# Eddystone

# **5000 SERIES**

# HF SSB TRANSCEIVER ORION



# Eddystone Radio



A MARCONI COMMUNICATION SYSTEMS COMPANY. Eddystone Radio Limited, Eddystone Works, Alvechurch Road, Birmingham B31 3PP, England. Telephone: 021 475 2231 Telex: 337081. Cables: Eddystone Birmingham

© EDDYSTONE RADIO LIMITED 1984.

PRINTED IN ENGLAND Issue Number 1 April 1985

## AMENDMENT RECORD

| Amend No. | Pages subject to change | Amended by | Date |
|-----------|-------------------------|------------|------|
| 1         |                         |            | •    |
| 2         |                         |            |      |
| 3         |                         |            |      |
| 4         |                         |            |      |
| 5         |                         |            |      |
| 6         |                         |            |      |
| 7         |                         |            |      |
| 8         |                         |            |      |
| 9         |                         |            |      |
| 10        |                         |            |      |
| . 11      |                         |            |      |
| 12        |                         |            |      |
| 13        |                         |            |      |
| 14        |                         |            |      |
| 15        |                         |            |      |
| 16        |                         |            |      |
| 17        |                         |            |      |
| 18<br>19  |                         |            |      |
| 20        |                         |            |      |
| 20        |                         |            |      |
| 22        |                         |            |      |
| 23        |                         |            |      |
| 24        |                         |            |      |
| 25        |                         |            |      |
| 26        |                         |            |      |
| 27        |                         |            |      |
| 28        |                         |            |      |
| 29        |                         |            |      |
| 30        |                         |            |      |

The Manufacturer reserves the right to modify the content of this publication as necessary to accommodate modifications, design improvements etc. Relevant Amendment Sheets will be incorporated at date of issue. Eddystone Radio Limited

#### 5,000 Channelising Instructions Supplement

#### Channeling

- When setting up the 5000 to operate on extra channels, it will be - necessary to fit coils to the Receiver RF board Reference 3, the Receiver Mixer board Reference 5, the Transmitter Mixer board Reference 4 and the Transmitter Pre-amplifier board Reference 6.
- Table 1 below shows the coils to be fitted for the frequency range required.
- The same type of coil is fitted to all four boards for a particular range.

#### TABLE 1

| <br>RANGE | FREQUENCY | PART NUMBER |
|-----------|-----------|-------------|
| <br>1     | 2-3MHz    | D5926       |
| 2         | 3-5MHz    | D5927       |
| 3         | 5-8MHz    | D5928       |
| 4         | 8-12MHz   | D5929       |
| 5         | 12-16MHz  | D5930       |

- Coils and capacitors will also have to be fitted to the PA output filter board Reference 10 for the appropriate range, but if frequencies for several channels fall within one coil range links can be arranged on the switch wafers 10SWl and 10SW2 to employ the one filter coil and capacitors for more than one channel.
- Filter coils and capacitors for different ranges are shown in Table 2 - below:
  - Capacitors are silver mica 350V working with  $\pm 2$ % tolerance.

#### TABLE 2

| RANGE | FREQUENCY | Cl    | C2    | C3    | INDUCTOR PART NUMBER |
|-------|-----------|-------|-------|-------|----------------------|
|       | ·         |       |       |       |                      |
| 1     | 2-3MHz    | 1000p | 2000p | 1000p | D5957                |
| <br>2 | 3-5  MHz  | 470p  | 1200p | 470p  | D5958                |
| 3     | 5-8MHz    | 200p  | 750p  | 200p  | D5959                |
| 4     | 8-12MHz   | _     | 470p  | -     | D5960                |
| <br>5 | 12-16MHz  |       | 470p  | -     | D5961                |

When removing any of the five plug in boards, it is first necessary to remove the switch shaft passing through the boards by loosening the grub screw on the shaft coupler and withdrawing the shaft to the rear through the hole provided in the heatsink.

Due to the tolerance in ferrite material it may be necessary, when operating at the extreme HF end of each filter coil, to remove turns to enable full power to be transmitted.

#### Oscillator

Crystals should be ordered against the following specification:

Quartz Crystal type HC42/U Parallel Resonance ±25 PPM Initial Tolerance at  $25^{\circ}C$ ±5 PPM Frequency Variation over  $0^{\circ}C$  to  $40^{\circ}C$ . To tune with 30pf.

The oscillator circuits are optimised over the range 3.4MHz to 17.4MHz. If low activity crystals are fitted at the extreme ends of the range, oscillations may be unreliable and Capacitors C6/7, C9/10, C12/13, C15/16, C18/19 or C21/22 (according to channel fitted) should be changed from 270pf to 150pf at high frequency end and 330pf at low frequency end.

#### Coil Adjustment

After fitting coils and crystals for additional ranges, or when changing existing ranges, carry out test procedure. Coil core location and crystal trimmer locations will be found on Pages 5 and 6.

#### Squelch Adjustment

Final adjustment to squelch level (8RV1) should be made under normal working conditions such that the squelch lifts when receiving the required transmission.

#### Test Procedure

1) Test Equipment Required:-

DC Power Supply 13.6V at 20 amp rating Output Power Meter 8 ohm impedance (e.g. Marconi Instruments TF893A) Signal Generator 2MHz to 16MHz (e.g. Marconi Instruments 2002 or similar) 50 ohm RF load resistor (100 watt rating) Oscilloscope (50MHz bandwidth) with high impedance probe Distortion Factor Meter (e.g. Marconi Instruments TF2331 or similar) Spectrum Analyser (if available) (e.g. Marconi Instruments TF2370) Frequency Counter (to 16MHz) AVO 8 Multi-meter or similar Eddystone 5000 channelising instruction supplement continued....

- 2) Connect DC Power Supply (set to 13.6V) to 5000 terminals (if using internal AC power supply all tests can be carried out, except that measurement of full output power on transmit cannot be made).
- 3) Receiver Section Alignment
  - a) Connect output power meter to ancillary socket 8 ohm audio output, pin 8 and pin 7 (earth).
  - b) Set 5000 to channel required and connect Signal Generator to aerial socket. Set Signal Generator to channel frequency +1kHz and at a suitable output level below AGC threshold.
  - c) Tune 3L1-3L6 as appropriate on receiver RF amplifier and 5L1-5L6 as appropriate on receiver mixer printed circuit board for maximum output taking care to keep the input level below AGC threshold.
- d) Set 7RV1 on lowest gain channel to give a 5uV (emf) AGC threshold.
- e) Remove Signal Generator and short pins 1 and 2 on 1SK3 (Microphone input) or change (s-u) link to (s-t).

Connect Frequency Counter to pin 52 on interconnection board 2 and adjust 2Cl to 2C6 on channels 1 to 6 respectively (where fitted) to give correct frequency.

Replace (s-u) link and check clarifier range on each channel (approximately  $\pm 100$  Hz at 3MHz to  $\pm 1$ kHz at 16MHz).

- f) Reconnect Signal Generator to aerial socket. With Signal Generator set for 0.5uV p.d. output check that the signal to noise ratio is better than 20dB on each channel fitted.
- g) Set squelch control 8RV1 to mid-position and with a steady state signal input of approximately 100uV check that receiver is muted.

Vary the input frequency with generator or clarifier and check that muting lifts.

A final setting of the squelch control 8RV1 should be made when receiving a speech signal in normal use.

#### 4) Transmitter Section Test

a) Set microphone gain control 2RV1 to mid-position and connect 50 ohm 100 watt load resistor to aerial socket.

Connect oscilloscope across load.

b) Select channel required. Apply audio input to pins 4 and 5 of 1SK3, then short pins 1 and 2 of 1SK3 together.

Tune 4Ll-4L6 as appropriate for maximum output, reducing audio level to keep output level below 100V peak to peak on the oscilloscope. Always start with coils at maximum inductance (core inside former) and turn core anti-clockwise for first peak, otherwise it would be possible to tune at incorrect suprious frequencies.

c) Turn ALC control 10RV1 fully anti-clockwise and apply lkHz and l.6kHz to audio input (pins 4 and 5 of 1SK3). Increase audio input level until output no longer increases, i.e. transmitter ALC is working. Turn ALC control in clockwise direction (increasing audio level if necessary) until 'unflattened' output level on oscilloscope is reached (see figure 1 below).

Output should be between 200V peak to peak and 250V peak to peak (150 watts PEP). If a Spectrum Analyser is available check that Intermodulation Distortion is better than -25dB.

d) Check other channels for 'unflattened' output and adjust ALC control if necessary (and audio input level if necessary to ensure transmitter ALC is working).

- e) Remove short circuits on ISK3 and connect microphone and adjust Microphone Gain 2RV1 so that talking normally into the microphone causes peaks to reach maximum output level without undue clipping.
- f) NOTE Full 2 tone output cannot be achieved with internal AC PSU (AC/DC Models). The AC Power Supply Unit is suitable for SSB where current drawn by speech waveform is not as high as steady state 2 tone output. This does not imply that transmitter does not give 150 watts PEP output with normal speech operation.

(a)

(b)

(c)

Correctly adjusted

Slight flattening of peaks

Severe fattening of peaks



#### **Two Tone Patterns**

Figure 7



## 5000 SERIES CORE TUNING LOCATION

CEDDYSTONE RADIO LTD 1985





Series 5000 Crystal Positions & Associated Trimmers

#### January, 1986

#### Eddystone Radio Limited

#### 5000 Supplement Number One

The VSWR protection circuit is modified to allow higher RF output into mis-matched loads, whilst maintaining protection to the power amplifier transistors against open and short circuit load conditions.

A 47k (10RV3) variable resistor is fitted in series with 10R5 on the power amplifier output filter printed circuit board, situated at the lower centre of the board under the channel switch. On initial installation 10RV3 should be set fully clockwise (zero resistance), and the transceiver installed as detailed in Section 4.

If a good VSWR match is not possible due to the antenna impedance or limitations in the aerial tuner unit the forward power obtained from the transceiver may be limited by the VSWR protection circuit. Under these circumstances 10RV3 can be turned in an anti-clockwise direction to increase the output power to the required level.

10RV3 should be set at the minimum level consistent with the required output power to maintain optimum protection against antenna open circuit and short circuit conditions.

Eddystone Radio Limited.

### Variations of the 5000 Series

DC AC/DC USB USB/ TABLE/ RACK DUPLEX LSB VEHICLE

| Model Number 5000/1    | 1CH | * |   | * |   | * |   |   |
|------------------------|-----|---|---|---|---|---|---|---|
| Model Number 5000/1A   | ۱СН | * |   |   | * | * |   |   |
| Model Number 5000/2    | 1CH |   | * | * |   | * |   |   |
| Model Number 5000/2A   | 1CH |   | * |   | * | * |   |   |
| Model Number 5000/1R   | 1CH | * |   | * |   |   | * |   |
| Model Number 5000/1AR  | 1CH | * |   |   | * |   | * |   |
| Model Number 5000/2R   | 1CH |   | * | * |   |   | * |   |
| Model Number 5000/2AR  | 1CH |   | * |   | * |   | * |   |
| Model Number 5000/1B   | 1CH | * |   | * |   | * |   | * |
| Model Number 5000/1AB  | 1CH | * |   |   | * | * |   | * |
| Model Number 5000/2B   | 1СН |   | * | * |   | * |   | * |
| Model Number 5000/2AB  | 1СН |   | * |   | * | * |   | * |
| Model Number 5000/1 BR | 1CH | * |   | * |   |   | * | * |
| Model Number 5000/1ABR | ICH | * |   |   | * |   | * | * |
| Model Number 5000/2BR  | 1CH |   | * | * |   |   | * | * |
| Model Number 5000/2ABR | 1CH |   | * |   | * |   | * | * |
|                        |     |   |   |   |   |   |   |   |

| Section 1<br>Section 2<br>Section 3<br>Section 4<br>Section 5<br>Section 6<br>Section 7 | Introduction & General Description<br>Specification<br>Circuit Description<br>Installation<br>Operation<br>Maintenance (Voltage Analysis)<br>Spares:-                                                                                                                        | n "                                                                                                                                                                                 | Page 1 of 1<br>Pages 1–3<br>Pages 1–6<br>Pages 1–11<br>Pages 1–5<br>Pages 1–10<br>Pages 1–28                                                                          |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         | Chassis components Board<br>Interconnection Board<br>Receiver RF Amp. Board<br>Transmitter Mixer Board<br>Receiver Mixer Board<br>Transmitter Driver Board<br>IF Board Assembly<br>Audio Board<br>Oscillator Board<br>Output Filter Board<br>PA Module Board<br>AC-PSU Board | Reference 1<br>Reference 2<br>Reference 3<br>Reference 4<br>Reference 5<br>Reference 6<br>Reference 7<br>Reference 8<br>Reference 9<br>Reference 10<br>Reference 11<br>Reference 14 | Pages 1-2<br>Pages 2-3<br>Pages 4-5<br>Pages 5-7<br>Pages 8-9<br>Pages 9-11<br>Pages 11-15<br>Pages 15-18<br>Pages 19-21<br>Pages 22-24<br>Pages 25-27<br>Pages 27-28 |
| Diagrams:                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                       |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                      | <ol> <li>DC Plug (AC/DC Version)<br/>(View from wiring side of free</li> <li>AC connections (AC/DC Version<br/>(View from wiring side of free</li> <li>Mains Tappings</li> <li>Mobile Antenna Mounting Brack</li> <li>Co-Axial cable connection to</li> </ol>                | connector)<br>on)<br>connector)<br>:ket                                                                                                                                             | Page 1 of Sec. 4<br>Page 2 of Sec. 4<br>Page 3 of Sec. 4<br>Page 5 of Sec. 4<br>Page 6 of Sec. 4<br>Page 3 of Sec. 6                                                  |
|                                                                                         | aries Connections<br>ories Kit                                                                                                                                                                                                                                               |                                                                                                                                                                                     | Page 3 of Sec. 4<br>Page 11 of Sec. 4                                                                                                                                 |
| Illustrations:                                                                          |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                       |
| Interna                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     | Page 4 of Sec. 5<br>Page 5 of Sec. 5<br>Page 5 of Sec. 6<br>Page 6 of Sec. 6<br>Page 7 of Sec. 6                                                                      |

Index continued....

