FM/SW/MW/LW 33-band Radio Receiver

CRF-330K

US Model Canadian Model E Model AEP Model UK Model No.2 February, 1978

SUPPLEMENT

CIRCUIT AND MECHANISM OPERATION

TABLE OF CONTENTS

Description

RADIO SECTION

1.	PHASE-LOCKED LOOP (PLL)	2
2.	THE PLL USED IN THIS RECEIVER	2
3.	RECEIVED-SIGNAL FREQUENCY COUNTER	9
4.	SW RF FILTER ·····	12
5.	BALANCED TYPE SW FIRST MIXER	14
6.	NOISE BLANKER	15
7.	CIRCUITS FOR SSB AND CW RECEPTION	16
8.	AGC CIRCUIT	19
9.	MECHANICAL FILTERS FL202 AND FL203	20
10.	Q211 IN MW AND LW RF AMPLIFIER	21
11.	POWER SUPPLY CIRCUIT ·····	22
12.	DIGITAL IC SYMBOLS AND OPERATIONS	23

TAPE RECORDER SECTION

1.	TIMER STAND-BY MECHANISM	25
2.	CONNECTION OF THE TAPE RECORDER AND RADIO	26
3.	RECORD MUTING	26
4.	LED AMPLIFIER	27

Page

RADIO SECTION

1. PHASE-LOCKED LOOP

The phase-locked loop (PLL) is a type of frequency feedback circuit made up of a phase detector (PD), low-pass filter (LPF), and a voltage-controlled oscillator (VCO). The frequency of the VCO is synchrounized to the frequency of the input signal.

When there is no input signal, the VOC oscillates at its free-running frequency. When the input signal is received, the phase-detector compares the VOO oscillation frequency with the frequency of phase of the input signal. If they do not match, the phase detector detects the difference as a voltage signal. This voltage is changed into direct current by the LPF, and shifts the VOO frequency towards that of the input signal. When both frequencies are the same, the phase detector voltage hexomes constant, thus synchronizing or locking the PLL. Under these conditions, the VOO condition on output and the input signal will be of the same frequency with a constant phase difference.

2. THE PLL USED IN THIS RECEIVER

The PLL has been inserted in the short-wave local oscillator circuit to stabilize the oscillation frequency. As a result, the receiver is very stable.

If the output of the frequency divider is not at 500 kHz, the phase-detector generates and sends a voltage to the VCO, and controls the VCO frequency so that the frequency divider output will ultimately

In the above short-wave front-end block diagram, the signal received via the antenna is changed to a 45.145 MHz first i-f signal by the first mixer. After going through the i-f amplifier stage, it is converted to a 455 kHz second i-f signal at the second mixer.

In the PLL section, the output of the second local oscillators inmed with the VPC output in the mixer (B). The mixer (B) output is equivalent to the input signal shown in the PLL diagram of section 1. It is mixed with the VCO output in the mixer (A). The mixer (A) output can be any frequency between 4 and 32 MHz, depending upon the frequency of the signal received. The output is the mixed by the frequency divider, and compared with the 500 kHz signal of the reference oscillators at phase-distector. be at 500 kHz. Thus, the VCO frequency is controlled by three oscillators (second local oscillator, VFO, and reference oscillator). The second local oscillator and the reference oscillator are both extremely stable corystal oscillators. The VFO is a stable lower frequency oscillator.

The amount of frequency division is selected by the band selector witch. The initial division is by 2, and then by from 4 to 32. Therefore, the VCO frequencies can be changed in 1 MHz steps by changing the ratio of the frequency divider, and in smaller steps by changing the VFO frequency. The VFO frequency is changed by turning the SW tuning knob.

1) Changing of the VCO Coils

The VCO (voltage controlled oscillator) is equivalent to the local oscillator in the usual superheterodyne receiver. The difference between the VCO and the usual local oscillator lins in the tracking of the VCO, or more precisely, in the fact that the VCO frequency changes accurately according to the VFO frequency variations, and the divided VCO frequency is continually compared with the reference oscillator frequency. The VCO frequency is controlled via the variable capacitor diodes D226 and D227 in the diagram by the DC output from the phase detector (PD).

However, it is difficult to change the VCO frequency across the entire range by the variable capacitor diodes only. It is for this reason that, as shown in

Note:

- ------ B+ bus at 1 to 9 MHz band
- ------ B+ bus at 10 to 19 MHz band
- ---- bias line path at 15 to 19 and 25 to 29 MHz bands

These two switches, \$26 and \$29, combine to give, for example, the 1 to 2 MHz band with Q1210 on. For the 1 to 2 MHz band, L268 enters the oscillator circuit as 'L'. In the same way, L274 gives the 3 to 5 MHz band, L269 gives the 6 to 9 MHz band, L270 the 10 to 14 MHz band, L273 the 15 to 19 MHz band, L271 the 20 to 24 MHz band, and L272 the 25 to 29 MHz band.

- ---- bias line path at 10 to 14 and 20 to 24 MHz bands
- ---- bias line path at 6 to 9 MHz band
- ------ bias line path at 3 to 5 MHz band
- ---- bias line path at 1 and 2 MHz bands

2) VFO

The stability of this set in short-wave reception is almost completely determined by the stability of the VFO. Of the three oscillators determining the stability of this set, the reference oscillator and the second local oscillator are fully stable crystal oscillators, and the VFO oscillator is at a low enough frequency (2445 to 3445 MHz) to permit highly stable circuit design. This is an advantageous characteristic feature of synthesizer receivers. The mixing of the VFO output and the output of the second local oscillator gives variable frequencies which are both high enough and stable enough for the purpose. Again, by incorporating the output of the second local oscillator into the synthesizer loop, the instability in reception associated with second local oscillator drift is eliminated by the first and second mixers. Furthermore, the VFO frequency is measured by the counter, giving a display of all frequencies between the 1 MHz intervals.

As described above, the VFO block has been designed and selected with attention to detail for stability and precision. Repair and adjustment require special instrumentation and advanced techniques. Repairs should generally therefore be effected by block replacement.

3) Mixer (B) D1001 and D1002

A part of the second local oscillator output (45.6 MHz) similar with the VFO output at D1001 and D1002 in order to boost the VFO ortput at D1001 (2455 to 34.55 MHz). The 24.55 to 3.455 MHz component of the mixer output is easily eliminated by the bandpass filter. Since 45.6 MHz is quite close to the frequency of the bandpass filter (42.145 to 43.145 MHz), the 45.6 MHz component leaks through the bandpass filter. In order to prevent the 45.6 MHz component from appearing at the output of the mixer, a balanced type mixer has been utilized. In a balanced type output side. Its operation can be thought of as a balanced type moduct detector.

4) Second Local Oscillator

The output of the second local oscillator is mixed with the first i-f signal at the second mixer and converted to the 455 kHz second i-f signal.

In this set, again, the output of the second local oscillator is incorporated into the synthesizer loop and applied to the first mixer. Therefore, the stability in reception associated with second local oscillator drift is cancelled by the first and second mixers.

5) Programmable Counter as Frequency Divider in PLL

A frequency divider can be composed of several counters. For example, in a decimal counter, then pulses input is somerted to one pulse output. After all, the decimal counter operates as a 1/10 frequency divider. However, the division ratios required in this set are from 1/4 to 1/32. The two decimal counters including preset functions are installed for changing the division ratios, as shown in the diagram.

IC1003 and IC1004 are both programmable decimal counters and are capable of dividing up to 1/100. However, in this set, terminals C and D of IC1004 are grounded in order to obtain only a division of only 1/40. The output pulse of IC1006 is inputted at LOAD terminals of IC1003 and IC1004, and in so obing, the counters are reset. By this preset operation, the frequency divider circuit is actually capable of dividing up to 1/41.

The below table indicates the input and output combination of IC1003.

CLOCK input frequency	ŕ		1	1	÷
DATA A	0	1	0	0	0
DATA B	0	0	1	0	0
DATA C	0	0	0	1	0
DATA D	0	0	0	0	1
QA output frequency	Of (constantly LEVEL 1)	1/1 1	56.4	36.1	1/8 f
RIPPLE CARRIER output frequency	1/10 f	1/10 f	1/10 f	1/10 f	1/10 1

When the level of the DATA B is I and the levels of the DATA A DATA C and DATA D are all 0, the CLOCK input frequency is divided by 2. The signal appears at the OA terminal. At this time, 8 has already been counted by IC1003 before the output signal from IC1002 enters the CLOCK terminal. In the same way, the division ratios change according to the levels of DATA terminals. Again, the RIPPLE CARREE output frequency is always divided to 1/10 and inputted at the ENABLE terminal of C1004. Thus, IC1004 control 10, 20, 30 and 40.

The next diagram shows the frequency counterciccuit, where 41 pulses are coverted to one pulse. If division to 1/30 is required, preset the programmable counters to 11 by setting the DATA A levels of 121033 and IC1004 to 1. This means that 11 has already been counted before inputting pulses at the LOCK terminal of IC1003. Thus, when 30 pulses are inputted, this circuit counts 12 to 41 and one pulse appears as output. In other words, 30 pulses are converted to one pulse. Thus, the division to 1/30 is completed.

The below diagram shows the frequency divider circuit. The 4 to 32 MHz input is converted to a 2 to 16 MHz signal by IC1002. Again, the 2 to 16 MHz signal is converted to a 500 kHz signal, which is compared with the 500 kHz signal of the reference oscillator at PD, by IC1006, IC1003 and IC1004.

The output signal from IC1002 enters the CLOCK terminals of IC1003 and IC1004. The signal is not counted in IC1004, but synchronizes the counting in the two ICs. Q1007 to Q1012, S26-3, S27-1 and S27-2 constitute the control circuit for counter presetting.

6) Phase Detector and Lowpass Filter

IC1005 is composed of a frequency/phase comparator and an integrator as shown below. When the output of the frequency divider is higher in frequency than the 500 kHz output of the reference ocalitator, first the level at terminal 2 becomes 0 and then the level at terminal 10 becomes the high level. But, when it is lower, the level at terminal 13 becomes the low level and the level at terminal 13 becomes the low level and the level at terminal becomes up to 3.V. Futhermore, the levels at both terminals 2 and 13 become the high levels, and the PLL is locked. The signal from terminals 10 and 15 is integrated and amplified by the active lowpass filter. Next, this signal goes to the variable capacitance diodes D226 and D227, and controls the frequency of the VCO. When the PLL is locked, 1.75 V appears at terminal 8 in 1.6 MHz reception and 5 V appears in 29.999 MHz reception. Q1006 is a constant current load for Q1025.

The next diagram shows that the duty factor of the signal from the reference oscillator is approx. S0%, and that of the divided to 1/4 signal from the frequency divider is 25%. When the PLL is locked, the level at terminal 12 is 1 as determined by the two input signals. If the SW tuning knob is turned during SW reception, the frequency of the signal from the frequency divider changes. Consequently, a 500 kHz negative pulse appears at terminal 12. This pulse is a trigger pulse for the muting operation of this set.

7) Regulator Circuit for VCO

If we assume that V2 has risen, the base voltage of Q228 will increase. This will increase the emitter current of O228, and will raise the emitter voltage At the same time, the emitter voltage of Q230 will increase and the emitter current will decrease, because the base voltage of Q230 is fixed by the zener diode D236. Therefore, the base current and collector current of Q229 will decrease so that V2 will decrease a little and will be regulated R316 is installed to prevent the influence of variation in V1 from affecting V2 Again, V3 is mainly applied via R317 and D235. However, with this alone, the regulator will not start to operate, and the start is effected by supplying an initial current to the base of O230 via R318. D235 is inserted to prevent the initial current from flowing to the V2 side via R317

Muting Circuit Composed of Q1023, Q1024 and Q231.

When changing bands during SW reception, a small amount of time is required for the PLL to lock. Also, when the VCO frequency changes rapidly, noise will appear in the speaker. This muting circuit, composed of Q1023, Q1024 and Q231, is designed to mute the noise.

When the PLL is not locked, a 500 kHz negative pulse appears at terminal 12 of 1C1005. This pulse is integrated at C1105, cutting off Q1023. Consequently, Q1024 comes on, and then Q231 comes on. Since the collector of Q231 is connected to the base of Q218 (noise blanker switch), Q218 comes on, and the i-f circuit is grounded. So long as it remains grounded, no sound will be heard from the speaker.

But once the PLL is locked, no further pulses will appear at terminal 12. Q1023 will then come on, and the mutine operation will be terminated.

3. RECEIVED-SIGNAL FREQUENCY COUNTER

The display of frequencies between 1 MHz points is actually a display of counted VFO frequencies. The diagram shows a block diagram of the counter section. The input signals from the VFO are first divided to 1/4, and then passed onto the AND gate (A). The AND gate (A) is opened by the AND gate (B) for only 4 msec, since the VFO frequencies are divided by 4 and the displayed frequencies are in kHz, one cycle per msec. During this period, the VFO pulses which pass through the AND gate (A) are counted in the counters (A), (B) and (C). The AND gate (A) is closed after 4 msec, and the counters (A), (B) and (C) stop where they are. Pulse signals (b) from the AND gate (B) are then sent to the latches (A), (B) and (C), which in turn read off and memorize the values of the counters (A), (B) and (C). The counters are then restored to their original status by reset signals (c) . ready to perform the next count. The decoders convert the binary numbers stored in the latches into

decimal numbers for LED use, and then drive the LED via drive circuits. The latches maintain their status until the next latch pulse signals arrive. Consequently, the LED display is also maintained for the same length of time. As long as no signal from the monostable multivibrator is applied to the AND gate (B), the counters will again commence to count the next VFO signal after 4 msc. But since the pulses are counted once every 8 msc, even if the counter value varies a little, the LED display will change once every 8 msc, which is far too short to read frequencies. In order to prevent this, the AND gate (B) is switched of by the monostable multivibrator. The counters will then only count once every 100 msc.

Also incorporated in this set is a blanking circuit, Since reception is not possible when the SW BAND SELECTOR switch is at 00 with the VCO frequency outside the 3.455 to 2.455 MHz range, the frequency must not be displayed. Therefore, the 00 detector detects the 00 status of the SW BAND SELECTOR writch, and the blanking detector detects the counter status. These two outputs are passed through the OR gate, and extinguish the LEDs.

The below table shows the combination between the VFO frequencies and the received signal frequencies.

Received Signal	VFO Frequency	Low Three Figures of Received Signal Frequency (on SW Frequency Counter)
A3	3,455 kHz 3,454 kHz 2,456 kHz	000 kHz 001 kHz 999 kHz
USB	3,453.5 kHz 2,454.5 kHz	000 kHz 999 kHz
LSB, CW	3,456.5 kHz 2,457.6 kHz	000 kHz 999 kHz

When the VFO signal has a frequency down of 1 kHz, the received signal has a frequency up of 1 kHz. In A3 (AM mode) signal reception, when the low three figures of the VFO frequency are 455 kHz. that of the received signal frequency is good kHz. Therefore, at this time the counter is preset to 455 kHz. When the VFO frequency goes down, the received signal frequency goes up.

In the same way, the counter is preset to 454 kHz in USB signal reception and 456 kHz in LSB and CW signal reception. (0.5 of a kHz can not be counted.) In this set, then, the programmable down-counter is used to preset to 454, 455 and 456 kHz. The programmable down-counter is preset by the inputs via PA and PB as follows.

PA Level	PB Level	Presetting Frequency
low high	low	454 kHz 455 kHz
10 W	high	456 kHz

1) IC1201

) 1/2 IC1201

Gate of counter and ½ frequency divider. It has two operations as a T flip-flop.

If the input at terminal CD is used as a gate signal and keeps the terminal SD at 0 level, the level at the terminal CD becomes 0 and this circuit operates as a 1/2 frequency divider of a T flip-flop.

If the level at terminal CD becomes 1, the output at terminal Q becomes 0 and this operates as the counter gate of a RS flip-flop.

b) 2/2 IC1201

1/2 frequency divider of a T flip-flop with reset function.

2) IC1202

It consists of four NOR gates; two gates operate as an inverter. The other two gates operate as a monostable multivibrator as in the following figure.

When a pulse is applied to O, the voltage at Oand O becomes low and the voltage at O becomes high. But, the voltage at O gadually increases to a high voltage according to the time constant determined by C1213 and R1222. Consequently the voltage at O becomes low and the voltage at O becomes high at this time C1213 is discharged, so that the voltage at O becomes too high and is gradually stabilized at \bigtriangledown{O} . This happens every time a pulse is applied to O. For approx. 0.07 second, this monotable multivibrator is unstable and stors the IC1203 operation.

IC1203

This is a Johnson counter with five-stages which divides the 125 kHz clock pulse to 1/10 to make three pulses, such as gate, latch and reset.

The output of the monostable multivibrator is connected with the ENABLE terminal to control the 125 kHz clock-pulse. Again, the output of the monostable multivibrator is connected with the RESET terminal to keep each timing pulse in order. The output at terminal 11 is a trigger to make the monostable multivibrator of IC1202 unstable and too the IC1203 operation as described in 201C1202.

