PK-12 Operating Manual

Timewave Technology Inc. 1025 Selby Ave, Suite 101 St. Paul, MN 55104

http://www.timewave.com

TW P/N VA.06012 May, 1997

Welcome

Thank you for purchasing an Timewave/AEA product! Before you go any further, please fill out and return the enclosed Warranty Registration Card. Periodically, Timewave offers updates to its products—we can only tell you about these updates if we have your warranty card on file, so send it in if you haven't already done so.

FCC Regulations

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These rules are designed to provide reasonable protection against harmful interference in a residential installation. This device generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this device does cause harmful interference to radio or television reception, which can be determined by turning the device off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the device and receiver.
- Connect the device into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the manufacturer will void the user's authority to operate the device.

Disclaimer

As part of its continuing program of product improvement, Timewave reserves the right to make changes in this product's specifications or documentation. Timewave also reserves the right to incorporate and issue any information thus supplied in whatever manner it deems suitable, without incurring any obligations whatsoever.

Copyright

©1997 by Timewave Technology Inc. All rights reserved.

Under the copyright laws, this manual can't be reproduced in any form without prior written permission from Timewave Technology Inc. No patent liability is assumed, however, with respect to the use of the information contained herein.

This manual may contain errors, omissions or "typos." Please send your comments, suggestions and corrections to: Timewave Technology Inc., 501 W. Lawson Ave., St. Paul, MN 55117.

Table of Contents

	FCC Regulations	ii
In	ntroduction	vii
	Overview Typographical Conventions Abbreviations used throughout the manual	vii
1.	. The PK-12	1
	Capabilities & Features What You Should Have Received Your Computer	1
2.	. Power Supply & Compu	iter Installation 3
	Overview Connecting Power Turning it On Re-Initialization Connecting Your Computer to the PK-12 The Cable Dumb Terminals The Computer The Computer PC Compatible Computers Installing PC PakRatt Lite System Start-up and Loop-back Test	3 3 3 4 4 4 5 5 6 6 6
3.	. Radio Installation	
	Radio Connection Requirements	
	Basic Connections and Adjustments	
	Connections for Specific Transceivers	
	Transceiver Adjustments	11
4.	. You're in Command	13
	Parameters and Arguments Changing Commands List of Commands PK-12 Command Quick Reference	

. Packet Operation	53
The Packet Modes	
Tuning in Packet Stations — VHF/UHF	
What It Means	
Who's Out There?	
Talking to Yourself	
Setting Up for Transmitting	
Calling CQ	
Going On the Air	
More Packet Features	
Nodes and Node Operation	
Operating Your Node	
Digipeating	
Are You a Digipeater?	
Identifying as a Digipeater	
Time-stamping Packets and Messages	
Multiple Connection Operation	
Setting Up	
The Channel Switching Character	
CHCALL	
Checking Your Connect Status with CSTATUS	
Packet Meteor Scatter Extension	
Intermediate and Advanced Commands	
Monitoring Other Stations	
Monitoring the Packet Networking Switches	
Selective Monitoring	
Monitor Without Call Sign Headers	
Beacon Operation	
Packet Transmit Timing	
Packet Formatting and Editing	68
(RETURN)'s and Linefeeds	
Cancelling Lines and Packets	
Redisplaying Text	
The PASS Character	
Packet Protocol Basics	68
Reducing Errors through Collision Avoidance	
DAMA Support	
CHECK and RELINK	
Transparent Mode	
Full-Duplex Operation	71
Morse ID in Packet	
The QRA Feature	71
Packet Mail	71

6 .	MailDrop Operation	73
	MailDrop Memory	
	Setting Up Your MailDrop	
	Accessing and Commanding Your MailDrop	
	Monitoring Your MailDrop	
	MailDrop Prompts and Operation	
	Sending Mail	
	From the Console Operator	
	Sending Other Types of Messages	
	From the User's Point of View	
	Message Numbers	
	Forwarding and Reverse-Forwarding	
	Settings for Auto-Forwarding	
	Entering a Message for Reverse Forwarding	
7	GPS Operation	83
	Hardware Configurations	
	Installing APRS	
	Setting Up the PK-12 for GPS Operation	
	Stand Alone Tracking Device Set-up:	
	APRS Hardware Single Port Mode (HSP) Set-Up	
	APRS Dual Port Mode Set-up:	
	Building your own APRS adapter cable	
	Connecting the APRS adapter cable	
	Schematic Diagram for the APRS Adapter Cable	
	PK-12/ULTIMETER II® Stand Alone Weather Station Set Up	
	Wireless Data/Location Tracking Applications	
	Connecting the GPS Adapter Cable to the TNC:	
8.	Troubleshooting	93
	A Troubleshooting Primer	
	The Power Supply Cable	94
	The PK-12	
	Cable from PK-12 to Computer	
	Computer/Software	
	Cable From PK-12 to Radio	
	Radio	
	If You Need to Call for Help	
	General Error Messages	
	Packet Error Messages	
	MailDrop Error Messages	
	PK-12 Status and Error Messages	

Out-of-the-Box Problems	
Computer to PK-12 Problems	100
Radio to PK-12 Problems	
MailDrop Problems	
Packet Problems	
PK-12 Problems	
Appendix A: Radio Connections	107
Radio Connection Notes	107
Radio Listings	
Radio Connection Diagrams	112
Appendix B: Parts List, Schematic, and Pictorial Diagram	117
Appendix C: Specifications	120
Modem Characteristics	120
Processor System	120
Input/Output Connections	120
Controls and Indicators	
General	120
Appendix D: Battery Power	121
Setting the PK-12 to Low Power mode	121
Power Cable	
Additional Power Conservation	121
Appendix E: Upgrading the PK-12	122
Appendix F: Limited Warranty	123
Index	125

Introduction

Overview

The PK-12 is a 1200 baud, packet-only controller that sets a new standard in the amateur radio world. As a new owner, however, you may be bewildered by its scores of commands and their functions, besides wondering what all those lights on the front panel do or mean.

Take heart: You don't need to be a rocket scientist to understand how to hook up your PK-12 and operate it, but you do need to have an understanding of basic electronics so you can make the necessary (and correct) connections to your station equipment. You also need to have a working knowledge of your computer's software, hardware and operation.

Just as a car's owner's manual isn't written to teach you how to drive, this one won't go into the electronics, operation, or theory behind packet operation, so please refer to other sources if your interest in the PK-12's operation extends beyond its practical application.

Here are some excellent sources for reading more about packet and packet operation:

- The Radio Amateur's Digital Communications Handbook by Jonathan Mayo, KR3T; TAB Books, ISBN 0-8306-8362-3 (hardback) and 0-8306-3362-6 (pbk.).
- The ARRL Operating Handbook and Your Packet Companion by Steve Ford.

Both of the above are available from the ARRL, 225 Main Street, Newington, CT 06111-1541 or your local ham radio dealer.

Typographical Conventions

To set off special text, this manual uses the following typographical conventions:

This kind of type	identifies variables for which you enter values (for example, MYCALL <i>WF7A</i>).
This kind of type	indicates a section of importance.
This kind of type	identifies text generated by your PK-12. Examples include screen menus, prompts, and error messages.

Combinations of keystrokes are joined by a minus sign (–). For example, if you're instructed to press the Control (CTRL) key and the letter "Z" at the same time, the keystroke will be shown as (CTRL-Z). Release all keys simultaneously.

Key names like (ENTER), (RETURN), (SHIFT), (CTRL), and (SPACE BAR) mean press the key. After entering any command into your PK-12, you'll always press the (RETURN) or (ENTER) key. So, whenever the word "enter" is used, it means to enter a command or text from your keyboard, then press the (ENTER) or (RETURN) key. Throughout this manual, we'll refer to this key as (RETURN).

Abbreviations used throughout the manual

ack	Acknowledge
call	Call sign
CTRL	Control
DCD	Data Carrier Detect
ESC	Escape
HF	High Frequency
LF	Line feed
mS	Milli-second
п	A variable which you substitute a number or letter
nack	Not Acknowledge
PTT	Push-To-Talk

1. The PK-12

Overview

The PK-12 was designed to provide you with a superior packet operating platform when connected to your computer and a VHF or UHF transceiver.

Capabilities & Features

- AX.25 levels 1 & 2, 1200 bps packet operation in the Command, Host and KISS modes.
- 32K MailDrop RAM (expandable to 128K RAM with upgrade option, see Appendix E).
- Gateway for node operation.
- GPS firmware which is remotely programmable, can be remotely polled, and is compatible with GPS, Loran, ARNAV, and Ultimeter II. Optional APRS Adapter Cable available. The GPS firmware also allows for Stand Alone Tracking and automatically detects GPS receivers at power-up.
- Terminal software and GPS tracking/mapping software included.
- Compatible with many terminal control programs including Timewave's PC PakRatt II and PC PakRatt for Windows 2.0.
- DAMA support for master/slave node communication.
- Uses little power and can run even run on a 9-volt battery.
- Enhanced MHEARD function identifies TCP/IP, NET/ROM, and <The-Net> stations.
- Special commands (DFROM, CFROM) commands that let you control who connects to your TNC.
- EXPERT command included to ease the learning process—only the most common commands will be usable until the EXPERT mode is enabled.
- Timewave/AEA's expanded HOST mode.
- External AFSK adjustment, so there is no need to open the case.
- Limited one year warranty.
- Independent operation—once your PK-12 is up and running, you can turn off your computer or use it to do something else; the PK-12 will independently accept connects, receive and forward mail, and act as a node as long as power is supplied to it and your radio is on.

What You Should Have Received

Besides this manual, the following items are enclosed:

- A cable to connect your PK-12 to a radio.
- A power cable.
- A computer disk containing PK-Term for Windows and APRS sotware demo programs

Your Computer

You'll need a computer or dumb terminal that has an RS-232 serial communications port so it can communicate with your PK-12. If you plan to use a computer, you will need software that makes the computer act like a terminal. This is typically the same software you would use with a telephone modem.

For the sake of brevity in this manual, instead of using "dumb terminal" and "computer" interchangeably, we'll just use one word, "computer."

A Tour of the PK-12

	ave				PK-1	2					
3	О			STA							
Front View of the PK-12											
POWER +13VDC COMPUTER TX											
		0((RS-232	, 	0		G PT	6	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Rear View of the PK-12											

- XMT. This LED, when lit, indicates the transmitter is keyed.
- DCD. This LED, when lit, indicates the PK-12 hears data on the channel.
- CON. This LED, when lit, lets you know that you are connected to another packet station.
- STA. This LED, when lit, indicates unacknowledged messages or data in the transmit buffer.
- MAIL. This LED, when lit, lets you know that you have mail waiting in your MailDrop.

2. Power Supply & Computer Installation

Overview

In this chapter, you'll power up the PK-12 and connect it to the RS-232 serial port of your computer. After the connections have been made, you'll do a quick check of the PK-12's internal firmware and internal modem by performing the all-important "loop-back" test. When you've completed this chapter, you'll be ready to connect the PK-12 to your transceiver and begin using it on the air.

Connecting Power

If you have a ready-made power supply like Timewave's AC-1, connect it to the PK-12, plug the "power cube" into the wall, and skip ahead to the Turning it On section.

If you are not using a "power cube," locate the power cable in the enclosed accessory bag and strip off enough insulation from the ends of both conductors to connect it to your 12-14 VDC regulated power supply.

Pay close attention to the polarity of the power cable—the positive (+) conductor is marked with a white stripe.

Turning it On

With the power connections made, turn on the PK-12's power supply (or plug the power cube into the wall outlet), then press the POWER switch on the front of the PK-12. Watch closely for this start-up light pattern: five LED's—DCD, CON, STA, MAIL, and POWER—should light. If this occurs, then switch off the PK-12 and move on to the section, Connecting Your Computer to the PK-12.

If none of the red LED's are lit upon power-up but the green POWER light is on, then the controller has been previously initialized and set to your computer's current TBAUD speed—it has already passed the autobaud routine, which will be described shortly.

If either of the above doesn't happen, go to Chapter 7 - Troubleshooting.

Re-Initialization

If the PK-12 has been previously initialized, it's ready to communicate with a computer at a baud rate of 300, 1200, 2400, 4800 or 9600 baud. If you're new to TNC operation, we suggest you re-initialize the PK-12 now so you'll have an easier time getting it up and running later. **Reinitializing the controller will make it "forget" all of its user-defined parameters and will return it to its default settings from the factory**.

To re-initialize the PK-12, enter RESET after the cmd: prompt.

Connecting Your Computer to the PK-12

NOTE:

Make sure that the PK-12 and computer are turned off before proceeding.

The Cable

For communication to take place between your computer and the PK-12, you need a properly wired shielded cable that will connect the computer's serial port to the RS-232 I/O port on the back of the PK-12.

The style of connector you have on your computer probably looks like one of these three:

Here's a table of pin assignments to wire the PK-12's RS-232 I/O port to a typical computer's serial port:

from PK-12 RS-232 I/O	to DB-25F	DB-9	Macintosh mini DIN-8P	Function
8	8	1	2	(DCD)
3	3	2	5	(RxD)
2	2	3	3	(TxD)
20	20	4	1	(DTR)
7	7	5	4+8	(GROUND)
6	6	6		(DSR)
4	4	7		(RTS)
5	5	8		(CTS)
1	1			Shield

Don't use a "null modem" cable. This type of cable flips pins 2 & 3 so that pin 2 on one end of the cable is connected to pin 3 on the other end (and vice versa). Use a cable that has "straight through" connections like the ones used to connect computers to a telephone modem, since as far as your computer is concerned, the PK-12 *is* a modem.

If you're using a computer that has a DB-9 connector for its serial port, you can purchase an adapter from Radio Shack that will work with the supplied computer cable.

Once you've tested the cable to make sure it's pinned correctly, plug one end into your computer's serial port and the other end to the RS-232 I/O port on the back of the PK-12. Then, proceed to the *System Start-up and Loop-back Test* section in this chapter.

Dumb Terminals

If you have an RS-232 dumb terminal, you may need to change the gender of the cable provided with your PK-12. This can be done with an inexpensive double-male RS-232 gender changing adapter available from Radio Shack and other computer dealers. The Radio Shack part number is 26-243.

The Computer

If the type of computer you plan to use with the PK-12 wasn't mentioned earlier in this chapter, you may find specific connection information below. You'll also need a communications program to use with your computer. See *The Software* section following this one for information regarding communication programs for many of the above machines.

Computers that don't have a serial port or permit use of a suitable adapter or level converter can't be used with the PK-12.

Other Computers with RS-232 Ports

If your computer has an RS-232 port, consult your computer manuals to see which pins are used for TxD, RxD, and signal ground. Read the manufacturer's recommendations for connecting the serial port to a telephone modem. Connect your PK-12 the same way.

The PK-12 is configured as Data Communications Equipment (DCE)—it receives data on pin-2. Most computers and terminals are configured as Data Terminal Equipment (DTE) transmitting data on pin-2.

If your computer is configured as DTE, use the supplied RS-232 cable with a gender changing adapter, if necessary. These are available from Radio Shack (catalog# 26-243) and other computer stores.

If your computer is configured as DCE, wire it like this:

- Wire pin 2 of the PK-12 to pin 3 of the RS-232 computer connector.
- Wire pin 2 of the computer's RS-232 connector to pin 3 of the PK-12.
- Wire pin 7 to pin 7.

Other Computers with Non-Standard Serial Ports

Computers with non-standard serial ports must meet the following conditions:

- The signal levels must be compatible with RS-232C. The PK-12 requires the voltage levels from the computer to be greater than +3 volts in the "asserted" state and 0 volts or less in the "non-asserted" state.
- The signal polarity must conform to the RS-232C standard. The 0 or negative-voltage state must correspond to logical "1" and the positive-voltage state to logical "0."

Make or buy a cable that provides the following connections:

- The computer's serial port signal ground or common pin must be connected to the PK-12's serial port connector, pin 7.
- The pin on which the computer *sends* data (TxD) must be connected to the PK-12's RS-232 connector, pin 2.
- The pin on which the computer *receives* data (RxD) must be connected to the PK-12's RS-232 connector, pin 3.

If your computer requires any other signals, you must arrange to provide them. The PK-12 has the standard hardware handshake lines available. As a default, the PK-12 provides XON/XOFF software flow control to the computer or terminal. The command, XFLOW, can be turned off, disabling software flow control and enabling hardware handshake if your computer requires it. Hardware flow control is achieved with RTS/CTS (pins 4 and 5) of the DB-25 RS-232 I/O connector. The documentation provided with your computer or serial card should clarify any special requirements.

The Software

If you're going to use your PK-12 with a computer, you'll need to read parts of this section to set up your communications or terminal (modem) program software. If you'll be using your PK-12 with a dumb terminal, you won't need any software and can skip to the next section, *System Start-up and Loop-back Test*.

The PK-12 operates in much the same manner as a telephone modem, so most telephone modem terminal programs will work with your PK-12. Some of these programs are in the "public domain," which means they're free. Other terminal programs are "share-ware," which means you may get them from a friend and try them before you buy them. Of course, you can always purchase a program outright from Timewave, a local amateur radio dealer, a nearby computer dealer, or through mail-order software houses.

Follow the installation directions for the terminal program you plan to use. Once installed on your computer, you should start the program and set its parameters to:

- Data Rate = 9600 bits per second (Baud)
- Data bits/word length = 8
- Parity = NONE
- Stop bits = 1
- Duplex = FULL
- Handshake = XON/OFF

NOTE:

As a default, the PK-12 provides XON/XOFF software flow-control to the computer or terminal. The PK-12 command, XFLOW, can be turned off to disable software flow control and enable hardware handshake if your computer requires it. Hardware flow control is achieved with RTS/CTS (pins 4 and 5) of the DB-25 RS-232 I/O connector.

Installing PC PakRatt Lite

Nore: You will need 500K of free hard disk space to load PC PakRatt Lite

- 1. Insert the installation disk into the floppy drive on your computer, A: or B:.
- 2. If you placed the disk in drive A:, type: A:INSTPPLT and then press ENTER.

If you placed the disk in drive B:, type: B:INSTPPLT and press ENTER.

This brings up a screen that explains what you need to do to install PC PakRatt Lite. Follow the directions and PC PakRatt Lite will load itself on your hard drive.

3. After installation, it is highly recommended that you print the PC PakRatt Lite Operating Manual. The manual is copied to the PC PakRatt Lite drive and the directory when the program is installed. The manual uses about 60 pages when printed. To print the manual, type: **cd\PPLITE** at the C: and press ENTER; this puts you in the PC PakRatt Lite directory. Now type: **COPY PPLITMAN.PRN LPT1** (or **LPT2**, **3**, or **4** — whichever your printer is connected to) and press ENTER. The manual should begin printing.

The manual can be viewed on your screen using a text editor, however we recommend printing the manual on your printer.

- 4. After printing the manual, read through the setup instructions to find out how to properly configure the program and TNC.
- 5. To run the program type: cd\PPLITE at the C: and press ENTER. You will see this: C:\PPLITE>. Now type: PPLITE and press ENTER.

You are ready to setup and use PC PakRatt Lite.s

System Start-up and Loop-back Test

Make sure that you've connected your PK-12 to a power supply and to the RS-232 port of your computer or terminal.

- 1. *Don't* connect any other cables to your radio yet!
- 2. With wire strippers and radio cable in hand, remove about an inch (2.5cm) of cable jacket, exposing the five colored wires and the shield-wire. Be careful not to nick the wires' insulation.
- 3. Strip about 1/4 inch (7mm) of insulation from the green and white wires and short them by gently twisting their stripped ends together.
- 4. Plug the cable into the RADIO socket on the PK-12's rear panel.
- 5. Set the TX LEVEL pot on the rear of the PK-12 to 50% rotation (straight up and down) using a small screwdriver.
- 6. Turn on your computer. Load your communications program. (Choose the TTY option, if available.)

NOTE:

If you're using an Timewave program, follow its manual's instructions for TNC start-up, then skip to Step 9.

- 7. Press the PK-12's power switch to the ON position.
- 8. Type an asterisk (*). The PK-12 will automatically try to recognize your computer's data (baud) rate that's set in the communications program you're using—this is referred to as the autobaud routine. When the PK-12's baud rate matches your computer's baud rate, your screen will display the following sign-on message:

```
AEA PK-12 Packet Controller
AX.25 Level 2 Version 2.0
Copyright (C) 1995 by
Advanced Electronic Applications, Inc.
Release 26.JUN.95
Ver. 7.1
cmd:
```

The five red LED's on the front panel should now be off.

(Make note on the first page of this manual of the firmware release . This is important should you ever need to call Timewave for technical support.)

bar once, enter the command's "argument" (the variable or text you're changing) if appropriate, then press (RETURN).

9. For now, enter a mock call sign after the cmd: prompt. For example:

MYCALL AAA

After you've entered this, the PK-12 will print the following on the screen:

MYcall was PK12 MYcall now AAA

10. The PK-12 recognizes the letter "C" to mean "connect to...". Try to connect to yourself by entering: C AAA

After a few moments, your monitor should display:

*** CONNECTED to AAA

- 11. Type Hi, there!, then press (RETURN). Your monitor should echo the same message.
- 12. Press (CTRL-C)—you'll get the cmd: prompt back. Enter the letter "D" so you can disconnect from yourself. You should get the message:

*** DISCONNECTED: AAA cmd:

If you've gotten this far, the PK-12 is operating properly. If you're having difficulties, see *Chapter 8 - Troubleshooting*.

If you experienced problems with the above procedure, go back to Step 1 *after* checking all the cables and connectors for proper wiring, continuity, and connection. Read each step again carefully. The most common errors made during this procedure are: trying to connect to a call sign different from the one you entered after MYCALL, not having the green-and-white wires shorted, or not setting the TX LEVEL to 50% rotation.

3. Radio Installation

Overview

This chapter describes how to connect the PK-12 to your radio receiver or transceiver.

To Transmit and Receive. . .

If you want to transmit as well as receive, you'll need to make the proper connections to your radio's speaker, microphone, ground, and the Push-To-Talk (PTT) circuits.

The best way to connect the PK-12 to your transceiver is through its rear panel accessory port (if it has one)—it will free up the mike jack so you don't have to swap connectors with your mike and the PK-12. If your radio doesn't have an accessory port, use its microphone connector for your hookup.

Note:

If your controller is connected to your radio's accessory port and you leave your mike plugged in, it will cause your radio to transmit whatever it hears from the PK-12 if you accidentally key the mike.

Radio Connection Requirements

Note:

Make sure that you remove power from your PK-12 and radio before making any of the following connections.

You'll need the following items to make a radio cable to connect the PK-12 to your transceiver:

- The Timewave-supplied radio cable.
- A microphone or accessory-plug connector.
- A schematic of your radio's microphone or accessory port.
- A low-wattage (under 40W) soldering iron and solder.
- Wire cutters or strippers.

Basic Connections and Adjustments

The following will help you identify the connection points to the PK-12's radio cable:

Connections for Specific Transceivers

Appendix A contains notes and diagrams for connecting the PK-12 to many VHF/UHF transceivers. Locate the transceiver you'll be connecting to your PK-12. At the same time, refer to your radio's Operating Manual to verify the pin assignments. (If you don't find your transceiver in *Appendix A*, locate a model from the same manufacturer that has the same accessory or mike connector and pinouts as the unit you'll be connecting—usually the manufacturer is consistent with their wiring formats so the hookups will be the same.)

If you'll be using a packet channel that's shared with voice users, you should connect the black wire to the Squelch pin of the connector—this will prevent the PK-12 from transmitting when there's a received signal strong enough to open the squelch. If you connect this pin, you may have to change the SQUELCH setting in the PK-12. (Most VHF/UHF Packet operations are no longer shared with voice repeaters, so this generally isn't used.)

So, to fashion the radio cable:

- 1. Locate the radio cables included with your PK-12.
- 2. Prepare the bare end by removing an appropriate amount of jacket for the mike connector you'll attach. Typically, this is .5 - .75 inches.
- 3. Carefully remove the foil shield exposing the colored wires underneath. *Be careful not to nick or cut the shield wire*.
- 4. Strip back about .125 inch of colored insulation from the red, white and brown wires. Don't strip back the black wire if you don't intend to use it—just cut it short.
- 5. Feed the connector's backshell over the cable end, then look at the connector closely to locate Pin 1. Compare this to the location of Pin 1 on the connector drawing in your transceiver's manual and the one in *Appendix A*. This is important, as some diagrams show the connector from the inside of

the transceiver, not the outside of the plug you are wiring. This will help insure that the plug is not wired backwards.

6. Warm up your soldering iron and begin soldering the wires.

Note:

When wiring a connector, it's often easier to wire the inside or middle pins first, then work your way to the outside pins.

- 7. Connect the Shield (silver) wire to the mike's ground connection, if your transceiver has one. If it doesn't have a separate mike or ground connection, then connect it to the single ground along with the brown wire. (See the next step.)
- Connect the brown wire to the main ground on the connector. This ground is the one used for the
 PTT and receive audio. You should connect the silver Shield/Drain wire to this ground *only* if there
 isn't a separate mike ground as described in the previous step.

If you're connecting a handheld ("handy-talkie") transceiver to your PK-12, you'll probably need a resistor and/or capacitor to isolate this connection from the AFSK audio (check *Appendix A*).

Transceiver Adjustments

Make sure your PK-12 and radio are turned off and all the cables are correctly wired and connected.

1. Connect a dummy load to your radio and be prepared to monitor your transmissions with a deviation meter.

Note:

If you don't have a deviation meter, a "quick 'n' dirty" way to set the 1200 bps AFSK level is to turn the TX LEVEL pot on the back of the PK-12 halfway between its stops.

2. Verify that your PK-12 and FM radio are connected as shown in the following figure:

- 3. Turn on your radio and computer.
- 4. Go ahead and load your terminal program so that you're operating the PK-12 in the Dumb Terminal mode.
- 5. Enter the CALIBRATE mode by entering: CAL next to the cmd: prompt.

In the CALIBRATE mode *only*, the letter *K* toggles the transmitter PTT line on and off; the (SPACE) bar toggles the tone generator from Mark (the lower pitched tone) to Space (the higher pitched tone).

Note:

The PK-12 has a transmit watchdog timer circuit that unkeys your transmitter automatically after sixty (60) seconds.

- 6. Press *K* to key the transmitter.
- 7. Tap the (SPACE) bar several times until the higher pitched of the two tones (Space) is heard.
- 8. Adjust the transmit audio level by adjusting the rear-panel TX LEVEL pot clockwise until the deviation meter reads ±3 kHz average deviation. If 3 kHz can't be obtained, change the position of JP3 and repeat adjustment.
- 9. Press *K* to return to receive mode.
- 10. Press Q to leave the CALIBRATE mode.
- 11. Set your receiver's squelch control for normal voice operation.

4. You're in Command

Overview

Most of the operating commands have a default value that provides good performance for the average amateur radio statison, but there's no rule that says you must keep these defaults. You can change the default values as required for your individual operating needs, type of equipment, and local operating practices or protocols.

Don't be intimidated by all the commands that are available to you—an average user needs to understand or change only a handful of them. Once set, they usually don't need to be reckoned with again. (See EX-PERT.) This chapter is intended as a command and error message reference and is *not* meant to be read from start to finish.

Parameters and Arguments

If a command requires an argument, the type of argument is indicated after the command name as well as its default value. There are three different types of parameters used: Boolean, Numeric (or Text), and String.

Boolean

Boolean arguments use one value out of a choice of only two possible values, such as *ON* or *OFF*, *YES* or *NO*, or *EVERY* or *AFTER*. Boolean arguments can also be changed back and forth (toggled) with an argument of *TOGGLE* or *T*.

Numeric

An argument designated as "n" is a numeric value. Numeric values can be entered by typing them in familiar decimal numbers, or in hexadecimal numbers. When using hexadecimal notation, you must type a \$ in front of the number to tell the PK-12 that this is a "hex" number.

For numeric parameters, the arguments ON or Y set the parameter value to its default. Arguments OFF or N set the value to zero. Baud-rate parameters can use arguments UP(U) or DOWN(D) to select the next higher or lower baud rate.

Text or String Arguments

A text parameter, such as the CTEXT message, can hold almost any ASCII character, including uppercase and lowercase letters, numbers, spaces, and punctuation.

Some commands, such as CONNECT, require call signs as arguments. These arguments are usually call signs, but may be any string of up to six characters with at least one letter. Some commands, such as CFROM, have arguments which are actually lists of call signs. You must separate multiple call signs with either spaces or commas.

Changing Commands

As you skim through the list of commands, you'll notice that the first few characters in the command are capitalized and the rest aren't. The capitalized letters are a shorthand way of entering a command and are the minimum number of characters you need to type in to use that command. For example, with the command DISPlay, you can enter DISP, DISPL, DISPLA and DISPLAY and all these entries will work. You can also enter commands using lowercase, uppercase, or a combination of lowercase and uppercase letters.

When you change a command's value, the PK-12 will let you know a change has been made and the change will be automatically saved. Say you want to enter your call sign. If your call sign is WF7A, then this is what you'll type:

```
cmd: MY WF7A
MYcall: was PK12
MYcall: now WF7A
cmd:
```

If you turn off or remove the power cord from your PK-12, it will remember the change(s) you've made provided you haven't removed the PK-12's internal jumper, JP-1. Also, all commands that accept values or parameters may be typed without any arguments to check their present setting.

If, while changing timing commands and such, you find that you've "dug yourself into a hole" and the PK-12 doesn't work as well as it did before, enter REINIT—it will reinitialize most of the commands to their default settings and perform a RESTART, but it *won't* lose the contents of the MailDrop. (Contrary to this, if you enter RESET, you'll return the PK-12 back to its factory default settings, lose any stored mail messages, and you'll have to go through the autobaud routine again.)

List of Commands

Commands are listed alphabetically with their descriptions. Each command entry contains several fields of information: Command Name, Default Value, and operational description. The default value is listed first.

3Rdparty ON/OFF

With 3RDPARTY *OFF*, the MailDrop system will only allow messages to be addressed to you. Turning 3RDPARTY *ON* informs the MailDrop system to allow messages to be addressed to anyone.

8Bitconv ON/OFF

8BITCONV ON permits transmission of 8-bit data in Converse mode. When 8BITCONV is *OFF*, bit 7 of characters received from the terminal is set to 0 (zero) before the characters are transmitted.

ACKprior ON/OFF

This command implements the Priority acknowledge scheme described by Eric Gustafson, N7CL, which proposes to improve multiple-access packet performance on VHF simplex channels with "hidden" terminals. When a busy channel clears, the acknowledgments are sent immediately, while data and poll bits are held off long enough to prevent collisions with the *ack* packets. By giving priority to data *acks*, fewer *acks* will collide with other station's data, reducing retries. Digipeated frames are sent immediately. RAWHDLC and KISS force ACKPRIOR *OFF*.

Default: OFF

Default: OFF

Default: OFF

These are the defaults for a P-persistence system with no Priority acknowledgment: ACKPRIOR *OFF*, PPERSIST *ON*, PERSIST *63*, *SLOTTIME 30*, RESPTIME *0*, MAXFRAME *4*, and FRACK *5*.

The following are the recommended command settings for Priority acknowledge:

ACKPRIOR ON PPERSIST ON PERSIST 84 SLOTTIME 30 RESPTIME 0 MAXFRAME 1 - 7 FRACK 8 DWAIT - doesn't matter

Stations using neither the Priority acknowledge nor the P-persistence schemes should set DWAIT 73. Stations using P-persistence, but not Priority acknowledge should set PERSIST and SLOTTIME to the same values that ACKPRIOR stations are using.

Timewave and TAPR use some different command names to handle P-persistence. The following table should help with the Timewave/TAPR command differences:

TAPR	MFJ	Timewave	Remarks
Slots	SLOTMASH	(PERSIST	
1	\$00	255	Disables slotting
2	\$01	127	
3		84	
4	\$03	63	Default setting
6		42	
8	\$07	31	Very busy channel
12		20	
16	\$0F	15	Extremely busy channel
64	\$3F	3	

The TAPR DEADTIME command is similar to Timewave's SLOTTIME command.

ACRDisp n

Default: 0

This command allows you to customize the output of the TNC to meet your screen width. The parameter n tells the PK-12 how wide your screen is. The PK-12 will insert a carriage return and line feed after n characters have been sent to your screen, making the display easier to read. Since computers and terminals do this automatically, you should only change this parameter if your screen is hard to read.

ACRPack ON/OFF

With ACRPACK *ON*, all packets sent in the Converse mode include the SENDPAC character, normally a (RETURN), as the last character of the packet.

When ACRPACK is *OFF*, the SENDPAC character is interpreted as a command, and isn't included in the packet or echoed to the terminal.

ACRPACK ON and SENDPAC \$0D produce a natural conversational mode.

Default: ON

AFilter ON/OFF

Some terminals and computers use special characters to clear the screen or perform other "special" functions. Since you did not type these characters, it is undesirable to send them over the air. Placing these characters in the MFILTER list, and turning AFILTER *ON*, will keep the PK-12 from transmitting them.

Exception: when ECHO is *ON* and the computer sends a filtered character, the PK-12 will echo it back to your terminal or computer.

AFILTER works regardless of mode, or CONNECT/CONVERSE/TRANSPARENT status. Leave AFILTER *OFF* during binary file transfers.

