1583) as a noise blanker AGC voltage. When impulse-type noise is received, the induced DC voltage reduces the gain of Q_{1003} , and blocks the signal path momentarily. The noise AGC control voltage is not, however, induced by such impulse-type noise, because the time constant of C_{1243}/R_{1273} is long. Normal signals, though, induce the noise blanker AGC voltage, reducing the gain of the noise amplifier, allowing normal signal flow at Q_{1003} . #### TRANSMITTER The discussion of the signal flow on transmit will be on a mode by mode basis. **SSB** For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk The audio input signal from the microphone is amplified by Q_{1030} (2SC1815GR) and Q_{1039} (2SC1815Y). The audio level is adjusted to the proper level by VR₁₀₀₇, and is applied through an active lowpass filter, Q_{1040} (2SC945Q), to the ring modulator, $D_{1053} - D_{1056}$. Here the audio signal modulates the 10.81 MHz carrier signal delivered from the carrier oscillator Q_{1041} (2SC945Q) and buffer Q_{1042} (2SC945Q), resulting in a 10.81 MHz double-sideband signal. The signal is amplified by Q_{1043} (2SK19TM-GR) and fed to XF_{1002} , a crystal filter, where the unwanted sideband is sliced out. The SSB signal is then amplified by Q₁₀₁₄ (3SK73Y) and fed via a lowpass filter on to mixer Q₁₀₃₆ (MC1496G) and mixed with a local signal from the PLL Unit, resulting in a 143.5-148.5 MHz SSB signal. The SSB signal is passed through $T_{1010}-T_{1014}$, which are tuned exactly to the operating frequency by varactor diodes, thus minimizing spurious radiation. The signal is then amplified by Q_{1037} (3SK70), and Q_{1038} (2SC2053) to the proper level for driving the power amplifier circuit. The output audio signal at Q_{1030} is amplified by Q_{1031} (2SC1815GR) and Q_{1032} (2SC945Q) and fed to the IDC circuit, consisting of D_{1037} and D_{1038} , which clips both positive and negative peaks to control the maximum possible deviation. The clipped signal is then passed through an active lowpass filter, Q_{1033} (2SC945Q) to eliminate harmonics above the speech range caused by clipping. The deviation level is set by VR_{1006} before passing the signal on to Q_{1034} (2SC945Q) to be amplified to the correct level and fed in to the FM modulation unit XM_{1001} . The remainder of the signal path is then identical to that of the SSB signal. CW For CW, the 10.8107 MHz carrier signal is generated by Q_{1044} (2SC945Q), amplified by Q_{1035} (2SC945Q), and fed to IF amplifier Q_{1014} . The key line is connected to switching transistor Q_{1062} (2SC945Q) through inverter Q_{1061} (MC14011B), which controls the gate voltages at Q_{1014} (3SK73Y) and Q_{1037} (3SK59Y), thus turning the RF signal on and off. The signal path is then identical to that of the CW signal. An RC circuit connected to the base of Q_{1062} produces an ideal keying waveshape for click-free CW operation. The key line is also connected to side tone oscillator Q_{1061} (MC14011B) for monitoring of the code signal during CW operation. In order to operate on semi-break-in, the Schmitt trigger and delay circuit at Q_{1060} (MC14011B) activates the RX-TX changeover relay. #### POWER AMPLIFIER CIRCUIT The RF signal from the Main Unit is amplified by Q_{2001} (2SC2053) and Q_{2002} (M57713) in the Power Amplifier Unit, delivering approximately 10 watts of RF output to the antenna through a lowpass filter. #### POWER CONTROL CIRCUIT When the HI/LOW switch is set to the LOW position, the base of Q_{1046} is grounded through VR_{1012} , and the collector current of Q_{1046} is decreased. Because the output power of Q_{2001} is controlled by Q_{2003} , the drive level to Q_{2002} is decreased, thus reducing the RF output power to approximately 1 watt. #### TONE BURST CIRCUIT When the PTT switch is pressed, the one-shot multivibrator consisting of Q_{1060} (A2, 3) (MC-14011B) is activated to generate a pulse of 0.5-1 second duration. The pulse switches Q_{1058} (2SA-733P) to supply DC voltage to Q_{1057} (TC5082P), where a 1750 or 1800 Hz tone signal is generated. Pressing the T.CALL switch also switches Q_{1058} and generates a tone signal. The tone is fed to the FM MIC amplifier and superimposed on the transmit signal. #### ALC (Automatic Level Control) CIRCUIT A portion of the output power from Q_{2002} is applied through C_{2020} to rectifiers D_{2001} and D_{2002} producing a DC voltage. The DC voltage is ampli- fied by DC amplifier Q_{1018} (2SC1815Y) and fed to gate 2 of Q_{1014} to control its gain, thus preventing overdrive. The ALC level is adjusted by VR_{1003} for proper drive to Q_{2002} . #### AFP (Automatic Final Protection) CIRCUIT If the transmitter is activated without an antenna being connected, or if a high VSWR is present at the antenna jack, the reflected power is detected through T_{2001} and D_{2003} . The detected AFP voltage is applied through VR_{2002} to Q_{1063} (2SC1815Y) in the Main Unit. As the reflected power increases, the AFP voltages also increases and consequently Q_{1063} conducts. The signal is fed to Q_{1018} (2SC1815Y), this decreases the voltage at gate 2 of Q_{1014} (3SK73Y), resulting in lower output power. When the transceiver is correctly matched to an antenna, full power output will be obtained. #### PLL CIRCUIT The PLL circuit is comprised of three PLL oscillators each consisting of a reference crystal oscillator, a programmable divider, a prescaler, and a phase comparator. The PLL produces local signals for the receiver and transmitter stages, using a synthesis scheme which produces 10 Hz steps. #### PLL Circuit Configuration The local signal 132.6900 MHz - 137.6899 MHz is generated by Q_{3021} (2SK19TM-GR)VCO-1 in the PLL Loop 1, amplified by buffers Q_{3022} (3SK51-03) and Q_{3030} (2SC535A), and passed through BPF circuit to eliminate spurious radiation. The signal is then coupled to the Main Unit. A portion of the signal from the buffer Q_{3022} is amplified by Q_{3023} (3SK51) and applied to the mixer Q_{3024} (SN76514N), where the signal is mixed with a heterodyne signal of 129 MHz from PLL Loop 2, and its frequency is divided by programmable divider Q_{3026} (TC9122P). The digital phase comparator Q_{3027} (MB8718) compares the phase of signal from the programmable divider with that of 40 kHz reference frequency obtained from crystal oscillator Q_{3007} (TC5082P) (via a 1/4 divider), producing an error-correction DC voltage. The output DC voltage is passed through an active lowpass filter consisting of Q_{3028} (2SK19TM-Y) and Q_{3029} (2SC732TM-BL), and fed to the VCO-1 to control its oscillation frequency. In PLL Loop 2, a 64 MHz signal generated by the VCXO Q_{3015} (2SC1674L) is fed to buffer Q_{3016} (2SC535A) and on to doubler Q_{3020} (2SC710) before passing to mixer Q_{3024} (SN76514N) in PLL 1. A portion of the VCXO signal is taken to buffer amplifier Q_{3017} (3SK73Y) before passing to mixer Q_{3018} (SN16913P), where the signal is mixed with a 63 MHz signal generated by VCXO Q_{3009} (2SC1674L) and Q_{3010} (2SC535A), resulting in a 600 kHz signal. The 600 kHz signal is amplified by Q_{3019} (2SC945Q) and fed to phase comparator Q_{3014} (TC5081P), which compares the phase of the signal with that of the 600 kHz signal from PLL Loop 3, producing an