Bound at Rear:

Appendix A - Component Handling

| Appendix B - |               |                                      | Page B1-B12  |
|--------------|---------------|--------------------------------------|--------------|
|              | Noise Suppres | ssion                                | Page B1      |
|              | Microphone    | Base Station Microphone S1791        | Page B1      |
|              |               | Hand Mobile Microphone S1790         | Page B2      |
|              | Antennas      | •                                    | Page B3      |
|              |               | Series Mobile Whip S1781             | Page B4      |
|              |               | Multi-Frequency Trap Dipole Antennas | 0            |
|              |               | S1782/3/4                            | Page B5-B6   |
|              |               | Aluminium Masts \$1786/7/8           | Page B7-B8   |
|              |               | HF Dipole Antennas S1785             | Page B9-B10  |
|              |               | Broadband Dipole S1780               | Page B11-B12 |

Printed Circuit Boards:

| Interconnection     | Reference 2  | 11769P |
|---------------------|--------------|--------|
| Transmitter Mixer   | Reference 4  | 11931P |
| Transmitter Pre-Amp | Reference 6  | 11934P |
| Receiver Mixer      | Reference 5  | 11932P |
| Receiver RF Amp     | Reference 3  | 11935P |
| IF Amp              | Reference 7  | 11760P |
| Audio               | Reference 8  | 11768P |
| Oscillator          | Reference 9  | 11767P |
| PA Output Filter    | Reference 10 | 11933P |
| Power Amp           | Reference 11 | 11761P |
| AC PSU              | Reference 14 | 12276P |

Circuits:

 BP1779
 Issue 2

 BP1776
 Issue 3

 BP1781
 Issue 2

 BP1788
 Issue 2

 BP1780
 Issue 2

 BP1780
 Issue 2

 BP1781
 Issue 2

 BP1782
 Issue 2

 BP1783
 Issue 2

 BP1784
 Issue 2

 BP1785
 Issue 2

 BP1786
 Issue 2

| Receiver Mixer          | Reference 5    |
|-------------------------|----------------|
| Interconnection Diagram | Reference      |
| Oscillator              | Reference 9    |
| Audio                   | Reference 8    |
| Transmitter Pre-Amp     | Reference 6    |
| IF Amp                  | Reference 7    |
| Power Amp               | Reference 11 · |
| PA Output Filter        | Reference 10   |
| AC Power Unit           | Reference 14   |

Page A1

#### Section 1

#### INTRODUCTION & GENERAL DESCRIPTION

The Eddystone ORION 5000 is a compact transceiver operating over the frequency range 2MHz to 16MHz with a maximum output of 150 watts P.E.P. Up to six crystal controlled channels are available as required.

In basic form the ORION 5000 operates in simplex mode on USB (A3J) from a 13.6V DC source with negative ground. Optional features available are LSB operation, operation on both LSB and USB, AM (A3H) on one pre-selected channel, semi-duplex operation on two channels only, and a further two channels within 1% of existing channel frequencies.

An AC/DC version with built in AC power supply unit allows operation from either 13.6V DC with negative ground or 115V/230V 50Hz/60Hz AC.

The ORION 5000 is ruggedly constructed with modular plug-in units to allow rapid servicing and maintenance.

The rack mounting version with a standard 483mm (19") panel is also available for base station use.

Page 1 of Sec. 1

#### Section 2

#### SPECIFICATION

#### General

Frequency Range:

Channels:

Mode of Operation:

**Optional Facilities:** 

**Operational Temperature:** 

Humidity:

Altitude:

Controls:

Connectors:

Indicators:

Power Supplies:

Power Consumption:

Continuous coverage 2MHz - 16MHz

1 (standard) no restriction on frequency. Extra channels to maximum of 6 (optional). Further 2 channels within  $\pm 1\%$  of other channels.

Simplex USB (A3J) standard. USB and LSB optional.

Semi-duplex available on 2 channels only. AM (A3H) programmed on 1 pre-selected transmit channel.

-10°C to +55°C

95% relative, suitable for marine and tropical service.

5000m

Front panel – Audio gain with supply switch, RF gain, squelch on/off, clarifier, channel selector. USB/LSB and simplex/duplex when fitted. Internal – microphone gain, ALC level.

Front panel - microphone or handset. Rear panel - power connector, antenna connector, and ancillary connector for external loudspeaker and antenna tuner control.

Power on LED. Transmitter antenna current meter. (Reads signal strength on receive).

DC Model - 13.6V DC negative ground; AC/DC model 115V/230V, 50Hz/60Hz or 13.6V DC.

DC Model - Receiver - 100mA/300mA: Transmit - 12A average, voice operation.

Page 1 of Sec. 2

#### Dimensions:

DC Version -

AC/DC Version -

Weight:

DC Version -

AC/DC Version -

Width 300mm Depth 250mm Height 100mm

Width 300mm Depth 350mm Height 100mm

4.5Kg.

6Kg.

#### Transmitter

Power Output:

Intermodulation Distortion:

Frequency Stability:

Audio Bandwidth:

Carrier Suppression:

Hum & Noise:

Harmonic Suppression:

ALC:

Microphone:

Antenna Filter:

Page 2 of Sec. 2

Within the range 120W/150W

150W - 25dB 3rd order typical 100W - 30dB 3rd order minimum

Standard –  $\pm$ 005% Better than  $\pm$ 20Hz with proportional oven (optional).

-6dB, 350Hz to 2700Hz

-45dB

-45dB

Typical -50dB, minimum -40dB. Other spurious rejection better than -43dB.

10dB audio increase causes less than 0.5dB increase in power output. Intermodulation distortion remains within specification.

Gain adjustable for all medium or high output dynamic or ceramic microphone.

5 pole Tchebycheff.

Circuit:

Single conversion, 1400kHz IF, all solid state. Final amplifier broadband 2MHz to 16MHz.

#### Receiver

Sensitivity:

Selectivity:

AGC:

Clarifier:

Image Rejection:

Netting:

IF Rejection:

Squelch:

Audio Output:

Loudspeaker:

Circuit:

**Cross Modulation:** 

 $0.5\mu V$  p.d. for 20dB S-N/N

-6dB, 2.4kHz -60dB, 3.8kHz

Less than 3dB change in AF output from  $5\mu$ V – 100mV signal input. 20mSec attack and 2sec decay, optimised for SSB operation, with pedestal action.

Incremental receiver tuning, connected only in receive mode.

-55dB typical

Internal connection for netting transmitter frequency while in the receive mode.

70dB to 90dB

Operates from syllabic change, optimised for SSB operation.

3W at less than 5% distortion.

8 cm internal or  $8 \Omega$  external via ancillary connector.

Single conversion all solid STATE, 1400kHz IF.

With a wanted carrier 60dB above  $1\mu$ V adjusted to give standard output at an audio frequency of 1400Hz, an-unwanted signal 10kHz off-tune and modulated 30% at 1000Hz must be of a level exceeding 90dB above  $1\mu$ V to produce an audio output greater than 30dB below standard output.

Page 3 of Sec. 2

Section 3

#### CIRCUIT DESCRIPTION

#### (Receive Mode)

#### 1) RF Amplifier - Module 3

Signals from the aerial socket pass via Transmit/Receive relay 2RLA to gate 1 of the RF amplifier 3TR1. (Dual gate MOSFET).

Protection against high induced aerial voltages is afforded by diodes 3D1-3D4.

3L1-3L6 are switched preset tuned circuits across the input to gate 1 of 3TR1. (Tuned circuits are fitted as required for the frequency range specified). Gain of the RF stage is controlled by AGC voltage applied to gate 2.

#### 2) Receiver Mixer - Module 5

Amplified signals from 3TR1 are applied to gate 1 of mixer transistor 5TR1 (Dual gate MOSFET) with switched preset tuned circuits across the input (fitted as required for the frequency range specified).

Oscillator injection from Module 9 (oscillator) is applied to gate 2.

5CH2 forms the drain load for the resultant 1.4MHz output.

#### 3) IF Amplifier - Module 7

Output from 5TR1 is passed through SSB filter 7FL2 (1400kHz) which may be either USB or LSB according to requirements.

If both USB and LSB filters are required the additional filter is fitted in 7FL1 position and switching between filters is by means of diodes 7D1-7D4.

Output from the SSB filter feeds gate 1 of the 1st IF amplifier 7TR1 (Dual gate MOSFET) and tuned circuit 7L1/7C16 forms the drain load.

The gain of 7TR1 is varied by AGC voltage applied to gate 2.

7TR2 is the second IF amplifier with 7L2/7C17 forming the collector load.

Output from 7TR2 feeds the input of 7IC1, an integrated circuit which combines the functions of AM detector, AM AGC generator and SSB demodulator. Carrier insertion to 7IC1 on SSB is from 1.4MHz crystal oscillator 7TR6.

7TR2 also feeds the optional IF output stage 7TR3 which provides a low impedance output at 1.4MHz on a rear panel socket.

SSB AF output from 7IC1 is applied to 7IC3 an integrated circuit functioning as a generator of AGC developed from the detected SSB audio waveform.

AM and SSB AGC outputs from 7IC1/7IC3 are combined and amplified by 7IC2 before being applied to IF amplifier 7TR1 and RF amplifier 3TR1. The larger of the two AGC voltages developed controls the AGC action.

AGC output from 7IC1/7IC3 also operates the front panel signal strength meter.

AM and SSB audio outputs are routed to the audio amplifier (Module 8).

4) Oscillator - Module 9

Injection to receiver mixer 5TR1 is provided by one of six crystal oscillator circuits 9TR2 - 9TR7, the required circuit being selected by diodes 9D7, 9D13, 9D19, 9D25, 9D31 and 9D37 respectively.

A vari-cap diode is connected across each oscillator circuit and with variable reverse bias from a front panel clarifier control, provides a small change of oscillator frequency.

Output from each crystal oscillator is routed via buffer stage 9TR1.

#### 5) Audio Amplifier - Module 8

AM or SSB audio output from Module 7 is taken via the squelch circuit and a front panel AF gain control, to audio amplifier 8IC3 which feeds the internal loudspeaker and provides output for an external loudspeaker via the ancillary connector.

8TR1 forms an audio gate in series with the feed to the AF gain control.

Audio from Module 7 is also fed to amplifiers 8IC1a/8IC1b whose gain is high enough to allow clipping on the input noise.

The clipped output of 8IC1a/b is of sufficient amplitude to continuously trigger the monostable multivibrator 8IC2a/8IC2b.

Output pulses from the multivibrator are filtered by high pass filter 8C8, 8C9 and 8R18), rectified by 8D1 and passed through low pass filter circuit 8R20, 8C10, 8R21 and 8C11.

At the output of the filter the varying DC level is proportional to the frequency of the output pulses from the multivibrator 81C2a/b.

This variation in DC level corresponds to the change in frequency of the voice being received. The DC level is now fed into amplifier 8IC1d which responds to frequencies in the region of 1Hz.

The output of 8IC1d now passes to 8IC1c, whose output will cause diode 8D3 to conduct if any positive or negative going voltages appear at 8D4/8D5 with an amplitude of 1V or greater. This allows detection of the first syllabic change appearing at the input of 8IC1a.

When 8D3 conducts, the input of 8IC2d goes low, and the output goes high allowing audio gate transistor 8TR1 to conduct and pass audio signals to the audio output stage.

8IC2c and 8C3 keep the gate of 8TR1 high for a short period, allowing the audio path to remain open for 1 to 2 seconds after speech ceases.

8D3 is also connected to a front panel squelch ON-OFF switch, and when 8R9 is connected to earth, the squelch circuit is disabled.

8RV1 adjusts to the threshold at which the squelch circuit operates.

#### 6) Audio Amplifier – Module 8

Microphone output via preset internal gain control 2RV1, is amplified by 8TR2 and 8TR3 before being fed to the signal input of double balanced modulator 8IC4. 1.4MHz oscillator input to 8IC4 is derived from the IF amplifier Module 7.

Double sideband suppressed carrier output from 8IC4 passes to Module 7.

Preset balance control 8RV2 allows optimum carrier suppression in 8IC4 to be achieved.

#### 7) IF Amplifier - Module 7

DSB output from the balanced mixer 8IC4 is filtered by 7FL2 (or 7FL1 if fitted) USB or LSB 1.4MHz filter, and the resultant SSB signal is amplified by 7TR1, whose gain is controlled by the ALC voltage developed from the transmitter output.

From 7TR1 the SSB signal passes to the transmitter mixer Module 4, via emitter follower stage 7TR4. The 1.4MHz crystal oscillator is held at constant level by 7TR7 and its associated components. Output from 7TR6 passes to audio Module 8. When AM is required (optional extra), 7TR5 is fitted to insert a 1.4MHz carrier to the SSB signal after the SSB filter.

The level of carrier insertion on AM is adjusted by preset control 7RV2.

#### 8) Transmitter Mixer - Module 4

SSB Signals at 1.4MHz are fed to the signal input of double balanced modulator 4IC1, with the carrier input derived from the oscillator Module 9.

The output from 4IC1 at signal frequency passes to emitter follower stage 4TR1.

4L1 - 4L6 are preset tuned circuits across the input to 4TR1 and are adjusted to signal frequency.

The coils fitted will vary according to the frequency bands required.

Page 4 of Sec. 3

#### 9) Oscillator - Module 9

Six crystal oscillator circuits are employed 9TR2 - 9TR7, the one in use being selected by earthing diodes 9D13, 9D19, 9D25, 9D31 or 9D37 respectively.

As all oscillator circuits are identical only 9TR2 is described.

In transmit mode, the vari-cap 9D3 diode ocross the oscillator circuit is switched out of circuit by reverse biasing switching diodes 9D2 and 9D4. The vari-cap diode is replaced by a fixed capacitor 9C5 switched into circuit by forward biasing switching diodes 9D5 and 9D6.

The output from each oscillator is fed to emitter follower stage 9TR1 providing a low impedance output.

#### 10) Transmitter Pre-amplifier - Module 6

Output from 4TR1 is amplified by transistor amplifier 6TR1 with the collector load formed by one of six preset switched tuned circuits 6L1 - 6L6. These circuits are at signal frequency and appropriate coils will have been fitted to suit the bands required.

Further amplification is performed by 6TR2 which is a broadband amplifier with matching transformer 6T1 as its collector load.

6T1 matches the output impedance of 6TR2 to the input impedance of the Power Amplifier Module 11. Switch section SW2 selects the appropriate oscillator circuit for the channel desired, and also selects antenna tuner unit channel (if fitted).

#### 11) Power Amplifier - Module 11

The power amplifier is a broadband unit with driver transistor 11TR1 coupled by matching transformer 11T1 to push-pull power amplifiers 11TR3 and 11TR4.

11T2 matches the output impedance of 11TR3/4 to the Output Filter Module 10.

11TR2, 11D1 and 11D2 provide a temperature compensated constant voltage bias supply for 11TR3/4 with RV1 preset control setting the quiescent current.

#### 12) Output Filter - Module 10

Five low pass filter sections are provided with cut off frequencies of approximately 3MHz, 5MHz, 8MHz, 12MHz and 16MHz to attenuate harmonic components in the output of the transmitter.

These filters are fitted as required by the channel frequencies. If more than one frequency is required in any of the five ranges, links are fitted on 10SW1 and 10SW2 to select the appropriate output filter.

Transformer 10T1 provides a sample of the output power to operate the aerial current meter and ALC circuits.

The RF output from 10T1 secondary is rectified by 10D1 and 10D2.

The DC output from 10D1 proportional to forward power, is fed via meter level preset control 10RV2 to the front panel aerial current meter.

The DC output from 10D2 proportional to reverse power is added to the DC output from 10D1 and amplified by 10TR1 filtered by CH1 and used to control the gain of IF amplifier 7TR1. Adjustment of ALC level is by means of 10RV1 preset.

The ALC circuit is also arranged to reduce the output of the power amplifiers in the event of excessive heat sink temperature.

A thermal switch mounted on the heat sink normally shorts out 10R8, but if the temperature rises above 70°C, the thermal switch allows 10R8 to increase the ALC level thus reducing the gain of IF amplifier 7TR1.

Section 4

#### INSTALLATION

#### General DC Model

#### 1a) Power Connector

The DC power is connected to the transceiver via a 6 way power socket located on the rear panel. A matching 6 way plug is supplied in the installation kit and this should be wired as shown below in Figure 1.



#### Figure 1

The DC supply should be connected by a pair of heavy duty cables.

Multicore cable consisting of 51 strands of 0.25mm wire is recommended unless long runs are required, when heavier cable should be used.