ALFDisp ON/OFF

ALFDISP controls the display of (RETURN) characters received, as well as the echoing of those that are typed in.

With ALFDISP *ON*, the PK-12 adds a line feed (LF) to each (RETURN) it receives, *if needed*. If a LF was received immediately before or after a (RETURN), ALFDISP won't add another LF. Use the PK-12's sign-on message to determine how (RETURN)'s are being displayed. (ALFDISP affects your display, *not* transmitted data.)

- Turn ALFDISP ON if the PK-12's sign-on message lines are typed over each other.
- Turn ALFDISP OFF if the PK-12's sign-on message is double spaced.
- ALFDISP is set correctly if the PK-12's sign-on message is single spaced.

ALFPack ON/OFF

ALFPACK is similar to ALFDISP, except that the LF characters are added to outgoing packets rather than to text displayed on your computer screen. If the person you're talking to reports overprinting of packets from your station, set ALFPACK *ON*.

ALFPACK is disabled in the Transparent mode.

AUdelay n

Some synthesized transceivers may produce undesirable spurious emissions if the modem tones and PTT are applied at the same time. AUDELAY allows you to reduce these emissions by inserting a delay between the time PTT is asserted and the time the modem tones are transmitted. The parameter n specifies the delay in increments of 10 milliseconds.

Please note that AUDELAY must *always* be less than TXDELAY. It's advisable that AUDELAY be set lower than TXDELAY by a setting of 10.

AUTOBaud ON|OFF

With AUTOBAUD *OFF*, the PK-12 will automatically determine the terminal baud rate only when powering-up for the first time (right out of the box) or after a RESET. With AUTOBAUD *ON*, the PK-12 determines the terminal baud rate *every* time it's powered-up, and *every* time the RESTART command is entered. Setting AUTOBAUD *ON* is helpful when moving the unit from one computer to another where the terminal data rates are different.

When the PK-12 is trying to determine the terminal baud rate, it will send a message to the terminal asking you to enter a '*'. You will most likely not be able to read the message; it will appear as junk characters if the PK-12 is using a different baud rate than your terminal is. Simply press the '*' key to get the PK-12 to change to the baud rate your terminal is set to.

Default: 2 (20 mS)

Default: OFF

Default: OFF

Default: ON

Default: OFF

AWlen n

In addition to the baud rate, the number of data bits used to send characters between your terminal and the PK-12 must also be identical. Using this command, you can set the number of data bits to either 7 or 8 depending on your terminal's requirements. AWLEN will most likely be set properly by the PK-12's autobaud routine.

For plain text conversations with the PK-12, AWLEN 7 or 8 may be used. For binary file transfers and Host mode operation, AWLEN 8 must be used.

The RESTART command must be issued before this command takes effect.

Ax25l2v2 ON OFF

This command allows the selection of either the old (ver. 1) version of the AX.25 packet protocol or the current (ver. 2.0) protocol. Some implementations of version 1 of AX.25 protocol won't properly digipeat version 2.0 AX.25 packets. Most users run AX.25 version 2, but this command allows you to return to the older version, if necessary, for compatibility.

AXDelay n

"*n*" 0 to 180 specifies a key-up delay for voice repeater operation in 10 mS intervals.

AXDELAY specifies the period of time the PK-12 will wait-in addition to the delay set by TXDELAY—after keying the transmitter and before data is sent. Packet groups using a standard voice repeater to extend the range of the local area network may need to use this feature.

Repeaters with slow electromechanical relays, auxiliary links, or other circuits which delay transmission after the RF carrier is present require more time to get RF on the air. Try various values to find the best value for "n" if you're using a repeater that hasn't been used for packet operations before. If other packet stations have been using the repeater, check with them for the proper setting. AXDELAY acts together with AXHANG.

AXHang n

"n" 0 to 20 specifies voice repeater "hang time" in 100 mS intervals.

AXHANG allows you to increase efficiency when sending packets through a repeater that has a hang time greater than 100mS. When the PK-12 hears a packet sent within the AXHANG period, it doesn't add the repeater key-up delay (AXDELAY) to the key-up time. Try various values to find the best value if you're using a repeater that hasn't been used for packet operations before. If other packet stations have been using the repeater, check with them for the proper setting.

BBSmsgs ON OFF

ON - Makes the PK-12 status message look like TAPR-style output.

OFF - The PK-12 status message will work as before (default).

When BBSMSGS is ON, some of the status messages change or are suppressed which may improve operation of the PK-12 with some BBS software. The following Timewave PK-12 status messages are suppressed or changed if BBSMSGS is ON:

No "(parm) was (value)"

No "(parm) now (value)"

Connect messages: No "; v2; 1 unACKed"

Default: 7

Default 0 (000 mS)

Default: ON (v2.0)

Default: 0 (00 mS)

Default: OFF

No "xxx in progress: (dest) via (digis)" No space after comma in digipeater lists "Via" in upper case If MRPT is ON, digi paths are displayed in TAPR format No "*** connect request:" No "*** retry count exceeded" Sends carriage return before all other "***" No "(callsign) busy" message

Beacon EVERY/AFTER n

The PK-12 may be programmed to send a message ('beacon') at some pre-determined interval. The beacon message is set using the BTEXT command. The beacon's address is set using the UNPROTO command. When the argument *EVERY* is specified, a beacon packet is sent every "n" x 10 seconds. When *AFTER* is specified, a beacon is sent *after* ($n \ge 10$) seconds have passed without any packet activity being heard. The parameter n may be set from 0 (no beacon) to 250 (2500 seconds, or 40 minutes) in 10 second increments.

If you set BEACON to less than 9 —a value judged as too short for busy channels—you'll see the following message at each command prompt: WARNING: BEACON too often

BKondel ON OFF

This command determines what the PK-12 sends to your terminal each time the delete key is pressed. When ON, the PK-12 sends the sequence backspace - space - backspace to the terminal removing the last character you typed. When OFF, the PK-12 sends a backslash (\) to your terminal each time the delete key is pressed. You can get a display of the corrected input by typing the REDISPLAY-line character.

BText text

This command is used to enter a message (up to 120 characters) to be sent during beacon operation. Use %, &, *N*, *NO*, *NONE*, or *OFF* as arguments after you enter BTEXT on the command line to clear text you previously typed in for that command. Don't enter your call sign as part of the beacon text, it is part of the packet frame and will be sent anyway.

CALibrate

CALIBRATE is used during installation to set the transmitted audio level. The TX LEVEL pot on the back of the PK-12 is used to set the proper audio level (see Installation section).

When in CALIBRATE mode, all packet connections will be lost and the time-of-day clock will not advance until you exit. Commands available in the CALIBRATE routine are:

K Toggles the PK-12's PTT circuit on and off.

Q Quits the calibration routine.

The PK-12 has a timer circuit that will automatically shut off the transmitter after it has been on for sixty seconds.

Default: EVERY 0 (00 sec.)

Default: ON

Default: empty

CANline n

Any time you have entered a line of text and not yet pressed the (RETURN) key, the line can be cancelled by pressing and holding the (CTRL) key while pressing the key specified by CANLINE. Any ASCII character from 0 to 127 may be used to cancel a line.

Note: If your SENDPAC character isn't (RETURN), the CANLINE character cancels only the last line of a multi-line packet.

CANPac n

Any packet message that has been typed in prior to typing the SENDPAC character may be cancelled by pressing and holding CTRL while pressing the key specified by CANPAC. Any ASCII character from 0 to 127 may be used to cancel packet messages.

You can only cancel the packet that's currently being entered in the Converse mode. When you cancel a packet, the line is terminated with a $(\)$ and your cursor is put on a new line.

In the Command mode, this character cancels all the output from the PK-12 to your computer screen. Entering the CANPAC character again restores normal output from your PK-12.

CASedisp *n*

Use this command to set the case used to send characters to your terminal. Setting CASEDISP to 0 turns off case changing; characters are displayed as they are received. Setting CASEDISP to 1 causes all characters to be displayed in lower case, setting CASEDISP to 2 causes all characters to be displayed in upper case.

CBell ON OFF

CBELL ON causes the PK-12 to send three bell characters (CTRL-G) to your terminal when the connected or disconnected messages are displayed. Setting CBELL ON, will let you know when someone has connected or disconnected from your TNC.

CFrom ALL, NONE, YES/NO call1,call2...

CFROM determines how your PK-12 responds to connect requests from other stations. CFROM is set to *ALL* when you first start your PK-12. This means your PK-12 will respond to all the connect requests addressed to it.

To reject all connect requests, type CFROM *NONE*. Your PK-12 sends the calling station a "busy signal." (This is like leaving your telephone off the hook.)

To accept calls from one or more specific stations, type CFROM YES followed by a list of call signs. Connect requests will be accepted from stations whose call signs are listed after CFROM YES. Similarly, to *reject* calls from one or more specific stations, type CFROM NO followed by a list of call signs. You can include optional SSIDs specified as "-n" after the call sign. With CFROM NO KB6IUX, connect attempts from all SSIDs of KB6IUX (KB6IUX-0 through KB6IUX-15) will be ignored. If CFROM is set to YES KB6IUX-1, then only KB6IUX-1 will be allowed to connect to you.

Clear CFROM with %, &, or *OFF* as arguments.

Default: \$18 (CTRL-X)

Default: OFF

Default: 0 (as is)

Default: ALL

Default: \$19 (CTRL-Y)

CHCall ON|OFF

With CHCALL *ON*, the call sign of the originating station appears after the channel identifier even if you're connected through more than one packet station. With CHCALL *OFF*, only the channel number is displayed in a single or multiple-connection operation.

CHDouble ON OFF

Set CHDOUBLE *ON* when operating with multiple connections to tell the difference between CHSWITCH characters received from other stations and CHSWITCH characters generated by your PK-12. In the following example CHDOUBLE is *ON* and CHSWITCH is set to "|" (\$7C): || this is a test.

The sending station actually transmitted:| this is a test.The same packet received with CHDOUBLE OFF would be displayed as:| this is a test.

CHeck n

Without the CHECK feature, if your PK-12 were connected to another station and the other station disappeared, your PK-12 would remain connected indefinitely, perhaps refusing connections from other stations. Your PK-12 tries to prevent this from occurring—depending on the settings of AX25L2V2 and RE-CONNECT—by using the CHECK timer as follows:

- If a Version 1 link is inactive for CHECK x 10 seconds, your PK-12 tries to save the link by starting a reconnect sequence. The PK-12 enters the "connect in progress" state and sends "connect request" frames.
- If a Version 2 link (AX25L2V2 *ON*) is inactive and packets haven't been heard from the other station for "*n*" x 10 seconds, your PK-12 sends a "check packet" to test if the link still exists. If your PK-12 doesn't get an answer to the "check packet" after RETRY+*1* attempts, it will attempt to reconnect to the other station.

See the RELINK command.

CHSwitch n

If you plan to engage in multiple packet connections, you *must* select a CHSWITCH (Channel SWITCH) character. This character will be interpreted by the PK-12 to indicate that you want to select another packet channel.

CHSWITCH selects the character used by both you and the PK-12 to show that a new connection channel is being addressed. *DO NOT USE \$30 to \$39 (0 to 9)*.

The vertical bar "]" (\$7C) is a seldom used punctuation mark and makes a good switching character. To make the CHSWITCH character the vertical bar, simply enter the command and the vertical bar's ASCII code: CHSWITCH *\$7C*.

To change packet channels, simply type the vertical bar "]" followed by a number between 0 through 9, indicating which channel you want to use. So, to go from Channel 0 to Channel 1, you'd enter:

cmd:|1

See CHDOUBLE and CHCALL for further information on the use of CHSWITCH.

Default:OFF

Default: 30 (300 sec.)

Default:\$00

Default: OFF

CMdtime n

The PK-12 has a mode which allows it to send raw data without interpreting control sequences (special characters) in the data stream; this mode is called 'transparent' mode. When the PK-12 is in transparent mode, there doesn't appear to be any way to return it to the cmd: prompt (command mode). To leave the transparent mode, the COMMAND character (CTRL-C default) must be entered three times within the period of time set by CMDTIME (defaults to 1 second). This is done purposely to reduce the chance that transmitted data could pop the PK-12 out of transparent mode.

CMDTIME is adjustable from 0 to 250 (0 to 25 seconds) in 100 millisecond increments.

CMSg ON OFF

CMSG enables or disables automatic transmission of the CTEXT message when your PK-12 accepts a connect request. Set CMSG *ON* to send the connecting station your CTEXT message. One idea is to put an invitation for the connecting station to leave a message in your MailDrop if you're not available in your CTEXT message.

CODe n

"n" 0 to 6 specifies a code from the list below. (RX = Receive; TX = Transmit)

CODE is used to change the way the PK-12 displays square brackets (ASCII \$5B, \$5D) in packet headers and MailDrop prompts. Setting CODE to 0 allows the use of square brackets, while setting CODE to 6 changes all square bracket use to parenthesis. US ASCII square bracket characters are used as extended alphabetic characters in most languages outside of English.

COMmand n

COMMAND changes the Command mode entry character. Type the COMMAND character once to return to Command mode from Converse mode, or three times to return from Transparent mode. After you enter the COMMAND character, the Command prompt (cmd:) should appear, indicating successful entry into the Command mode. See CMDTIME for more information. COMMAND may be set to any ASCII character from 0 to 127.

CONmode CONVERSE/TRANS

Default: CONVERSE

Default: 0 (Square Brackets)

Default: \$03 (CTRL-C)

CONMODE is used to instruct the PK-12 to either enter the converse mode or the transparent mode after connection is established. This parameter should rarely need to be changed.

CONNECT call1 (Via call2,call3,...call9)

Use the CONNECT command to send a packet connect request to station *call1*, directly or VIA (through) one or more "digipeaters" (*call2* through *call9*). Each call sign can include an optional SSID-*n* immediately after the call sign.

For example, say you want to digipeat through two stations that are on a linear radio path to the third station, the one you want to talk to. You'd type something like this after the cmd: prompt:

C WF7A V KG6ZL,KB6IUX-1,WO6P

This string means that you want to CONNECT to WF7A Via (through) station KG6ZL, then KB6IUX-1, then WO6P. The path looks like this:

You → KG6ZL → KB6IUX-1 → WO6P → WF7A

Default: OFF

Default: 10 (1000 mS)

You can type CONNECT (without any parameters) at any time to check the PK-12's connect status. If you're in the process of trying to connect to another station, you'll see the message:

Link state is: CONNECT in progress

If the other station doesn't *ack* your connect request after the number of tries set with RETRY, the connect attempt is cancelled. Your monitor would display:

```
cmd:*** Retry count exceeded
*** DISCONNECTED: call1
```

CONOK ON OFF

ON - Connect requests from other stations will be accepted if CFROM is set to ALL.

OFF - Connect requests from other stations will not be accepted if CFROM is set to ALL or NONE.

CONOK is included only to maintain upward compatibility with the TAPR TNCs and some BBS software that depend on this command being there. The command CFROM is much more versatile, and should be used instead of CONOK.

Make sure that CFROM is set to ALL if your software needs CONOK.

CONPerm ON OFF

CONPERM allows you to establish a permanent connection with another TNC. When CONPERM is *ON*, the PK-12 is forced to maintain the current connection, even when the number of frames to the other station exceeds RETRY attempts for an acknowledgment. For standard packet use, CONPERM should remain OFF.

CONStamp ON OFF

CONSTAMP is used to activate time stamping of *** CONNECTED status messages. If CONSTAMP is *ON* and DAYTIME (the PK-12's internal clock) is set, the time is sent with CONNECT and DISCONNECT messages. For example, if the clock is set and CONSTAMP is *ON*, a connect and disconnect sequence would appear like this:

```
cmd:10:55:23*** CONNECTED to KB6IUX
cmd:10:55:59*** DISCONNECTED: KB6IUX
```

CONVerse (or K)

CONVERSE is an immediate command that causes the PK-12 to switch from the Command mode to the Converse mode. The letter "K" may also be used.

Once the PK-12 is in the Converse mode, all the characters typed into the keyboard are transmitted by your radio. To return the PK-12 to the Command mode, type the Command mode entry character, (CTRL-C).

CPactime ON OFF

CPACTIME activates automatic, periodic packet transmission in the Converse mode.

With CPACTIME *ON*, characters are "packetized" and transmitted periodically as if in Transparent mode. Local keyboard editing and display features of the Converse mode are available. See the PACTIME command for an explanation of periodic packetizing.

Default: OFF

Default: ON

Default: OFF

Default: OFF

CStatus SHORT

CSTATUS is an immediate command helpful in keeping track of your PK-12's activity while singly or multiply-connected to other stations. When CSTATUS is typed, your monitor displays the link status of all ten channels as well as the current input/output channel as follows:

Not connected	Connected to two stations
cmd:cs	cmd:cs
Ch. 0 - IO DISCONNECTED	Ch. 0 - IO CONNECTED to WF7A
Ch. 1 - DISCONNECTED	Ch. 1 - CONNECTED to WF7A-1
Ch. 2 - DISCONNECTED	Ch. 2 - DISCONNECTED
Ch. 3 - DISCONNECTED	Ch. 3 - DISCONNECTED
Ch. 4 - DISCONNECTED	Ch. 4 - DISCONNECTED
Ch. 5 - DISCONNECTED	Ch. 5 - DISCONNECTED
Ch. 6 - DISCONNECTED	Ch. 6 - DISCONNECTED
Ch. 7 - DISCONNECTED	Ch. 7 - DISCONNECTED
Ch. 8 - DISCONNECTED	Ch. 8 - DISCONNECTED
Ch. 9 - DISCONNECTED	Ch. 9 - DISCONNECTED

CSTATUS will give a short display if desired. CSTATUS *SHORT*, or CS *S*, displays only the current input/output channel or those channels which are connected.

CText text

Default: empty

Default: \$0A15

CTEXT is the "answering machine" message sent when CMSG is *ON*. The message is sent only when another station connects to you. You may enter any combination of up to 120 characters, including spaces.

Clear CTEXT text by using the following arguments: %, &, NO, NONE, or OFF, or simply set CMSG OFF.

CUstom n			

"n" 0 to \$FFFF (0 to 65,535 decimal) specifies a four-digit hexadecimal value, where each bit controls a different function described below.

CUSTOM was originally introduced to allow specialized features for custom applications to be added to the PK-12 without burdening you with extra commands. Since the CUSTOM command is quickly filling up, UBIT has been added to replace CUSTOM to allow for additional features. The CUSTOM command is retained for compatibility, but we recommend using the UBIT command, as it's more flexible and easier to use.

For those applications that can't take advantage of the UBIT command, the following CUSTOM features are available in this release of the PK-12:

Bit 0, position \$0001:	If bit 0 is set to 1 (default), the PK-12 will discard a received packet if the signal is too weak to light the DCD LED. If set to 0 , packets will be received regardless of the carrier detector's state.
Bit 1, position \$0002:	If bit <i>1</i> is set to <i>0</i> (default), then setting the MONITOR command to either <i>ON</i> or <i>YES</i> will result in a MONITOR value of 4. If bit <i>1</i> is set to <i>1</i> , then MONITOR <i>ON</i> or <i>YES</i> will force the MONITOR value to 6.
Bit 2, position \$0004:	If bit 2 is set to <i>1</i> (default), a break on the RS-232 line will put the PK-12 into the Command mode (except from Host mode). If set to <i>0</i> , a break on the RS-232 line will not affect the PK-12.

Bit 3, position \$0008:	If bit 3 is set to 0 (default), packet channel numbers will be numbered from $0-9$. If bit 3 is set to 1, then packet channel numbers are labeled A-J or a-j.		
Bit 4:	Not used.		
Bit 5, position \$0020:	If bit 5 is set to 0 (default) the PK-12 will always power up in the Command mode. If bit 5 is set to 1 , then the PK-12 will remain in the previous mode, that is, Converse, Command, or Transparent mode.		
Bit 6, position \$0040:	If bit 6 is set to 0 (default), then monitoring is disabled in the Transparent mode. If bit 6 is set to 1, then monitoring is active in the transparent mode. MFROM, MTO, MRPT, MONITOR, MCON, MPROTO, MSTAMP, CONSTAMP, and MBX are all active.		
Bits 7-12:	Not used.		
Bit 13, position \$2000:	If bit 13 is set to 0 (default), MailDrop connect status messages are always sent to the local user, regardless of the setting of MDMON. If bit 13 is set to 1 , remote user dialog and connect status messages with the MailDrop are shown if MDMON is ON .		
Bit 14, position \$4000:	If bit 14 is set to 0 (default), the transmit buffer for data sent from the computer to the PK-12 in packet mode is limited only by the PK-12 memory. If bit 14 is set to 1 , the serial flow control will permit only a maximum of 7 I-frames to be held by the PK-12 before transmission. This solves a problem with the YAPP binary file transfer program, which relies on a small TNC transmit buffer to operate correctly.		
Bit 15:	Unused at the present time.		
To return CUSTOM to the default setting, type CU Y or CU ON at the command prompt.			

DAYStamp ON|OFF

Default: OFF

DAYSTAMP activates the date in CONSTAMP and MSTAMP. Set DAYSTAMP ON when you want a dated record of packet channel activity, otherwise you will only get a time stamping on packet channel activity.

DAytime date and time

Default: none

The clock isn't set when the PK-12 is first turned on. The DAYTIME command displays the ?clock not set error message until it's set as follows:

YYMMDDHHMMSS

Example:	cmd:	daytime	940202065923	
where:	YY	is the last tw	o digits of the year	1995
MM is the two-digit month code (01-12)		Feb		
<i>DD</i> is date (01-31)		02		
	HH is the hour (00-23)		06	
	MM	<i>I</i> is the minu	tes after the hour (00-59)	59
	SS i	is seconds (o	ptional)	23

If you want the PK-12 to keep current time, either keep its power supply on, have the software you're using set the clock upon start-up, or install a dedicated clock chip. The clock chip of choice is the SmartWatch clock chip (DS1216C) by Dallas Semiconductor, which may be obtained through them at (214) 450-0400 or through JDR Microdevices at (800) 538-5000. The only time the SmartWatch is read is upon power-up, RESTART, or RESET.

DAYTIME is used in many modes and should be set when the PK-12 is first powered up.

Installation is easy: Carefully remove U3, install the SmartWatch chip into U3's socket, then insert U3 into the top of the SmartWatch chip. Enter the time and date in DAYTIME and you're all set. (If you have the 128K RAM option, use the DS1216D clock chip.)

DCdconn ON OFF

DCDCONN defines how the DCD (Data Carrier Detect) signal affects pin 8 in the RS-232 interface to your computer or terminal. Some programs, such as PBBS software, require that DCDCONN be *ON*.

DCDCONN also works in the RAWHDLC and KISS modes. In RAWHDLC and KISS, no packet connections are known to the PK-12. With DCDCONN *ON*, the state of the radio DCD is sent to the RS-232 DCD pin (pin-8). This may be necessary to some Host applications that need to know when the radio channel is busy.

DELete ONOFF

The PK-12 offers you two choices for editing text you have typed. You may delete characters using either the backspace (\$08) key, or the delete (\$7F) key. Use this command to select the key of your choice. Turning DELETE ON enables editing with the delete key, OFF allows you to delete with the backspace key.

Refer to BKONDEL to see how the PK-12 indicates deletion.

DFrom ALL, NONE, YES/NO call1, call2...

DFROM determines how your PK-12 responds to stations trying to use your station as a digipeater. Type DFROM to display the *ALL*, *NONE*, *YES list/NO list* status of station's call signs whose packets will or won't be digipeated.

To allow one or more specific stations to digipeat through your station, type DFROM *YES*, followed by a list of call signs. To *prevent* one or more specific stations from digipeating through your station, type DFROM *NO* (followed by a list of call signs). To prevent all stations from digipeating through your station, type DFROM *NONE*.

Clear DFROM with %, &, or OFF as arguments.

DIGipeat ON OFF

ON - The PK-12 will digipeat packets from all other stations if DFROM is set to ALL.

OFF - The PK-12 will not digipeat packets from other stations if DFROM is set to ALL or NONE. DIGIPEAT is included only to maintain upward compatibility with the TAPR TNCs and some BBS software that depend on this command being there. The command DFROM is much more versatile, and should be used instead of DIGIPEAT.

Make sure that DFROM is set to ALL if your software needs DIGIPEAT.

Default: OFF

Default: ALL

Default: OFF

Default: ON

Disconne

The DISCONNE command instructs the PK-12 to disconnect from the station you are currently connected to. If your disconnect command is successful, your monitor will display:

```
*** DISCONNECTED: (call)
```

Other commands may be entered while a disconnect is in progress, although new connections aren't allowed until the disconnect is completed.

If another disconnect command is entered while your PK-12 is trying to disconnect, your PK-12 will instantly switch to the disconnected state.

DISPlay class

One of the most important commands is DISP—it generates a list of commands and their current settings. To see a brief list, enter DISP. Your screen should now display:

)

(See also DISPLAY	A,B,C,F,I,L,M,R,T,Z
ConnectLink state	e is: DISCONNECTED
Opmode	PAcket
EXPert	OFF
FRack 5 (5 sec.)	
HBaud 1200	
MAXframe	4
Monitor4	(UA DM C D I UI)
MYcall	PK12
MYSelcal	none
PACLen	128
TXdelay	30 (300 mS)
cmd:	

By typing an argument after DISP, like DISP *A*, you can call up a sub-list with a different set of commands. If you want to list *all* of the available commands and their settings, enter DISP *Z*.

The arguments for <i>class</i> are:	(A)sync displays serial (asynchronous) port parameters
	(B)BS displays packet and MailDrop parameters
	(C)haracter displays special characters
	(I)d displays ID parameters
	(L)ink displays link parameters
	(M)onitor displays monitor parameters
	(T)iming displays timing parameters
	(Z) displays the entire parameter list

DWait n

Default: 16 (160 mS)

Unless the PK-12 is waiting to transmit digipeated packets, DWAIT forces your PK-12 to pause DWAIT x 10 mS after last hearing data on the channel before keying your transmitter. You may set DWAIT from 0 to 2.5 seconds in 10 millisecond increments (0-250).

DWAIT is an old way digipeated packet collisions were avoided. Now days, the P-Persistent method is generally used. With PPERSIST *ON* (default), the DWAIT timer is ignored.

Echo ON|OFF

Depending on the terminal program you use with the PK-12, you may not see what you type, or you may see double characters. If you don't see the letters that you type, but the PK-12 responds to the commands, you need to enable the 'echo' function. This will return (or echo) each character that you type to your screen. The ECHO command only works in the command and converse modes (not transparent). If you see each character twice, your terminal is already echoing the characters. You need to turn ECHO OFF. ECHO is set properly when you see the characters you type displayed correctly.

EScape ONOFF

ESCAPE selects the character to be output when an (ESCAPE) character is sent to the terminal. The (ES-CAPE) character selection is provided because some computers interpret the ESCAPE character as a special command. Set ESCAPE ON if you have an ESCAPE-sensitive computer to avoid unexpected results from accidentally receiving this character. This will force the PK-12 to display all (ESCAPE) characters as '\$'.

EXPert ON OFF

Some new PK-12 owners find the large number of available commands daunting. The EXPERT command limits the user's access to the simplest, most often used commands. Generally, about half of the commands are available to you after a RESET (EXPERT OFF).

With EXPERT OFF, expert-level commands may not be accessed and don't appear in any output of the DISPLAY command—an attempt to use one of these commands will result in the error message "?EX-PERT command."

All immediate commands (e.g., CONNECT, PACKET, etc.) are "Novice" commands.

Flow ON|OFF

With FLOW ON (default), any character typed on your keyboard halts the output from your PK-12 to the computer until any of the following occurs:

- A packet is sent (in Converse mode).
- A line is completed (in Command mode).
- The packet length ****(PACLEN)**** is exceeded.
- The current packet or command line is cancelled.
- The REDISPLAY character is typed.
- The packet channel is changed.

Setting FLOW ON prevents received data from interfering with your keyboard data entry. With FLOW *OFF*, data is sent to the terminal whenever it's available.

FRack n

FRACK is the FRame ACKnowledgment time in seconds that your PK-12 will wait for acknowledgment of a sent protocol frame before "retrying" that frame.

After sending a packet requiring acknowledgment, the PK-12 waits for FRACK seconds before increasing the retry counter and sending another frame. If the packet address includes any digipeaters, the time between retries is adjusted to:

Retry interval (in seconds) = $n \times (2 \times m+1)$, where "m" is the number of intermediate relay stations.

Default: ON

Default: ON

Default: OFF

Default: OFF

Default: 5 (5 sec.)

When a packet is retried, a random wait time is added to any other wait times. This avoids lockups where packet stations repeatedly collide with each other due to timing conflicts.

FRACK may be set from 1 to 15 seconds in 1 second increments.

FREe

Typing FREE displays the number of usable bytes left in the MailDrop, as in FREE 3724.

FRIck n/n

Default: 0/0 (0 sec.)

FRICK is a short version of FRACK, meant to be used in packet radio meteor scatter work. If FRICK is 0 (default), the FRACK timer is then used and the PK-12 operates as before with the retry timer in units of whole seconds. If FRICK is 1 to 250, it overrides FRACK as the unit's retry timer, and the retry timer is in units of 10 mS up to 2500 mS (2.5 seconds).

Unlike FRACK, FRICK doesn't take into account the number of digipeaters in the connect path. FRICK assumes that no digipeaters are being used.

NOTE:

Do not attempt multiple packet connections while FRICK is active (1-250). In contrast to FRACK, which provides one retry timer per multi-connect channel, there is only one FRICK timer in the PK-12. Each channel will try to use the same FRICK timer, causing interference to the operation of the other channels.

Due to the sporadic nature of meteor scatter work, a Master/Slave mode can be enabled with User BIT 18 (UBIT *18*). With UBIT *18 OFF*, FRACK operates the same as before.

With UBIT 18 ON, a master/slave relationship is established in packet radio connections. This is done to reduce the possibility of simultaneous transmissions by both sides of a packet connection. In this mode, the master station sends either an I-frame or a polling frame upon the expiration of FRICK (or FRACK if FRICK = 0). The FRICK or FRACK timer then starts counting again. The master station therefore sends packets constantly, even if all its I-frames have been acknowledged. The slave station sends nothing, not even I-frames, until it receives a polling frame from the master. A station becomes the master upon its transmission of a SABM (connect) frame; a station becomes the slave upon its transmission of a UA (acknowledgment of the SABM) frame.

Recommended settings for this method (both stations should use these):

UBIT <i>18</i>	ON
RETRY	0
AX25L2V2	ON (default)
MAXFRAME	1
CHECK	(doesn't matter)
FRICK n	, where n is large enough to allow the other station time to send the start of an acknowl-
e	dgment frame.

FUlldup ON|OFF

Default: OFF

When full duplex mode is *OFF* (default), the PK-12 makes use of the DCD (Data Carrier Detect) signal from its modem to avoid collisions. When *ON*, the PK-12 ignores the DCD signal and acknowledges packets individually.

Full-duplex is useful for full-duplex radio operation, such as through OSCAR satellites. It shouldn't be used unless both stations can operate in full-duplex.
GENDchar "n"

The default GENDchar of \$0D requires the string to end with a CR,LF to conform with the NMEA format. If this is changed, the sentence will end with whatever character is programmed. This command does not need to be programmed for use with GPS or Loran devices. It is intended for use with other formats.

GINIText text

text- Any combination of characters up to a maximum length of 60 characters.

This text will be sent to the serial port when the PK-12 is powered up with GPSMode NOT equal to zero. This text is intended for an initialization string for OEM GPS cards requiring setup after power-down. If not programmed, the PK-12 will send nothing at power-up.

GLOCtx "n"

"n" - 0 to 255 sets the location timing in ten-second increments.

"0" - Zero disables automatic location transmissions.

GLOCtx is used to periodically transmit GPS data received on the serial port. GLOCtx is programmable from 0 (never) to 2500 seconds in 10 second intervals. A transmission will only occur if, GPSMode = 1 or 2, GLOCtx is not zero, and the correct NMEA information is received on the serial port.

GNMEA1 Text (0-8 chars)

This is the string the PK-12 will parse from the NMEA device. The text can be any ASCII character.

GNMEA2 Text (0-8 chars)

This is another string the PK-12 will parse from the NMEA device. The text can be any ASCII character.

GPOLLCal call[-"n"]

call - The callsign you wish to use for polling.

"n" - Numeral indicating an optional SSID.

The POLLCal can be any callsign other than one already programmed in the PK-12. If programmed the same as the MYAlias, MYCall, MYGate, or MYMail callsigns, this polling feature will not work. When a packet is received addressed to the GPOLLCall callsign, the PK-12 will begin parsing the programmed NMEA command or commands. When the NMEA headers are successfully received, the PK-12 will transmit the GPS data as a UI-Frame. This GPOLLCall can also be used for digipeating.

GPSAuto ON|OFF

ON - When powered up or restarted, the PK-12 switches to GPSMode 1 if it parses its GNMEA1 or 2 sentence within the first 4 seconds after power up.

OFF - The PK-12 powers up normally.

If you are using your PK-12 in your vehicle as a stand alone tracking device and in your home for regular packet operation, this command will save you a lot of hassles. Simply program all your GPS parameters except for the GPSMode command, turn GPSAuto ON and you're set. Each time you turn your TNC on, the PK-12 will spend the first four seconds after power up trying to parse its GNMEA sentence or sentences. If it successfully parses one or both of them, it will automatically switch to GPSMode 1.