4) IC1204

a) 1/2 IC1204

When the VFO output frequency becomes less than 2.456 MHz or more than 3.455 MHz, the MHz digits of the received signal frequency change, and the output of IC1207 activates IC1204 to send a blanking signal to the decoder drivers (IC1208 to IC1210). When the blanking signal is 1, only three dots appear on the kHz digits of the SW frequency counter.

b) 2/2 IC1204

A latch for storing the output of $\frac{1}{2}$ IC1204. The latch is constituted by a D flip-flop. The latch pulse is applied to the CLOCK terminal. The R and S terminals are at 0 level.

5) IC1205 to IC1207

These constitute the ripple down-counter which can be preset. 455 is a preset value in DSB mode, 454 in USB mode, and 456 in LSB or CW mode. The 3.455 'to 2.456 MHz of the VFO output is converted to the indication of 000 to 999 on the SW frequency counter.

6) IC1208 to IC1210

These constitute the latch, BCD-7 segments decoder and LED driver. These hold the output of the counter (IC1205, IC1206 or IC1207) every time a latch pube arrives, and simultaneously convert BCD into the 7-segments indicated by the LED. The LED indication is eliminated by setting the B.1 input of the decoder to 0 level.

7) LED1201 to LED 1203

These are common cathode type LEDs. The LED lights when high-level voltage is applied to its anode. The segment showing a dot lights when a high voltage comes from the OR GATE composed of O1208 and O1209.

4. SW RF FILTER

1) Filter for External SW Antenna

When an external antenna is used to boost the strength of a derived frequency range, the input of unwanted frequencies will also be increased. Many of the unwanted MW frequencies are epercially strong, and if harmonics of MW frequencies are permitted to reach Q201 in the RF amplifier, they may interfere with SW reception. To prevent this, a sharp bandpass filter (low-cut filter) is included before the RF amplifier.

2) Antenna Tuning

The ANTENNA TUNING knob for adjusting the W antenna circuit is a relatively new feature in radio equipment. This system is provided since it is difficult to obtain correct tracking between the antenna tank circuit and the local socillator, and since in the usual wide-range bandpass type radio, optimum selectivity can not be obtained.

Also, since one coil can not cover the whole 1.6 to 30 MHz range, a coil switching at the 7 MHz position has been provided.

L110 and C106 in the telescopic antenna circuit constitute a trap for TV signals.

3) RF Filter Switching

The SW RF filter in this set is of the bandpass type. However, the reception range is wide, extending from 1.6 to 30 MHz, so five sets of bandpass filters are selected for the appropriate reception bands. Switching is effected by the SW BAND SELECTOR switch, with a 12 V supply turning D201 to D211 on and off. S29-1 and S29-2 in the diagram is in the 9 MHz position, so it would be turned to the right (clockwise) successively to positions 0, 1, 2, etc.

Again, S26-2 is in the 0 position, and would be turned similarly to positions 1, 2. It follows that D201 and D206 are on for 1 to 3 MHz, D202 and D207 are on for 3 to 6 MHz, D203 and D208 are on for 6 to 10 MHz, D204 and D209 are on for 10 to 20 MHz, and D205 and D211 are similarly on for 20 to 30 MHz, effecting the bandpass filter writching.

5. BALANCED TYPE SW FIRST MIXER

The input signal from the antenna is initially filtered by the antenna-tuning circuit, and then passes through the RF amplifier and a subsequent bandpass filter to remove unwanted frequency components of the input, the is fed to the first mixer. However, if any unwanted frequency component which is to be removed by the RF filter is present at high signal strength, it may be impossible for the RF filter alone to eliminate it, and it may be passed on to the input signal. If they do not match, the phase coincides with the frequency of the first i-f signal, the conventional single type mixer would pass on the unwanted frequency component and it would enter the first i-f circuit. In such a case, no subsequent circuit would be able to eliminate it, and it would persist as interference. In the balanced type mixer, however, the input signal does not appear in the same form at the output (it undergoes frequency conversion, and appears in the converted form).

Let us assume that the first i-f signal of 45.145MHz enters the input of the mixer shown in the diagram. This signal is in the same phase at both Q202 and Q203 gates, and also appears in the same phase at their drains. But it appears in the opposite phase at 1.240, so that it is cancelled out, and does not appear at the output. The VR201 between the sources of Q202 and Q203 is for adjustment to ensure that the two FETs operate with the same gain and cancel the signal out completely. However, the local oscillator signal is applied in the opposite phase to Q202 and Q203, so that the frequency-converted signal appears at the drains in the opposite phase. The signal level is doubled at L240, so that a higher-level i-f output signal appears at the output. Further, L240 to L242 are arranged as shown in the diagram. forming a triple-chain M-coupled filter, coupled through the holes in the shield case.

6. NOISE BLANKER

High-level pulse noise such as automobile ignition noise is both highly audible and extremely irritating. In order to remove this, a noise limiter is often used. To secure an even more effective removal of pulse noise, a noise blanker is used.

The diagram shows the noise blanker circuit. The i-f signal derived from the noise blanker mixer is adequately amplified by Q213, Q214 and Q215, and at the same time a powerful AGC is applied to level out the signal amplitudes. When no high-simplitude signal appears, Q217 is in the cut-off state, and no base current lows: through Q218, so that the impedance of Q218 is high. When a pulsative (noise) signal appears, operation is as follows. The AGC does not respond to the pulse signal. Therefore, the pulse is applied at a sufficiently high level to Q217, so that Q217 goes on. With Q217 on the pulse current also flows in the base of Q218, and Q218 goes on, and the if signal is passed to ground via C282 and Q218, so that the pulse noise portion is eliminated. The deleted section of the if signal is largely compensated for in the following tank circuit, detector, and the effect is not obtraive.

Q216 in the diagram is the AGC amplifier. Because of the common-base circuit, the base circuit has a constant voltage supply via D217. If a voltage higher than the base potential is applied to the emitter, Q216 rapidly cuts off, and powerful AGC is applied. Again, the AGC time constant is chosen to be substantially less than that which is required to counter fading, so that low-frequency audio signals are considerably reduced.

C) woveform ofter noise blanks

7. CIRCUITS FOR SSB AND CW RECEPTION

1) BFO

Two crystal oscillators, one for USB and the other for LSB, are used in the BFO of this set to ensure reception stability. These oscillators are switched by changing the biases of Q222 and Q223 with S10-1, S3-3 or S3-5 as required. In SW SSB reception, this set operates as a double superheterodyne receiver and in MW/LW SSB reception, as a single superheterodyne receiver. The SSB carrier waves are therefore reversed as necessary with \$3-3 and \$3-5. The oscillator frequency of Q222 is 453.5 kHz and that of Q223 is 456.5 kHz. The signal produced in this way is injected into the SSB detector as a carrier wave, but because this frequency is not 455 kHz, an accurate display of the frequency is not possible by VFO frequency counting as in AM mode. In order to obtain an accurate display of this frequency, 1.5 kHz must be added or substracted.

The counter of this set is the 455 kHz preset (programmable) down-counter. Here, for USB, this presetting must be made to 454 kHz, and for LSB, it must be preset to 456 kHz, in order to obtain accurate frequency readings. (The counter does not read 0.5 kHz intervals, so the preset need only be made to the nearest 1 kHz.) The switching of the preset down-counter operates as follows. During A3 reception, either S8 or S9 is depressed and S10 to S12 are not depressed, so that the current flows from the S V power supply to terminal 7 of IC12O5 via S8-1 and then to either D401 or S9-2. This current gives the counter instruction, and the preset goes to 455 kHz. In LSB mode, the current goes to terminal 9 of IC1205 via S8-1, S10-1 and R411, and gives the counter instruction for the 456 kHz preset. In USB mode, there is no instruction for the counter structure from the counter is preset to 454 kHz.

In CW mode, the BFO utilizes the LSB oscillator. The preset frequency is 456 kHz. Therefore, when the beat frequency is 141R, accurate tuning is obtained. If the beat frequency is a little less than 1 kHz, the frequency is usually 800 kHz. Under these conditions the set is not accurately tuned, but the frequency difference is allowable considering the i-f bandwidth.

2) Product Detector

The oscillator output generated by Q222 or Q23 is applied to the secondary winding of L286, and induced currents 11 and 12 flow in the detectorside winding of L286. It and 12, under the action of D20 and D211, only flow for one half cycle of the sine wave. At this time the current develops a potential between the center tar (36) of the primary winding of L286 (for deriving the detector output) and ground: It generates E1, and 12 generates E2. However, these potentials are of the same level but opposite polarity, so that when there is no i 4 signal they cancel out and no potential is produced. When 1 < 15 more 17 (Note) comes in, the basting between 11 and 13, and between 12 and 13, appears as beet difference potential at tap 00. This potential is integrated via R335, C372 and C371 to result in an audio signal. This method of detection uses what is known as a balanced detector, where the currents 11 and 12 which flow through L260 cancel out, so that interference does not occur in it circuit.

Note: The I3 in the diagram is a part of the i-f signal when an SSB wave is being received, with coeffuctuous modulation by a signal frequency at the same level. In other words, this signal may be thought of as the same as the i-f signal when a CW signal is being received.

3) AF Amplifier Q401

Generally, the audio frequency range of a SSB transmission is not as wide as that of a DSB. After demodulation, the intelligibility of the sound is more important than its HiF1 features. So during SSB reception, the detected output is amplified by the AF amplifier, and then cut on the low and high sides by a filter. Even in the NARROW position there are no real problems with the tonal quality. The demodulated frequency in the CW is normally constant. The width of the band produced is very narrow, a sharp filter with a peak around 800 kHz being used.

 signal at CW
 signal at SSB
 signal at NARROW
 signal at NORMAL

8. AGC CIRCUIT

In this set, the AGC time constant increases in the CW. LSB. USB and NARROW positions, but decreases in the NORMAL position. During reception of A3 with relatively high input levels in the NORMAL position, the faster AGC response time produces more stable and better sound output. In the SSB and CW modes, if the AGC time constant is low in the no-carrier portions the gain increases and a considerable amount of noise is heard from the speaker. Even during A3 reception, if the signal is weak, fading etc. produce sudden drops in level accompanied by considerable noise. And since the noise in weak signals is also a function of bandwidth, the NARROW position is most commonly used. Because of the reasons described above, the AGC time constant increases in the CW, LSB, USB and NARROW positions.

When the S8-1 (NORMAL) is switched off, Q221 is switched on as result of the bias signal sent to it from the 5 V power supply. Consequently, R346 and C367 inserted between the cathode of D218 and ground will increase the time constant.

The RF GAIN control differs from the conventional manual gain control. The AGC circuit in the I-f stage is alone responsible for changing the gain in the RF amplifier. The reason for this is that if the gain is decreased in the first input circuit, the latter stages will operate in the same way as during normal reception. So even if the gain is lowered during reception of strong signals, the output level of the speaker will remain fairly constant, and intermodulation can be minimized. The AGC circuit is also effective in reducing fading, which the conventional manual gain control is not able to do. The adjustable range of the RF GAIN is 40 dB.

9. MECHANICAL FILTERS FL202 AND FL203

Mechanical filters have performance characteristics that make them useful as i-f filters, and for this reason they are widely used in communication equipment. In this set, mechanical filters of the type shown in the diagram (a) are used, with ceramic used to drive the resonant material. One of the mechanical filters consists of one element built into a drive-type IFT and the other consists of one element built

into an output-type IFT. Asshown in the diagram (h), two IFTs have been provided to enable switching between NARROW and NORMAL operation. This gives the receiver different bandwidths by switching the two mechanical filters. The bandwidths for 6 dB are 7 kHz for FL202 and 4 kHz for FL203 as shown in the diagram (c).

(a) Mechanical filter structure

(b)

(c) Typical characteristic curve

10. Q211 IN MW AND LW RF AMPLIFIER

When an external antenna is connected, very strong signals are often passed into the RF amplifier stage. As a result, reverse currents may flow back from the base to the emitter in Q211, and break down the transistor. This is avoided by inserting diodes D240 and D241 between the base and emitter. Any reverse currents will then be by-passed by the diodes. These diodes also serve to prevent distortion due to amplitude limiting during the reception of strong signals.

11. POWER SUPPLY CIRCUIT

The regulator circuit in this set controls the output side voltage by changing the switching time of Q701. This is to reduce the power loss due to Q702.

Impedance control is used for the voltage regulation, and a 100 mA current is delivered. The primary voltage for this circuit is 12 V, and the secondary voltage is 5 V, so that the power consumed is (12-5) (V) x 100 (mA)=700 (mW), which is far from negligible.

Therefore, a switching control is provided for the regulator of this set. No current flows when Q702 is off, and when it is on, the impedance is extremely low, so that losses can be very significantly reduced. The conversion efficiency is 80%.

When the voltage at point \bigotimes slightly increases under the influence of load changes, the potential between the base and emitter of Q701 becomes large. This causes the collector current of Q701 to increase, with a corresponding increase in the emitter potential of Q706. Q705 and Q706 form a flip-flog, and generate squares waves (approx. 2 M42). Here, if the emitter potential of Q706 ancrease, the base potential shot increases, decreasing the mission of which Q706 in its inbortence. Mere Q706 is no which Q706 in its inbortence. Mere Q706 is no Q709 is off, causing Q703 and Q702 to be on. It follows that if the time that Q706 is no its noiser. the time that Q702 is on it also reduced, maintaining the scendary voltage at a constant level. On the other hand, when the secondary voltage drops, the emitter current of Q706 slat ordpra, and the time for which Q706 is on becomer longer, so that Q702 is also on for a longer, time and the secondary voltage is maintised at the specified level. L702 is a smoothing cbake coil. D701 is insome as a catching dioc, and it uses the starting current of L702 so that when Q702 is off, this dioce passes a current through L702 which increases the efficiency of electrical supply utilization. The switching of Q702 cats with L701 and L705 to ensure that leakage of harmonies is prevented.

The waveform generated by the flip flop oscillator is a high quity square wave. Sec lator is a high quity square wave. Sec q0702 is driven in exactly the same way for LW and WW reception, the rod antenna will pick up the harmonic waves, resulting in interference. In order to prevent this, Q704 is part on during AM reception, a cognitor is inserted between the base of Q703 and ground, and the square waves are smoothed to prevent the greneration of harmonics. However, for FM reception, the frequencies of reception are high, and the presention of harmonics. However, for increase the efficiency of the regulator.

12. DIGITAL IC SYMBOLS AND OPERATIONS

1) Flip-Flop

The flip-flop circuits in this set have two logical conditions which are determined according to external instruction signals. They form a kind of memory circuit.

a) JK Flip-Flop

When the J input of the JK flip-flop is 1, the Q output is also 1, but when the K inputs is 1, Q becomes 0. And when the J and K inputs are of different polarities, the original status is reversed. The JK flip-flop shown below are called clocked JK flip-flop status does not change, but when clock flip-flop status does not change, but when clock inputs remnias does not change, but when clock the IC1002 where the C 9 signal solvided to J 2 when the J and K inputs 0. This principle is adopted in the flop-flop when the J and K inputs of the clocked JK (master-slave) flip-flop are both 1.

b) D Flip-Flop

In this kind of flip-flop, the J and K inputs are connected to each other via an inverter. The combined input terminal for J and K inputs is called the D input, and is capable of determining the status of outputs Q and \vec{Q} during the input of CP signals.

This principle is employed when using CP inputs as strobes. When the CP input is 1, the D input appears at the output unchanged until the next CP (strobe) signal arrives. This kind of action is called "latch", and is used in IC1201 to IC1208. IC1201 and IC1204, use two D flip-flop circuits, and have SR terminals. The SR terminal becomes 0 level for operating as a D flip-flop.

D	CP	tn-1 0	tn Q
1	~	0	1
1	-	1	1
0	-	0	0
0	-	1	0

The Q of the flip-flop output can be reversed every rise time of CP when grounding the \tilde{Q} and D terminals. This kind of flip-flop is called a T flip-flop.

c) RS Flip-Flop

The RS flip-flop status is determined by the S (set) and R (reset) input signals. If either S or R input signals is 1, the status is maintained. But when the S input is 0, \bar{Q} becomes 0, and Q becomes 1. The S input then reversits 0.1, but the Q and \bar{Q} states remain unchanged. On the other hand, when R input is 0, Q becomes 0, and \bar{Q} becomes 1. When the R and S inputs are both 0 or 1, the output is not designated.

s	R	٥
1	0	1
0	1	0
0	0	NO CHANGE
1	1	NOT PERMISSIBLE

2) Decoder

The decoder converts the BCD code of the counter output into decimal notation for the LEDs. The terminals A to D shown below are for counter inputs, while a to g are the outputs for LED signals. B is the blanking input for extinguishing the LEDs, while RB is the ground connection for blanking when the counter is 0.

3) Programmable Counter

This counter can be preset via the inputs at the DATA A to DATA D. The counter is reset by inputting a pulse signal at the LOAD, but will not operate if there is no input at the ENABLE. The counter outputs appear at the QA to QD, with the output for digit increase at the RIPPLE CARRY.