The connections to the plug should be soldered or crimped securely to ensure a low resistance joint.

The power cable should take the shortest route possible to the DC source to ensure minimum power loss.

Connections should be made directly to the DC source and not by existing wiring which in many cases will not carry sufficient current.

No external fuse is necessary, as a supply fuse is fitted inside the transceiver.

Page 1 of Sec. 4

#### 1b) AC/DC Model (DC Supply)

The DC connections are as below in Figure 2.



Figure 2

The wiring should be carried out as for the DC model.

### 1c) AC/DC Model (AC Supply)

The AC mains connections are as below in Figure 3.



Figure 3

AC cable supplied ready wired as shown in Figure 3. Connect other end to supply as follows:

| BROWN        | - | LINE    |
|--------------|---|---------|
| BLUE         | - | NEUTRAL |
| GREEN/YELLOW | - | EARTH   |

Page 2 of Sec. 4

1d) AC/DC Model (Adjustment of mains voltage tap)

Remove top cover of transceiver and remove cover plate over mains transformer.



Figure 4

Connect taps as shown in Figure 4 to suit local mains supply voltage.

#### 1e) Ancillaries Connector

| Pin 1 | - | Earth Contact Channel 1 )                           |
|-------|---|-----------------------------------------------------|
| Pin 2 | _ | Earth Contact Channel 2 )                           |
| Pin 3 | _ | Earth Contact Channel 3                             |
| Pin 4 | - | Earth Contact Channel 4 ) Antenna Tuner Unit        |
| Pin 5 | - | Earth Contact Channel 5 )                           |
| Pin 6 | - | Earth Contact Channel 6 )                           |
| Pin 7 | - | Earth return for external LS and antenna tuner unit |
| Pin 8 | - | External LS                                         |
| Pin 9 | - | + supply (V1) for antenna tuner unit                |

#### 2) Transceiver Mounting (Mobile)

1.7.4

In order to assess the most suitable position for mounting the transceiver inside a vehicle, the mobile cradle/shock tray should first be assembled and attached to the transceiver as shown in the assembly drawing BP1803, (see Page 4 of Sec. 4).

Page 3 of Sec. 4



The cradle/shock tray can be mounted in two ways:-

- (a) To allow the transceiver to be mounted under a dashboard.
- (b) To allow the transceiver to be mounted above a dashboard or on the centre tunnel.

Angular adjustments are facilitated by radial slots in the rear of the cradle. Carefully position the transceiver and cradle to allow adequate ventilation to the rear heat sink, and to allow mounting on a sound metal surface.

Note the position for mounting and remove the transceiver from the cradle. Position the cradle and drill four 5.5mm holes, taking care not to damage any wiring or instrumentation behind the metal panel being drilled.

Fit the cradle/shock mount to the vehicle with the four screws nuts and washers provided and then reassemble the transceiver and shock mounting plates in the cradle as shown in BP1803, see page 4 of Section 4.

If a microphone has been supplied with the transceiver, it will be provided with a mounting clip which should be fixed to a suitable surface close to the operating position with the screws supplied.

#### 3) Transceiver Mounting (Base Station)

The ORION 5000 should be placed in a suitable position on a horizontal flat surface, allowing adequate space for ventilation all round the equipment.

Care should be taken not to place books or other materials on top of the transceiver as this may cause excessive overheating. Rack mounted transceivers should be fixed with four 6mm screws through the front panel, ensuring that there is adequate ventilation with the rack round the equipment.

#### 4) Antenna Installation (Mobile)

The antenna is of rugged, heavy duty design, and therefore requires a solid mounting surface.

If a flat bumper surface, such as that found on a Land Rover is not available, then an angle bracket must be made using steel plate of a minimum 4mm thickness, or by using Eddystone mounting plate kit, type \$1801.

Page 5 of Sec. 4

The dimensions and position of the antenna base mounting holes can be determined by using the metal plate attached to the base, as a template. Adequate clearance must be allowed for the base centre connector bolt, as shown in Figure 5.



Mobile Antenna Mounting Bracket

#### Figure 5

The bracket can then be bolted to a suitable surface.

Mounting the antenna directly onto vehicle wings or roofs should be avoided as excessive movement in the antenna during motion will cause metal fatigue and eventual fracturing, resulting in the antenna breaking away.

Having mounted the antenna as described above, and securing the base with the three 6mm countersunk screws supplied, the co-axial cable should be routed through the vehicle body from the antenna base to the rear of the transceiver, with the attached PL259 connector at the transceiver end.

To ensure maximum efficiency the shortest route should be taken.

The co-axial cable at the antenna base should be bared and the terminal connectors fitted as shown in Figure 6.



#### Co-Axial Cable Connections To Mobile Antenna

#### Figure 6

The outer (braid) connector is fitted under one of the antenna securing nuts and the inner conductor is connected to the centre connector.

For base station antennas, see separate instructions.

#### 5) Tuning The Antenna

The antenna has been factory pre-tuned to the designated frequencies, but will require a small amount of adjustment to take into account individual vehicle proximity effects.

The PL259 on the 'free' end of the patch lead should be connected to the antenna socket on the rear of the transceiver, and hand tightened securely.

The PL259 on the end of the antenna feeder coax should be connected to the vacant socket (antenna) on a suitable VSWR meter. The DC supply connector can now be fitted to the socket on the rear of the transceiver. The microphone plug should also be fitted to the microphone socket on the front panel of the transceiver. Switch on the transceiver, and the red LED indicator should illuminate. Place the VSWR meter in a position where the dial can be clearly seen, and depress the microphone switch.

By whistling or by voice, call into the microphone in a constant manner, and adjust the 'Set' control on the VSWR meter until the needle reaches the 'Set' mark on the dial. Now switch the VSWR meter to read the SWR. This will probably read between 2 and 3. Release the

Page 7 of Sec. 4

microphone switch, remove the top whip section from the antenna using hexagon key supplied.

A hacksaw should be used to remove 1 inch (25mm) from the thick end of the steel whip. When this is removed, replace the whip and re-tighten. Repeat the VSWR test and note the dial readings, which should be slightly reduced.

Repeat the whole antenna cutting and testing procedure until a reading of between 1 and 1.5 is observed on the SWR dial. Final small adjustment can be made by loosening the hexagon screw holding the whip section of the antenna, and sliding the whip up and down to achieve minimum SWR reading.

When the lowest reading possible has been reached, the transceiver should be switched off. The plug should be removed from the transceiver antenna socket, and the antenna feeder cable plug removed from the VSWR meter.

The antenna feeder cable connector should then be fitted to the transceiver antenna socket, and hand tightened securely. (Remember, badly fitted RF connectors can cause damage to the equipment).

#### 6) Testing

The installation is now complete, and ready for testing. Again, switch on the transceiver. With the 'Squelch' control in the 'off' position, advance the volume control. A loud hiss will be heard in the loudspeaker. Switching the 'Squelch' to the 'on' position will cause the hiss to disappear. This indicates normal receiver operation.

Select an appropriate channel, and depress the microphone switch. Holding the microphone approximately 2 inches (50mm) from the mouth and speak in a normal clear manner. The 'Antenna Current' meter will be seen to 'kick' towards the right hand side of the scale, indicating normal and correct transmitter operation.

After a short identification call, release the microphone switch. A reply should be heard in the loudspeaker, and the correct voice 'tone' can be obtained by adjustment of the clarifier control. Adjustment of the 'RF Gain' control will ensure the receiver is not overloaded, and a clear signal is received.

#### Channeling

When setting up the 5000 to operate on extra channels, it will be necessary to fit coils to the Receiver RF board Reference 3, the Receiver Mixer board Reference 5, the Transmitter Mixer board Reference 6.

Table 1 below shows the coils to be fitted for the frequency range required.

The same type of coil is fitted to all four boards for a particular range.

| RANGE                 | FREQUENCY                                         | PART NUMBER                               |  |
|-----------------------|---------------------------------------------------|-------------------------------------------|--|
| 1<br>2<br>3<br>4<br>5 | 2-3MHz<br>3-5MHz<br>5-8MHz<br>8-12MHz<br>12-16MHz | D5926<br>D5927<br>D5928<br>D5929<br>D5930 |  |

Coils and capacitors will also have to be fitted to the PA output filter board Reference 10 for the appropriate range, but if frequencies for several channels fall within one coil range links can be arranged on the switch wafers 10SW1 and 10SW2 to employ the one filter coil and capacitors for more than one channel.

Filter coils and capacitors for different ranges are shown in Table 2 below:

Capacitors are silver mica 350V working with  $\pm 2\%$  tolerance.

| RANGE                 | FREQUENCY                                         | С1                         | C2                                     | C3                              | INDUCTOR<br>PART NUMBER                   |
|-----------------------|---------------------------------------------------|----------------------------|----------------------------------------|---------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5 | 2-3MHz<br>3-5MHz<br>5-8MHz<br>8-12MHz<br>12-16MHz | 1000p<br>470p<br>200p<br>- | 2000p<br>1200p<br>750p<br>470p<br>470p | 1000p<br>470p<br>200p<br>-<br>- | D5957<br>D5958<br>D5959<br>D5960<br>D5961 |

| Γ | a | b | l | е | 2 |  |
|---|---|---|---|---|---|--|
|   | a | D | l | e | Z |  |

When removing any of the five plug in boards, it is first necessary to remove the switch shaft passing through the boards by loosening the grub screw on the shaft coupler and withdrawing the shaft to the rear through the hole provided in the heatsink.

Due to the tolerance in ferrite material it may be necessary, when operating at the extreme HF end of each filter coil, to remove turns to enable full power to be transmitted.

#### Oscillator

Crystals should be ordered against the following specification:

Quartz Crystal Style HC42/U Parallel Resonance <sup>±</sup>25PPM Initial Tolerance at 25°C <sup>±</sup>5PPM Frequency Variation over 0°C to +40°C. To tune with 30pf.

The oscillator circuits are optimised over the range 3.4MHz to 17.4MHz. If low activity crystals are fitted at the extreme ends of the range, oscillations may be unreliable and Capacitors C6/7, C9/10, C12/13, C15/16, C18/19 or C21/22 (according to channel fitted) should be changed from 270pf to 150pf at high frequency end and 330pf at low frequency end.

#### Coil Adjustment

After fitting coils and crystals for additional ranges, or when changing existing ranges, carry out test procedure Pages 1-4 of Section 6 for each range. Coil core location and crystal trimmer locations will be found on Pages 7 and 8 of Section 6.

#### Squelch Adjustment

Final adjustment to squelch level (8RV1) should be made under normal working conditions such that the squelch lifts when receiving the required transmission.

#### Duty Cycle

The Orion 5000 allows a duty cycle of at least 50% transmit/receive (typically continuous on DC model) when used at 25°C with normal voice transmission. It should be noted that the heat sink and associated components may operate at up to 70°C, and that this temperature is quite normal for this type of equipment. At 70°C, a thermal trip operates which reduces the power output by 10dB, resetting automatically when the temperature reduces.

#### Kit of Accessories Spares for 5000/1

| 1 | 6way Receptacle Housing      | 12359P |
|---|------------------------------|--------|
| 3 | Crimp Female Connectors      | 12360P |
| 1 | 9 way Plug Housing           | 12358P |
| 9 | Crimp Male Connectors        | 12361P |
| 1 | UHF Co-Axial Plug            | 12357P |
| 1 | 20 amp $1\frac{1}{4}$ " Fuse | 12329P |

### Mains Version – Kit of Accessories Spares for 5000/2

| 1 | 6 way Receptacle Housing     | 12359P |
|---|------------------------------|--------|
| 3 | Crimp Female Connectors      | 12360P |
| 1 | 9 way Plug Housing           | 12358P |
| 9 | Crimp Male Connectors        | 12361P |
| 1 | UHF Co-Axial Plug            | 12357P |
| 1 | 20 amp $1\frac{1}{4}$ " Fuse | 12329P |
| 1 | Mains Lead                   | D5993  |
| 1 | 3.15 amp Anti-Surge Fuse     | 12332P |
| 1 | 3.15 amp Fuse                | 11967P |

Page 11 of Sec. 4

Section 5

#### OPERATION

#### Controls

#### 1a) AF Gain/On-Off Switch

This switch controls the power to the transceiver. There is no warm up period, and the equipment will function immediately once the knob has been turned in a clockwise direction.

The red LED lamp will illuminate, indicating that the equipment is operating.

Rotating the knob further in a clockwise direction will increase the output from the loudspeaker.

#### 1b) Squelch On-Off Switch

In the 'ON' position, no noise will be heard from the loudspeaker, regardless of the position of the volume control unless speech is being received on the channel selected.

With the squelch 'OFF', background noise will be heard at all times in the loudspeaker except when a signal is being received.

Except when listening to exceptionally weak signals, it is usually more comfortable to set the squelch switch to 'ON'.

#### 1c) Channel Selector Switch

If the transceiver is fitted with more than one channel, the appropriate channel can be selected by rotation of this control.

The frequency indicated will be applicable on both transmit and receive unless the transceiver is equipped for semi-duplex mode (see separate heading).

Page 1 of Sec. 5

#### 1d) USB/LSB Switch (when fitted)

If the transceiver has been supplied with USB and LSB filter option, the individual sidebands can be selected by the USB/LSB switch.

Unless the operator has been given specific instructions regarding the use of the USB/LSB modes, the USB mode should first be selected when attempting to receive a signal on the ORION 5000.

#### 1e) Clarifier Control

The clarifier, which is operational on receive mode only, allows the operator to adjust the frequency being received over small limits.

When a signal is heard the clarifier control should be adjusted to produce the most realistic and acceptable voice.

If, however, an intelligible signal cannot be resolved the LSB filter (when fitted) should be selected and the clarifier control re-adjusted for maximum clarity.

#### 1f) RF Gain Control

The RF gain control adjusts the sensitivity of the receiver section, and is used to prevent very strong signals from overloading the receiver. A strong signal will be seen to deflect the signal strength meter needle hard to the right of the scale.

The RF gain control should initially be set fully clockwise, and once a signal is received, the control should be turned anti-clockwise to produce the clearest reception.

With very weak signals the control should be kept fully clockwise.

#### 1g) Simplex/Semi-duplex Switch (when fitted)

This option provides semi-duplex operation on channels 1 and 6 of the transceiver, enabling the operator to use the equipment on split frequencies, one for receive and another for transmit with any spacing of the two frequencies.

If the frequency spacing on channels 1 and 6 is within 1%, then simplex or semi-duplex operation on these channels is possible.

#### 1h) Microphone

The Microphone supplied with the ORION 5000 will have a suitable plug fitted to the cable, and this should be inserted into the microphone socket on the front panel. The locking ring should be securely hand tightened to prevent the plug working loose.

Depressing a button on the side of the microphone actuates the transmitter section of the equipment, (or a lever in the case of the base station microphone).

When ready to transmit, the microphone should be placed approximately 1-2 inches from the operator's mouth, and to one side, so that when speaking, the operator speaks across the face of the microphone. This prevents bursts of air blowing into the microphone and causing distorted speech peaks. Unless under very difficult communication conditions, the operator should always speak in a normal voice level.

When using the equipment on AC mains whistling into the microphone should be avoided, as the heavy current drawn from the power supply will cause a voltage drop in the equipment on a sustained note. While no damage will occur from this practice it should be avoided.

No voltage drop in the AC mains power unit occurs on normal speech transmission.