Default: None

Default: None

Default: OFF

Default: \$0D (CTRL-M)

Default: None

Default: 0 (00 sec.)

Default: GPGLL (GPS position only)

To have the PK-12 auto detect a GPS receiver, follow these steps:

- 1. Be sure you have your GPS command programmed.
- 2. Be sure GPSAuto is turned ON.
- 3. Connect the GPS receiver to the PK-12 serial connector.
- 4. Apply power to the GPS receiver (NOT THE PK-12 YET).
- 5. Be sure that the GPS receiver is outputting its NMEA data before powering up the PK-12.
- 6. Power up the PK-12 and within 4 seconds, you should notice the PK-12 transmit LED lighting to transmit its location.

GPSMode "n"

Default: 0 Disabled

This is a variable ranging from 0-3 that selects a specific mode of operation specific to GPS. Three CTRL-C's returns unit to GPSMode 0.

Mode 0 = Normal Packet TNC operation. (GPS operation disabled.)

Mode 1 = PK-12 connected directly to a GPS receiver.

The PK-12 will begin parsing its programmed NMEA sentences under the following conditions:

1. GLOCtx timer expires

2. The PK-12 receives an Unproto frame containing ?APRS?

3. The PK-12 receives an Unproto frame containing MYCALL .:: ? APRS?

4. The PK-12 receives an Unproto frame addressed to its POLLCALL

Upon reception of one of these types of frames, the PK-12 will begin to parse its programmed NMEA sentences. If the PK-12 successfully parses one or both of its NMEA sentences, it will transmit the information parsed as a single UI frame. If there is no data received from the GPS receiver within four seconds, it will reset its GLOCtx timer and continue.

Mode 2 = PK-12 connected directly to an ULTIMETER II.

The PK-12 will begin parsing its programmed NMEA sentences under the following conditions:

1. GLOCtx timer expires

2. The PK-12 receives an Unproto frame containing ?WX?

3. The PK-12 receives an Unproto frame containing MYCALL .:: ? APRS?

4. The PK-12 receives an Unproto frame addressed to its POLLCALL

Upon reception of one of these types of frames, the PK-12 will begin to parse its programmed NMEA sentences. If the PK-12 successfully parses one or both of its NMEA sentences, it will transmit the information parsed as a single UI frame. If there is no data received from the GPS receiver within four seconds, it will reset its GLOCtx timer and continue.

Variable Number 3 For Commercial Use Only

Mode 3 = PK-12 connected to a GPS receiver & computer terminal (*using Timewave Commercial GPS adapter cable*).

When the LOCtx timer expires or if the PK-12 receives a UI frame addressed to its GPOLLCall, the PK-12 will switch the serial port to receive data from the GPS receiver. After the NMEA commands are parsed, the PK-12 will transmit the information obtained as a UI-frame and switch the serial port back to the computer. If there is no data received from the GPS receiver within four seconds, the PK-12 will switch back to the computer and transmit nothing.

GREMprog ON|OFF

Default: OFF

ON - Remote programming is enabled in GPS mode.

OFF - Remote programming is disabled in GPS mode.

While operating in one of the GPS modes, the following commands can be programmed:

- 1. GLOCtx
- 2. GNMEA1
- 3. GNMEA2
- 4. GINIText
- 5. GSYMchar
- 6. Unproto

To remotely program the PK-12, the programming station must have its Unproto destination callsign set to match the GPOLLcall of the PK-12.

Example:

Let's say you have a PK-12 in your car as a stand alone tracker with its GPOLLcall set to CAR. In your house, you would program your TNC's Unproto to CAR (U CAR). Now place your TNC in converse mode by typing either (K or CONVerse). If you wanted to change the PK-12 in the car's Unproto path, you would simply type U APRS via RELAY <CR>. Your TNC in your home would transmit the following frame:

Home TNC:

```
{your callsign}*>CAR [UI]:
```

U APRS via RELAY

PK-12 in car would reply:

PK12*>RELAY>APRS [UI]:

++ done

Note that the PK-12 in the vehicle replied with the message ++ done. This indicates that the command was properly received and the parameter was changed. The following is a list of additional messages and their meaning.

Message	Meaning
++ done	the parameter was programmed
++ bad	not supported, incorrect format, or bad data
++ too many	too many parameters entered
++ range	numeric entry is too large

Remote programming messages:

GSYMChar "n"

This is a Hex value ranging from 0-255 that represents a symbol in APRS software. The symbol char will be enclosed in curly brackets before all Beacon transmissions.

KA7SYZ*>RELAY>APRS [UI]:

{SYMChar} This is a sample UI frame...

GUNSTart ON|OFFDefault: OFF

ON - The PK-12 starts in CONVERSE mode after a restart or power-up.

OFF - The PK-12 will power-up in command mode.

This command allows the PK-12 to power-up in the converse mode if turned on.

GUSERS n

GUSERS allows up to *n* number of stations to connect to your MYGATE call. The argument "*n*" may be 0-3, with zero meaning no station can use your node. Alternatively, *n* can be thought of as the maximum number of *pairs* of stations which may be connected through your Gateway.

You must have your MYGATE call entered and GUSERS set to a number greater than 0 to enable the PK-12's node function.

HEAderIn ONOFF

HEADERLN is used to control the output of packet text. With HEADERLN *ON*, the address is shown followed by a (RETURN)+LF that puts the packet text on a separate line as shown below:

KG6ZL>WF7A: Go ahead and send the file, Rich.

With HEADERLN *OFF*, the address information is shown on the same line as the packet text as shown below:

KG6ZL>WF7A:Go ahead and send the file, Rich.

HID ON OFF

Set HID *ON* to force your PK-12 to send an ID packet every 9.5 minutes when it's used as a digipeater. Otherwise, leave HID *OFF* (default). The ID consists of a UI-frame with your station identification (MYCALL) and MYALIAS in the data field. It is addressed to "ID."

Please note that you can't change the 9.5-minute automatic interval timing.

HOMebbs call

This command sets the call sign of your local or HOMEBBS that you'll use for reverse-forwarding messages. You must make special arrangements with the system operator of this BBS to set you up for reverse-forwarding. The SSID isn't compared when matching HOMEBBS to the source call sign of an incoming packet.

Host n

"*n*" A hexadecimal value from \$00 through \$FF setting bits from the table below that define the Host operation of the PK-12.

Default: (none)

Default: 0

Default: OFF

Default: 0 None

Default: 0

Default: ON

The Host command enables the "computer-friendly" Host communications mode over the PK-12's RS-232 link. To exit out of the Host mode, enter three (CTRL-C) characters in rapid succession or type (CTRL-A),O,H,O,N,(CTRL-W). Sending a Break signal won't cause the PK-12 to exit from the Host mode.

Bit 0: Controls whether the Host mode is ON(1) or OFF(0).

Bit 1: Controls the local MailDrop access.

If bit 1 is 0, then the MailDrop Send data uses the \$20 block. Read data uses the \$2F block as before. Monitored MXMIT data uses the \$3F (monitored receive) block type.

If bit 1 is *1*, then the MailDrop send data uses the \$60 block type. Read data uses the \$70 block type. Monitored MXMIT data uses the \$2F (echoed) block type to differentiate between monitored, transmitted, and received frames.

Bits 2-7 are reserved for future use.

To maintain backward compatibility with older programs written to use the *ON/OFF* form of the Host command, Host *ON* is equivalent to Host *\$01* described above. However, programmers must note that Host now returns a numeric value and not *ON* or *OFF* as before.

See Timewave's PK-232MBX Technical Manual for full information about the Host mode.

HPoll ON OFF

HPOLL is used in conjunction with the host mode and sets the method used by the host mode software for retrieving data from the PK-12.

With HPOLL *ON*, the Host mode program must poll the PK-12, using (CTRL-A),O,G,G, (CTRL-W), for all data that might be available to be displayed. With HPOLL *OFF*, the Host mode program must accept any data from the PK-12 when it becomes available.

ID

ID is an immediate command that sends a special identification packet. The ID command sends a final identification packet when you take your station off the air. (HID must also be set *ON*). The identification consists of a UI-frame, with its data field containing your MYALIAS (if it's entered), MYCALL, and the word "digipeater." The ID packet is sent only if your PK-12 has digipeated any transmissions since the last automatic identification.

ILfpack ON|OFF

The ILFPACK command permits you to control the way the PK-12 sends LF characters received from your computer while in the packet mode. Enabling ILFPACK causes the PK-12 to ignore all line feed (LF) characters sent by your terminal, while disabling it allows all LF characters to pass through.

Default: none

Default: ON

The IO command works with the ADDRESS command (ADDRESS *\$aabb*) and permits access to memory and I/O locations. Use the IO command without arguments to *read* an I/O location, and with one argument—*\$0* to *\$FF*—to *write* to an I/O location. The value in ADDRESS isn't increased after using the IO command.

In ADDRESS \$aabb, aa (01-FF) is the device address, and bb is the register address.

In ADDRESS *\$00bb*, the IO command reads or writes data to the device at I/O address *bb*. There is no register set-up before the access. ADDRESS is used as a programmer's aid and isn't needed for normal use.

IO n

Default: ON

KILONFWD ON OFF

Default: ON

KILONFWD controls the disposition of a message that has been reverse-forwarded to the station whose call is input in HOMEBBS. With KILONFWD *ON*, the message is deleted automatically after it has been forwarded to make room for other messages in your MailDrop. With KILONFWD *OFF*, the message's status is changed from "F" to "Y."

Klss n

Default: OFF

The KISS mode must be entered to prepare the PK-12 for KISS operation. TCP/IP and other special applications have been written that require the KISS mode be on. For normal AX.25 packet operation, this command should be left at *OFF* (default).

KISS OFF: KISS disabled

KISS ON: Standard KISS

In KISS and Raw HDLC modes, communication activity on the RS-232 link is shown by lighting the STA and CON LED's as follows:

Host to TNC Communication: STA LED illuminated.

TNC to Host Communication: CON LED illuminated.

Host *OFF*—entering three (CTRL-Cs)—will force KISS *OFF*. Details on the use of KISS TNC protocol are in Timewave's *Technical Reference Manual* — *Model PK-232 Data Controller*.

LAstmsg n

The number, 0-999, is the number assigned to the last message sent by a remote user (or the SYSOP) to the MailDrop. This command is handy for checking the last message sent to your MailDrop system. LASTMSG also allows the MailDrop message counter to be set to any value, or simply reset the counter to zero by entering LASTMSG 0.

LOWPow

With LOWPow ON, the DCD, CON, STA, and MAIL LEDs will not light, allowing low power operation. The XMT and POWER LEDs will still light with this command enabled. With LOWPow off, all LEDs will function normally. See Appendix D for more information.

MAildrop ON OFF

The MailDrop is a personal mailbox that uses a subset of the WORLI/WA7MBL PBBS commands. With MAIL DROP *ON*, other stations can connect to your PK-12, leave messages for you or read messages from you. Third-party messages are not accepted unless 3RDPARTY is *ON*.

MAXframe n

MAXFRAME limits the number of *nacked* packets your PK-12 permits on the radio link and the number of sequential packets your PK-12 will send.

The optimum value of MAXFRAME depends on your local channel conditions. In most cases, the default value of MAXFRAME 4 works well. When the amount of traffic is heavy, the path in use is poor, or if you're using many digipeaters, you can actually improve your throughput by reducing MAXFRAME. MAXFRAME is adjustable from 1 to 7.

Default: 4

Default: OFF

Default: OFF

MBEII ON OFF

Default: OFF

MBELL can be used to alert you to activity from particular packet stations. MBELL will send 3 BELL characters to the terminal when the call sign(s) of the station(s) monitored match the MFROM and MTO lists. For example, if you want to be alerted when KG6ZL comes on frequency, you'd enter:

```
cmd:MBELL ON
cmd:MONITOR 4 (or the value you prefer)
cmd:MFROM YES KG6ZL
cmd:MTO NONE
```

With MBELL *ON*, packets from—and to all—stations are displayed, but only those packets matching the MFROM and MTO lists cause BELL to ring.

MBx call1[,call2][-n][ALL]

Default: NONE

call The call sign(s) of one or two stations to be monitored.

"n" 0 to 15, indicating an optional SSID.

MBX lets you read or record useful or needed data without having to connect or log on to the source station(s). MBX filters the received packet data so that only packets from the selected station(s) entered above are shown, without headers or repeated frames. MBX overrides normal monitor functions and can show one or both sides of a conversation.

The operation of MBX command is as follows:

MBX NONE All monitored frames are shown with their headers.

- MBX *ALL* Only the data fields in the I-frames and UI frames are shown. Data from retried frames will be shown each time such a frame is monitored. The MFROM and MTO commands are active.
- MBX *call1* Only the data in the I and UI frames to or from *call1* are shown. *call1* can be either the source or destination station. Retried frames are not shown. The MFROM and MTO commands are ignored.
- MBX *call1,call2* Only the data in the I and UI frames are shown when *call1* is the source and *call2* is the destination or vice-versa. Retried frames aren't shown. The MFROM and MTO commands are ignored.

A packet connection on any channel inhibits monitoring if MBX isn't set to *NONE*. MCON only works if MBX is set to *NONE*. Clear MBX with %, &, N, NO, *NONE*, or *OFF* as arguments.

MCon n

```
Default: 0 (none)
```

MCON works similarly to MONITOR, but MCON affects your display *only while you're connected to another station*. If MCON is set to a value between *1* and *5*, frames meant for you are displayed as though MONITOR was *OFF*—you'll see only the data and not any header information. With MCON *6*, frames meant for you are displayed as any other monitored frame—the headers appear with the data.

Starting with 0, as you increase the value of n the more "stuff" will be visible with each packet you receive:

- *0* You won't monitor any packets while you're connected.
- 1 Only unnumbered (UI) frames resulting from an unconnected transmission are displayed. Use this for an "unproto," roundtable-type conversation where you want to read another station's packet text—sent unproto—while you're connected. This setting also displays beacons.

- 2 Numbered (I) frames are also displayed. Use this to monitor connected conversations in progress outside your own.
- *3* Connect request (SABM or "C") frames and disconnect (DISC or "D") frames are also displayed with the headers.
- 4 Unnumbered *ack*nowledgment (UA) of connect- and disconnect-state frames are also displayed with either the characters "UA" or "DM" and a header.
- 5 Receive Ready (RR), Receive Not Ready (RNR), Reject (RJ), Frame Reject (FRMR) and (I) Frames are also displayed.
- 6 Poll/Final bit, PID and sequence numbers are also displayed.

See MONITOR about monitoring packets while you're not connected.

MDCheck

MDCHECK allows you to log on to your own MailDrop. After logging on, you can *EDIT*, *LIST*, *READ*, *SEND*, or *KILL* MailDrop messages.

To use MDCHECK, your PK-12 must not be connected to or linked to any packet stations. For monitoring purposes, local access of the MailDrop is considered a connection. Enter "B" (B)ye to exit the MailDrop.

MDigi ONOFF

MDIGI lets you display packets when another station uses your station as a digipeater. If you want to monitor *all* traffic that flows through your station, set MDIGI *ON*. Note that your callsign is set using the MYCALL and MYALIAS commands.

You may not want to see all the data passing through your station, especially if many others use you as a digipeater. In this case set MDIGI *OFF*.

MDMon ONOFF

MDMON permits you to monitor activity on your MailDrop, showing you both sides of the QSO (Packet headers aren't shown while a caller is connected). When no one is connected to your MailDrop, channel activity is monitored according to the setting in MONITOR.

Note that MailDrop connect and link status messages will be displayed even with MDMON *OFF*. These status messages are important and allow you to see who is connected to your MailDrop. They can be disabled with UBIT *13* (See UBIT for more information).

MDPrompt text

MDPROMPT is the command line (up to 80 characters) sent to a calling station by your packet MailDrop in response to a Send message command. The default text is:

```
Subject:/Enter message, ^Z (CTRL-Z) or /EX to end
```

Text before the first slash is sent to the other station as the Subject prompt; text after the slash is sent as the message text prompt.

If there's no slash in the text, the subject prompt is "Subject:" and the text prompt message is Enter message, ^Z (CTRL-Z) or /EX to end.

Default: (see text)

Default: OFF

Default: OFF

MEmory *n*

MEMORY works with ADDRESS (ADDRESS *\$aabb*) and permits access to memory locations. Use the MEMORY command without arguments to *read* a memory, and with one argument (\$0 to \$FF) to *write* to a memory location. The value in ADDRESS is increased after using the MEMORY command. This command is used solely for test purposes.

MFilter *n1*[,*n2*,*n3*,*n4*]

Use MFILTER to select up to 4 characters to be "filtered" or excluded from monitored packets with parameters n1 - n4, the ASCII codes (0-128) for the characters you want to filter. The special value of \$80 (default) filters all characters above \$7F and *all* control-characters except (RETURN) (\$0D), LF (\$0A), and (TAB) (\$09).

MFrom ALL|NONE or YES|NO call1[,call2...]

MFROM determines what packets are or aren't to be monitored. To monitor all packets set MFROM to ALL. To stop all packets from being displayed, set MFROM and MTO to *NONE*.

To display packets from one or more *specific* stations, type MFROM *YES* followed by a list of call signs you want to monitor packets from. To block packets from one or more specific stations, type MFROM NO followed by a list of call signs you *don't* want to hear packets from. When using MFROM, set MTO to *NONE*.

You can include optional SSIDs specified as "-*n*" after the call sign. For example, with MFROM *NO WF7A*, packets from WF7A-0 through WF7A-15 won't be monitored. With MFROM *YES WF7A-1*, then only WF7A-1 will be monitored. When MFROM and MTO contain different arguments, the following priority applies:

ALL
 NO_list
 YES_list
 NONE

Clear MFROM with %, & or OFF as arguments.

MHeard

MHEARD displays a list of the 18 most recently heard stations.

When DAYTIME has been set, entries in the Heard log are time stamped. With DAYSTAMP *ON* the date is also shown. This is an example of the MHEARD display:

DAYSTAMP ON	DAYSTAMP OFF
05-Nov-93 21:42:27 KG6ZL	21:42:27 KG6ZL
05-Nov-93 21:42:24 KB6IUX*	21:42:24 KB6IUX*

Previously, stations heard directly were displayed with an asterisk (W1AW*) and digipeated stations were shown without (W2SZ). Digipeating isn't used as much as it used to be—most stations now use nodes, so we've stopped using the asterisk. However, for those few cases in which a station is heard indirectly through a digipeater, that station's call sign is displayed with the message, "via digi".

In addition, I- and U-frame packets with PIDs of CF and CD are shown with the indicators "N/R" (for Net/ROM) and "IP" respectively.

Clear the MHEARD list with %, &, N, NO, NONE, or OFF.

Default: NONE

Default: ALL

Default: \$80

Mld n

MID is used to periodically assure 20 WPM Morse ID. MID is programmable from 0 (off) to 2500 seconds in 10 second increments. An ID will be transmitted only if a packet was sent since the last ID. The ID uses TXDELAY, PPERSIST, and DCD.

If MID is set to a value other than θ , ID will force a Morse ID immediately. If both HID and MID are active, the Morse ID will be sent first.

MID normally sends a Morse ID using on/off keying of the low tone. If FSK keying of both tones is desired to prevent stations from transmitting over your Morse ID, see the UBIT *12* command.

MMsg *ON*|*OFF*

MMSG enables or disables automatic transmission of the MTEXT message when your MailDrop links with another station.

Monitor n

The MONITOR command is used to select the amount of traffic to be displayed while the PK-12 is monitoring the channel. Starting with 0, as you increase the value of MONITOR, the more "stuff" will be visible with each packet you intercept:

- 0 You won't monitor any packets while you're unconnected.
- 1 Only unnumbered (UI) frames resulting from an unconnected transmission are displayed. Use this for an "unproto," roundtable type conversation where you want to read other station's packet text—sent unproto—while you're not connected. This setting also displays beacons.
- 2 Numbered (I) frames are also displayed. Use this to monitor connected conversations in progress.
- *3* Connect request (SABM or "C") frames and disconnect (DISC or "D") frames are also displayed with the headers.
- 4 Unnumbered *ack*nowledgment (UA) of connect- and disconnect-state frames are also displayed with either the characters "UA" or "DM" and a header.
- 5 Receive Ready (RR), Receive Not Ready (RNR), Reject (RJ), Frame Reject (FRMR), and (I) Frames are also displayed.
- 6 Poll/Final bit, PID and sequence numbers are also displayed.

If you want to save your PK-12's buffer from filling up with unwanted packets, set MONITOR to zero. That way, you'll still be able to store mail sent to you and receive connect requests, but the PK-12's buffer won't fill up with "junk mail."

See MCON about monitoring packets while you are connected.

MProto ON OFF

MPROTO is used to select which packet frames are monitored. This is in response to NET/ROM, which sends frames that have a PID of \$CF and that contain control characters. If you want to monitor every frame including those used by NET/ROM, you must turn MPROTO *ON*.

Default: 4 (UA DM C D I UI)

Default: OFF

Default: OFF

Default: 0 (00 sec.)

MRpt ON OFF

MRPT affects the way monitored packets are displayed. With MRPT *ON*, the call signs of all stations in the digipeat path are displayed. The call sign of the station heard directly is flagged with an asterisk (*) as shown:

KB6IUX-4*>KG6ZL>W1AW-5>W1AW-4:

With MRPT *OFF*, only the originating station and the destination stations are displayed in the monitored packet header as shown below:

KB6IUX-4*>W1AW-4:

MStamp ON OFF

MSTAMP activates time stamping of monitored packets. When your PK-12's internal software clock is set, date and time information is available for automatic logging of packet activity and other applications. Remember to set the date and time with the DAYTIME command, first!

With MSTAMP *OFF*, the packet header display looks like this:

KB6IUX-4*>KA2EYW-1>AI2Q:

With MSTAMP ON and DAYSTAMP OFF, the display looks like this:

22:51:33 KB6IUX-4*>KA2EYW-1>AI2Q:

MTExt text

MTEXT is the MailDrop's "answering machine message," similar to CTEXT. MTEXT may contain up to 120 printable characters. With MMSG *ON*, the MTEXT message is sent when a station links to your MailDrop. The default text is:

Welcome to my AEA PK-12 MailDrop. Type H for help.

MTEXT can be reset with a %, &, N, NO, NONE or OFF as arguments.

MTo ALL|NONE or YES|NO call1[,call2...]

MTO determines which packets are to be monitored. To monitor all packets, set MTO to *ALL*; for no packets, set MTO and MFROM to *NONE*.

To display packets from other stations addressed to one or more specific stations, type MTO YES followed by a list of the call sign(s) you want to monitor for their packets. If you *don't* want to see the packets addressed to that (or those) station(s), type MTO *NO* followed by their call sign(s). When using MTO, set MFROM to *NONE*.

You can include optional SSIDs specified as "-*n*" after the call sign. If MTO is set to *NO WF7A*, any variation of WF7A-0,...WF7A-15 *won't* be monitored. If MTO is set to *YES WF7A-1*, then *only* WF7A-1 will be monitored.

When MFROM and MTO contain different arguments, the following priority applies:1. ALL2. NO_list3. YES_list4. NONEClear MTO with %, &, or OFF as arguments.

Default: ON

Default: See sample

Default: none

Default: OFF

MXmit ONOFF

With MXMIT ON, outgoing packets are monitored in the same manner as received packets. The monitoring of outgoing packets is subject to the settings of MONITOR, MCON, MFROM, MTO, MRPT and TRACE. Most transmitted packets occur when you're connected to someone, so MCON should probably be set to a non-zero value.

MYAlias call [-n]

MYALIAS specifies an alternate call sign (in addition to the call sign specified in MYCALL) for those households with two operators taking turns using the PK-12—your TNC will accept connections to both your MYCALL and MYALIAS. Previously, MYALIAS had been reserved only for stations digipeating through your station. If MYMAIL isn't set, the MailDrop also accepts connections to either MYCALL or MYALIAS. You may also add the substation ID (SSID) in the -n field.

Outgoing connect attempts and Unproto frames use only MYCALL as the source call sign.

MYcall call [-n]

Use MYCALL to load your call sign into your PK-12-a default call sign is present in the ROM when the system is manufactured. This artificial call *must be changed* for operation.

The SSID is usually added so the PK-12 can respond to two different tasks—as a "base" station and digipeater, a digipeater and MailDrop, or a base station and MailDrop. An example of using the SSID suffix is given in Chapter 5: Packet Operation.

Two or more stations can't use the same call and SSID on the air at the same time. Use a different SSID if this is the case.

MYGate call [-n]

call Node call sign used by other stations.

"*n*" 0 to 15, an optional substation ID (SSID).

"Call" is the call sign of the node function of your PK-12. Stations can connect to your MYGATE call and then issue a connect request from there. This way, your station takes responsibility for acknowledgments of the user's packets.

MYMail call [-n]

MYMAIL is used to set the callsign that other TNC operators use to sign on to your MailDrop. "Call" may have an optional SSID, and must *not* be the same call sign and SSID as MYCALL. If you don't set MYMAIL, the MailDrop will use the same call sign and SSID as you entered in MYCALL. For example, with MYCALL WF7A, then MYMAIL may be WF7A-1 through WF7A-15. You can use the CTEXT and MTEXT messages to inform other stations about your MYCALL and MYMAIL call signs when they connect to you.

NEwmode ON OFF

Your PK-12 always switches to a data transfer mode—Transparent, Converse, or Command—at the time of connection unless NOMODE is ON. NEWMODE determines how your PK-12 behaves when the link is broken.

With NEWMODE ON, when the link is disconnected (or if the connect attempt fails), the PK-12 returns to the Command mode. With NEWMODE OFF, when the link is disconnected, the PK-12 remains in Converse or Transparent mode unless you "manually" force it to return to the Command mode.

Default: none

Default: ON

Default: PK12

Default: none

Default: OFF

Default: none

NOmode ONOFF

With NOMODE *OFF*, your PK-12 switches modes automatically according to NEWMODE. With NOMODE *ON*, your PK-12 never switches from Converse or Transparent mode to Command mode (or vice versa) by itself. Only specific commands—CONVERSE, TRANS, or (CTRL-C)—entered by you will change the operating mode.

NUCr ON OFF

Some older printer-terminals require extra time for the printing head to do a (RETURN) and LF. NUCR *ON* solves this problem by making your PK-12 send null characters (ASCII code \$00) to your computer.

NULLs n

NULLS specifies the number of null characters (ASCII \$00) to be sent to the computer after a (RE-TURN) or LF is sent. NUCR and/or NULF must be set to indicate whether nulls are to be sent after (RE-TURN), LF, or both. The null characters are sent only in the Converse and Command modes. You may instruct the PK-12 to send any number of nulls from 0 (none) to 30.

PACLen n

PACLEN sets the maximum number of characters to be sent in each packet burst. Most keyboard-to-keyboard operators use the default value of 128 bytes for routine VHF/UHF packet services. Your PK-12 automatically sends a packet when you reach "*n*" bytes. For example, if you set PACLEN to 256, the PK-12 will send out a packet burst after you enter 256 bytes' worth of information.

PACTime EVERY/AFTER n

The PACTIME parameter sets the amount of time, in 100 mS increments, that the PK-12 will wait for a character to be entered before sending a packet in the Transparent mode. The PACTIME parameter is also used in Converse mode if CPACTIME is *ON*.

When *EVERY* is specified, the characters you type are "packetized" every $n \ge 100$ mS. When *AFTER* is specified, the characters you type are "packetized" when input from the terminal stops after waiting $n \ge 100$ mS.

The PACTIME timer is not started until the first character or byte is entered. A value of 0 (zero) for "n" means packets are sent with no wait time.

PARity n

PARITY sets the PK-12's parity for RS-232 terminal according to the table below:

0 =no parity

1 = odd parity

2 = no parity

 $\beta =$ even parity

The parity bit, if present, is stripped automatically on input and isn't checked in Command and Converse modes. But in Transparent mode, all eight bits (including parity) are transmitted.

The change won't take effect until you enter RESTART. Be sure to change the computer or terminal to the same parity setting after you've entered RESTART.

Default: 3 (even)

Default: 0 (zero)

Default: 128

Default: AFTER 10 (1000 mS)

Default: OFF

Default: OFF

PASs n

Default: \$16 (CTRL-V)

PASS selects the ASCII character (0 to 127) "n" used for the "pass" input editing commands. The PASS character signals that the following character is to be included in a packet text string. For example, if you're typing in text and want to enter three (RETURN)'s so you can put a line space between two paragraphs, you'd do this:

"...here's the end of the first paragraph." (CTRL-V)+(RETURN)+(CTRL-V) (RETURN). "Now this line will appear after a line space."

The line will appear at the other station like this:

"...here's the end of the first paragraph."

"Now this line will appear after a line space."

If you had just pressed (RETURN) at the end of the word "paragraph," you would have forced a packet to be sent. Press (RETURN) again, and you would have forced an empty packet to be sent. Press (RETURN) yet again, and another empty packet would have been sent. This happens because pressing (RETURN) normally forces a packet to be sent. However, by inserting a (CTRL-V) before a (RETURN), you disable the function of (RETURN) in the Command mode and allow it to be used in your outgoing text to act as a "real" (RETURN). So, the PASS character "hides" the next character's function.

PASSAII ON OFF

PASSALL turns off the packet error-detecting control and displays received packets with invalid CRCs. PASSALL is normally turned *OFF*, to ensure that data is error-free by rejecting packets with invalid CRC fields. With PASSALL *ON*, packets are displayed despite CRC errors.

MHEARD logging is disabled since the call signs detected may be incorrect.

PErsist n

PERSIST works with PPERSIST and SLOTTIME to achieve true P-persistent CSMA (Carrier-Sense Multiple Access) in packet operation. PERSIST's parameter may be set from 0 to 255.

PK [*n*]

PK (Peek/Poke) permits access to memory locations. To use the PK command:

- Set the memory address into the ADDRESS command.
- Use the PK command *without* arguments to read that memory location.
- Use PK with one argument 0-\$FF to write to that memory location.

RAM locations are \$8000-\$FFFF. ROM begins at \$0000. This command is primarily a programmer's aid and is not needed for normal PK-12 use.

PPersist ON OFF

With PPERSIST *ON*, the PK-12 uses the PERSIST and SLOTTIME parameters for P-persistent CSMA instead of the older DWAIT CSMA procedure.

When your computer has queued data for transmission, the PK-12 monitors the DCD signal from its modem. When the channel clears, the PK-12 generates a random number between 0 and 255. If this number is less-than or equal to PERSIST, the PK-12 transmits all the frames in its queue. If the random number is greater than "P", the PK-12 waits .01 x SLOTTIME (seconds) and repeats the attempt.

PPERSIST can be used in both KISS and normal operation.

Default: OFF

Default: none

Default: 63

Default: ON

RAWhdlc ON|OFF

Default: OFF

The RAWHDLC command enables the PK-12 to bypass the AX.25 packet implementation. Host mode must be on to communicate with the PK-12 in the RAWHDLC mode.

See s's Technical Reference Manual—PK-232 Data Controller for full information.

REDispla n

Default: \$12 (CTRL-R)

REDISPLA changes the redisplay-line input editing character.

Parameter "n" is the numeric ASCII code (0-127) for the character you'll use when you want to re-display the current input line. Type the REDISPLA character to re-display a command or text line you've just typed. This can be helpful when editing a line, especially if your terminal doesn't support (BACK-SPACE). It can also be used in packet to display a packet that might have been received while you were typing. A backslash (\) is appended to the old line, and the corrected line is shown beneath it.

REINIT

This is an immediate command that you can use to get out of trouble caused by setting a lot of commands—especially timing parameters—to strange values. REINIT can be thought of as being halfway between RESTART and RESET. REINIT re-initializes most of the commands to their default setting, then does a RESTART, but the contents of the MailDrop and the NAVTEX message history buffers are preserved. The commands that are preserved are:

MYCALL	MYALIAS	MYMAIL	HOMEBBS	LASTMSG	MBX	UNPROT	C
BTEXT	CTEXT	PARITY	CFROM	DFROM	MFROM	MTO	MTEXT
AWLEN	HOST	TBAUD	MDPROMP	Т			

In Host mode, the REINIT command is acknowledged by a RESTART response (RT).

RELink ON|OFF

Default: OFF

Set RELINK *ON* if you want the PK-12 to automatically try to reconnect to another packet station if the link fails.

RESET

RESET resets all of the PK-12's parameters to their default settings and reinitializes the unit to the point where you'll enter the autobaud routine. All personalized parameters, monitor lists, and MailDrop messages will be lost.

RESptime n

RESPTIME adds a minimum delay before your PK-12 sends acknowledgment packets. This delay may run concurrently with the default wait time set by DWAIT and any random wait in effect. RESPTIME is programmable from 0 to 25 seconds in 100 millisecond increments.

During a file transfer, RESPTIME can help avoid data and acknowledgment collisions caused by the sending stations' TNCs pausing briefly between transmitted data frames.

Default: 0 (000 mS)

that packet.

RESTART

RESTART reinitializes the PK-12 while retaining the settings you've changed or entered. The effect of RESTART is the same as turning the PK-12 off, then on again. RESTART doesn't reset the values stored in its battery-backed RAM.