4) AND Gate

Note: 0 for L level and 1 for H level is referred to as positive logic, while 1 for L level and 0 for H level is called negative logic.

5) OR Gate

An output of l appears if either input is l.

6) Buffer

Symbol for buffer amplifier.

$$\rightarrow$$

7) Inverter

Symbol for phase inverter.

indicates phase inverting.

TAPE RECORDER SECTION

1. TIMER STAND-BY MECHANISM

In this set, a TIMER STAND-BY mechanism is provided to operate the tape recorder automatically at the desired time. The mechanism also prevents the pinch roller and capstan from deforming from prolonged contact.

The diagram (a) shows the TIMER STAND-BY setting. At the desired time, the power supply works to rotate the motor, and then the shut-off lever moves to release the lock plate by the projection of the actuator assembly (Operation: $(\widehat{\mathbb{A}})$ to $(\widehat{\mathbb{D}})$). At this time, the actuator assembly moves toward $(\widehat{\mathbb{E}})$ and sets the reset arm as shown in the diagram (e). After this, the lever continues to move as shown by $(\widehat{\mathbb{G}})$, but has no influence on the actuator assembly.

If the TIMER STAND-BY mechanism is set when the lever is as shown in the diagram (b), the lever moves toward F at the desired time. But after this, the mechanism operates as described above.

2. CONNECTION OF THE TAPE RECORDER AND RADIO

The block diagram is shown below. A signal from the microphone can be recorded only when \$2002 is pressed. A signal from J502 can not be recorded.

3. RECORD MUTING

If a signal should appear at the speaker when recording through the microphone, howling would occur. To prevent this, the RECORD MUTING circuit is inserted in the output circuit.

The diagram below shows the RECORD MUTING circuit. Except in playback mode, when \$2103 becomes on, the output of IC2101 flows to the power amplifier through T2020. To complete the muting, the signal circuit is grounded via C2022, D2004 and \$2101-4 in record mode.

4. LED AMPLIFIER

In record mode, a part of the IC2101 output goes to Q2004 via C2125 and R2011, and makes D2003 flicker to indicate recording. This is not necessary in playback mode, so the signal is muted as follows.

In playback mode, since the bias voltage is applied to Q2003 via R2103 and D2002, Q2003 is on. The base of Q2004 is grounded, so D2003 does not flicker. In record mode, since the bias circuit of Q2003 is grounded via D2001 and S2101-4, Q2003 is off. Therefore, Q2004 is biased for class B operation and flickers with the variations of the audio input signal.

CRF-330K

K4XL's 🌮 BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu

FM/SW/MW/LW 33-band Radio Receiver

US Model Serial No. 10201 and later

Canadian Model E Model AEP Model

SUPPLEMENT

This supplement updates the service manual to include the production changes in US model and to cover information for Canadian, E and AEP models, File this supplement with the service manual. No. 1 October, 1977

1. MODEL IDENTIFICATION

- Specification Label -

USA, Canadian model

SONY: WORLD ZONE MODEL NO. CRF-330K EM/SW/MW/LW 33 BAND RADIO RECEIVER FREQ RANGE FM1 76-90 MHz FM2 87.5-108 MHz LW 150-400 kHz MW 530-1605 kHz SW 1.6-30.0 MHz (29 BANDS) IF: FM 10.7 MHz SW 1st 45.145 MHz 2nd 455 kHz MW, LW 455 kHz RATTERY SUPPLY 1.5 V x 8 USE SIZE "D" STANDARD FLASHLIGHT BATT OR EQUIVALENT EXT DC POWER SUPPLY: 12 V 900 - 4 AC POWER SUPPLY: 120 V 12.5W 60 Hz QUARTZ CLOCK CRYSTAL FREQ 32.768 kHz BATT SUPPLY 1.5 V x 1 USE SIZE "D" STANDARD FLASH LIGHT BATT OR EQUIVALENT SERIAL NO. CERTIFICATION: DESIGN CERTIFIED AS COMPLYING WITH F.C.C. RULES PART 15, IN EFFECT AS OF DATE OF MANUFACTURE. ATTENTION CAUTION TO PREVENT ELECTRIC AFIN DE PREVENIR UN SHOCK, DO NOT REMOVE CHOC ELECTRIQUE NE PAS COVER. NO USER-SERV-ICEABLE PARTS INSIDE. ENLEVER LE COUVERCLE. NE SE L'INTERIEOR AUDUNE PIECE REFER SERVICING TO QUALIFIED SERVICE PER POUVANT ETRE REPAREE PAR L'USAGER S'ADRESSER SONEL A UN REPARATEUR COM-MADE IN JAPAN PETENT

E model

SONY, WORLD ZONE MODEL NO. CRF-330K
FM/SW/MW/LW 33 BAND RADIO RECEIVER
FREQ RANGE: FM1 76-90 MHz FM2 87.5-108 MHz LW 150-400 kHz MW 530-1605 kHz SW 150-30.0 MHz (29 8ANDS)
1F: FM 10.7 MHz SW 1st 45.145 MHz 2nd 455 kHz MW, LW 455 kHz
BATT SUPPLY: 1.5 V x 8 USE SIZE "D" STANDARD FLASH
EXT DC POWER SUPPLY: 12 V 900mA
AC POWER SUPPLY: 110, 120, 220, 240 V
12.5 W 50/60 Hz
CLOCK: QUARTZ CLOCK CRYSTAL FREQ:
32.268 kHz
BATT SUPPLY: 1.5 V x 1 USE SIZE "D" STANDARD FLASH
LIGHT BATT OR EQUIV
SERIAL NO. MADE IN JAPAN

AEP model

MADE IN JAPAN

2. DISASSEMBLY Page 18: Changed portions

Page 28:

Note: Unter replacing QOS4 25X23A with 25X19, short-crout R092 2413. FM_SMTCH) FM_SMTCH Comparison Compariso

- : B+ pattern

5. EXPLODED VIEWS

- 10 -

- (-) slotted head
- (DEIT) shows the number of coils in spring.
- Circled letters (A to Z) are applicable to European models only.

5

CRF-33OK

 All screws are Phillips (cross recess) type unless otherwise noted.
 (-) = slotted head

5

- (DDT) shows the number of coils in spring.
- Circled letters (A to Z) are applicable to European models only.

Note:

5

- Items with no part number and/or no description are not stocked because they are seldom required for routine service.
- All screws are Phillips (cross recess) type umless otherwise noted.
 (-) = slotted head
- · (COT) shows the number of coils in spring.
- Circled letters (A to 2) are applicable to European models only.

6. ELECTRICAL PARTS LIST

Note: Circled letters ((A) to (Z)) are applicable to European models only.

Ref. No.	Part No. Description	Ref. No. Part No.	Description
	SEMICONDUCTORS	⇒ Q805, 806	(B) 2SC1364
	Transistors		0
		⇒ Q901,	C 25K42-1
$\Rightarrow Q001$	C 25K42-1	⇒ Q902, 903	E) 25K 23A-824
⇒ Q002	C 25K 23 A-840	Q1001, 1002	(E) 35K37
Q003	B 2SC710	Q1003, 1004	B 2SC710
$\Rightarrow Q051$	© 25K42-1	⇒ Q1006	© 25K 23A-825
$\Rightarrow Q052$	© 25K23A-840		-
Q053	B 2SC710	⇒Q1007-1012	B 2SC634A
⇒ Q054	B 2SK23A-860 (US model:	Q1013 - 1018	B 2SC710
	Serial No. up to 10200)	Q1019, 1020	Q 2SC641K
	B 25K19-BL	Q1021, 1022	B 2SC710
	(US model serial No. 10201	⇒Q1023, 1024	B 2SC6 34A
	and later, AEP, E model)		0
0201	(E) 35K37	Q1025, 1201	E 25K 23A-824
⇒ Q202, 203	(B) 25K23A-840	Q1202, 1203	B 2SC710
Q204	(E) 35K37	⇒ Q1204 - 1212	B 2SC1364
⇒ Q205, 206	C 25K23A-840	⇒ Q1213 - 1216 ⇒ Q2001	©25A678
0207-209	B 25C710	⇒Q2001	(D) 2SC1016
	C Licerto	⇒Q2002 - 2005	(B) 2SC6 34A
⇒ Q210, 211	B 2SC710-14	⇒ Q2101, 2102	B 25C632A
⇒Q212	B 25C710-15	⇒ Q2103, 2104	(B) 25C634A
Q213 - 215	B 25C710	⇒ O2105	©25A678
⇒ Q216	B 2SC634A	⇒ Q2106, 2107	(B) 2SC634A
⇒ Q217	© 25A678	Q2108	B 25C 14 74
⇒Q218-221	B 2SC634A		ICs
-> Q222	B 2SC710-14		
Q223	B 2SC710	⇒ IC801, 802	(D) CX075B
⇒ Q224	© 25K42-1	IC1001	D TA 7060P
⇒ Q225, 226	C 2SC1129	⇒ IC1002	(H) SN 74S 113DC
	â	IC1003, 1004	① SN74162N
Q227	(E) 35K37	⇒ IC1005	K µPC1008C
⇒ Q228	(B) 2SA634A		
⇒ Q229	© 2SA684	IC1006	(E) HD74LS00P
⇒ Q230. ⇒ Q231	B 25C634A C 25A678	IC1007	D TA 7060P
→ Q231	C 25A678	IC1201	(K) 34013PC
Q401	(B) 2SC632A	IC1202	D MSM505
⇒ Q501	B 25C632A	IC1203	(K) MSM55111
⇒ Q601	(B) 25C634A	101204	0
⇒ Q602, 603	© 25C1429-□5	IC1204 IC1205 - 1207	(F) MSM530 (K) MSM5503
⇒ Q604	(B) 25C634A	IC1208 - 1207 IC1208 - 1210	(H) MSM5503
	0	IC1208-1210 IC2101	(F) CX170
Q701	C) 25A678	⇒ IC2102	(H) BX 295A
⇒ Q702	© 25A684		Contrast.
⇒ Q703 – 706	B 2SC634A		
Q801 - 803	B 25C710-14		
$\Rightarrow Q804$	B 2SC634A		

⇒: Due to standardization, interchangeable replacements may be substituted for parts specified in the diagrams.

Note: Circled letters ((A) to (Z)) are applicable to European models only.

Ref. No. P	Part No.	Description	Ref. No.	Part No.	Description
		Diodes	1.051	1-425-929-00 (B	Coil
	-		1.052	1-425-930-00	
D001, 051		(B) 15 26875-2	1.053	1-425-929-00	
0001,001			1.054	1-405-527-21	
D201-209		-	2004		
D211-215		(B)151555	L201	1-407-178-XX(Microinductor, 1 µH
D216		(B)1T23S	L210, 215		Microinductor, 18µH
D217-219		(B)151555	1.224	1-407-864-00	
D220, 221		B1T23S	1.225	1-407-865-00	DRF BPI
D223, 225		(B)151555	L228	1-407-864-00	DRF BPI
		0			-
D226, 227		©1T18-0	L231	1-407-862-00	RF BPF
D228-234		B 152222	L 23 2	1-407-863-00 (1	RF BPF
D235		B 1T 261	L235	1-407-862-00	RF BPF
D236		BRD6A	1.261	1-401-665-00 (1	MW/LW Ferrite-rod Antenna
D237-241		® 151555	1.26.2	1-425-911-00 (MW RF
D401		(J) 151555			
		-	L263	1-425-444-00	
D601, 602		B VD1120	L264	1-405-717-00	
D701		B 2SB324	1.265	1-405-716-00	
D702		B RD5A	L266		VCO Matching Transformer
D703, 704	· WERE	B 10E2	1.267	1-407-178-XX	Microinductor, 1 µH
D801, 802		B 1T261			
D803-807		B 151555	1.268	1-433-184-00	
		~	1.269	1-433-185-00 (
D1001, 1002		(B) 11261	L270	1-433-188-00	
D1003, 1004	<u>, </u>	B 151555	L 271	1-433-189-00	
D1201-1204			1.272	1-433-190-00 (9 4 60 (7)
D2001, 2002		B151555			Duco iti
D 2003		(CTLR109 (LED)	L 273	1-433-186-00	
D2004	3	(B)151555		1-433-187-00 (
D2101 - 2105		0	L.275		
			L282, 283 L287, 288		Microinductor, 470 µH Microinductor, 10 µH
	16	hermistors	L207, 200	1407-157-XXQ	Smicromateror, roun
Th701 1	1-800-071-XX	(As 10)	1.289	1.407.661.880	Microinductor, 470 µH
	1-800-198-XX		L290		Microinductor, 1 #H
	1-800-194-00		6170		
	1-800-194-00		L401 - 403	1-407-883-00	Microinductor, 100 mH
	1-000-190-00	Co-In	1.701	1-407-857-00 (
		COILS	L702	1-407-884-00	
			L703	1-407-857-00	
L001	1-425-909-00	B FM Antenna	L804		A Microinductor, 100 µH
	1-425-910-00				
		B FM Antenna	L1010	1-407-178-XX	A Microinductor, 1 µH
	1-405-750-00		L1016		Microinductor, 100 H
		-			-

Note: The components identified by shading are critical for safety. Replace only with part number specified.

(boundary layer)

solid aluminum

Note: Circled letters ((A) to (Z)) are applicable to Furopean models only. Description

16 V

16 V elect

Ref. No.

C013

C014

C015

C016

Part No.

1-102-870-11 (A) 8 p

1-161-013-11 (A) 0.01

1-127-019-11 (B) 0.1

1-121-651-11 (0)10

Ref. No.	Part No.	Description	1
L1021- 1023)	1-407-856-00 (C	Choke, 1 mH	
L1025, 1026	1-407-169-XX	Microinductor	: 100 µH
L1201, 1202	2 1-407-856-00 🖸	Choke, 1 mH	
L1203	1-407-175-XX (A	Microinductor	330
L2011	1-407-175-XX (A		
L 2031	1-407-206-XX (B		
	TRANSF	ORMERS	
TI	1-433-105-00	Osc	
T601	1423-140-11 🤇	Input	
FL201	1403-165-00 (C	Ceramic Filter	
FL202A	1-403-888-11 1-403-888-21)	Machanical Ei	
FL202B			
FL203A	1-404-024-11	Manhanian Fi	
FL203B	1-404-024-21'(H) Meenamean Pi	liter
IFT001, 051	1-404-031-00 (B)EM IFT	
IFT202	1-404-023-00 B	AM IFT	
IFT 203	1-403-152-00 B	AM IFT	
IFT 204 - 206	1-404-023-00 (B	AM IFT	
1FT 207	1-459-153-00 (B	BFO	
IFT801	1-403-959-00 B	FM Discrimin:	itor
IFT802	1-403-953-00 B	FM Discrimina	ator
IFT803	1-403-243-00 (B	FM IFT	
	CAPAC	ITORS	
All capacitor	s are in µF and cer	ramic unless oth	erwise noted.
	s are not indicated	except for elec	troly tics.
$pF = \mu\mu F_s ele$	ect = electrolytic		
C001	1-102-956-11 (A) 15 p	
C002	1-161-013-11	0.01	(boundary layer)
C003, 004	1-161-013-11 (A	24 p	
	1.161.013.11 6		(houndary layer)

C005

C006

C009

C011 C012 1-161-013-11 (A) 0.01 1-102-972-11 (A) 91 p

1-161-013-11 (A) 0.01 1-102-870-11 (A) 8 p 1-102-947-11 (A) 10 p

016	1-121-651-11	Q 10	16 V	elect
C051	1-102-949-11	@		
C051	1-102-949-11			d
C052 C053, 054	1-102-953-11	80.01		(boundary layer)
C055	1-161-013-11			(boundary layer)
C056	1-102-972-11			(boundary layer)
0000	1-102-972-11	(U) / P		
C059	1-161-013-11	(A) 0.01		(boundary layer)
C061	1-102-858-11			
C062	1-102-944-11			
C063	1-102-663-11	A 8p		
C065	1-127-019-11	B 0.1	16 V	solid aluminum
		0		
C066	1-121-651-11	(A) 10	16 V	elect
C067	1-101-978-11	A 10 p		
		-		
C100	1-103-733-11			polystyrol
C101	1-103-729-11		50 V	polystyrol
C102	1-103-728-11		50 V	polystyrol
C103	1-107-082-11			silvered mica
C105	1-101-882-11	(∕) SI p		
C106	1-102-946-11			
C107	1-102-975-11			
C201-203	1-101-118-11			
C204	1-101-361-11			
C205	1-107-082-11	(A) 75 p		silvered mica
		~		
C206	1-107-068-11			silvered mica
C207-209	1-161-013-11			(boundary layer)
C210	1-102-979-11			
C211	1-107-081-11			silvered mica
C212	1-107-102-11	(A) 5 p		silvered mica
C212		@		
C213 C214	1-101-367-11 1-121-651-11		1.1	silvered mica
C214 C215	1-121-651-11		16 V	elect
C215 C216	1-107-079-11			(boundary layer)
C216 C217	1-107-079-11			silvered mica (boundary layer)
0.417	1-101-013-11	00.01		(boundary layer)
C218	1-107-075-11	(A) 39 p		silvered mica
2000	1-107-075-11	0.00		savered mica

(boundary layer)

(boundary layer)

Note: Circled letters ((A) to (Z)) are applicable to European models only.