#### 1i) Meter

On transmit, the meter indicates the average aerial current supplied from the ORION 5000. Because of the waveform of speech, the average current is very low, and gives a reading in the region of 0.5 amp when using a microphone for normal 150W PEP operation. A current of 1.2 amp corresponds to 150W PEP from a steady two tone signal.


FRONT VIEW



#### MAINTENANCE

#### Test Procedure

1) Test Equipment Required:-

DC Power Supply 13.6V at 20 amp rating Output Power Meter 8Q impedance (e.g. Marconi Instruments TF893A) Signal Generator 2MHz to 16MHz (e.g. Marconi Instruments 2002 or similar) 50Q RF load resistor (100 watt rating) Oscilloscope (50MHz bandwidth) with high impedance probe Distortion Factor Meter (e.g. Marconi Instruments TF2331 or similar) Spectrum Analyser (if available) (e.g. Marconi Instruments TF2370) Frequency Counter (to 16MHz) AVO 8 Multi-meter or similar

2) Connect DC Power Supply (set to 13.6V) to 5000 terminals (if using internal AC power supply all tests can be carried out, except that measurement of full output power on transmit cannot be made).

- 3) Receiver Section Alignment
- a) Connect output power meter to ancillary socket 8Ω audio output, pin 8 and pin 7 (earth).
- b) Set 5000 to channel 1 and connect Signal Generator to aerial socket. Set Signal Generator to channel 1 frequency +1kHz and at a suitable output level below AGC threshold.
- c) Tune 7L1 and 7L2 on IF printed circuit board for maximum output.

Tune 3L1 on receiver RF amplifier and 5L1 on receiver mixer printed circuit board for maximum output taking care to keep the input level below AGC threshold.

- d) Tune RF amplifier and mixer coils on all other channels fitted.
- e) Set 7RV1 on lowest gain channel to give a  $5\mu$ V (emf) AGC threshold.

- f) Increase input from Signal Generator to 100mV (emf) and set 2RV2 to give a reading of '5' on the signal strength meter.
- g) Connect Frequency Counter to pin 29 on interconnection board 2 and adjust 7C42 to give 1,400,000Hz.
- h) Remove Signal Generator and short pins 1 and 2 on 1SK3 (Microphone input) <u>or</u> change (s-u) link to (s-t).

Connect Frequency Counter to pin 52 on interconnection board 2 and adjust 2C1 to 2C6 on channels 1 to 6 respectively (where fitted) to give correct frequency.

Replace (s-u) link and check clarifier range on each channel (approximately  $\pm$ 100Hz at 3MHz to  $\pm$ 1kHz at 16MHz).

- i) Reconnect Signal Generator to aerial socket and select channel 1. Check selectivity at -6dB and -60dB (keeping input from signal generator below AGC threshold). -6dB should be of the order 300Hz and 2700Hz and -60dB of the order, -400Hz and +3400Hz. Repeat for other sideband if both USB and LSB filters are fitted.
- i) Check that RF gain range is greater than 40dB.
- k) Connect Distortion Factor Meter to the audio output and check that distortion at 1 watt output is less than 5%.

Check that maximum AF output is 3 watts.

- With Signal Generator set for 0.5µVp:d.output check that the signal to noise ratio is better than 20dB.
- m) Set squelch control 8RV1 to mid-position and with a steady state signal input of approximately 100µV check that receiver is muted.

Vary the input frequency with generator or clarifier and check that muting lifts.

A final setting of the squelch control 8RV1 should be made when receiving a speech signal in normal use.

- 4) Transmitter Section Tests
- a) Set microphone gain control 2RV1 to mid-position and connect  $50\Omega$  100 watt load resistor to aerial socket.

Connect oscilloscope across load.

- b) Connect Avo Meter on 1 amp range in main HT lead to PA and short pins 1 and 2 together on 1SK3. Adjust PA bias control 11RV1 to give 300mA standing current with no output.
- c) o/c pins 1 and 2 on 1SK3 and remove Avo Meter from PA HT lead.
- d) Select channel 1. Apply audio input to pins 4 and 5 of 1SK3, then short pins 1 and 2 of 1SK3 together.

Tune 4L1 and 6LT for maximum output, reducing audio level to keep output level below 100V peak to peak on the oscilloscope. Always start with coils at maximum inductance (core inside former) and turn core anti-clockwise for first peak, otherwise it would be possible to tune at incorrect suprious frequencies.

- e) Repeat (d) for any other channels fitted.
- f) Remove audio input and adjust 8RV2 for minimum output (carrier balance).
- g) Apply 1kHz and 1.6kHz to audio input (pins 4 and 5 of 1SK3) and increase level to 'unflattened' output on oscilloscope (see Figure 7 page 4 of Sec. 6).

Output should be between 200V peak to peak and 250V peak to peak (150 watts PEP). If a Spectrum Anaylser is available check that Intermodulation Distortion is better than -25dB.

- h) Adjust ALC control 10RV1 to give maximum 'unflattened' output on all channels with audio level driving into ALC.
- i) At maximum output 150 watts PEP adjust 10RV2 to give 1.2 amps on-Antenna Current Meter.
- Remove short circuits on 1SK3 and connect microphone and adjust Microphone Gain 2RV1 so that talking normally into the microphone causes peaks to reach maximum output level without undue clipping.

Page 3 of Sec. 6

NOTE Full 2 tone output cannot be achieved with internal AC PSU (AC/DC Models). The AC Power Supply Unit is suitable for SSB where current drawn by speech waveform is not as high as steady state 2 tone output. This does not imply that transmitter does not give 150 watts PEP output with normal speech operation.



1)



Page 5 of Sec. 6



INTERNAL VIEW DC VERSION

Page 6 of Sec. 6



# 5000 SERIES CORE TUNING LOCATION

CEDBYSTONE RADIO LTD 1985

| EDOYSTO  | NE RADIO LTD |  |  |  |
|----------|--------------|--|--|--|
| BIRMING  | HAM B31 3PP  |  |  |  |
| ENGLAND. |              |  |  |  |
| DRG No   | TBP1820      |  |  |  |



Series 5000 Crystal Positions & Associated Trimmers

Page 8 of Sec. 6

#### Voltage Analysis

Unless otherwise stated, figures taken in receive mode with AF Gain half travel, RF Gain maximum, clarifier centre, squelch off, with no signal applied. Figures measured with AVO meter number 8 (10,000 $\Omega$ /volt) on 25 volt range, with ORION powered from external 13.5 volt DC supply.

| Pin No. | G1  | G2   | S   | D    |
|---------|-----|------|-----|------|
| 3TR1    | 1.2 | 4.75 | 2.8 | 13.5 |
| 5TR1    | 1.8 | 0.9  | 0.8 | 13.5 |

| Pin No.                 | E          | В                 | С                    |
|-------------------------|------------|-------------------|----------------------|
| 4TR1*<br>6TR1*<br>6TR2* | 1.5<br>6.5 | 2.1<br>7.0<br>2.0 | 13.5<br>12.0<br>13.5 |

| Pin No. | Gl  | G2  | S   | D  |
|---------|-----|-----|-----|----|
| 7TR1    | 1.6 | 4.5 | 2.2 | 10 |

| Pin No. | E    | В    | С    |
|---------|------|------|------|
| 7TR2    | 4.5  | 5.0  | 10   |
| 7TR3    | 5.5  | 6.0  | 10   |
| 7TR4    | 3.75 | 4.5  | 10   |
| 7TR5    | 4.5  | 5.0  | 10   |
| 7TR6    | 1.75 | 1.25 | 8.5  |
| 7TR7    | 0    | 0.5  | 10.5 |
| 7TR8    | 3.5  | 4.25 | 6.0  |

| Pin No. | D   | G | S   |
|---------|-----|---|-----|
| 8TR 1   | 1.5 | 0 | 1.5 |

| Pin No. | E   | В   | C   |
|---------|-----|-----|-----|
| 8TR2*   | 0   | 0.5 | 6.5 |
| 8TR3*   | 6.0 | 6.5 | 8.0 |

Page 9 of Sec. 6

|                                                                                                                  |                                                                             | -                                                                               |                                                                                                      |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Pin No.                                                                                                          | е                                                                           | b                                                                               | c                                                                                                    |
| 9TR1<br>9TR2<br>9TR3<br>9TR4<br>9TR5<br>9TR6<br>9TR7<br>10TR1*<br>11TR1*<br>11TR2*<br>11TR2*<br>11TR3*<br>11TR4* | 3.0<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>0<br>1.25<br>0.5<br>0<br>0 | 3.6<br>2.6<br>2.6<br>2.6<br>2.6<br>2.6<br>2.6<br>0<br>2.0<br>1.25<br>0.5<br>0.5 | 10.0<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7<br>9.8<br>13.5<br>13.5<br>13.5<br>13.5<br>13.5 |

| Pin No. | Input | Gnd | 0/P  |
|---------|-------|-----|------|
| 1IC1 +  | 18.5  | 0   | 13.5 |
| 1IC2 +  | 18.5  | 0   | 13.0 |

| Pin No. | IN   | E | OUT |
|---------|------|---|-----|
| 7IC4    | 13.5 | 0 | 6.0 |
| 8IC5*   | 13.0 | 0 | 7.0 |

|         |      | -   | · · · · · · · · · · · · · · · · · · · |      |     |     |     |      |      | -   | - ·· | · · · · · · · · · · · · · · · · · · · |     |     |
|---------|------|-----|---------------------------------------|------|-----|-----|-----|------|------|-----|------|---------------------------------------|-----|-----|
| Pin No. | 1    | 2   | 3                                     | 4    | 5   | 6   | 7   | 8    | 9    | 10  | 11   | 12                                    | 13  | 14  |
| 4IC1*   | 0    | 3.0 | 3.0                                   | 6.0  | 5.0 | o   | 3.0 | 0    | -    | -   | -    | -                                     | -   | -   |
| 7IC1    | 0    | 0.6 | 0.8                                   | 0    | 0.6 | 3   | 6.0 | 4.1  | 1.25 | 0   | -    | -                                     |     | -   |
| 7IC2    | -    | 2.2 | 3.0                                   | o    | -   | 8.6 | 9.8 | 9.2  | -    | -   | -    | -                                     | -   | -   |
| 7IC3    | 1.0  | 0   | 1.0                                   | 6.0  | 1.0 | 0.5 | -   | 0    | -    | -   | -    | -                                     | -   | · - |
| 8IC1    | 6.5  | 2.0 | 4.0                                   | 12.5 | 6.0 | 1.5 | 6.0 | 6.0  | 6.0  | 3.6 | o    | 6.0                                   | 6.0 | 11  |
| 8IC2    | 7.0  | 7.0 | 6.0                                   | 5.5  | 6.0 | 6   | 0   | 12.5 | 12.5 | 3.6 | 12.5 | 0                                     | o   | 12  |
| 8IC3    | 13.5 | 0   | 0                                     | 13.5 | 0.6 | 1.3 | 6.8 | 0    | 0    | 0   | 0    | 7.0                                   | -   | -   |
| 81C4*   | 2.3  | 1.5 | ۱.5                                   | 2.25 | 1.0 | 5.5 | -   | 4.5  | -    | 4.5 | -    | 5.5                                   | -   | ٥   |

\* Figures taken in transmit mode with no audio input.
+ Orion powered from AC supply.

Page 10 of Sec. 6

#### Section 7

### SPARES

# Chassis Components (Reference 1)

### Capacitors

| Circuit Ref. | Value | Tolerance | Voltage Wkg. | Туре                |
|--------------|-------|-----------|--------------|---------------------|
| C1           | 100n  | +80% -20% | 100∨         | Multi-Layer Ceramic |
| C2           | 100n  | +80% -20% | 100∨         | Multi-Layer Ceramic |

#### Variable Resistors

| Circuit Ref. | Description           | Part Number   |
|--------------|-----------------------|---------------|
| R∨1          |                       | Not Allocated |
| R∨2          | 10k Log/2 pole switch | 12142P        |
| R∨3          | 10k Lin               | 12141P        |
| R∨4          | 10k Lin               | 12141P        |

# Integrated Circuits

| Circuit Ref. | Туре   | Manufacturer  | Description                        |
|--------------|--------|---------------|------------------------------------|
| IC1<br>IC2   | LM350T | National Semi | Not Allocated<br>Voltage Regulator |

### Transistors

| Circuit Ref. | Туре  | Manufacturer | Description |
|--------------|-------|--------------|-------------|
| TRI          | BDX69 | Mullard      | NPN Power   |

#### Diodes

| Circuit Ref. | Туре  | Manufacturer | Description      |
|--------------|-------|--------------|------------------|
| D1           | V168P | Telefunken   | LED (Red)        |
| D2           | BYW21 | Motorola     | Bridge Rectifier |

#### Miscellaneous:

| Tl  | Mains Transformer 15V at 6.6A 15V at 6.6A | 12327P |
|-----|-------------------------------------------|--------|
| M1  | Meter                                     | 12144P |
|     | Switch Clicker 6W                         | 12232P |
|     | 3" LS Unit                                | 12270P |
| SK3 | 5 way socket                              | 11077P |
| SK1 | GE40063/C10HBN Co-axial socket            | 12328P |
| SK4 | 9 way socket                              | 12325P |
| PL1 | 6 way plug                                | 12324P |
|     |                                           |        |

Chassis Components (Reference 1) continued....