See RESET.

REtry n

"n"

0 to 15 specifies the maximum number of packet retries before the PK-12 "gives up" sending

The AX.25 protocol uses the retransmission of frames that haven't been acknowledged as a means to ensure that *all* transmitted frames are received. The number of retries that the PK-12 will attempt is set from 0 to 15 using this command. If the number of retries is exceeded, the packet link may be lost.

SEndpac n

Use SENDPAC to select the character used to cause a packet to be sent in Converse mode. The parameter "*n*" is the ASCII (0-127) code for the character you want to use to force your typed input to be sent. Use the default SENDPAC value, \$0D, for ordinary conversation with ACRPACK *ON* to send packets at natural intervals.

SLottime n

The SLOTTIME parameter works with the PPERSIST and PERSIST parameters to achieve true p-persistent CSMA (Carrier-Sense Multiple Access) in packet operation. SLOTTIME is programmable from 0 to 2.5 seconds in 10 millisecond increments.

SQuelch ON OFF

Normally, your PK-12 uses its CSMA (Carrier Sense Multiple Access) circuit to decide whether or not it's clear to transmit on a packet channel. If there are non-packet signals on the channel you're using—such as voice—you'll want to use true RF-carrier CSMA by monitoring the squelch line voltage from your radio.

With SQUELCH *OFF*, the PK-12 inhibits transmissions when there is a positive voltage on the radio connector's squelch input line. When there is no voltage or connection to this pin, the PK-12 allows packets to be sent.

With SQUELCH *ON*, the PK-12 will inhibit packet transmissions when no voltage is applied to the squelch input pin on the Radio connector.

NOTE:

If you use this command, you also need to have the black wire in the supplied radio cable hooked up.

STArt n

Default: \$11 (CTRL-Q)

Use the START command to choose the ASCII (0-127) character you want to use to restart output from the PK-12 to your computer after it has been halted by entering the STOP character. See XFLOW.

Default: OFF

Default: 10

Default: 30 (300 mS)

Default: \$0D (CTRL-M) or (RETURN)

STOp n

Use the STOP command to select the character you'll use to stop output from your PK-12 to your computer. Valid entries are any ASCII character from 0 to 127.

See the XFLOW command.

TBaud n

Default: 1200 baud

Default: \$13 (CTRL-S)

Set TBAUD to specify the terminal baud rate to be activated at the *next* power-on or RESTART. Be sure you can set your computer and its communications program for the new rate.

TClear

TCLEAR clears your PK-12's transmit buffer and cancels any further transmission of data except for a few remaining packets.

You must be in the Command mode to use TCLEAR.

TRACe ONOFF

Default: OFF

TRACE activates the AX.25 protocol display. With TRACE *ON*, all received frames are displayed in their entirety, including all header information. The TRACE display is shown as it appears on an 80-column display. The following monitored frame is a sample:

```
KB6IUX*>TESTER <UI>:
This is a test message packet.
```

Byte		Hex			Shifted ASCII	ASCII
000:	A88AA6A8	8AA460AE	6494AAA0	406103F0	TESTER0KB6IUX0.x	'.d@a
010:	54686973	20697320	61207465	7374206D	*449.49.0.:29:.6	This is a test m
020:	65737361	67652070	61636B65	742E0D	299032.80152:	essage packet

The byte column shows the offset into the packet of the first byte of the line. The hex display column shows the next 16 bytes of the packet, exactly as received, in standard hex format. The Shifted ASCII column decodes the high-order seven bits of each byte as an ASCII character code. The ASCII column decodes the low-order seven bits of each byte as an ASCII character code.

Trans

TRANS switches the PK-12 from the Command mode to Transparent mode; the current state of the radio link isn't affected. Transparent mode is primarily useful for computer communications since Transparent mode "human interface" features such as input editing, echoing of input characters, and type-in flow control are disabled.

- Use Transparent mode for transferring binary or other non-text files.
- To exit the Transparent mode, type the COMMAND character, (CTRL-C), three times within the time
 period set by CMDTIME (default:1 second).

Tlme n

Default: \$14

"n" 0 to \$7F (0 to 127 decimal) specifies an ASCII character code.

The TIME command specifies which control character sends the time-of-day in the text you type into the transmit buffer or into a text file stored on disk.

At transmit time, the PK-12 reads the embedded control code (default <CTRL-T>), reads the time-of-day from the PK-12's internal clock and then sends the time to the radio in the data transmission code in use at that time. If the DAYTIME has not been set, a control-T will cause the PK-12 to send an asterisk (*). When DAYSTAMP is set ON, the date is transmitted with the time.

Note: The TIME command cannot be embedded in CTEXT, BTEXT, MTEXT or AAB.

TRFlow ON OFF

TRFLOW is used to set the software flow control between the PK-12 and your terminal when the PK-12 is in Transparent mode.

With TRFLOW *OFF*, only "hardware" flow control (RTS, DTR) is available to the computer when receiving data from the PK-12 (while in Transparent mode).

With TRFLOW *ON*, the type of flow control used by the computer receiving data in the Transparent mode is determined by how START and STOP are set. If START and STOP are set to values other than zero, software flow control is enabled for your computer. The PK-12 responds to the START and STOP characters, while remaining transparent to all other characters from the terminal.

TRIes n

TRIES retrieves (or forces) the count of "retry counter" on the data channel presently selected.

If you type TRIES without an argument, the PK-12 returns the current number of tries if an outstanding unacknowledged frame exists. If no outstanding unacknowledged frame exists, the PK-12 returns the number of tries required to get an acknowledgment for the previous frame.

If you type TRIES with an argument, the "tries" counter is forced to the entered value (0-15). Using this command to force a new count of tries is *not* recommended.

TXdelay n

TXDELAY tells your PK-12 how long to wait before sending packet frame data after keying your transmitter's PTT line. TXDELAY is programmable from 1 to 1.2 seconds in 10 millisecond increments.

All transmitters experience a certain length of time from the instant the PTT line is keyed to when the signal is actually transmitted. The default value of 300 mS should work with almost all transceivers. In fact, many of the newer transceivers can use smaller TXDELAY values. (Crystal-controlled transceivers can often use smaller values as well.) On the other hand, tube-type transceivers and amplifiers can require a longer time to switch and may require TXDELAY to be increased.

TXFlow ON OFF

With TXFLOW *ON*, the setting of XFLOW determines the type of flow control used in the Transparent mode by the PK-12 to control transmitted data; with it *OFF*, the PK-12 uses only hardware flow control to control transmitted data. All data that's sent to the terminal remains fully transparent.

With both TXFLOW and XFLOW *ON*, the PK-12 uses the Start and Stop characters (set by XON and XOFF) to control the input from the computer.

UBit n ON|OFF

UBIT is an extension of the CUSTOM command which allows up to 255 *ON*|*OFF* functions to be added to the PK-12 without burdening you with a large number of extra commands. The functions controlled by UBIT aren't things that you'll most likely change—still, they're important enough to some users or application programs that we have included them under the umbrella command of UBIT.

Default: 30 (300 mS)

Default: OFF

Default: 0

Default: OFF

Default: 0

The following are examples of how to use the UBIT:

UBIT 5 Shows the present status of UBIT 5

UBIT 1 ON Sets the function controlled by UBIT 1 to ON

UBIT 10 T Toggles the state of the function controlled by UBIT 10

UBIT Returns the state of the last UBIT value that was accessed

Listed below are the UBIT functions and the default states that presently have been assigned. The default state of each UBIT is shown first.

UBIT 0: Not valid in the PK-12.

OFF: The PK-12 will receive a packet regardless of the DCD status.

- UBIT 1: *OFF*: Entering the command MONITOR *ON* or MONITOR *YES* causes the MONITOR command to be set to 4.
 - *ON*: Entering the command MONITOR *ON* or MONITOR *YES* causes the MONITOR command to be set to 6.
- UBIT 2: *ON*: A Break signal received on the RS-232 line forces the PK-12 into Command mode from all the modes except Host mode.

OFF: A Break signal on the RS-232 line is ignored by the PK-12.

UBIT 3: OFF: Multiple connect packet channels are numbered from 0-9.

ON: Multiple connect packet channels are numbered A-J.

- UBIT 4: Not used.
- UBIT 5: OFF: The PK-12 will always power up in Command mode.
 - *ON*: The PK-12 will remain in the last mode (Converse, Command or Transparent) provided the battery jumper is enabled.
- UBIT 6: OFF: In packet, monitoring is disabled when in the Transparent mode.
 - *ON*: Packet monitoring is active in the Transparent mode. MFROM, MTO, MRPT, MONI-TOR, MCON, MPROTO, MSTAMP, MXMIT, CONSTAMP and MBX are all active.
- UBIT 7-12: Not used.
- UBIT 13: OFF: MailDrop connect status messages are always sent to you, regardless of the setting of MDMON.
 - *ON*: Remote user dialog and Connect status messages with the MailDrop are shown only if MDMON is *ON*.
- UBIT 14: OFF: In packet, the transmit buffer for data sent from the computer to the PK-12 is limited only by available memory.
 - *ON*: In packet, the serial flow control will permit only a maximum of seven I-frames to be held by the PK-12 before transmission. This solves a problem with the YAPP binary file transfer program which relies on a small TNC transmit buffer to operate correctly.
- UBIT 15-17: Not used.
- UBIT 18: OFF: The FRACK (or FRICK, if enabled) timer is used to retry packets that weren't acknowledged.
 - *ON*: A Master/Slave relationship is established when a packet connection is made. This is designed for meteor scatter operation and is described in detail under the FRICK command and *Chapter 5 Packet Operation*.

UBIT 19-21: Not used.

- UBIT 22: ON: The PK-12 will respond to the receipt of an UNPROTO frame addressed to QRA by sending an UNPROTO ID packet frame within 1 to 10 seconds. This feature is compatible with TAPR'S ANSWR QRA command.
 - OFF: The PK-12 doesn't respond to UNPROTO frames addressed to QRA.

UBIT 23+: Reserved for future expansion.

Unproto call1[VIA call2(,call3...,call9)]

Default: CQ

call1 Call to be placed in the "To" address field.

call2-9 Optional digipeater call list; up to eight calls.

UNPROTO sets the digipeat and destination address fields of packets sent in the unconnected (unprotocol) mode.

Unconnected packets are sent as Unnumbered I-frames (UI frames) with the destination and digipeat fields taken from *call1* through *call9* options. When a destination isn't specified, unconnected packets are sent to CQ.

Unconnected packets sent from other packet stations can be monitored by setting MONITOR to a value greater than "1" and setting MFROM to ALL.

The UNPROTO path and address is also used for beacon packets.

UPlink call1

Use the Uplink command to initiate a DAMA connection. Refer to the Packet chapter for an explaination of DAMA. After a connection is established, your station will be a slave and will not send any information packets until it is polled by the Master.

You can type **UPlink** (without any parameters) at any time to check the PK-12's connect status. If you're in the process of trying to connect to another station, you'll see the message:

```
Link state is: CONNECT in progress
```

If the other station doesn't *ack* your connect request after the number of tries set with RETRY, the connect attempt is cancelled. Your monitor would display:

cmd:*** Retry count exceeded
*** DISCONNECTED: call1

USers n

USERS affects the way that *incoming* connect requests are handled. It doesn't affect the number of *outgoing* connections you initiate. For example:

USERS 0 Allows incoming connections on any free channel.

USERS X Rejects incoming connections if there are connections on 'X' or more channels.

... and so on, through USERS 10.

WHYnot ON OFF

During packet operation, the PK-12 may receive many packets that aren't displayed. Turning WHYNOT ON will cause the PK-12 to generate a message explaining the reason why the received packet wasn't displayed. The messages and their meanings are:

Default: 1

Default: OFF

PASSALL:	The received packet frame had errors, and PASSALL was <i>OFF</i> , preventing the packet from being displayed to the screen.
DCD Threshold:	The DCD LED was off when the packet was received.
MONITOR:	The MONITOR value was set too low to receive this frame.
MCON:	MCON was set too low to receive this type of frame.
MPROTO:	MPROTO was set to <i>OFF</i> , and the received packet was probably a NET/ROM or TCP/IP frame.
MFROM/MTO:	The frame was blocked by the MFROM or MTO command.
MBX:	The call sign of the sending station doesn't match the call sign setting in the MBX command.
MBX Sequence:	The frame was received out of sequence, probably a retry.
Frame too long:	Incoming packet frame longer than 330 bytes. Probably a non-AX.25 frame.
Frame too short:	Incoming packet frame shorter than 15 bytes. (Only seen if PASSALL is ON —probably noise.)

XFlow ON OFF

With XFLOW *ON*, software flow control is in effect—it's assumed that the computer will respond to the PK-12's Start and Stop characters defined by the XON and XOFF commands. Similarly, the PK-12 will respond to the computers start and stop characters defined by START and STOP.

With XFLOW *OFF*, the PK-12 sends hardware flow control commands by way of the CTS line and is controlled by either the RTS or the DTR line.

XMITOk ONOFF

XMITOK is used to enable and disable actual transmitter keying. With XMITOK *OFF*, your PK-12 will generate and send data as requested, but it won't key your radio's PTT line. Turning XMITOK *OFF* can help enable full break-in CW operation (QSK) on certain transceivers.

Xoff n

Use XOFF to select the Stop character to be used to stop input from the computer to the PK-12. Any ASCII character from 0 to 127 may be used.

The Stop character default value is (CTRL-S) for computer data transfers.

XON n

XON selects the PK-12 Start character that is sent to the computer to restart input from it to the PK-12. Any ASCII character from 0 to 127 may be used.

The Start character default value is (CTRL-Q) for computer data transfers.

Default: ON

Default: \$13 (CTRL-S)

Default: \$11 (CTRL-Q)

Default: ON

PK-12 Command Quick Reference

COMMAND	DEFAULT	FUNCTION
3Rdparty	OFF	Enables 3rd party MailDrop messages.
8Bitconv	OFF	Enables 8-bit data in packet Converse.
ACKprior	OFF	Enables priority acknowledgment in packet.
ACRDisp	0	Sets terminal output screen width.
ACRPack	ON	Adds (RETURN)'s to transmitted packets.
AFilter	OFF	Enables all-mode receive character filter.
ALFDisp	ON	Sends <lf> after (RETURN) to terminal.</lf>
ALFPack	OFF	Sends <lf> after (RETURN) in transmitted packets.</lf>
AUdelay	2 (20 mS)	Sets delay before audio is applied after PTT.
AUTOBaud	OFF	Enables Autobaud routine at every power-on.
AWlen	7	Sets ASCII word length to RS-232 terminal.
Ax25l2v2	ON	Sets AX.25 Version 2.0 packet protocol.
AXDelay	0 (00 mS)	Specifies the waiting period, in addition to TXDELAY, after keying the transmiter.
AXHang	0 (000 mS)	Used when sending packets through a repeater with a hang time greater than 100 mS.
BBSmsgs	OFF	Enables TAPR style status messages.
Beacon	EVERY 0	Sets the packet beacon timing (x10 seconds).
BKondel	ON	Sends <bs> <sp> <bs> for DELETE character.</bs></sp></bs>
BText	(Empty)	Sets the 120-byte packet BEACON message text.
CALibrat		Starts PK-12 AFSK tone calibrate mode.
CANline	\$18 (CTRL-X)	Sets the LINE DELETE character for editing.
CANPac	<i>\$19</i> (CTRL- <i>Y</i>)	Sets the PACKET DELETE character for editing.
CASedisp	0 (as is)	Sets the display case (as is/lower/UPPER).
CBell	OFF	Enables packet connection notification.
CFrom	ALL	Sets the Connect request/accept list.
CHCall	OFF	Shows call sign after packet channel ID.
CHDouble	OFF	Shows CHSWITCH character twice.
CHeck	30	Sets Idle packet link time-out (x10 seconds).
CHSwitch	\$00	Sets the channel-select character.
CMdtime	10	Sets the Transparent Mode escape time.
CMSg	OFF	Sends CTEXT message to packet caller.
CODe	6	Avoids the use of square brackets in packet headers.
COMmand	<i>\$03</i> (CTRL <i>-C</i>)	Sets the Command mode escape character.
CONMode	CONVERSE	Selects the mode used when data link starts.
Connect		Sends a packet connect request to (call).
CONOK	ON	Allows others to connect (TAPR).
CONPerm	OFF	Selects a permanent connection packet link.
CONStamp	OFF	Marks connections with time/date stamp.
CONVerse		Enters the Converse mode (Abbreviated "K").
CPactime	OFF	Uses PACTIME time-out in Converse mode.
CStatus		Shows status of channels (links).
CText	None	Sets 120-byte packet Connect message text.
CUstom	\$0A15	(Use UBIT instead).
DAYStamp	OFF	Includes DATE in time-stamp.
DAytime	None	Set or read the internal time-of-day clock.
DCdconn	OFF	Sets RS-232 Pin 8 to follow DCD or Connect.
DELete	OFF	Uses DEL (\$7F), not (BS) (\$08) to erase.
DFrom	ALL	Sets the digipeat "yes or no" call sign list.
DIGIPEAT	ON	Allows digipeating (TAPR).
Disconne		Sends packet DISC request to distant station.

DISPlay		Shows the PK-12's parameters and arguments.
DWait	16	Sets the delay for digipeated packets.
Echo	ON	Echos typed keyboard characters.
EScape	OFF	Sends ESC character \$1B to display as \$24.
EXPert	OFF	Selects whether or not seldom-used commands are displayed.
Flow	ON	Stops displaying received data while typing.
FRack	5	Sets time (X1 sec) to wait for packet <i>ack</i> .
FREe		Displays available memory for MailDrop.
FRIck	0	Sets timer for packet meteor scatter mode.
FUlldup	OFF	Enables full-duplex packet operation.
GENDchar	\$0D	Requires the string to end with a CR,LF to conform to the NMEA format.
GINIText	None	Sends text to the serial port when the PK-12 is powered up.
GLOCtx	0	Setsthe transmit interval for GPS data received on the serial port.
GNMEA1	\$GPGLL	Sets the string the PK-12 will parse from the NMEA device.
GNMEA2	None	Sets the second string the PK-12 will parse from the NMEA device.
GPOLLCal	None	Sets the callsign to any callsign other than the one already programmed in the PK-12.
GPSAuto	OFF	Allows PK-12 to automatically detect a connected GPS receiver.
GPSMode	0	Selects a mode of operation specific to GPS.
GREMprog	OFF	Allows the PK-12's GPS commands to be remotely programmed.
GSYMChar	0	Sets the APRS symbol to be transmitted.
GUNSTart	OFF	Allows the PK-12 to power-up in the converse mode (on) or in command mode (off).
GUsers	n	Sets the number (0-3) of users allowed to use your node.
HEAderIn	ON	Inserts (RETURN) after monitored packet headers.
Hld	OFF	Sends HDLC ID UI packet every 9.5 minutes.
HOMebbs	None	Sets call sign of the BBS for forwarding.
HOST	0 (OFF)	Enables Host computer interface.
HPoll	ON	Sets Host polling be used in Host interface.
ld		Sends an ID packet.
ILfpack	ON	Ignores line feeds from terminal.
К		Enters the Converse mode (same as CONVerse).
KILONFWD	ON	Kills messages after reverse forwarding.
Klss	0 (OFF)	Starts the KISS TNC host protocol.
LAstmsg		Sets/shows the last MailDrop message number.
LOWPow	OFF	Enables LEDs to function.
MAildrop	OFF	Enables the Packet MailDrop for remote users.
MAXframe	4	Sets a maximum of un-acked packet frames.
MBEII	OFF	Rings bell when a particular packet station is heard.
MBx	none, (calls)	Monitors packet channel without headers.
MCon	0 (zero)	Monitors packets while connected (0-6).
MDCheck	055	Allows you to check into your own MailDrop.
MDigi	OFF	Monitors packet frames that you digipeat.
MDMon	OFF	Monitors stations using your MailDrop.
MDPrompt	(see text)	Sets an 80 character MailDrop message prompt.
MFIlter	\$80 ALL (aplie)	Filters received ASCII characters.
MFrom MHeard	ALL (calls)	Monitors packets from other packet stations.
	0	Displays call signs heard.
Mld	0 OFF	Enables a Morse ID to be sent in packet.
MMsg Monitor		Enables the MailDrop sign on message.
Monitor MProto	4 (UA DM C D I UI) OFF	Sets the packet Monitor mode level (0-6). Enables monitoring of all packet protocols.
MRpt	OFF ON	Shows digipeaters in packet headers.
MStamp	OFF	Time-stamps monitored packet frames.
motamp	011	

52 / PK-12 Packet Controller Operating Manual

MTExt	(see text)	Sets a 120 character MailDrop sign-on message.
MTo	Empty; enter calls	Monitors packets to other station call signs.
MXmit	OFF	Monitors transmitted packet frames.
MYAlias	None	Sets the alternate MYCALL for digipeating.
MYCall	PK12	Sets <i>your</i> packet call sign.
MYGate	None	Sets your node call sign.
MYMail	None	Sets your MailDrop's call sign.
NEwmode	ON	Returns to Command mode at disconnect.
NOmode	OFF	Sets no mode changes (e.g., cmd: to CONVERSE).
NUCr	OFF	Sends Nulls to terminal after (CR).
NULf	OFF	Sends Nulls to terminal after (LF).
NULLS	0 (zero)	Sets the number of NUCR and NULF.
PACLen	128	Sets the number user data bytes in a packet.
PACTime	AFTER 10	Sets the packet automatic transmit timer.
PARity	3 (even)	Sets the terminal program parity (0-3).
PASs	\$16 (CTRL-V)	Sets the converse mode pass character.
PASSAI	OFF	Ignores CRC in receiving packets (Junk mode).
PErsist	63	Sets the P-persistent CSMA threshold.
PK	00	Permits access to memory locations.
PPersist	ON	Selects P-persistent CSMA operation.
RAWhdlc	OFF	Starts Raw HDLC mode.
REDispla	\$12 (CTRL-R)	Re-displays current terminal input buffer.
REINIT	φ12 (OTIL-Λ)	Reinitializes the PK-12, but preserves the contents of the MailDrop.
RELink	OFF	Re-connects after link fails due to retries.
RESET	UFF	Resets PK-12 and bbRAM to factory defaults.
	0	-
RESptime RESTART	0	Sets the minimum delay before sending an <i>ack</i> . Restarts PK-12; same as turning the power off/on.
REtry	10	Sets the maximum number of packet repeats.
SEndpac	\$0D (CTRL-M)	Sets the converse mode "Send packet" character.
SLottime	30	Sets the P-persistent CSMA slot time.
SQuelch	OFF	Sets the receiver squelch carrier polarity.
STArt	\$11 (CTRL-Q)	Sets character to start sending terminal data.
STOp	\$13 (CTRL-Q)	Sets character to stop sending terminal data.
TBaud	\$73 (CTRL-3) 1200 baud	Sets the terminal data rate.
	1200 Dauu	
TClear	\$14 (CTRL-7)	Clears the transmit buffer (Non-packet modes).
TIme		Inserts the time (in DAYTIME) in text.
TRACe Trans	OFF	Enables a Hex dump of received data.
TRFlow	OFF	Enters the Transparent data mode.
TRIes		Enables software flow control RX in Transparent mode. Displays or forces packet retry counter.
TXdelay	0 (zero) 30	Sets the PTT key-to-data delay (x10 mS).
TXFlow	SU OFF	
UBit	0 0	Enables software flow control TX in Transparent mode. Controls seldom used ON/OFF commands.
	CQ	
Unproto		Sets the UI packet frame sending path/address.
Uplink USers	Call 1 1	Used to initiate a DAMA connection. Sets allowed number of packet multi-connects.
WHYnot	OFF	
XFlow	OFF ON	Displays reason why packet not displayed.
XHIOW XMITOk	ON ON	Sets Software (XON/XOFF) RS-232 flow control.
XOff		Allows transmitter PTT line to be keyed.
	\$13 (CTRL-S) \$11 (CTRL-O)	Sets character to stop sending received data.
XON	<i>\$11</i> (CTRL <i>-Q</i>)	Sets character to start sending received data.

5. Packet Operation

Overview

In the brief time that packet radio has been around, it has grown to become the most popular digital mode found on the amateur bands today.

The Packet Modes

In packet, there are four modes available to you: Command, Converse, KISS, and Transparent.

Command mode is the launch point from where you'll jump into packet. It's here you enter commands to customize the PK-12 to your needs and it's from here you will enter the command to "connect" (chat) with someone in the Converse mode or monitor passing traffic. Even while you're connected with someone, you can return to the Command mode to change commands and perform other functions.

The Converse mode is exactly that—a mode which you call CQ, broadcast messages, and converse with other packeteers.

The KISS mode is used primarily for TCP/IP packet networking. Although not used for "normal" packet operation, it is used if you are part of a network; you'll need to have your PK-12 and radio up and running continuously. KISS is explained in *Chapter 4*.

Finally, there's the Transparent mode. This mode is reserved for binary file transfers. This will be covered briefly later in this chapter.

Tuning in Packet Stations — VHF/UHF

First, enter your call sign using MYCALL. For example, if your call sign is WF7A, then you'd enter:

```
cmd: MYCALL WF7A
MYcall was PK12*
MYcall now WF7A
cmd:
```

*or AAA if you just came from the Chapter 2.

If you know there is packet activity in your area, but don't know the frequencies, try some of these:

2 meter (144-148 MHz):	144.91, 144.93, 144.95, 144.97, 144.99, 145.01, 145.03, 145.05, 145.07, 145.09.
1.25 meter (222-225 MHz):	223.40, 223.42, 223.44, 223.46, 223.48
70 cm (420-440 MHz):	440.975, 441.000, 441.050, 441.025, 441.075

You'll know you've found a packet channel when you hear the characteristic "*braaaaaap*" of packet transmissions. If you've made the correct connections and your radio's audio level is set properly, packets should scroll up on your screen. Some typical packets you might monitor are shown below:

```
N7ALW*>WA7GCI [C]
```

```
WA7GCI*>N7ALW (UA)
N7ALW*>WA7GCI:
Hi Bob, how are you this evening?
K6RFK>N7ALW*>N7GMF:
Good night John, it has been nice talking to you.
```

NOTE:

You might hear data (packets) which don't print on your screen. This is normal and is a function of the MONITOR and MPROTO commands.

What It Means

There are different types of packets that mean different things to your PK-12—it keeps track of and knows what to do with all these packets so you don't have to worry about them most of the time. Since the PK-12 has the capability of monitoring all the packet activity on a channel, it would be wise for you to observe what scrolls up on the screen for awhile to see how stations interact with each other.

Examine the first packet exchange in the examples above:

```
N7ALW*>WA7GCI [C]
WA7GCI*>N7ALW (UA)
```

The first call sign is the originator of the packet. The call sign after the ">" is the station the packet is addressed to. Therefore, the packet listed above originated from N7ALW and is being sent to WA7GCI. The "[C]" immediately following the two call signs identifies this packet as a connect request. So, N7ALW is trying to connect with WA7GCI.

The second packet, WA7GCI*>N7ALW (UA), is in response to N7ALW's connect request—WA7GCI responded to N7ALW with a "(UA)" which stands for Unnumbered Acknowledge; WA7GCI sent N7ALW an *ack* signal as if to say, "Yes, I acknowledge getting your packet for a connect request."

The next packet is data (text) sent from N7ALW to WA7GCI.

```
N7ALW*>WA7GCI:
Hi Bob, how are you this evening?
```

The stations are connected and are enjoying a QSO.

One benefit of packet radio is that packets can be relayed, or digipeated. In fact, packets can be "digied" by up to eight other stations to get them to a distant station you can't reach directly. In practice, digipeating through a large number of stations doesn't work well, but still you will often see packets that are digipeating through one or two stations to get to their destination. The packet shown below is an example of a digipeated packet:

```
K6RFK>N7ALW*>N7GMF:
Good night, John-it has been nice talking to you.
```

This packet originated from K6RFK and is intended N7GMF, but for one reason or another, it's being digipeated through N7ALW. Notice the asterisk (*) in the first line—it tells you which station was actually heard by N7GMF when it received the packet. In this case, we can see that we actually heard radio station N7ALW. Without the asterisk, you couldn't tell whether the transmission came from radio station K6RFK or N7ALW. More will be discussed about digipeating later, but the above example is typical.

The next packet:

K6RFK>N7ALW*>N7GMF [D]

... is again from K6RFK to N7GMF and is being digipeated through N7ALW. This packet indicates that K6RFK has finished talking to N7GMF and wants to disconnect. Again, you see that you aren't hearing K6RFK directly, but N7ALW as indicated by the asterisk (*) after his call.

N7GMF>N7ALW*>K6RFK (UA)

This packet is an *ack* that lets K6RFK know that N7GMF has *ack*ed the disconnect request. K6RFK and N7GMF are no longer connected.

The following packet is a BEACON packet from KD7NM.:

```
KD7NM*>MAIL:
Mail for: K6RFK N7ML WO6P
```

Since the packet is addressed to "MAIL" we can assume KD7NM is a Packet Bulletin Board System (PBBS) broadcasting to the area that there's mail waiting for these three stations to read.

The following BEACON packet is an identification packet from a NET/ROM level-3 packet networking switch.

```
WN7ANK-8*>ID:
NET/ROM 1.3 (SEA)
```

In this example, the packet "switch" is operated by WN7ANK-8, but it uses the alias SEA as a MY-ALIAS call sign. There are many types of packet switches now in use, but NET/ROM is one of the most popular. We will briefly discuss using a NET/ROM switch later in this chapter since most switches operate in much the same way.

The packet below was sent by the network switch SEA to N7ML.

SEA*>N7ML: SEA:WN7ANK-8> Connected to #SEA:N7HWD-7

This message tells N7ML that he is now connected to another port on the SEA "node" named #SEA. Again, we will talk more about how and why N7ML might want to do this later in the chapter.

Who's Out There?

If you don't have a friend on packet in your local area, then you will want to choose a station you can reach. Fortunately the PK-12 has a command called MHEARD that displays the list of the last eighteen stations it has heard.

After you've tuned to a packet station for half an hour or so, enter MHEARD at the command prompt. You'll see something like this:

```
cmd:MHeard
...... W06P
..... KB6IUX-1
..... SEA*
cmd:
cmd:MHeard (with DAYSTAMP ON)
21-Nov-93 13:40:35 W06P
21-Nov-93 13:40:25 KB6IUX-1
21-Nov-93 13:40:01 SEA*
cmd:
```

The call signs in the list are the stations heard by your PK-12 with the most recently heard station at the top of the list. As mentioned earlier, the asterisks (*) indicate that the station was heard directly by the

PK-12. The call signs without an asterisk were relayed by another station and so cannot be connected to you directly without connecting to a node or digipeating.

Talking to Yourself

Most of us are a little nervous when we first get on-the-air in a new mode. In packet, fortunately, you're able to get a lot of practice just by talking to yourself before you send your first CQ or connect to someone else who has sent a CQ. Once you feel comfortable with the basic operation of packet, going on-theair is a breeze! To get some practice, you can learn the important commands by talking to yourself.

Remember the "loop-back" test back in Chapter 2, where you tied the green and white wires together at the end of the radio cable? You'll do roughly the same thing here. First, remove the RADIO cable. Then, cut a short length of any single-conductor wire that may be lying around your shack and insert one bare end into Pin 1 of the RADIO port and the other bare end into Pin 4. With your communications program and PK-12 running so that the cmd: prompt is displayed, you're now all set to have a thrilling mono-logue.

Connecting

When you want to chat with a station in packet, you "connect" to it. The abbreviation of the CONNECT command is the letter, C. Go ahead and connect to yourself by entering: C *your call*. If your call happens to be KB6IUX, you'll type:

cmd:C KB6IUX
*** CONNECTED to KB6IUX

You have now changed from the Command mode to the Converse mode—the CON (CONnected) light is lit on the PK-12's front panel. Go ahead and type a quick sentence and press (RETURN). Your sentence will echo back at you. If you were the receiving station, the echo you see is *exactly* what would appear on your screen. Type in another sentence, but this time as you press (RETURN), watch the PK-12's front panel. The XMT and STA lights come on, then the XMT light will go out. A few moments later, the XMT light will come on briefly, then both the CON and STA lights will go out.

What's happening here? It's all part of packet's error-checking scheme. When you pressed (RETURN), the XMT light came on because the PK-12 was keying up your transmitter and sending your packet to the other station. Once the packet has been sent, the XMT light goes out and your transmitter unkeys. The STA light stays on because the PK-12 is waiting for the packet you just sent to be acknowledged (*acked*) by the receiving station. After the other station receives your packet and checks it over to see that it was received okay, it sends back a quick *ack* signal. When your PK-12 receives the other station's *ack* signal, it "*acks* the *ack*"; your transmitter is momentarily keyed for this to happen.

Leave the Converse mode by entering a (CTRL-C). Now you're back in the Command mode. Notice that the CON light is lit—this is because you're still connected with a station. When you enter a (CTRL-C) while you're connected, you've essentially put the other station "on hold" like you would with a telephone—you can go do anything that you can normally do while in the Command mode.

You have a couple of options now: you can either return to the Converse mode and continue chatting with the other station, or you can disconnect—which ends the QSO. To go back to the QSO enter the letter K—for "K"onverse—next to the cmd: prompt. You'll be put on a new line and will be able to type text or read what may have come up on your screen in your absence. While in the Command mode, if you decide to end the connection, enter the letter D, for Disconnect. In this example with KB6IUX, you'd see:

*** DISCONNECTED: KB6IUX KB6IUX*>KB6IUX (UA) Congratulations! You performed the basic steps you need to initiate and end a basic packet contact. Try this exercise a few more times until you feel comfortable with it. When you are, remove the jumper from the RADIO port and reinsert the radio cable.

CTEXT

A step you might want to take right now is to enter a CTEXT message. CTEXT is like a telephone answering machine message (up to 120 characters) that your PK-12 will send to a station immediately after it connects to you. A good CTEXT message is something like this:

cmd: CTEXT Hi, there! If I don't respond in a few moments to your connect, please leave a message in my mailbox, WO6P-1. Thanks! (RETURN)

CText was CText Hi, there! If I don't respond in a few moments to your connect, please leave a message in my mailbox, WO6P-1. Thanks! cmd:

With this message, the connected station has the option of waiting for you to "pick up the phone" or to leave a message in your MailDrop.

To enable your CTEXT message, turn CMSG ON. If you don't want your PK-12 to send the message, leave CMSG OFF.

When you first turn on your PK-12, it becomes a standard AX.25 packet TNC (Terminal Node Controller). When you connect to a TNC, in most cases you'll be connecting directly to someone's computer screen. If you get a message like this . . .

Welcome to my packet station. If I don't respond, please leave a message and Disconnect.

... when you connect to another station, usually you would type something like "Hello?" If you don't see a response from the other station in a minute or so, simply leave a message—just like a telephone answering machine. The TNC at the other station should then hold your message until the operator returns to the computer or terminal. However, if the other operator shuts off their computer before checking the screen, then your message will never be seen. So if the other operator doesn't answer after waiting a reasonable amount of time, try to connect to their mailbox.

Connect/Disconnect Notification (CBELL)

If you're in the shack but doing other things—or while you're connected to a station—you may want to be alerted when someone else connects to you. Turning CBELL *ON* will make your computer beep three times when another station connects or disconnects from you.

Setting Up for Transmitting

If you're using a Timewave program, follow the instructions in the program's manual.

Most packet operation is on FM simplex. Turn off the repeater offset in your radio if it's on.

Calling CQ

In order to allow amateurs to send message beacons and to call CQ, the AX.25 protocol has the ability to send packets that are intended for more than one specific packet station. Since all packets must have a destination call sign, the PK-12 sends Unprotocol packets to the call sign of CQ. This can be changed with the UNPROTO command, but most people like this since it makes an easy way to call CQ. You can call CQ in one of three ways: locally, by digipeating, or through a node.

Locally: Simply enter *K* to enter the Converse mode, press (RETURN) twice, then (CTRL-C) to return to the Command mode. Your CQ will look like this to anyone that's monitoring you:

(your call)*>CQ:

If you wanted to digipeat your CQ, say through WF7A, you'd enter it like this:

U CQ V WF7A (RETURN) (RETURN) (CTRL-C)

To listeners nearby, they'll see this on their screens:

(your call)>WF7A*>CQ:

... or if they hear your call directly, it'd be:

(your call)*>WF7A>CQ:

You can use up to eight calls in a "path" to send your CQ through a distant station.

To change the UNPROTO command to read something other than CQ, enter: UNPROTO (*text*), with (text) being up to six characters long.

Nodes usually have a CQ command. To call CQ through the node, you'd connect first and then enter *CQ*—the node will send your call sign out for you.

To send a CQ through a couple of nodes to a distant one, you'll have to connect to each node as described in the *Digipeating* section below.

Going On the Air

Choose one of the stations with an asterisk displayed in your MHEARD list, or a friend that you know is on the air near you, and enter:

cmd: C call

A few moments later, you should see:

```
*** CONNECTED to call
```

If you see this, you have just connected to your first packet station! Since you initiated the contact, you speak first. As you type, you may notice that the XMIT light on the PK-12's front panel comes on. This means you've typed in a PACLEN's worth of text and the PK-12 is sending it; just keep on typing until you've finished with your message. After you've finished typing, enter a couple of (RETURN)'s or press the "greater than" sign (>), followed by a (RETURN), to let the other station know that you've finished typing and that it's their turn to transmit. The other station will respond—a PACLEN's worth of characters at you at a time—then will give you a couple of (RETURN)'s or a ">" to signal you to start transmitting. This is how it goes, back and forth, until you've finished chatting. Terminate the QSO as you did before with a (CTRL-C)+(CTRL-D).

I'm Having Trouble Connecting

If the station you're trying to connect to is connected to someone else, you may see the following message: *** BUSY call: DISCONNECTED

If you see this, it means that the other station is connected with someone and can't respond to you now. Simply wait a few minutes and try again or try connecting to a different station from your MHEARD list.

If the distant station can't hear your station, you may see the following:

*** Retry count exceeded *** DISCONNECTED: (call)

A number of different things can cause this to occur. It may simply be that the station you're trying to connect to is out of your transmitter's range or is inaccessible for one reason or another. It's possible, however, that something more serious is wrong. If all of your connects don't go as smoothly as planned, go to the packet section of *Chapter 7 — Troubleshooting* for assistance.

More Packet Features

Once you have worked a packet station or two, you can learn a little more about the other capabilities of the PK-12 by reading about them in Chapter 4 — *You're In Command*.

Nodes and Node Operation

In the early days of packet radio, amateurs had to "digipeat" through many stations (up to 8) to connect to a distant station. As more users became active on packet, digipeating quickly proved to be an inefficient way of relaying packets through even a few "hops." The reason why is simple: with all the packets on-the-air being leapfrogged to reach their destination, they'd invariably "crash" into each other, meaning that stations would transmit (and retransmit) packets at the same time. As you know from voice radio operation, when two stations talk at the same time you get a garbled mess, and that's what happened—packets would crash, stations would retransmit the packets since they weren't *ack*ed and they'd crash again.

To solve this problem, amateurs began working on more efficient "higher level" ways of routing packets over long distances. NET/ROM[™], ROSE, TCP/IP, and TEXNET are some of the higher level protocols that emerged and are currently in use around the world. An analogy to packet node operation is your body: say you stub a toe against the wall. The nerve impulse starts at your toe, is transmitted by branch nerve fibers in your leg, then on to your spine (backbone) and finally the impulse reaches its destination, the brain. Packet communications work pretty much the same way: you (the toe) would send to a node (a branch station) that would be retransmit along a digital backbone to a final destination. Instead of a central clearinghouse for signals like your brain, packet signals are routed along nodes that would retransmit a message until it reaches its destination.

In practice, you'd never connect directly to a backbone station; backbone stations typically operate in the 220 MHz and 440 MHz bands (in the U.S.) and are used strictly as retransmitters of packets, not originators in the usual sense. Because these stations are not used for local traffic, they can speed packet traffic along faster and without interruption.

In summary, you don't connect to a distant station through a bunch of other stations anymore, but to a node, which does all the connecting and retransmitting for you. It doesn't necessarily have to be a distant station that you're connecting to. In mountainous or hilly areas, it's common practice for all stations to connect to a node and have it retransmit the signals rather than connect directly to a nearby station. This method helps solve the packet crash problem that you read about a few paragraphs ago.

When you connect to a NET/ROM node, you won't initially see a prompt. Airtime is reduced because the NET/ROM commands are not transmitted, since there are so few commands and they are easy to memo-

rize. Like other automatic systems however, if you send an "H" or a "?" (for Help), you can expect to get a response. For Seattle's SEA node, you'd see:

```
cmd:c sea
*** CONNECTED to SEA
?
SEA:WN7ANK-8} Invalid Command - Choose from :
Connect CQ Bye Help Info Nodes Routes Talk Stats BBS MHeard Users
Quit
```

In the above example, the Seattle node addressed as SEA is operated by WN7ANK-8. Invalid Command means that the node didn't understand the command a connected station sent, so it returned the above "help" line to remind the user of the commands it knows, which are listed below its I.D.

Your PK-12's on-board Gateway firmware supports local acknowledgment (*acks*) of packets like a fullservice BBS/node does. Now, instead of users having to digipeat through your MYALIAS or MYCALL call sign to connect to a destination station, they can now simply connect to your MYGATE call sign. From there, they can issue a connect request to the station they want to reach and your station will be responsible for accepting and sending packet data and *acks* (users *can't* digipeat through your MYGATE call sign). Users can also enter the MHEARD command to see the last 18 stations *your* TNC has heard.

For your node to work, simply enter a call into MYGATE—not the same one as your MYCALL, MY-ALIAS, or MYMAIL—and set GUSERS to a value greater than zero. To disable the node function, enter MYGATE *NONE* or GUSERS to zero.

NOTE:

With each station connected to your node, you'll lose a "logical" channel. If you have GUSERS set to 3 and three source stations have connected to three destination stations through your node, they'll take up six of your ten channels, leaving you with only four channels to accept and initiate contacts. (If a station connects to your MailDrop that would leave you only three channels.)

Operating Your Node

Here's what a user would see when using you as a packet node. In this example, your MYGATE call is set to *N7ML-7*:

```
cmd:CN7ML-7
*** CONNECTED to N7ML-7
+++ N7ML Gateway. Type ? for help.
de N7ML-7 (B,C,D,J,L,N,S,?) >
```

The first line is the user's connect request to your TNC. The second line is the connect message from the user's TNC. The third line is the greeting, and the fourth is the command prompt from the Gateway. The user sends a question mark, ?, to obtain the following help menu:

```
B(ye)
             Log off gateway
C(onnect) n
             Connect to station 'n'
C n STAY
             Stay connected to gateway when 'n' disconnects
D(isconnect) Cancel a connect attempt
J(heard)
             Display stations heard
L(isten)
             Toggle monitoring
N(odes)
             Display nodes heard
S(end)
             Broadcast unproto
de N7ML-7 (B,C,D,J,L,N,S,?) >
```

The commands' functions are:

- B(ye) This is similar to the Bye command used in the Timewave MailDrop and BBS stations. When a user enters a *B*, the Gateway will "disconnect."
- C(onnect) *n* Similar in operation to the CONNECT command in the packet mode.

For a packet connection, the user may connect to your Gateway, then specify a string of digipeaters:

C W1AW VIA W2XY, W1XXZ

Your Gateway will try to establish a connection with W1AW as the destination; the user's call sign will be shown as the source, but with a difference: the user's SSID is decreased by one to avoid protocol conflicts on the same frequency.

Here is an example of the frames sent in establishing a typical connection (with the MONITOR command set to 5):

```
USER>GATE [C]
GATE>USER (UA)
GATE>USER [I]:
   +++ N7ML Gateway. Type ? for help.
   de GATE (B,C,D,J,L,N,S,?) >
USER>GATE (RR)
USER>GATE [I]:
   c remote
GATE>USER (RR)
                                  USER-15>REMOTE [C]
                                  REMOTE>USER-15 (UA)
GATE>USER [I]:
   +++ CONNECTED to REMOTE at GATE
USER>GATE (RR)
USER>GATE [I]:
   hello.
GATE>USER (RR)
                                  USER-15>REMOTE [I]:
                                  hello.
                                  REMOTE>USER-15 (RR)
                                  REMOTE>USER-15 [I]:
                                  Yes?
GATE>USER [I]:
                                  USER-15>REMOTE (RR)
   Yes?
USER>GATE (RR)
```

Once the connection is established with the destination station, the Gateway notifies the user that the connection has been made and then goes from the Command mode into the Converse mode. Now, whatever the user sends goes to the destination station as data instead of to the Gateway as a command.

Normally, when someone disconnects from your Gateway, no link will remain. However, if a user adds the word *STAY* as the last argument in a Connect request, (e.g., *C* call sign STAY), the user will remain connected to your Gateway after disconnecting from the destination station. If the connect attempt to the destination station retries out or is busy, your Gateway sends the user a Retry count exceeded or (Remote) busy message, and remains connected to the user even if *STAY wasn't* entered.

D(isconnect) (To cancel a connect attempt.) Since the source station remains in the Command mode until the connection to the destination station is established, there's no need for the user to wait for your Gateway to cycle through a full number of retries to attempt a connection—the user can send your Gateway a Disconnect request, which cancels the Connect request the same way it would in a TNC's Command mode. (The user stays connected to your Gateway even if *STAY* wasn't used in the original Connect command.) The Disconnect command may be used at any time before the connection is established, regardless of any preceding commands.

Once a connection is established and your Gateway is in the Converse mode, the user can end the connection either by sending a B(ye) command to the destination station if that station supports it, or by issuing a Disconnect request to the user's own TNC. If the user disconnects from your Gateway this way, it will force your Gateway to disconnect the destination station.

- J(heard) Your Gateway sends its MHEARD list to the user. A maximum of eighteen stations are kept in the JHEARD list. JHEARD is a command available only to stations connecting to you.
- L(isten) The Gateway toggles monitoring on or off.
- N(odes) Your Gateway sends the user a list of nodes heard. The format is the same as that of the JHEARD command, the difference being that a call sign is put in the Nodes list *only* if the monitored packet was a UI frame with a PID of CF (NET/ROM) or CD (IP). A maximum of ten stations are kept in the Nodes list. You clear the Nodes list and the MHEARD list simultaneously with the same command, MHEARD %.
- S(end) Your Gateway responds with. . .

+++ Sending. To end, type '='.

... and sends all subsequent data in the broadcast format appropriate to the selected port's operating mode. The data characters are held until the user sends a (RETURN), whereupon the held data is broadcast.

In all operating modes, the user can stop sending "unproto" by sending the "=" character—the Gateway will then issue a command prompt. The "=" character shouldn't be used within the user's broadcast text.

Digipeating

Sooner or later, you'll want to connect to a packet station that's beyond your immediate radio range or is inaccessible from your location. If a third packet station is on the air and both you and the station you want to talk to are in range of that third station, the third station can act as relay station for your packets—you simply enter the digipeater routing path in your connect request. Here's a sketch that shows how digipeating can solve a simple problem:

KB6IUX

ΛΛΛ WO6P KG6ZL

You're station WO6P and you want to have a packet QSO with KG6ZL, but there's a "cumulo-granite cloud" (mountain) between you that completely blocks your radio path. However, you know that there's a packet station, KB6IUX, that is accessible to *both* you and KG6ZL located on the mountain top.

To digipeat through (VIA) KB6IUX, enter:

cmd: CKG6ZLVKB6IUX

... but KB6IUX doesn't have DFROM *ON*, so no one can use him as a digipeater. What now? Pick up the telephone and call your friend at KG6ZL? Not necessarily. You listen some more and you can hear another station, KD7NM, off to the side of the mountain chatting with WF7A. WF7A is in a location where you know *he* can reach KG6ZL. So, you enter the linear, point-to-point path you need to use to connect to KG6ZL:

cmd: CKG6ZLVKD7NM,WF7A

They both have DFROM *ON*, so a few seconds later you receive an *ack* back from KG6ZL and you're all set.

Are You a Digipeater?

Your packet station can be a digipeater for other stations. You don't have to "do" anything—your PK-12 will digipeat other stations *unless you tell it not to* by using DFROM.

If your transmitter keys when you're not using it or during lulls in your own conversations, you're being used as a digipeater by someone. Don't worry—this won't interfere with your conversation. (As a courtesy, leave DFROM *ON*.)

To monitor the text the other stations are sending through you, set MDIGI ON.

Identifying as a Digipeater

If your PK-12 is being used as the primary digipeater in a local area, you may want to enable HID—it will automatically identify your station for others to see.

You may also want to choose a simple identifier for others to use. You set it with MYALIAS. Examples are: SEA for Seattle; PTLD for Portland; LYNN for Lynnwood, and so on.

Time-stamping Packets and Messages

Monitored packets can be time-stamped if the PK-12's internal clock has been set with DAYTIME. To time-stamp monitored packets, turn MSTAMP *ON*. Turning DAYSTAMP *ON* adds the date to the time-stamp provided by MSTAMP.

Sometimes it is useful to know what time someone connected to you—perhaps for logging purposes. To time-stamp your packet connects and disconnects, turn CONSTAMP *ON*. As discussed in the last paragraph, turning DAYSTAMP *ON* will add the date to this time-stamp as well. The DAYTIME command must be set first for DAYSTAMP to operate.

Multiple Connection Operation

Because packet radio supports multiple QSOs on the same frequency, you can converse with more than one station at a given time. The PK-12 offers ten channels, (0-9), each of which can support a conversation. This capability is a powerful feature of your PK-12, and a mentally challenging one when you have more than a couple of QSOs going on at once!

Multiple connect operation is like a 10-line telephone with automatic "hold." When you're connected to multiple stations you automatically receive everything sent *to* you, but you must select the proper channel to send data to a particular station on a particular channel; in effect, it's just like having to push the proper "line" button on the telephone to talk to someone—you can't talk to someone on Line 1 while you're talking on Line 3.

As mentioned before, you can step down to Command mode while you're connected to someone—you'll need to jump down there in order to change channels. (This is true for any and all of the channels that are active.)

Note:

The MAIL light will blink if the PK-12's receive buffer is filled. To keep the buffer from filling up quickly with "junk mail," set MONITOR to zero. To clear the mail buffer, you can either turn the PK-12 off and then on again, enter RESET, or let the PK-12's contents "dump" into your computer.

Setting Up

You can select any channel to initiate a connect, but to enable your PK-12 to allow *incoming* multiple connections, you need to set the USERS parameter to a value greater than one. The number you enter in the USERS command tells the PK-12 how many users you'll allow to connect to you at a given time. So, if you set USERS 5, five stations can connect to or digipeat through you at the same time. With USERS set to 0 (zero), no one can connect to or digipeat through you.

NOTE:

With all ten channels enabled with the USERS command, stations that connect with you will connect to the PK-12's channels in ascending order, starting from 0. Stations that connect to your MailDrop are automatically connected to your PK-12's Channel 9.

The Channel Switching Character

Once you've set the USERS command, you need to set the CHSWITCH character. Set it to a character that you don't normally type, such as the vertical bar "|" (ASCII \$7C) or the tilde "~" (ASCII \$7E). You'll use this character to tell your PK-12 that you want to change channels. To change channels, press the CHSWITCH character you just defined, and then a number from 0-9. For example, if your CHSWITCH character is the tilde, you're chatting with someone on Channel 0, and you want to chat with a station that connected to your PK-12's Channel 1, you'd enter:

cmd:~1(RETURN) ~1: cmd:

NOTE:

Though you've changed to Channel 1, you can access all the commands normally available that you had in Channel 0, the PK-12's default channel. This is true for all ten channels.

When you change channels, the channel you changed to will have the packet header information of the station that just connected to you. Remember that the text you'll now type will only be sent out to the station connected to the channel your PK-12 is currently on. If, while talking on Channel 1, the station still connected to you on Channel 0 sends data to you, it will be held in the PK-12's memory until you return to Channel 0, whereupon the data will scroll up on your screen.

Say, by coincidence, the station you're connected to sends a character which is the same one you've set for CHSWITCH. If you want to be able to tell the difference between the CHSWITCH characters you
type and the same character from other station, set CHDOUBLE *ON*. This will cause all received CHSWITCH characters to appear double, while the ones that you type will appear only once.

CHCALL

Multiple connection operation can be confusing, especially when you're trying to remember who's connected on which channel. To help the situation, turn CHCALL *ON* to display the call sign of the station connected to you on a given channel number.

Checking Your Connect Status with CSTATUS

To check which channels are available to you as well as who's connected to you, enter CSTATUS. It will show you the connect status of all 10 packet channels—connected and unconnected—including the channel you're currently on. By entering CSTAT *SHORT*, the PK-12 will display only the channels that are currently connected.

Packet Meteor Scatter Extension

A new packet protocol extension has been added for meteor scatter work that allows a Master/Slave packet connection to be established. This is done to reduce the possibility of simultaneous transmissions by both sides of a packet connection over a long meteor scatter path. This experimental protocol is activated by turning UBIT 18 *ON*. The packet station that initiates a packet connect becomes the Master station and the station that acknowledges the connect becomes the Slave.

After a meteor scatter connection has been established, the Master station continually sends either information frames (I-frames) or polling frames and awaits an acknowledgment from the slave. The Master station sends packets constantly, even if all its I-frames have been acknowledged. The Slave station sends nothing, not even I-frames, until it receives a polling frame from the Master. The Slave station may only send an I-frame to the Master after a poll frame has been received.

The packet timing of the Master station is critical for proper meteor scatter operation. In a normal AX.25 packet connection, the FRACK timer counts down until it reaches zero and then a RETRY of a poll frame is sent. The FRACK timer counts in units of seconds, however, and a finer timing resolution is desirable for meteor scatter work. A new timer, called FRICK, has been added which times in 10 mS increments. The FRICK timer can be set from 0 (disabled) to 250 which corresponds to a time of up to 2.5 seconds.

The following settings are recommended for this method of meteor scatter work. Both packet stations should use the same settings:

UBIT 18 *ON* RETRY *0* AX25L2V2 *ON* MAXFRAME *1* (CHECK doesn't matter) FRICK *n*, where *n* is large enough to allow the other station time to send the start of an acknowledgment frame.

NOTE:

Don't operate the unit with multiple packet connections while FRICK is active (1-250). In contrast to FRACK, which provides one retry timer per multi-connect channel, there is only one FRICK timer in the PK-12. Each logical channel will try to use the same FRICK timer, causing interference with the other channels.

Digipeaters shouldn't be used when in the meteor scatter mode. The FRICK timer (unlike FRACK) doesn't allow any extra time when digipeater stations are specified. To return to normal AX.25 packet operation, turn UBIT 18 *OFF*. Also, be sure to disable the FRICK timer (by setting FRICK to 0) when you're through operating in meteor scatter mode.

Intermediate and Advanced Commands

Your PK-12 has many commands that are not necessary for day-to-day connects or casual conversations. Still, as you become more familiar with packet, these commands and features may become important to you.

Monitoring Other Stations

When you're connected, MCON determines what packets are shown. The default of MCON is θ (zero), which tells the PK-12 *not* to monitor any packets while you're connected. Most users prefer it this way, so they're not disturbed with monitored channel data while they're connected with another station. However, if you want to monitor packets while connected, refer to MCON in *Chapter 4* for user settings.

Use the MONITOR command to determine what kinds of packets you'll see when you're *not* connected to any stations. The higher the argument number (1-6), the more information you'll see. If you don't want to see extraneous information associated with sent packets, use a lower value like 2 or 3.

Monitoring the Packet Networking Switches

There are other types of frames used by networking switches that the PK-12 doesn't normally display. These frames can be seen with MPROTO—turning it on allows *all* AX.25 frames to be displayed. Some packets you might see with MPROTO *ON* will contain information that may interfere with the display on your computer, causing it to look "funny". For this reason, MPROTO's default is *OFF*.

Selective Monitoring

After you've monitored channel activity for awhile, you may decide there are only a few stations you want to copy. To "screen" stations for monitoring purposes, use MTO and MFROM. With the MBELL command, you can even be alerted when a certain station transmits on the frequency. These commands work in conjunction with MONITOR and MCON commands.

MFILTER

Some terminals and computer programs are sensitive to certain characters that may appear in monitored packets. You'll know this is happening if the cursor on your screen occasionally moves to strange places and causes the received copy to be garbled.

The PK-12 default for MFILTER is \$80, which prevents most control characters from interfering with your display.

Monitor Without Call Sign Headers

Sometimes you may want to monitor certain stations without having to look at the packet call sign headers. This can be useful when monitoring message traffic from a large PBBS. The MBX command allows you to choose the call sign of a station, or a pair of stations, you want to monitor without having to see packet headers.

Beacon Operation

In the early days of packet, the beacon was useful to show your presence on the packet channel. With the growth of packet, many users feel that beacons have outlived their usefulness and interfere with traffic. Use your beacon with discretion.

The PK-12 can send an automatic "beacon" message at a specified time interval. A beacon can send special announcements or just let others know you're on the air. To enable beacon operation:

- 1. Enter your beacon message in BTEXT.
- 2. Set the beacon interval using the BEACON EVERY or AFTER command.
- 3. A beacon frame is sent to the path set in UNPROTO.

As a reminder, if you set the BEACON timing at a value considered too small for busy channels (less than "90"), you'll see:

WARNING: BEACON too often

Packet Transmit Timing

The PK-12 has a number of built-in timers used to control the packet protocol and transmit timing. The default values have been set at the factory, but they may not be the optimum values for your local area. Most protocol parameters should be adjusted only after reading about them later in the chapter. You *should* adjust TXDELAY for your transmitter as described below.

Radios vary in the time it takes it to switch from receive to transmit. If your PK-12 starts sending data before your transmitter is up to power, the packet will not be received properly at the distant end. TXDELAY controls the delay between your transmitter's key-up and the moment your PK-12 starts sending data. The default value of *30* corresponds to a time of 300 mS and works with most VHF/UHF FM transceivers. With modern transceivers, TXDELAY can often be reduced from its default value which will improve packet performance. You should perform the following procedure to optimize TXDELAY for your station:

- 1) Find another station who can reliably digipeat your signals.
- 2) Set your UNPROTO path to *TEST* via the call of the station that will digipeat your signals. For example: *U TEST V WO6P*.
- 3) Set MONITOR to at least 1.
- 4) Go to Converse mode by entering *K*, then send a few packets by pressing the (RETURN) key. You should see the outgoing packets on your own screen echoed back as they're digipeated by the other station.
- 5) Start reducing TXDELAY by units of 5 each time, making sure the other station is still digipeating *all* of your UNPROTO packets.

Eventually you'll find a value where the other station can no longer copy your packets accurately enough to digipeat them. When this happens, increase TXDELAY in units of one or two until the other station digipeats *all* of your packets again. This will be the optimum setting of TXDELAY *for that particular ra-dio*.

After TXDELAY has been adjusted, you may want to adjust the audio delay (AUDELAY) using the same procedure. (See AUDELAY in *Chapter 4* for more information.)

Packet Formatting and Editing

Some of your PK-12's command parameters affect how your packets are formatted—how your typing appears to the rest of the world. Other commands let you correct typing errors before your packet is sent, cancel lines, or entire packets.

(RETURN)'s and Linefeeds

Most hams use packet radio for sending and receiving messages or conversation. The character used to send a packet is defined with the command SENDPAC which defaults to a (RETURN) (\$0D). You can change the SENDPAC character, but you'll find the (RETURN) or (ENTER) key to be a natural choice.

Similarly, your PK-12 will include a (RETURN) in the packet you send to the other station since this makes for a more natural conversation. ACRPACK controls this feature, though most people will never want to change this.

The PK-12 also has the capability of adding a linefeed character (\$0A) automatically to packets that you send to others. If you encounter a station or two that says your packets are overprinting, you may want to turn the ALFPACK or ILFPACK *ON* for them.

Cancelling Lines and Packets

Most of the time, (BACKSPACE) or (DELETE) is all that's needed to edit a line before it's sent. Occasionally it may be helpful to cancel a line or the entire packet you're entering with just one keystroke. The CANLINE character, (CTRL-X), will cancel the entire line you're typing; the CANPAC character, (CTRL-Y), will delete the entire packet.

Redisplaying Text

If you've erased and retyped lots of characters, you may want to see a "fresh" screen (especially if BKONDEL is *OFF*). The REDISPLAY character (CTRL-R) will refresh your screen and will display any packets you might have received while you were typing.

The PASS Character

Sometimes you may want to include a special input character, such as a (RETURN), in a packet without forcing an action to happen. For example, to send several blank lines in the same packet, you must include a (RETURN) at the end of each line. However, when you press (RETURN), it normally forces a packet to be sent. You can get around this problem using the PASS (CTRL-V) character. You can include any character in a packet (including all special characters) by prefixing that character with the PASS character. For example, if you're in Converse mode, you can type:

I wasn't at the meeting. (CTRL-V)+(RETURN) What happened? (RETURN)

Without the PASS character, this message would go out as two separate packets because you entered two (RETURN)'s, but by prefixing the first (RETURN) with a (CTRL-V), you send all the above text in only one packet while maintaining its two-line format. The PASS character can be useful in formatting text messages, such as CTEXT, as well.

Packet Protocol Basics

Here we will talk a little about the AX.25 packet protocol. You don't need to understand this to use packet, but it is helpful in understanding some packet protocol parameters.

There are two modes of packet transmissions: connected and unconnected. Most of the time when you use packet, you'll be conversing with another packet station in a connected state. Still, the unconnected, or unprotocol, mode comes in handy for beacon transmissions and roundtable exchanges.

All packets are constructed basically the same: they contain source and destination call signs (and any digipeaters, if used) as well as information identifying the type of packet. (This packet identification can be seen with the MONITOR command discussed earlier.) All packets contain an error check code called the CRC. This ensures that it won't contain any errors when it is received. PASSALL can disable the CRC error check, but this should only be done for experimental purposes.

Connected Packets

When you connect to another station, the AX.25 packet protocol ensures that the station you're connected to receives all the packets that you send. Likewise, the protocol ensures you will receive all the packets the other station sends to you. The following describes briefly how the protocol does this.

FRACK and RETRY

When the PK-12 sends a packet to another station, it expects an *ack* packet back from the other station confirming that the packet was received. The AX.25 packet protocol will automatically retransmit (retry) packets when an acknowledgment isn't received from the distant end of the link within a specified time.

FRACK sets the time span before the originating station retransmits (retries) the packet that hasn't been *acked*.

RETRY sets the maximum number of retransmissions before your PK-12 "gives up" and terminates the connection attempt (disconnects). The TRIES counter keeps track of the retries that have occurred on the current packet.

PACLEN and MAXFRAME

Packets will be sent either when (RETURN) is pressed or when the maximum packet size is exceeded which is set by PACLEN. When large amounts of data need to be sent, PACLEN can be increased to 256. When conditions are poor or the channel is crowded, this value should be reduced to 64 or less.

The packet protocol allows more than one frame to be sent in a single transmission, which is set by MAXFRAME. When conditions are good, up to 7 frames can be sent to speed data transfer. When conditions are poor or the channel is crowded, MAXFRAME should be reduced to 1.

Reducing Errors through Collision Avoidance

Since packet operates over the radio, there are usually many stations operating on the same frequency that can't hear each other. The digipeaters and network nodes allow these stations to communicate with each other, which can increase the chances of collisions.

The first attempt to avoid collisions was through the use of the DWAIT and RESPTIME timers. DWAIT forced the TNC to delay the transmission of any packet except for digipeated frames by the time selected. This fixed timer helped, but packet was still plagued by collisions. RESPTIME was added to help with large file transfers. Still, more needed to be done to reduce collisions.

Another attempt to reduce collisions was the introduction of AX.25 version 2 protocol. Almost everyone on VHF packet uses version 2, which is controlled by the AX25L2V2 command.

An exponentially distributed random wait method was proposed by Phil Karn (KA9Q) called P-persistent CSMA. When PPERSIST is *ON*, the PK-12 uses the number set in PPERSIST and the time value set by SLOTTIME to more randomly distribute the transmit wait time. This is more efficient than using the DWAIT time.

As a further attempt to improve performance, Eric Gustafson (N7CL) proposed giving priority to acknowledgment packets (acks); this protocol is controlled by ACKPRIOR. Check with the experienced packet users in your area and find out if they are using priority acknowledge or have changed any other parameters.

DAMA Support

Timewave has added DAMA (Demand Assigned Multiple Access) to the PK-12. DAMA allows for a master/slave connection to reduce packet collisions. At times, a node's receiver can hear too many signals at once and remote users can get lost in the noise. A good example of this situation is when ships on the open sea try, but can't connect to communication satellites; the stations have a clear shot at the satellite, yet can't connect.

To solve this problem using existing equipment and still using only one frequency, DAMA has been implemented to organize all node users' communications. With DAMA, the master station identifies all slave stations and polls each of them for information. Slave stations are 'asked' by the node if they have any information to send. If a slave station does, the information is sent and the node 'remembers' that this station sent information this time around. If a slave station does not send information, the master 'remembers' and skips this person next time around, coming back to them at a later time. Those stations replying with information when polled are considered active. Stations that do not send information are considered inactive. Active stations are given a higher priority than inactive stations and thus, more opportunity to send information. As the node traffic increases, inactive users fall down through the priority list. Low priority stations can become active (and have higher priority) at anytime by sending information when the master station polls. Using DAMA can increase overall channel throughput by organizing stations based on their state of activity. Stations sending data are given more chances to send data and stations not sending data are given less chancesave has added the **UPlink** command to the PK-12 for use with DAMA communications. Information on this command can be found in the "You're in Command" chapter of this manual.

CHECK and RELINK

If a station connects to you and then turns its TNC off, you would probably not want to stay connected to the station. The CHECK timer determines the amount of time your PK-12 will wait before testing the link if no data has been exchanged.

RELINK sets what happens *after* the CHECK timer has expired. If RELINK is *OFF*, the PK-12 will change to the disconnected state to terminate the link. If *ON*, the PK-12 will attempt to reconnect to the distant station to reestablish the link.

Transparent Mode

Transparent mode allows any 8-bit binary character to be sent by your packet station. Usually, you must use the Transparent mode to transfer binary and executable files to and from other stations.

You can either enter the Transparent mode by typing TRANS at the command prompt after you connect, or by setting CONMODE to *TRANS*. Either way, once you enter the transparent mode, any character you type will be sent automatically after the PACTIME setting. This way any character can be sent by the PK-12. Although we recommend using hardware flow control in Transparent mode, software flow control is available through the TRFLOW and TXFLOW commands.

To return to the Command mode after you're finished with transparent mode, you must type the Command character (CTRL-C) three times within the "guard time" set by CMDTIME (default: 1 second), then wait an additional CMDTIME for the cmd: prompt to appear. Sometimes you may need to send a file that contains some 8-bit data, but you don't need all the features of the Transparent mode. In this case, you may find turning the command 8BITCONV *ON* is all that is needed.

Full-Duplex Operation

Most packet activity is conducted through half-duplex transceivers that transmit or receive, but not both at once. In some systems where a separate transceiver and receiver is used (such as satellite operation), set FULLDUP *ON*.

Morse ID in Packet

In most countries, packet is an accepted mode of identification so MID should be left *OFF*. (Your call sign appears in the header information.) If a Morse ID is required where you reside, turn MID *ON*.

The QRA Feature

The PK-12 recognizes UI frames with a destination field of "QRA" and will respond by sending an ID packet. This is helpful for others new to your area that are looking for other packet stations to talk to. To disable this feature and remain anonymous, simply set UBIT 22 *OFF*.

If you want to see who's available in your local area, simply set your UNPROTO path to *QRA* and send a packet. Within 1 to 16 seconds, other stations should respond to your QRA request by sending an ID packet of their own. This feature is compatible with TAPR's QRA feature introduced in their 1.1.8 firmware release.

Packet Mail

Although standard TNCs allow incoming messages to be saved, there's no way for the owner to leave a message for someone who will connect at a future time. The ability to both send and receive messages without the owner being present is accomplished by a mailbox.

There are many different packet mailbox systems in use. Some systems are large and require the use of a dedicated computer. Other systems are small, like the personal MailDrop built into your PK-12.

Large systems are often called Packet Bulletin Board Systems (PBBS) since they serve as electronic message centers for a local area. PBBS's are a source of information as well as a gateway for messages that can be sent to, and received from, other parts of the country or world. You will probably want to locate the PBBS nearest you and connect to it from time to time.

Most mailbox systems are easy to use and, whether they are small or large, operate in much the same way. Another nice feature of mailboxes and other automatic systems is that they usually have a Help file or menu available to the caller by entering an "H" or "?" after a command line.

For more information on setting up and using your MailDrop, read Chapter 6 — MailDrop Operation.

PK-12 Packet Controller Operating Manual / 72

6. MailDrop Operation

Overview

The PK-12's MailDrop acts like a small post office—it uses a subset of the well-known W0RLI/ WA7MBL packet BBS commands to send and receive messages manually or automatically. Not only can you originate and receive messages, but with 3RDPARTY *ON*, you can accept and relay messages left for others.

The MailDrop also supports forwarding and reverse-forwarding of packet messages if properly coordinated with a local or "full service" BBS. This means that your station can receive messages from that BBS, hold or send them on to their recipients, then return replies later after they've been answered. Hierarchical message addressing is now supported to simplify the routing of both national and international traffic.

NOTE:

You needn't have your computer on for your PK-12's MailDrop to function, but you must leave your radio on to allow other stations to access your MailDrop, or if you want to record the radio traffic the PK-12 hears.

MailDrop Memory

The number "*n* free" is the RAM space available for MailDrop messages. As your MailDrop fills with messages, the RAM space will decrease until there isn't any space left for messages or other activities. When this happens, the MAIL light will blink on the front panel of the PK-12 to let you know that all the RAM memory has been used up . If someone tries to connect to your station when this happens, they'll get:

*** (your call sign) busy - DISCONNECTED

... and will be automatically disconnected from your station.

Along these lines, while you're logged on to your own MailDrop, if a station issues a connect request to your PK-12 and it won't let it connect—it will display the message:

*** (your call sign) busy

However, once you're finished using your MailDrop—by entering *B* for *B*ye—your MailDrop will be available to other stations.

When users connect to your MailDrop, they automatically connect to channel 9.

Setting Up Your MailDrop

Simply enter MAILDROP ON to enable MailDrop operation.

When operating in packet, your MailDrop can have its own call sign, which you enter in MYMAIL. Common practice is to add an SSID after your call sign for this purpose, usually -1. If you don't enter a

call sign in MYMAIL, the MailDrop will use the call sign that you entered for MYCALL and all incoming connections will connect automatically to the MailDrop.

By the way, you have full control of your PK-12 while your MailDrop is on. You can connect to, and chat with, other stations while someone is using your MailDrop, provided the user has connected to the call you entered in MYMAIL.

It's a good idea to enter a CTEXT message that says that if you don't answer the user should reconnect to your MailDrop through your MYMAIL call sign. An example would be:

cmd: CTEXT Hi! I'm not available right now, so please reconnect to WF7A-1 to leave a message in my MailDrop. '73...Rich.

CText was

CText now Hi! I'm not available right now, so please reconnect to WF7A-1 to leave a message in my MailDrop. '73...Rich.

Accessing and Commanding Your MailDrop

You must not be connected to any other stations when you access your own MailDrop. To check that you're "clear," enter MDCHECK. If someone is connected to your PK-12, you'll get the message: ?not while connected. If you're clear, you'll see:

[AEA PK-12] 19712 free (B,E,K,L,R,S) >

NOTE:

The amount of free RAM available varies upon how much mail you already have stored in your mailbox and whether or not you have the expanded mailbox option installed.

Console Commands

B, E, K, L, R, S are the MailDrop commands available to you as the "console" operator. The commands mean:

B(ye)	Log off from the MailDrop
E(dit)	Edit a MailDrop message
K(ill) n	Kill (delete) message number n
L(ist)	List the message directory
R(ead) n	Read a specific message n
S(end) call	Send a message to a particular call sign

If you enter any command besides these six letters, you'll get the error message:

*** What?

Monitoring Your MailDrop

Set MDMON ON to monitor another stations' usage of your MailDrop. It will show you both sides of the MailDrop QSO with your station. (Packet headers aren't shown while a user is connected to your MailDrop.) Conversely, turn MDMON *OFF* to cancel MailDrop monitoring. UBIT *13* allows MailDrop connect and status messages to be disabled as well. (See UBIT 13 for more information.)

MailDrop Prompts and Operation

MTEXT is the MailDrop connect-message prompt sent to a user that's connected to your MailDrop. The default message is:

Welcome to my AEA PK-12 MailDrop.

Type H for help.

You can change it to your liking. For example:

cmd:MTEXT You've reached KG6ZL's mailbox. If you need help, enter H. MTExt was Welcome to my AEA PK-12 MailDrop. Type H for help. MTExt now You've reached KG6ZL's mailbox. If you need help, type H.> cmd:

You must set MMSG ON for your MailDrop's "welcome message" to be sent.

The MDPROMPT prompt message follows right after the Send command is entered. The default message is:

Subject:/Enter message, ^Z (CTRL-Z) or /EX to end

MDPROMPT is comprised of two different prompts that are sent to the connected station. The first prompt is simply "Subject:". When the connected station enters the subject of his message (max. 27 characters), the second prompt will appear:

Enter message, ^Z (CTRL-Z) or /EX to end

You can enter any text in MDPROMPT, up to a total length of 80 characters for both prompts; both parts of the prompts must be separated by a forward slash (/) as shown—before the slash is your "Subject" line, and after the slash is the "Enter message" line.

MailDrop Command Summary

When someone logs onto your MailDrop, the following commands will be available:

A, B, H, J, K, L, R, S, V, ?

Here's what they mean:

A(bort)	Aborts the reading of a message
B(ye)	Log off from your MailDrop
H(elp)	Help for the MailDrop commands
J(log)	Sends the PK-12's MHEARD list
K(ill)	Kill or delete messages
L(ist)	List the message directory
R(ead) n	Read a specific message numbered "n"
S(end) n	Send a message numbered "n"
V(ersion)	Sends the PK-12's sign-on message
?	Help for the MailDrop commands [same as H(elp)]

A(bort) This is handy if the user decides not to continue reading a long message or a list. The message, *** Done, followed by the MailDrop prompt will be sent after an "A" has

been received. Although *you* can't use the Abort command, you can use (CTRL-X) to do the same thing.

- B(ye) Logs you—or the calling station—off the MailDrop. As the console operator, you'll see the standard cmd: prompt; a calling station will be simply disconnected.
- E(dit) # Available to the SYSOP only, Edit controls the status of the messages in your MailDrop; you must access the MailDrop before typing this command. Here are all the possible ways to use Edit:

E lists the following short help file:

Е	msg#			
Е	msg#	B/T/P		
Е	msg#	Y/N/F		
Е	msg#	>/ @</td <td>call</td> <td>sign</td>	call	sign

Examples:

- *E 12* Shows message #12's information line.
- E 23 > WF7A Sets WF7A as message #23's destination.
- E 35 < WF7A Sets WF7A as message #35's source.
- E 48 @ WF7A Sets WF7A as message #48's destination BBS.
- E 49 @ KG6ZL.MT.USA.NA

Sets KG6ZL as message #49's destination BBS and adds the hierarchical forwarding information, *.MT.USA.NA*, which directs the message to the KG6ZL BBS located in the state of Montana (*MT*) in the United States, North America (*NA*) continent.

- *E* 58 @ Clears message #58's destination BBS field.
- *E 60 P* Sets message #60's status to Private.
- *E 61 B* Sets message #61's status to Bulletin.
- *E* 62 *T* Sets message #62's status to Traffic.
- *E 63 Y* Sets message #63's status to Has-Been-Read.
- *E* 64 *N* Sets message #64's status to Has-Not-Been-Read.
- *E 49 F* Sets message #49's status to Reverse-Forward.

The command E # F sets the message status to enable reverse-forwarding of a message number. To cancel forwarding, set the status to either *Y* or *N*. Please read the section on reverse-forwarding later in this chapter if you're interested in this feature.

H(elp) This command, available to the user only, sends a list of all available MailDrop help commands. A question mark will also cause the HELP file to be sent.

A(bort) Stop Read or List

B(ye)	Log off
H(elp)	Display this message
J(log)	Display stations heard

PK-12 Packet Controller Operating Manual / 77

	K(ill)	K n:	Kill message number n
		KM:	Kill messages you have read
	L(ist)	r:	List message titles
		LM:	List messages to you
	R(ead)	R n:	Read message number n
		RM :	Read messages to you
	S(end)	S:	Send a message to console operator
		S n:	Send a message to station n
	V(ersion)	Display	TNC firmware version
	?	Same as	H(elp)
J(log)	your PK-12's	MHEARD li	le only to the user, "J" will cause your MailDrop to send ist. (This command isn't available to you as the console op- e enter MHEARD in the command mode to obtain the same
K(ill) n	"K n" deletes message number " n " from the MailDrop. As console operator, you can kill <i>any</i> message. A user can kill only messages addressed to (or from) that station. The user may enter <i>KM</i> [(K)ill (M)ine] to delete all of the messages that have been previously read.		
L(ist)	-	-	erator, a list of all active messages on the MailDrop. The list g column header:
	Msg# Size To	From @ BBS	Date Time Title
	TIME must be	e set for the I	ted under this line with the most recent message first. DAY- Date and Time information to appear. If DAYTIME isn't set, he Date and Time fields.
	ticular user is sages to other command from	allowed to r users aren't n the user. T	t command, the MailDrop lists only the messages that par- ead, including messages addressed to ALL and QST; mes- displayed. The MailDrop also accepts the LM (List Mine) 'his shows messages addressed only to that particular user, ALL, QST, or Bulletins.
R(ead) n	by number, no	ot call sign. A	e header and text of message number " <i>n</i> ". Messages are read as console operator, you can read all messages. A user may sed to his call sign, or to ALL, QST, or Bulletins.
	only on messa	ges addresse	RM (Read Mine) command from users. This command acts d to the user, not messages addressed to ALL or QST. RM t <i>haven't</i> been read.
S(end)	The S (<i>call sig</i> or the user wa		l notifies the MailDrop that either you, as console operator, message.
			connected station can leave a message for another station or ve 3RDPARTY <i>OFF</i> , then the calling station will see:

	*** No 3rd party traffic	
	[AEA PK-12] 18396 free (A	.,B,H,J,K,L,R,S,V,?) >
	See the next section, Sending Mail, for information	n on how to send mail.
V(ersion)	This user command causes the PK-12 to send the date.	e sign-on message and its firmware
? (H)elp	Another user-only command, "?" sends the user t as the "H" command does.	he same list of MailDrop commands

Sending Mail

From the Console Operator

To send mail, you have to log onto your MailDrop by entering *MDC* (MDCHECK). When you do, you'll see the following:

```
cmd:MDC
[AEA PK-12] 19712 free (B,E,K,L,R,S) >
```

Enter S (call) of the station you want to send mail to. If you want to send mail to KB6IUX, enter:

S KB6IUX Subject:

Type in a subject line (max. 27 characters), then press (RETURN). You'll then be prompted with:

Enter message, ^Z (CTRL-Z) or /EX to end

Go ahead and enter your message; you can either have the PK-12 "wrap" your text as you reach the end of the line or press (RETURN) to go to the next line. You won't have text that breaks in the middle of a word if you use a (RETURN) to start a new line.

When you've finished writing your message, press the (RETURN) key and enter either a (CTRL-Z)+(RE-TURN), or /EX on a new line to end the message. The MailDrop prompt should then appear, saying: Message stored as #n. It will be then ready to accept your next command.

After ending the message, if you or the calling party see the message ******* No free memory, this means that the message was too large for the available MailDrop memory and wasn't recorded. If this occurs, you must delete stored mail or re-enter a shortened message to fit into the available memory space.

NOTE:

When logged on from your keyboard, if you use the "S" command without a call sign, you'll see the error message *** Need call sign. However, when calling stations use "S" without a call sign, the message will to go to you, the console operator.

As soon as a calling station uses "S" to send you (the console operator) a message, the STA light starts blinking to let you know that a message has been left for you. When you log on to your MailDrop, the STA light will stop blinking.

Sending Other Types of Messages

Each message in the PK-12's MailDrop has a flag to show whether it's designated as Private, Traffic or a Bulletin. A "P," "T," or "B" after the message number shows the status of every message. A user sets this with the SP, ST, and SB forms of the Send command. You can change or set the status of these messages using the Edit (E) command described above. If only "S" is used as the Send command, the MailDrop will assign the message a Private (P) status.

The MailDrop also accepts Send commands in the form *SP console operator < W1AW*. The call sign after the "<" goes into the "From" field of the message header.

For example, your MailDrop accepts the following additional information in a Send command:

S KG6ZL @ KB6IUX.CA.USA.NA < WF7A

This means you're going to send a message to KG6ZL at the KB6IUX BBS in California, USA, North America, and that the message is from WF7A.

The MailDrop also supports BIDs (Bulletin IDs); this support is required for reverse-forwarding. The BID begins with a "\$" character and is sent and received in the Send command line:

S KB6IUX @ KG6ZL < WF7A \$345_WO6P

This means you're sending a message to KB6IUX, who uses the KG6ZL BBS; the message is from WF7A and it's bulletin #345 from WO6P.

...or

With the MailDrop, you can also use just the "\$" all by itself as shown in the two examples below:

S KB6IUX @ KG6ZL < WF7A \$

With the "\$" sign, the MailDrop will assign its own BID to these messages.

From the User's Point of View

Assume that your MailDrop (MYMAIL) call is KB6IUX-1 and WO6P wants to connect to it. During his session with your MailDrop, he wants to list your MailDrop's messages, see if there's a message from you, read it if it exists, delete it after he's done reading it, send a return message to you, then finally disconnect from your MailDrop.

From his cmd: prompt, he'll type the usual connect request. He'll see this:

```
cmd:CKB6IUX-1
*** CONNECTED to KB6IUX-1
You have mail.
[AEA PK-12] 16508 free (A,B,H,J,K,L,R,S,V,?) >
```

The "You have mail" message informs WO6P that there's mail waiting for him. He types "L" to list all the current messages in the MailDrop.

```
[AEA PK-12] 16508 free (A,B,H,J,K,L,R,S,V,?) >
L
Msg# Size
           То
                 From
                           @ BBS Date Time
                                            Title
6
   PN184
           WO6P KB6IUX
                           WF7A 24-Nov-94
                                             20:15 Gobble!
          ALL KB6IUX
                                  21-Nov-94 18:42 Question
5
   BY287
4
    BY178
           OST
                 KB6IUX
                                  19-Nov-94
                                             17:30 Mailbox
    BY 56
                                  23-Nov-94
                                             10:22 APLINK
1
           ALL
                 квбтих
[AEA PK-12] 16508 free (A,B,H,J,K,L,R,S,V,?) >
```

He sees the list of messages and the one in particular that's addressed to him. He types "R 6" to (R)ead MSG# 6.

```
[AEA PK-12] 16508 free (A,B,H,J,K,L,R,S,V,?) >
R6
Msg#Size To From @ BBS DateTime Title
6 PN184 WO6P KB6IUX WF7A 24-Nov-94 20:15 Gobble!
Happy Thanksgiving, guy! Knowing that _you're_ cooking the big meal for your
family tonight, should I rush a case of Pepto-Bismol over to you now?
73, Rich.
[AEA PK-12] 16508 free (A,B,H,J,K,L,R,S,V,?) >
```

He's read your message and now he wants to (K)ill it. He types:

```
[AEA PK-12] 16508 free (A,B,H,J,K,L,R,S,V,?) >
K6
*** Done.
[AEA PK-12] 16580 free (A,B,H,J,K,L,R,S,V,?) >
```

He's killed the message and wants to send a reply back to KB6IUX (you). We'll continue from where he left off.

Note: *As a habit, look to see if enough memory remains for the length of message you intend to send.*

[AEA PK-12] 16580 free (A,B,H,J,K,L,R,S,V,?) >

S

Without a call sign, the MailDrop will address the message to the MYMAIL call sign unless your MY-MAIL call sign wasn't entered—then it would go to your MYCALL call sign. Messages sent with the "S" command are sent (P)rivate unless they are sent to "ALL" or "QST."

```
Subject:
Hey, wise guy...
Enter message, ^Z (CTRL-Z) or /EX to end
...will you be the only turkey at your table?
See you later, and all the best to you and Audrey.
(CTRL-Z)
Message stored as #7
[AEA PK-12] 16427 free (A,B,H,J,K,L,R,S,V,?) >
B
*** DISCONNECTED: KB6IUX-1
```

NOTE:

If the message was ended with a "/EX", the last line in the letter will have "/EX" automatically inserted. To avoid having /EX inserted, use (CTRL-Z) to end messages.

Message Numbers

Every message that's sent to the MailDrop is given a message number. Message numbers start at 1 and increment by one to 999; after 999, the next message will start at "1" again. If you need or want to, you can reset the message counter using the LASTMSG command—just enter LASTMSG 0. The next message entered after this command will be numbered, "1." If you enter a LASTMSG number other than zero, the next message will be assigned the number immediately following the value you entered. For example, if you enter: LASTMSG 100, the next message entered into your MailDrop will be number 101.

Forwarding and Reverse-Forwarding

Forwarding allows your local full-service Bulletin Board System (BBS) to automatically connect to your MailDrop to leave mail. Likewise, reverse-forwarding allows your BBS to connect to your MailDrop to retrieve mail left at your station. These operations are done automatically, if the correct commands are enabled in your PK-12 and the mail in your MailDrop is assigned the correct coding.

Forwarding and reverse-forwarding (or auto-forwarding) can be an advantage in a metropolitan area. The BBS can be set to connect to your MailDrop at times when local traffic is low, such as late at night or very early in the morning when packet traffic is light.

Auto-forwarding requires the cooperation of both you and your BBS "SYSOP," because not all large BBSs will forward mail to individual users. Some packet frequencies are so busy with BBSs forwarding mail to other BBSs that they can't forward mail to individuals. Contact the BBS SYSOP to determine the guidelines in your area.

Settings for Auto-Forwarding

For auto-forwarding to work:

- 1. Enter your MYCALL (and MYMAIL call sign if you want to use a separate call sign for your MailDrop).
- 2. Make arrangements with your local BBS operator to auto-forward mail to your MailDrop. Make sure you let him know the MailDrop's call sign.
- 3. Enter the call sign of the BBS in HOMEBBS.
- 4. Set MONITOR to 0 so the PK-12's buffer will record only messages addressed to—or passed through— it and won't fill up with idle radio traffic.
- 5. Leave your PK-12 and radio on and set to the appropriate frequency so that the BBS can connect to your MailDrop. If your packet station isn't on when the BBS tries to connect, mail won't be forwarded and its SYSOP will mutter unprintable things.

Entering a Message for Reverse Forwarding

With reverse-forwarding, the local BBS can retrieve mail from your MailDrop—entered by you or left by other stations—automatically and send it on the way to its final destination. To create a message that will be reverse-forwarded:

- 1. Enter MDCHECK to access your MailDrop from your computer.
- 2. After entering the Send command and the recipient's call sign, use the "@" field to set the destination BBS where the recipient of the message will pick up his mail. For example, if you want to send a message to KB6IUX, who you know uses KG6ZL's BBS, enter the following:

S KB6IUX @ KG6ZL.CA.USA.NOAM

Note:

The call following the "@" sign doesn't need to be the same as the HOMEBBS call sign.

The ".CA.USA.NOAM" is optional hierarchical forwarding information that, in this case, designates that KG6ZL is located in California in North America.

- 3. Enter the Subject and text of the message as you normally would. Don't forget to end your message with a (CTRL-Z) or "/EX".
- 4. After you're finished, log off from your MailDrop by entering *B*.

To readdress a letter already in your MailDrop for reverse-forwarding:s

1. Use the Edit command to set the forwarding flag for *each message* that will be reverse-forwarded to the call sign in HOMEBBS. For example, to mark message number 53 for reverse-forwarding, type:

E 53 F

2. After you're finished, log off from your MailDrop using B.

NOTE:

If you want a message to be deleted from your MailDrop after it has been reverse-forwarded, leave KILONFWD ON; if you want to keep the message after it has been forwarded, leave KILONFWD OFF.

With KILONFWD OFF, after the message has been forwarded the message's flag will change from "F" to "Y" to show that it has been read and sent.

7. GPS Operation

Overview

This chapter describes how to configure and connect your TNC for GPS operation.

Why do GPS in the PK-12?

All Timewave TNCs can run with Automatic Packet Reporting System (APRSTM) software. The PK-12, however, has special firmware which makes Stand Alone Tracking and Ultimeter II® compatibility possible. Timewave also offers an APRS Adapter Cable for the PK-12 which makes Hardware Single Port Mode (HSP) operation possible. The reason we chose to put special firmware in the PK-12 and develop the APRS Adapter Cable for the PK-12 is because this TNC is perfect for going mobile; which is what Global Positioning Systems are all about.

The PK-12 contains special GPS features not found in other packet Terminal Node Controllers. The PK-12 can detect whether or not a GPS receiver is connected with the **GPSAuto** command, it then chooses the appropriate **GPSMode** of operation. If a GPS receiver is detected upon power-up, the PK-12 automatically sends a GPS initialization string. The PK-12 can be remotely polled by addressing a packet to its **GPOLLCall**, or by the polling features in APRS. The PK-12's GPS commands can be remotely programmed using the **GREMprog** command which is very convenient in Stand Alone Tracking applications—the unit never needs to be taken out of the vehicle to change GPS settings. GPS receivers can be remotely programmed via the PK-12. The PK-12's internal time and date can be set from the information obtained from the GPS receiver. There are provisions for an external input to cause the sending of NMEA strings, such as from a radio control head button. The PK-12 can even operate packet and GPS at the same time using the commercial mode. See *You're in Command* chaper, *G* section for GPS commands.

What is APRS?

Timewave has included a copy of APRS in your PK-12 packaging so you can experiment with it. Automatic Packet Reporting System (APRSTM) is a copyrighted software program developed by Bob Bruninga (WB4APR), which is distributed as shareware for real-time Packet communications. The software keeps lists of stations heard and displays the locations of stations visually on a computerized map like the one in Figure 1. The maps can be scaled from .5 to 2000 miles. Few of the maps are com-

FIGURE 1: APRS computerized map

plete, however there are tracking features built into APRS which allow you to create maps just by driving down the streets of your town. Amateur operators all over the country are creating maps which can be downloaded from on-line systems for use by all. Stations can appear on the maps and each station may be given a symbol such as a house, car, or boat. The real benefit of using APRS software is in mobile tracking applications. Vehicles and people can be tracked and mapped using APRS. APRS also includes the ability to send short messages and bulletins. Using Ultimeter II weather information can also be shown on the computerized maps.

Hardware Configurations

There are four different hardware configurations you can use when operating within an APRS system, each for a different purpose:

1. A computer running APRS, a GPS receiver, a PK-12, an APRS Adapter Cable (optional), and a radio:

This complete configuration allows you to track all users on the system in your area (including yourself), and send/receive messages and bulletins. Using Timewave's APRS Adapter Cable, you can connect a GPS receiver and a PK-12 to a single COM port on a computer running APRS, see Figure 2. Without Timewave's APRS Adapter Cable, the PK-12 and GPS receiver would need to be connected to separate COM ports. Having two COM ports free on most computers is a luxury most us don't have with all the Windows related equipment such as mice and other serial peripherals. Mobile laptop computer users need the APRS Adapter Cable because most only have one COM port.

FIGURE 2: APRS HSP mode where APRS controls the cable switching between the TNC and GPS receiver

2. A computer running APRS software, any Timewave TNC, and a radio (No GPS receiver):

This configuration lets you track all users on the system with your location being entered manually. This also lets you send and receive messages within APRS. All Timewave TNCs can be part of a system such as this. This configuration allows anyone with any Timewave TNC who is running APRS software in their computer to take part in this GPS technology. You don't need a GPS receiver to pull down location information from the satellites because you enter your position manually on the APRS computerized map, which in most cases is fine because you are at your house which doesn't (shouldn't) move. The only time you really need a GPS receiver is when you are operating packet while mobile because manually updating your position while mobile isn't practical—you need the GPS receiver to pull in those satellite location signals and update your position as you move.

3. A PK-12, a GPS receiver, and a radio (No PC):

This trio allows you to transmit your location automatically to others in an APRS system without having a computer in the vehicle. This is known as a Stand Alone Tracking Device because others can track your motion without you having to run APRS or even have a computer. The firmware in the PK-12 allows the TNC to parse the incoming location information from the GPS receiver (without the use of a computer running APRS which usually does the parsing) and then beacon the information over the ham bands.

Because the PK-12 can work both as a stand alone tracking device and as a connected APRS component, this TNC can be of aid in natural disaster situations, during public service events, and search and rescue missions, among other things.

For example, in a marathon, a pace car, ambulances, and other support vehicles could each have a PK-12 acting as a Stand Alone Tracking Device. A coordinator can be in a centralized location using a PK-12, radio, and an APRS Adapter Cable (optional) to connect with a computer running APRS software to visually track the vehicles. When an emergency arises, such as an injured runner, the coordinator can see which ambulance is closest to the scene and dispatch it appropriately through voice communications.

Further, if all vehicles in the previous example were equipped with a PC running APRS, a PK-12, a GPS receiver, a radio, and an APRS Adapter Cable, the coordinator could not only see where the vehicles were - he could dispatch them directly through the APRS system. The drivers of the vehicles would receive short messages from the coordinator such as, "Runner down, 4th and Main. Vehicle 2 respond." These short messages appear on the individual driver's computer screen much like typical Packet messages. The messages can also be accompanied by computer 'beeps' to alert the driver to an incoming message. APRS includes a bulletin feature where all vehicles could receive messages simultaneously such as, "Take lunch."

4. PK-12, ULTIMETER II, and a radio (No PC):

This configuration requires an ULTIMETER II home weather station, see Figure 3 below. (Information on ULTIMETER II weather station packages can be obtained by calling 1-800-USA-PEET.) In case you are not familiar with ULTIMETER II, it is a weather station package including a control panel into which a thermometer, wind gauge, and an optional rain gauge are connected. If you like, you can monitor the temperature of any room in your home, keep track of temperatures in a greenhouse or outbuilding, or set alarm limits on a freezer or other appliance.

FIGURE 3: Illustrates components of a stand alone packet weather station

The PK-12 can be connected to the ULTIMETER II weather station, interpret the weather data, and transmit the weather and location information in packet so other APRS users can see your location and the weather at your location. The remote polling features of the PK-12 make it easy to set up a weather station in a remote location and receive the remote weather data via APRS at your house, office, or wherever. While at work, you can keep track of the weather situation at your home (inside or outside temperatures—whichever you prefer). Farmers can keep apprised of rain,wind, and temperature at a remote field site. In addition, several weather stations set up in your region can provide you with a comprehensive weather picture of your area—available to you and all other users at anytime. The PK-12, ULTIMETER

II, and APRS add a whole new dimension to packet radio—we hope you experiment with this new application. Set-up procedures for an Ultimeter II weather station are discussed later in this chapter.

Installing APRS

Timewave has included a disk containing PC PakRatt Lite and APRS. For your convenience, we have included an installation utility on the disk called INSTAPRS.BAT.

To install APRS on your hard drive perform the following steps:

1. Type **MD APRS**, then press ENTER.

2.Type **CD APRS**, then press ENTER.

3.Type A:INSTAPRS C:\APRS, then press ENTER. (where A: designates the floppy drive with your master diskette, and C:\APRS is the full drive and path name of the destinations hard disk drive and subdirectory.)

Getting started:

a. Type APRS66 at the command prompt.

b. Give your callsign and other info as prompted.

- c. Move the cursor to your exact QTH using the arrow keys and PgDn keys.
- d. Press I (Input), then M (My-position), and answer the questions.

At this point, APRS will begin beaconing your location and displaying other people's locations on the screen.

Ask around your local amateur community to find a frequency operating APRS in your area. Also, you might ask where to find additional, detailed maps of your area other people have created.

In the C:\APRS\README directory, there are a vast number of text files that explain how APRS works. Registration information is also contained in the readme files, information you will need if you want to set up an APRS weather station or operate Hardware Single Port Mode. Timewave does not provide technical support for APRS, however, we do provide support for PC PakRatt Lite.

Setting Up the PK-12 for GPS Operation

Set up procedures for the PK-12 are described below for three Packet/GPS configurations: Stand Alone Tracking, APRS Hardware Single Port mode, and APRS Dual Port Mode. APRS software automatically sets the parameters for your TNC, except when the PK-12 is used as a Stand Alone Tracking Device (because APRS isn't connected).

Stand Alone Tracking Device Set-up:

To set up the PK-12 for Stand Alone Tracking, follow these steps:

- 1. Connect your TNC to your computer and get it up and running following the directions in Chapter 2.
- 2. Type **MY** <**your call sign>-9**, then press ENTER. For example, if your call sign is WA7GCI you would enter **MY WA7GCI-9**, then press ENTER. The **-9** will cause others to see you as a car on the APRS map.
- 3. Program the UNPROTO command to: UN APRS via RELAY, then press ENTER. This programs your unproto path to APRS via RELAY.
- 4. Type **GLOCtx 6**, then press ENTER. This causes the TNC to transmit its GPS location every 60 seconds. The seconds can range from 0 (disabled) to 255 in ten second increments.

5. Now you need to program the commands, GNMEA1 and/or GNMEA2, for the desired NMEA (GPS) sentences for the PK-12 to parse. Not all GPS receivers can send all NMEA sentences. So, the instructions you see below depend on the ability of your GPS receiver to send desired NMEA strings. In any case, the PK-12 can handle any NMEA strings your GPS or Loran receiver can produce.

To program GNMEA1, type **GNMEA1 \$GPGLL** and press ENTER. This command allows the PK-12 to parse the Position-Only NMEA string coming from the GPS receiver and place the string in the transmit buffer. The result of \$GPGLL is that you will be able receive from the GPS receiver Position-Only information and transmit it over the ham bands. (Any NMEA string your GPS receiver can produce can be entered in this command line.)

The neat thing about the PK-12 is that you can choose not one, but two NMEA strings to parse. You can, for instance, use Position-Only and Course/Speed. To program the second NMEA string for the PK-12, type **GNMEA2 \$GPVTG** and press ENTER. This sentence alone allows you to transmit course and speed. When coupled with the GNMEA1, your position, course, and speed will be transmitted together. (Again, you can use any NMEA string your GPS receiver can produce in this command line.)

Note: The NMEA sentence \$GPRMC is the recommended sentence for tracking moving objects as it contains time, latitude, longitude, course, and speed information.

- 6. Now type **GPSAuto ON**, then press ENTER. This will cause the PK-12 to look for GPS data (coming from an attached GPS receiver) the next time it is powered on, and if it sees GPS data the PK-12 will automatically switch to **GPSMode 1**.
- Now you need to program the PK-12's terminal baud rate to match that of the GPS receiver, which is normally 4800 baud. To program the PK-12 terminal baud rate, type TBAUD 4800, then press ENTER.
- Now turn your PK-12 off and disconnect your TNC from the computer. Take the PK-12 to your vehicle, connect the TNC to the GPS receiver and the radio, plug it in, power it up and you're in business. *Note:* Before powering up the PK-12, be sure the GPS receiver is powered up and outputting its NMEA sentences.

Connecting the GPS receiver to the PK-12

Figure 4 below illustrates the pin assignments for connecting a GPS receiver to the PK-12. The same pin assignments can be used to connect to a Peet Bros. ULTIMETER II® weather station.

FIGURE 4: Pin assignments for connecting the PK-12 to a GPS receiver or to an Ultimeter II weather station

9. When done using the PK-12 as a Stand Alone Tracking Device, connect your TNC to the computer again, verify that your terminal baud rate is at 4800 baud, 8 bits, no parity, one stop bit. A few seconds after powering up, the PK-12 should display its sign-on message and command prompt.

APRS Hardware Single Port Mode (HSP) Set-Up: Requires a registered version of APRS

APRS version 4.03 and higher includes a routine that controls the switching of the Single Port Mode between the TNC and any GPS receiver using the handshaking lines of the COM port. HSP allows you to operate APRS on a computer with limited COM ports, such as a laptop which usually has only one COM port, or your PC which uses one of the two COM ports dedicated to a mouse. This is the only configuration which uses the APRS adapter cable. You will need to have a registered copy of APRS in able to activate the GPS input. Registration information is contained in the APRS readme files.

Follow these steps to connect the APRS Adapter Cable to your equipment:

1. Look at the APRS adapter cable. It looks like this:

Notice the words on the outside of the rectangle; they say **TNC**, **Computer**, and **GPS**. This is how the Cable should be connected.

- 2. Connect the APRS Adapter Cable to the serial port on the TNC. The male side of the Adapter Cable, labeled **TNC**, should be connected to the female serial port on the PK-12.
- 3. Connect an RS-232 (not included) to a free COM port on your computer. Connect the other end of this cable to the RS-232 port marked "Computer" on the APRS Adapter Cable. (The *female side* of the Adapter Cable, labeled 'computer', should be connected to a cable going to the computer.)
- 4. The cable that comes out the side of the APRS Adapter, labeled "GPS", connects to the NMEA-0183 port on your GPS receiver.

The cable is now correctly connected to your equipment.

To set up the PK-12 for HSP operation, follow these steps:

- 1. Connect your TNC to your computer, and to your GPS receiver using the Timewave APRS Adapter Cable following the steps noted previously. Get the computer running APRS software and the TNC running. Leave the GPS receiver off until you are ready to receive the NMEA string.
- 2. Press ALT-S to bring up the setup menu.
- 3. Now press **G** for GPS.
- 4. Press **H** for HSP.
- 5. Now press **ALT-S** to save.
- 6. Enter **S** for SAVE.
- 7. Now follow the prompt from APRS to validate your APRS registration and save the mode changes.
- 8. Turn your GPS receiver on, and you are ready for APRS HSP operation.
- 9. When finished using the PK-12 for APRS HSP operation, simply quit APRS. APRS may ask you for some information before quitting. Answer the questions and when done, your PK-12 will be ready for non-GPS activities.

APRS Dual Port Mode Set-up:

To set up APRS for dual mode operation, follow these steps:

- 1. Connect your PK-12 to one of the COM ports on your computer. Get the TNC up and running following the directions in Chapter 2 of this manual.
- Connect your GPS receiver to the other COM port on your computer. (You will need to build your own cable for this connection. Since there are many types of GPS receivers, all with different connections, we can't provide you with schematics on how to build this cable.)
- Get the APRS software program running. APRS will ask you some questions, simply answer the questions and your TNC and APRS will be ready for dual port mode operation.

Building your own APRS adapter cable

The APRS adapter cable works as follows:

The adapter allows for Hardware Single Port mode (HSP) operation, so you only need one computer COM port for both your GPS receiver and PK-12. The adapter normally has the TNC switched to the computer until APRS decides it's time to send its location report. When it's time to send position information, the computer running APRS asserts flow control to the TNC to prevent it from sending any more data. The flow control line is also used to switch the adapter to the GPS receiver. Once the GPS string is received, the computer running APRS releases flow control, switching back to the TNC.

A pre-made and tested cable can be purchased from Timewave for \$35.00, including shipping and handling, by calling (651) 222-4858. For best pricing, see your favorite amateur radio dealer.

An APRS adapter cable can be made from the following components with the schematic shown on the next page.

ltem	Description	Qty	Radio Shack Part #
1.	PCB	1	
2.	1K resistor	1	271-023
3.	10K resistor	2	271-034
4.	IN4148 diode	2	276-1122
5.	2N3904 NPN transistor	2	276-2016
6.	DB-25 male connector	1	
7.	DB-25 female connector	1	
8.	DB-25 hood	1	
9.	Screws for hood	1	
10.	Saddle washers	1	
11.	Hex nuts	1	
12.	6ft shielded cable	1	

Connecting the APRS adapter cable

Once you've made your adapter cable, connect as described on page 87.

Schematic Diagram for the APRS Adapter Cable

PK-12/ULTIMETER II® Stand Alone Weather Station Set Up

Connect the ULTIMETER II to the PK-12 following the illustrations of Figure 3, Figure 4, and Figure 5. Once the connections are made, follow the directions below to configure the TNC.

- 1. Connect your TNC to your computer and get it running following the directions in Chapter 2.
- 2. Type **MY <your call sign>**, then press ENTER. For example, if your callsign is WA7GCI, you would enter MY WA7GCI, then press ENTER.
- 3. Type **UN APRS via RELAY**, then press ENTER. This programs your UNPROTO path to APRS via RELAY.
- 4. Type **GLOCtx 60**, then press ENTER. This causes the PK-12 to transmit the weather information every 10 minutes. The seconds can range from 0 (disabled) to 255 in ten second increments.
- Now you need to program your Btext with the day of the month, time, and your latitude and longitude. For example: if your exact location is 47°49.14'N, 122°15.72'W and the time and date is 9:11 AM June 23 1995, you would enter BT @230911/4749.14N/12215.72W_Lynnwood weather station, then press ENTER.
- 6. Now type **Beacon E 60**, then press ENTER. This will cause your PK-12 to transmit its beacon text every five minutes. APRS must see the beacon text containing the position information and a weather symbol character before it will display your weather information.
- 7. Now you need to program the GNMEA1 sentence to match the output of the ULTIMETER II. Type **GNMEA1** #, then press ENTER. This will cause the PK-12 to begin parsing the ULTIMETER II data starting with the # digit. (*Note some ULTIMETER IIs start their string with a* # digit and some start their strings with a * digit. This value may have to be changed to a * if it does not work upon installation.)

- 8. Type **TBAUD 2400**, then press ENTER. This sets the PK-12 serial baud rate to match the output of the ULTIMETER II.
- Now type **RESTART**, then press ENTER. This will cause the terminal baud rate to change to 2400 baud matching the ULTIMETER II. Change your terminal baud rate to 2400 baud to match that of the PK-12.
- 10. Now type **GPSMode 2**, then press ENTER. Now press ENTER again to enter the stand-alone weather station mode. Now disconnect the serial cable and connect the ULTIMETER II, and you are ready to transmit weather information in an APRS system.

FIGURE 5: Ultimeter II junction box pin assignments

Wireless Data/Location Tracking Applications

Timewave offers the Commercial GPS Adapter Cable for Wireless Data/Location Tracking Applications. This cable allows the GPS receiver and computer to share the TNC's serial interface. The PK-12 itself is designed to parse the incoming GPS information, that is, the TNC does the switching between the GPS receiver and the computer as illustrated in Figure 6. This allows the TNC to perform normal packet radio communications and also transmit position information in the background. Users who have a computer may transfer files and communicate with each other while also transceiving global positioning information. Users without computers can use the TNC as a Stand Alone Tracker to transmit position information to a base station that does have a computer keeping track of the location of many mobile vehicles.

The key to this set-up is having computer software that can handle both mapping and data transceiving tasks. Software of this kind is most often custom written for a specific business which is why we called the cable needed for wireless data/location tracking applications the Commercial GPS Adapter Cable.

Configuring the TNC

There is one hardware configuration possible when using the GPS Adapter Cable and that is for use with *wireless data/location tracking* applications. The GPS Adapter Cable makes it possible to transfer packet data while beaconing current location information in the background. If a computer is not going to be used, the Adapter Cable is not needed. If the Commercial GPS Adapter Cable is not used, the GPS receiver can be connected directly to the PK-12's serial port and the TNC should be configured for Stand Alone Tracking, discussed previously.

FIGURE 6: In this configuration, data and GPS data can be sent and received.

Wireless Data/Location Tracking setup:

To set up the TNC for this application, follow these steps:

- 1. Connect the TNC to a computer and get it up and running, following the directions in the *Getting Started* section of the TNC's manual.
- 2. Type **MY <your callsign>**, then press ENTER. For example, if your call sign is WA7GCI, you would enter **MY WA7GCI**, then press ENTER.
- 3. Set the TBAUD to 4800, matching the GPS baud rate.
- 4. Type **GLOCtx 6**, then press ENTER. This causes the TNC to transmit its GPS location every 60 seconds. The seconds can range from 0 (disabled) to 255 in ten second increments.
- 5. Now you need to program the commands, GNMEA1 and/or GNMEA2, for the desired NMEA (GPS) sentences the TNC will parse. Not all GPS receivers can send all NMEA sentences. So, the instructions you see below depend on the ability of your GPS receiver to send the desired NMEA strings. In any case, the Timewave TNC can handle any NMEA strings your GPS receiver can produce.

To program GNMEA1, type **GNMEA1 \$GPGLL** and press ENTER. This command allows the TNC to parse the Position-Only NMEA string coming from the GPS receiver and place the string in the transmit buffer. The result of \$GPGLL is that you will be able to receive from the GPS receiver Position-Only information and transmit it over the radio. (Any NMEA string your GPS receiver can produce can be entered in this command line.)

The nice thing about the Timewave TNCs is that you can choose not one, but two NMEA strings to parse. You can, for instance, use Position-Only and Course/Speed. To program the second NMEA string for the TNC, type **GNMEA2 \$GPVTG** and press ENTER. This sentence alone allows you to transmit course and speed. When coupled with the GNMEA1, your position, course, and speed will be transmitted together. (Again, you can use any NMEA string your GPS receiver can produce in this command line.)

Note:

The NMEA sentence \$GPRMC is the recommended sentence for tracking moving objects as it contains time, latitude, longitude, course, and speed information.

- 6. Now type **GPSMode 3**, then press ENTER. This prepares the TNC to accept the NMEA strings from the GPS receiver through the GPS Adapter Cable.
- 7. Now turn your TNC off, disconnect your TNC from the computer and follow the GPS Adapter Cable connection instructions below.

Connecting the GPS Adapter Cable to the TNC:

Follow these steps to connect the GPS Adapter Cable to your equipment:

1. Look at the GPS Adapter Cable. It looks like this:

Notice the words on the outside of the rectangle; they say TNC, Computer, and GPS. This is how the Cable should be connected.

- Connect the GPS Adapter Cable to the RS-232 port on the TNC. Use the end of the cable that reads "TNC."
- 3. Follow this step if you are using a computer with the TNC, if not, skip ahead to step four. Connect an RS-232 cable (not included) to a free COM port on your computer. Connect the end of this cable to the RS-232 port marked "Computer" on the GPS Adapter Cable.
- 4. Connect the cable that comes out the side of the GPS Cable Adapter, labeled "GPS," to the NMEA-0183 port on your GPS receiver. Note: the center, or tip, of the 1/8" plug is plus (+) and the other contact is ground (-).

The cable is now correctly connected to your equipment.

94 / PK-12 Packet Controller Operating Manual

8. Troubleshooting

Overview

This chapter contains some suggestions on how to troubleshoot problems you are having. This chapter is by no means all-inclusive of everything that could cause problems, but it is a guide to help you solve the most common problems that occur.

Although the PK-12 is a complex piece of equipment, we've found that most troubleshooting problems are directly attributable to four simple sources:

- Incorrect or improperly wired connections.
- Incorrect tuning procedure.
- Unfamiliarity with the commands.
- Software incongruities.

Because there are scores of different software and hardware configurations available to use with the PK-12, it's impossible to list all the solutions to the software/hardware-related problems you may encounter.

A Troubleshooting Primer

The whole trick to troubleshooting is playing detective: your job is to determine the cause of the problem by eliminating what can—or can't—be the culprit. By using your head and a VOM (multimeter), you'll succeed 99% of the time.

The first step is to break down the main components in your system into subsystems. They are:

If you have an idea which subsystem might be the culprit, try substituting it with one you know is good. If your system works with the substitution in place, you've found the culprit.

The Power Supply Cable

This is the first item you should check if your PK-12 doesn't power up; it's also the easiest subsystem component to troubleshoot. If you used the power cable that accompanied the PK-12 in its shipping carton, remember that the white stripe that runs alongside one edge of the wires is the positive (+) lead that goes from the (+) terminal on your power supply to the center conductor of the connector that plugs into the PK-12; the other conductor, of course, goes to the (-) of the power supply and "sleeve" (outer ring) of the PK-12's power connector. If you have these connected incorrectly or the supplied cable is polarized incorrectly, the PK-12 won't work at all.

If you're using a dedicated power cube for the PK-12, check its polarity—no manufacturer is perfect and on rare occasion the polarity of the wires might have been accidentally swapped. Again, use your VOM to see if this is the case.

If you find that the polarity is correct, tug *gently* at the wires both from the power supply end and connector end while measuring voltage or continuity. Tugging can reveal if there's an "open" in one or both of the conductors. If you find an open, either repair the damaged section, or replace the cable and/or power supply.

The PK-12

Each PK-12 is tested at Timewave prior to shipping to make sure it operates properly. Most of the time troubles with the PK-12 are related to cabling, power supply, and pilot error, rather than the hardware itself.

Cable from PK-12 to Computer

If you use a commercially produced, "straight through" (not a null modem) cable that has only pins 1-8 and 20 connected inside the DB-25 (PK-12) end and the proper pin-out arrangement in the other end, you shouldn't really have to suspect this component of the system. Perform a continuity check with your meter, flexing the cable at the base of connector while taking your reading to make sure that the internal connections are sound.

Computer/Software

If you don't have your COM port and software set up properly for modem communication, you won't be able to "talk" to the PK-12. Since there are literally hundreds of computer configurations, it's up to you to make sure your system is set up correctly for serial port communications.

Cable From PK-12 to Radio

Again, any problems here are attributable to a wiring error or connector failure. Make doubly sure you wired the cable correctly to the mike jack or accessory port in your radio; wiggle it at the connectors when performing a continuity check to see if a solder joint failed.

Radio

If the PK-12 passes the loop-back test (*Chapter 3 - Computer/Radio Connections*) and you're absolutely sure that you wired the mike connector correctly, then you probably have your radio set improperly or it's not radiating a signal through the antenna. Make sure your radio system is fully operational and the antenna is properly tuned. (If you have a beam antenna, make sure it's pointed in the right direction.)

If You Need to Call for Help

Call our Customer Service/Technical Support line at (651) 489-5080 between 8:00 a.m. and 5:00 p.m. Central time, weekdays. Please have your PK-12's serial number and firmware version date available; the version date is listed on the first screen that comes up on the computer when you turn on the PK-12. We'll also need to know the specifics of any other equipment connected to the PK-12.

When you call, please have your PK-12 up and running, near the phone if possible. Our technician(s) will likely ask you to perform certain keyboard routines to aid in diagnosis of the problem. Try to have a voltmeter handy, too. Timewave also provides technical assistance by way of fax (651-489-5066) and e-mail (techsupport@timewave.com).

Return Authorization Number Required!

<u>All</u> units returned to Timewave for service must have a return authorization number (RMA) from Timewave. This includes both warranty and non-warranty items. If a unit is received without a return authorization number, there may be a delay in completing the service. The RMA helps us service your unit quicker and helps ensure that the unit does not get lost in shipping to Timewave. Call, FAX, or e-mail Timewave to obtain an RMA number.

Voice phone: 651-489-5080

FAX phone: 651-489-5066

E-mail: service@timewave.com

Packaging for Shipment to Timewave

1. Print the RMA number on the outside of the box (example – "*RMA 12100*"). Include a copy of your physical return address (street address). UPS and FedEx cannot deliver packages to a post office box address.

2. Include a daytime voice telephone number where you can be reached. If you are not available during the day, please include a phone number and the hours you are likely to be available.

3. Include a list of all items enclosed in the package (cables, connectors, loose parts, etc.) Keep a copy of the list for yourself. Please write the date of shipment to Timewave on both copies.

4. Include a detailed description of the symptoms.

5. List any equipment (radio, computer, speaker, headphones, etc.) connected to the unit when it failed.

6. List the software program and version number (PK PakRatt II, Log Windows 2.0, etc.) used to run the unit when it failed.

7. Include your payment (Visa / Mastercard number, check or money order) with the unit.

8. Pack the unit in its original shipping container, if possible.

9. If the original container is not available, pack the unit with at least one-inch (2.5 cm) of packing material on all sides of the units. Use shock absorbing packing material such as packing peanuts or bubble wrap.

10. Ship the unit to: **Timewave Technology Inc.**

501 W. Lawson Ave

St. Paul, MN 55117 USA

Shipping Method

Continental United States:

Timewave prefers that you ship the products by UPS ground. Keep a copy of the shipment UPS Ground Trac number. The shipment can easily be traced with that number. If you need faster shipping service, use UPS or Federal Express air services.

You are responsible for all shipping charges to Timewave. Timewave will return the repaired unit via UPS ground. Timewave will pay the UPS ground charges from Timewave to you.

Outside the United States:

The best shipping methods vary considerably around the world. You must determine the best method for your location. You are responsible for shipping charges to and from your location. Timewave will return the unit via the method you specify, but it must be prepaid.

General Error Messages

An error message is displayed if the PK-12 doesn't understand what you typed or it needs more information. If you see this message, look up the command you want to enter to make sure you're entering it correctly.

?What?	Your PK-12 didn't understand your instructions—did you type the command correctly?
?bad	You typed a command name correctly, but the remainder of the command line wasn't understood.
?call sign	You typed a call sign that doesn't meet the PK-12's requirements.
?clock not set	You typed the command DAYTIME, but you haven't yet set the clock.
?not enough	You didn't type enough arguments for a command that needs several.
?range	You typed a numeric argument too large or too small for that command.
?too many	You typed too many arguments for the command to accept.
?too long	You typed a command line that is too long. For example, if you type a BTEXT or CTEXT message that is too long you'll get this message.
?need ALL/NONE/	YES/NO This message indicates you have forgotten the <i>ALL</i> , <i>NONE</i> , <i>YES</i> or <i>NO</i> arguments in the CFROM, DFROM, or MFROM commands.
*** Transmit da	ta remaining You'll get this if the PK-12 is commanded back to receive (using the RCVE command) while it still has data in the transmit buffer waiting to be sent. To clear the transmit buffer, enter <i>TC</i> .
Serial port con	figuration will change on next RESTART

This message means you've changed TBAUD, word length AWLEN, or PAR-ITY. When you type the RESTART command, the new baud rate will take effect.

Packet Error Messages

In addition to the general error messages described in the previous section, the following messages may appear when entering packet related commands. ?need MYcall Appears if you try to make a packet connection when you haven't entered your call sign in MYCALL. ?not while connected You tried to change MYCALL or AX25L2V2 while in a connected state. ?not while disconnected You tried to set CONPERM while disconnected. LINK OUT OF ORDER, possible data loss You're CONPERMed to another packet station but the link has failed. You typed more than one call sign for the CONNECT or UNPROTO commands ?VIA without the VIA keyword. ?channel must be 0-9 You typed an invalid channel character after the CHSWITCH character. ?different connectees You tried to connect to more than one station on the same channel. ?already connected (or attempting connection) to that station You tried to connect to a station to which you're already connected. too many packets outstanding You typed enough data to fill the outgoing buffer in either the Converse or Transparent mode. You can't reenter Converse or Transparent mode until some of the packets have been sent. WARNING: Beacon too often You've set the BEACON interval timer to less than 90 (15 minutes) which is too often for busy channels. WARNING: CHeck/FRack too small You've set the CHECK timer for too short a time relative to the FRACK timer. WARNING: RESptime/FRack too large You've set the RESPTIME timer for too long a time relative to the FRACK timer. WARNING: TXdelay too short The TXDELAY timer has been set too short to send at least one complete flag before the start of a packet. WARNING: AUdelay > TXdelay

The AUDELAY timer has been set equal to or greater than the TXDELAY timer.

```
Packet Link Status Messages
                     Link status messages show you the status of AX.25 connections in which your
                     PK-12 is involved.
* * *
     connect request: call1 [via call2]
                     Your PK-12 has received, but not accepted, a connect request from another sta-
                     tion.
*** DISCONNECTED: call
                     Your PK-12 has switched to the disconnected state. This message may be pre-
                     ceded by a message explaining the reason for the disconnect.
*** Retry count exceeded
 ** DISCONNECTED: call
                     Your PK-12 has been disconnected because of a retry failure, rather than a dis-
                     connect request, from one of the stations.
*** call busy
  ** DISCONNECTED: call
                     Your connect request was rejected by a busy signal from another station.
FRMR sent: xx xx xxor FRMR rcvd: xx xx xx
                     You're connected but a protocol error has occurred. Your PK-12 is trying to re-
                     synchronize frame numbers with the distant station. The string xx xx is re-
```

MailDrop Error Messages

- *** What? You've entered a command that the MailDrop doesn't recognize.
- *** Need call sign.

You've tried to send a message but you didn't specify who you want to send it to.

placed with the hex codes for the three bytes sent in the FRMR frame.

*** Message not found.

You tried to list or read message(s) that the MailDrop couldn't find. This also appears if you try to list messages when there aren't any messages in your MailDrop.

*** No free memory.

You have tried to send a message, but the MailDrop doesn't have any memory left for more messages. You must kill messages now to make room.

*** Not your message.

A user will get this when trying to read a message number that is addressed to another station.

PK-12 Status and Error Messages

From time to time, the PK-12 will generate messages informing you of its status. Error messages will also be generated if the PK-12 doesn't understand a command you've entered. This section describes the PK-12's messages and the circumstances which cause them.
Sign-on message:

```
AEA PK-12 Packet Controller
AX.25 Level 2 Version 2.0
Copyright (C) 1994 by
Advanced Electronic Applications, Inc.
Release 15.JUN.94
Ver. 1.0
```

The sign-on message appears when you turn on your PK-12, after system RESTART or RESET, and after the autobaud routine. The release date is updated whenever the firmware is changed to a later release. Please write this date on the first page of this manual in case it's needed for future reference.

PK-12 is using	default values
	This message appears the first time you turn on your PK-12 or every time you turn on the PK-12 if the battery jumper is missing. The message will also appear in response to the RESET command.
cmd:	This is the Command mode prompt. When this prompt appears, the PK-12 is waiting for you to issue a command. Anything you type after this prompt is interpreted as a command.
was	
now	Whenever you change a parameter, both the previous value and the new value are displayed.
bbRAM scanned,	checksum failed!
	This message indicates there has been an error in the battery backed RAM. A weak lithium battery is most likely the cause for this.
ROM error, cheo	cksum \$xxxx
	This message indicates there has been a failure in the PK-12. If this message appears, call Timewave's Technical Support department.

Out-of-the-Box Problems

The majority of these problems are directly attributable to insufficient power.

Problem:

The PK-12 doesn't power up.

Symptom:

No lights come on.

Possible Causes:

- No power to PK-12.
- Blown power supply or PK-12 fuse.

Try This:

First, check the power supply to see if it's on. Check the PK-12's power cord for an open connection or wrong polarity.

Next, replace any blown fuses. Do not use overrated fuses or try to power up the device if it blows the replacement fuse.

If it's the PK-12 that is blowing fuses, call Timewave for assistance.

Computer to PK-12 Problems

The majority of these problems are directly attributable to incorrectly addressed serial (COM) ports, incorrect wiring, or poor solder joints. Also, perform a continuity check of the cable to make absolutely sure it's not a open circuit that is causing a problem.

Problem:

Computer won't talk to the PK-12.

Symptom:

You don't receive the sign-on (autobaud) message when you power up the PK-12.

Possible Causes:

- An open line in the cable.
- Incorrectly wired cable.
- Incorrect COM port selected or IRQ conflict.
- Software communication parameters set incorrectly.

Try This:

First, continuity check the cable and repair if necessary.

Next, make sure that the cable is wired correctly.

If those two things don't remedy the problem, check to make sure you have the correct COM port selected. Change the IRQ of any shared device. (IRQ 5 generally works.)

If all else fails, reset software communications parameters as called out in The Program, Chapter 2.

Radio to PK-12 Problems

The majority of these problems are directly attributable to incorrect wiring or poor solder joints. Perform a continuity check of the cable to make absolutely sure it's not a open circuit that is causing a problem.

MailDrop Problems

Problem:

Unable to connect to other stations.

Symptom:

PK-12 prints what? when you try to connect.

Possible Causes:

You're still logged onto your own MailDrop.

Try This:

Exit your MailDrop by entering a B for B(ye).

Problem:

MailDrop messsages aren't date and time stamped.

Symptom:

When scanning the message list you see "...." in the date and time fields.

Possible Causes:

 The PK-12 has been "restarted" since the clock was last set, the power failed, the PK-12 was turned off, or RESTART was issued.

Try This:

First, set the clock. If it continues to be a problem, check the stability of the PK-12's power supply.

Problem:

Other stations are unable to connect or link with your MailDrop.

Symptom:

Stations are receiving a Busy response.

Possible Causes:

- The PK-12's memory buffer is full.
- Users command set to zero.
- You're currently logged into your MailDrop.

Try This:

First, empty the buffer either by turning the PK-12 off and then on again, or start serial communications between the PK-12 and your computer by pressing (CTRL-Q) and/or (CTRL-X).

Next, make sure that USERS is set to 1 or greater.

Lastly, make sure to exit your MailDrop by entering a B for B(ye).

Packet Problems

Problem:

Unable to transmit.

Symptom:

You can copy stations on the frequency you're operating on, but when you attempt to connect, your radio doesn't transmit or nothing appears to happen.

Possible Causes:

- SQUELCH is turned on and squelch (black) input in the radio cable isn't connected.
- Squelch input is connected.

Try This:

Make sure that SQUELCH is turned *OFF*. If your squelch input is connected, we do recommend in almost all cases that the Squelch input not be used.

Problem:

Unable to transmit.

Symptom:

You can copy stations on the frequency you're operating on, but when you attempt to connect, your radio will not transmit. You eventually see a message that says: Retry Count Exceeded, Disconnected.

Possible Causes:

- XMITOK is OFF.
- There's a fault in the radio cable wiring.

Try This:

First, turn XMITOK ON.

If that doesn't remedy the situation, recheck the radio cable wiring.

Problem:

Other stations are unable to connect to you.

Symptom:

Your station appears to ignore connect requests. Other stations don't acknowledge that your station is onthe-air.

Possible Causes:

- CFROM is set to ignore incoming connect requests.
- MYCALL isn't set or is incorrectly set.
- USERS set to zero.
- Possible unable to transmit problem.

Try This:

First, set CFROM to ALL.

Secondly, make sure that MYCALL is set to your call sign and that USERS is set to a value greater than zero.

If all else fails, see the "Unable to Transmit" section.

Problem:

You are unable to connect to others.

Symptom:

Your radio seems to transmit and receive normally, that is, it transmits for about ½ second every 5 to 10 seconds but you still can't connect.

Possible Causes:

• AFSK level not correctly adjusted.

• TXDELAY is too small for your radio; radio takes longer than the period of TXDELAY to key up on the air.

Try This:

First, adjust the AFSK level control following the procedures outlined in Chapter 3 for calibration.

Second, try increasing the setting for TXDELAY. Experiment with this for optimum performance.

Problem:

Unable to monitor packets.

Symptom:

With obvious activity on the channel, you don't see any activity on your screen. WHYNOT reports – MONITOR.

Possible Cause:

• MONITOR turned off.

Try This:

Set MONITOR to a non-zero level. (The default is MONITOR 4.)

Problem:

Unable to monitor packets.

Symptom:

With obvious activity on the channel, you don't see any activity on your screen. WHYNOT reports – MCON.

Possible Cause:

 You're currently connected, or in the process of connecting, to another station and MCON is set such that received packets aren't being displayed.

Try This:

Usually, you won't want to monitor while you're connected, especially on busy channels. If you do, set MCON to a value greater than zero.

Problem:

Unable to monitor packets.

Symptom:

With obvious activity on the channel, you don't see any activity on your screen. WHYNOT reports – MPROTO.

Possible Cause:

• You're receiving packets which contain special network addressing.

Try This:

Either accept that you probably don't really want to see those packets, or turn MPROTO ON.

Problem:

Unable to monitor packets.

Symptom:

With obvious activity on the channel, there's no activity on your screen. WHYNOT reports -MBX.

Possible Cause:

• You have entered one or two calls into the special monitoring setting called MBX.

Try This:

Enter MBX % to clear this setting.

Problem:

Unable to monitor packets.

Symptom:

With obvious channel activity, there's no activity on your screen. WHYNOT reports -PASSALL.

Possible Cause:

• The packet you received has an error and wasn't displayed for this reason.

Try This:

Turn PASSALL ON to see the damaged packets if you want. If PASSALL is on, the MHEARD function is disabled.

Problem:

Unable to monitor packets.

Symptom:

With obvious activity on the channel, you don't see any activity on your screen. WHYNOT reports - frame too short.

Possible Cause:

• This was probably due to receiving a squelch burst or noise at the end of a valid transmission.

Problem:

Unable to monitor packets.

Symptom:

With obvious activity on the channel, you don't see any activity on your screen. WHYNOT reports - frame too long.

Possible Cause:

• This packet may have been sent by a station using a higher level networking protocol that allows packets larger than the AX.25 standard.

Problem:

MHEARD list doesn't display recently heard calls.

Symptom:

No calls listed, or all information is very old.

Possible Causes:

• PASSALL is ON.

Try This:

Turn PASSALL OFF.

Problem:

Monitored packets not correctly displayed.

Symptom:

You see monitoresd packets with garbage characters or obvious mistakes.

Possible Causes:

- PASSALL is ON.
- Mismatch between terminal or computer program serial settings, and PK-12's settings.

Try This:

First, make sure to turn PASSALL OFF.

PK-12 Problems

Problem:

Sign-on message not correctly displayed.

Possible Causes:

• Mismatch between terminal or computer program serial settings and the PK-12 settings.

Try This:

Match settings between the PK-12 and computer program. For example if your computer is set for 8 data bits and no parity, set the PK-12 for AWLEN 8 and parity 0, then issue a RESTART to cause these changes to take effect in the PK-12.

Problem:

PK-12's buffer is filling with undesired information when your computer is off-line.

Symptom:

MAIL indicator is flashing after a period of absence from the PK-12.

Possible Cause:

• Text was received or monitored unintentionally.

Try This:

Check that the following commands are set as follows:

MONITOR 0 MCON 0 MDMON OFF MDIGI OFF MBX % MBELL OFF RFEC OFF UBIT 13 ON

Appendix A: Radio Connections

This appendix provides radio connection information from your Timewave data controller to approximately 400 different models of amateur transceivers.

Each radio listed references a connection figure and possibly a note on connections. Notes are below on this page. Connection figures appear following the table of radios. All pin type wiring connections are viewed from wiring/solder side of plug.

The wire colors used on the diagrams refer to the wires in the radio cables supplied with your Timewave data controller.

Radio Connection Notes

- Note 1 Receive audio is not available on the microphone jack of all radios. If you make this connection and are unable to receive, use the speaker jack on the rear panel of the radio as a source of receive audio.
- Note 2 Your radio may not require a plug with three connections, i.e., tip, ring, and sleeve. We suggest you use the three-conductor "stereo" plug wired as shown, so that if you change radios to another model with this same connection scheme, your cable will be compatible without modification.
- Note 3 Older Icom transceivers which use the eight-pin microphone plug may not have receive audio connected to the microphone jack on pin 8. In this case, pin 8 is unused. We suggest you make the connection as diagrammed, even if your radio does not have receive audio available at pin 8. That way, if you change to a newer model Icom radio, the cable will be ready to use without modifications. If you make this connection and are unable to receive, use the speaker jack on the rear panel of the radio as a source of receive audio.
- Note 4 If you have difficulty in locating an eight-pin DIN plug for this connection, a five-pin DIN may be used in its place. A five-pin DIN has all the required pins for connections to ICOM rigs, because pins 6, 7, and 8 are not used. The numbering and arrangement of the remaining pins is unchanged.
- Note 7 This connection only valid with PCB-88, DSP-1232, DSP-2232, and PK-900 Radio Port 2 only.

			ICON
Radio Listings			IC-02
ALINCO	Figure	Note	IC-03
ALD-24T	1		
ALR-22HT	1		IC-12
ALR-22T	1		IC-12
ALR-72T	1		
DJ-100	45		IC-12
DJ-120T	45		
DJ-160T	5	2	
DJ-162T	5	2	IC-2
DJ-180T	5	2	
DJ-200	45		IC-20
DJ-500	45		IC-21
DJ-560T	5	2	
DJ-580T	5	2	
DJ-F1T	5	2	IC-22
DJ-G1T	5	2	IC-22
DR-110T	1	1	
DR-112T	1	1	
DR-119T	2	1	
DR-1200T	2	1	
DR-130T	50	1	
DR-430T	1	1	
DR-510T	1	1	
DR-570T	1	1	
DR-590T	3	1	
DR-592T	3	1	
DR-599T	3	1	
DR-600T	3	1	
AZDEN	Figure	Note	
All W/ 12-PIN CONN	46		
All W/8-PIN AMP	4		
PCS-2000	46		
PCS-5000	4		
PCS-6000	4		
PCS-7000	4		
COLLINS	Figure	Note	
KWM-380	6		
DRAKE	Figure	Note	
T4X	8	8	
T4XB	8	8	
T4XC	8		
TR-22	7		
TR-3	8		— 10 20 IC-20
TR-33	7		
TR-4	8	8	
TR-4C	8	8	
TR-4CW	8		
TR-6	8	8	
TR-7	7	~	$\frac{10-30}{10-32}$
UV-3	7		
	1		$-\frac{10-32}{10-32}$

ІСОМ	Figure	Note
IC-02 SERIES	5	2
IC-03 SERIES	5	2
IC-04 SERIES	5	2
IC-12	5	2
IC-120	12	3
IC-1201	12	3
IC-1271 SERIES	12	3
IC 1275 SERIES	12	3
IC-12G SERIES	5	2
IC-2 SERIES	5	2
IC-20	10	
IC-202	11	
IC-21	10	
IC-211	15	
IC-215	10	
IC-215 IC-22	10	
IC-22 IC-228 SERIES	10	3
IC-220 SERIES	49	3
IC-22A	10 11	
IC-22S		
IC-22U	12	3
IC-230	10	
IC-2330 SERIES	49	
IC-2400	12	3
IC-2410 SERIES	49	
IC-245	11	
IC-24AT	5	2
IC-25 SERIES	12	3
IC-2500	12	3
IC-251	15	
IC-255	12	3
IC-255	14	
IC-260	12	3
IC-260	14	
IC-27 SERIES	12	3
IC-271 SERIES	12	3
IC-275 SERIES	12	3
IC-28 SERIES	12	3
IC-280	11	<u> </u>
IC-281	51	
IC-281 IC-281	52	6
IC-281 IC-290 SERIES	12	3
IC-290 SERIES		2
	5	
IC-2GX	5	2
IC-21 SERIES	5	2
IC-2S SERIES	5	2
IC-2SR SERIES	9	
IC-3SERIES	5	2
IC-30	10	
IC-3200 SERIES	12	3
IC-3210 SERIES	12	3
IC-3220 SERIES	12	3

IC-3230 SERIES	49		IC-781	12	3
IC-375 SERIES	12	3	IC-781	17	4
IC-37A	12	3	IC-901	12	3
IC-38A	12	3	IC-970	16	4
IC-3S SERIES	5	2	IC-D1A	9	
IC-4 SERIES	5	2	IC-P2 SERIES	5	2
IC-402	11		IC-P3 SERIES	5	2
IC-449 SERIES	49		IC-P4 SERIES	5	2
IC-45 SERIES	12	3	IC-U2 SERIES	5	2
IC-451	15		IC-U4 SERIES	5	2
IC-47 SERIES	12	3	IC-V21 SERIES	5	2
IC-471 SERIES	12	3	IC-W21 SERIES	5	2
IC-475 SERIES	12	3	IC-W2A	9	
IC-48 SERIES	12	3	IC-X21 SERIES	5	2
IC-490 SERIES	12	3	IC-X2A	9	
IC-4G SERIES	5	2	KANTRONICS	Figure	Note
IC-4S SERIES	5	2	D4-10	43	
IC-4SR SERIES	9			43	
IC-502	11		KENWOOD	Figure	Note
IC-505	12	3	TH-205	31	
IC-551 SERIES	12	3		31	
IC-551 SERIES	15	•		31	
IC-560	12	3		31	
IC-575	12	0		31	
IC-575 SERIES	12	3		31	
1C-60	10	0		31	
IC-707	12	3		31	
IC-720	12	3		31	
IC-720A	15	0		31	
IC-725	12	3		31	
IC-725	16	4		31	
IC-726	12	3		31	
IC-726	16	4		31	
IC-728	12	3		31	
IC-728	16	0		31	
IC-729	12	3		31	
IC-729	16	0		31	
IC-729 IC-730	12	3		3	
IC-735	12	3		3	
IC-735	16	4		3	
IC-735 IC-737	12	3		53	7
IC-737 IC-737	12	3		3	/
IC-740	12	3		53	7
IC-740 IC-740	12	3		3	/
IC-740 IC-745	13	3		3	
IC-745 IC-745	12	3	TM-2550 TM-2570	3	
IC-745 IC-751	13	3		3	
IC-751 IC-751	12	3		3	
		2			7
IC-761	12	3	TM-331	53	1
IC-761	17	4	TM-3530	3	
IC-765 IC-765	12 17	3 4	TM-401 TM-421	3 3	
10-700	17	4	I IVI-4∠ I	3	

TM-441 3 TS-60 39 TM-531 53 7 TS-670 3 TM-541 3 TS-680 3 TM-531 3 TS-690 3 TM-641 47 TS-701 3 TM-701 53 7 TS-700 11 TM-721 3 TS-711 34 TS-711 TM-731 3 TS-711 34 TS-711 TM-732 47 TS-780 3 TS-780 TM-741 47 TS-811 3 TS-780 TR-2200 11 TS-820 11 TS-780 TR-2200 11 TS-850 3 TS-780 TR-2600 3 TS-900 11 TS-780 TR-2600 3 TS-940 3 TS-790 TR-750 36 TS-	TM-431	53	7	TS-530	11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TM-441	3			39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TM-531	3			53	7
TM-541 3 TS-680 3 TM-621 3 TS-680 35 TM-631 53 7 TS-680 3 TM-631 53 7 TS-690 35 TM-641 47 TS-700 11 T TM-701 53 7 TS-701 3 T TM-711 3 TS-711 3 T T TM-731 3 TS-711 34 T T TM-731 53 7 TS-780 3 T TM-741 47 TS-780 3 T T TM-741 47 TS-811 3 T T T T T S-820 11 T T T T S-820 11 T T S-820 11 T T S-820 11 T T S-850 3 T S-940 3 T	TM-531	53	7	TS-670	3	
TM-621 3 TS-680 35 TM-631 53 7 TS-690 3 TM-641 47 TS-700 11 TM-701 53 7 TS-690 3 TM-71 53 7 TS-690 3 TM-721 3 TS-701 3 T TM-731 3 TS-711 34 T TM-732 47 TS-780 3 T TM-732 47 TS-780 3 T TM-741 47 TS-790 3 T TM-741 47 TS-811 3 T TR-2200 11 TS-820 11 T TR-2200 11 TS-850 3 T TR-2200 33 TS-850 3 T TR-2400 33 TS-900 11 T TS-900 11 TS-930 3 T TR-750 36 TS-940 34 T TR-750 36 TW-4100 3 T		3		TS-680	3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
TM-641 47 TS-700 11 TM-701 53 7 TS-701 3 TM-721 3 TS-711 3 TM-731 53 7 TS-780 3 TM-731 53 7 TS-780 3 TM-732 47 TS-780 3 T TM-741 47 TS-790 3 T TM-742 47 TS-811 3 T TM-742 47 TS-811 3 T TR-200 11 TS-850 3 T TR-200 11 TS-850 3 T TR-200 11 TS-850 3 T TR-200 31 TS-900 11 T TR-200 31 TS-900 3 T TR-750 3 TS-940 3 T TR-750 36 T TS-950 3 T TR-750 36 T T T T TR-750 36 T T			7			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
TM-721 3 TS-711 3 TM-731 3 TS-711 34 TM-731 53 7 TS-780 3 TM-732 47 TS-790 35 TM-741 47 TS-790 35 TM-742 47 TS-790 35 TM-742 47 TS-790 35 TM-742 47 TS-790 35 TM-742 47 TS-800 3 TR-200 11 TS-801 3 TR-200 33 TS-850 3 TR-2500 32 TS-850 55 9 TR-2500 3 TS-940 3 TS-940 3 TR-750 3 TS-940 3 TS-940 3 TR-750 3 TS-940 3 TS-940 3 TR-750 36 TW-4000 3 TW-400 3 TR-750 36 TW-4100 3 TW-400 3 TR-750 36 TW-4000 3 TW-202 5			7			
IM-731 3 TS-711 34 IM-731 53 7 TS-780 3 IM-731 53 7 TS-790 3 IM-741 47 TS-790 3 1 IM-741 47 TS-790 3 1 IM-741 47 TS-811 3 1 IM-941 47 TS-811 34 1 TR-2200 11 TS-850 3 1 TR-2200 11 TS-850 3 1 TR-2400 33 TS-850 39 1 TR-2500 32 TS-850 55 9 TR-2600 31 TS-900 11 1 TS-900 3 TS-940 3 1 TR-750 3 TS-940 3 1 TR-750 36 TW-4000 3 1 TR-750 36 TW-4000 3 1 TR-750 36 TW-400 3 1 TR-7800 36 TW-400 2 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
TM-731 53 7 TS-780 3 TM-732 47 TS-790 35 TM-741 47 TS-790 35 TM-742 47 TS-811 3 TM-941 47 TS-811 3 TM-942 47 TS-820 11 TR-2200 11 TS-850 3 TR-2400 33 TS-850 39 TR-2500 32 TS-850 39 TR-2600 31 TS-900 11 TS-900 3 TS-940 3 TR-750 3 TS-940 34 TR-750 3 TS-950 39 TR-750 3 TS-950 3 TR-750 36 TW-4000 3 TR-750 36 TW-4100 3 TR-750 36 TW-4100 3 TR-750 36 TW-4000 3 TR-750 36 TW-4100 3 TR-750 36 TW-4100 3 TR-7800 3						
TM.732 47 TS.790 3 $TM.741$ 47 TS.790 35 $TM.742$ 47 TS.790 35 $TM.742$ 47 TS.790 34 $TM.941$ 47 TS.781 3 $TR.2500$ 32 TS.850 59 $TR.2600$ 31 TS.940 3 $TR.7400$ 11 TS.940 3 $TR.750$ 32 TS.940 34 $TR.750$ 36 TS.940 3 $TR.750$ 36 TW.4100 3 $TR.750$ 36 TW.4100 3 $TR.750$ 36 TW.4100 3 $TR.7900$ 36 TW.4100 3 $TR.7900$ 36 TW.4100 3 $TR.7900$ 36 TM.4100 2			7			
TM-741 47 TS-790 35 TM-742 47 TS-811 3 TM-941 47 TS-811 34 TR-240 11 TS-820 11 TR-2300 11 TS-850 3 TR-2400 33 TS-850 3 TR-2500 32 TS-850 3 TR-2600 31 TS-900 11 TR-2500 32 TS-850 3 TR-2600 31 TS-900 11 TR-500 3 TS-940 3 TR-7400 11 TS-940 34 TR-750 32 TS-940 3 TR-750 32 TS-940 3 TR-750 36 TW-400 3 TR-750 36 TW-4000 3 TR-750 36 TW-400 3 TR-750 36 TW-400 3 TR-750 36 TW-400 3 TR-750 36 TW-400 3 TR-750 36 T			•			
TM-742 47 TS-811 3 TM-941 47 TS-811 34 TM-942 47 TS-820 11 TR-200 11 TS-820 11 TR-200 11 TS-850 3 TR-2400 33 TS-850 39 TR-2500 32 TS-850 39 TR-2600 31 TS-930 3 TR-2500 32 TS-940 3 TR-7400 11 TS-940 3 TR-750 3 TS-940 3 TR-750 32 TS-940 3 TR-750 36 TS-950 3 TR-750 36 TW-4000 3 TR-750 36 TW-4100 3 TR-7850 36 TW-4100 3 TR-7850 36 TW-4100 3 TR-7850 36 TW-4100 3 TR-7850 36 TW-4100 3 TR-930 36 TX-4100 2 TR-950 36						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Noto
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Note
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-	Note
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Noto
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
TS-450 3 C-500 5 2 TS-450 38 C-528 5 2 TS-450 54 9 C-558 5 2 TS-490 11 C-628 5 2 TS-50 39 TEN-TEC Figure Note All W/ 4-PIN AMP 41 5						
TS-450 38 C-528 5 2 TS-450 54 9 C-558 5 2 TS-490 11 C-628 5 2 TS-50 39 TS-50 53 7 Figure Note						
TS-450 54 9 TS-490 11 C-558 5 2 TS-50 39 C-628 5 2 TS-50 53 7 All W/ 4-PIN AMP 41 5						
TS-490 11 C-628 5 2 TS-50 39 TEN-TEC Figure Note TS-50 53 7 All W/ 4-PIN AMP 41 5						
TS-50 39 TEN-TEC Figure Note TS-50 53 7 All W/ 4-PIN AMP 41 5			9			
TS-50 53 7 All W/ 4-PIN AMP 41 5						
					-	
<u>IS-520</u> 11 <u>ALL W/.25" PLUG</u> 42			7			5
	15-520	11		ALL W/.25" PLUG	42	

ARGONAUT II	41		FT-411	5	2
DELTA II	41		FT-415	5	2
PARAGON	41	5	FT-416	5	2
UNIDEN	Figure	Note	FT-470	5	2
HR-2510	40		FT-4700	27	
HR-2600	40		FT-480	18	
WILSON	Figure	Note	FT-5100	18	
MARK II	29		FT-5100	48	
MARK IV	29		FT-5200	27	
WE-800	29		FT-530	5	2
YAESU	Figure	Note	FT-6200	27	
CPU-2500	28		FT-650	18	
FT-1	18		FT-690 MK I	26	
FT-1	20		FT-690 MK II	18	
FT-1000 SERIES	18		FT-690 MK II	27	
FT-1000 SERIES	20		FT-703	5	2
FT-101	22			18	
FT-101B	22			29	
FT-101E	22			5	2
FT-101EE	22			27	
FT-101EX	22			18	
FT-101ZD	22			18	
FT-102	18			18	
FT-103R	5	2		5	2
FT-107	18			5	2
FT-109	5	2	FT-730	26	
FT-11	5	2		18	
FT-200	23		FT-736	25	
FT-203	5	2	FT-7400	30	
FT-207	29		FT-747	18	
FT-208	29		FT-757	18	
FT-209	5	2	FT-757	19	
FT-211	18		FT-76	5	2
FT-211RH	27		FT-767	18	
FT-212RH	27		FT-767	19	
FT-2200	18		FT-767	24	
FT-221	22		FT-77	18	
FT-227	22		FT-790 MK I	26	
FT-23	5	2	FT-790 MK II	18	
FT-230	26		FT-790 MK II	27	
FT-231R	27		FT-811	5	2
FT-2400	30		FT-815	5	2
FT-26	5	2	FT-816	5	2
FT-270	26		FT-840 SERIES	18	
FT-2700	27		FT-890	18	
FT-290 MK I	26		FT-901	22	
FT-290 MK II	18		FT-902	22	
FT-290 MK II	27			5	2
FT-2F	22		FT-912	18	
FT-311RM	27		FT-980	18	
FT-33	5	2	FT-990 SERIES	18	
FT-41	5	2	FT-990 SERIES	21	

Radio Connection Diagrams

Appendix B: Parts List, Schematic, and Pictorial Diagram

Capacitors			Integrated Circuits	
C7-C11,C21,C22,C24	CER	.001 µF	U15 7805	
C2,C3,C17,C18	CER	22 pF	U14 LM358	
C31	MONO	.001 µF	U6,U9 74HC00	
C4,C5,C6,C12	MONO	.1 μF	U7 74HC08	
C13,C14,C35,C35,			U12,U5 74HC14	
C36,C16,C19,C25,			U8 74HCT139	
C43,C33,C26,C27,			U4 74HCT139	
C28,C37,C38,C39,C40			U10 74HC574	
C23	MONO	.22 μF	U3 62256-12	
C1	EL	1 µF	U1 68HC11D0	
C20,C29,C34	EL	10 µF	U13 TCM3105	
Resistors (all are 1/4 Watt)			U11 MC14C88	
R6,R8,R9	5%	100 Ω	Hardware	
R13	5%	$1K\Omega$	U11,U12 DIP socket 14 F	PIN
R11	5%	10KΩ	U2 DIP socket 28 F	PIN
R5,R7,R16,R19,R20	5%	100KΩ	U3 DIP socket 32 F	PIN
R23	5%	100Ω	JP1,JP3 HDR STR .10 3	
R12	5%	12KΩ	J2 HDR R/A D 25	P F/M
R22	5%	36KΩ	DB25	
R10	5%	39KΩ	J1 JACK PWR 2.1	mm
R14	5%	470Ω	J4 CONN R/A DIN	N 5 PIN
R3,R4	5%	$4.7 \mathrm{K}\Omega$		
R17,R18	5%	510Ω	Switches	
Potentiometers			SW1 Switch P-P—2F	P2T
R15	(trim)	10KΩ	Crystals	
Networks			Y2 4.433619 MHz	crystal
RN3	(SIP)	330Ω	Y1 7.3728 MHz cry	ystal
RN1	(DIP)	10KΩ		
RN2	(DIP)	47ΚΩ		
Diodes				
D2,D3,D5-9	Signal	1N4448		
D4	Power	1N4004		
DS1	LED	Green		
DS2-DS6	LED	Red		
Transistors				
Q3,Q4	PFET	VN10KM		

Pictorial Diagram

Appendix C: Specifications

Modem Characteristics

Modulator/Demodulator: Modem Tones: Output Level: Texas Instruments TCM3105 Bell 202 5 - $100mV_{RMS}$ into $600\Omega Z$, adjustable by a rear-panel control

Processor System

Microprocessor:	Motorola 68HC11D0 microprocessor
RAM:	32K standard; expandable to 128K
ROM:	Up to 64K of ROM may be used

Input/Output Connections

Radio Interface:	5-pin DIN connector
Input/Output Lines:	Receive audio Transmit audio Push-To-Talk (PTT) External squelch input Ground.
Terminal Interface:	RS-232C 25-pin DB-25 connector
Input/Output:	RS-232C with full handshake (hardware and software)
Terminal Data Rates:	Autobaud selection of 110, 150, 300, 600, 1200, 2400, 4800, 9600 and 19200 bps.

Controls and Indicators

Power Switch	Front panel push on/push off
Status LED's:	POWER, PTT, DCD, MAIL, CON, and STA

General

Power Requirements: +1	3VDC (8 - 16VDC) @ < 80mA
Mechanical:	5.78" (147mm)W x 5.275" (134mm)D x 1.35" (34mm) H
Weight:	11.9 oz (0.34 kg)

Appendix D: Battery Power

Your PK-12 can be powered by an external 9-volt battery. This is a great feature for users who want to go mobile, but have a limited supply of power. There should be no confusion between powering the unit from a 9-volt battery and the lithium battery backed memory. You will not loose the contents of your lithium battery-backed RAM by operating the PK-12 under 9-volt battery power. The steps below explain how to configure your TNC for battery power.

Setting the PK-12 to Low Power mode

- 1. Have the PK-12 connected to your computer and running following the directions in Chapter 2 of this manual.
- 2. Type the command **LOWPow ON**, then press enter. This activates the low power mode which disables the DCD, CON, STA, and MAIL LEDs on the front of the PK-12.
- 3. When you do not need the PK-12 to be in low power mode any longer type **LOWPow OFF**, then press enter. The LEDs on the front of the PK-12 will be functional again.

Power Cable

1. You need to attach a Battery Snap Connector (Radio Shack Part # 270-325) to the power cable that came with the PK-12.

To do this follow these steps:

- a. Connect the red (+) wire from the battery snap connector to the striped (+) wire from the PK-12 power cable.
- b. Connect the black wire (-) from the Battery snap connector to the black (-) wire from the PK-12 Power cable.
- c. Cover the exposed wire connections with electrical tape.

Note:

If you connect the wrong wires the PK-12 will not function and you may drain your 9-volt battery.

- 2. Connect a 9-volt, alkaline battery to the Battery Snap Connector.
- 3. Attach a 9-volt Battery Holder (Radio Shack Part # 270-326) to the side of the PK-12's chassis.
- 4. Securely place the 9-volt battery in the battery holder and the PK-12 is ready to receive its power from the 9-volt battery.

Additional Power Conservation

WARNING:

Performing this step will require you to buy another resistor pack and solder it in place.

Additional power can be saved by removing the resistor pack RN3 on the PCB. This prevents all LEDs from lighting. To remove RN3, cut each connection between RN3 and the PCB. Do not rock RN3 until it loosens, cut the connection with wire cutters.

If you wish to have the LEDs function, you will need to solder in a new resistor pack.

Appendix E: Upgrading the PK-12

Overview

The PK-12 comes standard with a 15K mailbox (32K RAM). However, you can purchase a replacement EPROM and a larger RAM chip from Timewave, (upgrade part# A.06220), to increase the mailbox size to 100K (128K RAM). To order your upgrade, call Timewave at (651) 489-5080, or write to Timewave for pricing and availability.

Note:

If you are using the battery to backup your RAM, this upgrade will cause you to lose all of your settings and mail. You should print these out or capture them to disk using your terminal program.

Installation

- 1. Turn off the PK-12 and remove all of its connected cables.
- 2. Remove the four screws securing the cover to the PK-12, then set the cover aside.
- 3. Locate I.C. chips U2 and U3. Note the orientation of each chip's notch, then carefully remove the chips, avoiding damage to their sockets and nearby components.
- 4. Remove the new U2 ROM (27C512) from its protective foam square and—making sure that the notch is pointed in the same direction as the original U2 chip was—press it firmly into U2's socket with your thumb. **Important**: Make *very* sure that you don't bend or break any of the chip's pins and that they're all straight and inside their respective socket holes. Install the new U3 RAM chip (128K x 8 SRAM) the same way.
- 5. Reconnect all of the PK-12's cables, boot your computer's TNC communications program, turn on the PK-12, perform the autobaud routine as called out in *Chapter 2 System Start-up and Loop-back Test*, then enter MDCHECK after the cmd: prompt—you should see the following message:

[AEA PK12] 103820 free (B,E,K,L,R,S) >

If you receive this message, turn off the PK-12 and replace its cover.

If your PK-12 doesn't respond with the above message, check:

- That the new chips are firmly seated in their sockets and that all the pins are straight and in their respective holes.
- That the power and computer cables are reconnected.

If, after checking the above, your PK-12 *still* doesn't operate correctly, call Timewave's Customer Service line for assistance.

Appendix F: Product Warranty

Timewave Technology Inc. products carry the following warranty:

Timewave hardware products are warranted against defects in materials and workmanship. If Timewave receives notice of such defects during the warranty period, Timewave shall, at its option, either repair or replace hardware products which prove to be defective.

Timewave software and firmware products which are designated by Timewave for use with a hardware product are warranted not to fail to execute their programming instructions due to defects in materials and workmanship. If Timewave receives notice of such defects during the warranty period, Timewave shall, at its option, either repair or replace software media or firmware which do not execute their programming instructions due to such defects. Timewave does not warrant that operation of software, firmware, or hardware shall be uninterrupted or error free.

The warranty period for each product is one year from date of shipment.

Limitation of Warranty

The forgoing warranty shall not apply to defects resulting from:

- 1. Improper or inadequate maintenance by the Buyer;
- 2. Buyer-supplied software or interfacing;
- 3. Unauthorized modification or misuse;
- 4. Operation outside the environmental specifications of the products;
- 5. Improper site preparation and maintenance.

Exclusive Remedies

The remedies provided herin are the Buyer's sole and exclusive remedies. In no event shall Timewave be liable for direct, indirect, special, incidental or consequential damages (including loss of profits) whether based on contract, tort, or any other legal theory.

Index

Symbols

3RDPARTY command 14, 50 8BITCONV command 14, 50 9-volt See Battery Power

A

ACKPRIOR command 14, 50 ACRDISP command 15, 50 ACRPACK command 50 AFILTER command 50 AFSK level 11, 102, 103 ALFDISP command 16, 50 ALFPACK command 15, 50 APRS 1, 30, 31, 32, 51, 83, 84, 85, 86, 88, 89, 90 APRS Adapter Cable 1 ASCII 13, 19, 21, 29, 37, 41, 42, 43, 44, 45, 49, 50, 51, 64 AUDELAY command 50 Auto-Forwarding 81 AUTOBAUD command 16, 50 Autobaud Routine 7 AWLEN command 17, 50 AX.25 104 AX25L2V2 command 17, 50 AXDELAY command 17, 50 AXHANG command 17, 50

В

Back Panel RS-232 Pin Assignments 4 also see Srial Port Battery Power Appendix D LOWPOW Command34,51 Baud Autobaud commands 16, 50 Autobaud routine 7 Tbaud (terminal baud) command 44, 52 BBSmsgs 17 BEACON command 18, 50, 55, 67 BKONDEL command 18, 50 Boolean Arguement 13 BTEXT command 18, 50

C

CALIBRATE command 12, 18, 50 call viii Calling CQ 58 CANLINE command 19, 50 CANPAC command 19, 50 CASEDISP command 19, 50 CBELL command 19, 50, 57 CFROM command 19, 50 Changing Commands 14 Channel Switching 64 CHCALL command 20, 50, 65 CHDOUBLE command 20, 50 CHECK command 20, 50, 70 CHSWITCH command 20, 50, 64 cmd: Prompt 99 CMDTIME command 21, 50 CMSG command 21, 50 CODE command 21, 50 Collision Avoidance 69 COMMAND command 21, 50 Command Mode 53 Commercial 30, 91 commercial 83, 94 Commercial GPS adapter cable 30 Computer/Software 94 CON 2, 3, 34, 56 CONMODE command 21, 50 CONNECT command 21, 50 Connect request 19, 22, 36, 38, 50, 62 Connecting 3, 4, 56, 58, 87, 89, 93 Connecting to another station 56 CONOK 50 CONPERM command 22, 50 CONSTAMP command 22, 50 CONVERSE command 22, 50 Converse Mode 53 CPACTIME command 22, 50 CSTATUS command 23, 50, 65 CTEXT command 23, 50, 57 CTRL viii CUSTOM command 23, 50 Customer Service/Technical Support 95

D

DAMA 1, 48, 52, 70 DAYSTAMP command 24, 50 DAYTIME command 24, 50 DB-25F 4 DB-9 4 DCD viii, 2, 3, 4, 23, 25, 28, 34, 38, 42, 47, 49, 50 DCd 25, 50 DCDCONN command 25, 50 DCE 5 DEADTIME 15 DELETE command 25, 50 DFROM command 25, 50 DIGIPEAT 25, 50 DIGipeat 25 Digipeat 14, 37, 58, 63, 66 Digipeating 63 DISCONNE command 26, 50 DISPLAY command 26, 51 DTE 5 Dual Port Mode 1 Dumb Terminal 4, 12 dummy load 11 DWAIT command 26, 51

Ε

ECHO command 27, 51 Error Messages *** call busy 98 *** connect request:call1 98 *** Disconnected: call 98 *** Retry count exceeded 98 *** Transmit data remaining 97 *** What? 98 ?already connected to that station 97 ?bad 96 ?callsign 97 ?channel must be 0-9 97 ?clock not set 97 ?different connectees 97 ?need ALL/NONE/YES/NO 97 ?need MYcall 97 ?not enough 97 ?not while connected 97

?not while disconnected 97 ?range 97 ?too long 97 ?too many 97 ?VIA 97 ?What? 96 bbRAM scanned, checksum failed! 99 FRMR rcvd: xx xx xx 98 FRMR sent: xx xx xx 98 LINK OUT OF ORDER, possible data loss 97 Message not found 98 Need callsign 98 No free memory 98 Not your message 98 Packet Link Status Messages 98 PK-96 is using default values 99 ROM error, checksum \$xxxx 99 Serial port configuration will change on next REST 97 too many packets outstanding 97 TXdelay too short 97 WARNING: AUdelay >TXdelay 97 WARNING: Beacon too often 97 WARNING: CHeck/FRack too small 97 WARNING: RESptime/FRack too large 97 ESC viii ESCAPE command 27, 51 EXPERT command 1, 27, 51

F

FLOW command 27, 51 Forwarding 81 FRACK command 27, 51, 65 FREE command 28, 51 Frequencies 53 FRICK command 28, 51, 65 Full-Duplex 71 FULLDUP command 28, 51

G

Gateway 32, 60, 61, 62 GENDchar 1 GINIText 1 GLOCtx 1 GNMEA1 1 GNMEA2 1 Going On the Air 58 GPOLLCal 1 GPS 1, 29, 30, 51, 83, 84, 85, 86, 87, 88, 89 GPSAuto 30, 51, 83, 87 GPSMode 1 GREMprog 31, 51, 83 GSYMChar 1 GUNSTart 1 GUSERS command 32, 51

Η

handheld 11 Hardware Single Port Mode 83, 88 Hardware Single Port mode 1, 89 HEADERLN command 32, 51 HF viii HID command 32, 51 HOMEBBS command 32, 51 HOST command 32, 51 HPOLL command 33, 51 HSP operation 88

ID command 33, 51 ILFPACK command 33, 51 IO command 33

Κ

K command 51. See also CONVERSE command KILONFWD command 34, 51, 82 KISS command 34, 51 Kiss Mode 53 KISSADDR command 51

L

LASTMSG command 34, 51, 80 If viii List of Commands 14 logical channel 65 Loop-back Test 4, 6, 7 loop-back test 94 LOWPow 1

Μ

Macintosh 4 MAIL 2, 3, 34, 55, 64, 73, 105 MAILDROP command 34, 51 MailDrop Memory 73 MailDrop Upgrade 122 master 1, 28, 70, 86 MAXFRAME command 34, 51 MBELL command 35, 51 MBX command 35, 51 MCON command 35, 51 MDCHECK command 36, 51 MDIGI command 36, 51 MDMON command 36, 51 MDPROMPT command 36, 51, 75 MEMORY command 37 Message Numbers 80 Meteor Scatter 65 MFILTER command 37, 51, 66 MFROM command 37, 51 MHEARD command 37, 51, 55 MID command 38, 51 mike jack 9, 94 mini DIN-8P 4 MMSG command 38, 51 MONITOR command 38, 51 Monitoring Other Stations 66 Morse ID 38, 51, 71 MPROTO command 38, 51 MRPT command 39, 51 mS viii MSTAMP command 39, 51 MTEXT command 39, 52, 75 MTO command 39, 52 multiple packet connections 28, 65 MXMIT command 40, 52 MYALIAS command 40, 52 MYCALL command 40, 52 MYGATE command 40, 52 MYMAIL command 40, 52

Ν

nack viii NET/ROM 1, 38, 49, 55, 59, 62 Net/ROM 37 NEWMODE command 40, 52 Node Operation General Theory 59 Operating as a Node 60 Stay Command 62

NOMODE command 41, 52 NUCR command 41, 52 NULF command 52 NULLS command 41, 52 Numeric Arguement 13

Ρ

Packet Mail 71 Packet/GPS configurations 86 PACLEN command 41, 52, 69 PACTIME command 41, 52 PARITY command 41, 52 PASS character 68 PASS command 42, 52 PASSALL command 42, 52 PBBS 25, 34, 55, 66, 71 PERSIST command 42, 52 PK command 42 power supply 3, 7, 24, 94, 99, 101 Power Supply Cable 94 PPERSIST command 42, 52 PTT viii, 9, 10, 11, 12, 16, 18, 46, 49, 50 PTT (push to talk) 52

Q

QRA Feature 71

R

Radio Cable Connections Ground 10 Microphone Audio 10 PTT 10 Receive Audio 10 Shield/Drain Wire 10 Squelch Input 10 Radio Connection 94 radio connection 28 RAWHDLC command 43, 52 REDISPLA command 43, 52 registered version of APRS 88 REINIT command 14, 43, 52 Reinitializing 3 RELINK command 43, 52 Remote programming 31

remotely polled 83 RESET command 14, 43, 52 RESPTIME command 43, 52 RESTART command 14, 44, 52 RETRY command 44, 52 Reverse-Forwarding 81 ROSE 59

S

Selective Monitoring 66
Sending Mail 78
SENDPAC command 44, 52
slave 1, 28, 48, 65, 70
SLOTTIME command 44, 52
SQUELCH command 44, 52
STA 2, 3, 34, 56, 78
Stand Alone Tracking 83, 84, 85, 86, 88
START command 44, 52
STAY command. *See also* Node Operation: Operating as a Node: Stay Command
STOP command 45, 52

T

TBAUD command 45, 52 TCLEAR command 45 TCP/IP 1, 34, 49, 53, 59 TEXNET 59 The-Net 1 TIME command 52. See also DAYTIME command TRACE command 45, 52 TRANS command 45, 52 Transceiver Adjustments 11 Transferring Files 70 Transparent Mode 53, 70 TRFLOW command 46, 52 TRIES command 46, 52 Troubleshooting 3, 8, 59, 93 Tuning in Packet Stations 53 TX LEVEL 7, 8, 11, 12, 18 TXDELAY command 46, 52, 67 TXFLOW command 46, 52

U

UBIT command 46, 52 ULTIMETER II 30, 85, 87, 90, 91 Unintentional Disconnects 70 UNPROTO command 48, 52 Upgrading the PK-96 122 UPlink 48, 70 Uplink 48, 52 USERS command 48, 52, 64

W

watchdog timer 12 WHYNOT command 48, 52 Wireless Data/Location Tracking Applications 91

Χ

XFLOW command 5, 6, 49, 52 XMITOK command 49, 52 XMT 2, 34, 56 XOFF command 49, 52 XON command 49, 52