Ref. No.	Part No.	Descript	ion		Ref. No.	Part No.	Descrip	tion	
C219	1-107-086-11 (A	110.		silvered mica	C267	1-107-078-11	(A) 51 p		silvered mica
C219	1-107-072-11 (A			silvered mica	C268	1-102-074-11			
C221	1-107-086-11 (A			silvered mica	C272	1-107-078-11			silvered mica
C222	1-107-075-11			silvered mica	C273, 274	1-107-079-11			silvered mica
	110101011				C276	1-107-233-11			silvered mica
C223	1-121-651-11 (0.10	16 V	elect			0		
C224	1-107-078-11			silvered mica	C277	1-102-125-11	(A) 0.0047		
C225	1-161-013-11 ((boundary layer)	C278	1-107-078-11			silvered mica
C226	1-107-074-11			silvered mica	C280	1-102-944-11	A 7p		
C227	1-161-013-11			(boundary layer)	C281-290	1-101-924-11	A 0.022		
					C284	1-108-239-12	0.01		mylar
C228	1-107-067-11	0 18 p		silvered mica			-		
C229	1-107-081-11	068p		silvered mica	C294	1-108-242-12	(1) 0.022		mylar
C230	1-107-066-11	16 p		silvered mica	C295	1-101-924-11	① 0.022		
C231	1-107-081-11	68 p		silvered mica	C296	1-107-079-11			silvered mica
C232	1-107-067-11	A) 18 p		silvered mica	C297, 298	1-108-239-12			mylar
		-			C299	1-107-235-11	(A) 510 p		silvered mica
C233	1-107-071-11	27 p		silvered mica			-		
C234	1-121-651-11		16 V	elect	C302	1-108-563-12			mylar
C235	1-161-013-11			(boundary layer)	C303	1-101-924-11			
C236	4-102-507-11				C304	1-121-391-11		50 V	elect
C237	1-161-013-11	0.01		(boundary layer)	C305, 306	1-108-244-12			mylar
	-				C307	1-102-942-11	(A) 5 p		
C238	1-102-511-11						0		
C239	1-102-516-11				C308	1-102-949-11			
C240	1-102-510-11				C309	1-102-679-11			
C241	1:102-516-11				C310	1-103-714-11		50 V	polystyrol
C242	1-102-511-11 (A) 13 p			C312	1-102-964-11 1-102-947-11			
					C313, 314	1-102-947-11	(10p		
C243	1-102-501-11		16 V		C315	1-108-242-12	00000		mylar
C244	1-121-651-11		16 V	elect		1-108-242-12		6.3 V	elect
C245 .	1-161-013-11			(boundary layer)	C318 C319	1-102-125-11		0.5 4	elect
C246	1-102-505-11 ((house here have a	C321	1-102-504-11			
C247	1-161-013-11 (0.01		(boundary layer)	C321	1-102-751-11			
C248	1-102-864-11 (Der.			0.322	1-102-751-11	(J 11)		
C248	1-102-514-11 (C323	1-102-526-11	A 75 m		
C250	1-102-504-11 (C324	1-101-999-11			
C250	1-102-514-11 (C325	1-102-755-11			
C251	1-102-864-11 (C326	1-102-743-11			
0.252	1102-004-11	9.0			C328	1-102-112-11			
C254	1-121-651-11 (A 10	16 V	elect			9		
C255	1-161-013-11 ((boundary layer)	C329-335	1-102-125-11	(1) 0.0047		
C264	1-107-077-11			silvered mica	C337	1-102-505-11			
C265	1-102-125-11				C338	1-102-074-11			
C266	1-107-079-11			silvered mica	C340	1-102-074-1			
		U					-		

Note: Circled letters ((A) to (Z)) are applicable to European models only.

Ref. No.	Part No. De	scription		Ref. No.	Part No.	Descrip	ntion	
C341	1-121-413-11 (A) 100	6.3 V	elect	C411	1-161-021-11 (A) 0.47		(boundary layer)
C345	1-101-924-11 (A) 0.0	22		C412	1-127-019-11 (10 V	solid aluminum
C346	-1-107-235-11 🔕 510) p	silvered mica					
	-			C501	1-127-377-11 (B) 0.22	16 V	solid aluminum
C350	1-107-071-11 (A) 27	р	silvered mica	C502	1-101-918-11 (A 0.001		
C351	1-101-924-11 🔕 0.0	22		C504	1-121-415-11 (16 V	elect
C353	1-108-242-12 🛞 0.0		mylar	C505	1-127-377-11 (B 0.22	16 V	solid aluminum
C356, 357	1-108-242-12 (\$0.0	22	mylar	C506	1-127-018-11 (B 0.0047	10 V	solid aluminum
C358	1-101-924-11 🔿 0.0	22						
	-			C507	1-127-378-11 (10 V	solid aluminum
(359	1-121-651-11 🚯 10	16 V	elect	C509	1-127-378-11 (10 V	solid aluminum
C360, 361	1-101-924-11 🔕 0.0			C601	1-121-415-11 (16 V	elect
C362	1-102-832-11 (A) 330			C602	1-127-377-11 (16 V	solid aluminum
C363	1-121-651-11 () 10	16 V	elect	C603	1-102-975-11 (A) 100 p		
C364	1-102-114-11 🔿 47() p				~		
6194 F				C604	1-102-074-11 (
C365	1-127-022-11 (A) 0.4		solid aluminum	C605	1-121-479-11 (16 V	elect
C367 C368	1-127-023-11 (B) 1 1-107-102-11 (B) 5 p	10 V	solid aluminum silvered mica	C606 C607	1-161-015-11 ((boundary layer)
C 36 8	1-108-239-12 (A) 0.0		silvered mica mylar	C607 C608, 609	1-161-019-11 (16 V	(boundary layer)
C372	1-108-239-12 (A) 0.0		mylar	C608, 609	1-121-521-11	B) 330	16 V	elect
CH2 ·	1108-242-12 (4) 0.0	22	mytar	C610	1-127-203-11 (2011	16 V	solid aluminum
C373	1-101-924-11 (A) 0.0	22		C611, 612	1-121-939-11 (16 V	elect
C374	1-107-085-11 (A) 100		silvered mica	C613	1-102-123-11 (10.4	elect
C377	1-123-070-11 0 220		elect	C614	1-102-119-11 (
C378	1-121-943-11 B 100		elect		1-102-113-114	9		
C380	1-108-234-12 (A) 0.0		mylar	C701	1-123-078-11 (B 2200	6.3 V	elect
				C702	1-121-944-11 (16 V	elect
C383, 384	1-101-924-11 (A) 0.0	22		C704	1-108-232-12 (10.	mylar
C385	1-102-934-11 (A) 1 p			C705	1-101-923-11 (
C386	1-102-935-11 A 2p			C706	1-108-234-12 (mylar
C387	1-161-013-11 (10.0		(boundary layer)			0		
C390	1-127-023-11 🕲 1	10 V	solid aluminum	C707	1-107-093-11 (A) 220 p		silvered mica
	-			C708	1-121-944-11 (D 1000	16 V	elect
C401	1-127-018-11 B 0.0	47 10 V	solid aluminum	C709, 710	1-121-660-11 (B 2200	16 V.	elect
C402	1-108-244-12 (A) 0.0	33	mylar	C711, 712	1-108-381-12 (A 0.022	100 V	mylar
C403	1-121-951-11 🔿 0.4	7 50 V	elect			-		
C404	1-127-019-11 B 0.1	10 V	solid aluminum	C805	1-121-413-11 (A) 100	6.3 V	elect
C405	1-127-022-11 B 0.4	7 10 V	solid aluminum	C810	1-101-924-11 (
	0			C812	1-102-964-11 (
C406	1-127-020-11 B 0.2		solid aluminum	C813	1-101-924-11 (
C407	1-121-415-11 B 100		elect	C814	1-108-234-12 (A) 0.0047		mylar
C408	1-102-099-11 (0.0					0		
C409	1-108-244-12 (0.0)		mylar	C 815	1-121-651-11		16 V	elect
C410	1-161-015-11 🔿 0.0	15	(boundary layer)	C816	1-108-228-12 (A) 0.0015		

Note: The components identified by shading are critical for safety. Replace only with part number specified,

Note: Circled letters ((A) to (2)) are applicable to European models only.

Ref. No.	Part No.	Description		Ref. No.	Part No.	Descript	ion	
C817	1-127-022-11 (1	B) 0.47 16 V	solid aluminum	C1033	1-102-503-11	(A) 3 p		
C819	1-102-962-11			C1034	1-102-505-11	(A 6 p		
C823	1-102-940-11			C1035-		() a a a		
C824	1-131-196-11		tantalum	1037	1-101-923-11	(A) 0.01		
				C1038, 1039	9 1-101-924-11	(A) 0.022		
C825	1-102-940-11 (A) 3 p		C1040	1-102-864-11	(A) 5 p		
C829	1-127-019-11 (A) 0.1 16 V	solid aluminum			_		
C832	1-101-924-11 (A 0.022		C1041	1-102-951-11			
C835	1-121-982-11 (A) 470 6.3 V	elect	C1042	1-102-504-11			
C836	1-121-426-11 (B 470 16 V	elect	C1043	1-102-948-11			
		-		C1044	1-102-943-11			
C901	1-102-648-11 (C1045	1-102-949-11	(A) 12 p		
C902	1-102-672-11 (0.		
C904	1-107-068-11 (silvered mica	C1046	1-102-503-11			(boundary layer)
C905	1-107-089-11 (silvered mica	C1047	1-161-013-11 1-101-924-11		'	(boundary layer)
C906	1-107-092-11 (A) 200 p	silvered mica	C1049	1-101-924-11			
1		0.0.00		C1055 C1059	1-102-121-11			
C907	1-108-279-12 (mylar silvered mica	C1059	1-102-121-11	000000		
C908	1-107-099-11		silvered mica	C1060 -		-		
C909 C910	1-108-279-12 0		mylar	1065	1-101-923-11	(A) 0.01		
C911	1-107-071-11		silvered mica	C1066	1-102-977-11	A 200 p		
CHI		0		C1067	1-102-973-11			
C912	1-107-085-11	A 100 p	silvered mica	C1068	1-161-021-11	0.0047		(boundary layer)
C913, 914	1-108-279-12		mylar	C1069	1-107-070-1	(A) 24 p		silvered mica
		0				0		
C1002	1-102-953-11	A 18 p		C1070	1-102-409-11			
C1004, 10	05 1-107-087-11	A 120 p	silvered mica	C1071, 107	2 1-102-121-11			
C1007-	1-107-097-11	Q110.0	silvered mica	C1073	1-121-413-11		6.3 V	elect
1009 '	1-107-037-11	0.000	MITCICA INICA	C1074	1-121-352-1		10V	elect
C1010-	1-107-087-11	A 120 p	silvered mica	C1075, 107	6 1-131-236-1	(B) I	25 V	tantalum
1012 '		<u> </u>				0		
C1013	1-102-949-11	(A) 12 p		C1077	1-102-121-1			
		0		C1078	1-101-880-1 i0 1-107-093-1			silvered mica
	17 1-107-087-11		silvered mica	C1079, 108	1-102-963-1			suvereu mica
C1018	1-102-949-11		silvered mica		3 1-103-714-1			polystyrol
	22 1-107-087-11 1-161-013-XX		(boundary layer)	C 1082, 108	01100-114-1	O soop		penyinyiter
C1024	26 1-101-923-11		(boundary layer)	C1084	1-102-963-1	(Alla		
C1025, 10	201-101-923-11	0.01			6 1-108-555-1			mylar
C1028	1-101-923-11	(A) 0.01		C1090 -		0		
C1028	1-101-924-11			1092	1-102-043-1	0.001	500 V	feed-through
C1027	1-102-506-11			C1094	1-121-391-1	I 🚯 I	50 V	elect
C1031	1-102-503-11			C1095	1-101-880-1			
C1032	1-102-512-11		1			-		

Note: Circled letters (A) to (2) are applicable to European models only.

Ref. No.	Part No.	Descrip	tion		Ref.
C1096, 1097	121-414-11	(A) 100	10 V	elect	C21
C1098	1-107-061-11	A 10p		silvered mica	C21
C1099	1-161-013-11	(A) 0.01		(boundary layer)	C21
C1100, 1101	1-102-961-11	\Lambda 27 p			C21
C1102	1-102-977-11	A 200 p			C21
		0			
	1-101-923-11				C21
	1-101-924-11		10 V		C21
	1-127-019-11		10 v	solid aluminum	C21
	1-101-919-11 1-102-043-11		500 N	Constant and the second	C21
	1-102-043-11		500 V	feed-through	C21
CIIOS	1-102-934-11	(A) I P			C21
C1201	1-121-424-11	@ 170	6.3 V	elect	C21
	1-131-193-11		10 V	tantalum	C21
	1-131-392-11			tantalum	C21
	1-101-890-11		5.153	Carriatorni	C21
C1210 C1211, 1212				mylar	021
	1-127-019-11		10 V		
(121)	112/019/11	Gui	10.4	manimula bilor	C 21 C 21
C1301	1-121-651-11	0.10	16 V	elect	021
01301	112103111	010	10.4	erect	
C2001	1-121-963-11	@11	25 V	elect	сті
	1-121-352-11		10 V	elect	
	1-121-726-11		50 V	elect	CT2
	1-108-575-12			mylar	CT2
	1-108-234-12			mylar	CT2
		0			CT2
C2052	1-108-227-12	(A) 0.001		mylar	
	1-131-387-11		6.3 V	tantalom	CT9
C2101	1-131-169-11	B 0.47	10 V	taestatures	
C2102	1-131-202-11		20 V	tantalum	CV0
C2103	1-131-380-11	(II) 33	10 V	tantalum	CV0
		-			CVI
C2104	1-105-669-12	(A) 0.0047		mylar	CV2
C2105	1-161-190-11	(A) 0.001		(boundary layer)	
C2106 .	1-105-669-12	(A) 0.0047		mylar	
C2108	1-107-123-11	(A) 47 p		silvered mica	
C2109	1-131-170-11	® 3.3	10 V	tantalum	All r
		_			omit
	1-131-173-11		10 V	tantalum	
C2112	1-131-202-11	B 1.5	20 V	tantalum	R21
C2113	1-161-190-11	(A) 0.001		(boundary layer)	R21
	1-131-380-11		10 V	tantalum	R22
C2115	1-131-387-11	B 47	6.3 V	tantalum	R23

Ref. No.	Part No.	Descrip	nion	
		0		
C2116	1-131-375-11		10 V	tantalum
C2117	1-121-419-11		6.3 V	elect
C2118	1-131-368-11		16 V	fantalum
C2119	1-131-177-11		3 V	tawtalum
C2120	1-131-244-11	(B) I	6.3 V	tantalum
C2121	1-105-673-12	Qual		mylar
C2122	1-105-719-12			mylar
C2123	1-105-669-12			mylar
C2124	1-131-375-11		10 V	tantaham
C2125	1-131-170-11		10 V	tantalum
0.000	enserven.	U.S.S	10.4	anaiom
C2126	1-121-420-11	B 220	10 V	elect
C2127	1-131-395-11	B 100	3 V	tantalum
C2128	1-131-377-11	(B) 33	10 V	tantalum
C2129	1-161-190-11	A 0.001		(boundary layer)
C2132	1-161-190-11	A0.001		(boundary layer)
		0		
C2133	1-131-368-11	(B)33	16 V	tantalam
C2134	1-108-249-12			mylar
	1-161-001-11			(boundary layer)
	1.101-001-11	Guin		(occurring rayer)
CT1001		0		
1003	1-141-171-11	~		
	1-141-171-XX			
CT207	1-141-138-XX			
CT208	1-141-174-00			
CT209-212	1-141-138-XX	(II) Trimme	t	
CT901	1-141-175-00	Ditimme		
		0		
CV001-004	1-151-223-XX	Tuning		
	1-151-223-11			
CV101	1-151-266-XX			
	1-151-201-00			
	RE	SISTORS		
	re in ohms. C			resistors are
omitted. Che	eck schematic (diagram for v	alues.	

R210, 214	Call States of Call States	A CONTRACTOR
R218, 222	1-212-879-11 (82	fusible
R226		
R235, 239		San Constant
R244 121	1-212-881-11 (100	fusible

Note: The components identified by shading are critical for safety. Replace only with part number specified.