Miscellaneous continued.....

| FSI | Thermal switch<br>20mm fuse holder<br>20mm fuse 3.15 amp<br>Heat sink | 12323P<br>12320P<br>11967P<br>12116P |
|-----|-----------------------------------------------------------------------|--------------------------------------|
|     |                                                                       | 12116P                               |

# Interconnection printed circuit board (Reference 2)

### Capacitors

| Circuit Ref.                                                     | Value                                                                             | Tolerance                                                      | Voltage Wkg.                                                               | Туре                                                                                                                                                                                                                                          |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1<br>C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>C8<br>C9<br>C10<br>C11 | 2-27р<br>2-27р<br>2-27р<br>2-27р<br>2-27р<br>2-27р<br>3300µ<br>1µ<br>220µ<br>100р | -<br>-<br>-<br>-<br>+50% -20%<br>+50% -20%<br>+50% -20%<br>±2% | 300V<br>300V<br>300V<br>300V<br>300V<br>300V<br>25V<br>100V<br>16V<br>100V | Film Dielectric Trimmer<br>Film Dielectric Trimmer<br>Film Dielectric Trimmer<br>Film Dielectric Trimmer<br>Film Dielectric Trimmer<br>Film Dielectric Trimmer<br>Electrolytic<br>Not fitted<br>Electrolytic<br>Electrolytic<br>Ceramic Plate |

#### Resistors

| Circuit Ref.                     | Value              | Tolerance         | Power Rating         | Туре                                                                                   |
|----------------------------------|--------------------|-------------------|----------------------|----------------------------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4<br>R5<br>R6 | 560R<br>4k7<br>6R8 | ±5%<br>±5%<br>±5% | 0.33W<br>0.33W<br>3W | Not fitted<br>Standard Film<br>Not fitted<br>Not fitted<br>Standard Film<br>Wire Wound |

Interconnection printed circuit board (Reference 2) continued.....

| Circuit Ref.                                                   | Туре                                                                                       | Manufacturer                                                                                    | Discription                                                                                                                                                                                            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D1<br>D2<br>D3<br>D4<br>D5<br>D6<br>D7 \$74<br>D8<br>D9<br>D10 | 1 N4004<br>1 N4004<br>BAX13<br>BAX13<br>BAX13<br>IN4001<br>BAX13<br>BZX79C6V2<br>BZX79C4V7 | Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard | NPN Rectifier Diode<br>NPN Rectifier Diode<br>NPN Rectifier Diode<br>NPN H/S Switching<br>NPN H/S Switching<br>NPN H/S Switching<br>Rectifier Diode<br>NPN H/S Switching<br>Zener Diode<br>Zener Diode |

## Diodes

#### Variable Resistors

| Circuit Ref. | Value | Tolerance | Power Rating | Туре          |
|--------------|-------|-----------|--------------|---------------|
| R∨1          | 10k   | ±20%      | 0.5W         | Cermet Preset |
| R∨2          | 10k   | ±20%      | 0.5W         | Cermet Preset |

#### Miscellaneous:

| Printed Circuit Boo | ard                                      | 11769P |  |
|---------------------|------------------------------------------|--------|--|
| RLA                 | D/P Co Relay                             | 12303P |  |
| PL9                 | 3 way plug                               | 12305P |  |
| PL1-6               | 4 way plug                               | 12306P |  |
| PL7/8/12            | 6 way plug                               | 12307P |  |
| PL10/11/15/16       | 8 way plug                               | 12308P |  |
| PL13                | 10 way plug                              | 12309P |  |
| PL18                | 11 way plug                              | 12310P |  |
| PL14                | 20 way plug                              | 12311P |  |
| SW1*                | 2 pole 2 way switch                      | 12304P |  |
| SW2                 | 2 pole 2 way switch                      | 12304P |  |
| SW3**               | 2 pole 2 way switch                      | 12304P |  |
| FS1                 | 20A 1 <sup>1</sup> / <sub>4</sub> " Fuse | 12329P |  |
|                     | Fuseholder                               | 12330P |  |
|                     |                                          |        |  |

USB/LSB Version Only Simplex/duplex Only \*SW1

\*\*SW3

Page 3 of Sec. 7

# Receiver RF Amplifier (Reference 3)

# Capacitors

| Circuit Ref. | Value | Tolerance | Voltage Wkg. | Туре                |
|--------------|-------|-----------|--------------|---------------------|
| C1           | 2n2   | ±10%      | 63V          | Ceramic Plate       |
| C2           | 180p  | ±2%       | 100V         | Ceramic Plate       |
| C3           | 220p  | ±2%       | 100V         | Ceramic Plate       |
| C4           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C5           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C6           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C7           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C8           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |

## Resistors

| Circuit Ref.         | Value                       | Tolerance                | Power Rating                              | Туре                                                             |
|----------------------|-----------------------------|--------------------------|-------------------------------------------|------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4 | 470k<br>22k<br>100k<br>330R | ±5%<br>±5%<br>±5%<br>±5% | 0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W | Standard Film<br>Standard Film<br>Standard Film<br>Standard Film |

#### Transistors

| Circuit Ref. | Туре  | Manufacturer | Description      |
|--------------|-------|--------------|------------------|
| TRI ·        | 3SK51 | Hitachi      | Dual Gate Mosfet |

Receiver RF Amplifier (Reference 3) continued.....

Chokes

| Circuit Ref. | Value | Tolerance        | Туре               |
|--------------|-------|------------------|--------------------|
| СН1          | 100µH | <del>±2</del> 0% | Miniature RF Choke |

#### Diodes

| Circuit Ref. | Туре  | Manufacturer | Description       |
|--------------|-------|--------------|-------------------|
| D1           | BAV10 | Mullard      | NPN H/S Switching |
| D2           | BAV10 | Mullard      | NPN H/S Switching |
| D3           | BAV10 | Mullard      | NPN H/S Switching |
| D4           | BAV10 | Mullard      | NPN H/S Switching |

## Miscellaneous:

| Printed Circuit Board  |                          | 11935P |  |
|------------------------|--------------------------|--------|--|
| SW1 2 pole 6 way wafer |                          | 12231P |  |
| SK1/SK2                | Right angle 4 way socket | 12312P |  |

# Transmitter Mixer (Reference 4)

### Capacitors

| Circuit Ref. | Value | Tolerance | Voltage Wkg. | Туре                |
|--------------|-------|-----------|--------------|---------------------|
| C1           | 10n   | +80% -20% | 25V          | Ceramic Disc        |
| C2           | 100µ  | +50% -20% | 10V          | Electrolytic        |
| C3           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C4           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C5           | 39p   | ±2%       | 100V         | Ceramic Plate       |
| C6           | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |

# Transmitter Mixer (Reference 4) continued.....

| Circuit Ref. | Value | Tolerance | Voltage Wkg. | Туре                |
|--------------|-------|-----------|--------------|---------------------|
| C7           | 100µ  | +50% -20% | 25V          | Electrolytic        |
| C8           | 120p  | ±2%       | 100V         | Ceramic Plate       |
| C9           | 820p  | ±1%       | 350V         | Polystyrene         |
| C10          | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C11          | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C12          | 47µ   | +80% -20% | 25V          | Electrolytic        |
| C13          | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C14          | 47µ   | +80% -20% | 25V          | Electrolytic        |
| C15          | 100n  | +80% -20% | 100V         | Multi-Layer Ceramic |
| C16          | 10n   | +80% -20% | 25V          | Ceramic Disc        |

----

Capacitors continued.....

#### Resistors

| Circuit Ref.                                              | Value                                                                | Tolerance                                                          | Power Rating                                                                                             | Туре                                                                                                                                                                   |
|-----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9<br>R10 | 4k7<br>1k<br>270R<br>330R<br>1k8<br>6k8<br>2k2<br>100R<br>220R<br>1k | +5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5% | 0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W | Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film |

#### Transistors

| Circuit Ref. | Туре  | Manufacturer | Description      |
|--------------|-------|--------------|------------------|
| TRI          | BFR54 | Mullard      | NPN RF Amplifier |

Page 6 of Sec. 7

Transmitter Mixer (Reference 4) continued.....

Chokes

| Circuit Ref. | Value · | Tolerance | Туре                       |
|--------------|---------|-----------|----------------------------|
| СН1          | 100µH   | ±20%      | Miniatu <b>re</b> RF Choke |

#### Diodes

| Circuit Ref. | Туре      | Manufacturer | Description |
|--------------|-----------|--------------|-------------|
| D1           | BZX79C6V2 | Mullard      | Zener Diode |
| D2           | BZX79C9V1 | Mullard      | Zener Diode |

# Integrated Circuits

| Circuit Ref. | Туре    | Manufacturer | Description    |
|--------------|---------|--------------|----------------|
| IC1          | SL1641C | Plessey      | Balanced Mixer |

#### Miscellaneous:

| SW1            | 2 pole 6 way switch wafer | 12231P |  |
|----------------|---------------------------|--------|--|
| SK1/SK2        | Right Angle 4 way socket  | 12312P |  |
| Printed Circui | t Board                   | 11931P |  |
| rimeu Circoi   | i boura                   | 117511 |  |

# Receiver Mixer (Reference 5)

# Capacitors

| Circuit Ref.                                       | Value                                                              | Tolerance                                                                          | Voltage Wkg.                                                        | Туре                                                                                                                                                                               |
|----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1<br>C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>C8<br>C9 | 2p2<br>100n<br>180p<br>180p<br>10n<br>100n<br>100n<br>100n<br>100n | ±2%<br>+80% -20%<br>±2%<br>±2%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20% | 100V<br>100V<br>100V<br>100V<br>25V<br>100V<br>100V<br>100V<br>100V | Ceramic Plate<br>Multi-Layer Ceramic<br>Ceramic Plate<br>Ceramic Plate<br>Ceramic Disc<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic |

### Resistors

| Circuit Ref.                                       | Value                                                      | Tolerance                                            | Power Rating                                                                  | Туре                                                                                                                                                  |
|----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9 | 270R<br>200k<br>4k7<br>270k<br>33k<br>100R<br>390R<br>100R | +5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5% | 0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W | Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Not Allocated<br>Standard Film<br>Standard Film |

## Chokes

| Circuit Ref. | Value | Manufacturer | Description        |
|--------------|-------|--------------|--------------------|
| CH1          | 150µН | Sigma        | Miniature RF Choke |
| CH2          | 4m7   | Sigma        | Miniature RF Choke |

Receiver Mixer (Reference 5) continued.....

Transistors

| Circuit Ref. | Туре  | Manufacturer | Description      |
|--------------|-------|--------------|------------------|
| TRI          | 3SK51 | Hitachi      | Dual Gate Mosfet |

Diodes

| Circuit Ref. | Туре  | Manufacturer | Description       |
|--------------|-------|--------------|-------------------|
| DI           | BAX13 | Mullard      | NPN H/S Switching |

### Miscellaneous:

| SK1/SK2        | Right Angle 4 way socket | 12312P |  |
|----------------|--------------------------|--------|--|
| SW1            | 2 pole 6 way wafer       | 12231P |  |
| Printed Circui | t Board                  | 11932P |  |

# Transmitter Driver (Reference 6)

Capacitors

| Circuit Ref.                                       | Value                                                            | Tolerance                                                                           | Voltage Wkg.                                                       | Туре                                                                                                                                                                      |
|----------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1<br>C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>C8<br>C9 | 100n<br>100µ<br>100p<br>1n<br>100µ<br>100n<br>100n<br>1n<br>100n | +80% -20%<br>+50% -20%<br>±2%<br>±5%<br>+50% -20%<br>+80% -20%<br>±10%<br>+80% -20% | 100V<br>25V<br>100V<br>160V<br>25V<br>100V<br>100V<br>100V<br>100V | Multi-Layer Ceramic<br>Electrolytic<br>Ceramic Plate<br>Polystyrene<br>Electrolytic<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Ceramic Plate<br>Multi-Layer Ceramic |

Page 9 of Sec. 7

Transmitter Driver (Reference 6) continued.....

## Resistors

| Circuit Ref.                                 | Value                                                   | Tolerance                                            | Power Rating                                                                  | Туре                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8 | 10k<br>2k2<br>100R<br>10k<br>220R<br>1k2<br>220R<br>10R | +5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5% | 0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W<br>0.33W | Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film |

Transistors

| Circuit Ref. | Туре   | Manufacturer | Description      |
|--------------|--------|--------------|------------------|
| TR1          | BFR54  | Mullard      | NPN RF Amplifier |
| TR2          | 2N3866 | Mullard      | NPN RF Amplifier |

.

Chokes

| Circuit Ref. | Value | Туре         | Number |
|--------------|-------|--------------|--------|
| СНІ          | -     | Output choke | D5943  |

Transformers

| Circuit Ref. | Туре               | Number |
|--------------|--------------------|--------|
| ті           | Output Transformer | D5944  |

Transmitter Driver (Reference 6) continued.....

Miscellaneous:

| Printed Circo | uit Board                 | 11934P |  |
|---------------|---------------------------|--------|--|
| SW1           | 2 pole 6 way switch wafer | 12231P |  |
| SK1/SK2       | Right Angle 6 way socket  | 12313P |  |

IF Board Assembly (Reference 7)

Capacitors

| Circuit Ref. | Value | Tolerance         | Voltage Wkg. | Туре                |
|--------------|-------|-------------------|--------------|---------------------|
| CI           | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C2           | 10n*  | +80% -20%         | 25V<br>25V   | Ceramic Disc        |
| C3           | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C4           | 100n* | +80% -20%         | 100          | Multi-Layer Ceramic |
| C5           | 100µ* | +50% -20%         | 25∨          | Electrolytic        |
| C6           | 100n  | +80% -20%         | 100          | Multi-Layer Ceramic |
| C7           | 100µ  | +80% -20%         | 25∨          | Electrolytic        |
| C8           | 10n*  | +80% -20%         | 25∨          | Ceramic Disc        |
| C9           | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C10          | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| CII          | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C12          | 100n  | +80% -20%         | 100          | Multi-Layer Ceramic |
| C13          |       |                   |              | Not Allocated       |
| C14          | 100n  | +80% -20%         | 100∨         | Multi-Layer Ceramic |
| C15          | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C16          | 270p  | ±2%               | 100∨         | Ceramic Plate       |
| C17          | 270p  | ±2%               | 100∨         | Ceramic Plate       |
| C18          | 100n  | +80% -20%         | 100∨         | Multi-Layer Ceramic |
| C19          | 100n  | +80% -20%         | 100          | Multi-Layer Ceramic |
| C20 +        | 10n   | +80% -20%         | 100V         | Ceramic Disc        |
| C21          | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C22          | 100n  | +80% -20%         | 100∨         | Multi-Layer Ceramic |
| C23          | lμ    | +50% -20%         | 100∨         | Electrolytic        |
| C24          | 220µ  | +50% -20%         | 10V          | Electrolytic        |
| C25          | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C26          | 47µ   | +50% -20%         | 25∨          | Electrolytic        |
| C27          | 10n   | +80% <b>-2</b> 0% | 25∨          | Ceramic Disc        |
| C28          | ۱μ    | +50% -20%         | 100∨         | Electrolytic        |
| C29          | 10n   | +80% -20%         | 25∨          | Ceramic Disc        |
| C30          | 100n  | +80% -20%         | 100∨         | Multi-Layer Ceramic |
| C31          | 100µ  | +50% <b>-</b> 20% | 10V          | Electrolytic        |
| C32          | 100µ  | +50% -20%         | 10V          | Electrolytic        |
| C33          | 220µ  | +50% -20%         | 10V          | Electrolytic        |
| C34 <b>‡</b> | 100µ  | +50% -20%         | 10∨          | Electrolytic        |

\*ONLY FITTED WITH USB/LSB VERSION †ONLY FITTED WITH IF OUTPUT VERSION ‡ONLY FITTED WITH AM ON TRANSMIT VERSION

Page 11 of Sec. 7

IF Board Assembly (Reference 7) continued.....