error-correction DC voltage. The DC voltage is passed through a lowpass filter and fed to the VCXO to control its oscillation frequency. In PLL Loop 3, a 60 MHz signal is generated by VCO-2 Q_{3001} (2SK19TM-GR) and applied through buffers Q_{3002} (3SK73Y) and Q_{3011} (2SC535A) to a prescaler, Q_{3012}/Q_{3013} (HD10551), which divides its frequency by 1/100, thus producing a 600 kHz signal. A portion of the output of Q_{3002} is fed to mixer Q_{3003} (SN16913P), where the signal is mixed with a 63 MHz signal which is generated by Q_{3009} (2SC1674L), and applied through a programmable divider to phase comparator Q_{3006} (TC5081P) which compares the phase of the signal with that of 5 kHz signal which is generated by Q_{3007} (TC5082P), producing an error-correction DC voltage. The DC voltage is passed through a lowpass filter and fed to the VCO-2 Q_{3001} to control its oscillation frequency. The frequency control signal from the PLL Control Unit is fed to Serial/Parallel converters Q_{3031} · Q_{3033} (μ PC4094B) and converted into BCD code to control the dividing ratio of the programmable divider and the VCO and VCXO oscillating frequency in each PLL loop. When any VCO is unlocked, an unlock signal from the phase comparater is fed to the unlock control circuit consisting of Q_{3045} (MPSA13) and Q_{3046} (2SA733P), which controls buffer Q_{3030} (2SC535A) to mute the output from the PLL oscillator to prevent spurious radiation. #### **PLL Control Circuit** In the PLL Control Unit, a 4 bit parallel processing CPU is used to control the operating frequency, UP/DOWN scanning, priority channel, or memory channel selections. The CPU has one input port, three I/O ports and four output ports. The CPU processes input data by means of the main dial or other control switches in accordance with the program stored in an ROM for control of the PLL frequency, indication of the operating frequency, or memory channels on digital display. The CPU is also furnished with a function to halt transmission when any VCO is unlocked, resulting in a fail-safe system. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk #### MAINTENANCE AND ALIGNMENT This equipment has been carefully aligned and tested at the factory prior to shipment. If the instrument is not abused, it should not require other than the usual attention given to electronic equipment. Service or replacement of a major component may require considerable realignment. Under no circumstances, though, should realignment be attempted unless the operation of the transceiver is fully understood, the malfunction has been carefully analyzed, and the fault has definitely been traced to misalignment rather than part failure. Service work must only be performed by experienced personnel using the proper test equipment. Never align this transceiver without having a 50 ohm dummy load connected to the antenna jack, unless otherwise noted. Troubleshooting using an antenna can result in misleading indications on test equipment. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk #### **EQUIPMENT REQUIRED** - (1) RF Signal Generator: Hewlett-Packard Model 8640B or equivalent, with one volt output at 50 ohms, and frequency coverage to 150 MHz. - (2) Vacuum Tube Voltmeter (VTVM): Hewlett-Packard Model 410B or equivalent, with an RF probe good to 150 MHz. - (3) Dummy Load/Wattmeter: Yaesu Model YP-150Z or equivalent. - (4) AF Signal Generator: Hewlett-Packard Model 200AB or equivalent. - (5) IF Sweep Generator: capable of output at 10.81 MHz. - (6) RF Sweep Generator: capable of output at 143-149 MHz. - (7) Oscilloscope: Hewlett-Packard Model 1740A or equivalent. - (8) FM Deviation Meter - (9) Precision Frequency Counter: Yaesu Model YC-500 or equivalent, with resolution to 0.01 kHz and frequency coverage to 150 MHz. Top View Bottom View UNIT LOCATIONS #### PERFORMANCE CHECKS Make all performance checks at 13.8 VDC under load. Check the transmitter power output as follows: - (a) Connect a suitable dummy load/wattmeter to the antenna jack. - (b) Set the MODE switch to the FM position, and key the transceiver while observing the power output, which should be approximately 10 watts. At full power output, 8-9 LED's will light up on the S.PO indicator. (c) Set the MODE switch to SSB, and key the transmitter. Speak in a normal voice into the microphone; 8-9 LED's should light up. PO TEST SETUP PART LOCATIONS (Top View) Check the receiver sensitivity as follows: - (a) Connect an AC VTVM to the SP jack. Set the MODE switch to the FM position and rotate the SQUELCH control fully counterclockwise. - (b) Connect the RF output of a precision VHF signal generator to the antenna jack and note the VTVM reading with no signal input. Adjust the AF GAIN control and the VTVM range, as required, to obtain a full scale VTVM reading. DO NOT change the setting of the AF GAIN control after this calibration has been made. RX SENSITIVITY TEST SETUP (c) Set the signal generator to the receiver frequency of the transceiver, and adjust the output amplitude of the signal generator until the VTVM reads 20 dB (1/10 voltage) below the reading in step (b). The signal generator output voltage at this point is the 20 dB quieting sensitivity, and it should be approximately $0.35~\mu V$. PART LOCATIONS (Bottom View) - (d) Set the MODE switch to SSB and connect the AC VTVM to the speaker output. Apply an unmodulated $0.5 \mu V$ signal from the signal generator, and tune the transceiver main dial for a maximum VTVM reading. - (e) Adjust the AF GAIN control for a reading of 450 mV on the VTVM. - (f) Reduce the signal generator output and read the VTVM: the VTVM reading should be 45 mV for a 20 dB S/N ratio. If the above check indicates a need for realignment, it is recommended that the unit be returned to the dealer for servicing. The sophisticated CPU and control circuitry, in particular, are so critical that they should not be touched by other than an expereinced technician. Attempts to realign the transceiver tuned circuits without the proper equipment may result in degraded transceiver performance. #### RECEIVER SECTION #### (1) 2nd Local Oscillator - a) Set the MODE switch to FM, and connect the RF probe of a VTVM to TP₁₀₀₂. - b) Measure the RF injection voltage. A nominal value is 0.5 V 0.7 VRMS. - c) Connect a frequency counter to TP₁₀₀₂ and check to see that the oscillation frequency is correct: 11.265 MHz. #### (2) 1st IF Amplifier a) Set the MODE switch to FM, and adjust VR_{1001} to the fully counterclockwise position. ALIGNMENT AND TEST POINTS FOR RECEIVER - b) Connect a sweep generator to gate 1 of Q_{1002} (TP_{1001}). Connect an oscilloscope, through a detector, to the secondary winding of T_{1004} . - c) Set the frequency of the sweep generator to 10.81 MHz, and apply output from the generator. - d) Adjust T_{1003} and T_{1004} until the scope pattern illustrated in Fig. 2 is obtained. Figure 2 #### (3) SSB Carrier Oscillator - a) Set the MODE switch to LSB. - b) Connect the RF probe of the VTVM to the CARRIER OUTPUT terminal on the Main Unit (where C₁₂₁₂ and a shielded cable are connected), and measure the oscillation level. A nominal value is 170–230 mV RMS. - c) Set the MODE switch to USB. Measure the oscillation level in the same way as in the step (b). A nominal value is 170-230 mV RMS. #### (4) SSB IF Circuit - a) Set the mode switch to USB or LSB. - b) Connect a signal generator to TP_{1001} , and set its output level to 15 dB μ (5.62 μ V) at - c) Peak T_{1004} , T_{1005} , and T_{1006} for a maximum S.PO indication. #### (5) RF Amplifier - a) Set the output level and frequency of the generator to 10 dB μ (3.16 μ V) at 146 MHz. - b) Set the receiver frequency to 146 MHz, and adjust T_{1001} , T_{1002} , TC_{1001} TC_{1004} for a maximum S.PO indication. #### (6) S-Meter Full Scale Setting - a) Rotate VR₁₀₀₄ fully clockwise to make sure that all the LED's on the S-meter scale are illuminated. - b) Set VR_{1004} to the point where all the LED's go off. - c) Apply a 4 dB μ (1.584 μ V) signal from the signal generator and adjust VR₁₀₀₁ so that only one LED is illuminated. #### (7) Noise-Blanker Adjustment - a) Set the MODE switch to USB or LSB. - b) Set the receiver frequency to 146 MHz. - c) Adjust the output level and frequency of the signal generator to 5-10 dB μ (1.78 μ V-3.16 μ V) at 146 MHz. Temporarily connect TP₁₀₀₂ to ground with a clip lead, in order to disable the 2nd local oscillator. - d) Connect a voltmeter (full scale: 2.5V) to the cathode of D_{1060} and ground. Adjust T_{1016} , T_{1017} , and T_{1018} for a maximum reading on the voltmeter scale. #### (8) Squelch Adjustment - a) Set the MODE switch to FM. - b) Set the front panel SQL control to the 9 o'clock position. - c) Adjust VR_{1002} so that the receiver is just muted. Now apply a signal from the signal generator. A signal of approximately $-13 \text{ dB}\mu$ (0.224 μ V) with $\pm 3.5 \text{ kHz}$ deviation at 1 kHz should be required to trip the squelch. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:-01844-351694 Fax:-01844-352554 Email:-enquiries@mauritron.co.uk #### TRANSMITTER SECTION Unless otherwise indicated, always perform transmitter alignment with a dummy load connected to the antenna jack. If the AFP circuits are being aligned, an improper load impedance at a critical time could result in the destruction of the final transistors. #### (1) TX Strip Trimmer Adjustment - a) Set the MODE switch to FM, and the transmitter frequency to 146.00 MHz. - b) With a dummy load/wattmeter connected to the antenna jack, advance VR₂₀₀₂ and
VR₁₀₀₃ fully counterclockwise. - c) Squeeze the microphone PTT switch, and adjust TC₂₀₀₁ -TC₂₀₀₄* for maximum power output as indicated on the wattmeter. - * In order to adjust these trimmers, remove the two screws marked "A", and loosen the two screws marked "B" on the side panels. Then tilt the Final Unit as shown below. - ** TC₂₀₀₁ -TC₂₀₀₄ require no realignment unless final transistors are replaced. #### (2) Mixer/Interstage Alignment - a) Temporarily disconnect the RF OUT cable from the Main Unit. - b) Terminate the RF OUT terminals with a 50 ohm resistor, and connect the RF probe of a VTVM to the RF OUT terminals. - c) Set the transmitter frequency to 145.5 MHz, MODE to FM, and key the transceiver. - d) Adjust $T_{1010} T_{1014}$, TC_{1005} , and TC_{1006} for a maximum reading on the VTVM. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk POWER AMPLIFIER UNIT #### (3) CW Carrier Oscillator - a) Set the MODE switch to CW. - b) Connect the RF probe of a VTVM to TP_{1006} and key the transceiver. - c) Adjust T_{1009} for a reading of 100 mV RMS on the VTVM. - d) Connect a frequency counter to TP₁₀₀₆, and adjust TC₁₀₁₀ for a reading of exactly 10.8093 MHz on the counter. #### (4) ALC/PO Adjustment. - a) Set the MODE switch to FM. - b) With a dummy load/wattmeter connected to the antenna jack. Key the transceiver. - c) Adjust VR_{1003} for an output of 10 watts on the wattmeter. d) Adjust VR₂₀₀₁ so as to illuminate 9 LED's on the S.PO indicator. #### (5) AFP Adjustment - a) Connect a DC voltmeter to the AFP terminal on the Main Unit and ground. - b) Rotate VR₂₀₀₂ fully counterclockwise. - c) Set the MODE switch to FM. - d) Adjust VR_{2003} for minimum indication on the DC voltmeter. - e) Disconnect the 50 ohm dummy load, and connect a 165 ohm, 10 watt dummy load to the antenna jack. Key the transceiver. - f) Adjust VR₂₀₀₂ so as to illuminate 8 LED's on the S.PO indicators. Now return to RX. - g) Remove the dummy load from the antenna jack, Close the PTT switch, and check to see that the current consumption is less than 2 amps. #### (6) Low Power Output Setting - a) Set the HI/LOW switch to the LOW position, and key the transmitter in the FM mode. - b) Adjust VR_{1012} for an output of 1 watt on the wattmeter. #### (7) FM Modulator Adjustment - a) Refer to Fig. 3, and set up the transceiver and test equipment as shown. - b) Set VR₁₀₀₅, located on the Main Unit, to the center of its range, and apply a 1 kHz, 15 mV signal from the audio generator to the mic jack. - c) Adjust VR_{1006} for a deviation of ± 4.5 kHz while observing the signal waveform on the scope. - d) Now reduce the audio generator output level to 1.5 mV, and adjust VR_{1005} for a deviation of ± 3.5 kHz. Check to see that the waveform on the scope is not distorted. - e) Turning the audio generator on and off, make sure that the BUSY/MOD indicator illuminates along with the changing audio input. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 Email: enquiries@mauritron.co.uk Figure 3 #### (8) SSB Modulator Adjustment - (A) Balanced Modulator Output Transformer Adjustment - a) With a dummy load/wattmeter connected to the antenna jack, set the MODE switch to USB or LSB. - b) Set VR₁₀₀₇ to the center of its range, and apply a 1 kHz, 1 mV signal from the audio generator to the mic jack. - c) Adjust T₁₀₁₅ for maximum power output. - (B) SSB Carrier Point Adjustment - a) Apply a 1 kHz, 1.2 mV signal from the audio generator to the mic jack, and adjust VR₁₀₀₇ for an output of 8 watts. - b) Set the MODE switch to USB and the frequency of the audio generator to 300 Hz. Adjust TC_{1008} for an output of 2 watts. - c) Set the MODE switch to LSB, and the frequency of the audio generator to 300 Hz. Adjust TC_{1007} for an output of 2 watts. #### (C) Carrier Balance Adjustment - a) Temporarily short the mic input terminal of the mic jack (pin 8) to ground with a clip lead. Set the MODE switch to USB. - b) While monitoring the carrier on a monitor receiver, adjust VR₁₀₀₈ and TC₁₀₀₉ for a minimum S-Meter reading (or minimum signal level if no S-Meter reading occurs). - c) Switch between USB and LSB, and compare the output levels with no modulation. Adjustment of VR₁₀₀₈, TC₁₀₀₉ may be necessary to achieve good carrier nulling on both modes. # (9) CW Side Tone Frequency/Semi-break-in Delay Adjustment - a) Adjust VR₁₀₁₀ for the desired monitoring level on CW operation. - b) Adjust VR₁₀₁₁ for the desired CW VOX relay hang time. #### PLL SECTION NOTE: The PLL circuit is very critical in its adjustment. Alignment must only be performed by an experienced technician. All alignment should be performed at a temperature within the range 15°-30°C, preferably near the center of this range. #### (1) VCV Line Adjustment #### (A) PLL 1 Adjustment - a) Set the STEP switch to "M," the MODE switch to FM, and tune the transceiver to 145.9900 MHz. - b) Connect the DC probe of the VTVM to TP_{3012} , and adjust TC_{3004} for a reading of exactly 6.5 V. #### (B) PLL 2 Adjustment - a) Set the STEP switch to "M," the MODE switch to USB, and tune the transceiver to 145.0099 MHz. - b) Connect the DC probe of the VTVM to TP_{3009} , and adjust L_{3017} to secure a reading of 3.5 V. #### (C) PLL 3 Adjustment - a) Set the STEP switch to "M," MODE switch to USB, and tune the transceiver to 145.0099 MHz. - b) Connect the DC probe of the VTVM to TP_{3001} , and adjust TC_{3001} to secure a reading of 3.5 V. ALIGNMENT AND TEST POINTS FOR PLL #### (2) Multiplier Stage Adjustment - a) Set the STEP switch to "M," the MODE switch to USB, and tune the transceiver to 145.0099 MHz. - b) Connect the RF probe of the VTVM to $TP_{3\,014}$, and adjust $T_{3\,001}$ for a maximum reading on the VTVM. #### (3) PLL Output Bandpass Filter Adjustment - a) Set the STEP switch to "F," the MODE switch to FM, and tune the transceiver to 145.4000 MHz. - b) Connect the RF probe of the VTVM to TP_{3016} , and peak T_{3002} , T_{3003} , and T_{3004} for a maximum meter reading. #### (4) PLL Local Frequency - a. Connect a frequency counter to TP₃₀₁₆. - b) Set the STEP switch to "S," the MODE switch to USB, and tune the transceiver to 144.00000 MHz. - c) Adjust TC_{3002} for a reading of exactly 133.19150 MHz on the frequency counter. - d) Change the transceiver display frequency to 144.00009 MHz, using the Main Dial. - e) Adjust TC_{3003} for a reading of exactly 133.19159 MHz on the frequency counter. - f) Repeat steps (b), (c), (d) and (e) several times to ensure complete frequency adjustment. NOTE: In order to achieve the specified frequencies for the above alignment steps, some presetting of the display will be required (because the 10 Hz digit is not displayed). Push the F.SET button, switch to USB, then set the STEP switch to "S". The precise frequency may then be set using the main dial. For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk ## PARTS LIST | | MAIN CHASSIS | | | MAIN UNIT | | | | |------------------|---------------|----------------------------------|-------------------------------------|------------------------|-------------------------|--|--| | Symbol No. | Part No. | Description | Symbol No. | Part No. | Description | | | | PB-2143 ' | F0002143 | Printed Circuit Board (for S03) | PB-2135C | F0002135C | Printed Circuit Board | | | | 10-21-13 | | | | C0021350 | PCB with Components | | | | PB-2132 | F0002132 | Printed Circuit Board (for 108) | | | | | | | | | | | | _IC | | | | | | IC | Q1008 | G1090072 | μPC577H | | | | Q01 | G1090294 | μPC7808H | Q1016 | G1090101 | μРС1037Н | | | | | | | Q1029 | G1090284 | μPC2002V | | | | | | DIODE | Q1036 | G1090061 | MC1496G | | | | D01 | G2090034 | U05B | Q1060,1061 | G1090068 | MC14011B | | | | | | | Q1057 | _G1090239 | TC5082P | | | | | | POTENTIOMETER | | | | | | | VR01 (with S09) | J62800048 | DM11A825A5M1112 | | 0.0000000 | FET | | | | | | | Q1001 | G4800590Y | 3SK59Y | | | | | | RESISTOR | Q1002 | G4800510C | 3SK51 | | | | R01 | J02245103 | Carbon film 1/4W SJ 10kΩ | Q1003,1014,1015 | G4800730Y | 3SK73Y | | | | R02 | J02245104 | " " " 100kΩ | Q1021 | G3800301Y
G4800700 | 3SK30AY | | | | | | | Q1037 | | 3SK70 | | | | | 77.46.76.10.7 | CAPACITOR Electrolytic 50WV 1μF | Q1043 | G3090035 | 2SK19TMGR | | | | C01,02 | K40170105 | • | | | TRANSISTOR | | | | | 17.40.100000 | (50RL1)
" 16WV 470μF | 0100110061007 | G3309450Q | 2SC945Q | | | | C03 | K40129006 | | Q1004,1006,1007,
1009,1010,1013, | G3309430Q | 230.9430 | | | | | | (16RE470) | 1019,1027,1028, | | | | | | | | ODEANED | 1032-1035,
1040-1042,1044, | | | | | | | 114000047 | SPEAKER
SS-77KYH | 1046,1054,1056, | | | | | | SP01 | M4090047 | 55-//KIH | 1059,1062 | | - | | | | | | SWITCH | 01051 | G3309450P | 2SC945P | | | | | N0190066 | SBU-2045 | Q1051
Q1005,1017 1047 | G3305430F
G3305350B | 2SC535B | | | | S01 | N0190088 | SRN-4086N | Q1003,1017 1047
Q1011,1018,1039, | G3303330B
G3318150Y | 2SC1815Y | | | | S02
S03 | Q9000083A | EWT-XDB S3550B | 1053,1063 | G55181501 | 250 1015 1 | | | | | C0021430 | EWI-NDB 83330B | Q1012,1030,1031 | G3318150G | 2SC1815GR | | | | S03 (with board) | N6090004 | SSF-22-55 | Q1020,1022,1058 | G3107331P | 2SA733 P or Q | | | | S04,08,06 | N6090002 | SSH-23-05 | Q1020,1022,1030 | G3320530 | 2SC2053 | | | | S07 | 140030002 | 3311 23 03 | Q1048,1049,1050 | G3315830 | 2SC1583 | | | | | | RECEPTACLE | Q1055 | G3313830R | 2SC1383R/S | | | | J01 | P0090158 | FM-214-8SS | Q1052 | G3090005 | MPSA13 | | | | J02 | P0090010 | FM-142S | | | | | | | J03 | P1090028 | MBR06D | | | DIODE | | | | J04.05 | P1090005 | SG8050 | D1006,1015, | G2090027 | 1SS53 | | | | J06,11 | P0090054 | 5048-07A |
1017-1024, | | | | | | J07 | P0090036 | 5048-14A | 1027-1029,
1037-1043, | | | | | | J08 | P0090173 | EMCS0450M | 1049-1052, | | | | | | J08 (with board) | C0021320 | | 1057,1061-1065, | | | | | | | | | 1067-1073,1075,
1077-1081 | | | | | | | | PLUG | | | <u> </u> | | | | P01 | T9203770A | 5208-07 | D1010-1012,1014, | G2001880F | 1S188FM | | | | P02 | T9203140B | 5208-10 | 1025,1026,1030,
1059,1060 | | | | | | P03 | T9203150A | 5208-12 | 1037,1000 | | | | | | P04 | Т9203800 | 5208-04 | D1013 | G2015550 | 181555 | | | | P06 | Т9203170 | 5208-12 | D1044-1048 | G2022090 | 182209 | | | | P07 | T9203180 | 5208-5 | D1053-1056 | G2010070 | 1\$1007 | | | | P09 | T9203230C | 5208-14 | D1066 | G2090001 | 10D1 | | | | P12 | T9203280A | | | | | | | | | | | | ********** | CRYSTAL | | | | | | | X1001 | H0101100A | 11.265 MHz | | | | | 1 | | X1002 | H0100992 | 10.8115 MHz | | | | | | | X1003 | H0100991 | 10.8085 MHz | | | | | | | X1004 | H0102288 | 10.8093 MHz | | | | | | | X1005 | H0101983 | 7.3728 MHz
7.168 MHz | | | | | | | X1005 | H0101982 | (EUROPE MODEL) | | | | | ļi | | | | (EUROFE MODEL) | | | | | | | | | | | | | | ļ | | 1 | | | | | | | | CRYSTAL FILTE | R | | R1216 | J02245392 | Carbon | film | 1/4W | SJ 3.9kΩ | |-------------------------------------|------------------------|--|-------------|-------------------|------------------------------------|------------|---------------|----------|-------------|--------------------| | XF1001 | H1102021 | 108M30B | <u> </u> | | R1018,1136,1146, | J02245372 | Caroon | ,, | 1/4W . | " 4.7kΩ | | XF1002 | H1102022 | 10F-2D | | | 1218,1305,1329 | 302213172 | | | | 7.77.16 | | 71.1002 | | | | | 1 | | | | | | | | | CERAMIC FILTER | ٦ | | R1045,1046,1053, | J02245562 | | ** | | " 5.6kΩ | | CF1001 | H3900220 | LF-H12S | | | 1100,1152,1159, | | | | | | | CF1002 | H3900030 | LF-B15 | | | 1163,1181,1209, 1277,1283,1310, | | | | | | | | | | | | 1327 | | | | | | | | | | | | R1016,1088 | J02245682 | " | •• | ., | " 6.8kΩ | | | | CERAMIC DISCR | IMINATO | R | R1148 | J02245822 | " | •• | •• | " 8.2kΩ | | CD10 01 | H7900040 | 455-DW-8 | | | R1023,1026,1055, | J02245103 | " | ., | | " 10kΩ | | | | | | | 1079,1093,1094, 1096,1104,1134, | | | | | | | | | MODULATOR MO | DDULE | | 1135,1137,1154, | | Ì | | | | | XM1001 | H9500390 | XM-10.81 | | | 1177,1180,1224, 1226,1229,1232, | | | | | | | | | BECICTOR | | | 1243,1265,1269, | | | | | | | D1141 | J02245010 | RESISTOR Carbon film 1/ | 4W SJ 1 | | 1275,1279,1282,
1284,1293,1298, | | | | | | | R1141
R1140 | J02245010
J02245229 | | | Ω
.2Ω | 1303,1304,1306, | | | | | | | R1211 | J02245229 | | ۷. | <u>-232</u>
2Ω | 1307,1311,1322 | | | | | | | R1007,1013,1017, | J02245260 | ., ., | | 6Ω | | J10216103 | Carbon | comp | osition | | | 1078,1084,1204, | 302213300 | | 3. | 011 | | 1102101 | 4 0011 | ; | | GK 10kΩ | | 1207 | | | | | R1126,1219,1233 | J 02245123 | Carbon | film | | 5J 12kΩ | | R1063 | J01245560 | " " | " TJ 5 | 6Ω | R1286,1290 | J02245153 | ,, | " | ** | " 15kΩ | | R1173 | J02245680 | ., ., | " SJ 68 | 8Ω | R1169 | J02245183 | " | •• | ,, | ″ 18kΩ | | R1188 | J02245820 | ,, ,, | " " 8: | 2Ω | R1031,1047,1048, | J02245223 | " | " | " | " 22kΩ | | R1028,1044,1085, | J02245101 | " " | " " 10 | $\Omega 00$ | 1171,1220,1228,
1246,1264,1272, | | | | | | | 1175,1179,1190,
1231,1235,1236, | | | | | 1276,1278,1287, | | | | | | | 1242,1245,1257, | | | | | 1309 | | | | | | | 1260,1263,1267, | | | | | R1144,1162,1164 | J02245273 | " | " | | " 27kΩ | | 1333 | | ,, ,, | | | R1176,1268,1291 | J02245333 | ,, | " | . ,, | " 33kΩ | | R1024,1064,1065, | J01245101 | , " " | " TJ 10 | 00Ω | R1004,1020 | J02245393 | | | , | " 39kΩ | | 1182,1183,1326 | 102245151 | ,, ,, | " SJ 1: | 500 | 1075,1080,1202,
1324 | J02245393 | | | | | | R1005,1021,1076,
1083,1147 | J02245151 | | 31 13 | 2075 | R1011,1012,1025, | J02245473 | ,, | | | " 47kΩ | | R1139,1172,1234, | J02245221 | ,, ,, | " " 2 | 20Ω | 1058,1151,1280, | 302213113 | | | | 17.102 | | 1237,1238 | 0022.0221 | | 2. | | 1281 | | | | | | | R1060 | J02245331 | ,, ,, ,, | " " 3: | 30Ω | R1056,1168,1252 | J02245563 | " | •• | ,, | " 56kΩ | | R1059 | J02245391 | ,, ,, | 39 | 90Ω | R1128,1145,1158 | J02245683 | " | | " | " 68kΩ | | R1066,1193,1222, | J02245471 | ., ,, | " " 47 | 70Ω | R1133 | J02245823 | " | •• | " | " 82kΩ | | 1253,1266,1330 | | | | | R1003,1019,1074, | J02245104 | " | •• | | " 100kΩ | | R1070,1178,1323 | J02245561 | | | 000 | 1081,1095,1127,
1132,1138,1150, | | | | | | | R1142 | J02245681 | | | 80Ω | 1156,1161,1170, | | | | | | | R1185 | J02245821 | | | 20Ω | 194-1199,1201,
1206,1212,1270, | | | | | | | R1006,1022,1027,
1033,1062,1071, | J02245102 | , , , | ""11 | kΩ | 1273,1292 | | | | | | | 1072,1077,1082, | | or Service Manuals Co | ontact | | D1057 1155 1160 | J02245124 | ,, | | ,, | " 120kΩ | | 1087,1090,1091,
1097,1130,1149, | i MA | URITRON TECHNICAL SE | RVICES | | R1057,1155,1160, | JU2243124 | | | | 120832 | | 1157,1174,1184, | | B Cherry Tree Rd, Chir
Oxon OX9 4QY | nnor | | R1038,1040,1049, | J02245154 | ,, | ., | ••• | " 150kΩ | | 1192,1208,1213,
1241,1244,1256, | Tel: | 01844-351694 Fax:- 01844 | 4-352554 | | 1051 | 102210101 | | | | 100 | | 1258,1259,1261, | E | mail:- enquiries@mauritron. | .co.uk | | R1089,1214,1255 | J02245184 | ,, | ** | | " 180kΩ | | 1262,1274,1325, | | | | | R1200 | J02245224 | " | | | " 220kΩ | | 1328,1331 | | | | | R1239,1294 | J02245334 | •• | ., | " | " 330kΩ | | R1073 | J01245103 | ,, ,, ,, | " TJ 11 | kΩ | R1240 | J02245474 | | " | | " 470kΩ | | R1054,1102,1103, | J02245152 | ., ., , | " SJ 1. | .5kΩ | R1271,1297 | J02245564 | " | •• | | " 560kΩ | | 1191,1205,1210, | | | | | R1288 | J02245684 | " | | | " 680kΩ | | 1217,1230 | | | | | R1285,1296 | J02245824 | " | <i>"</i> | | " 820kΩ | | R1061 | J02245182 | | | .8kΩ | R1098,1101,1295, | J02245105 | " | ., | " | " 1ΜΩ | | R1015,1034,1037,
1039,1041-1043, | J02245222 | | " " 2. | 2kΩ | 1300 | 100045155 | ,, | •• | ,, | " 1.5MO | | 1039,1041-1043, | | | | | R1092,1301 | J02245155 | " | ·· | | " 1.5MΩ
" 2.2MΩ | | 1129,1165,1187, | | | | | R1002 | J02245225 | <u> </u> | | | 2.2M32 | | 1221,1254,1308
R1299 | J02245272 | ,, ,, ,, | 2 | 7kΩ | | | THERMI | STOP | | | | R1050,1052,1086, | J02245272
J02245332 | | 4. | 3kΩ | TH1001 | G9090001 | SDT-25 | | | | | 1131,1143,1166, | 302270332 | | 3. | J | 111101 | 37070001 | 301-23 | <u> </u> | | | | 1186,1223,1225,
1227,1289,1302 | | | | | | | | | | | | 1221,1207,1302 | | | | | | | · | | | | | | 1 | POTENTIOMETER | C1003,1004,1006, | K13170102 | Ceramic 50WV 0.001μF | |---|------------------------|---------------------------------|-------------------------------------|------------------------|--| | VR1001 | J51730222 | P6-S3NA 2.2kΩ | 1019,1023,1026, | KISTIOIOZ | (DB200YF102Z75L2) | | | J51730222
J51730103 | P6-S3NA 10kΩ | 1033,1065,1071, | | (552001110257352) | | VR1002-1006, | 131730103 | 10-33114 10842 | 1085,1124,1131, 1132,1151,1183, | | | | 1009,1010
VR1011 | J51730104 | P6-S3NA 100kΩ | 1190,1193,1218, | | | | VR1007,1012 | J51730223 | P6-S3NA 22kΩ | 1228,1230,1245, 1261,1264,1266, |
 | | | VR1008 | J51737201 | 3321P 200Ω | 1272-1274,1277, | | | | VR1008 | J51729503 | RV8-FAN50kΩ | 1281 | | | | VRIOIY | 331727303 | CAPACITOR | C1005,1007,1008, | K13170103 | " 0.01μF | | C1175 | K00179001 | Ceramic 50WV SL 0.5pF | 1009,1024,1025, | | (DB201YF103Z5L5) | | CIII | Rooms | (DD104SL0R5C50V02) | 1030,1037,
10661068,1073, | | | | C1267 | K00172010 | " " 1pF | 1076,1082-1084, | | | | C1207 | | (DD104SL010C50V02) | 1086-1088,1090, | F0 | Manuala Contact | | | K00172020 | " " 2pF | 1092,1098,1100,
1127,1152,1154, | | ice Manuals Contact NTECHNICAL SERVICES | | | | (DD104SL020C50V02) | 1155,1156,1169, | 8 Cher | ry Tree Rd, Chinnor | | C1020,1173,1177 | K02179003 | " СН 2рГ | 1160-1165,1171,
1182,1185,1188, | | on OX9 4QY
351694 Fax:- 01844-352554 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | (DD104CK020C50V02) | 1191,1192,1199, | | go 1694 Fax 01644-352554
Iquiries@mauritron.co.uk | | C1224 | K00172030 | " " SL 3pF | 1200,1202,1203, | | | | | | (DD104SL030C50V02) | 1206,1209,1211,
1213,1214,1215, | | | | | K00172040 | " " 4pf | 1219,1223,1229, | | | | | <u> </u> | (DD104SL040C50V02) | 1251,1263 | | | | C1011-1013,1001 | K02172050 | " CH 5pF | C1027,1042,1043, | K19149026 | (UAT04V102K-L05AE) | | | | (DD104CH050C50V02) | 1051,1072, | | " 25WV 0.001μF | | C1174,1176,1180, | K06173060 | " " UJ 6pF | 1145,1197,1252 | | | | 1186 | | (ECC-D1H060DV) | C1257 | K19149001 | (UTA04X102K-L05AE) | | C1280 | K00173060 | " SL 6pl | | | 2311 0.00121 | | | | (DD104SL060D50V02) | C1078,1120,1270 | K19149005 | (UAT04X222K-L05 AE) | | C1269 | K00173070 | " SL 7pF | | | 25WV 0.0022μF | | | | (DD104SL070D50V02) | C1136,1144,1196 | K19149007 | (UAT05X332K-L05AE) | | C1167,1168 | K06173080 | " UJ 8pF | G1055 1056 1060 | 17.101.100.13 | 25WV 0.0033μF | | | | (DD104UJ080D50V02) | C1055,1056,1060,
1070,1096,1119, | K19149013 | (UAT05X103K-L05AE)
25WV 0.01µF | | C1069 | K02173080 | " SL 8pF | 1232,1235,1237,
1239 | | 25 ₩ V 0.01μ1 | | G1000 1170 | V00172100 | (DD104SL080D50V02)
" " 10pF | C1146 | K19149015 | (UAT08X153K-L45AE) | | C1080,1172,1178 | K00173100 | (DD104SL100D50V02) | C1140 | K19149013 | 25WV 0.015μF | | C1015,1018,1216 | K02173100 | " " CH 10pF | C1052-1054,1246 | K19149017 | (UAT04X223K-L05AE) | | C1013,1018,1216 | K02173100 | (DD104CH100D50V02) | (1032-1034,1240 | RISTISOTA | 25WV 0.022μF | | C1038,1153,1276 | K00175150 | " " SL 15pF | C1028,1029, | K19149021 | (UAT08X473K-L45AE) | | C1030,1133,1270 | R00173130 | (DD104SL150J50V02) | 1039-1041. | | 25WV 0.047μF | | C1010 | K02175150 | " " CH 15pF | 1044-1050,1074,
1075,1079,1081, | | | | C1010 |
| (DD104CH150J50V02) | 1233,1236,1238, | | | | C1016,1017 | K02175180 | " " 18pF | 1240,1253,1254 | | | | , | | (DD104CH180J50V02) | C1058,1063,1129 | K19149025 | (UAT13X104K-L46AE) | | C1181,1210,1212 | K00175220 | " " SL 22pF | | | 25WV 0.1µF | | , , | | (DD104SL220J50V02) | | | Electrolytic | | C1220 | K00175270 | " " 27pF | C1258 | K40179005 | 50WV 0.47μF (50RC2-R47) | | | | (DD104SL270J50V02) | C1091,1097, | K40170105 | " 1μ F (50RL1) | | C1204,1205 | K02179011 | " CH 27pF | 1116-1118,1121,