Ref. No.	Part No.		Descrip	ntion	
R363	1-212-857-11	3	10		fusible
R.501	1-206-475-11	3	33	2.16	metal-oxide
R511	1-244-837-11	ð	33	½ W	carbon
		_			
R610	1-212-869-11			Hw.	fusible
R618, 619	1-207-459-11			½ ₩	wirewound
R620	1-212-857-11	0	10		fusible
-	10000	-	Nº A		1. S.
R836	1-212-869-11	0	33		fusible
R1267	1-212-941-11	6	2.000	12W	fusible
R 2005	1-212-857-11			14.14	fusible
	1-209-878-11			1/14 W	carbon
R2103	1-209-781-11			1/16 W	carbon
R2108	1-210-381-11			Vie W	carbon
		0			
R2112	1-209-768-11		2.2 k	1/10 W	carbon
R2113	1-210-113-11	ă	18 k	1/16 W	carbon
R2114	1-210-371-11	ð	1.6 k	1/16 W	carbon
R2115	1-210-363-11	0	270	$y_{16} w$	carbon
R2116	1-210-381-11			$\frac{1}{16}$ W	carbon
R2119	1-210-363-11	0	270	$\frac{1}{16}$ W	carbon
		_			
R2121	1-209-768-11			16 W	carbon
R2122	1-209-113-11			716 W	carbon
R2123	1-209-774-11			716 W	carbon
R 21 24	1-209-770-11		2.7 k	716 W	carbon
R2125	1-210-388-11	۷	68 k	⅓6 W	carbon
R2126	1-210-392-11		75	1/16 W	carbon
R2127	1-210-101-11	$\overline{\mathbb{Q}}$	51	1/16 W	carbon
R2128	1-210-846-11	0	33	1/16 W	carbon
R2129	1-209-770-11	\odot	2.7k	1∕16 W	carbon
R2130	1-209-774-11	۲	5.1 k	1∕16 W	carbon
		_			
R2131	1-210-111-11			1/16 W	carbon
R2132	1-209-781-11			1/16 W	carbon
	1-210-371-11			16 W	carbon
R2137	1-210-102-11	٧		5/16 W	carbon
R2142		~	1.2 k	516 W	carbon
R2144	1-210-105-11	0	300	⅓16 W	carbon
VR201	1.224.642.83	(The setimeter	and a label of a	first mixer balance
VR 201	1-224-644-X)				
VR501-		-			
503	1-224-207-00	₿			REBLE, BASS,
2003			VOLU	ME	

Note: Circled letters (A to ()) are applicable to Furopean models only. Part No. Description 1-224-649-XX B 200 k, adjustable; SW spurious beat 1-224-820-00 (1) 20 k, variable; RF GAIN SWITCHES

Ref. No.

VR1001

VR1401

\$1	1-514-304-00 (B) Slide, antenna selector
52	1-516-893-00 (E) Micro, SW antenna coil select
\$3 - 6	1-516-896-00 (F) Pushbutton, 4-key; BAND SELECTOR
58-12	
514 - 16	1-516-895-00 @Pushbutton, 5-key; MODE
514-16	1-516-898-00 (D Rotary, NOISE BLANKER, AFC, MUTING
\$17	
	1-516-624-00 BSlide, TIMER ON
S18-20	1-514-533-XX MMKTO, BATT CHECK,
	LIGHT, ZERO SECOND
\$21, 22	1-516-889-00 DMicro, POWER
\$23	1-552-026-00 E Voltage Selector
\$25	1-516-889-00 (E) Micro, POWER
\$26	1-516-965-00 Rotary, SW BAND SELECTOR
\$27-29	1-516-892-00 () Rotary, SW BAND SELECTOR
\$001	1-552-053-00 DPushbutton, 2-key, FM
\$2001	1-516-873-00 @Slide, ISS
52002	1-516-624-00 BSlide, MEMO REC
\$2003	1-516-898-XX DRotary, FUNCTION
	-
\$2101	1-513-323-00 © Slide; REC/PB
\$2102	1-514-346-00 @Leaf, POWER
\$2103	1-552-052-00 BLeaf, MUTING
	JACKS

J501 - 505	1-507-369-00	Jack, 5-unit; earphone, AUX IN
11401	1.507.440.00	CALLS HE ADDRUGNES

FUSES

FL	1-552-235-00 (E)315 mAT
F2	1-532-448-XX(B 400 mA
F3.4	1-532-284-00 (B630 mAT
FS	1-552-235-00 (315 mAT

MISCELLANEOUS

NT1	1-501-104-00	(H) SW	Telescopic	Antenna
NT2	1-501-103-00	M IM	Telescopic	Antenna

Note: The components identified by shading are critical for safety. Replace only with part number specified. The local division in which the local division in the

A A

Note: Circled letters ((A) to (Z)) are applicable to European models only.

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
CT 801 - 80 CNJ1 CNJ38 CNP5 CNP6 - 8 CNP9, 10 CNP16 CNP28	1-509-510-00 (1-507-302-00 (1-508-743-00 (1-508-795-00 (1-508-699-00 (1-508-699-00 (1-508-694-00 () Filter, ceramic (10, 7 MHz) Connector, 29; AC IN including 524 Connector, 10 p Connector Pin, 12 p Connector Pin, 8 p Connector Pin, 8 p Connector Pin, 8 p		1-423-230-0 1-526-522-0 1-533-037-0 1-533-102-0 1-533-131-0 1-536-174-0	00 Choke Coli, power 010 Transformer, output 00 D Jack, coasida connector 00 D Holder, fune 00 OHolder, fune 00 OHolder, fune 00 OHolder, fune 010 OHolder, fune 011 OHolder, fune 012 OHolder, fune 013 Strip, MW/LW/SW antenna 014 Terminal Strip, L M antenna
CR801		Encapsulated Component			XX A Terminal Strip, 2U1 00 WQUARTZ TIMER
EH M ME MIC PL1	8-834-221-00 (1 1-520-249-00 (1 8-814-191-10 (1	Head, crase: FBF 5-02B Motor, D-221F Motor, TUNING/BATT Microphone, C-1002J Lamp, pilot; 5 V 60 mA; meter, timer	1-50		ES & PACKING MATERIALS Description © Earphone, EM-2011 ©Cord, power; DK-38 (AEP model)
PL2, 3 PL4 - 5		 B.Lamp, pilot: 5 V 60 mA; meter, timer B.Lamp, pilot: 5 V 60 mA; meter, timer 	3-70	01-632-00 80-697-00 82-401-00	Cord, power; DK-51 (E model) A Bag, plastic Bag, plastic Cushion, protection
PT701	A CONTRACTOR OF THE OWNER	Transformer, power		82-410-00	(H)Carton
RPH SP	8-829-336-07 (Head, record/playback; PP134-36G Spcaker		93-063-14 95-763-11	Book, SHORT WAVE GUIDE Manual, instruction
X 201 X 202 X 1002	1-527-270-00 1-527-271-00 1-527-269-00	Crystal			

Note: The components identified by shading are critical for safety. Replace only with part number specified.

1/4 WATT CARBON RESISTORS

9	Part No.	- 97	Part No.	- 2	Part No.	2 Part No.	9 Part N	9. 같	Part No.	- 12	Part No.
1.0	1 244 601 11	10	1 244 625 11	100	1 244 649 11	1.03. 1 244 673 11	10 k 1 244 691	11 100 k	1 244 721 11	1.055	1 244 745 1
.1	1 244 602 11	11	1 244 626 11	110	1 244 650 11	1.1k 1 244 674 11	11 k 1 244 698	11 110k	1 244 722 11	1.IM	1 244 746 1
. 2	1 244 663 11	12	1 244 627 11	120	1 244 651 11	1.28 1 244 675 11	12 k 1 244 699	11 129k	1 244 723 11	1.2M	1 244 747 1
.3	1 244 604 11	13	1 244 628 11	130	1 244 652 11	1.33. 1.244 676-11	13 k 1 244 700	11 130k	1-244-724-11	1.3M	1 244 748 1
. 5	1-244-605-11	15	1 244 629 11	150	1 244 653 11	1.5% 1 244 677 11	15k 1-244-70	-11 150k	1-244-725-11	1.5M	1 244 749 1
6.1	1 244 606 11	16	1 244 630 11	160	1 244 654 11	1.65 1 244 678 11	16 k 1 244 703	11 1603	1 244 726 11	1.651	1 244 750 1
1.8	1 244 607 11	18	1 244 631 11	180	1 244 655 11	1.83. 1.244 679 11	18 k 1 244 703	11 1803	1 244 737 11	1.8M	1 244 751 1
0.5	1 244 608 11	29	1 244 632 11	200	1 244 656 11	2.0k 1 244 680 11	20 k 1 244 704	11 200 k	1 244 728 11	2.0M	1 244 752 1
2.2	1 244 609 11	22	1 244 633 11	220	1 244 657 11	2.2k 1 244 681 11	22 k 1 244 70	11 220 k	1 244 729 11	2.2M	1 244 753 1
2.4	1 244 610 11	24	1 244 634 11	240	1 244 658 11	2.43 1 244 682 11	24 k 1 244 704	11 240k	1 244 730 11	2.4M	1 244 754 1
2.7	1-244-611-11	27	1 244 635 11	270	1 244 659 11	2.71 1 244 683 11	27 k 1 244 707	11 2701	1 244 731 11	2.7M	1 244 755 1
9.0	1 244 612 11	30	1 244 636 11	300	1 244 660 11	3.0k 1 244 684 11	30 k 1 244 70	11 300 k	1 244 732 11	3.0M	1 244 756 1
3.3	1 244 613 11	33	1 244 637 11	330	1 244 661 11	3.3k 1 244 685 11	33k 1 244 70	11 330 k	1 244 733 11	3 3M	1 244 757 1
1.6	1 244 614 11	36	1 244 638 11			3.6k 1 244 686 11					
1.9	1 244 615 11	39	1 244 639 11	390	1 244 663 11	3.91 1 244 687 11	391 1 244 71	11 3901	1 244 735 11	3.9M	1 244 759 1
	1 244 616 11	43	1 244 640 11	430	1 244 664 11	4.33. 1.244 688 11	43.1 244 71	11 4301	1 244 736 11	4.351	1 244 760 1
4.7	1 244 617 11	47	1 244 641 11	470	1 244 665 11	4.78 1 244 689 11	47 k 1 244 71	11 470%	1 244 737 11	4.751	1 244 761 1
5.1	1 244 618 11	51	1 244 642 11	510	1 244 666 11	5.1k 1 244 690 11	51 k 1 244 71	11 510%	1 244 738 11	5.1M	1 244 762 1
5.6	1 244 619 11	56	1 244 643 11	560	1 244 667 11	5.6k 1 244 691 11	56k 1 244 71	11 560 k	1 244 739 11		
6.2	1 244 620 11	62	1 244 641 11	620	1 244 668 11	6.2k 1 244 692 11	62 k 1 244 714	11 6201	1 244 740 11		
6.8	1 244 621 11	68	1-244-645-11	680	1 244 669 11	6.81 1 244 693-11	68.1 1-244-71	11 680)	1 244 741 11		
7.5	1 244 622 11	75	1 244 646 11	750	1 244 670 11	7.5k 1-244-694-11	75k 1 244 71	11 750k	1 244 742 11		
8.2	1 244 623 11	82	1 244 647 11	820	1 244 671 11	8.2k 1-244-695-11	82 k 1 244 71	11 8201	1 244 743 11		
1.1	1 244 624 11	91	1 244 648 11	910	1-244-672-11	9.18 1-244-696-11	91k 1 244 72	11 9101	1 244 744 11		

9-950-367-81

Sony Corporation

© 1977

77J0578-1 Printed in Japan

K4XL's 🌮 BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu

US Model Canadian Model E Model AEP Model

FM/SW/MW/LW 33-BAND RADIO RECEIVER

SERVICE MANUAL

SPECIFICATIONS

GENERAL		Control Jack:	TIMER OUT (mini jack) 1		
Power Requirements: Radio, Recorder:	120 V ac (adjustable to 100, 220, or 240 V) 12 V dc, eight size-D (IEC designation R20) batteries 12 V car battery with Spry Car Battery Cord	Dimensions:	$\begin{array}{l} Approx, 451 (w) \times 349 (h) \times 207 (d) mm \\ 1.7 \frac{5}{26} (w) \times 1.3 \frac{5}{24} (h) \times 8 \frac{5}{26} (d) inches \\ (including projecting parts and controls with the recorder retracted to the set) \end{array}$		
	DCC-9 (optional)	Weight:	Approx. 15.4 kg, 33 lb 15 oz (including batteries)		
Clock:	1.5 V dc, one size-D battery				
Power Consumption:	SW: 10Wac, FM/MW/LW: 6.5Wac,	RADIO SECTION			
	in radio operation SW: 12.6Wac, FM/MW/LW: 9Wac, in radio and recorder operation	Frequency Range:	FM2: 87.5 - 108 MHz (3.43 - 2.78 m) FM1: 75 - 90 MHz (3.95 - 3.33 m) SW: 1.6 - 30 MHz (187 - 10 m)		
Speaker:	12 cm (4 ³ /4 inches)		MW: 530 - 1,605 kHz (566 - 187 m) LW: 150 - 400 kHz (2,000 - 750 m)		
Clock:	QUARTZ clock	Intermediate Frequency:	EM: 10.7 MHz		
Input:	AUX IN (mini jack) 1 Maximum sensitivity 4.4mV (-45 dB) at 50mW output		SW-1st: 45.145.MHz SW-2nd: 455.kHz MW/LW: 455.kHz		
	Imput impedance 5 kΩ	Sensitivity:	FM: 1.8 µV (5 dB), S/N = 30 dB		
Outputs:	Earphone (mini jack) 1 For 81 earphone HEADPHONES (phone jack) 1 For 81 headphones Recording (mini jack) 1 Output level 0.8 mV (-60 dB) Output level 0.8 mV (-60 dB)		SW: 0,7 µV (−3 dB),S/N = 6 dB, at 10MHz NW: 32 µVm (30 dB/m),S/N = 6 dB, built-in ferrite-rod antenna US: 57 µVm (35 dB/m),S/N = 6 dB, built-in ferrite-rod antenna – continued on next page –		
SAFETY-REL/	ATED COMPONENT WARNING!!	6	COBIS		
	INTIFIED BY SHADING ON THE				

COMPONENTS IDENTIFIED BY SHADING ON THE SCHEMATIC DIAGRAMS AND IN THE PARTS LIST ARE CONTICAL TO SAFE OPENATION. REPLACE THESE COMPONENTS WITH SONY PARTS WHOSE PART NUMBERS APPEAR AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS PUBLISHED BY SONY.

Image Rejection:	FM2: 65 dB, at 108 MHz FM1: 65 dB, at 90 MHz SW-1st: 90 dB SW-2nd: 65 dB, at 10 MHz MW: 55 dB, at 1,605 kHz LW: 80 dB, at 360 kHz
Selectivity:	FM: Better than 70 dB (± 400 kHz off resonance) SW/WW/LW: -60 dB at NORMAL (±8 kHz off resonance) -60 dB at NARROW (±6 kHz off resonance)
Antennas:	 FM: Telescopic antenna, external antenna terminals (75 ohms) SW: Telescopic antenna, external antenna terminals (50 – 75 ohms) MW/LW: Built-in ferrite-rod antenna, external antenna terminals (high impedance)

TAPE RECORDER SECTION

Recording System:	2-track 1-channel monaural
Fast Winding Time:	Approx. 1 min. 50 sec. with Sony Cassette C-60
Frequency Response:	90 – 10,000 Hz

SECTION 1 OUTLINE

1-1. TAPE RECORDER TIMER STAND BY MECHANISM

This set is equipped with a TIMER STAND BY mechanism in the tape recorder section for an automatic recording during absence of the operator. This mechanism is intended to prevent the pinch roller and recording tupe from deforming when the pinch roller is left pressed against the capstan and does not rotate for a long time in the stand-dy mode.

Fig. 1 shows the mechanism condition when TIMER STAND BY is set up. In this condition and when the power supply is applied by TIMER, the motor starts to rotate and the shut-off lever moves in the direction (a). Accordingly, the lever moves the direction (b) and it pushes the trigger plate in the direction \bigcirc . The trigger plate's protusion now pushes the lock plate in the direction \bigoplus and the lock plate releases the actuator which is locked at positions. Now the actuator moves in the direction \bigoplus and the reset arm positions as shown in Fig. 2. In this, condition, the lever moves in the direction \bigoplus ', but it does not affect to the actuator.

If TIMER STAND BY is set up when the lever positioned as shown in Fig. 3, the lever once moves in the direction (B) after the time set by TIMER SET, and the lever locks the reset arm and releases the STAND BY condition.

1-2. CIRCUIT DESCRIPTION

1) CONNECTION OF TAPE RECORDER AND RADIO

This set is a combination of CRF-320 radio receiver and a cassette tape recorder. With the tape recorder provision, receiving ignals can easily be recorded. This set also provides a STAND BY facility combined with a timer clock, and recordings during absence of the operator can be made with ease. The following diagram shows a simplified signal flow. The recording from the built-in microphone can only be made when MEMO REC switch button is pressed in MIC position. And recording from AUX IN jack JS02 cannot be made.