Capacitors continued.....

| Circuit Ref.                                                                                                                                                          | Value                                                                                                                             | Tolerance                                                                                                                                                                                        | Voltage Wkg.                                                                                                                    | Туре                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C35 <b>‡</b><br>C36 <b>‡</b><br>C37 <b>‡</b><br>C38<br>C39 <b>‡</b><br>C40<br>C41<br>C42<br>C43<br>C44<br>C45<br>C44<br>C45<br>C46<br>C47<br>C48<br>C49<br>C50<br>C51 | 100n<br>10n<br>10n<br>10n<br>10n<br>100µ<br>22p<br>2-27p<br>330p<br>330p<br>100n<br>10n<br>10n<br>10n<br>10n<br>10n<br>10n<br>10n | +80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+50% -20%<br>+50% -20%<br>+2%<br>-<br>±2%<br>+2%<br>+2%<br>+2%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20% | 100V<br>25V<br>25V<br>25V<br>25V<br>25V<br>25V<br>25V<br>100V<br>300V<br>100V<br>100V<br>25V<br>25V<br>25V<br>25V<br>25V<br>25V | Multi-Layer Ceramic<br>Ceramic Disc<br>Ceramic Disc<br>Multi-Layer Ceramic<br>Ceramic Disc<br>Electrolytic<br>Ceramic Plate<br>Film Dielectric Trimmer<br>Ceramic Plate<br>Ceramic Plate<br>Multi-Layer Ceramic<br>Ceramic Disc<br>Ceramic Disc<br>Electrolytic<br>Multi-Layer Ceramic<br>Ceramic Disc<br>Electrolytic<br>Multi-Layer Ceramic<br>Ceramic Disc<br>Ceramic Disc<br>Ceramic Disc |

#### \*ONLY FITTED WITH USB/LSB VERSION †ONLY FITTED WITH IF OUTPUT VERSION ‡ONLY FITTED WITH AM ON TRANSMIT VERSION

#### Resistors

| Circuit Ref.                                 | Value                                                            | Circuit Ref.                                                      | Value                                                    |  |
|----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|--|
| R1<br>R2<br>R3<br>R4<br>R5<br>K6<br>R7<br>R8 | 5k6<br>3k3<br>100R*<br>3k3*<br>100R<br>3k3<br>3k3<br>3k3*<br>3k3 | R13<br>R14<br>R15<br>R16<br>R17<br>R18 †<br>R19 †<br>R19 †<br>R20 | 330R<br>22k<br>22k<br>100R<br>100R<br>10k<br>2k2<br>560R |  |
| R9<br>R10<br>R11<br>R12                      | 3k3<br>100k<br>22k<br>100k                                       | R21<br>R22<br>R23<br>R24                                          | 1 k5<br>1 OOR<br>1 OOR<br>1 k                            |  |

All Resistors ±5% 0.33W Standard Film

#### \*ONLY FITTED WITH USB/LSB VERSION †ONLY FITTED WITH IF OUTPUT VERSION

Page 12 of Sec. 7

IF Board Assembly (Reference 7) continued.....

Resistors continued....

| Circuit Ref.  | Value |   |
|---------------|-------|---|
|               |       | 1 |
| R25           | 330R  |   |
| R26           | 220k  |   |
| R27           | 100k  |   |
| R28           | 47k   |   |
| R29           | ١k    |   |
| R30           | 100R  |   |
| R31           | 100R  |   |
| <br>R32       | 2k2   |   |
| R33 🕈         | 100R  |   |
| R33A <b>‡</b> | 1k5   |   |
| R34 +         | 2k2   |   |
| R35 +         | 100R  |   |
| R36 +         | 1k2   | • |
| R37 +         | 22k   |   |
| <br>R38 芉     | 22k   |   |
|               |       |   |

|                                                                                                       | =                                                                                                  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Circuit Ref.                                                                                          | Value                                                                                              |
| R39<br>R40<br>R41<br>R42<br>R43<br>R44<br>R45<br>R46<br>R47<br>R46<br>R47<br>R48<br>R49<br>R50<br>R51 | 470k<br>2k7<br>1k<br>47k<br>2k2<br>470k<br>100R<br>100k<br>22k<br>22k<br>22k<br>10k*<br>10k<br>3k9 |
| ····                                                                                                  |                                                                                                    |

#### \*ONLY FITTED WITH USB/LSB VERSION †ONLY FITTED WITH IF OUTPUT VERSION ‡ONLY FITTED WITH AM ON TRANSMIT VERSION

All Resistors ±5% 0.33W Standard Film

Variable Resistors

| Circuit Ref. | Value       | Tolerance    | Power Rating | Туре                           | 1 |
|--------------|-------------|--------------|--------------|--------------------------------|---|
| R∨1<br>RV2 ‡ | 470R<br>47k | ±20%<br>±20% | 0.5W<br>0.5W | Cermet Preset<br>Cermet Preset |   |

FONLY FITTED WITH AM ON TRANSMIT VERSION

Inductors

| Circuit Ref. | Туре         | Part Number |
|--------------|--------------|-------------|
| L1 )         | Interstage   | D5466       |
| L2 )         | Tuning Coils | D5466       |

IF Board Assembly (Reference 7) continued.....

| Circuit Ref.                                                                           | Туре                                                                                                                      | Manufacturer                                                                                                          | Description                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D1<br>D2<br>D3<br>D4<br>D5<br>D6<br>D7<br>D8 ‡<br>D9 ‡<br>D10 ‡<br>D10 ‡<br>D11<br>D12 | BAX13<br>BAX13*<br>BAX13*<br>BAX13<br>BZX79C10<br>BZX79C10<br>BAX13<br>BAX13<br>BAX13<br>BAX13<br>BAX13<br>BAX13<br>BAX13 | Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard | H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching<br>Zener Diode<br>Zener Diode<br>H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching |

Diodes

## \*ONLY FITTED ON USB/LSB VERSION FONLY FITTED WITH AM ON TRANSMIT VERSION

Transistors

| Circuit Ref.                                                                   | Туре                                                                   | Manufacturer                                                              | Description                                                                                                                              |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| TR1<br>TR2<br>TR3 <del>1</del><br>TR4<br>TR5 <del>1</del><br>TR6<br>TR7<br>TR8 | 35K51<br>BFR54<br>BFR54<br>BFR54<br>BFR54<br>BFR54<br>BC547B<br>BC547B | Hitachi<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard | Dual Gate Mosfet<br>NPN RF Amplifier<br>NPN RF Amplifier<br>NPN RF Amplifier<br>NPN RF Amplifier<br>NPN RF Amplifier<br>NPN GP Amplifier |

+ ONLY FITTED WITH IF OUTPUT VERSION + ONLY FITTED WITH AM ON TRANSMIT VERSION IF Board Assembly (Reference 7) continued....

### Integrated Circuits

| Circuit Ref. | Туре        | Manufacturer | Description       |
|--------------|-------------|--------------|-------------------|
| IC1          | SL623C      | Plessey      | Det/AM AGC        |
| IC2          | CA3140E     | RCA          | Fet Op Amp.       |
| IC3          | SL1621C     | Plessey      | AGC Generator     |
| IC4          | μA78L62/AWC | Fairchild    | Voltage Regulator |

#### Miscellaneous:

| Printed Circu | it Board                   | 11760P |  |
|---------------|----------------------------|--------|--|
| XTLI          | 1400kHz crystal            | 12316P |  |
| FL2           | LSB crystal filter 1400kHz | 11961P |  |
| SK9           | Right Angle 3 way socket   | 12317P |  |
| SK10/SK11     | Right Angle 8 way socket   | 12314P |  |
| FL1*          | USB crystal filter 1400kHz | 11963P |  |

# \*ONLY FITTED ON USB/LSB VERSION

Audio Board (Reference 8)

### Capacitors

| Circuit Ref.                                              | Value                                                               | Tolerance                                                                                                         | Voltage Wkg.                                                          | Туре                                                                                                                                                                         |
|-----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1<br>C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>C8<br>C9<br>C10 | 1μ<br>10n<br>10μ<br>10μ<br>100n<br>100n<br>10n<br>22n<br>22n<br>22n | +50% -20%<br>+80% -20%<br>+50% -20%<br>+50% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20% | 100V<br>25V<br>50V<br>50V<br>100V<br>100V<br>25V<br>63V<br>63V<br>25V | Electrolytic<br>Ceramic Disc<br>Electrolytic<br>Electrolytic<br>Ceramic Multi-Layer<br>Ceramic Multi-Layer<br>Ceramic Disc<br>Plate Ceramic<br>Plate Ceramic<br>Ceramic Disc |
| C10<br>C11<br>C12                                         | 10n<br>220μ                                                         | +80% -20%<br>+50% -20%                                                                                            | 25V<br>25V<br>16V                                                     | Ceramic Disc<br>Electrolytic                                                                                                                                                 |

# Audio Board (Reference 8) continued....

Capacitors continued....

| Circuit Ref.                                                | Value                                                                     | Tolerance                                                                                                         | Voltage Wkg.                                                                   | Туре                                                                                                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C13<br>C14<br>C15<br>C16<br>C17<br>C18<br>C19<br>C20<br>C21 | Value<br>100μ<br>2μ2<br>22n<br>1μ<br>100n<br>220μ<br>470μ<br>100n<br>100μ | +50% -20%<br>+50% -20%<br>+80% -20%<br>+50% -20%<br>+80% -20%<br>+50% -20%<br>+50% -20%<br>+50% -20%<br>+50% -20% | Volfage Wkg.<br>10V<br>63V<br>63V<br>100V<br>100V<br>10V<br>16V<br>100V<br>25V | Electrolytic<br>Electrolytic<br>Plate Ceramic<br>Electrolytic<br>Ceramic Multi-Layer<br>Electrolytic<br>Electrolytic<br>Ceramic Multi-Layer<br>Electrolytic |
| C22<br>C23<br>C24                                           | 820p<br>100µ<br>4n7                                                       | +50% -20%<br>+50% -20%<br>+80% -20%                                                                               | 25∨<br>100∨<br>25∨<br>63∨                                                      | Ceramic Plate<br>Electrolytic<br>Plate Ceramic                                                                                                              |
| C24<br>C25<br>C26<br>C27                                    | 100n<br>2µ2<br>10n                                                        | +80% -20%<br>+80% -20%<br>+50% -20%                                                                               | 63V<br>63V<br>25V                                                              | Multi-Layer Ceramic<br>Electrolytic<br>Ceramic Disc                                                                                                         |
| C27<br>C28<br>C29<br>C30                                    | 10n<br>10µ                                                                | +80% -20%<br>+50% -20%                                                                                            | 25∨<br>50∨                                                                     | Ceramic Disc<br>Electrolytic                                                                                                                                |
| C31<br>C32                                                  | 100μ<br>22μ<br>100n                                                       | +50% -20%<br>+50% -20%<br>+80% -20%                                                                               | 10∨<br>35∨<br>100∨                                                             | Electrolytic<br>Electrolytic<br>Ceramic Multi-Layer                                                                                                         |
| C33<br>C34                                                  | 10n<br>220µ                                                               | +80% -20%<br>+50% -20%                                                                                            | 25∨<br>16∨                                                                     | Ceramic Disc<br>Electrolytic                                                                                                                                |

### Resistors

| Circuit Ref. | Value | Circuit Ref. | Value |  |
|--------------|-------|--------------|-------|--|
| R1           | 3k3   | R11          | 1M    |  |
| R2           | 3M3   | R12          | 10k   |  |
| R3           | 3k3   | R13          | 10k   |  |
| R4           | 120k  | R14          | 1M    |  |
| R5           | 3M3   | R15          | 3M3   |  |
| R6           | 3M3   | R16          | 330k  |  |
| R7           | 330k  | R17          | 270k  |  |
| R8           | 47k   | R18          | 100k  |  |
| R9           | 100R  | R19          | 100k  |  |
| R10          | 330k  | R20          | 100k  |  |

All Resistors ±5% 0.33W Standard Film

Page 16 of Sec. 7

Audio Board (Reference 8) continued....

Resistors continued.....

| Circuit Ref. | Value | Circuit Ref. | Value |  |
|--------------|-------|--------------|-------|--|
| R21          | 100k  | R33          | 3k3   |  |
| R22          | lk    | R34          | 1k    |  |
| R23          | 1k    | R35          | 100R  |  |
| R24          | 150R  | R36          | 320R  |  |
| R25          | 100k  | R37          | 1k    |  |
| R26          | 12R   | R38          | 1 OOR |  |
| R27          | 100R  | R39          | 1k2   |  |
| R28          | 2R2   | R40          | 390R  |  |
| R29          | 1k    | R41          | 3k3   |  |
| R30          | 10k   | R42          | 3k3   |  |
| R31          | 100k  | R43          | 10k   |  |
| R32          | 2k2   | R44          | 100R  |  |

All Resistors ±5% 0.33W Standard Film

Variable Resistors

| Circuit Ref. | Value | Tolerance        | Power Rating | Туре          |
|--------------|-------|------------------|--------------|---------------|
| R∨1          | 10k   | <sup>±</sup> 20% | 0.5W         | Cermet Preset |
| RV2          | 47k   | <sup>±</sup> 20% | 0.5W         | Cermet Preset |

Chokes

| Circuit Ref. | Value | Tolerance | Туре               |
|--------------|-------|-----------|--------------------|
| СН1          | 4m7   | ±20%      | Miniature RF Choke |

Page 17 of Sec. 7

Audio Board (Reference 8) continued....

# Integrated Circuits

| Circuit Ref. | Туре       | Manufacturer  | Description           |
|--------------|------------|---------------|-----------------------|
| IC1          | LM324N     | National Semi | Quad Op Amp.          |
| IC2          | MC14001BCP | Motorola      | Quad 2 Input Nor Gate |
| IC3          | TBA810S    | SGS           | Audio Power           |
| IC4          | MC1496P    | Motorola      | Balanced Modulator    |
| IC5          | MC78L08CP  | Motorola      | Voltage Regulator     |

### Transistors

| Circuit Ref. | Туре   | Manufacturer | Description |  |
|--------------|--------|--------------|-------------|--|
| TR1          | 2N4393 | Mullard      | FET Amp.    |  |
| TR2          | BC547B | Mullard      | NPN GP Amp. |  |
| TR3          | BC547B | Mullard      | NPN GP Amp. |  |

## Diodes

| Circuit Ref.                     | Туре                                                        | Manufacturer                                                              | Description                                                                                        |  |
|----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| D1<br>D2<br>D3<br>D4<br>D5<br>D6 | BAX13<br>BAX13<br>BAX13<br>BAX13<br>BAX13<br>BAX13<br>BAX13 | Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard<br>Mullard | H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching<br>H/S Switching |  |

#### Miscellaneous:

| Printed Circuit Board         | 11768P |
|-------------------------------|--------|
| SK1 Right Angle 10 way socket | 12318P |
| SK2 Right Angle 6 way socket  | 12313P |

# Capacitors

| Circuit Ref. | Value | Tolerance   | Voltage Wkg. | Туре                |
|--------------|-------|-------------|--------------|---------------------|
| Cl           | 10n   | +80% -20%   | 100∨         | Ceramic Disc        |
| C2           | 10n   | +80% -20%   | 100∨         | Ceramic Disc        |
| C3           | 220µ  | +50% -20%   | 16V          | Electrolytic        |
| C4           | 100n  | +80% -20%   | 100V         | Multi-Layer Ceramic |
| C5           | 18p   | ±2%         | 100V         | Ceramic Plate       |
| C6           | 270p  | ±2%         | 100V         | Ceramic Plate       |
| C7           | 270p  | <b>±2</b> % | 100V         | Ceramic Plate       |
| C8           | 18p   | ±2%         | 100∨         | Ceramic Plate       |
| C9           | 270p  | ±2%         | 100∨         | Ceramic Plate       |
| C10          | 270p  | ±2%         | 100          | Ceramic Plate       |
| C11          | 18p   | ±2%         | 100V         | Ceramic Plate       |
| C12          | 270p  | ±2%         | 100∨         | Ceramic Plate       |
| C13          | 270p  | ±2%         | 100          | Ceramic Plate       |
| C14          | 18p   | ±2%         | 100∨         | Ceramic Plate       |
| C15          | 270p  | ±2%         | 100∨         | Ceramic Plate       |
| C16          | 270p  | ±2%         | 100          | Ceramic Plate       |
| C17          | 18p   | ±2%         | 100          | Ceramic Plate       |
| C18          | 270p  | ±2%         | 100∨         | Ceramic Plate       |
| C19          | 270p  | ±2%         | 100∨         | Ceramic Plate       |
| C20          | 18p   | ±2%         | 100          | Ceramic Plate       |
| C21          | 270p  | ±2%         | 100          | Ceramic Plate       |
| C22          | 270p  | ±2%         | 100V         | Ceramic Plate       |
|              |       |             |              |                     |

### Resistors

| Circuit Ref. | Value | Circuit Ref. | Value |  |
|--------------|-------|--------------|-------|--|
| 51           | 4700  | RII          | 2k2   |  |
| R1           | 470R  | R12          | 100k  |  |
| R2           | 6k8   | 1            |       |  |
| R3           | 10k   | R13          | 10k   |  |
| R4           | 100R  | R14          | 3k9   |  |
| R5           | 2k2   | R15          | 470R  |  |
| R6           | 100k  | R16          | 2k2   |  |
| R7           | 10k   | R17          | 100k  |  |
| R8           | 3k9   | R18          | 10k   |  |
| R9           | 2k2   | R19          | 3k9   |  |
| R10          | 470R  | R20          | 470R  |  |
|              |       | <u> </u>     |       |  |

All Resistors  $\pm 5\%$  0.33W Standard Film

Page 19 of Sec. 7

Oscillator Board (Reference 9) continued....