1123,1133,1137, | | | | | | (DD104CH270J50V02) | 1138,1140,1141, | | | | C1241,1248,1249 | K00175330 | " " SL 33pF | 1143,1147,1148, | | | | | | (DD104SL330J50V02) | 1150,1194,1243,
1247,1256,1260 | | | | C1034 | K00175390 | " 39pF | | | (500001) | | | | (DD104SL390J50V02) | C1268 | K40179001 | " 1μF (50RC2-1) | | C1059 | K00175470 | " 47pF | C1255 | K40149001 | 25WV 4.7μF (25RE4R7) | | | | (DD104SL470J50V02) | C1061,1062 | K40149011 | " 4.7μF (25RC2-4R7) | | C1217 | K02175470 | " CH 47pF | C1250, 1262,1265 | K40120106 | 16WV 10μF (16RL10) " 22μF (16RL22) | | | | (DD106CH470J50V02) | C1184 | K40120226 | ZZMI (TOREZZ) | | C1077,1093,1094, | K00175101 | " " SL 100pF | C1064,1089,1134,
1135,1139,1142, | K40109002 | 10WV 47μF (10RE47) | | 1234,1271 | | (DD105SL101J50V02) | 1149,1195,1198, | | | | C1157,1159 | K00175221 | 220pt | 1244,1259 | V40100001 | " 100µF (10RE100) | | | | (DD107SL221J50V02) | C1122 | K40109001
K40109007 | " 220µF (10RE220) | | C1242 | K00175331 | 33001 | C1125 | K40109007
K40129001 | 16WV 330μF (16RE330) | | | ********* | (DD107SL331J50V02) | C1128 | K40129001
K40129003 | " 1000μF | | C1158 | K00175471 | " " 470pF
(DD109SL471J50V02) | C1130 | 10127003 | (16RL1000 KOHO) | | | <u></u> | (DD10/3L7/130/402) | <u> </u> | | (1011-1000-1-110) | | | | Tantalum | R2007 | J02245222 | Carbon film 1/4W 2.2kΩ | |---|------------------------|--------------------------------|-----------------|-------------|------------------------| | C1201 | K70167474 | 35WV 0.47μF (CS15E1VR47) | R2008 | J02245103 | " " 10kΩ | | C1099 | K70127225 | 16WV 2.2μF (CS15E1C2R2M) | R2009 | J02245104 | " " " 100kΩ | | | | Styrol | | | | | C1036,1208,1222 | K51176101 | 100pF (50SU101K) | | | POTENTIOMETER | | C1035,1207,1221 | K51176221 | 220pF (50SU221K) | VR2003 | J50716201 | RV8FAS 200Ω | | | - | | VR2001 | J50716103 | " 10kΩ | | | | TRIMMER CAPACITOR | VR2002 | J50716503 | " 50kΩ | | TC1001-1004 | K91000074 | 10pF (TZ03T110A) | | | | | TC1005-1010 | K91000075 | 20pF (TZ03R200A) | | | CAPACITOR | | | | | C2020 | K00179001 | Ceramic 50WV SL 0.5pF | | 711 F17 T18 T18 124 124 124 124 124 124 124 124 124 124 | | INDUCTOR | | | (DD104SL0R5C50V02) | | L1016 | L1190004 | (FL4HR68M0.68μH) 0.68μH | C2022,2025 | K00172010 | " " 1pF | | L1010,1011 | L1190006 | (FL4H1R2M 1.2μH) 1.2μH | , | | (DD104SL010C50V02) | | L1001 | L1190116 | (FL4HR33M) 0.33µH | C2034 | K00173060 | " " 6pF | | L1003 | L1190117 | (S-4 15µH) 15µH | | | (DD104SL060D50V02) | | L1007,1008,1014, | L1190016 | (FL5H101K) 100µH | C2017 | K00173070 | 7pF | | 1015,1017 | | | | | (DD104SL070D50V02) | | L1005,1006 | L1190040 | (S-4 1mH) 1mH | C2001 | K00173100 | " " 10pF | | L1012 | L0020829 | | | | (DD104SL100D50V02) | | L1013 | L0020725 | | C2019,2028,2029 | K00175150 | " " 15pF | | L1002 | L0020302 | | , , | | (DD104SL150J50V02) | | | | | C2002.2007 | K00175220 | " " 22pF | | * * * * | | TRANSFORMER | | | (DD104SL220J50V02) | | T1001,1002 | L0020345 | | C2018 | K00175270 | " " 27pF | | 1010-1014 | | | | | (DD104SL270J50V02) | | T1003,1005,1006, | L0020187 | | C2035 | K00175330 | " " 33pF | | 1015 | | | 02000 | | (DD104SL330J50V02) | | T1004,1009, | L0190001 | | C2033 | K00175390 | " " 39pF | | 1016-1018 | 20170001 | | C2033 | 1100110070 | (DD104SL390J50V02) | | 1010 1010 | | | C2003,2005, | K13170102 | " " 0.001μF | | | | CHOKE COIL | 2011-2016,2024, | 11131.0102 | (DB200YF102Z5L2) | | CH1001 | L2030067 | FR14/7/5-2001F | 2026,2027,2030, | | (22203111022222) | | | | | 2031,2032 | | | | | | RELAY | C2004,2006 2021 | K14179002 | " " 0.01μF | | RL1001 | M1190006 | FBR221D012 | 02001,2000 2021 | | (RD204YM103Z50V) | | RETOOT | | 10112012 | C2023 | K70167105 | Tantalum 35WV 1μF | | | L 9190001 | Ferrite Beads RI 3x3-1 | | 11.010.100 | (CS15E1V010M) | | | | | C2008-2010 | K40129004 | " 16WV 10µF | | | Q5000026 | Terminal TP-E | 2000 | | (16RE10) | | | _ ~ | | | | | | | | | | | INDUCTOR | | | | | TC2001-2004 | K91000075 | 20pF (TZ03R200A) | | | | | L2001,2003 | L0020193 | | | | | | L2002 | L0020195 | | | · . | PA_ | JNIT | L2004-2006,2010 | L1020469 | | | Symbol No. | Part No. | Description | L2007 | L0020190 | | | PB-2141 | F0002141 | Printed Circuit Board | L2007 | L0020430 | | | | C002141 | PCB with Components | L2011 | L0020334 | | | | | | | | | | | | TRANSISTOR | | | TRANSFORMER | | Q2001 | G3320530 | 2SC2053 | T2001 | L0020069 | | | Q2003 | Q3107150 | 2SA715C | | | | | 3 | | | | | RELAY | | | | POWER MODULE | RL2001 | M1190006 | FBR221-D012 | | Q2002 | Q1090295 | M57713 | | | | | | 11070070 | | | Q5000016 | Terminal TP-E | | | | DIODE | | 2-200010 | | | D2001-2003 | G2001880F | Germanium 1S188FM | | | | | D2001-2003 | G20013501 | Silicon 1S1555 | | | | | D & D D D T | 02013330 | 101000 | | | | | | | RESISTOR | | | | | R2003 | Jú2245479 | Carbon film $1/4W$ 4.7Ω | | | | | R2003 | J02245101 | " " 100Ω | | | | | | J02245101
J02245821 | 820Ω | | | | | R2002 | JU2243041 | 02012 | | | L | | | | LINUT | • | R3089,3122 | J02245182 | Carbon film | 1/4W SJ 1.8kΩ | |-----------------------------------|-----------------------|-------------------|------------------------|------------------------------------|------------|--|------------------------| | C. L. IN | Part No. | UNIT Descrip | tion | R3091 | J02245222 | ,, ,, | " " 2.2kΩ | | Symbol No. | F0002136B | Printed Circuit B | | R3124 | J02245392 | ., ., | " " 3.9kΩ | | PB-2136D | C0021360 | PCB with Compo | | R3017,3042 | J02245472 | ., ,, | " " 4.7kΩ | | | C0021300 | 1 CD with compe | bilones | R3093 | J02245562 | ,, ,, | " " 5.6kΩ | | | | IC, FET and TRAI | NSISTOR | R3092 | J02245822 | 0 0 | " " 8.2ks | | Q3003,3018 | G1090012 | <u> </u> | N16913P | R3019-3022,3024, | J02245103 | ,, ,, | " " 10kΩ | | Q3005,3016 | G1090247 | | C9122P | 3029,3035,3040, | | | | | Q3006,3014 | G1090048 | | C5081P | 3044,3048,3060,
3076,3095,3101, | | | | | Q3007 | G1090239 | T | C5082P | 3128 | | | | | Q3008 | G1090084 | μ | PC78L05 | R3023,3025,3043, | J02245223 | ., ., | " " 22kΩ | | Q3012,3013 | G1090296 | " Н | ID10551 | 3086,3105,3106,
3108,3115,3117, | | ervice Manuals Co | | | Q3024 | G1090062 | " S | N76514N | 3119,3121,3123, | | RON TECHNICAL SE
erry Tree Rd, Chir | | | Q3027 | G1090153 | M | 1B8718 | 3127 | 801 | Oxon OX9 4QY | mor | | Q3031-3033 | G1090297 | | PD4094B | | | 4-351694 Fax:- 01844 | | | Q3034 | G1090298 | M | 1C14560B | | | enquiries@mauritron | | | Q3036 | G1090088 | | 1C14028B | R3030,3034,3047, | J02245333 | ,, ,, | ″ SJ 33kΩ | | Q3044 | G10902 99 | | PC7805H | 3094 | | | " " 100kg | | Q3001 | G3090035 | | SK19TMGR | R3001-3003,
3006-3008,3041, | J02245104 | | 100ks | | Q3002,3017 | G4800730Y | | SK73Y | 3051-3053, | | | | | Q3022,3023 | G48 005 10C | | SK51 | 3070-3072, | | 1 | | | Q3028 | G3090034 | | SK19TMY | 3078-3080,3097,
3099,3100 | | | | | Q3004,3019,3025, | G3309450Q | Tr 2 | SC945Q | , | J02245184 | | " " 180ks | | 3037-3041 | G224 (540) | ,, , | CC1 (24) | R3013,3058,3084 | 302243104 | | 10083 | | Q3009,3015 | G3316740L | | SC1674L | | | THERMISTOR | | | Q3010,3011,3016, | G3305350A | 2 | SC535A | TH3001 | G9090008 | 31D26 | | | 3030 | G3307100 | ., , | SC710 | 1113001 | 37070000 | | | | Q3020
Q3029 | G3307100
G3307320G | | SC732TMBL | | | CAPACITOR | | | Q3046 | G33073200 | | SA733 P or Q | C3165 | K00179001 | Ceramic | 50WV SL 0.5pF | | Q3040 | /Q | - | | | | (ED06J0.51 | PSL) | | Q3045 | G3090005 | N | MPS-A13 | C3160,3166,3169 | K02179003 | ** | " CH 2pF | | Q3013 | 307000 | | | | | (DD104CK | 020C50V02) | | | | C SOCKET | | C3052,3082 | K00172020 | " | " SL 2pF | | QS3001 | P3090034 | 116-24-30-114 | | | | |)20C50V02) | | | | | | C3085 | K00172030 | " | " SL 3pF | | | | DIODE | | | | (DD104SL0 |)30D50V02) | | D3002-3007, | G2090027 | Silicon 1 | SS53 | C3047 | K02172030 | | "CH 3pF | | 3023,3024,3015 | | | | | 1/02172050 | (DD104CH | 030D50V02) | | D3001 | G2090043 | | 1V104 | C3003,3011,3131 | K02172050 | | " CH 5pF | | D3016-3018,3008 | G2022090 | " 1 | S2209 | 02024 2064 2067 | K00172050 | (DD104CH | 050C50V02)
" SL 5pF | | | | | | C3024,3054,3057, | K001/2030 | | 050C50V02) | | | | CRYSTAL | | 3149 | K06172050 | (DD1043L) | " UJ 5pF | | X3001 | H0102367 | | 0.240 MHz | C3046,3074 | K06172030 | | 050C50V02) | | X3002 | H0102291 | | 3.9151 MHz | C3006 | K06173060 | " | " UJ 6pF | | X3003 | H0102289 | | 4.595 MHz | C3000 | K00173000 | (DD104111) | 060D50V 02) | | D2011 2056 2077 | 102245100 | RESISTOR 1 | /4W CI 100 | C3005,3161,3167, | K06173070 | " | " UJ 7pF | | R3011,3056,3077 | J02245100 | Carbon film 1 | /4W SJ 10Ω
" " 100Ω | 3168 | K00173070 | (DD104UJ | 070D50V02) | | R3005,3009,3012, 3018,3028,3046, | J02245101 | | 10075 | C3002,3099 | K02173080 | " | " CH 8pF | | 3054,3057,3062, | | | | 03002,3077 | | (DD104CH | 08 0D50V02) | | 3063,3073,3081,
3083,3090,3098 | | | | C3138 | K00173080 | " | " SL 8pF | | R3087 | J02245151 | ,, ,, | " " 150Ω | | | (DD108SL | 080D50V02) | | R3031,3036,3049, | J02245221 | | " " 220Ω | C3042 | K02173100 | ,, | " CH 10pF | | 3088,3096 | 302213221 | | -2048 | | | (DD104CH | 100D50V02) | | R3004 | J02245331 | ,, ,, | 330Ω | C3014,3060,3063, | K00173100 | ,, | " SL 10pF | | R3045 | J02245471 | ,, ,, | " " 470Ω | 3096,3135 | | (DD104SL | 100D50V02) | | R3016,3116 | J02245681 | " | " " 680Ω | C3163 | K00175120 | " | " SL 12pF | | R3075,3118 | J02245821 | 11 11 | " " 820Ω | | | | (20J50V02) | |
R3014,3015,3027, | J02245102 | ,, ,, | " " 1kΩ | C3064,3065,3158, | K00175150 | ,, | " SL 15pF | | 3039,3059,3061, | | | | 3190,3015,3016 | | (DD104SL | (50C50V02) | | 3085,3102-3104,
3129,3130 | | | | C3043,3080 | K02175150 | <i>"</i> | " CH 15pF | | , | | | | | | | 150J50V02) | | | J02245122 | | " " 1.2kΩ | C3022,3147,3184 | K00175180 | " | " SL 18pF | | R3120 | 302243122 | ,, ,, | " " 1.5kΩ | | | , | 180J50V02) | | | | | | Υ | 1 | 7 | | |------------------------------------|-------------------------------------|--|--------------|--------------------------------|----------------------|------------------------------|---------------------------------------| | C3004,3044 | K02179009 | F | 22pF | 1 2012 2012 2021 | 11100::- | INDUCTOR | 0.66 | | C2049 | V06176330 | (DD104CH220J50V02 | 2)
22pF | L3012,3013,3021 | L1190113 | (FL3HR22M) | 0.22μH | | C3048 | K06175220 | 1 | 22pF | L3004,3015
L3002,3010,3011, | L1190109
L1190004 | (FL3HR33M)
(FL4HR68M) | 0.33μH
0.68μH | | | K00175220 | (ECC-D1H220-JU) | 22pF | 3018 | 21170004 | (1 L4IIKOOM) | 0.00μ11 | | | 1001/3220 | (DD104SL220J50V02 | • | L3005,3006,3035, | L1190015 | (FL3HR120K) | 12 _µ H | | C3170 | K00175330 | | 33pF | 3036 | | | • | | | | (DD104SL330J50V02 | <u> </u> | L3041 | L1190016 | (FL5H101K) | 100 _µ H | | C3010,3073,3075, | K06175330 | " " UJ | 33pF | L3022 | L1190038 | (FL5H271K) | $270 \mu H$ | | 3076 | | (DD104UJ330J50V02 | | L3007,3008,3016, | L1190017 | (FL5H102K) | 1mH | | | K02179013 | | 1 33pF | 3023,3037-3040, | | | | | | | (DD105CH330J50V02 | | 3024 | | | | | C3023,3148 | K00175390 | 1 | 39pF | L3003,3009,3014, | L0020774 | | | | C2045 | V02175200 | (DD104SL390J50V02 |)
39pF | 3019,3020,3032,
3033 | | | | | C3045 | K02175390 | (DD105-257CH390J50 | • | L3017 | L0020821 | | | | C3030,3031 | K02175470 | T | 47pF | L3001 | L0020793 | | | | C3030,3031 | K02175470 | (DD106CH470J50V02 | • | | 20020.73 | | · · · · · · · · · · · · · · · · · · · | | C3055,3056,3058, | K00175470 | ·} | 47pF | | | TRANSFORMER | | | 3059,3086,3087, | | (DD104SL470J50V02 | • | T3001-3004 | L0020345 | | | | 3192 | | | | | | i | | | C305 1 | K06175470 | " " UJ | 47pF | | | CONNECTOR | | | | | (ECC-D1H470JU2) | | J3001 | P0090054 | 5048-07A | | | C3185 | K00175101 | | 100pF | J3002 | P0090052 | 5048-10A | | | C2002 2004 | W00175001 | (DD105SL101J50V02 | | | | | | | C3093,3094 | K00175391 | (DD104SL391J50V02) | 390pF | | VCO | 1 UNIT | | | C3050 | K12171102 | | 0.001µF | Symbol No. | Part No. | Description | | | C.3030 | R12171102 | (DD105E102P50V02) | υ.υυιμι | PB-2137A | F0002137A | Printed Circuit Board | | | C3066,3077,3097, | K10179016 | | 0.001µF | 10 213171 | C0021370 | PCB with Component | | | 3100,3102,3136, | | (DD201YB102K5L5) | • | | | | | | 3132-3134,3137,
3159,3141-3145, | | | | | | FET | | | 3162,3164, 3183, | | | | Q3021 | G3090035 | 2SK19TMGR | | | C3001,3007,3012, | K13170103 | " " | $0.01 \mu F$ | | | | | | 3013,3017-3021,
3025,3026,3028, | | (DD107F103Z50V02) | | | | DIODE | | | 3032,3035-3041,
3049,3053,3061, | | | | D3009-3013 | G2090027 | 1SS53 | | | 3062,3067,3078, | | | | D3014 | G2090043 | MV104 | | | 3079,3081,3083, | | | | | | RESISTOR | | | 3084,3088,
3090-3092,3098, | | | | R3064 | J00245101 | | VJ 100Ω | | 3101,3146,3150, | | | | R3065 | J00245150 | r | " 150Ω | | 3151,3153,3156,
3171,3173,3179, | | | | R3069 | J00245102 | ,, ,, ,, | " 1kΩ | | 3181,3197 | | | _ | R3066-3068 | J00245104 | | " 100kΩ | | C3070,3072,3089, | K19149013 | " | 0.01µF | | | | | | 3095 | | (UTA05 X103M-L05 AF | · | | | THERMISTOR | | | C3155,3175,3182, | K19149021 | |).047µF | TH3002 | G9090008 | 31D26 | | | 3189
C3029,3069,3154 | K54200001 | (UAT08X473M-245AE
Polyester film 100V |)
1μF | | | CABACITOR | | | (3029,3009,3134 | K34200001 | (B32561-A-1105J) | IμΓ | C2102 2111 | K12171102 | CAPACITOR Ceramic 50WV 2.5m/ | /m 0.001E | | C3027,3033,3068, | K70127106 | Tantalum 16V | 10μF | C3103,3111,
3119-3123 | K121/1102 | (DD105E102P50V | | | 3071,3152, | 10,012,100 | (CS15E1C100M) | 10,4. | C3106,3124 | K10179016 | " " 5m/m | | | 3157,3172 | | | | 03100,312 | | (DD201YB102K5L | | | C3180 | K40170105 | Electrolytic 50V | 1μF | C3107,3110 | K06172030 | " " | UJ 3pF | | | | (50RL105) | | | | (DD104UJ030C50) | V02) | | C3008,3034,(3178) | K40120106 | " 16V | 10μF | C3113,3116 | K02172040 | " " | CH 4pF | | 3186-3188 | ****** | (16RL106) | | | | (DD104CM040C50 | | | C3174 | K40120476 | " 16V | 47μF | C3112 | K02173080 | " " | CH 8pF | | | | (16RL476) | | C2100 | V03173000 | (DD104UJ080D50 | | | | | TRIMMER CAPACITOR | | C3108 | K02173090 | " " | CH 9pF | | | | CHIMMIEN CAPACITUR | 7-1 | | K06175120 | (DD104CH090D50 | UJ 12pF | | rc3003 | K91000056 | TZ03Z070A6 | | (3105 | | | | | · | K91000056 | TZ03Z070A6
TZ03T110A | 7pF
10pF | C3105 | K00175120 | | • | | TC3003
TC3001
TC3002 | K91000056
K91000074
K91000030 | TZ03Z070A6
TZ03T110A
ECV1ZW40X53N | 10pF
40pF | | | (DD104UJ120J50\
"" | • | | | K91000074 | TZ03T110A | 10pF | C3105 | K02179009 | (DD104UJ120J50V | /02)
CH 22pF | | C3126-3130 | K70147105 | Tantalum | 25WV | 1μF | R4057 | J02245333 | Carbon film | 1/4W | 33kΩ | |---------------------|------------------------|-----------------------|---------|-------------|---|--------------------|-------------------------|----------|-----------| | | | (CS15E1E01 | | | R4029,4032 | J02245393 | ,, ,, | ., | 39kΩ | | C3125 | K70127106 | •• | 16WV | 10μF | R4007-4022 | J02245473 | ., ., | ,, | 47kΩ | | | | (CS15E1C10 | 0M) | | R4045,4059 | J02245563 | ** '' | ., | 56kΩ | | C3104 | K40120106 | Electrolytic | 16WV | 10μF | R4001,4005,4033,
4034,4038,4060 | J02245104 | | " | 100kΩ | | | | (16RL106) | | | R4025,4026,4027, | J02245334 | | ., | 330kΩ | | | | | | | · · | 302243334 | | | 220K75 | | | ļ | TRIMMER CAP | ACITOR | | 4030 | 102245604 | ,, ,, | ., | 680kΩ | | TC3004 | K91000056 | TZ03Z070A | | 7pF | R4028,4031 | J02245684 | ,, ,, | | 1MΩ | | | | | | | R4002 | J02245105 | *** | | 1 191 2 2 | | | | INDUCTOR | | | | | | | | | L3025 | L1190004 | (FL4H R68M | | 0.68µH | | | BLOCK RESIS | | | | L3028,3029 | L1190110 | (FL3H 4R7K |) | 4.7µH | RB4001 | Q80000006 | 22k×13/5.6k | | | | L3026 | L0020359A | | | | RB4002 | Q8000 000 7 | 22k×10/10k> | <u> </u> | CAPACITOR | | | | | PLL CONTI | ROL UNIT | | | C4010,4013,4016, | K13170103 | Ceramic 50WV 5m/m 0.01µ | | | | Symbol No. | Part No. | | iption | | 4019,4020,40 26 | | (DB201YF | | | | PB-2213 | F0002213 | Printed Circuit Board | | C4002,4003 | K00175101 | ,, | " 5 | L 100pF | | | | C0022130 | PCB with Com | ponents | | | | (DD105SL1 | 01J50V | | | | | IC | | C4005-4008 | K10176471 | " | •• | 470pF | | | | | | | | | (DD104B471K50V02) | | 2) | | | Q4001 | G1090300 | μPD1511-018 | | | C4023 | K50177152 | Mylar | •• | J.0015 عي | | Q4002,4021 | G1090068 | MC14011B | | | | | (50F2U152 | M) | | | Q4002,4021
Q4020 | G1090126 | MC14069B | | | C4004 | K50177103 | ,, | ., | 0.01µF | | Q4020
Q4022 | G1090174 | MC14002B | | | | } | (50F2U103 | M) | | | Q4022
Q4027,4028 | G1090084 | 78L05 | | | C4001 | K50177473 | ., | •• | 0.047µF | | Q4027,4026 | 01070004 | 70203 | | | C4001 | | (50F2U473 | M) | | | | | TRANSISTOR | | | C4011,4012 | K40170105 | Electrolytic | 50WV | lμF | | Q4003-4018, | G30107331P | 2SA733 P or C | ` | | C4011,4012 | K vol volos | (50RL1) | | 7. | | 4033 | /0 | 2377777 01 0 | ₹ | | C4009,4014,4015, | K40120106 | " | 16WV | 10μF | | | G3309450Q | 2SC945Q | | | 4017,4018,4021, | K40120100 | (16RL10) | 10 | | | Q4019, 4025 | G3309450K | 2SC945K | | | 4022,4024 | | (TOTELO) | | | | Q4026 | | 2SC1383R | | | 4022,4024 | | | | | | Q4029 | G3313830R | 2SC2002L | | | | | DC-DC CONV | FRTFR | | | Q4030 | G3320020L
G3327850E | 2SC2002E
2SC2785E | | | T4001 | L3030078 | 0392-1030-0 | | | | Q4032 | G3327830E | IC SOCKET | | | 14001 | L3030076 | 0372 1030 0 | 0.5 | | | 001001 | P2000027 | 116-42-30-144 | | | | | CONNECTOR | | | | QS4001 | P3090037 | 110-42-30-144 | · | | J4001,4004 | P0090038 | 5048-12A | | | | | | DIODE | | | J4001,4004
J4003 | P0090052 | 5048-10A | | | | D4001 4000 | G2000027 | DIODE 15552 | | | | P0090032 | 5048-10A
5048-05A | | | | D4001-4008, | G2090027 | Si 1SS53 | | J4005 | P0090042
P0090050 | 5048-04A | | | | | 4010-4027,4034, | | İ | | | J4002 | P0090030 | 3048-04A | | | | 4036,4054,4055 | | | 45400E | | | 05000007 | F. T | | | | D4033 | G2001880F | Ge | 1S188F! | | 5 O Manu | Q5000007 | F Terminal | | | | D4035 | G2090143 | CERAMIC RESONATOR | | | For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554 | X4001 | H7900080 | CSA2.56M 2.56 MHz | | | Tel:- 01844-351694 Fax
Email:- enquiries@m | | | | | | | | | | | Elitali eriquites@fi | | | | | | | | RESISTOR | | | | DISPLA | | | | | R4044 | J10276829 | Carbon compo | | | Symbol No. | Part No. | | cription | | | | | | 1/2W | 8.2Ω | PB-2139B | F0002139B | Printed Circu | | | | R4042 | J10276221 | ,, ,, | | 220Ω | | C0021390 | PCB with Co | mponent | <u> </u> | | R4043 | J02245271 | Carbon film | 1/4W | 270Ω | | | | | | | R4041 | J02245331 | ,, " | " | 330Ω | | | DISPLAY TUE | | | | R4039 | J02245471 | " " | " | 470Ω | V4001 | G6090008 | LD8231/F1F | 9C5 | | | R4046 | J02245122 | | •• | 1.2kΩ | | | | | | | R4047 | J02245152 | 11 11 | ., | 1.5kΩ | | | IC | | , | | R4023 | J02245222 | ,, ,, | ** | 2.2kΩ | Q4031 | G1090241 | TA7612AP | | | | R4037,4040 | J02245472 | ,, ,, | -,, | 4.7kΩ | | | | | | | R4058 | J02245562 | ., ,, | ,, | 5.6kΩ | | | TRANSISTOR | | | | R4004,4006,4056, | J02245103 | ,, ,, | ** | 10kΩ | Q4024 | G3309450Q | 2SC945Q | | | | 4061 | 302243103 | | | | | | | |
 | R4024,2055 | J02245223 | ., ., | ., | 22kΩ | | | DIODE | | | | R4003 | J02245273 | | | 27kΩ | D4028-4032 | G2090027 | 1SS53 | | | | 1,7007 | 3024TJL1J | | | | 2,020 ,002 | | | | | | | | LED | | ACCE | SSORIES | |---|--|--------------------------|--|-----------------------------------|------------------------------| | D4037-4041 | G2090144 | TLG226 | Symbol No. | Part No. | Description | | D4042,4043 | G2090145 | TLY226 | 0,,,,,,,,, | M3090028 | Microphone YM-40 | | D4044-4046 | G2090142 | TLR226 | | 1113030028 | Microphone 1114-40 | | D4047,4049 | G2090137 | TLR205 | | T9002805 | Power Cord Assembly | | D4048,4050 | G2090136 | TLG205 | | 1,002003 | Tower cord Assembly | | 21010,1000 | 02030120 | 1.20200 | | Q0000005 | Fuse 5A | | | | RESISTOR | · | 20000003 | Tusc 3A | | R4052 | J01245471 | Carbon film 1/4W TJ 470Ω | | P0090034 | External Speaker Plug P-2240 | | R4053 | J02245102 | " " SJ 1kΩ | | 10000054 | External Speaker Flug 1-2240 | | R4051 | J01245122 | " " TJ 1.2kΩ | | R0062300A | Stand A | | R4048 | J02245152 | " " SJ 1.5kΩ | | ROODZJOOA | Stanu A | | R4036,4049 | J02245103 | " " 10kΩ | | R0062900 | Mobile Bracket Assembly | | R4050 | J02245393 | " " " 39kΩ | | K0002300 | Modile Bracket Assembly | | R4054 | J01245224 | " . " TJ 220kΩ | | - | TONE IN PLUG | | 17037 | 301243224 | . 13 220812 | | P0090174 | EMCHUM0401W(Housing) | | | | BLOCK RESISTOR | | Q5000034 | | | RB4003,4004 | Q80000001 | | | Q3000034 | EMCKNM01D (Contact) | | RB4005 | | 100k×9 | | | | | C00#an | Q80000002 | 1.5k×3/680×21/470×5 | | | | | | + | CARACITOR | | | | | C4026 | V12170102 | CAPACITOR 50WW 0.01 F | | - | | | C4 025 | K13170103 | Ceramic 50WV 0.01µF | | 1 | | | | | (DB201YF103Z5L5) | | - | | | | | | | | | | | | SWITCH | | | | | S4001-4004 | N4090036 | SUT-110 | | | | | S4005-4010 | N5090003 | KFE10901 | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | *************************************** | 1 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | ······································ | | Mark 9 | | | | | | | h | | | | | | | | | | + + | | | | | | | | | | <u> </u> | | | | - | | For Service | e Manuals Cont | act | | <u></u> | | | MAURITRON | ITECHNICAL SERVI | CES | | | | | 8 Cherry | Tree Rd. Chinne | or | | | - | | Ox | on OX9 4QY
1694 Fax:- 01844-35 | 20554 | | | | | Email:- end | uiries@mauritron.co. | uk | | | | | Miletais, CIIV | | | | | | | | | · | | | | | | | | | | | | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | DIODE INSTALLATION CHART FOR PLL CONTROL UNIT | | TYPE A | TYPE B | TYPE C | TYPE D | TYPE E | |-----------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------| | Frequency Coverage | 143.5-148.5 MHz | 144.0-146.0 MHz | 143.5-148.5 MHz | 144.0-146.0 MHz | 143.5-148.5 MHz | | Channel Separation
for FM Mode | S M F
1kHz 20kHz 100kHz | S M F
1kHz 25kHz 100kHz | S M F
1kHz 25kHz 100kHz | S M F
1kHz 12.5kHz 25kHz | S M F
1kHz 12.5kHz 25kHz | | D4004 | × | × | × | | | | D4006 | | × | × | × | × | | D4007 | × | × | × | | | | D4011 | × | | × | | × | | D4051 | | | | × | × | | D4052 | | | | × | × | | D4053 | | | | × | × | x = install a diode (1SS53) Blank = vacant Downloaded by□ □ Amateur Radio Directory