2) RECORD MUTING CIRCUIT

A muting circuit is provided in the output circuit of the tape recorder in the record mode to pervent a bawling from occuring during a record with microphone. The following diagram is the muting discuit of the tape recorder. Except in the playback mode, the muting switch \$2103 is in the off position and Q2005 is also in the off state. Accordingly, no signal flows in the transformer T2020 and the output circuit in muted. When the muting switch \$2103 turns on in the playback mode, the output signal from IC2101 flows in the transformer T2020 and the signal passes to the power amplifier of the radio section. To ensure the muting operation in the record mode, the signal line is grounded through C2022, D2004 and \$21014.

3) LED AMPLIFIER CIRCUIT

In the record mode, a part of the output signal from IC2101 goes through C2125 and R2011 to Q2004. Q2004 amplifies the signal, and the collector current of Q2004 turns D2003 (REC INDICATOR) on and the record mode is visually identified.

In the playback mode, this LED amplifier is muted because of unnecessity of the LED indication. In the playback mode, the bias is asplied to Q2003 through R2103 and D2002 to turn on Q2003. Accordingly, the base of Q2004 is grounded and D2003 turns off.

In the record mode, the bias circuit of Q2003 is routed to the ground through D2001 and S21014, and Q2003 turns off. Consequently, Q2004 turns on. Q2004 is operating in class B, and D2003 lights up only when audio signals are applied to the base of Q2004 to indicate the record mode.

CRF-33

1-2. BLOCK DIAGRAM

1) Radio Section

2) Tape Recorder Section

SECTION 2

CRF-330K

CRF-

DISASSEMBLY

2-1. DISASSEMBLY FLOW CHART

- Rear Case Removal
 on page 13.
- Front Panel Removal on page 13.
- Side Panel (R) Removal on page 17.
- Side Panel (L) Removal on page 18.

SECTION 3

ADJUSTMENTS

3-1. RADIO SECTION

Test Equipment Required:

- FM rf signal generator
- · AM rf signal generator
- FM sweep generator
- AM sweep generator
- marker generator
- frequency counter
- (100 MHz, resolution ±1 Hz)
- ac/dc VTVM
- rf VTVM
- oscilloscope
- detector (shown below)

- Note: 1. Adjustments to the VFO can not be made by using generally available test equipment. When trouble is encountered to the VFO, replace the VFO Block. Part No.: A:3624-020-B
 - Overturn the main chassis before the adjustments. Refer to pages 24 and 25.

3-8. SW 1st IF ADJUSTMENT

Setting:

BAND	SELECTOR	switch:
MODE :	switch:	
VOLUM	fE control:	
TONE of	control:	
NOISE	BLANKER	switch:

NORMAL center of rotation center of rotation OFF

SW

Setup:

AM rf signal generator (400 Hz, 30 % modulation)

Procedure:

- 1. Set the AM rf signal generator to an appropriate frequency between 1.6 MHz and 30 MHz.
- 2. Tune the set in to the frequency set in step 1.
- 3. Adjust CTs207, 208, 209, 210, 211 and 212, and IFT201 for maximum VOM reading.

Adjust AM Rf Signal Generator Frequency	VOM Reading
around 32 MHz	0.7 V
below the frequency obtained above	6.3 V

.

AM Rf Signal Generator Frequency	Tune the Set to	Adjust	
22.57 MHz 70 dB	around 22.8 MHz to obtain a maximum waveform	VR201 to obtain a minimum waveform	

Procedure:

- Turn CT1001 and stop the oscillation of 45.6 MHz. The 45.6 MHz pip disappears from the waveform on the oscilloscope.
- Turn the cores, of L1003 through L1006 counterclockwise until they place on top of the coils.

Connect Sweep Out to	Adjust	Obtain
۲	L1008 L1009	Maximum double-humped waveform 42.645 MHz
0	L1006 L1007	marker pip
Θ	11003 11004 11005	
©	L1003 through L1009	Symmetrical waveform
(Reduce sweep out level)	(fine adjust)	42.145 MHz marker pip 43.145 MHz marker pip

synthesizer board (3)

- Turn the tuning dial throughout the range and confirm that the VTVM reading variation is within 3 dB. If not, perform steps 1 through 3.
- Turn CT1001 and oscillate 45.6 MHz. 45.6 MHz pip appears on the waveform again.

Procedure:

•

Procedure:

- Turn the SW tuning knob and obtain a 29 MHz 999 kHz indication on the digital frequency indicator on the front panel.
- Fine adjust the frequency of AM rf signal generator around 75.14 MHz.

AM Rf Signal Generator Frequency		VOM Indication
above	75.144 MHz	0.7 V
below	75.144 MHz	6.3 V

3-13-6. SW SPURIOUS BEAT ADJUSTMENT

Setting:

BAND SELECTOR switch:	SW
SW BAND SELECTOR switch:	29 MHz
VOLUME control:	MAX
TONE controls:	MAX
RF GAIN control:	MAX/NORMAL

Setup:

AM rf signal generator (no modulation) EXT SW ANT

Procedure:

AM Rf Signal Generator Frequency	Adjust
approximately 29.352 MHz or	VR1001 for a minimum
29.852 MHz	beat note

3-2. TAPE RECORDER SECTION

PRECAUTION

 Clean the following parts with a denatured-alcoholmoistened swab;

record/playback head	pinch roller
erase head	rubber belts
capstan	idlers

- Demagnetize the record/playback head with a head demagnetizer. (Do not bring the head demagnetizer close to the erase head.)
- Do not use a magnetized screwdriver for the adjustments.
- After the adjustments, apply a suitable locking compound to the parts adjusted.
- The adjustments should be performed with the rated power supply voltage unless otherwise noted.

Preparation of Extension Cable

 Make an extension cable as shown below and connect it between the radio and tape recorder sections.

- Turn the adjustment screws counterclockwise until the screw tip is detached from the flywheel shafts.
- Gradually turn either of the adjustment screws clockwise to the position where the motor current suddenly increases.
- Then, turn the screw counterclockwise about ¼ turn from the position obtained in step 3.
- 5. Perform steps 3 and 4 for the another adjustment screw.
- After the adjustment, apply a suitable locking compound to the screws.

P C KHZ	
Pattern connection	6 kHz VTVM reading
1	down
2	1 1
3	1 up

4. If necessary, repeat above steps.

.

CRF-330K

MEMO

4-1. MOUNTING DIAGRAM – Rat – Conductor Side –

- 58 -

Reports of the LBO relication identing ration and \$220 Drivers collect deciral trajue are in fathast.

4. # 8.1 Requires of the LED solves the time and and open #83 8 80 1 450 to 160 per an Iphanic

- 62 -

Sec.10				-24
(b) (b)	Tair/A	Feet on	Par Ada	
1000	and add a fail	CMF	571	~
61.4	ANT SELECT	1.150.00	122	C
	MER LIFERT AND		827	1.7
83.2	ANT SPLECT	P00	524	
	EN ANT		50	1.0
	600-EXT		576	
42	SW ANT COR. BELECT	1,759		
	11001100			0
531 - 341	RAND BULKCION, SAF	01	877 va 29	
541-46	BAND SFLECTOR, MR	Gen		
05-1-5-6	BAND SELECTOR, I'M	1089		. •
161 64	BAND SELECTOR, FM	044		
58 50	VOCIA, NOVMAL	· 0N	\$2900	1
50	VOCP, NAPPONE	044		
510	VDOE, US5-558	044		-
811	WOOC, US9-668	OPT		
517	WORK, CM	orr		
514	NOSE BLANKER			
175	AFC	0**		
574	MAUT PVD	DIF		
\$1.7	TIMED ON	079		
578	BATT CHECK	orr		
518	UGAT	0.04		
820	2ERO SECOND	CAA		

		10	100.0
2	æ	3	(4)
•	0	0	
	1	1	Ð
	1	1	0
	0	1	0
	0		0
	ο.		0
	0	1.1	0
		1	0
.	0	1	0
5	0	1 i -	0
	0	1	0
	1	0	0

Plof. No.	Switch	Post-on
\$001	FM FM1 - FM2	2 513
81.1	ANT SELECT	LOCAL
	MW. LINEXT ANT	
\$1-2	ANT SELECT	800
	SHI ANT	
	ROD-EXT	
\$2	SW ANT COLL SELECT	1.108
	1,1081,109	
531 36	BAND SELECTOR, SW	ON
541-46		OFF
\$5-1-5-6	BAND SELECTOR, LW	OFF
55-1-6-4	BAND SELECTOR, FM	OFF
58	MODE, NORMAL	ON
59	MODE, NARROW	OFF
\$10	MODE, USB 338	orr
511	MODE, USB-558	OFF
512	MODE, CW	OFF
514	NOISE BLANKER	OFF
\$15	AFC	OFF
316	MUTING	OFF
517	TIMER ON	OFF
518	BATT CHECK	OFF
\$19	LIGHT	OFF
\$20	ZERO SECOND	OFF

Hef. No.	Smitch	Position
\$21	POWER	OFF
5.72	OFF-ON-TIMER ON	0**
\$23	VOLTAGE SELECT	100 V
\$24	BATTIAC	BATT
575	QUARTZ TIMER	OFF
\$26	SW BAND SELECTOR	0
	10 MH2 STEP	
	0 10 MHz - 20	
527 to 29	SW BAND SELECTOR	9
	1 MINU STEP	
	0 - 1MHz - 2 - 3 - 4 - 5	
	-6-7-8-9	
\$2003	FUNCTION	RADIO
	MADIO PLAYBACK	

- · Al ministry are in others, 10% are interested MD - 1000-0 MO - 10000-0
- · der faibe recent.
- A Language component.
- perel designation
- · Postalina contentina voltage are recourd to t ----
- interests' at used har D.797
- Critics matters? desailing oute the soul of the public

- relation μ of union otherwise related μ μ^{-1} and then we net indicated except for electricities, in an in other, 5.W union otherwise relation (6, 46) = 0000-01
- sible materia.
- to be compared
- nel decaration.
- ballioned for super-
- admention votages are resourced on the 2.51
- in used for () PUL.
- af denirg you fits and of the justice
 - · manage in particular

- ______ Drive to make sciences, two is
 - an.

 - Votages are DC with regard to prund unner otherwise rotat.
 - Readings are salar under 28 percent confinements with a VOM (2010)/V), weiling VESIX (THER) to minimum partices, VESIZ (BASS) to minimum partices and VESIX (VESIZ) (API) to exclusive and partices.

- IC
 MAXE
 VMVHD1 104 (AAN), MM

 IC
 MVHD1 104 (AAN), MM
 VMVHD1 104 (AAN), MM

 IC
 VM MULL
 VM MULL, MAXE, MM

 IC
 VM MULL, MAXE, MM
 VM MULL, MAXE, MM

 IC
 VM MULL, MAXE, MM
 VM MULL, MM

 IC
 VM MULL, MAXE, MM
 VM MULL, MAXE, MM

 IC
 VM MULL, MM
 VM MULL, MAXE, MM

 IC
 VM MULL, MAXE, MM
 VM MULL, MAXE, MM

 IC
 VM MULL, MAXE, MM
 VM MULL, MAXE, MM
- ##1 Relations of the LED industries (deplote

1.83	BCD dasht			
Industrial				0
- 0				
	· • 1			
				1 ÷
				-
	1.41		1	
				1.6
	161			1.6
				1.6
	-	1.14	100	
		1.14	h lense	

2.20.4 1 " 1998 690 C4" - 258 " Hot merchant had

(ORVAL + #2 Relation of the LSD to the LPD with 6.5

*#50.07

100	IC TERMINAL					
BAND		101900			1011004	
	9	- 60	0	Φ	3	- (8)
LARK, SAAD				6		
5			1	0		
3				0	1.1.1	
4	. • 1			0		
	1.1					
6 7		1				
7						
		-		1		
					· • ·	
é l	1 6					
7						
ā.						
6	1.1				1.0	
12 12 14 15 15	1.6			. 6		

				 Data 			_		
		PMPLA		Port 100.	Test 1.0	Pesities	Del.No.	Switch	Pasition
	10100		101006	1001	PHI PMI 19Q	640	521	POWER OFF-CN/T-MED ON	044
0	0 3	1.0	0.0	81.4	ANT SPLECT	LÜCAL	122	VOLTAGE SELECT	1804
0 0	0 0		1 4	812	ANT SELECT	800	324		BATT
14	1.1		1 6 6		DIF AN T		525 628	OUARTZ TIMER	1244
	1 1			17	HOD-1 KT JW ANT COIL BELECT	1.108	1.0	50 BAND IBLECTOR 100442 STEP	0
1	1 1		1 0	-		1.108		0 = 10484 r = 20	
			1	121 - 20 141 - 46	BAND SELECTOR, SR	ON	127 to 29	BW BAND SELECTOR	*
1 1	1 4	0	1 0	38.1 - 3.6	BAND GELECTOR, MN	011	11	180-1977 0-1905-2-3 4-5	
1.8	1 1		1 8	561-04	RANG SELECTION CM	0++			
1	0 0		1 2	18	WOOR, NORMAL	CAL	03003	PUNCTION	INADED
	0 0	1.1	6 6	50	WOOL, NAMES AND ADDRESS OF THE OWNER	OFF OFF		AADIO PLAYBACK	
-			A	011	WORK LINESSO	0.0			
				912	MODE, CN MODE, BLANKER	044			
				515	APC NO. 10. ANKERS	011			
				616	MUTING.	0.87			
				517	TIMER ON	orr			
				518	BATT CHECK LIGHT	089			
		м		8.00	ZERO SECOND	044			
		m			74		0		
						Piero I			
				_		00	037	C. B. Phan	
18 3.01	LY BOARD	0.5		_		E1	Contraction of the local division of the loc	NOMERON	
1.16	h. 12	- 25	154 15	1000	13 1 26 1 2	54 LL-	24 21	1 1000	a
100	12.547			10.00	- COM		50 A.	17-1-1	
	11	0		100 M	A DECK OF A	_		181 14	21
45.	2.4.1	1	1.012	312 2	V_1 V_1 V_1	144	-	- Anne -	1
10-0	2.	100	12	1.1.2.1	5 A	18.00	1000	ST 1005	
1.0	51-61	0	Ghe	On On	STILL III	28.2	121	Million 1 Co	
	121	177	18-1	an post.	P [[Digit]	10.00	11/01	ALL PLANS	- L
-	-					10.0	1 million		
			· · · ·		31 1 Ja.	-38 C	the second	Collins .	W
				1		202.3	Alatan	rame 1 (le	3
				Titler.	A BARAN MURINS	1 -4 - 7 3	to thereiz	USERGU UV	4
		1.3						-	2 2
	-		DOTANE BOA	00.41	ANP BOARD				-
		18.	N		I las to the last	1	20.00	L'ensi	
			5 . 2	a. (#);	the second second		24.23	121 1415	-
1	12	1,500	art 3	2 3 1	A O T		612		
	120	D4 I	S 44.1	🖉 🗠 🕅 🖓	10 . Q .e	1.1.2	1445	1 1 2	
		1	V 122	- liter		2 march		111 - 112	and the second
	1000		10 10	10011	TT (52 T) 400 -	¥	Sec. 550 .	LI Phil	and a second
	-		121	To all the	mag 214		3474	1 State	-
	_		220	10-1	All the last	347,07	THE .		
		_		-0	V7851	-		The second	
				1-5	Called .			Lax Kall +	
						-		* 17 ACRE 14-1	1 1
			CALE		-Colory 2005, 201721 2046	£3]	120		
				+ *	AND T OF REAL	1 1 1 1 1 1 1	- Seler		
1			04	1 1 28-5	Courses the	1.1	1	and a second	
				1 10	- S /2 .		1.000 C	THE ANT OF ANTION	4
			1.00		1 1 1 1 1		1 7	10 110 Inc	
100				- 1.35	12-14-14	- 1			
				0 1 125	11-12-12			Contra I	
			0				-	125	
			172	Total and	a na mai	-		5 L H-	

Ref. No.	Sainh	Pastics
82961	69	3
1,298(2	WINAG INFC	8.4040
82104	#EC.PB	2.8
62%02	In Charles In	000

Control of the partners

a contract state with - 72 -

CRF-330K

SECTION 5 EXPLODED VIEWS

CRF-330K

- 76 -

and the second second

CRF-330K

Note:

5

- Items with no part number and/or no description are not stocked because they are seldom required for routine service.
- All screws are Phillips (cross recess) type unless otherwise noted.
 (-) = slotted head
- (COT) shows the number of coils in spring.

^{· (}DOT) shows the number of coils in spring.