Resistors continued...

| Circuit Ref.                                  | Value                                            | Circuit Ref.                                         | Value                                                   |  |
|-----------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--|
| R21<br>R22<br>R23<br>R24<br>R25<br>R26<br>R27 | 2k2<br>100k<br>10k<br>3k9<br>470R<br>2k2<br>100k | R28<br>R29<br>R30<br>R31<br>R32<br>R33<br>R34<br>R35 | 10k<br>3k9<br>470R<br>2k2<br>100k<br>10k<br>3k9<br>470R |  |

All Resistors ±5% 0.33W Standard Film

#### Transistors

| Circuit Ref. | Туре  | Manufacturer | Description |
|--------------|-------|--------------|-------------|
| TR1          | BFR54 | Mullard      | NPN RF Amp. |
| TR2          | BFR54 | Mullard      | NPN RF Amp. |
| TR3          | BFR54 | Mullard      | NPN RF Amp. |
| TR4          | BFR54 | Mullard      | NPN RF Amp. |
| TR5          | BFR54 | Mullard      | NPN RF Amp. |
| TR6          | BFR54 | Mullard      | NPN RF Amp. |
| TR7          | BFR54 | Mullard      | NPN RF Amp. |

Diodes

| Circuit Ref. | Туре     | Manufacturer | Description       |
|--------------|----------|--------------|-------------------|
| D1           | BZX79C10 | Mullard      | Zener Diode       |
| D2           | 1N4151   | Mullard      | NPN H/S Switching |
| D3           | MV209    | Motorola     | Vari-Cap Diode    |
| D4           | 1N4151   | Mullard      | NPN H/S Switching |
| D5           | 1N4151   | Mullard      | NPN H/S Switching |
| D6           | 1N4151   | Mullard      | NPN H/S Switching |

Page 20 of Sec. 7

# Oscillator Board (Reference 9) continued.....

Diodes continued....

| Circuit Ref. | Туре   | Manufacturer | Description       |   |
|--------------|--------|--------------|-------------------|---|
| D7           | 1N4151 | Mullard      | NPN H/S Switching |   |
| D8           | 1N4151 | Mullard      | NPN H/S Switching |   |
| D9           | MV209  | Motorola     | Vari-Cap Diode    |   |
| D10          | 1N4151 | Mullard      | NPN H/S Switching |   |
| D11          | 1N4151 | Mullard      | NPN H/S Switching | ļ |
| D12          | 1N4151 | Mullard      | NPN H/S Switching | ] |
| D13          | 1N4151 | Mullard      | NPN H/S Switching | Ì |
| D14          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C15          | MV209  | Motorola     | Vari-Cap Diode    | ļ |
| C16          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C17          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C18          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C19          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C20          | 1N4151 | Mullard      | NPN H/S Switching | • |
| C21          | MV209  | Motorola     | Vari-Cap Diode    | i |
| C22          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C23          | 1N4151 | Mullard      | NPN H/S Switching | ļ |
| C24          | 1N4151 | Mullard      | NPN H/S Switching | - |
| C25          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C26          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C27          | MV209  | Motorola     | Vari-Cap Diode    |   |
| C28          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C29          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C30          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C31          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C32          | 1N4151 | - Mullard    | NPN H/S Switching |   |
| C33          | MV209  | Motorola     | Vari-Cap Diode    |   |
| C34          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C35          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C36          | 1N4151 | Mullard      | NPN H/S Switching |   |
| C37          | 1N4151 | Mullard      | NPN H/S Switching |   |

| Miscel | laneous: |
|--------|----------|
|--------|----------|

| Printed Circuit Board             | 11767P |
|-----------------------------------|--------|
| SK1/SK2 Right Angle 20 way socket | 12315P |

Page 21 of Sec. 7

# Capacitors

| Circuit Ref.                                                                                                     | Value                                                                                              | Tolerance                                                                                                                                                                         | Voltage Wkg.                                                                                            | Туре                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1 )<br>C2 )<br>C3 )<br>C4<br>C5<br>C6<br>C7<br>C8<br>C9<br>C10<br>C11<br>C12<br>C13<br>C14<br>C15<br>C16<br>C17 | 270p<br>270p<br>100n<br>100n<br>100n<br>100n<br>100n<br>100µ<br>47µ<br>10n<br>100n<br>100n<br>100n | <sup>±</sup> 2%<br><sup>±</sup> 2%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+50% -20%<br>+50% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20%<br>+80% -20% | 350V<br>350V<br>100V<br>100V<br>100V<br>100V<br>100V<br>100V<br>25V<br>25V<br>25V<br>25V<br>100V<br>25V | Values as required for range,<br>see table at the end of this<br>section.<br>Silver Mica<br>Silver Mica<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Multi-Layer Ceramic<br>Electrolytic<br>Electrolytic<br>Ceramic Disc<br>Multi-Layer Ceramic<br>Ceramic Disc<br>Multi-Layer Ceramic |

#### Resistors

| Circuit Ref.                     | Value                                          | Circuit Ref.                               | Value                                              |  |
|----------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------|--|
| R1<br>R2<br>R3<br>R4<br>R5<br>R6 | 5k6<br>27R<br>27R<br>330R<br>2k2<br>2k2<br>2k2 | R7<br>R8<br>R9<br>R10<br>R11<br>R12<br>R13 | 2k2<br>470R<br>100R<br>8k2<br>100R<br>100k<br>220R |  |

All Resistors ±5% 0.33W Standard Film

Page 22 of Sec. 7

Output Filter (Reference 10) continued...

Variable Resistors

| Circuit Ref. | Value | Tolerance        | Power Rating  | Туре          |
|--------------|-------|------------------|---------------|---------------|
| R∨1          | 470R  | <sup>±</sup> 20% | 0. <i>5</i> W | Cermet Preset |
| RV2          | 47k   | ±20%             | 0. <i>5</i> W | Cermet Preset |

Inductors

| Circuit Ref. | Value | Tolerance | Power Rating | Туре                                                                      |
|--------------|-------|-----------|--------------|---------------------------------------------------------------------------|
| L1 )<br>L2 ) |       |           |              | Values as required for range,<br>see table at the end of this<br>section. |

Chokes

| Circuit Ref. | Value | Tolerance | Туре               |  |
|--------------|-------|-----------|--------------------|--|
| СНІ          | 100µH | ±20%      | Miniature RF Choke |  |

Diodes

| Circuit Ref. | Туре     | Manufacturer | Description       |
|--------------|----------|--------------|-------------------|
| D1           | BAX13    | Mullard      | NPN H/S Switching |
| D2           | BAX13    | Mullard      | NPN H/S Switching |
| D3           | BZX79C10 | Mullard      | Zener Diode       |
| D4           | BAX13    | Mullard      | NPN H/S Switching |

Page 23 of Sec. 7

Transistor

| Circuit Ref. | Туре   | Manufacturer | Description |
|--------------|--------|--------------|-------------|
| TRI          | BC547B | Mullard      | NPN GP Amp. |

## Transformers

| Circuit Ref. | Туре | Part Number |  |
|--------------|------|-------------|--|
| TI           | VSWR | D5941       |  |

#### Miscellaneous:

| Printed Circu | uit Board                | 11933P | · · · · · · · · · · · · · · · · · · · |
|---------------|--------------------------|--------|---------------------------------------|
| SW1           | Switch wafer             | 12231P |                                       |
| SK1/SK2       | Right Angle 8 way socket | 12314P |                                       |

# Output Filter (Reference 10) TABLE

| RANGE | L1/L2 | C1    | C2    | C3    |  |
|-------|-------|-------|-------|-------|--|
| 1     | D5957 | 1000p | 2000p | 1000p |  |
| 2     | D5958 | 470p  | 1200p | 470p  |  |
| 3     | D5959 | 200p  | 750p  | 200p  |  |
| 4     | D5960 | -     | 470p  | -     |  |
| 5     | D5961 | -     | 470p  | -     |  |

All Capacitors ±2% 350V working Silver Mica.
## Capacitors

| Circuit Ref. | Value | Tolerance | Voltage Wkg. | Туре                |
|--------------|-------|-----------|--------------|---------------------|
| C1           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C2           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C3           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C4           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C5           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C6           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C7           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C8           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C9           | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C10          | 330µf | +50% -20% | 25∨          | Electrolytic        |
| C11          | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C12          | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C13          | 2n    | ±2%       | 350∨         | Silver Mica         |
| C14          | 100n  | +80% -20% | 50∨          | Ceramic Multi-Layer |
| C15          | 1n8   | ±2%       | 350∨         | Silver Mica         |

## Resistors

| Circuit Ref.                                                     | Value                                                                            | Tolerance                                                          | Power Rating                                                                                | Туре                                                                                                                                                              |
|------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9<br>R10<br>R11 | 1 00R<br>2R2<br>2R2<br>1 00R<br>220R<br>390R<br>56R<br>2R2<br>2R2<br>56R<br>1 0R | +5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5%<br>+5% | 0.33W<br>0.5W<br>0.5W<br>1.6W<br>0.33W<br>0.5W<br>1W<br>0.5W<br>0.5W<br>0.5W<br>1W<br>0.33W | Standard Film<br>Standard Film<br>Standard Film<br>Metal Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Standard Film<br>Carbon Film<br>Standard Film |

-

## PA Module (Reference 11) continued...

## Variable Resistors

| Circuit Ref. | Value | Tolerance    | Power Rating | Туре             |
|--------------|-------|--------------|--------------|------------------|
| R∨1          | 470R  | <b>±20</b> % | 2W           | Wirewound Preset |

Chokes

| Circuit Ref. | Value | Tolerance | Туре               |
|--------------|-------|-----------|--------------------|
| СН1          | lμH   | ±20%      | Miniature RF Choke |

## Transistors

| Circuit Ref. | Туре   | Manufacturer | Description       |
|--------------|--------|--------------|-------------------|
| TR1          | SD1285 | Thompson CSF | Driver Transistor |
| TR2          | TIP31A | Texas Inst.  | NPN Power         |
| TR3          | SD1487 | Thompson CSF | PA Transistor )   |
| TR4          | SD1487 | Thompson CSF | PA Transistor )   |

Diodes

| Circuit Ref. | Туре    | Manufacturer | Description |
|--------------|---------|--------------|-------------|
| D1           | 1 N4004 | Mullard      | GP Diode    |
| D2           | 1 N4004 | Mullard      | GP Diode    |

PA Module (Reference 11) continued....

#### Transformer

| Circuit Ref. | Туре                 | Part Number |
|--------------|----------------------|-------------|
| T1           | Coupling Transformer | D5924       |
| T2           | Output Transformer   | D5925       |

#### Inductors

| Circuit Ref.   | Туре                     | Part Number                     |
|----------------|--------------------------|---------------------------------|
| L1<br>L2<br>L3 | Driver Choke<br>PA Choke | Not Allocated<br>D5946<br>D5945 |

### Miscellaneous:

| Printed Circuit Board 11761P |  |
|------------------------------|--|
|                              |  |

## AC - PSU Board (Reference 14)

## Capacitors

| Circuit Ref.         | Value                          | Tolerance                                        | Voltage Wkg.             | Туре                                                                         |
|----------------------|--------------------------------|--------------------------------------------------|--------------------------|------------------------------------------------------------------------------|
| C1<br>C2<br>C3<br>C4 | 22000µ<br>22000µ<br>47µ<br>22µ | +30% -10%<br>+30% -10%<br>+50% -20%<br>+50% -20% | 25∨<br>25∨<br>25∨<br>35∨ | Electrolytic<br>Electrolytic<br>Electrolytic<br>Electrolytic<br>Electrolytic |

AC - PSU Board (Reference 14) continued.....

| Circuit Ref.               | Value                     | Tolerance                | Power Rating                     | Туре                                                                              |
|----------------------------|---------------------------|--------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| R1<br>R2<br>R3<br>R4<br>R5 | 1k2<br>2k2<br>2k2<br>120R | ±5%<br>±5%<br>±5%<br>±5% | 0.33W<br>0.33W<br>0.33W<br>0.33W | Standard Film<br>Not Allocated<br>Standard Film<br>Standard Film<br>Standard Film |

Resistors

Diodes

| Circuit Ref. | Туре    | Manufacturer | Description     |
|--------------|---------|--------------|-----------------|
| D1           | 1 N4004 | Mullard      | Rectifier Diode |
| D2           | 1 N4004 | Mullard      | Rectifier Diode |
| D3           | 1 N4004 | Mullard      | Rectifier Diode |

Integrated Circuits

| Circuit Ref. | Туре   | Manufacturer | Description       |
|--------------|--------|--------------|-------------------|
| ICI          | MC7815 | Motorola     | Voltage Regulator |

Miscellaneous:

| Printed Circuit<br>PL1<br>FS1 | 3 way plug<br>20mm fuseholder | 12267P<br>12305P<br>12320P |
|-------------------------------|-------------------------------|----------------------------|
|                               | 20mm fuse 3.15A anti surge    | 12332P                     |

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Number of the receiver in all cummincations.

EDDYSTONE RADIO LIMITED, SALES AND SERVICE DEPARTMENT, ALVECHURCH ROAD, BIRMINGHAM B31 3PP, ENGLAND. TELEPHONE: TELEX: CABLES: 021-475-2231 337081 EDDYSTONE BIRMINGHAM

Page 28 of Sec. 7

#### APPENDIX A

#### Component Handling

Lead bending. Component leads need in general, to be bent to enable the device to be fitted. The bend should be made so that the radius of the bend is not less than the diameter of the lead (or the thickness of the lead in the case of flat leads), and the lead should be supported between the body of the component and the bend. The bend should be at least 2mm (approx 1/16") from the component.

Soldering. A soldering iron having a bit temperature not exceeding 245°C may be used. The soldered joint should be completed within 5 seconds. Overheating may damage the component.

Heat Sinks. Certain devices which are required to dissipate power are fitted with heat sinks. When replacing these devices, the heat sinking arrangement should be carefully reproduced, eg thermal conducting compound may be used. If an insulating washer has been used, this should be replaced and thermal conducting compound applied to both sides.

MOS Devices. These have an exceptionally high input resistance and they are susceptible to damage when exposed to high static electrical charges. To avoid possible damage the following procedures should be followed:

- 1. Devices should be stored and transported in contact with a conductive material.
- 2. Soldering iron, bench surface, tools etc., should all be earthed. The operator should be earthed using a 1MΩ series resistor.
- 3. The equipment should be switched off when devices or boards are inserted or removed.
- 4. Nylon clothing should not be worn.

Anti-static precautions take on added importance in dry weather (relative humidity less than 30%).

#### Appendix B

#### Noise Suppression

A kit for suppressing vehicle electrical interference is available \$1795 and comprises the following items.

| LT Coil Capacitor (1)                                 | ASB100/LS627 |
|-------------------------------------------------------|--------------|
| Distribution Supressors (5)                           | ASB636/LS636 |
| Alternator Suppressor (1)                             | ASB102/LS720 |
| Instrument Regulator Choke (2)                        | ASB301/LS639 |
| Bonnet or Engine Bording Strap (2)                    | ASB500/LS642 |
| Instruction manual on Radio Interference Suppression. |              |

#### Microphone

Two types of microphone can be supplied the \$1790 Hand Mobile Microphone and the \$1791 Base Station Microphone.

<u>S1791</u>

FEATURES

\*Rugged die-cast body

\*Easy adjustable goose-neck. \*Locking push-totalk switch.

\*Dual impedance; Hi/Lo switchable.

SPECIFICATIONS

Type: Dynamic type Impedance:  $500\Omega/50K\Omega$  switchable Sensitivity:  $-78dB(500\Omega)/-58dB(50K\Omega)$ Frequency Response: 200 - 10,000Hz

#### INTERNAL CONNECTION



Note: Set the switch at Hi or Lo position at the bottom.

The Eddystone S1790 noise cancelling microphone comes equipped with a five-pin connector and a flexible, coiled cord.

#### SPECIFICATIONS

| Frequency response:   | 200 Hz-4000 Hz (direct)                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------|
|                       | 300 Hz-7000 Hz (noise cancelling mode)                                                    |
| Microphone impedance: | 600 ohms                                                                                  |
| Output level:         | -75 dB (direct)                                                                           |
|                       | -80 dB (noise cancelling mode)                                                            |
|                       | $(0 \text{ dB} = 1 \text{V}/\mu \text{bar}, \text{d} = 2 \text{ cm at } 1000 \text{ Hz})$ |
| Weight:               | 180 g                                                                                     |
| Enclosures:           | Microphone hanger, 1 pc.                                                                  |
|                       | Screws, 2 pcs.                                                                            |
|                       | Tapping screws, 2 pcs.                                                                    |
|                       | Washers, 2 pcs.                                                                           |
|                       |                                                                                           |

#### INSTALLATION

The microphone hanger may be installed wherever convenient for easy access to the microphone. Use the screws and washers enclosed for quick installation.

#### OPERATION

For normal operation, close the PTT switch and speak into the microphone in a normal voice. For high noise suppression, place the switch on the rear of the cartridge in the NOISE CANCEL ON position, and speak from a distance of 2 cm or less from the microphone.

### Mic plug connections



Antennas

------

----

----

----

----

The following section illustrates the range of antennas and masts available.

When siting base station antennas the surrounding area should be as clear as possible of buildings or other obstructions, and the antenna should be as high as possible for best results.

The siting of the antenna is extremely important, as it plays a big part in obtaining reliable and interference free long distance communication.

## S1781 Series Mobile Whip

Antennas supplied to customer specified fixed frequencies, to change frequency just unscrew resonator/whip combinations. Medium power capability permits an unobtrusive slim-line format for wing mounting on any vehicle to provide reliable HF communication under the most arduous conditions.

The antenna comprises four component parts, the vehicle spring base mount, 25'(630mm) inductively loaded mast section, resonator with attached whip section.

The resonator and whip section being individually made and calibrated to your specified frequency, additional frequency allocations need only a new resonator and whip section which can be supplied quickly.

#### ELECTRICAL SPECIFICATION

**Maximum Power Capability** 

100 watts to 1.8MHz to 3.0MHz 150 watts 3.0MHz to 30.0MHz rated SSB duty cycle. Impedance

Nominal 50 ohm. (Somewhat less at lowest frequencies.) Bandwidth

More than adequate for single frequency working under all conditions.

VSWR

Typical less than 1.7:1 at resonance.

TECHNICAL SPECIFICATION

Power Input: 150w, SSB PEP Impedance: 50Ω nominal Frequency range: Spot between 2MHz & 30MHz

MECHANICAL SPECIFICATION

#### Mast Section

Fibreglass with non-ferrous fittings; <sup>3</sup>/<sub>4</sub>"UNF stainless steel screw fitting for basemount. Partial inductive loading on mast with whole enclosed in tough black PVC heat shrunk sleeve.

#### **Resonator/Whip Section**

Non-ferrous metal fittings on high impact resist formers. Former lengths vary from 13 at 1.5MHz to 6 at 30MHz.

Individually wound and calibrated, coated 100% polyurethane, finished with tough black PVC sleeve.

Resonator supplied with 40° stainless steel whip section.

The resonators are supplied to a specific frequency; adjacent frequency working may be used as follows:

Typical bandwidth of antenna for 2:1 VSWR:

20KHz at 1.5MHz 40KHz at 3.0MHz 80KHz at 7.0MHz 150KHz at 10MHz 300KHz at 22MHz 500KHz at 30MHz

## Spring Base Unit

#### SPRING

This model is a double tapered stainless steel spring for heavy duty HF whips.

Gauge: 7mm (No.2)

Overall Height:  $110 \text{ mm} \left(4\frac{1}{2}^{"}\right)$ Min.Width:  $38 \text{ mm} \left(1\frac{1}{2}^{"}\right)$ Max. Width:  $51 \text{ mm} \left(2^{"}\right)$ 

Thread: 3"UNF

#### BALL MOUNT

This ball mount has proved very satisfactory as a swivel base for even the heaviest-HF-whips-used in mobile applications. The material is heavy cast alloy in two semispheres and tightened with an allen key provided. The base is ABS.

Centre hole:  $34mm(1\frac{1}{3}^{*})$ Fixing holes: 4 holes 7mm equispaced or 70mm PCD  $(\frac{3^{*}}{3^{*}} \text{ on } 2\frac{3^{*}}{4})$ 

# S 1782/3/4 Multi-Frequency Trap Dipole Antennas

- ★ UP TO 6 SPOTFREQUENCIES
- \* TRANSPORTABLE OR FIXED STATION
- ★ POWER UP TO 1 kW

Standard arrangement using two support masts

The Trapped Wire Dipole Antenna is a compact and simply operated multi frequency antenna, designed to provide up to 6 spot frequencies, (dependent upon channel spacing) with bi- or omni-directional coverage in the HF band. The antenna may be used as shown, with two support units (preferred method) or more economically using a single support structure.

The construction reflects our policy of ensuring long trouble free use, utilising only best quality components. Each antenna is supplied complete with 30 metres or low loss coaxial feeder incorporating a strain relief arrangement, and fitted with one PL259 UHF connector. The Dipole Centre Junction is formed by a balun unit to ensure matching is achieved.



The elements are constructed of hard drawn cadmium copper multi-strand for durability and high resistance to corrosion.

The most important components of this antenna are the Traps. These are installed in the antenna elements, and provide the means by which multi frequency operation is achieved. The Trap components are fully encapsulated in epoxy resin, providing a non Hygrascopic and very strong unit, with proven durability.

Antenna installation kits are available incorporating such items as element end "T" anchors, extension halyards (element end), and continuous halyards for use in the central support mode.

Although this antenna is offered as a standard product, variations of construction, coaxial cable, connector combinations, or various insulation combinations for hostile environments may be accommodated.

We generally recommend the use of our PA series lightweight mast to support the Trapped Dipole antennas. This provides a compact support structure, of ultra light weight, supplied complete with transport holdall and erection tools.

#### S1782/3/4 continued.....

#### GENERAL SPECIFICATIONS

Technical SpecificationFREQUENCY RANGE:2 - 30 MHz 2 to 6 spot frequencies (depends on frequency spacing).POWER:Normally up to 250 watts. (Up to 1 kW). Typically as polar diagrams.POLARISATION:Horizontal.AZIMUTH RADIATION:Depends on frequency and height of antenna. Typically as polar diagrams.INPUT IMPEDANCE:50 - 70 ohms depending on design height.VSWR:Normally better than 1.5 : 1.

#### Mechanical Specification

ANTENNA ELEMENTS: 7/0.914 INSULATORS: Carbon COAXIAL CABLE: Centre JUNCTION: Encaps METALWORK: Stainlet COAXIAL CABLE: Norma

7/0.914mm (7/036") or 7/118mm (7/044") hard drawn copper strand. Carbon loaded ultra violet resistant polypropelene or Frequelex porcelain. Centre Balun Unit with built-in halyard eye and cable suspension unit. Encapsulated in high grade epoxy resin. Stainless steel or plated brass. Normally 30 metres UR67 low loss.

### POLAR DIAGRAMS



h= 0.251



h=0.30 l





1=0.52

TYPICAL AZIMUTH GROUND WAVE PATTERN TYPICAL ELEVATION

ከ=0-40 ኢ

RADIATION PATTERNS

S1786/7/8 Aluminium Masts



Page B7

Mast sections have a belled end ensuring easy assembly and quick erection by unskilled staff. For example, a 3 man team can erect the 48 ft. or 60 ft. mast in less than half an hour, following our practical installation instructions. Each section is 48.4 mm O.D. and can be supplied in 6, 10 or 12 ft. (1.8, 3.04 and 3.65m) lengths for mast heights from 30 to 60 ft. (6.1 and 30.5m). Stays can be either 3 or 4 point fixing at each level, depending upon customers' requirements.

From a wide selection of stock components, masts can be supplied to suit customers' requirements, from a transportable mast complete with canvas carrying bags and all necessary hardware for erection, to installations for mounting permanently, complete with masthead and intermediate halyards, masthead lighting to ICAO standards, erection kit and all ground anchors.

Although we recommend the standard sections, should customers require special lengths or lighter gauge sections, we are able to supply modified designs to suit requirements and still maintain a quick delivery service.

Canvas holdalls for mast sections. Mast head lighting available to I.C.A.O. recommendations. Full erection kits available for 36 ft.-60ft. masts. Thinner gauge sections, different lengths, special designs or variations to customers' requirements undertaken, and quick deliveries provided. Further details upon application.



# S1785 HF Dipole Antennas

These antennas are most suited for short to medium range working. When suspended about a quarter wave above ground level, radiation is predominantly upwards, giving omnidirectional coverage using skywaves. As the height above ground level is increased to a half wave, the radiation pattern tends to a figure of eight.

### Half-Wave Centre-Fed Dipoles

2 - 30 MHz Series CFD/1

The 1785 half wave dipole is probably the most popular single frequency antenna world wide. Our design is inherently robust using our moulded coaxial cable junction unit CCJ/1 which assures safe feeder cable suspension. Antennas can be supplied in kit form or made up for specific frequencies.

#### **General Specification**

| Bandwidth:    | +2% of centre frequency |
|---------------|-------------------------|
| VSWR:         | Better than 1.5 : 1     |
| Power:        | Up to 2kW               |
| Impedance:    | 50-75 ohms              |
| Polarisation: | Horizontal              |

#### Delta Matched Dipoles

2-30 MHz Series DMD/1

The delta matched dipole has similar characteristics to the half wave dipole, both in robust design and reliability, however it will accept higher transmitter power due to the open wire 600 ohm feeder. Baluns can be supplied for alternative feed impedances.

#### **General Specification**

| +2% of centre frequency |
|-------------------------|
| Better than 1.5 : 1     |
| Up to 5 kW              |
| 600 ohms                |
| Horizontal              |
|                         |



HALF-WAVE CENTRE-FED DIPOLE



DELTA MATCHED DIPOLE

## Mechanical Specification

| ANTENNA ELEMENTS: | 7/0.44" (7/1.118mm) or 7/0.36" (7/0.914mm) hard drawn cadmium copper strand.                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------|
| INSULATORS:       | Frequelex, porcelain, or carbon loaded polypropelene. CCJ/1 used on centre-fed dipole is moulded epoxy resin.     |
| SPREADERS:        | Antenna spreaders used on FDA/1 are fibre-glass. Feed line spreaders are porcelain or fibre-glass as appropriate. |
| BALUNS:           | We can supply a wide range of matching balun transformers for all combinations of input impedances and powers.    |

NOTE

All antennas are supplied with 1 metre galvanised wire strops with eyes for halvard attachment. Type CFD/1 antennas can be supplied with connectors and coaxial cable made up to customers requirements.



NOTE. Four point to point circuits, the addition of a parasitic reflector screen will give an additional gain of 3 dB and will also limit radiation in the unwanted direction.

Page B10

# S1780

## BROAD BAND DIPOLE







Tree to tree



- Ideal for all HF communications
- Matches any wire over 7 metres long in end fed or dipole configurations
- Eliminates needs for ATU
- Easily deployed for tactical applications or for permanent installation
- Supplied with two radiators with ceramic insulators as standard
- Can be supplied with rigid fibreglass radiators
- Ideal for use with frequency agile equipment
- Can be supplied in Manpack form with temporary mast
- Special low frequency (200 khz-2 MHz) version available for beacon applications
- Fitted with 'N' Type socket as standard



S1780 continued.....



The figures above arrows are the reflectometer reading at frequency stated. The graph readings are taken from the Sweeper Test. Mismatches used are telonic labs calibrated, and were used to Calibrate the Sweeper/Ind.



Matches any wire dipole or wire over 7 metres long over frequency range 1,5-30 MH/z. The ZS Unimatch permits centre fed wire dipoles or end fed wires to be fed without the conventional ATU. Fully wideband over stated frequency range and available in 150,400 or 2000W p.e.p. rating. Based on the world famous XWBDA series of antennas this device will find wide acceptance with frequency agility equipment ideal for field use and licensing to original equipment manufacturer's for inclusion in their radio's. Freq Range: 1.5 to 30.0 MHz VSWR: Better than 2.1 across band Impedance: 50 ohms nominal Power Rating: 150W p.e.p.

Mass (inc wires): 2kg approx.



## PA Output Filter Board (Reference 10) 11933P



## Oscillator Board (Reference 9) 11767P



Audio Board (Reference 8) 11768P





## IF Amplifier Board (Reference 7) 11760P



Transmitter Mixer Board (Reference 4) 11931P

Transmitter Pre-Amplifier Board (Reference 6) 11934P



Receiver Mixer Board (Reference 5) 11932P

Receiver RF Amplifier Board (Reference 3) 11935P

Transmitter Mixer Board (Reference 4) 11931P

Transmitter Pre-Amplifier Board (Reference 6) 11934P



Receiver Mixer Board (Reference 5) 11932P

Receiver RF Amplifier Board (Reference 3) 11935P

## Interconnection Board (Reference 2) 11769P



## Interconnection Board (Reference 2) 11769P







\_

\_\_\_\_





C Eddystone Radio Ltd. 1986

EDDYSTONE RADIO LTD. BIRMINGHAM 231-3PP ENGLAND DRG. No. 8P1776 ISSUE 3



----















## 00 SERIES TX.MIXER REF.4.



CEDDYSTONE RADIO LTD 1984

|         | NE RADIO LTD |
|---------|--------------|
| BIRMING | HAM BOI SPP  |
| ENGLANC | ).           |
| DRG No  | IBP1780      |
|         | SSUE 2       |

## 000 SERIES TX. PRE-AMPLIFIER REF 6



S 5000 SERIES OSCILLA





DRG No BP1781

3.7

-39



S5000 SERIES, P.A.OU

\_