SECTION 6 ELECTRICAL PARTS LIST

Ref. No. Part No.	Description	Ref. No. Part No.	Description
SEMI	CONDUCTORS	Q805, 806	2SC1364
1	Transistors		
		Q901,	2SK42-1
Q001	2SK42-1	Q902, 903	2SK23A-824
Q002	2SK23A-840	Q1001, 1002	3SK37
Q003	2SC710	Q1003, 1004	2SC710
Q051	2SK42-1	Q1006	2SK 23A-825
Q052	2SK 23A-840		
Q053	2SC710	Q1007 - 1012	2SC634A
Q054	2SK 23A-860	Q1013 - 1018	2SC710
		Q1019, 1020	2SC641K
Q201	3SK37	Q1021, 1022	2SC710
Q202, 203	2SK23A-840	Q1023, 1024	2SC634A
Q 204	3SK37		
Q205, 206	2SK23A-840	Q1025, 1201	2SK 23A-824
Q207 - 209	2SC710	Q1202, 1203	2SC710
		Q1204 - 1212	2SC1364
Q210, 211	2SC710-14	Q1213 - 1216	2SA678
Q212	2SC710-15	Q2001	2SD1061
Q213, 214	2SC710		
Q216	2SC634A	Q2002 - 2005	2SC634A
Q217	2SA678	Q2101, 2102	2SC632A
		Q2103, 2104	2SC634A
Q218-221	2SC634A	Q2105	2SA678
Q222	2SC710-14	Q2106, 2107	2SC634A
Q223	2SC710	Q2108	2SC1474
Q224	2SK42-1		
Q225, 226	2SC1129		ICs
Q227	3SK37	IC801, 802	CX075B
Q228	2SA634A	IC1001	TA 7060P
Q229	2SA684	IC1002	SN74S113DC
Q230	2SC634A	IC1003, 1004	SN74162N
Q231	2SA678	IC1005	µPC1008C
Q401 ~	2SC632A	IC1006	HD74LS00P
Q501	2SC634A	IC1007	TA 706 0P
Q601	2SC634A	IC1201	34013PC
Q602, 603	2SC1429-□5	IC1202	MSM505
Q604	2SC634A	IC1203	MSM551H
Q701	2SA678	IC1204	MSM530
Q702	2SA684	IC1205-1207	MSM5503
Q703 - 706	2SC634A	IC1208-1210	MSM561
Q801 - 803	2SC710-14	IC2101	CX170
Q804	2SC634A	IC2102	BX 295A

Ref. No. Part No.	Description	Ref. No.	Part No.	Description
	Diodes	L051	1-425-929-00	Coil
		L052	1-425-930-00	Coil
D001, 051	1\$26875-2	L053	1-425-929-00	Coil
		L054	1-405-527-21	FM Osc
D201-209	101444			
D211-215	151555	L201	1-407-178-XX	Microinductor, 1 µH
D216	1T 23S	L210, 215	1-407-741-00	Microinductor, 18µH
D217-219	181555	L224	1-407-864-00	RF BPF
D220, 221	1T23S	L225	1-407-865-00	RF BPF
D223, 225	181555	L228	1-407-864-00	RF BPF
D226, 227	1T18-0	L 23 1	1-407-862-00	RF BPF
D228 - 234	152222	L 23 2	1-407-863-00	RF BPF
D 23 5	1T261	1.235	1-407-862-00	RF BPF
D236	RD6A	L 26 1	1-401-665-00	MW/LW Ferrite-rod Antenna
D237-241	181555	L 26 2	1-425-911-00	MW RF
D401 /	151555			
		L 26 3	1-425-444-00	LW RF
D601, 602	VD1120	L 264	1-405-717-00	MW Osc
D701	2SB324	1.265	1-405-716-00	LW Osc
D702	RD5A	L266	1-417-053-00	VCO Matching Transformer
D703, 704	10E2	L 26 7	1-407-178-XX	Microinductor, 1 µH
D801, 802	1T 26 1			
D803-807	181555	L 26 8	1-433-184-00	VCO (1)
		L269	1-433-185-00	VCO (3)
D1001, 1002	1T 26 1	L270	1-433-188-00	VCO (4)
D1003, 1004	181555	L271	1-433-189-00	VCO (6)
D1201-1204	-	L272	1-433-190-00	VCO (7)
D 2001, 2002	1\$1555			
D 2003	TLR109 (LED)	L 273	1-433-186-00	VCO (5)
D2004	181555	L 274	1-433-187-00	VCO (2)
D2101-2105		L.275	1-425-912-00	Mixing
-		L 282, 283	1-407-661-XX	Microinductor, 470 µH
T	ermistor	L287, 288	1-407-157-XX	Microinductor, 10µH
Th701 1-800-071-XX	S-300	L289	1-407-661-XX	Microinductor, 470 µH
Th1001 1-800-198-XX	S-1K	L290	1-407-178-XX	Microinductor, 1 µH
Th1002 1-800-194-00	S-90			
Th2101 1-800-198-00	S-1K	L401-403	1-407-883-00	Microinductor, 100 mH
		L701	1-407-857-00	Choke, 3 mH
	COILS	L702	1-407-884-00	Choke, 6 mH
		L703	1-407-857-00	Choke, 3 mH
L001 1-425-909-00	FM Antenna	L804	1-407-169-XX	Microinductor, 100 µH
L002 1-425-910-00	FM RF			
L003 1-425-909-00	FM Antenna	L1010	1-407-178-XX	Microinductor, 1 µH
L004 1-405-750-00	FM Osc	L1016	1-407-169-XX	Microinductor, 100 µH

Note: The components identified by shading are critical for safety. Replace only with part number specified.

Ref. No.	Part No.	Description		Ref. No.	Part No.	Descrip	ntion	
L1021				C013	1-102-870-11	8 p		
1023	1-407-856-00	Choke, 1 mH		C013 C014	1-161-013-11	8 p 0.01		(boundary layer)
10.00	6 1-407-169-XX	Microinductor	100 µH	0.014	1-101-013-11	0.01		(boundary layer)
	2 1-407-856-00	Choke, 1 mH	. 100 μ11	C015	1-127-019-11	0.1	16 V	solid aluminum
	E 1-107-000-00	enone, i mir		C016	1-121-651-11	10	16 V	elect
L1203	1-407-175-XX	Microinductor	330 uH	0010	1-121-051-11	10	10.1	61064
1.2011	1-407-175-XX	Microinductor		C051	1-102-949-11	12 p		
L2031	1-407-206-XX	Microinductor		C052	1-161-013-11	0.01		(boundary layer)
				C053, 054	1-102-953-11	18 p		(countrary mycr)
	TRANS	FORMERS		C055	1-161-013-11	0.01		(boundary layer)
				C056	1-102-972-11	91 p		
TI	1-433-105-00	Osc				-		
T601	1-423-140-11	Input		C059	1-161-013-11	0.01		(boundary layer)
				C061	1-102-858-11	10 p		
FL201	1-403-165-00	Ceramic Filter	r	C06.2	1-102-944-11	7 p		
FL202A	1-403-888-11	Mechanical Fi	la na	C063	1-102-663-11	8 p		
FL202B	1-403-888-21	Meenanical P1	ner	C065	1-127-019-11	0.1	16 V	solid aluminum
FL203A	1-404-024-11	Mechanical Fi	Itar					
FL203B	1-404-024-21	steenamear ra	Act	C066	1-121-651-11	10	16 V	elect
				C067	1-101-978-11	10 p		
	1 1-404-031-00	FM IFT						
IFT202	1-404-023-00	AM IFT		C100	1-103-733-11	0.0022	50 V	polystyrol
IFT 203	1-403-152-00	AM IFT		C101	1-103-729-11	0.0015	50 V	polystyrol
IFT 204 -)	1-404-023-00	AM IFT		C102	1-103-728-11	0.0013	50 V	polystyrol
206 '				C103	1-107-082-11	75 p		silvered mica
IFT 207	1-459-153-00	BFO		C105	1-101-882-11	51 p		
IFT 801	1-403-959-00	FM Discrimin	ator -	C106	1-102-946-11	9 p		
IFT802	1-403-953-00	FM Discrimin		C107	1-102-975-11	100 p		
IFT803	1-403-243-00	FM IFT		C201 - 203	1-101-118-11	0.01		
				C204	1-101-361-11	150 p		
	CAPA	CITORS		C205	1-107-082-11	75 p		silvered mica
								silvered mica
All capacite	rs are in µF and ce	ramic unless oth	erwise noted.	C206	1-107-068-11	20 p		silvered mica
50WV or le	ss are not indicate	d except for elec	trolytics.	C207-209	1-161-013-11	0.01		(boundary layer)
pF = µµF, е	lect = electrolytic			C210	1-102-979-11	240 p		
	*			C211	1-107-081-11	68 p		silvered mica
C001	1-102-956-11	15 p		C212	1-107-102-11	5 p		silvered mica
C002	1-161-013-11	0.01	(boundary layer)					
C003, 004	1-102-960-11	24 p		C213	1-101-367-11	160 p		silvered mica
C005	1-161-013-11	0.01	(boundary layer)	C214	1-121-651-11	10	16 V	elect
C006	1-102-972-11	91 p		C215	1-161-013-11	0.01		(boundary layer)
				C216	1-107-079-11	56 p		silvered mica
C009	1-161-013-11	0.01	(boundary layer)	C217	1-161-013-11	0.01		(boundary layer)
C011	1-102-870-11	8 p						
C012	1-102-947-11	10 p	1	C218	1-107-075-11	39 p		silvered mica

Ref. No.	Part No.	Description		Ref. No.	Part No.	Description	
C219	1-107-086-11	110 p	silvered mica	C267	1-107-078-11	51 p	silvered mica
C220	1-107-072-11	30 p	silvered mica	C268	1-102-074-11	0.001	and the main a
C221	1-107-086-11	110 p	silvered mica	C272	1-107-078-11	51 p	silvered mica
C222	1-107-075-11	39 p	silvered mica	C273, 274	1-107-079-11	56 p	silvered mica
				C276	1-107-233-11	430p	silvered mica
C223	1-121-651-11	10 16 V	elect				
C224	1-107-078-11	51 p	silvered mica	C277	1-102-125-11	0.0047	
C225	1-161-013-11	0.01	(boundary layer)	C278	1-107-078-11	51 p	silvered mica
C 226	1-107-074-11	36 p	silvered mica	C280	1-102-944-11	7 p	
C227	1-161-013-11	0.01	(boundary layer)	C281-290	1-101-924-11	0.022	
				C284	1-108-239-12	0.01	mylar
C228	1-107-067-11	18 p	silvered mica				
C229	1-107-081-11	68 p	silvered mica	C294	1-108-242-12	0.022	mylar
C230	1-107-066-11	16 p	silvered mica	C295	1-101-924-11	0.022	
C231	1-107-081-11	68 p	silvered mica	C296	1-107-079-11	56 p	silvered mica
C232	1-107-067-11	18 p	silvered mica	C297, 298	1-108-239-12	0.01	mylar
				C299	1-107-235-11	510 p	silvered mica
	1-107-071-11	27 p	silvered mica				
C234	1-121-651-11	10 16 V		C302	1-108-563-12	0.0022	mylar
C235	1-161-013-11	0.01	(boundary layer)	C303	1-101-924-11	0.022	
	1-102-507-11	9 p		C304	1-121-391-11	1 50 V	elect
C237	1-161-013-11	0.01	(boundary layer)	C305, 306	1-108-244-12	0.033	mylar
				C307	1-102-942-11	5 p	
C238	1-102-511-11	13 p					
C239	1-102-516-11	27 p		C308	1-102-949-11	12 p	
C240	1-102-510-11	12 p		C309	1-102-679-11	120 p	
C241	1-102-516-11	27 p		C310	1-103-714-11	360 p 50 V	polystyrol
C242	1-102-511-11	13 p		C312	1-102-964-11	36 p	
				C313, 314	1-102-947-11	10 p	
C243	1-102-501-11	1 p					
C244	1-121-651-11	10 16 V		C315	1-108-242-12	0.022	mylar
C 245	1-161-013-11	0.01	(boundary layer)	C318	1-121-414-11	100 6.3 V	elect
C 246	1-102-505-11	6 p		C319	1-102-125-11	0.0047	
C247	1-161-013-11	0.01	(boundary layer)	C321	1-102-504-11	4 p	
				C322	1-102-751-11	22 p	
C248	1-102-864-11	5 p					
C249	1-102-514-11	22 p		C323	1-102-526-11	75 p	
C250	1-102-504-11	4 p		C324	1-101-999-11	10 p	
C251	1-102-514-11	22 p		C325	1-102-755-11	43 p	
C252	1-102-864-11	5 p		C326	1-102-743-11	3 p	
C254	1.121.661.75	10 16 V	alaat	C328	1-102-112-11	330 p	
	1-121-651-11			6320 336	1.102.126.11	0.0017	
C 255 C 264	1-161-013-11 1-107-077-11	0.01	(boundary layer) silvered mica	C329-335 C337	1-102-125-11	0.0047	
C 264	1-107-077-11	47 p 0.0047	savered mica	C337 C338	1-102-505-11 1-102-074-11	6 p 0.001	
C 265 -	1-102-125-11 1-107-079-11		silvered mica	C338 C340	1-102-074-11	0.001	
0.200	1-107-079-11	56 p	silvered mica	0.540	1+102-074-11	0.001	

Ref. No.	Part No.	Descrip	tion		Ref. No.	Part No.	Descriț	otion	
C341	1-121-413-11	100	6.3 V	elect	C411	1-161-021-11	0.47		(boundary layer)
C345	1-101-924-11	0.022			C412	1-127-019-11	0.1	10 V	solid atuminum
C346	1-107-235-11	510 p		silvered mica					
					C501	1-127-377-11	0.22	16 V	solid aluminum
C350	1-107-071-11	27 p		silvered mica	C502	1-101-918-11	0.001		
C351	1-101-924-11	0.022			C 504	1-121-415-11	100	16 V	elect
C353	1-108-242-12	0.022		mylar	C505	1-127-377-11	0.22	16 V	solid aluminum
C356, 357	1-108-242-12	0.022		mytar	C506	1-127-018-11	0.0047	10 V	solid aluminum
C358	1-101-924-11	0.022							
					C507	1-127-378-11	0.68	10 V	solid aluminum
C359	1-121-651-11	10	16 V	elect	C509	1-127-378-11	0.6.8	10 V	solid aluminum
C360, 361	1-101-924-11	0.022			C601	1-121-415-11	100	16 V	elect
C 36 2	1-102-832-11	330 p			C602	1-127-377-11	0.22	16 V	solid aluminum
C363	1-121-651-11	10	16 V	elect	C603	1-102-975-11	100 p		
C364	1-102-114-11	470 p							
					C604	1-102-074-11	0.001		
C36.5	1-127(022-11	0.47	16 V	sotid aluminum	C605	1-121-479-11	22	16 V	elect
C367	1-127-023-11	1	10 V	solid aluminum	C606	1-161-015-11	0.015		(boundary layer)
C 36 8	1-107-102-11	5 p		silvered mica	C607	1-161-019-11	0.033		(boundary layer)
C371	1-108-239-12	0.01		mylar	C608, 609	1-121-521-11	330	16 V	elect
C372	1-108-242-12	0.022		mylar					
					C610	1-127-203-11	0.33	16 V	solid aluminum
C373	1-101-924-11	0.022			C611, 612	1-121-939-11	470	16 V	elect
C374	1-107-085-11	100 p		silvered mica	C613	1-102-123-11	0.0033		
C377	1-123-070-11	2200	16 V	elect	C614	1-102-119-11	0.0015		
C378	1-121-943-11	1000	10 V	elect					
C380	1-108-234-12	0.0047		my lar	C701	1-123-078-11	2200	6.3 V	elect
					C702	1-121-944-11	1000	16 V	elect
C383, 384	1-101-924-11	0.022			C704	1-108-232-12	0.0033		mylar
C385	1-102-934-11	1.0			C705	1-101-923-11	0.01		
C386	1-102-935-11	2 p			C'706	1-108-234-12	0.0047		mylar
C387	1-161-013-11	0.01		(boundary layer)					
C390	1-127-023-11	1	10 V	solid aluminum	C707	1-107-093-11	220 p		silvered mica
					C708	1-121-944-11	1000	16 V	elect
C401	1-127-018-11	0.047	10 V	solid aluminum	C709, 710	1-121-660-11	2200	16 V	elect
C402	1-108-244-12	0.033		mylar	C711, 712	1-108-381-12	0.022	100 \	
C403	1-121-951-11	0.47	50 V	elect					
C404	1-127-019-11	0.1	10 V	solid aluminum	C805	1-121-413-11	100	6.3 V	elect
C405	1-127-022-11	0.47	10 V	solid aluminum	C810	1-101-924-11	0.022		
					C812	1-102-964-11	36 p		
C406	1-127-020-11	0.22	10 V	solid aluminum	C813	1-101-924-11	0.022		
C407	1-121-415-11	100	16 V	elect	C814	1-108-234-12	0.0047		mylar
C408	1-102-099-11	0.0015							
C409	1-108-244-12	0.033		mylar	C815	1-121-651-11	10	16 V	elect
C410	1-161-015-11	0.015		(boundary layer)	C816	1-108-228-12	0.0015		

Note: The components identified by shading are critical for safety. Replace only with part number specified.

Ref. No.	Part No.	Descri	ption	1	Ref. No.	Part No.	Descrip	tion	
C817	1-127-022-11	0.47	16 V	solid aluminum	C1033	1-102-503-11	3 p		
C819	1-102-962-11	30 p			C1034	1-102-505-11	6 p		
C823	1-102-940-11	3 p			C1035-				
C824	1-131-196-11	2.2	20 V	tantalum	1037	1-101-923-11	0.01		
					C1038, 103	91-101-924-11	0.022		
C825	1-102-940-11	3 p			C1040	1-102-864-11	5 p		
C829	1-127-019-11	0.1	16 V	solid aluminum					
C832	1-101-924-11	0.022			C1041	1-102-951-11	15 p		
C835	1-121-982-11	470	6.3 V	elect	C1042	1-102-504-11	4 p		
C836	1-121-426-11	470	16 V	elect	C1043	1-102-948-11	11 p		
					C1044	1-102-943-11	6 p		
C901	1-102-648-11	43 p			C1045	1-102-949-11	12 p		
C902	1-102-672-11	24 p							
C904	1-107-068-11	20 p		silvered mica	C1046	1-102-503-11	3 p		
C905	1-107-089-11	150 p		silvered mica	C1047	1-161-013-11	0.01		(boundary layer)
C906	1-107-092-11	200 p		silvered mica	C1049	1-101-924-11	0.022		
					C1055	1-101-923-11	0.01		
C907	1-108-279-12	0.015		mylar	C1059	1-102-121-11	0.0022		
C908	1-107-099-11	2 p		silvered mica					
C909	1-107-098-11	1 p		silvered mica	C1060-	1-101-923-11	0.01		
C910	1-108-279-12	0.015		mylar	1065	1-101-923-11	0.01		
C911	1-107-071-11	27 p		silvered mica	C1066	1-102-977-11	200 p		
					C1067	1-102-973-11	100 p		
C912	1-107-085-11	100 p		silvered mica	C1068	1-161-021-11	0.0047		(boundary layer)
C913, 914	1-108-279-12	0.015		mylar	C1069	1-107-070-11	24 p		silvered mica
C1002	1-102-953-11	18 p			C1070	1-102-409-11	30 p		
C1004, 100	5 1-107-087-11	120 p		silvered mica	C1071, 107	2 1-102-121-11	0.0022		
C1007-	1-107-097-11	330 p		silvered mica	C1073	1-121-413-11	100	6.3 V	elect
1009 '	1-107-097-11	550 p		suvered mica	C1074	1-121-352-11	47	10 V	elect
C1010-	1-107-087-11	120 p		silvered mica	C1075, 107	6 1-131-236-11	1	25 V	tantalum
1012				Sar er e a mira					
C1013	1-102-949-11	12 p			C1077	1-102-121-11	0.0022		
					C1078	1-101-880-11	47 p		
C1016, 101	7 1-107-087-11	120 p		silvered mica	C1079, 108	0 1-107-093-11	220 p		silvered mica
C1018	1-102-949-11	12 p			C1081	1-102-963-11	33 p		
	2 1-107-087-11	120 p		silvered mica	C1082, 108	3 1-103-714-11	360 p		polystyrol
C1024	1-161-013-XX	0.01		(boundary layer)					
C1025, 102	6 1-101-923-11	0.01			C1084	1-102-963-11	33 p		
						6 1-108-555-12	0.001		myllar
C1028	1-101-923-11	0.01			C1090-	1-102-043-11	0.001	500 V	feed-through
C1029	1-101-924-11	0.022			1092				
C1030	1-102-506-11	7 p			C1094	1-121-391-11	1	50 V	elect
C1031	1-102-503-11	3 p			C1095	1-101-880-11	47 p		
C1032	1-102-512-11	16 p		,					

Ref. No.	Part No.	Descrip	tion			Ref. No.	Part No.	Descrip	ption	
C1096 100	7 1-121-414-11	100	10 V	elect		C2116	1-131-375-11	4.7	10 V	tantalum
C1098	1-107-061-11	10 p	101	silvered mica		C2117	1-121-419-11	220	6.3 V	elect
C1099	1-161-013-11	0.01		(boundary laver)		C2118	1-131-368-11	3.3	16 V	tantalum
	1 1-102-961-11	27 p				C2119	1-131-177-11	100	3 V	tantalum
C1102	1-102-977-11	200 p				C 21 20	1-131-244-11	1	6.3 V	tantalum
								-		
C1103	1-101-923-11	0.01				C2121	1-105-673-12	0.01		mylar
C1104	1-101-924-11	0.022				C2122	1-105-719-12	0.033		mylar
C1105	1-127-019-11	0.1	10 V	solid aluminum		C2123	1-105-669-12	0.0047		mylar
C1106	1-101-919-11	0.0022				C2124	1-131-375-11	4.7	10 V	tantalum
C1107	1-102-043-11	0.001	500 V	feed-through	I	C 21 25	1-131-170-11	3.3	10 V	tantalum
C1108	1-102-934-11	1 p								
						C2126	1-121-420-11	220	10 V	elect
C1201	1-121-424-11	470	6.3 V	elect		C2127	1-131-395-11	100	3 V	tantalum
C1203	1-131-193-11	10	10V	tantalum		C2128	1-131-377-11	33	10 V	tantalum
C1207	1-131-392-11	33	3.15 V	tantalum		C 21 29	1-161-190-11	0.001		(boundary layer)
C1210	1-101-890-11	75 p				C2132	1-161-190-11	0.001		(boundary layer)
C1211, 121	2 1-108-563-12	0.0022		mylar						
C1213	1-127-019-11	0.1	10 V	solid aluminum		C2133	1-131-368-11	3.3	16 V	tantalum
						C2134	1-108-249-12	0.068		mylar
C1301	1-121-651-11	10	16 V	elect			1-161-001-11	0.001		(boundary layer)
C2001	1-121-963-11	33	25 V	elect		CT1001-	1-141-171-11	Trimme	r	
C2021	1-121-352-11	47	10 V	elect		1003				
C2022	1-121-726-11	0.47	50 V	elect			1-141-171-XX	Trimme		
C2031	1-108-575-12	0.0068		mylar		CT207	1-141-138-XX	Trimme		
C2051	1-108-234-12	0.0047		mylar		CT208	1-141-174-00	Trimme		
						CT209-212	2 1-141-138-XX	Trimme	t, t	
C2052	1-108-227-12	0.001		mylar						
C2110	1-131-387-11	47	6.3 V	tantalum		CT901	1-141-175-00	Trimme	r	
C2101	1-131-169-11	0.47	10 V	tantalum						
C2102	1-131-202-11	1.5	20 V	tantalum	Ľ.		1-151-223-XX	Tuning		
C2103	1-131-380-11	33	10 V	tantalum			4 1-151-223-11	Tuning		
						CV101	1-151-266-XX	Tuning		
C2104	1-105-669-12	0.0047		mylar	I	CV201 - 203	3 1-151-201-00	Tuning		
C2105	1-161-190-11	0.001		(boundary layer) mylar				STORS		
C2106	1-105-669-12			mytar silvered mica			RESI	STORS		
C2108	1-107-123-11	47 p 3.3	10 V	salvered mica						
C2109	1-131-170-11	3.3	10 V	tantalum			are in ohms. Con eck schematic dia			a resistors are
C2111	1-131-173-11	33	10 V	tantalum		omitted. Ch	eck schematic dia	igram for	values.	
		1.5	20 V	tantalum		P210 214 -				
C2112 C2113	1-131-202-11	0.001	20 V	(boundary layer)		R210, 214 R218, 222	1-212-879-11	82		Guellate
	1-161-190-11	33	10 V	(boundary layer) tantalum	1	R218, 222	1-212-879-11	82		fusible
C2114 C2115	1-131-380-11 1-131-387-11	33	6.3 V	tantalum tantalum		R226 R235, 239				
02115	1-131-387-11	47	0.3 V	rantaium	1	R235, 239 R244, 321	1-212-881-11	100		fusible
						R 244, 321				

Note: The components identified by shading are critical for safety. Replace only with part number specified.

CRF	-3	30	ж

Ref. No.	Part No.	Descri	ption	
R363	1-212-857-11	10	2.994.2	fusible
R501	1-206-475-11	33	2 W	metal-oxide
R511	1-244-837-11	33	½ w	carbon
R610	1-212-869-11	33	1/2 W	fusible
R618, 619	1-207-459-11	0.47	½ W	wirewound
R620	1-212-857-11	10	Sec. Co.	fusible
R714	1-202-723-11	2.2M	1/2 W	composition
R836	1-212-869-11	33	A REAL	fusible
R1267	1-212-941-11	2	1/2 W	fusible
R 2005	1-212-857-11	10		fusible
	21-209-878-11	1.8 k	1/16 W	carbon
R 2103	1-209-781-11	10	1/16 W	carbon
R2108	1-210-381-11	33	1∕16 W	carbon
R2112	1-209-768-11	2.2 k	1/16 W	carbon
R2113	1-210-113-11	18 k	1/16 W	carbon
R2114	1-210-371-11	1.6 k	1/16 W	carbon
R2115	1-210-363-11	270	1/16 W	carbon
R2116	1-210-381-11	33 k	1/16 W	carbon
R2119	1-210-363-11	270	1/16 W	carbon
	1 210 909 11	270	/10 4	caroon
R2121	1-209-768-11	2.2 k	1/16 W	carbon
R2122	1-209-113-11	18 k	1/16 W	carbon
R 21 23	1-209-774-11	5.1 k	5/16 W	carbon
R2124	1-209-770-11	2.7 k	1/16 W	carbon
R2125	1-210-388-11	68 k	½6 W	carbon
R 21 26	1-210-392-11	75	1/16 W	carbon
R2127 R2128	1-210-101-11	51	1/16 W	carbon
R2128 R2129	1-210-846-11 1-209-770-11	33	16 W	carbon
R2129 R2130	1-209-770-11	2.7 k	1/16 W 1/16 W	carbon
K2150	1-209-774-11	5.1 k	716 W	carbon
R2131	1-210-111-11	12 k	916 W	carbon
R2132	1-209-781-11	10 k	Vie W	carbon
R2135, 2136	1-210-371-11	1.6 k	916 W	carbon
R2137	1-210-102-11	150	1/16 W	carbon
R2142		1.2 k	1/16 W	carbon
R2144	1-210-105-11	56.0	1/16 W	carbon
VR 201	1-224-642-XX	1 k. adji	astable; f	first mixer balance
VR 202	1-224-644-XX	4.7 k, a	ijustable	; blank level
VR501	1-224-207-00	20.1	riable : T	REBLE, BASS.
503		VOLU		REDLE, \$A55.

Ref. No.	Part No.	Description						
VR1001	1-224-649-XX	200 k, adjustable; SW spurious beat						
VR1401	1-224-820-00	20 k, variable; RF GAIN						
SWITCHES								
51	1-514-304-00	Slide, antenna selector						
\$2	1-516-893-00	Micro, SW antenna coil select						
S3-6	1-516-896-00	Pushbutton, 4-key; BAND SELECTOR						
S8-12	1-516-895-00	Pushbutton, 5-key; MODE						
S14 - 16	1-516-898-00	Rotary, NOISE BLANKER, AFC, MUTING						
S17	1-516-624-00	Slide, TIMER ON						
S18 - 20	1-514-533-XX	Micro, BATT CHECK, LIGHT, ZERO SECOND						
S21, 22	1-514-864-XX	Micro, POWER						
S23	1-516-267-00	Voltage Select						
S 26	1-516-965-00	Rotary, SW BAND SELECTOR						
S27 - 29	1-516-892-00	Rotary, SW BAND SELECTOR						
\$001	1-552-053-00	Pushbutton, 2-key, FM						
\$2001	1-516-873-00	Slide, ISS						
\$2002	1-516-624-00	Slide, MEMO REC						
S 2003	1-516-898-XX	Rotary, FUNCTION						
S2101	1-513-323-00	Slide, REC/PB						
S2102	1-514-346-00	Leaf, POWER						
S2103	1-552-052-00	Leaf, MUTING						
	JA	скя						
J501 - 505	1-507-369-00	Jack, 5-unit; earphone, AUX_IN						
J1401	1-507-440-00	Jack, HEADPHONES						
	FU	SES						
F1	1-532-400-XX	315 mA						
F2	1-532-448-XX	400 mA						
	MISCELL	ANEOUS						
ANT1	1-501-104-00	SW Telescopic Antenna						
ANT2	1-501-103-00	FM Telescopic Antenna						

Note: The components identified by shading are critical for safety. Replace only with part number specified.

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
CF801 - 803	1-527-184-XX	Filter, ceramic (10.7 MHz)		1-407-856-00	Choke Coil, power
CNJ1	1-509-511-00	Connector, 2-p, AC IN;		1-423-230-00	Transformer, output
		including S24		1-526-522-00	Jack, coaxial connector
CNJ38	1-507-302-00	Connector, 10 p		1-533-102-00	Holder, fuse
CNP5	1-508-743-00	Connector Pin		1-536-174-00	Terminal Strip, MW/LW/SW antenna
CNP6 – 8	1-508-795-00	Connector Pin, 12 p			
CNP9, 10	1-508-699-00	Connector Pin, 8 p		1-536-203-00	Terminal Strip, FM antenna
CNP16	1-508-694-00	Connector Pin, 8 p		1-536-401-XX	Terminal Strip, 2L1
CNP28	1-508-698-00	Connector, 6 p		1-548-082-00	QUARTZ TIMER
CR801	1-231-202-00	Encapsulated Component			
				ACCESSORIES	& PACKING MATERIALS
EH	8-825-566-00	Head, erase; EBF5-02B			
м	8-834-221-00	Motor, D-221F	Par	t No.	Description
ME	1-520-249-00	Meter, TUNING/BATT			
MIC	8-814-191-10	Microphone, C-1002J	1-5	04-059-00	Earphone, EM-20H
PL1	1-518-138-XX	Lamp, pilot; 5 V 60 mA;	1-5	34-867-00	Cord, power; DK-35 (US model)
		meter, timer	1-5	51-002-XX	Cord, power; (Canadian model)
PL2, 3	1-518-189-XX	Lamp, pilot; 5 V 60 mA;	3.7	01-632-00	Bag, plastic
		meter, timer	3-7	93-956-31	Card, warranty (Canadian model)
PL4 – 5	1-518-138-XX	Lamp, pilot; 5 V 60 mA;	3-8	80-697-00	Bag, plastic
		meter, timer	3-8	82-401-00	Cushion, protection
PT701	1-442-863-00	Transformer, power	3-8	82-410-00	Carton
RPH	8-829-336-07	Head, record/playback; PP134-36G	3.9	93-063-14	Book, SHORT WAVE GUIDE
SP	1-502-592-00	Speaker	3-9	95-735-21	Manual, instruction
			3-9	95-763-21	Manual, instruction
X201	1-527-270-00	Crystal			
X202	1-527-271-00	Crystal			
X1002	1-527-269-00	Crystal			

Note: The components identified by shading are critical for safety. Replace only with part number specified.

HARDWARE NOMENCLATURE

 Diameter of usable screw or shaft	
 Reference designation	

Reference Designation	Shape	Description	Remarks
		SCREWS	
P	8⊃	pan-head screw	binding-head (B) screw for replacement
PWH	₽	pan-head screw with washer face	binding-head (B) screw and flat washer for replacement
PS PSP	8 0-	pan-head screw with spring washer	binding-head (B) screw and spring washer for replace- ment
PSW PSPW	6\$ ‡>	pan-head screw with spring and flat washers	binding-head (B) screw and spring and flat washers for replacement
R	. 🕀	round-head screw	binding-head (B) screw for replacement
ĸ	; Þ	flat-countersunk-head screw	
RK	0	oval-countersunk-head screw	
в	6	binding-head screw	
Ť	₽	truss-head screw	binding-head (B) screw for replacement
F	80	flat-fillister-head screw	
RF	€⊃	fillister-head screw	
BV	Ð	braizer-head screw	1

2

Designation	Shape	Description	Remarks
-		SELF-TAPPING SCRE	WS
TA		self-tapping screw	ex: TA, P 3 x 10
PTP	80	pan-head self-tapping screw	binding-head self- tapping (TA, B) screw for replacement
РТРШН	€==>	pan-head self-tapping screw with washer face	binding-head self tapping (TA, B) screw and flat washer for replacement
PTTWH		pan-head thread-rolling screw with washer face	binding-head (B) screw and flat washer for replacement
		SET SCREWS	
SC	Θ	set screw	
SC	0	hexagon-socket set screw	ex. SC 2.6 x 4, hexagon socket
		NUT	
N	00	nut	
		WASHERS	
w	0	flat washer	
SW	01	spring washer	•
LW	0	internal-tooth lock washer	ex: LW3, internal
LW	0	external-tooth lock washer	ex: LW3, external
		RETAINING RINGS	
E	0	retaining ring	
G	0	grip-type retaining ring	

-xF-330K

Ţ

Sony Corporation © 1977

- 5

77K0545-2 Printed in Japan

K4XL's 🌮 BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu