Supplement to TTL Data Book Volume 3

1984

1 mar 10

DISTRIBUTED BY

Connecticut Division 20 Sterling Drive, Barnes Ind. Park North P.O. Box 200 Wallingford, CT 06492-0200

> Electronics Group Claude Michael Group (203) 265-3822

Advanced Low-Power Schottky Advanced Schottky

Supplement to The TTL Data Book Volume 3

General Information

•

ALS and AS Circuits

Applications

3

2

.

.

Supplement to The TTL Data Book

-

- - -

Volume 3

IMPORTANT NOTICE

- -

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein supersedes data published in The TTL Data Book, Volume 3, 1984, SDAD001A.

Copyright © 1984, Texas Instruments Incorporated

INTRODUCTION

This supplement is provided to complete the detailed specifications on 51 new Advanced Low-Power Schottky^{\dagger} (ALS) and Advanced Schottky^{\dagger} (AS) functions. Included in these recent announcements are:

- 10 gates in standard, buffer, and driver options
- 21 bus-interface devices including octal, 9-bit, and 10-bit bus buffers/drivers, transceivers, and registers
 with varying output designs
- 20 LSI and complex functions wih single-chip design solutions

Also, 29 of these 51 new functions are pin-for-pin equivalents for LS and S products.

This supplement also includes a general ALS/AS applications note which provides additional detailed information to aid the system designer in achieving the highest levels of performance and cost-effectiveness with TI's products.

Additionally, this supplement provides:

- Complete errata for The TTL Data Book, Volume 3, 1984 (SDAD001A). The errata contains corrections
 that have been made on the pages which are reprinted in this supplement. Please note or reference
 them in your Volume 3.
- Complete functional index for all TI bipolar digital devices available or under development. All logic technologies (TTL, LS, S, ALS, and AS), field programmable logic, programmable read-only memories, and bipolar complex LSI are included.

v

Please ensure that routine references to TI's data books include monitoring the current supplements and errata for updated information.

[†]Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.

vi

- - -

•

Supplement to The TTL Data Book Volume 3

General Information

-

ALS and AS Circuits

Applications

3

1

GENERAL INFORMATION

-

.

NUMERICAL INDEX[†]

SN54ALSOOA	SN74ALSOOA 2-3	SN54ALS139	SN74ALS139 2-117
SN54AS00	SN74AS00 2-3	SN54ALS151	SN74ALS151 S2-37
SN54ALS01	SN74ALS01	SN54AS151	SN74AS151 S2-37
SN54ALS02	SN74ALSO2	SN54ALS153	SN74ALS153 2-125
SN54AS02	SN74AS02 2-9	SN54AS153	SN74AS153 2-125
SN54ALS03A	SN74ALS03A 2-13	SN54ALS157	SN74ALS157
SN54ALS04A	SN74ALSO4A 2-15	SN54AS157	SN74AS157 2-129
SN54AS04	SN74AS04 2-15	SN54ALS158	SN74ALS158 2-129
SN54ALS05A	SN74ALS05A 2-19	SN54AS158	SN74AS158 2-129
SN54ALS08	SN74ALS08	SN54ALS160A [‡]	SN74ALS160A [‡] S2-41
SN54AS08	SN74AS08 2-21	SN54AS160	SN74AS160 S2-41
SN54ALS09	SN74ALS09	SN54ALS161A [‡]	SN74ALS161A [‡] S2-41
SN54ALS10A	SN74ALS10A S2-3	SN54AS161	SN74AS161 S2-41
SN54AS10	SN74AS10 S2-3	SN54ALS162A‡	SN74ALS162A [‡] S2-41
SN54ALS11A	SN74ALS11A S2-7	SN54AS162	SN74AS162 S2-41
SN54AS11	SN74AS11 S2-7	SN54ALS163A	SN74ALS163A [‡] S2-41
SN54ALS12A	SN74ALS12A S2-11	SN54AS163	SN74AS163 S2-41
SN54ALS15	SN74ALS15	SN54ALS164	SN74ALS164
SN54ALS20A	SN74ALS20A 2-39	SN54ALS165 [‡]	SN74ALS165 [‡]
SN54AS20	SN74AS20 2-39	SN54ALS166 [‡]	SN74ALS166 [‡] 2-153
SN54ALS21	SN74ALS21	SN54ALS168B	SN74ALS168B S2-51
SN54AS21	SN74AS21 2-43	SN54AS168	SN74AS168 S2-51
SN54ALS22B	SN74ALS22B S2-13	SN54ALS169B	SN74ALS169B S2-51
SN54ALS27	SN74ALS27	SN54AS169	SN74AS169 S2-51
SN54AS27	SN74AS27 2-49	SN54ALS174 [‡]	SN74ALS174 [‡] S2-61
SN54ALS28A	SN74ALS28A	SN54AS174 [‡]	SN74AS174 [‡] S2-61
SN54ALS30A	SN74ALS30A S2-15	SN54ALS175 [‡]	SN74ALS175 [‡] S2-61
SN54AS30	SN74AS30 S2-15	SN54AS175	SN74AS175 S2-61
SN54ALS32	SN74ALS32	SN54AS181A	SN74AS181A 2-173
SN54AS32	SN74AS32 2-59	SN54AS182 [‡]	SN74A\$182 [‡] 2-185
SN54ALS33A	SN74ALS33A 2-63	SN54ALS190	SN74ALS190
SN54ALS34	SN74ALS34	SN54ALS191	SN74ALS191
SN54AS34	SN74AS34 2-65	SN54ALS192 [‡]	SN74ALS192 [‡]
SN54ALS35	SN74ALS35 S2-19	SN54ALS193 [‡]	SN74ALS193 [‡]
SN54ALS37A	SN74ALS37A 2-71	SN54AS194	SN74AS194 2-205
SN54ALS38A	SN74ALS38A 2-73	SN54AS195	SN74AS195 2-211
SN54ALS40A	SN74ALS40A 2-75	SN54AS230	SN74AS230 2-213
SN54ALS74A	SN74ALS74A S2-21	SN54AS231	SN74AS231 2-213
SN54AS74‡	SN74AS74 [‡] S2-21	SN54ALS240A	SN74ALS240A 2-217
SN54ALS86	SN74ALS86 S2-25	SN54AS240	SN74AS240 2-217
SN54AS95	SN74AS95 S2-27	SN54ALS241A	SN74ALS241A 2-217
SN54ALS109A	SN74ALS109A S2-31	SN54AS241	SN74AS241
SN54AS109‡	SN74AS109 [‡] S2-31	SN54ALS242A	SN74ALS242A 2-223
SN54ALS112A	SN74ALS112A 2-91	SN54AS242‡	SN74AS242 [‡] 2-223
SN54AS112	SN74AS112 2-91	SN54ALS243A	SN74ALS243A 2-223
SN54ALS113A	SN74ALS113A 2-95	SN54AS243*	SN74AS243 [‡] 2-223
SN54AS113	SN74AS113 2-95	SN54ALS244A‡	SN74ALS244A [‡] 2-229
SN54ALS114A	SN74ALS114A 2-99	SN54AS244	SN74AS244 2-229
SN54AS114	SN74AS114 2-99	SN54ALS245A‡	SN74ALS245A [‡] 2-235
SN54ALS131	SN74ALS131 2-103	SN54AS245	SN74AS245 2-235
SN54AS131	SN74AS131 2-103	SN54AS250	SN74AS250 S2-67
SN54ALS133	SN74ALS133 2-107	SN54ALS251	SN74ALS251 2-245
SN54ALS136	SN74ALS136 S2-35	SN54AS251	SN74AS251 2-245
SN54ALS137	SN74ALS137 2-109	SN54ALS253	SN74ALS253 2-251
SN54AS137	SN74AS137 2-109	SN54AS253	SN74AS253 2-251
SN54ALS138	SN74ALS138 2-113	SN54ALS257 [‡]	SN74ALS257 [‡] 2-255
SN54AS138	SN74AS138 2-113	SN54AS257‡	SN74AS257 [‡] 2-255

[†]Device types in bold typeface are contained in this supplement at the page indicated with the preceeding "S". For other devices, refer to the pages in the *TTL Data Book, Volume 3,* 1984.

[‡]See Revisions Sections of this Supplement for changes to the *TTL Data Book, Volume 3,* 1984.

1

1 **GENERAL INFORMATION**

NUMERICAL	INDEX [†]
-----------	--------------------

SN54ALS258 [‡]	SN74ALS258 [‡]		SN54AS575	SN74AS575 2-403
SN54AS258‡	SN74AS258 [‡]	2-255	SN54ALS576	SN74ALS576 2-409
SN54ALS259	SN74ALS259		SN54AS576	SN74AS576 2-409
SN54AS264‡	SN74AS264 [‡]	2-263	SN54ALS577	SN74ALS577 2-409
SN54ALS273‡	SN74ALS273 [‡]	2-269	SN54AS577	SN74AS577 2-409
SN54AS280	SN74AS280	2-273	SN54ALS580	SN74ALS580 2-397
SN54AS282‡	SN74AS282 [‡]	2-277	SN54AS580	SN74AS580 2-397
SN54AS286‡	SN74AS286 [‡]	2-281	SN54ALS620A	SN74ALS620A S2-75
SN54AS298	SN74AS298	S2-71	SN54AS620 [‡]	SN74AS620 [‡] S2-75
SN54ALS299 [‡]	SN74ALS299 [‡]	2-291	SN54ALS621A	SN74ALS621A S2-75
SN54AS299	SN74AS299	2-291	SN54AS621 [‡]	SN74AS621 [‡] S2-75
SN54ALS323 [‡]	SN74ALS323 [‡]	2-291	SN54ALS622A	SN74ALS622A S2-75
SN54AS323	SN74AS323	2-291	SN54AS622	SN74AS622 S2-75
SN54ALS352	SN74ALS352	2-301	SN54ALS623A	SN74ALS623A S2-75
SN54AS352	SN74AS352	2-301	SN54AS623	SN74AS623 S2-75
SN54ALS353	SN74ALS353	2-305	SN54ALS632	SN74ALS632
SN54AS353	SN74AS353	2-305	SN54ALS633	SN74ALS633
SN54ALS365	SN74ALS365		SN54ALS634 [‡]	SN74ALS634 [‡]
SN54ALS366	SN74ALS366		SN54ALS635 [‡]	SN74ALS635 [‡] 2-425
SN54ALS367	SN74ALS367		SN54ALS638A	SN74ALS638A
SN54ALS368	SN74ALS368		SN54AS638 [‡]	SN74AS638 [‡] 2-439
SN54ALS373	SN74ALS373		SN54ALS639A	SN74ALS639A 2-439
SN54AS373	SN74AS373		SN54AS639‡	SN74AS639 [‡] 2-439
SN54ALS374	SN74ALS374		SN54ALS640A	SN74ALS640A
SN54AS374	SN74AS374		SN54AS640 [‡]	SN74AS640 [‡] 2-445
SN54AS395	SN74AS395		SN54ALS641A	SN74ALS641A 2-445
SN54ALS465A	SN74ALS465A		SN54AS641 [‡]	SN74AS641 [‡]
SN54ALS466A	SN74ALS466A		SN54ALS642A	SN74ALS642A
SN54ALS467A	SN74ALS467A		SN54AS642 [‡]	SN74AS642 [‡]
SN54ALS468A	SN74ALS468A		SN54ALS643A	SN74ALS643A 2-445
SN54ALS518 [‡]	SN74ALS518 [‡]		SN54AS643 [‡]	SN74AS643 [‡]
SN54ALS519 [‡]	SN74ALS519 [‡]		SN54ALS644A	SN74ALS644A
SN54ALS520	SN74ALS520		SN54AS644 [‡]	SN74AS644 [‡]
SN54ALS521	SN74ALS521		SN54ALS645A	SN74ALS645A 2-445
SN54ALS522 [‡]	SN74ALS522 [‡]		SN54AS645 [‡]	SN74AS645 [‡]
SN54ALS526	SN74ALS526		SN54ALS646 [‡]	SN74ALS646 [‡]
SN54ALS527	SN74ALS527		SN54AS646	SN74AS646
SN54ALS528	SN74ALS528		SN54ALS647 [‡]	SN74ALS647 [‡]
SN54ALS533	SN74ALS533		SN54ALS648 [‡]	SN74ALS648 [‡]
SN54AS533	SN74AS533		SN54AS648	SN74AS648 S2-85
SN54ALS534	SN74ALS534		SN54ALS649	SN74ALS649
SN54AS534	SN74AS534		SN54ALS651‡	SN74ALS651 [‡]
SN54ALS538	SN74ALS538		SN54AS651	SN74AS651 S2-95
SN54ALS539	SN74ALS539		SN54ALS652‡	SN74ALS652 [‡]
SN54ALS540	SN74ALS540		SN54AS652	SN74AS652 S2-95
SN54ALS541	SN74ALS541		SN54ALS653 [‡]	SN74ALS653 [‡] 2-465
SN54ALS560A	SN74ALS560A		SN54ALS654 [‡]	SN74ALS654 [‡]
SN54ALS561A	SN74ALS561A		SN54ALS677 [‡]	SN74ALS677 [‡] S2-107
SN54ALS563	SN74ALS563		SN54ALS678	SN74ALS678 S2-107
SN54ALS564 [‡]	SN74ALS564 [‡]		SN54ALS679	SN74ALS679
SN54ALS568A	SN74ALS568A		SN54ALS680	SN74ALS680 S2-113
SN54ALS569A	SN74ALS569A		SN54ALS688	SN74ALS688
SN54ALS573 [‡]	SN74ALS573 [‡]		SN54ALS689 [‡]	SN74ALS689 [‡]
SN54AS573	SN74AS573		SN54AS756	SN74AS756 S2-119
SN54ALS574	SN74ALS574		SN54AS757	SN74AS757 S2-119
SN54AS574	SN74AS574		SN54AS758	SN74AS758 S2-123
SN54ALS575	SN74ALS575		SN54AS759	SN74AS759 S2-123

[†]Device types in bold typeface are contained in this supplement at the page indicated with the preceeding "S". For other devices, refer to the pages in the TTL Date Book, Volume 3, 1984.

*See Revisions Sections of this Supplement for changes to the TTL Data Book, Volume 3, 1984.

NUMERICAL INDEX[†]

SN54AS760	SN74AS760 S2-127	SN54ALS878	SN74ALS878 2-637
SN54AS762	SN74AS762 S2-129	SN54AS878	SN74AS878 2-637
SN54AS763	SN74AS763 S2-129	SN54ALS879	SN74ALS879
SN54AS800	SN74AS800 2-505	SN54AS879	SN74AS879 2-637
SN54AS802	SN74AS802 2-509	SN54ALS880	SN74ALS880
SN54ALS804	SN74ALS804 2-513	SN54AS880	SN74AS880 2-643
SN54AS804A‡	SN74AS804A [‡] 2-513	SN54AS881A	SN74AS881A 2-649
SN54ALS805	SN74ALS805 2-517	SN54AS882	SN74AS882 2-651
SN54AS805A	SN74AS805A 2-517	SN54AS885	SN74AS885 2-657
SN54ALS808	SN74ALS808 2-521	SN54ALS1000A	SN74ALS1000A 2-663
SN54AS808A	SN74AS808A 2-521	SN54AS1000	SN74AS1000 2-663
SN54ALS810	SN74ALS810 S2-133	SN54ALS1002A	SN74ALS1002A 2-667
SN54ALS811	SN74ALS811 S2-135	SN54ALS1003A	SN74ALS1003A 2-669
SN54AS821	SN74AS821 2-525	SN54ALS1004	SN74ALS1004
SN54AS822	SN74AS822 2-525	SN54AS1004	SN74AS1004 2-671
SN54AS823	SN74AS823 2-531	SN54ALS1005	SN74ALS1005 2-675
SN54AS824	SN74AS824 2-531	SN54ALS1008A	SN74ALS1008A 2-677
SN54AS825	SN74AS825 2-537	SN54AS1008	SN74AS1008 2-677
SN54AS826	SN74AS826 2-537	SN54ALS1010A	SN74ALS1010A 2-681
SN54ALS832	SN74ALS832 2-543	SN54ALS1011A	SN74ALS1011A 2-683
SN54AS832A	SN74AS832A 2-543	SN54ALS1020A	SN74ALS1020A 2-685
SN54ALS841	SN74ALS841 S2-137	SN54ALS1032A	SN74ALS1032A 2-687
SN54AS841	SN74AS841 S2-137	SN54AS1032	SN74AS1032 2-687
SN54ALS842	SN74ALS842 S2-137	SN54ALS1034	SN74ALS1034
SN54AS842	SN74AS842 S2-137	SN54AS1034	SN74AS1034 2-691
SN54ALS843	SN74ALS843 S2-145	SN54ALS1035	SN74ALS1035 2-695
SN54AS843	SN74AS843 S2-145	SN54AS1036‡	SN74AS1036 [‡] 2-697
SN54ALS844	SN74ALS844 S2-145	SN54ALS1240	SN74ALS1240 2-699
SN54AS844	SN74AS844 S2-145	SN54ALS1241	SN74ALS1241
SN54ALS845	SN74ALS845 S2-153	SN54ALS1242	SN74ALS1242 2-703
SN54AS845	SN74AS845 S2-153	SN54ALS1243	SN74ALS1243 2-703
SN54ALS846	SN74ALS846 S2-153	SN54ALS1244A	SN74ALS1244A 2-707
SN54AS846	SN74AS846 S2-153	SN54ALS1245A	SN74ALS1245A S2-177
SN54AS850	SN74AS850 S2-161	SN54ALS1620	SN74ALS1620 2-715
SN54AS851	SN74AS851 S2-161	SN54ALS1621	SN74ALS1621 2-715
SN54AS852	SN74AS852 2-581	SN54ALS1622	SN74ALS1622 2-715
SN54AS856	SN74AS856 2-587	SN54ALS1623	SN74ALS1623 2-715
SN54ALS857	SN74ALS857	SN54ALS1638	SN74ALS1638 2-721
SN54AS857‡	SN74AS857 [‡] 2-593	SN54ALS1639	SN74ALS1639 2-721
SN54AS866	SN74AS866 2-601	SN54ALS1640A	SN74ALS1640A 2-725
SN54AS867	SN74AS867 2-607	SN54ALS1641 /	SN74ALS1641 2-725
SN54AS869	SN74AS869 2-607	SN54ALS1642	SN74ALS1642
SN54AS870	SN74AS870 2-613	SN54ALS1643	SN74ALS1643 2-725
SN54AS871	SN74AS871 2-613	SN54ALS1644	SN74ALS1644
SN54ALS873‡	SN74ALS873 [‡]	SN54ALS1645A	SN74ALS1645A 2-725
SN54AS873	SN74AS873 2-619	SN54AS2620 [‡]	SN74AS2620 [‡] 2-731
SN54ALS874	SN74ALS874	SN54AS2623‡	SN74AS2623 [‡] 2-731
SN54AS874	SN74AS874 2-625	SN54AS2640‡	SN74AS2640 [‡] 2-735
SN54ALS876	SN74ALS876 2-625	SN54AS2645‡	SN74AS2645 [‡] 2-735
SN54AS876	SN74AS876 2-625	SN54ALSB003	SN74ALS8003
SN54AS877	SN74AS877 S2-171		

[†]Device types in bold typeface are contained in this supplement at the page indicated with the preceeding "S". For other devices, refer to the pages in the *TTL Data Book, Volume 3*, 1984.

[‡]See Revisions Sections of this Supplement for changes to the *TTL Data Book*, *Volume 3*, 1984.

1

GENERAL INFORMATION

- -

GATES AND INVERTERS

POSITIVE-NAND GATES AND INVERTERS

DESCRIPTION	TYPE	STD	ALS	AS	н	L	LS	s	VOLUME
Hex 2-Input Gates	'804		٠	A					3
	.04	•			٠	٠	•	٠	2
Hex Inverters	1		A	•					3
	1004		•	•				Γ	3
	.00.	•			•	٠	٠	•	2
Quadruple 2-Input Gates			Α	•					3
	1000		A	•					1
Triple 3-Input Gates		•			•	•	•	•	2
	10		A	•					35
	'1010		A						3
	120	•			•	•	•	•	2
Dual 4-Input Gates	'20		A	•				\square	3
	1020		A				· · ·		1
0. La		•		1	•	•	•	٠	2
8-Input Gates	.30		A	•	1	1			35
								٠	2
13-Input Gates	133		•		<u> </u>				
Dual 2-Input Gates	18003		•				r -		3

POSITIVE-NAND GATES AND INVERTERS WITH OPEN-COLLECTOR OUTPUTS

		TECHNOLOGY							
DESCRIPTION	TYPE	STD TTL	ALS	AS	н	L	LS	s	VOLUME
	'05	•			•		•	٠	2
Hex Inverters	05		A						3
	1005		•						3
	.01	•			٠		•		2
			•						3
Quadruple 2-Input Gates		٠				٠	•	٠	2
	.03		Α						3
	1003		Α						3
Toola Dilana Cours	'12	•					٠		2
Triple 3-Input Gates	12		A						35
Dural d James Canad	.22	•			•		•	٠	2
Dual 4-Input Gates	22		B			[35

POSITIVE-AND GATES

DESCRIPTION	TYPE	STD TTL	ALS	AS	н	LS	s	VOLUME	
Hex 2-Input Gates	'808'		•	A				3	
Quadruple 2-input Gates	°08	•				•	٠	2	
			•	٠				3	
	1008		A	•					
	'11				٠	٠	٠	2	
Triple 3-Input Gates			A	٠				35	
	'1011		A					3	
Dual 4-Input Gates	'21					٠		2	
Dual 4-input Gates	21		•	•					
Triple 4-Input AND/NAND	'800							1 3	

TECHNOLOGY STD s VOLUME AS H LS DESCRIPTION TYPE ALS TTL ٠ ٠ ٠ 2 Quadruple 2-Input Gates **'09** 3 ٠ • 2 • Triple 3-Input Gates 15 . 3

POSITIVE AND GATES WITH OPEN-COLLECTOR OUTPUTS

POSITIVE-OR GATES

		TECHNOLOGY						
DESCRIPTION	TYP	STD TTL	ALS	AS	LS	s	VOLUME	
Hex 2-Input Gates	'832		•	A			3	
		•			•	•	2	
Quadruple 2 Input Gates	'32		•	•				
•	1032		A	•			3	
Triple 4-Input OR/NOR	802						1	

GENERAL INFORMATION

POSITIVE-NOR GATES

		1						
DESCRIPTION	TYPE	STD TTL	ALS	AS	L	LS	s	VOLUME
Hex 2-input Gates	'805		•	A				3
Quadruple 2-Input Gates	'02	•			•	•	•	2
			•	٠				3
	1002		A					
Trials Offeren Catal	'27	•				•		2
Triple 3-Input Gates	21		•	•				3
Dual 4-Input Gates with Strobe	'25	•						2
Dual 5-Input Gates	'260						٠	1.

			TECH	NOLC	GY			
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME	
Hex Inverters	'14	•			٠		- ,	
	'19				•			
Octal Inverters	[.] 619				٠			
	'13	•			•			
Dual 4-Input Positive-NAND	'18				•		2	
Triple 4-Input Positive-NAND	618				٠			
Quadruple 2-Input Positive-NAND	'24				•			
	132	•			•	٠		

CURRENT-SENSING GATES

		TECH	NOL		
DESCRIPTION	TYPE	ALS	AS	LS	VOLUME
Hex	·63			•	2

DELAY ELEMENTS

DESCRIPTION	ТҮР		TYP TECHNOLOGY				VOLUME	
		ALS	AS	LS				
Inverting and Noninverting Elements,	'31				2			
2-Input NAND Buffers					-			

Denotes available technology.

- A Denotes valuable technology.
 A Denotes "A" suffix version available in the technology indicated.
 B Denotes "B" suffix version available in the technology indicated.
- S Denotes supplement to data book.

GATES, EXPANDERS, BUFFERS, DRIVERS, AND TRANSCEIVERS

AND-OR-INVERT GATES

GATES, BUFFERS, DRIVERS, AND BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

		TECHNOLOGY							
DESCRIPTION	TYPE	STD TTL	ALS	AS	н	L	LS	s	VOLUME
2-Wide 4-Input	155				٠		•		
4-Wide 4-2-3-2 Input	'64							•	
4-Wide 2-2-3-2 input	'54		_		٠				1
4-Wide 2-Input	′54	•						—	2
4-Wide 2-3-3-2 input	'54		_	—		•	•		1
Dual 2-Wide 2-Input	'51	•			•	•	•	•	1

AND-OR-INVERT GATES WITH OPEN-COLLECTOR OUTPUTS

		TI	ECHNO			
DESCRIPTION	TYPE	STD TTL	ALS	AS	s	VOLUME
4-Wide 4-2-3-2-Input	65				٠	2

EXPANDABLE GATES

		TECHNOLOGY						
DESCRIPTION	TYPE	STD TTL	ALS	AS	н	ι	LS	VOLUME
Dual 4-Input Positive-NOR With Strobe	[,] 23	•						
4-Wide AND-OR	.52				•			
4-Wide AND-OR-INVERT	'53	•			•			· ·
2-Wide AND-OR-INVERT	'55				•	•	•	1
Dual 2-Wide AND-OR-INVERT	⁷ 50	•			٠			

PA	NI	DE	RS	

EX

DESCRIPTION	TYPE	STD	ALS	AS	н	VOLUME
Dual 4-Input	'60	٠			٠	
Triple 3-Input	'61				•	2
3-2-2-3-Input AND-OR	`62				•	

BUFFER AND INTERFACE GATES WITH OPEN-COLLECTOR OUTPUTS

	_		TECH	NOLO	DGY			
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME	
	'07	٠			· · ·		2	
Hex	'17	•					'	
	'35		•				35	
	1035		•				3	
	.06	•					2	
Hex Inverter	16	•					1 4	
	1005		•				3	
	26	٠					2	
	.38	•			•	•	4	
Quad 2-Input Positive-NAND	36		A				3	
	·39	•					2	
	1003		A				3	
Quad 2-Input Positive-NOR	'33	•			•		2	
	32		A				3	

BUFFERS, DRIVERS, AND BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

			TECHN	OLOG	3Y	_		
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME	
Noninverting	'743	-	•				ĊF	
Octal Buffers/Drivers	.757			•				
Octal Butters/Drivers	'760			•			35	
	'742		•			-	CF	
Inverting Octal Buffers/Drivers	756			٠				
Butters/Drivers	763			٠			1	
Inverting and Noninverting Octal Buffers/Drivers	.762			•			35	
Noninverting Quad Transceivers	'759	r		٠			7	
Inverting Quad Transceivers	'758			٠				

			TEOL		~		
			TECHI	T	GY	_	-
DESCRIPTION	TYPE	STD TTL	ALS	AS		s	VOLUME
	'241				•	•	2
	247		A	•	L		3
	-244				•	•	2
			A	•		L	3
	'465		L		•		2
Noninverting			A				3
Octal Buffers/Drivers	'467				•		2
			A				3
	'541			L	•		2
			•			<u> </u>	
	12411		•	<u> </u>		_	3
	1244		A		<u> </u>	<u> </u>	
	231			•			
	'240				٠	•	2
		<u> </u>	A	•		-	3
	'466				•	L	2
Inverting Octal			A	<u> </u>		ļ	3
Buffers/Drivers	'468				•	+	2
			A				3
	'540				•	Ļ	2
			•				
	1240		•				3
Inverting and Noninverting Octal Buffers/Drivers	'230			•			
	245				•		2
Octal Transceivers	245		A	•		L	3
	1245		A				35
	'365	A			A	[2
Noninverting	305		•				3
Hex Buffers/Drivers	'367	A			A		2
			A .				3
	'366	A			A		2
Inverting			•			I	3
Hex Buffers/Drivers	'368	Α			A	L	2
		-	•	-		-	3
Quad Buffers/Drivers	125	•			A		
with independent	126	•			Α		2
Output Controls	425	•					
	'426	•				ļ	
Noninverting	'243				•	-	
Quad Transceivers			A	•			3
	1243		•				_
Inverting	'242	-			٠		2
Quad Transceivers			A	٠	ļ	ļ	3
	1242	F				L	
Quad Transceivers with Storage	226					•	
12-Input NAND Gate	134					•	2
Controller and Bur Driver							

50-OHM/75-OHM LINE DRIVERS

428

•

		т				
DESCRIPTION	TYPE	STD TTL	ALS	AS	s	VOLUME
Hex 2-Input Positive-NAND	'804		•	A		
Hex 2-Input Positive-NOR	'805		•	A		3
Hex 2-Input Positive-AND	⁻ 808		•	A] 3
Hex 2-Input Positive-OR	1832		٠	A		
Quad 2-Input Positive-NOR	128	٠				
Dual 4-Input Positive-NAND	140				٠	1 ²

CF Denotes Contact Factory

Controller and Bus Driver

for 8080A System

- Denotes available technology.
- Denotes planned new products.

Ŧ

Denotes very low power. Denotes "A" suffix version available in the technology indicated. Á S Denotes supplement to data book.

1-8

BUFFERS, DRIVERS, TRANSCEIVERS, AND CLOCK GENERATORS

BUFFERS, CLOCK/MEMORY DRIVERS

OCTAL BI-/TRI-DIRECTIONAL	BŲS	TRANSCEIVERS
---------------------------	-----	--------------

			TECH	INOL	OGY	,		
DESCRIPTION	TYPE	STD TTL	ALS	AS	н	LS	s	VOLUME
Hex 2-input Positive-NAND	'804		•	Α				
Hex 2-Input Positive-NOR	'805		•	А		<u> </u>]
Hex 2-Input Positive-AND	'808		٠	A]
Hex 2-Input Positive-OR	'832		•	A				3
Hex Inverter	'1004		٠	•]
	'34			٠				
Hex Buffer	1034		•	•		_ · ·]
	'37	•				٠	٠	2
Quad 2-Input Positive-NAND	37		A					3
	1000		A	•				3
		•				•		2
	'28		A				Γ	
Quad 2-Input Positive-NOR	1002		A					-
	'1036			•				
Quad 2-Input Positive-AND	1008		A	•				
Quad 2-Input Positive-OR	1032		A	•				3
Triple 3-Input Positive-NAND	1010		A			· · ·		1
Triple 3-Input Positive-AND	1011		A		—		Γ	1
Triple 4-Input AND-NAND	'800							1
Triple 4-Input OR-NOR	'802						-	
		•			•	•	٠	2
Dual 4-Input Positive-NAND	'40		A					3
and a mport control total	1020		A				1	1 3
Line Driver/Memory Driver with Series Damping Resistor	'436						•	2
Line Driver/Memory Driver	'437	1	-	<u> </u>	T -		•	1

81-/TRI-DIRECTIONAL BUS TRANSCEIVERS AND DRIVERS

	TYPE		TE	CHNO	LOGI	(
DESCRIPTION	OF OUTPUT	TYPE	ALS	AS	LS	s	VOLUME	
Quad with Bit Direction	3-State	'446			٠			
Controls	3-State	'449			٠			
	oc	'440			٠			
	oc	'441			٠			
	3-State	'442			٠	[2	
Quad Tridirection	3-State	'443			٠			
	3-State	'444			٠	—	1	
	OC	'448			٠	<u> </u>	1	
4-Bit with Storage	3-State	'226				٠	1	
Controller and Bus Driver for 808	BOA Systems	'428				•	4	

OCTAL BUS TRANSCEIVERS/MOS DRIVERS

DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
	'2620			٠			
Inverting Outputs, 3-State	'2640						3
	'2623			٠			3
True Outputs, 3-State	2645						

OCTAL BUFFERS AND LINE DRIVERS WITH INPUT/OUTPUT RESISTORS

				TE	۲			
DESCRIPTION		TYPE	STD TTL	ALS	AS	LS	s	VOLUME
Input Resistors	Inverting Outputs	'746						
input nesistors	Noninverting Outputs	'747						CF
Output Resistors	Inverting Outputs	2540						CF
Output Hesistors	Noninverting Outputs	2541		•				

Denotes available technology.

▲ Denotes planned new products. A Denotes "A" suffix version available in the technology indicated.

S Denotes supplement to data book.

Texas 🖑 Instruments
POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

		TYPE		TEC	HNOL	OGY														
DESCRIPTION		OF	TYPE	ALS	AS	LS	VOLUME													
DESCRIPTION		OUTPUT	TYPE	ALS	AS	LS	VOLUME													
				A	4		3													
		3 State	245				2													
				A	•		35													
		oc	621	<u> </u>			2													
						<u> </u>														
	Low	3-State	·623	A	•	-	35													
12 mA/24 mA/48 mA/64 mA	Power			L		•														
Sink, True Outputs		OC. 3-State	639	A	•		3													
Sink, The Outputs		OC, 3 State	000			٠	2													
			105.0		٠		35													
		3 State	'652			•	2													
					<u> </u>		3													
		OC, 3-State	.654				2													
						<u> </u>	<u> </u>													
	Very Low	oc	'1621		<u> </u>															
	Power	3-State	1623		I	L	3													
		OC. 3-State	1639	•	L															
			·620	A	•		35													
		3-State	620			•	2													
				A		-	35													
		oc	·622			•	2													
							3													
12 mA/24 mA/48 mA/64 mA	Low	OC. 3-State	638	A	•		-													
Sink, Inverting Outputs	Power	00.0000				٠	2													
				•	•		35													
		3 State	1851				2													
					+		3													
		OC. 3-State	'65 3	<u> </u>	 	+ •	2													
				·	<u> </u>		<u> </u>													
	Very Low	3-State	1620			L	1													
		oc	1622	•			3													
	Power	OC. 3 State	'1638																	
				A			1													
	LOW	oc	641			•	2													
				A	•	<u> </u>	3													
12 mA/24 mA/48 mA/64 mA	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	3 State	645	<u> </u>		h	
Sink, True Outputs						•	2													
	Very Low	oc	1641																	
	Power	3 State	1645	A			3													
				A	٠		1													
	Low	3-State	640				2													
12 mA/24 mA/48 mA/64 mA				A	•		3													
	Power	OC	'842	<u> </u>	-															
Sink, Inverting Outputs					-	•	2													
	Very Low	3-State	1640	A		ļ	1													
	Power	oc	'1642				3													
				A	•															
	Low	3 State	·643			•	2													
				A	•		3													
12 mA/24 mA/48 mA/64 mA	A Rower		·644	<u> </u>	۲,		2													
	Power	oc																		
Sink, True and																				
Sink, True and	Very Low	3-State	1643				3													
Sink, True and			1643 1644				3													
Sink, True and Inverting Outputs	Very Low	3-State OC	1644	<u> </u>	•		3 35													
Sink, True and Inverting Outputs 	Very Low	3-State			•	- -														
Sink, True and Inverting Outputs	Very Low	3-State OC 3-State	1644 645	A	•	•	3\$ 2													
Sink, True and Inverting Outputs 	Very Low	3-State OC	1644		•		35 2 3													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA/24 mA/48 mA/64 mA	Very Low	3-State OC 3-State	1644 645	A		•	35 2 3 2													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA/24 mA/48 mA/64 mA True Outputs	Very Low	3-State OC 3-State OC	1644 645 647	A	•	•	35 2 3 2 35													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA 24 mA/48 mA/64 mA True Outputs Registered with Multiplexed	Very Low	3-State OC 3-State	1644 645	A			35 2 3 2													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA-24 mA-48 mA-64 mA True Outputs Registered with Multiplexed 12 mA-24 mA-48 mA-64 mA	Very Low	3-State OC 3-State OC 3-State	-1644 -645 -647 -648	A		•	35 2 3 2 35													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA-24 mA-48 mA-64 mA True Outputs Registered with Multiplexed 12 mA-24 mA-48 mA-64 mA	Very Low	3-State OC 3-State OC	1644 645 647			•	3\$ 2 3 2 35 2 2													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA 24 mA/48 mA/64 mA True Outputs Registered with Multiplexed	Very Low	3-State OC 3-State OC 3-State	-1644 -646 -647 -648 -649		•	•	35 2 3 2 35 2 35 2 3 2 2													
Sink, True and Inverting Outputs Registered with Multiplex 12 mA-24 mA-48 mA-64 mA True Outputs Registered with Multiplexed 12 mA-24 mA-48 mA-64 mA	Very Low	3-State OC 3-State OC 3-State	-1644 -645 -647 -648			•	35 2 3 2 35 2 35 2 3													

FLIP-FLOPS

QUAD AND HEX FLIP-FLOPS

			T	ECHNO	LOC	Ϋ́	_	_	
DESCRIPTION	TYPE	STD TTL	ALS	AS	н	L	LS	s	VOLUME
	'73						Α		
	'76						A		
	78						Α	<u> </u>	
	'103				٠				2
	106				٠				2
	'107						Α		
Dual J-K Edge-Triggered	108				٠				
	109	•					Α		
	109		*	•				_	35
	112						Α	٠	2
	112		A						3
	1113						Α	٠	2
	175		Α						3
	114						Α	•	2
	114		А						3
	'70	•							
Single J-K Edge-Triggered	'101				•				
	102				٠				
	'73	•		1	•	٠			
Dual Pulse-Triggered	'76	•			٠				
Duai Pulse-Triggered	'78				٠	٠			
	'107	•						-	
	71				•	•			2
Circle D. L. Transati	.72	•			٠	٠			
Single Pulse-Triggered	104	•							
	105	•							
Dual J-K with Data Lockout	.111	•							
Single J-K with Data	'110	•							
	'74	•			•	٠	A	•	
Dual D-Type	1.14		A	•	_				35

					TECH	NOLO	GY					
DESCRIPTION	NO. OF	OUTPUTS	TYPE	STD	ALS	AS	LS	s	VOLUME			
	FFs			TTL								
			'174	٠			•	٠	2			
	6	0	1/4		•	•			3			
D Туре			'378				٠					
	4			171				٠		2		
				a, ā	'175	٠			•			
	4	u, u	175		•	•			35			
			'379				•					
		-	276	•					2			
J-К	4	Q	Q	Q	٥	'376	٠					2

OCTAL. 9-BIT, AND 10-BIT D-TYPE FLIP-FLOPS

					TECH	NOLC	GY		
DESCRIPTION	NO. OF BITS	OUTPUT	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
		3-State	'374		•	٠			3
True Data	Octal	3-State	3/4				•	٠	2
		3-State	'574		٠	•			3
		2-State	[.] 273		•				3
		2.3tate	2/3	•			٠		2
True Data with Clear	Octal	3-State	1575		•	٠		-	
		3-State	'874		•	•			3
	[3-State	'878		•	٠			
True with Enable	Octal	2-State	'377				•		2
		3-State	1534		•	•			
Inverting	Octal	3-State	'564		•				
		3-State	'576		•	٠			
Inverting with Clear	Octai	3-State	'577		•	•			
inverting with clear	Octa	3-State	'879		•	٠			3
Inverting with Preset	Octal	3-State	⁻ 876		•	٠			3
True	Octal	3-State	'825			•			
Inverting	Octal	3-State	'826						
True	9-Bit	3-State	'823						
Inverting	9-Bit	3 State	'824						
True	10-Bit	3-State	821			٠			
Inverting	10-Bit	3-State	'822			•			

Denotes available technology.
 Denotes planned new products.
 A Denotes "A" suffix version available in the technology indicated.
 B Denotes "B" suffix version available in the technology indicated.

- S Denotes supplement to data book.

Texas Instruments POST OFFICE BOX 225012 . DALLAS' TEXAS 75265

TECHNOLOGY

LATCHES AND MULTIVIBRATORS

QUAD LATCHES

				TECH	NOLC	GY	-	
DESCRIPTION	OUTPUT	TYPE	STD TTL	ALS	AS	ι	٤S	VOLUME
Dual 2-Bit	2-State	⁷⁵	•			٠	•	
	2-State	'77	•			٠	•	2
Transparent	2-State	'375					٠	-
SR	2 State	'279	•				A	

RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

			TECH				
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	ι	VOLUME
	122	٠		—	•	٠	
Single	130	٠					
	'422				•	-	2
Dual	123	٠			•	•	
	'423		-	1	•	-	

DESCRIPTION	NO. OF BITS	OUTPUT	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
			'268		[•	2
Transparent	Octal	3-State	·373				•	•	-
		3 State	573		•	•			3
		2-State	100	•				Γ	2
Dual 4 Bit	Octal	2-State	116	•		<u> </u>			2
Transparent		3-State	'873		•	•			
		3-State	'533		•	•	-		
Inverting Transparent	Octai	3-State	563		•	-			
		3-State	580		٠	•			3
Dual 4-Bit Inverting Transparent	Octal	3-State	.880		•	•			
		3-State	'604				٠		

OCTAL, 9-BIT, AND 10-BIT LATCHES

.......

-

DITYPE OCTAL, 9-BIT, AND 10-BIT RAD-BACK LATCHES

				TECH	NOLO	GY		
DESCRIPTION	NO. OF BITS	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
Edge-Triggered Inverting and Noninverting	Octal	'996		•				
	Octai	·990		٨			—	ĺ
Transparent True	9-B(t	´992						
	10-8it	1994		▲				
	Octal	'991			1		1	CF
Transparent Noninverting	9-Bit	'992						Cr
	10-Bit	'994		٨				
Transparent with Clear	0	666						
True Outputs	Octai	000		•				
Transparent with Clear Inverting Outputs	Octa)	'667		•				

Dual 4-Bit		x.orare	100	-	_				2
	Octal	2-State	1116	•	<u>г</u> .,	Г		_	· ·
Transparent		3-State	'873		•	٠			
		3-State	'533		•	•			
Inverting Transparent	Octai	3-State	563		٠				
		3-State	580		٠	٠			3
Dual 4-Bit	Octal	3-State	·880		•	•			
Inverting Transparent		3-State	'604		-		•		
					L				
2-Input Multiplexed	Octai	00	'605				٠		
2-mput multiplexed	Uctar	3-State	'606				•		2
		OC	[.] 607		[٠		
Addressable	Octal	2-State	259	٠			٠		
Addressaole	Octai	2.3(ate	259						3
Multi Mode Buffered	Octai	3-State	'412					٠	2
True	Octal	3 State	'845			•			
Inverting	Octal	3-State	'846						
True	9-Bit	3-State	843		•	•			35
Inverting	9-Bit	3-State	'844		•	•			15
True	10-Bit	3-State	841			٠			
Inverting	10-Bit	3-State	842			٠			

MONOSTABLE MULTIVIBRATORS WITH SCHMITT TRIGGER INPUTS

			TECH				
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
Single	121	•					2
Dual	221	•			۲		· ·

1

CF Denotes contact factory.

Denotes available technology.

۸ Denotes planned new products.

S Denotes supplement to data book.

₿4

REGISTERS

1

	NO.		MO	DES				TE	CHNO	LOG	Y	_	
DESCRIPTION	OF BITS	S.R	۶۰L	LOAD	ногр	TYPE	STD TTL	ALS	AS	ι	LS	s	VOLUME
Sign-Protected		х		х	х	'322					Α		
		х	х	х	х	198	٠						2
Parallel-In,		×	x	×	x	·299			_		•	٠	
Parallel-Out.	8		^		<u>^</u>			•	•				3
Bidirectional		x	x	x I	×	323					٠		2
		Ĺ	î	<u>^</u>	<u> </u>	515		•	•			-	3
	4	×	x	× I	x	194	•				A	٠	2
	,	Ŷ	Â	Ĺ	Â				4				3
Parallel-In, Parallel-Out,	4	×	×	x	x	'671					•		
Registered Outputs	1	x	×	x	x	672					•		2
	8	x		x	x	.199	•	I				-	1
	5	x		x		.96	•			•	•		1
				-			А			•	8		2
		×		×		.95			•				35
Parallel In.		х		x		'99				•			
Paratiel Out		x		x	х	178	•						2
	4	x		x	х	179	•		_			-	i
		×					•				A	•	2
		*		×		195						-	3
		х		х		295					В		2
		x		x		'395				_	A		2
		×		×		.395							3
Serial-In	16	х		х	х	673				-	٠		2
Parailei-Out	8	x				164	•			٠	•		2
Farallel-Out	8	Î.				164							3
	15	X		х	х	·674					•		2
Parallel In,		x		×	x	165	•				А		2
Parallel-In, Serial-Out	в			<u>^</u>	^	100							3
senarout	8	×		x	×	166	•				A		2
		L		<u>^</u>	L^	100		•					3
Senal-In,	8	X				<i>'</i> 91	A			•	•		2
Senal-Out	4	X		х		´94	•						Ĺ

SIGN-PROTECTED REGISTERS

	NO. MODES			TEC	HNOL	OGY				
DESCRIPTION	OF	~	-	R	9	TYPE	ALS	AS	LS	VOLUME
	BITS	Ś	¢,	2	£		ALS	AS	1.5	
Sign-Protected Register	8	X		x	х	'322			Α	2

REGISTER FILES

			TI	TECHNOLOGY				
DESCRIPTION	OUTPUT	TYPE	STD TTL	ALS	AS	LS	VOLUME	
8 Words × 2 Bits	3-State	'172	•					
4 Words x 4 Bits	oc	'170	•			•	2	
4 Words × 4 bits	3-State	670				٠		
Dual 16 Words × 4 Bits	3-State	'870					2	
Duai 16 words × 4 Bits	3-State	'871					1 3	

OTHER REGISTERS

			TECH	NOLO	G٧				
DESCRIPTION	туре	STD TTL	ALS	AS	L	LS	s	VOLUME	
	.98				•			,	
O and the Manhalanana	1298	•				•		'	
Quadruple Multiplexers with Storage	296			•				35	
	-398				•				
	-399				•			2	
8-Bit Universal Shift						•	•		
Registers	299		•					3	
Quadruple Bus-Buffer	173		_				A	<u> </u>	
Registers		•				^		2	
Octal Storage Register	396					•		1	

	NO.			TEC	HNOL	OGY													
DESCRIPTION	OF BITS	OUTPUTS	TYPE	ALS	AS	LS	VOLUME												
Parallel-In, Parallel-Out	4	3-State	[.] 671			•													
with Output Latches	4	3-State	'672			•													
	16	2-State	'673			٠													
Serial-in, Parallel-Out		Buffered	'594			•													
with Output Latches	8	3-State	'595			•													
										8	8				0C	'596			•
		oc	'599			•	2												
Parallel-In, Serial-Out,	8	2-State	'597			•													
with Input Latches	8	3-State	589			•													
Paralle! I/O Ports with Input Latches, Multiplexed Serial Inputs	8	3-State	-598			•													

- Denotes available technology.
 Denotes planned new products.
 A Denotes "A" suffix version available in the technology indicated.
 B Denotes "B" suffix version available in the technology indicated.
 S Denotes supplement to data book.

FUNCTIONAL INDEX

COUNTERS

SYNCHRONOUS COUNTERS - POSITIVE EDGE TRIGGERED

		PARALLEL			TECH	NOL	DGY			
DESCRIPTION		LOAD	TYPE	STD	ALS	AS	ι	LS	s	VOLUME
			_	•		_		A		2
		Sync	160		A	•				35
				•			-	A	•	2
		Sync	'162		A	٠				35
Decade		Sync	'560		A					3
		Sync	'668				-	٠	1	
		Sync	'690					٠		1
		Sync	692		<u> </u>			٠		2
								В	•	1
		Sync	168		8	•			t	35
			<u> </u>	•		-	\vdash		-	2
		Async	190		•		\vdash		1	3
Decade Up/Dov	vn.			•	-		•		t	2
		Async	192			-	-		-	
		Sync	1568		A	<u> </u>			-	3
		Sync	696		+ ^	-	\vdash	•	+	
		Sync	'698			-	⊢	÷	+	{
Decade Rate	1	Async	030		<u> </u>		+	<u>-</u>	-	2
Multipler,	N10	Set-to-9	167	•	1				1	- ²
multipler.	NIU	Set-to-9			-		-	A		Į
	Sync	161	•	A	•	-	A	+	35	
			-	•	A	•			•	
		Sync	163	-	A	•	⊢	A	•	2
4-Bit Binary		Sync	561	<u> </u>	A		-			3
		Sync	669				\vdash	•		1
		Sync	691	+		t		•	1	1 .
		Sync	·693	1			t -	•	+ -	2
							-	B	•	
		Sync	169		8	•		-		35
				•		t	t	•	+	2
		Async	191	<u> </u>	•	<u> </u>	$t \rightarrow t$			3
4-Bit Binary			1	•	-		•	•	1	2
Up-Down		Async	193		•			-		
		Sync	'569		A		1	1		3
		Sync	697		-		+	•	+-	-
		Sync	699	-					1	1
6 Bit Binary	1	0,110		+ · · ·	-		1	+	+	2
Rate Multipler,	N2		'97	•						
8-Bit Up Down		Async CLR	867			•				3
a-arc op pown		Sync CLR	1869				T		1	3

ASYNCHRONOUS COUNTERS (RIPPLE CLOCK) - NEGATIVE-EDGE TRIGGERED

	DADAULT			TECH	NOL	DGY			
DESCRIPTION	LOAD	TYPE	STD TTL	ALS	AS	ι	LS	s	VOLUME
	Set to-9	.90	A			٠	•		
		'68					•]
Decade	Yes	176	•						1
	Yes	196	٠				•	•	1
	Set to 9	'290	•				•	\square	1
	None		A			٠	•		1
		.69					•		2
4-Bit Binary	Yes	177	•						1 2
	Yes	197	•				•	•	1
	None	293	•	1		-	•		1
Divide-by 12	None	'92	A			-	•		1
	None	390	•	1			•	-	1
Dual Decade	Set-to-9	'490	•				•		1
Dual 4 Bit Binary	None	393	•	1			•	-	1

8-BIT BINARY COUNTERS WITH REGISTERS

	TYPE		TEC			
DESCRIPTION	OF OUTPUT	TYPE	ALS	AS	LS	VOLUME
Parallel Register	3 State	1590			•	
Outputs	OC	'591			٠	
Parallel Register Inputs	2 State	'592			•] '
Parallel I/O	3-State	1593			•	1

FREQUENCY DIVIDERS, RATE MULTIPLIERS

DESCRIPTION		Т				
	TYPE	STD TTL	ALS	AS	LS	VOLUME
50-to-1 Frequency Divider	'56				٠	
60-to-1 Frequency Divider	'57				•	_
60 Bit Binary Rate Multiplier.	.97	٠				
Decade Rate Multiplier,	167	•			1	

Denotes available technology.

Denotes planned new products.
 A Denotes "A" suffix version available in the technology indicated.
 B Denotes "B" suffix version available in the technology indicated.

S Denotes supplement to data book.

DECODERS, ENCODERS, DATA SELECTORS/MULTIPLEXERS AND SHIFTERS

	TYPE			TEC	CHNO	LOC	Y		
DESCRIPTION	OF	TYPE	STD	ALS	AS	T.	LS	s	VOLUME
	OUTPUT		TTL	1.0	1 ~~			<u>۲</u>	
	2-State	150	•						2
	3-State	'250			•			1	
16 -To-1	3-State	'850		t	•				35
	3-State	'851			•	t	t	-	1
Dual 8-To-1	3-State	'351	•				 	1	
			A		-		•	•	2
	2-State	151		•	•	1		1	35
	2-State	152	A				•	1	
			٠		1-		•	•	2
8-To-1	3-State	251	-	•				-	3
	3-State	'354		<u> </u>	-	1	•		1
	2-State	'355		-		-	•		1
	3-State	'356				\vdash	·	1	2
	OC	'357			-		-	+	+ ·
		307		<u> </u>	t	•			1
	2-State	153	-		•	+-			3
Dual 4-To-1				-	•	<u>+</u>	•		2
	3-State	.523		•	•		•	•	
		-			•	-		-	3
	2-State	'352		<u> </u>			•	<u> </u>	2
				•	•		<u> </u>	ł	3
	3-State	'353		L			•	L	2
				•	•	L.,			3
	3-State	'604				L .	٠	L	
Octal 2-To-1 with Storage	OC	605					•		
Octal 2-10-1 With Storage	3-State	'606					•		2
	OC	'607					•]
	2-State	·98				•			
	2-State	·298	•				•		2
Quad 2-To-1 with Storage	z-State	298			•				35
	2-State	'398		-		-	•		
	2-State	.399			-		•		2
_			•	1		•	•	•	1
	2 State	'157		•	•			1	3
					<u> </u>		•	•	2
	2-State	158		•	•			-	3
Quad 2-To-1				<u> </u>	<u> </u>		в	•	2
	3-State	⁻ 257		•	•			-	3
				<u> </u>	1		8	•	2
	3-State	´258		•	•	-		<u> </u>	- <u>-</u>
6-to-1 Universal		-		-	-	\vdash	-	-	3
Multiplexer	3-State	'857		•	•				ľ

DECODERS/DEMULTIPLEXERS

	TYPE			TE	CHNO	NO	3Y		
DESCRIPTION	OF	TYPE	STD	ALS	AS	L	LS	s	VOLUME
	OUTPUT		TTL	ALO	~3		La	3	
4-To-16	3-State	154	٠			٠			
4-10-10	OC	159	٠]
4 To-10 BCD-To-Decimal	2-State	42	A			٠	•		1
4 To-10 Excess 3-To-	2-State	'43	Α						2
Decimal	2.21916	43	~			•			
4-To-10 Excess 3-Gray-	2-State	.44	Δ						
To-Decimal	2-5(ate	44	A			•			
3-To-8 with Address		131		•					3
Latches	2-State '137	1127		٠	•				3
catches		137					٠		2
	2-State	138		•					3
3-To-8	2-31818	130					٠	٠	2
	3-State	⁻ 538							3
	2 6	139		•	•				3
Dual 2-To-4	2-State	139					Α	٠	
Duar 2-10-4	2-State	155	٠				Α		2
	OC	156	•				٠		
Dual 1 To-4 Decoders	3-State	⁻ 539							3

CODE CONVERTERS

		TECHNO	JLOGY	
DESCRIPTION	TYPE	STD	s	VOLUME
6-Line-BCD to 6-Line Binary, Or 4-Line to 4-Line BCD 9's/BCD 10's Converters	184	•		2
6-Bit-Binary to 6-Bit BCD Converters	185	A		1
BCD-to-Binary Converters	'484		A	
Binary-to-BCD Converters	485		A	4

PRIORITY ENCODERS/REGISTERS

		T	ECHN	DLOG	Y		
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	VOLUME	
Full BCD	'147	•			•		
Cascadable Octal	'148	•			•	1	
Cascadable Octal with 3-State Outputs	'348				٠	1 2	•
4-Bit Cascadable with Registers	278	•					

SHIFTERS TECHNOLOGY DESCRIPTION OUTPUT TYPE STD VOLUME s ALS AS L LS TTL 4-Bit Shifter 3-State '350 . 2 Parallel 16 Bit Multi-Mode 3 State [.]897 4 ۸ Barrel Shifter

Denotes available technology.

- Denotes available technology:
 Denotes planned new products.
 Denotes "A" suffix version available in the technology indicated.
 Denotes "B" suffix version available in the technology indicated.
 S Denotes supplement to data book.

DISPLAY DECODERS/DRIVERS, MEMORY/MICROPROCESSOR CONTROLLERS, AND VOLTAGE-CONTROLLED OSCILLATORS

OPEN-COLLECTOR DISPLAY	DECODERS	/DRIVERS
------------------------	----------	----------

	OFF-STATE			TECH	NOLO			
DESCRIPTION	OUTPUT VOLTAGE	TYPE	STD TTL	ALS	AS	L	LS	VOLUME
	30 V	'45	•					
	60 V	'141	•					1
BCD-To-Decimal	15 V	145	•				•	1
	7 V	'445					•	1
	30 V	·46	A			•		1
	15 V	'47	A		<u> </u>	•	•	1
	5.5 V	'48	٠			—	٠	1.
	5.5 V	'49	•				•	2
	30 V	246	•					1
BCD-To-Seven-Segment	15 V	'247	•				•	1
	7 V	'347		-		-	•	1
	7 V	'447					•	1
	5.5 V	'248	•				•	1
	5.5 V	'249	•				•	1

OPEN COLLECTOR DISPLAY DECODERS/DRIVERS WITH COUNTERS/LATCH

		TECI			
DESCRIPTION	TYPE	STD TTL	ALS	AS	VOLUME
BCD Counter/4-Bit Latch/BCD-To-Decimal Decoder/Driver	-142	•			
BCD Counter/4-Bit Latch/BCD-To-Seven-Segment Decoder/Lad Driver	'143	•			2
BCD Counter/4-Bit Latch/BCD-To-Seven-Segment Decoder/Lamp Driver	·144				

VOLTAGE-CONTROLLED OSCILLATORS

		DESCRIP	TION				TECHN	DLOGY	
No. VCOs	COMP'L	ENABLE	RANGE	Rext	f _{max} MHz	TYPE	LS	s	VOLUME
Single	Yes	Yes	Yes	No	20	624	•		
Single	Yes	Yes	Yes	Yes	20	'628	•		1
Dual	No	Yes	Yes	No	60	'124		•	1
Dual	Yes	Yes	No	No	20	626	٠		2
Dual	No	No	No	No	20	′627	•		1
Dual	No	Yes	Yes	No	20	'629	•		1

TECHNOLOGY TYPE VOLUME DESCRIPTION ALS AS LS S System Controllers For 8080A '428 . System Controller, Universal 482 ٠ 4 System Controllers, Universal (or For 888) 890 ۸ Transparent, 4K, 16K 600 A Memory Burst Modes 64K '601 Α Refresh 4K, 16K Cycle Steal, 602 Α Controllers Burst Modes 64K 603 Α Memory Cycle Controller '608 ٠ 2 3-State 612 ٠ Memory Mappers OC 613 . Memory Mappers 3-State 610 . With Output Latches oc 611 . Multi-Mode Latches (8080A Applications) '412 .

MEMORY/MICROPROCESSOR CONTROLLERS

CLOCK GENERATOR CIRCUITS

			TECH	NOLC	ΟGΥ		
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
Quadruple Complementary-Output Logic Elements	[.] 265	•					
Dual Pulse Synchronizers/Drivers	'120	•					1
	'320			— —	•		2
Crystal-Controlled Oscillators	'321				•		1
Digital Phase-Lock Loop	297				•		
Programmable Frequency	'292				•		
Dividers/Digital Timers	'294				•		1
Triple 4-Input AND/NAND Drivers	'B00						3
Triple 4-Input OR/NOR Drivers	1802] '
Dual VCO	'124					•	2

GENERAL INFORMATION

1

	l							<u> </u>			\square]	11	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
RESUL	-		AVC				1040			~ ~ ~				
REJUL		Displ	LATS	USING	240	, 24/	, 248	, 24	9, LS	247,	1524	B, LS	249, '	L\$447
	1				, 240	, 24/ 	, 248	;, 24: 	, ts	247, ·	LS24		249, ·	LS447

RESULTANT DISPLAYS USING '46A, '47A, '48, '49, 'L46, 'L47, 'LS47, 'LS48, 'LS49, 'LS347

Denotes available technology.

▲ Denotes planned new products.

A Denotes "A" suffix version available in the technology indicated.

COMPARATORS AND ERROR DETECTION CIRCUITS

				4-BIT (COMPA	RATO	RS					
	DI	SCRIP	NON				TEC	HNOL	OGY			
P = Q	P>Q	P <q< th=""><th>OUTPUT</th><th>OUTPUT</th><th>TYPE</th><th>STD TTL</th><th>ALS</th><th>AS</th><th>L</th><th>LS</th><th>s</th><th>VOLUME</th></q<>	OUTPUT	OUTPUT	TYPE	STD TTL	ALS	AS	L	LS	s	VOLUME
Yes	Yes	No	2-State	Yes	· 8 5	•			٠	•	٠	2

8-BIT COMPARATORS DESCRIPTION TECHNOLOGY OUTPUT TYPE VOLUME P=Q P=Q P>Q P>Q OUTPUT AS LS INPUTS ALS ENABLE Yes No No No OC Yes .518 ٠ Yes No No No 520 ٠ 3 2-State Yes 20-kΩ No Yes No No oc Yes 522 ٠ Pull-Up Yes 2-State No Yes No No 1682 • 2 . Yes ÔC 1683 No Yes No No oc '519 Yes No No No Yes • 3 No Yes No No 2-State Yes '521 . Yes No Yes No 2-State No '684 ٠ Yes No Yes **'69**5 . No 00 No 2 Yes 686 ٠ No Yes No 2-State Yes Standard Yes No Yes No ÓC Yes 687 • . 3 No Yes No Yes 2-State Yes 688 ٠ 2 . 3 No Yes No No oc Yes 689 2 ٠ Latched No No Yes Yes 2-State Yes '885 ٠ ₽ 3 Latched Yes Yes Yes 866 No ٠ Latched Yes P and Q

PARITY GENERATORS/CHECKERS, ERROR DETECTION AND CORRECTION CIRCUITS

		NO.		T	ECHN	DLOG	۲		
DESCRIPTION		OF BITS	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
		8	180	٠					2
Odd/Even Parity Generators/Checkers		9	[,] 280			•	•		3
		9	'286						3
	3-State	8	'636				٠		2
	OC	8	'637				٠		-
	3-State	16	616						CF
Parallet Error	OC	16	617		•				
Detection/Correction	3-State	16	630				•	r -	2
	OC	16	'631				•		2 ²
Circuits	3-State	32	'632		•				
	00	32	'633		•				2
	3-State	32	'634					3	
	OC	32	'635						

FUSE-PROGRAMMABLE COMPARATORS

DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
16-Bit Identity Comparator	*526						
12-Bit identity Comparator	1528						
8-Bit Identity Comparator and 4-Bit Comparator	·527		•				3

ADDRESS COMPARATORS

DESCRIPTION	OUTPUT LATCHED		TYPE	TECHN	VOULAR	
DESCRIPTION	ENABLE	OUTPUT	TTPE	ALS	AS	VOLUME
16-Bit to 4-Bit	Yes		'677	٠		
IO-BIT TO 4-BIT		Yes	'678	•		1
	Yes		'679	•		35
12-Bit to 4-Bit		Yes	680	•		1

GENERAL INFORMATION

1

Denotes available technology.

Denotes planned new products.

S Denotes supplement to data book.

ARITHMETIC CIRCUITS AND PROCESSOR ELEMENTS

PARALLEL BINARY ADDERS

-

DESCRIPTION	TYPE	STD TTL	ALS	AS	н	LS	s	VOLUME
1-Bit Gated	·80	٠						
2-Bit	'82	٠			—			1
4-Bit	[.] 83	A		<u> </u>		A		2
4-Bit	283	٠				•	٠	1
Dual 1-Bit Carry-Save	'183				•	•	1	1

ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK AHEAD CARRY GENERATORS

				TECH	NOLO	GY		
DESCRIPTION		TYPE	STD TTL	ALS	AS	LS	s	VOLUME
	A	281					•	
4-Bit parallel Binary	Accumulators	681				•		2
		/181	•			•	•	
4-Bit Arithmetic Lo	nie liestef	101			A			3
Function Generator		'381				A	Γ	2
Generators		301					•	
		'881			A			3
4-Bit Arithmetic Lo with Ripple Carry	4-Bit Arithmetic Logic Unit					•		2
		182	•			1	٠	2
Look-Ahead Carry	16-Bit	162			▲			3
Generators		'282			•			3
	32-Bit				•			3
Quad Serial Adder/Subtractor		'385				•	1	2
4-Bit Slice Elements		'481				•	Γ	4
8-Bit Slice Elements		'888'	T					1 *

OTHER ARITHMETIC OPERATORS

			TEC	HNOL	OGY				
DESCRIPTION	TYPE	STD	ALS	AS	н	L	LS	s	VOLUME
Quad 2-Input Exclusive-OR	'86	•				•	A	•	2
Gates with Totem-Pole	80		•						35
Outputs	'386						A		2
Quad 2-Input Exclusive-OR									1 2
Gates with Open-Collector	'136	<u> </u>		┣	<u> </u>	+—	-		
Outputs			•		1				35
Quad 2-Input Exclusive-	'266						•		2
NOR Gates	'810		•				<u> </u>		35
Quad 2-Input Exclusive-NOR Gates with Open-Collector Outputs	'811		•	•					35
Quad Exclusive OR/NOR Gates	135							•	2
4-Bit True/Complement, Element	′87				•				Ĺ

BIPOLAR BIT-SLICE PROCESSOR ELEMENTS

	CASCADABLE	CASCADABLE		TECHNOLOGY				
DESCRIPTION	TO N-BITS	TYPE	ALS	AS LS		s	VOLUME	
4-Bit-Slice	Yes	'481			٠	•		
8-Bit-Shce	Yes	1886		•			4	

MULTIPLIERS

			TECHI	NOLC	GY		
DESCRIPTION	TYPE	STD TTL	ALS	AS	LS	s	VOLUME
2-Bit-by-4-Bit Parallel Binery Multipliers	'261				•	Г	
	'274					•	
4-Bit-by-4-Bit Parallel Binary Multipliers	284	•)
	285	•					2
25-MHz 6-Bit Binary Rate Multipliers	[•] 97	٠]
25-MHz Decade Rate Multipliers	'167	•	T				1
8-Bit × 1-Bit 2's Complement Multipliers	.384		1		•		1
16-Bit Parallel Multiplier	1616			—			4

Denotes available technology.
 Denotes planned new products.
 A Denotes "A" suffix version available in the technology indicated.
 S Denotes supplement to data book.

GENERAL INFORMATION

TYPE

DESCRIPTION

MEMORIES

USER-PROGRAMMABLE READ-ONLY MEMORIES (PROM's) STANDARD PROM's ORGANIZATION

TYPE

OUTPUT

s VOLUME

READ-ONLY MEMORIES (ROM's)

		TYPE		TE	CHNO	LOGI	1	
DESCRIPTION	ORGANIZATION	OF OUTPUT	TYPE	STD TTL	ALS	AS	s	VOLUME
1024-Bit Arrays	256 × 4	oc	187	•				
256-Bit Arrays	32 × 8	oc	'88	A				1 *

RANDOM-ACCESS READ-WRITE MEMORIES (RAM's)

		TYPE			TECH	NOLO	GY		_	
DESCRIPTION	ORGANIZATION	OF OUTPUT	TYPE	STD TTL	ALS	AS	LS	s	VOLUME	
256-Bit Arrays	256 × 1	3-State	.501					•	-	
200-bit Arrays	250 × 1	oc	1301					٠	1	
			oc	·89	•					
		3-State	'189		T		A	в	4	
64-Bit Arrays	16 × 4	3-State	'219				A			
		OC	'289				A	8		
		oc	'319		T		A		1	
16-Brt Multiple-Port Register File	8 × 2	3-State	·172	•					2	
	4 × 4	oc	170	•			٠		2	
16 Bit Register File	4 × 4	3-State	'670				•			
Dual 64-Bit	16 × 4		'870		T	•		-	3	
Register Files	10 × 4	3-State	'871			•			3	

	TBP28S166	2048W × 8B	3-State	•	
	TBP38S165	2048W × 8B	3-State	•	
16K-Bit Arrays	TBP38S166	2048W × 8B	3-State		
	TBP38SA165	2048W × 88	oc	4	
	TBP38SA166	2048W × 88	oc	4	
	TBP24S81	2048W × 4B	3-State	•	
	TBP24SA81	2048W × 48	OC	•	
8K-Bit Arrays	TBP28585A	1024W × 88	3-State	•	
	TBP28S86A	1024W × 88	3-State	•	
	TBP28SA86A	1024W × 8B	oc	•	
	TBP24S41	1024W × 4B	3-State	•	4
	TBP24SA41	1024W × 4B	oc	٠	4
4K-Bit Arrays	TBP28S42	512W × 88	3-State	•	
4N-Det Arrays	TBP28SA42	512W × 8B	oc	•	
	TBP28S46	512W × 88	3-State	•	
	TBP28SA46	512W × 8B	OC	•	
1K-Bit Arrays	TBP24S10	256W × 48	3-State	•	
IN-BIT Arrays	TBP24SA10	256A × 4B	oc	٠	
	TBP185030	32W × 8B	3-State	٠	
256-Bit Arrays	TBP18SA030	32W × 8B	oc	٠	
200-bit Arrays	TBP38S030	32W × 8B	3-State		
	TNP38SA030	32W × 8B	00	•	

LOW-POWER PROM's

DESCRIPTION	TYPE	ORGANIZATION	TYPE	\$	VOLUME
	TBP28L166	2048W × 88	3-State	•	
16K-Bit Arrays	TBP38L165	2048W × 8B	3-State		1
	TBP38L166	2048W × 8B	3-State		1
0K 0	TBP28L85A	1024W × 8B	3-State	4	1
8K-Bit Arrays	TBP28L86A	1024W × 8B	3-State	•	
	TBP28L42	512W × 8B	3-State	٠	4
4K-Bit Arrays	TBP28L46	512W × 8B	3-State	٠]
0K D's 1	TBP28L22	256W × 8B	3-State	•	1
2K-Bit Arrays	TBP28LA22	256W × 8B	OC	•	
256-Bit Arrays	TBP38L030	32W × 8B	3-State		1

FIRST-IN FIRST-OUT MEMORIES (FIFO'S)

	TYPE		TE	CHN	NOG	۲	
DESCRIPTION	OF OUTPUT	TYPE	ALS	AS	LS	5	VOLUME
16 Words × 5 Bits	3-State	'225				٠	
	3-State	.555			•		
16 Words × 4 Bits	3-State	'224		_	•		
	oc	'227	-		٠		4
	oc	'228			•		
64 Words × 5 Bits	3-State	7403	•				
C4.14	3-State	236					
4 Words × 4 B⊮ts	2 State	'7401					

Denotes available technology.
 Denotes planned new products.
 A Denotes "A" suffix version available in the technology indicated.
 B Denotes "B" suffix version available in the technology indicated.

PROGRAMMABLE LOGIC ARRAYS

PROGRAMMABLE LOGI	С	ARRAYS	
-------------------	---	--------	--

DESCRIPTION	INPUTS		OUTPUTS	TYPE	ALS	NO. OF	VOLUME
		NO.	TYPE	NO		PINS	
		8	Active Low	'PAL16L8-15	•	1	
Impact PAL*	16	4	1	'PAL16R4-15	•	20	1
		6	Registered	PAL16R6-15	•		
		8		'PAL16R8-15	•		
		8	Active-Low	PALISLA	٠		
High-Performance PAL*	16	4		'PAL16R4A	٠	20	1
right of officialities PAL	10	6	Registered	PAL16R6A	•	20	1
		8	1	PAL16RBA	•	1	1
		8	Active-Low	PAL16L8A-2	٠		1
		4		'PAL16R4A-2	•	1	1
Helf-Power PAL*	16	6	Registered	PAL1686A-2	•	20	
		8	1	PAL16RBA-2	•	1	1
		8	Active-Low	PAL20L8A		1	1
		4		PAL20R4A		1	1
High-Performance PAL*	20	6	Registered	PAL20R6A		24	
		8	1	PAL2OR8A	-	1	
		8	Active-Low	PAL20L8A-2	-		1
		4		PAL20R4A-2	-	1	
Half-Power PAL*	20	6	Registered	PAL20R6A-2	-	24	
		B	negistered	PAL20RBA-2	-	-	
		10	Active-Low	PAL2018A-2			4
		4	ACOVE-LOW		A	4	
Exclusive-OR PAL*	20	<u> </u>		PAL20X4-20	A	24	1
		8	Registered	'PAL20X8-20	•	4	4
		10		'PAL20X10-20	•		4
1		8	Active-Low	PAL20L10-35	A	4	
Exclusive-OR PAL*	20	4	1	'PAL20X4-35	•	24	
		8	Registered	'PAL20XB-35	•		
		10		'PAL20X10-35	•		
		8	Active-Low	PALR19L8-25]
Registered-Input PAL*	19	4		'PALR19R4-25		24	
negetered input rint		6	Registered	PALR19R6-25		"	
		8		PALR198-25			
		8	Active-Low	'PALR19LB-40	•		1
Registered-Input PAL*	19	4		PALR19R4-40		24	1
Hegistered input FAL	19	6	Registered	'PALR19R6-40		24	
		8	1	PALR1988-40		1	1
		8	Active-Low	PALT19L8-25			1
		4		PALT19R4-25		1	
Latched-Input PAL*	19	6	Registered	PALT1986-25		24	
		8	1	PALT1988-25	-	1	
		в	Active-Low	PALT 19L8-40	-		1
		4		PALT19R4-40		1	
Latched-Input PAL*	19	6	Registered	PALT19R6-40	-	24	
		8		PALTISR8-40	-	1	
Field-Programmable		-	3-State	PALT1988-40		-	1
	14	6	3.01010			24	1

*PAL is a registered trademark of Monolithic Memories Incorporated.

•

Denotes available technology.
 Denotes planned new products.

GENERAL INFORMATION

- - -

-

-

Revisions to	the	TTL	Data	Book,	Volume	З,	1984
---------------------	-----	-----	------	-------	--------	----	------

PAGE	DATA SHEET	CHANGE		
V	Third paragraph, second line	The word "connection" to correction.		
2-27 and 2-28	'ALS10	Revised to 'ALS10A. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-31 and 2-32	'ALS11	Revised to 'ALS11A. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-35 and 2-36	'ALS12	Revised to 'ALS12A. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-47 and 2-48	'ALS22A	Revised to 'ALS22B. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-55 and 2-56	'ALS30	Revised to 'ALS30A. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-69 and 2-70	'ALS35	Production released. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-77 and 2-78	'ALS74	Revised to 'ALS74A. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-79	'AS74	electrical characteristics: IIH and IIL parameters to the following:		
		$ \begin{array}{ c c c c c c c c } \hline I_{IH} & \hline CLK \ or \ D & V_{CC} \ = \ 5.5 \ V, \ V_{I} \ = \ 2.7 \ V & \hline 20 & 20 & \mu A \\ \hline I_{IL} & \hline CLK \ or \ D & \\ \hline I_{IL} & \hline \overline{PRE} \ or \ \overline{CLR} & V_{CC} \ = \ 5.5 \ V, \ V_{I} \ = \ 0.4 \ V & \hline -0.5 & -0.5 & \mu A \\ \hline I_{IL} & \hline -1.8 & -1.8 & \mu A & \hline \end{array} $		
2-81 and 2-82	'ALS86	Production released. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-83 and 2-84	'AS95	Production released. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-87 and 2-88	'ALS109	Revised to 'ALS109A. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-89	'AS109	electrical characteristics: IIH and IIL parameter to the following:		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	'ALS136	New device. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.		
2-117	'AS139	Delete SN54AS139 and SN74AS139, 4 places each. Delete 'AS139, 2 places.		

PAGE	DATA SHEET	CHANGE
2-118	'AS139	Delete SN54AS139 and SN74AS139, 2 places each.
2-120	'AS139	Delete page.
2-124	'AS151	Production released. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.
2-139 and 2-141	'ALS/'AS161, 'ALS/'AS163	Title: SYNCHRONOUS 4-BIT BINARY COUNTERS.
2-140	'ALS/'AS160, 'ALS/'AS162	Title: SYNCHRONOUS 4-BIT DECADE COUNTERS.
2-144 and 2-145	'AS160 thru 'AS163	Production released. Data sheet printed in the Supplement to the TTL Data Book, Volume 3, 1984.
2-151	'ALS165	logic symbol: SH/LD (1) SRG8 CLK INH (15) ≥ 1 C2/ \rightarrow SER (10) 2D A (11) 1D B (12) 1D C (14) D (13) $=$ C (14) D (14) $=$ F (4) $=$ G (5) $=$ H (6) 1D (7) \overline{C}_{H}
2-152	'ALS165	logic diagram (positive logic) $BU(\overline{D} \xrightarrow{(11)} + 10)$ $CLK \xrightarrow{(10)} + 10$ $CLK \xrightarrow{(10)} + 10$ CLK (

-

REVISIONS

PAGE	DATA SHEET	CHANGE
2-154	'ALS166	timing diagram:
		typical clear, shift, load, inhibit, and shift sequences
	{	
		B
)	
		G
2-157	'ALS168A, 'ALS169A	'ALS168A and 'ALS169A are revised to 'ALS168B and
thru		'ALS169B.
2-165	'AS168, 'AS169	'AS168 and 'AS169 are production released. New data
		sheet is printed in the Supplement to the TTL Data Book,
		Volume 3, 1984.
2-168	'ALS174, 'ALS175,	logic diagrams:
	'AS174, and 'AS175	The CLR input on both diagrams to the following:
2-171 and	'AS175	'AS175 is production released. Data sheet is printed in the
2-172		Supplement to the TTL Data Book, Volume 3, 1984.
2-185	'AS182	FH and FN Package: Pin 17 to Cn, Pin 15 to Cn+x, Pin 14
		to C _{n+y}
2-186	'AS182	FUNCTION TABLES NOTE: First Note to,
2 100		H = High level, L = Low level, X = Irrelevant
2-187	'AS182	electrical characteristics: IIL parameter (P2, P1, G3) to
2.07		(PO, P1, G3).
2-188	'AS182	switching characteristics:
		ΤΙ ΤΟ
		(Output) to (Output)
		output of first parameter
		from C_{n+y} , C_{n+y} to C_{n+x} , C_{n+y}

-

- - -

REVISIONS

PAGE	DATA SHEET	CHANGE		
2-202	'ALS192, 'ALS193	recommended operating conditions: Add the following parameters:		
		t _{SU} Setup time UP high before DOWN↑ 17 ns MIN , 2 places DOWN high before UP↑ 15 ns MIN , 2 places		
		The following parameters:		
		t _h Hold time UP high after DOWN↑ from 0 ns MIN , 2 places to 5 ns MIN , 2 places DOWN high after UP↑ from 0 ns MIN , 2 places to 8 ns, MIN, 2 places		
2-221	'AS240, 'AS241	Title: LILNE to LINE		
2-225	'ALS242A	switching characteristics: Limit headings from SN54AS242A to SN54ALS242A from SN74AS242A to SN74ALS242A		
2-226	'AS242, 'AS243	electrical characteristics: I _{IH} limits for A or B ports [‡] from 50 μ A MAX to 70 μ A MAX, 2 places.		
2-230	'ALS244A	electrical characteristics: Delete IJL limit of -0.1 mA typ Add IJL limit of -0.1 mA MAX		
2-235	'ALS245A	description: In the first sentence, change the word synchronous to asynchronous.		
2-241 thru 2-244	'AS250	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.		
2-255 thru 2-260	'ALS257, 'ALS258, 'AS257, 'AS258	Title: QUADRUPLE 1 OF 2 DATA SELECTORS/ MULTIPLEXERS WITH 3-STATE OUTPUTS		
2-258	ʻALS258	switching characteristics:		
		tpLH Ā/B Any Y 8 23 8 20 ns tPHL Ā/B Any Y 5 28 5 25 ns		
2-263	'AS264	positive logic equations: For ACTIVE LOW-CARRY COUNTERS, change the equation $CO = \overline{B}O$ to $CO = \overline{B}O$		
2-267	'AS264	TYPICAL APPLICATION INFORMATION: In the first sentence, change 'AS624 to 'AS264.		
2-271	'ALS273	switching characteristics: In the last line of the "FROM" column, change CLR to CLK.		
2-278	'AS282	logic diagram: outputs (15) C_{n+x} to (11) C_{n+z} and (11) C_{n+z} to (15) C_{n+x} .		
2-282	'AS286	recommended operating conditions: For the SN74AS286, change IOL parity error limit of 10 mA MAX to 20 mA MAX		
2-287 thru 2-290	'AS298	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.		
2-294	'ALS299, 'ALS323	electrical characteristics: IIL parameter: S0, S1, SR, SL to "All other" and "All other" to G1, G2, CLK, CLR.		

PAGE	DATA SHEET	CHANGE
2-295	'ALS299, 'ALS323	switching characteristics: tp_{LZ} (FROM) S0, S1 (TO) Q_A thru Q_H change limits from 8 ns MIN, 30 ns MAX to 3 ns MIN, 20 ns MAX for SN54ALS299 and SN54ALS323. Change limits from 8 ns MIN, 25 ns MAX to 3 ns MIN, 15 ns MAX for SN74ALS299 and SN74ALS323.
2-299	'ALS323, 'AS323	Add: 2-291 after, "see page ."
2-335	'ALS518, 'ALS519, 'ALS522	electrical characteristics: I_{OH} parameter: test condition V _{CC} = 4.5 V to V _{CC} = 5.5 V
2-385	'ALS564 'ALS564	recommended operating conditions:For the SN54ALS564 change f_{clock} from 30 MHz MAX to 25 MHz and for SN74ALS564 change from 35 MHz MAX to 30 MHz MAX. switching characteristics: f_{max} from 30 MIN to 25 MIN for the SN54ALS564 and from 35 MIN to 30 MIN for the SN74ALS564.
2-399	'ALS573	recommended operating conditions: t _W Pulse duration, enable C high from 10 ns MIN to 15 ns MIN, 2 places.
2-421 thru 2-424	'AS622, 'AS623	Production released. Data sheets printed in the Supplement of the TTL Data Book, Volume 3, 1984.
2-421	'AS620, 'AS623	electrical characteristics: I _{IH} limits (A or B ports) from 50 μ A MAX to 70 μ A MAX. I _O limits from -30 mA MIN, -112 mA MAX to -50 mA MIN, -150 mA MAX, 2 places.
2-423	'AS621, 'AS622	electrical characteristics: I _{IH} limits (A or B ports) from 20 μ A MAX to 70 μ A MAX. I _{IL} limits (A or B ports) from -0.5 mA MAX to -0.75 mA MAX.
2-424	'AS621, 'AS622	switching characteristics: R _L = 680 Ω to R _L = 500 $\Omega,$ 2 places.
2-430	'ALS634, 'ALS635	TABLE 8 : In the third row of the "DB CONTROL OECB" column, change H to L.
2-431	'ALS632, 'ALS633	logic diagram: Last note below diagram. Change (\diamondsuit) to (\diamondsuit).
2-443	'AS638, 'AS639	electrical characteristics: I _{IH} limits (A or B ports) from 50 μ A MAX to 70 μ A MAX. I _O limits from -30 mA MIN, -112 mA MAX to -50 mA MIN, -150 mA MAX, 2 places.
2-444	'AS638, 'AS639	switching characteristics: $R_L = 680 \Omega$ (A outputs) to $R_L = 500 \Omega$ (A outputs) in 2 places.
2-451	'AS640, 'AS643, 'AS645	electrical characteristics: I _{IH} limits (A or B ports) from 50 μ A MAX to 70 μ A MAX. I _O limits from - 30 mA MIN, - 112 mA MAX to - 50 mA MIN, - 150 mA MAX, 2 places.
2-453	'AS641, 'AS642, 'AS644	electrical characteristics: I _{IH} limits (A or B ports) from 50 μ A MAX to 70 μ A MAX, 2 places.

TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

-

PAGE	DATA SHEET	CHANGE
2-454	'AS641, 'AS642, 'AS644	switching characteristics: $R_L = 680 \Omega$ to $R_L = 500 \Omega$, 3 places. Delete Product Preview at bottom of page.
2-455	'ALS646 thru 'ALS648, 'AS646, 'AS648	Bus-Management functions diagrams: REAL-TIME TRANSFER BUS B TO BUS A. Under CBA change X to H or L. REAL-TIME TRANSFER BUS A TO BUS B, under CAB change X to H or L.
2-456	'ALS646 thru 'ALS648, 'AS646, 'AS648	FUNCTION TABLE: In the fifth row of the "CAB" column, change X to H or L. In the last row of the "CAB" column, change X to H or L.
2-462	'AS646, 'AS648	electrical characteristics: V _{OH} limit ($I_{OH} = -12$ mA) from 2.4 V MIN to 2 V MIN. V _{OH} limit ($I_{OH} = -15$ mA) from 2.4 V MIN to 2 V MIN. I _{IH} limit (A or B port) from 50 μ A MAX to 70 μ A MAX, 2 places. I _{IL} limit (A or B port) from -0.5 mA MAX to -0.75 mA MAX, 2 places.
2-465	'ALS651 thru 'ALS654, 'AS651, 'AS652	Bus-Management function diagrams: TRANSFER STORED DATA TO A AND/OR B, under SBA change X to H.
2-467	'ALS652, 'AS652, 'ALS654	logic symbols: Inside of the control blocks of both logic diagrams. Change G6 to G5.
2-473	'AS651, 'AS652	electrical characteristics: VOH limit ($I_{OH} = -12 \text{ mA}$) from 2.4 V MIN to 2 V MIN. VOH limit ($I_{OH} = -15 \text{ mA}$) from 2.4 V MIN to 2 V MIN. I ₁ H limit (A or B ports) from 50 μ A MAX to 70 μ A MAX, 2 places. I ₁ L limit (A or B ports) from -0.5 mA MAX to -0.75 mA MAX, 2 places.
2-475 thru 2-480	'ALS678	Production released. Data sheet printed in the Supplement of the TTL Data Book, Volume 3, 1984.
2-479	'ALS677	switching characteristics: TPHL limits (FROM) Any A, (TO) Y from 35 ns MAX to 40 ns MAX for SN54ALS677, and from 30 ns MAX to 35 ns MAX for SN74ALS677.
2-481 thru 2-486	'ALS680	Production released. Data sheet printed in the Supplement of the TTL Data Book, Volume 3, 1984.
2-490	'ALS689	electrical characteristics: I_{OH} parameter, change test condition $V_{CC} = 4.5$ V to $V_{CC} = 5.5$ V.
2-491 thru 2-503	'AS756 'AS757, 'AS758, 'AS759, 'AS760, 'AS762, 'AS763	Production released. Data sheets are printed in the Supplement of the TTL Data Book, Volume 3, 1984.
2-515	'AS804A	switching characteristics: All MIN limits from 2 ns to 1 ns.
	'ALS810 'ALS811	New devices. Data sheets are printed in the Supplement of the TTL Data Book, Volume 3, 1984.

-

PAGE	DATA SHEET	CHANGE	
2-552 and 2-553	'AS841, 'AS842	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.	
2-560 and 2-561	'AS843, 'AS844	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.	
2-566 and 2-567	'AS845	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.	
2-571 thru 2-580	'AS850, 'AS851	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.	
2-579	'AS850	TYPICAL APPLICATION: In the drawing, the E input is connected to the input of an inverter. The output of the inverter is connected to \overline{G} inputs of two separate 'AS850s. Change this part of the drawing as follows: The E input is connected directly to the \overline{G} input of the top 'AS850. The E input is also connected to the input of an inverter. The output of the inverter is connected to the \overline{G} input of the bottom 'AS850.	
2-598	'AS857	electrical characteristics: IO limits from -30 mA MIN, -112 mA MAX to -50 mA MIN, -150 mA MAX, 2 places.	
2-621	ʻALS873	recommended operating conditions: t_W Pulse duration (Enable C high) limit from 10 ns MIN to 15 ns MIN, 2 places.	
2-631 thru 2-636	'AS877	Production released. Data sheet is printed in the Supplement of the TTL Data Book, Volume 3, 1984.	
2-697	'AS1036	logic symbol: Replace the logic symbol with the following: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2-711 thru 2-713	'ALS1245	Revised to 'ALS1245A. Data sheet is printed in the Supplement to the TTL Data Book, Volume 3, 1984.	
2-733	'AS2620, 'AS2623	electrical characteristics: I _H limits (A or B port) from 50 μ A MAX to 70 μ A MAX, 2 places. I _L limits (A or B port) from -0.5 mA MAX to -0.75 mA MAX, 2 places. I ₀ limits from -30 mA MIN, -112 mA MAX to -50 mA MIN, -150 mA MAX, 2 places.	

to the second second

#~0%.%

TEXAS

•

• •

REVISIONS

PAGE	DATA SHEET	CHANGE
2-737	'AS2640, 'AS2645	electrical characteristics: I_{IH} limits (A or B port) from 50 μ A MAX to 70 μ A MAX, 2 places. I_{IL} limits (A or B port) from -0.5 mA MAX to -0.75 mA MAX, 2 places. I_O limits from -30 mA MIN, -112 mA MAX to -50 mA MIN, -150 mA MAX, 2 places.

Supplement to The TTL Data Book Volume 3

General Information

- -

- -

ALS and AS Circuits

2

3 Applications
- - - -

-

TYPES SN54ALS10A, SN54AS10, SN74ALS10A, SN74AS10 TRIPLE 3-INPUT POSITIVE-NAND GATES

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input NAND gates. They perform the Boolean functions $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic.

The SN54ALS10A and SN54AS10 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS10A and SN74AS10 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

1	NPUTS	OUTPUT	
Α	В	С	Y
н	н	н	L
L	х	х	н
x	Ł	x	н
x	х	L	н

logic symbol

Pin numbers shown are for J and N packages.

SN54ALS10A, SN54AS10 J	PACKAGE
SN74ALS10A, SN74AS10 N	PACKAGE
(TOP VIEW)	

March 1984

2B 🚺 4	11]]3C
2C 5	10 3B
2Y 🗍 6	9]]3A
GND[]7	8 🗆 3 Y

NC-No internal connection

TYPES SN54ALS10A, SN74ALS10A TRIPLE 3-INPUT POSITIVE-NAND GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54ALS10A
SN74ALS10A
Storage temperature range

recommended operating conditions

		SN	SN54ALS10A		SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETRO	AMETER TEST CONDITIONS		SN	SN54ALS10A			SN74ALS10A		
PARAMETER			MIN	TYP1	MAX	MIN	TYP1	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$l_{1} = -18 \text{ mA}$			-1.5			-1.5	v
VOH	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -0.4 \text{ mA}$	Vcc-2			V _{CC} -2			V
N	$V_{CC} = 4.5 V,$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	v
Vo∟	$V_{CC} = 4.5 V,$	I _{OL} = 8 mA					0.35	0.5	ľ
4	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	$V_{1} = 2.7 V$			20			20	μA
կլ	$V_{CC} = 5.5 V,$	VI = 0.4 V			-0.1			-0.1	mA
l0‡	$V_{CC} = 5.5 V$,	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
ССН	$V_{CC} = 5.5 V,$	$V_{I} = 0 V$		0.32	0.6		0.32	0.6	mA
ICCL	$V_{CC} = 5.5 V,$	V _I = 4.5 V		1.2	2.2		1.2	2.2	mA

 \uparrow All typical values are at V_{CC} = 5 V, T_A = 25 °C. \ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 4 C _L = 50 R _L = 500 T _A = MI	D Q,		UNIT
			SN54	ALS10A	SN74	ALS10A	
			MIN	MAX	MIN	MAX	
tPLH	Any	Y	2	13	2	11	ns
^t PHL	Any	Y	2	12	2	10	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54AS10, SN74AS10 **TRIPLE 3-INPUT POSITIVE-NAND GATES**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54AS10
SN74AS10
Storage temperature range

20.0

. . L

recommended operating conditions

		s	SN54AS10		8	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 2			-2	mA
IOL	Low-level output current			20			20	mA
т _А	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		S	SN54AS10			SN74AS10		
FARAMETER	TEST CONDI	TIONS	MIN	TYPt	MAX	MIN	TYPt	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	lj = −18 mA			- 1.2			-1.2	v
VOH	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -2 \text{ mA}$	Vcc-2			Vcc-2	2		V
VOL	$V_{CC} = 4.5 V,$	loi = 20 mA		0.35	0.5		0.35	0.5	V
lj	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	Vi = 2.7 V			20			20	μA
hι	$V_{CC} = 5.5 V,$	V _I = 0.4 V			-0.5			-0.5	mA
l0‡	$V_{CC} = 5.5 V,$	V ₀ = 2.25 V	- 30		~112	- 30		-112	mA
Іссн	$V_{CC} = 5.5 V,$	$V_i = 0 V$		1.5	2.4		1.5	2.4	mA
ICCL	$V_{CC} = 5.5 V,$	V _I = 4.5 V		8.1	13		8.1	13	mA

All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡The output conditions have been chosen to produce a current that closely approximates one helf of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (оитрит)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$				
			SN54	AS10	SN7	4AS10	
			MIN	MAX	MIN	MAX	
^t PLH	Апу	Y	1	5	1	4.5	ns
^t PHL	Any	Y	1	5	1	4.5	ាន

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

- - -

-

TYPES SN54ALS11A, SN54AS11, SN74ALS11A, SN74AS11 TRIPLE 3-INPUT POSITIVE-AND GATES

 Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- -

 Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input AND gates. They perform the Boolean functions $Y = A \cdot B \cdot C$ or $Y = \overline{A + \overline{B} + \overline{C}}$ in positive logic.

The SN54ALS11A and SN54AS11 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS11A and SN74AS11 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

I	NPUTS	OUTPUT	
Α	B	Y	
н	н	н	н
L	х	x	L
x	L	x	L
x	х	L	L

logic symbol

Pin numbers shown are for J and N packages.

SN54ALS11A,	SN54AS11		J PACKAGE
SN74ALS11A	SN74AS11		N PACKAGE

(TOP VIEW) $1A \begin{bmatrix} 1 \\ 14 \end{bmatrix} V_{CC}$ $1B \begin{bmatrix} 2 \\ 13 \end{bmatrix} 1C$ $2A \begin{bmatrix} 12 \\ 12 \end{bmatrix} 12 \end{bmatrix} 12$

	12 LI 11
2B 🚺 4	11 🗋 3C
2C 🛛 5	10 🗍 3B
2Y 🛛 6	9 🗍 3 A
GND 7	8 🗍 3 Y

SN54ALS11A,	SN54AS11		FH	PACKAGE
SN74ALS11A,	SN74AS11		FN	PACKAGE
		n.		

NC-No internal connection

TEXAS

INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 ALS AND AS CIRCUITS

Copyright © 1984, Texas Instruments Incorporated

March 1984

TYPES SN54ALS11A, SN74ALS11A **TRIPLE 3-INPUT POSITIVE-AND GATES**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54ALS11A
SN74ALS11A
Storage temperature range

recommended operating conditions

		SI	SN54ALS11A		S	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDI	TEST CONDITIONS		154ALS	11A	SN	74ALS	11A	UNIT
FARAMETER	TEST COND		MIN	TYP1	MAX	MIN	TYPt	MAX	
VIK	$V_{\rm CC} = 4.5 \rm V,$	li = -18 mA			~ 1.5			-1.5	v
VOH	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	lOH ≃ -0.4 mA	Vcc-2			Vcc-2			v
No.	$V_{CC} = 4.5 V$	OL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = 4.5 V,$	IOL = 8 mA					0.35	0.5	ľ
i,	$V_{CC} = 5.5 V_{c}$	$V_{I} = 7 V$	_		0.1			0.1	mA
liH	$V_{CC} = 5.5 V,$	VI = 2.7 V			20			20	μA
իլ	$V_{CC} = 5.5 V,$	$V_1 = 0.4 V$			-0.1			-0.1	mA
lo‡	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
ССН	$V_{CC} = 5.5 V,$	V _I = 4.5 V		1	1.8		1	1.8	mA
ICCL	$V_{CC} = 5.5 V,$	VI = 0 V		1.6	3		1.6	3	mA

All typical values are at V_{CC} = 5 V, T_A = 25 °C.
 The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 4 C _L = 50 R _L = 500 T _A = MI	pF, DΩ,		UNIT
			SN54	ALS11A	SN7	4ALS11A]
			MIN	MAX	MIN	MAX	
^t PLH	Any	Y	2	16	2	13	រាន
^t PHL	Any	Y	2	12	2	10	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

2

ALS AND AS CIRCUITS

TYPES SN54AS11, SN74AS11 **TRIPLE 3-INPUT POSITIVE-AND GATES**

a and a construction of the second second

and the second second

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	
Operating free-air temperature range: SN54AS11	
SN74AS11	0°C
Storage temperature range	50°C

· · · · ·

recommended operating conditions

	A	S	N54AS	11	S	N74AS	11	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			- 2			- 2	mA
IOL .	Low-level output current			20			20	۳Α
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST COND	TEST CONDITIONS		N54AS	11	SI	N74AS	11	UNIT
FANAMETER	TEST COND		MIN	TYFI	MAX	MIN	TYPT	MAX	UNIT
V _{IK}	$V_{\rm CC} = 4.5 \rm V,$	$I_I = -18 \text{ mA}$			-1.2			- 1.2	v
Vон	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V _{CC} -2			v
VOL	$V_{CC} = 4.5 V,$	$I_{OL} = 20 \text{ mA}$		0.35	0.5		0.35	0.5	V
ų	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	$V_{I} = 2.7 V$			20			20	μA
μ	$V_{CC} = 5.5 V,$	$V_{ } = 0.4 V$			- 0.5			-0.5	mA
l0‡	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	30		- 112	mA
ІССН	$V_{CC} = 5.5 V,$	V _I = 4.5 V		4.3	7		4.3	7	mA
ICCL	$V_{\rm CC} = 5.5 V,$	$V_{I} = 0 V$		11.2	18		11.2	18	mA

All typical values are at V_{CC} = 5 V, T_A = 25 °C.
 The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		C _L = 50 R _L = 500 T _A = Mir	Ω, to MAX		UNIT
			SN54	4AS11	SN7	4AS11	
			MIN	MAX	MIN	MAX	
tPLH	Any	Y	1	6.5	1	6	، ۱۶
tPHL	Any	Y	1	6.5	1	5.5	ពន

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

2 ALS AND AS CIRCUITS

• •

-

- -

TYPES SN54ALS12A, SN74ALS12A TRIPLE 3-INPUT POSITIVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

Texas 🤻

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input NAND gates with open-collector outputs. These gates perform the Boolean functions $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic. The open-collector outputs require pull-up resistors to perform correctly. They may be connected to other open-collector outputs to implement active-low wired-OR or active-high wired-AND functions. Open-collector devices are often used to generate higher V_{OH} levels.

The SN54ALS12A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS12A is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each gate)

1	NPUTS	OUTPUT	
Α	В	С	Y
н	н	н	L
L	х	х	н
x	L	х	н
x	х	L	н

logic symbol

Pin numbers shown are for J and N packages.

SN74ALS12A	SN54ALS12A J PACKAGE SN74ALS12A N PACKAGE (TOP VIEW)									
1 A [] 1 1 B [] 2	U14 VCC 13 1C 12 1Y									
2A [] 3	12 1 Y									
2B [] 4	11 3C									
2C [] 5	10 3B									
2Y [6	9 3A									
GND [7	8 3Y									

MARCH 1984

	FH PACKAGE
	P VIEW)
8 Z	
2A] 4 NC] 5	18 🚺 1 Y
NC 🛛 5	17 🚺 NC
2В] 6	16 🛛 3C
NC 🛛 7	15 🚺 NC
2C 🛛 8	14 🚺 3B
GND 15 6 27 10 27 10 27	

NC No internal connection

Copyright © 1984, Texas Instruments Incorporated

TYPES SN54ALS12A, SN74ALS12A TRIPLE 3-INPUT POSITVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}			 7 V
input voltage			 <i></i> 7 V
Off-state output voltage			 7V
Operating free-air temperature range:	SN54ALS12A	4	 -55°C to 125°C
	SN74ALS12A	•	 0°C to 70°C
Storage temperature range			 -65°C to 150°C

recommended operating conditions

		SN	SN54ALS12A S			SN74ALS12A		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
Vон	High-level output voltage		•	5.5			5.5	V
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN	SN54ALS12A			SN74ALS12A			
	TEST CC	MUTIONS	MIN	TYPt	MAX	MIN	TYP †	MAX	UNIT	
VIK	$V_{CC} = 4.5 V_{,}$	lj = −18 mA			- 1.5			-1.5	V	
юн	$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V			0.1			0.1	mA	
	$V_{CC} = 4.5 V_{,}$	IOL = 4 mA		0.25	0.4		0.25	0.4	v	
VoL	$V_{CC} = 4.5 V,$	I _{QL} = 8 mA					0.35	0.5	v	
ų	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA	
μн	$V_{CC} = 5.5 V,$	$V_{ } = 2.7 V$			20			20	μA	
ΙL	$V_{CC} = 5.5 V_{,}$	$V_{j} = 0.4 V$			-0.1			-0.1	mA	
ССН	$V_{CC} = 5.5 V_{,}$	VI = 0 V		0.32	0.6		0.32	0.6	mA	
ICCL	$V_{CC} = 5.5 V_{,}$	V _I = 4.5 V		1.2	2.2		1.2	2.2	mA	

1 All typical values are at V_{CC} = 5 V, T_A = 25 °C

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 2 \text{ kQ},$ $T_{A} = \text{MIN to MAX}$ $SN54ALS12A SN74ALS$ $MIN MAX MIN$	V,	UNIT	
			SN 54/	ALS12A	SN74/	ALS12A	
			MIN	MAX	MIN	MAX	1
^t PLH	Any	Y	23	59	23	54	ns
^t PHL	Any	Y	5	22	5	18	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2 ALS AND AS CIRCUITS

120.1

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent 4-input NAND gates. These gates perform the Boolean functions $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ or $Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}$ in positive logic. The open-collector outputs require pull-up resistors to perform correctly. They may be connected to other open-collector outputs to implement active-low wired-OR or active-high wired-AND functions. Open-collector devices are often used to generate higher VOH levels.

The SN54ALS22B is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS22B is characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

	INP	OUTPUT		
Α	В	С	D	Y
н	н	н	н	L
L	х	х	x	н
x	L	х	x	н
X	х	L	x	н
×	х	х	L	н

logic symbol

Pin numbers shown are for J and N packages.

MARCH 1984

SN54ALS2	2B.	. J PA	CKAGE
SN74ALS2	2B.	. N PA	CKAGE
()	FOP V	IEW)	
1 A 🗋	10	14 \	/cc
1B 🗌	2	13 2	2D
NC 🗌	3	12 2	2C
1 C 🗌	4	11	1C
1D 🚺	5	10 2	2B
1 Y 📋	6	9 2	2A
GND 🗖	7	8 1 2	2Y

SN54ALS22B FH PACKAGE SN74ALS22B FN PACKAGE (TOP VIEW)	
m 4 y	

NC - No internal connection

Copyright © 1984, Texas Instruments Incorporated

Texas 🔻

INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPES SN54ALS22B, SN74ALS22B DUAL 4-INPUT POSITIVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	 	7 V
Input voltage	 	7 V
Off-state output voltage	 	<i>.</i> 7 V
Operating free-air temperature range: SN54ALS228	 	- 55 °C to 125 °C
SN74ALS22f	 	0°C to 70°C
Storage temperature range	 	-65 °C to 150 °C

recommended operating conditions

		SM	SN54ALS22B SN74ALS22B		22B			
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	v
VOH	High-level output voltage			5.5			5.5	v
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	AMETER TEST CONDITIONS		SN54ALS22B			SN	UNIT		
FANAMETEN	TEST CC		MIN	TYPt	MAX	MIN	TYPt	MAX	
VIK	$V_{CC} \simeq 4.5 V_{,}$	lj = -18 mA			-1.5			-1.5	V
юн	$V_{CC} = 4.5 V_{,}$	VOH = 5.5 V			0.1			0.1	mA
N	$V_{CC} = 4.5 V_{,}$	lOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = 4.5 V_{,}$	CC = 4.5 V, IOL = 8 mA 0.35 0.5	0.5	1 *					
ų	$V_{CC} = 5.5 V_{,}$	VI = 7 V			0.1			0.1	mA
ин	$V_{CC} = 5.5 V_{,}$	V _I = 2.7 V			20			20	μA
կլ	$V_{CC} = 5.5 V$,	V _I = 0.4 V			-0.1			-0.1	mA
ІССН	V _{CC} = 5.5 V,	V ₁ = 0 V		0.22	0.4		0.22	0.4	mA
ICCL	$V_{CC} = 5.5 V,$	$V_{ } = 4.5 V$		0.8	1.5		0.8	1.5	mA

t All typical values are at V_{CC} = 5 V, T_A = 25 °C

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R_L = 2 \text{ kg},$ $T_A = \text{MIN to MAX}$		5 V,	UNIT
	-		SN54/	ALS22B	SN74	ALS22B	
			MIN	MAX	MIN	MAX	
^t PLH	Any	Y	23	50	23	45	ns
^t PHL	Апу	Y	4	21	4	18	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54ALS30A, SN54AS30, SN74ALS30A, SN74AS30 8-INPUT POSITIVE-NAND GATES

March 1984

 Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- -

 Dependable Texas Instruments Quality and Reliability

description

These devices contain a single 8-input NAND gate and perform the following Boolean functions in positive logic:

 $Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H} OR$

$$Y \simeq \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$$

The SN54ALS30A and SN54AS30 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS30A and SN74AS30 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

INPUTS A THRU H	OUTPUT
All inputs H	L
One or more inputs L	н

logic symbol

Pin numbers shown are for J and N packages.

SN54ALS30A,	SN54AS30 .	. J	PACKAGE
SN74ALS30A,	SN74AS30 .	. N	PACKAGE
	(TOP VIEW)		

A [1 B [2 C] 3 J14□ V_{CC} 13 ЫNČ 12]н þς 4 11 E [5 10 NC F [6 9 🗍 NC GND 7 8 🗌 Y

SN54ALS30A, SN54AS30 . . . FH PACKAGE SN74ALS30A, SN74AS30 . . . FN PACKAGE (TOP VIEW)

NC-No internal connection

ALS AND AS CIRCUITS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPES SN54ALS30A, SN74ALS30A B-INPUT POSITIVE-NAND GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54ALS30A
SN74ALS30A
Storage temperature range

recommended operating conditions

		SN	54ALS3	80A	SN	74ALS	30A	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	• 4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			-0.4		_	-0.4	mA
OL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0	_	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54ALS30A		BOA	SN	74ALS	30A	
FARAINETER	TEST COND	110145	MIN	TYPt	MAX	MIN	TYPT	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$l_{\rm I} = -18 \rm mA$			- 1.5			- 1.5	V
VOH	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			V
	$V_{CC} = 4.5 V,$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	
VOL	$V_{CC} = 4.5 V,$	1 _{OL} = 8 mA					0.35	0.5	l v
4	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.1			0.1	mA
ŀн	$V_{CC} = 5.5 V,$	$V_{I} = 2.7 V$			20			20	μA
lL	$V_{CC} = 5.5 V,$	$V_I = 0.4 V$			-0.1			-0.1	mA
10‡	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
Іссн	$V_{CC} = 5.5 V,$	$V_i = 0 V$		0.22	0.36		0.22	0.36	mA
ICCL	$V_{CC} = 5.5 V,$	V _I = 4.5 V		0.54	0.9		0.54	0.9	mA

t All typical values are at $V_{CC} = 5 V$, $T_A = 25 \circ C$. *The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL = TO RL = (OUTPUT) TA			ν,	UNIT
			SN54/	ALS30A	SN74/	ALS30A	1
			MIN	MAX	MIN	MAX]
^t PLH	Any	Y	3	12	3	10	ns
^t PHL	Αηγ	Y	3	15	3	12	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54AS30, SN74AS30 **8-INPUT POSITIVE NAND GATES**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Input voltage	
Operating free-air temperature range: SN54AS30	
SN74AS30	0°C to 70°C
Storage temperature range	

recommended operating conditions

- -

		s	SN54AS30			SN74AS30			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
ViH	High-level input voltage	2			2			v	
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current			- 2			- 2	mA	
lOL	Low-level output current			20			20	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDI	TEST CONDITIONS		N54AS	30	S	N74AS	30	
	TEST COND		MIN	TYP†	MAX	MIN	TYPT	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	lj = −18 mA			- 1.2			-1.2	V
V _{OH}	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$O_H = -2 mA$	V _{CC} -2			Vcc-2			v
VOL	$V_{CC} = 4.5 V,$	l _{OL} = 20 mA		0.35	0.5		0.35	0.5	v
l i	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA
ин	$V_{CC} = 5.5 V$,	$V_{ } = 2.7 V$			20			20	μA
hL	$V_{CC} = 5.5 V,$	$V_{ } = 0.4 V$			-0.5			-0.5	mA
10‡	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
^I ССН	$V_{CC} = 5.5 V,$	$V_{I} = 0 V$		0.9	1.5		0.9	1.5	mA
ICCL	$V_{CC} = 5.5 V,$	$V_{I} = 4.5 V$		3	4.9		3	4.9	mA

All typical values are at V_{CC} = 5 V, T_A = 25 °C.
 The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS-

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	ΤΟ (Ουτρυτ)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = \text{MIN to MAX}$			UNIT	
			SN5	4AS30	SN	74AS30	
			MIN	MAX	MIN	MAX	
tPLH	Αηγ	Y	1	5.5	1	5	ns
^t PHL	Any	Y	1	5	1	4.5	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

2 ALS AND AS CIRCUITS

- -

TYPES SN54ALS35, SN74ALS35 HEX NONINVERTERS WITH OPEN-COLLECTOR OUTPUTS

D2661, DECEMBER 1983-REVISED MARCH 1984

Noninverters with Open-Collector Outputs

. ..

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain six independent noninverters. They perform the Boolean functions Y = A. The open-collector outputs require pull-up resistors to perform correctly. They may be connected to other open-collector outputs to implement active-low wired-OR or active-high wired-AND functions. Open-collector devices are often used to generate higher VOH levels.

The SN54ALS35 is characterized for operation over. the full military temperature range of -55 °C to 125 °C. The SN74ALS35 is characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each buffer)

INPUT	OUTPUT
A	Y
н	н
L	L

logic symbol

1A <u>(1)</u>	1 0	(2) 1Y
2A (3)		(4) 2Y
3A (5)		(6) 3Y
4A (9)		(8) 4Y
5A(11)		(10) 5Y
6A <u>(13)</u>		(12) 6Y

Pin numbers shown are for J and N packages.

SN54ALS35 . . . J PACKAGE SN74ALS35 . . . N PACKAGE (TOP VIEW)

		114	-	
1 A [l1	014		Vcc
1 Y 🗋	2	13		6A
2 A 🗌	3	12		6Y
2 Y 🗌	4	11		5A
3A [5	10		5Y
3Y [6	9		4A
GND [7	8		4Y

SN54ALS35	•	•		FH	PACKAGE
SN74ALS35	•	•	•	FN	PACKAGE
(то	P	• •	V	EW	")

NC-No internal connection

TYPES SN54ALS35, SN74ALS35 HEX NONINVERTERS WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	 	
Input voltage	 	
Off-state output voltage	 	
Operating free-air temperature range: SN54ALS35	 	
SN74ALS35	 	
Storage temperature range	 	

recommended operating conditions

		s	SN54ALS35			SN74ALS35			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			v	
VIL	Low-level input voltage			0.8			0.8	V	
Voн	High-level output voltage			5.5			5.5	V	
IOL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SI	N54ALS	35	S	UNIT		
FARAMETER	TEST CO	UNDITIONS	MIN	TYPT	MAX	MIN	TYPt	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	lį = -18 mA			-1.5			- 1.5	v
юн	$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V			0.1			0.1	mA
Nei	$V_{CC} = 4.5 V,$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = 4.5 V,$	IOL = 8 mA					0.35	0.5	l v
lį –	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	$V_{I} = 2.7 V$			20			20	μA
۱L	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.1			-0.1	mA
ІССН	$V_{CC} = 5.5 V,$	$V_{I} = 4.5 V$		2.7	4.1		2.7	4.1	mA
ICCL	$V_{CC} = 5.5 V_{,}$	$V_i = 0 V$		4.1	6.3		4.1	6.3	mA

 \uparrow All typical values are at V_{CC} = 5 V, T_A = 25 °C

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN5	$C_{L} = 50$ $R_{L} = 680$	Ω N to MAX		UNIT
			MIN	MAX	MIN	MAX	1
^t PLH	A	Y	20	55	20	50	ns
^t PHL	A	Y	2	15	2	12	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54ALS74A, SN54AS74, SN74ALS74A, SN74AS74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

18 1 A

D2661, APRIL 1982-REVISED FEBRUARY 1984

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

ТҮРЕ	TYPICAL MAXIMUM CLOCK FREQUENCY (C _L = 50 pF)	TYPICAL POWER DISSIPATION PER FLIP-FLOP
'ALS74A	50 MHz	6 mW
'AS74	134 MHz	26 mW

description

These devices contain two independent D-type positive-edgetriggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

The SN54ALS74A and SN54AS74 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS74A and SN74AS74 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

	INPUTS			ουτ	PUTS
PRESET	CLEAR	CLOCK	D	٩	ā
L	н	х	Х	н	L
н	L	х	х	L	н
L	L	х	x	н∙	Н*
н	н	t	н	н	L
н	н	t	L	L	н
н	н	L	х	۵	āo

* The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH} if the lows at Preset and Clear are near VI_L maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

 SN54ALS74A, SN54AS74...J PACKAGE

 SN74ALS74A, SN74AS74...N PACKAGE

 (TOP VIEW)

 1 CLR
 1
 14
 V_{CC}

 1D
 2
 13
 2CLR

 1 CLK
 3
 12
 2D

 1 PRE
 4
 11
 2CLK

 1Q
 5
 10
 2PRE

1 🖸 🗌 6

GND 🗍 🤈

SN54ALS74A, SN54AS74 . . . FH PACKAGE SN74ALS74A, SN74AS74 . . . FN PACKAGE (TOP VIEW)

9 20

8 20

NC-No internal connection

logic symbol

Pin numbers shown are for J and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	
Operating free-air temperature range: SN54ALS74A, SN54AS74	– 55°C to 125°C
SN74ALS74A, SN74AS74	0°C to 70°C
Storage temperature range	

Copyright @ 1982 by Texas Instruments Incorporated.

TYPES SN54ALS74A, SN74ALS74A DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

recommended operating conditions

			SN54ALS74A			S	N74ALS	74A	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
ViH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				-0.4			-0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		30	0		34	MHz
		PRE or CLR low	15			15			
tw	Pulse duration	CLK high	16.5			14.5			ns
		CLK low	16.5			14.5			
	Setup time	Data	15			15			
t _{su}	before CLK †	PRE or CLR inactive	10			10			ns
th	Hold time, data after CLK [↑]		0			0			ns
TA	Operating free-air temperature		- 55	_	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	ARAMETER	TEST CONDITIO	NC	S	N54ALS	74A	S	SN74ALS74A		
	ARAMETER	TEST CONDITIO	N3	MIN	TYPT	MAX	MIN	TYP [†]	MAX	UNIT
VIK		$V_{CC} = 4.5 V,$	lj = -18 mA			- 1.5			- 1.5	V
VOH		$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$l_{OH} = -0.4 \text{ mA}$	Vcc-	2		Vcc-	2		V
Vol		$V_{CC} = 4.5 V,$	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL		$V_{CC} = 4.5 V_{,}$	IOL = 8 mA					0.35	0.5	v
	CLK or D					0.1			0.1	
4	PRE or CLR	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.2			0.2	mA
1	CLK or D		$V_1 = 2.7 V$			20			20	
ЧΗ	PRE or CLR	$V_{CC} = 5.5 V_{,}$	$v_1 = 2.7 v$			40			40	μA
1	CLK or D		N 041			-0.2			~0.2	
ԿԼ	PRE or CLR	$V_{CC} = 5.5 V_{,}$	$V_{I} = 0.4 V$			- 0.4			-0.4	mA
10‡	_	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		112	mA
ICC		$V_{CC} = 5.5 V,$	See Note 1		2.4	4		2.4	4	mA

[†]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$.

[‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}. NOTE 1: I_{CC} is measured with D, CLK, and PRE grounded, then with D, CLK, and CLR grounded.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$				
			SN54	ALS74A	SN74ALS74A]	
			MIN	MAX	MIN	MAX		
fmax			30		34		MHz	
tPLH	PRE or CLR	Q or Q	3	15	3	13		
tPHL	PREOFULA	u or u 、	5	17	5	15	ns	
tPLH	CLK	Q or \overline{Q}	5	18	5	16		
^t PHL			5	20	5	18	ns	

NOTE 2: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54AS74, SN74AS74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

recommended operating conditions

			SI	154AS7	4	SN	74AS74	L	
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage					2	-		V
VIL	Low-level input voltage				0.8			0.8	V
юн	IOH High-level output current				- 2			~ 2	mA
IOL	Low-level output current			20			20	mA	
fclock	Clock frequency		0		90	0		105	MHz
		PRE or CLR low	4		_	4			
tw	Pulse duration	CLK high	4			4			ns
		CLK low	5.5			5.5			
	Setup time	Data	4.5			4.5			
t _{su}	before CLK†	PRE or CLR inactive	2			2			ns
th	Hold time, data after CLK †		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

_		TEAT OF		SI	154AS7	4	S	174AS7	4	UNIT
PAP	RAMETER	TEST CO	ONDITIONS	MIN TYP [†] MA)		MAX	MIN	TYP [†]	MAX	UNIT
ViK		$V_{CC} = 4.5 V,$	$I_{i} = -18 \text{ mA}$			-1.2			- 1.2	V
Voн		$V_{CC} = 4.5 V \text{ to } 5.5$	V, $I_{OH} = -2 \text{ mA}$	Vcc-	2		Vcc-	2		V
VOL		$V_{CC} = 4.5 V,$	$I_{OL} = 20 \text{ mA}$		0.25	0.5		0.25	0.5	V
4		$V_{CC} = 5.5 V$,	VI = 7 V			0.1			0.1	mA
	CLK or D	Vcc = 5.5 V,	V ₁ = 2.7 V			20			20	μA
Чн	PRE or CLR	$\mathbf{v}_{CC} = 5.5 \mathbf{v},$	vi = 2.7 v			40			40	<i>µ</i> ~
	CLK or D	Vcc = 5.5 V,	$V_{1} = 0.4 V$			-0.5			-0.5	mA
ΪL	PRE or CLR	\mathbf{v} CC = 5.5 \mathbf{v} ,	v = 0.4 v			- 1.8			- 1.8	
ⁱ o‡		$V_{CC} = 5.5 V_{,}$	V ₀ = 2.25 V	- 30		-112	- 30		-112	mA
1CC		$V_{CC} = 5.5 V$	See Note 1		10.5	16		10.5	16	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-current output current, IOS. NOTE 1: ICC is measured with D, CLK, and PRE grounded, then with D, CLK, and CLR grounded.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = \text{MIN to MAX}$				
			SN5	SN54AS74		SN74AS74		
			MIN	MAX	MIN	MAX		
fmax			90		105		MHz	
TPLH	PRE or CLR	Q or Q	3	8.5	3	7.5	ns	
^t PHL		uoru	3.5	11.5	3.5	10.5		
tPLH	CI K	Q or Q	3.5	9	3.5	8	ns	
^t PHL	CLK		4.5	10.5	4.5	9	115	

NOTE 2: For load circuit and voltage wavforms, see page 1-12 of the TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

•

TYPES SN54ALS86, SN74ALS86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

D2661, APRIL 1982-REVISED MARCH 1984

- **Package Options Include Both Plastic and Ceramic** Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input Exclusive-OR gates. They perform the Boolean functions $Y = A \oplus B = \overline{A}B + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN54ALS86 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS86 is characterized for operation from 0 °C to 70 °C.

SN54ALS86 J PACKAGE	
SN74ALS86 N PACKAGE	i
(TOP VIEW)	

ΊΑЦΊ	Ula⊓∧cc
1B 🚺 2	13 🗌 4B
1 Y [3	12 🗍 4 A
2A []4	11 🗍 4 Y
2B 🗌 5	10 🗍 3B
2Y 🚺 6	9 🗌 3 A
GND 🗍 7	8 🗍 3 Y

SN54ALS86 . . . FH PACKAGE SN74ALS86 . . . FN PACKAGE (TOP VIEW)

NC-No internal connection

logic symbol

(each gate)								
INP	UTS	OUTPUT						
Α	8	Y						
L	L	L						
L	н	н						
н	L	н						
н	н	L						

FUNCTION TABLE

Pin numbers shown are for J and N packages.

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

These are five equivalent Exclusive-OR symbols valid for an 'ALS86 gate in positive logic; negation may be shown at any two ports.

LOGIC IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same logic level (i.e., A = B).

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

Copyright © 1982, Texas Instruments Incorporated

TEXAS INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2-25

TYPES SN54ALS86, SN74ALS86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	7 V
Operating free-air temperature range: SN54ALS86	C to 125 °C
SN74ALS860	°C to 70 °C
Storage temperature range	C to 150 °C

recommended operating conditions

		S	SN54ALS86			SN74ALS86			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V _	
ЮН	High-level output current			-0.4			-0.4	mA	
IOL	Low-level output current		_	4			8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°Ĉ	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDI	TEST CONDITIONS		N54AL8	686	SN	74ALS8	36	UNIT
PARAMETER	TEST CONDI					MIN	TYPT	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	lj = -18 mA			- 1.5			~ 1.5	V
VOH	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	I _{OH} = -0.4 mA	V _{CC} -	2		Vcc-	2	_	v
VoL	$V_{CC} = 4.5 V,$	1 _{OL} = 4 mA		0.25	0.4		0.25	0.4	v
*OL	$V_{CC} = 4.5 V,$	IOL = 8 mA					0.35	0.5	Ň
<u> </u>	$V_{CC} = 5.5 V,$	$V_{1} = 7 V$			0.1			0.1	mA
ЧН	$V_{CC} = 5.5 \overline{V},$	$V_{I} = 2.7 V$			20			20	μA
hL -	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.1			-0.1	mA
10 [‡]	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		- 112	- 30		- 112	mA
lcc	$V_{CC} = 5.5 V,$	All inputs at 4.5 V		3,9	5.9		3.9	5. 9	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)			UNIT				
			SN54ALS86		SN74ALS86]	
			MIN	MAX	MIN	MAX		
tPLH	A or B	~	3	22	3	17	ns	
tPHL .	(other input low)	1	2	14	2	12	115	
^t PLH	A or B	v	3	22	3	17	ns	
^t PHL	(other input high)		2	12	2	10	115	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54AS95, SN74AS95 4-BIT PARALLEL·ACCESS SHIFT REGISTER

- Serial-to-Parallel Conversions
- Parallel Synchronous Loading
- Right or Left Shifts
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These four-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation:

Parallel (broadside) load Shift right (the direction Q_A toward Q_D) Shift left (the direction Q_D toward Q_A)

Parallel loading is accomplished by applying the four bits and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the Clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of Clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of Clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_D to input C, etc.); and serial data is entered at input D. The clock input may be applied commonly to Clock 1 and Clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low. However, conditions described in the last three lines of the function table will also ensure that the register contents are protected.

The SN54AS95 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74AS95 is characterized for operation from 0 °C to 70 °C. D2661, DECEMBER 1983-REVISED FEBRUARY 1984

ALS AND AS CIRCUITS

Copyright © 1983 by Texas Instruments Incorporated

2-27

TYPES SN54AS95, SN74AS95 **4-BIT PARALLEL-ACCESS SHIFT REGISTER**

			FU	NCTI	ON TA	BLE					
			INPUTS						OUTP	UTS	
MODE	CLO	CKS	CEDIAL	SERIAL			0.	0	0-	0-	
CONTROL	2 (L)	1 (R)	SERIAL	Α	B	С	D	QA	α _B	αc	σD
н	н	X	x	X	х	x	х	Q _{A0}	OB0	QC0	σDC
н	÷	x	х	а	b	с	d	a	b	с	d
н	ŧ	x	x	QB [†]	QC [†]	Ω _D †	d	QBn	QCn	0 _{Dn}	d
L	L	н	х	x	х	х	х	QAO	α _{BO}	QC0	QDO
L	x	+	н	X	х	х	х	н	Q _{An}	QBn	QCn
L	x	ŧ	L	X	х	х	х	L	QAn	QBn	QCn
t	L	L	x	X	х	х	х	QAO	Q _{BO}	QC0	Q _{D0}
Ļ	٤	ι	x	X	х	х	х	QAO	0 _{B0}	QC0	QDO
ŧ	L	н	х	x	х	х	х	QA0	QBO	o _{C0}	QDO
t	н	L	х	x	х	х	х	QA0	QB0	OC0	QDO
t	н	н	х	x	х	х	х	QAO	QB0	QC0	

[†]Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D.

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions).

 \downarrow = transition from high to low level, \uparrow = transition from low to high level.

a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

 A_{A0} , B_{D0} , A_{CO} , A_{D0} = the level of A_A , A_B , A_C , or A_D , respectively, before the indicated steady-state input conditions were established. A_{An} , A_{Bn} , A_{Cn} , A_{Dn} = the level of A_A , A_B , A_C , or A_D , respectively, before the most-recent \downarrow transition of the clock.

logic symbol

2

ALS AND AS CIRCUITS

Texas **INSTRUMENTS** POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54AS95, SN74AS95 **4-BIT PARALLEL-ACCESS SHIFT REGISTER**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54AS95 55°C to 125°C
SN74AS95 0°C to 70°C
Storage temperature range

1.18.9

recommended operating conditions

-

			s	N54AS	95	S	N74AS	35	
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				- 2			- 2	mA
IOL	Low-level output current				20			20	mA
fclock	Clock frequency		0		100	0		100	MHz
tw	Pulse duration, CLK high or	low	5			5			ns
t _{su}	Setup time, data before CLM	(†	2.5			2			ns
		Data	2.5			2.5			ns
th	Hold time after CLK	CLK 1 to Mode	3.5			3			
	(see Figure 1)	CLK 2 to Mode	1			0			1
	Clock enable time	CLK 1	13			12			
ten	(see Figure 1)	CLK 2	13			12			ns
•	Clock inhibit time	CLK 1	3			2.5			
tin	(see Figure 1)	CLK 2	1			0			ns
ТА	Operating free-air temperatu	re	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST COND	TEST CONDITIONS		N54AS	95	s	N74AS	95	
FANAMETEN	TEST COND	THOMS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
VIK	$V_{CC} = 4.5 V,$	lj = -18 mA			- 1.2			-1.2	V
VOH	V _{CC} = 4.5 V to 5.5 V,	$I_{OH} = -2 \text{ mA}$	V _{CC} -	2		Vcc-	- 2		v
VOL	$V_{CC} = 4.5 V,$	$I_{OL} = 20 \text{ mA}$		0.35	0.5		0.35	0.5	V
li i	$V_{CC} = 5.5 V,$	V ₁ = 7 V			0.1			0.1	mA
Ч Н .	$V_{CC} = 5.5 V,$	$V_{ } = 2.7 V$			20			20	μA
IL Mode	$V_{CC} = 5.5 V_{c}$	$V_{11} = 0.4 V$			- 1			- 1	
All other	VCC = 3:5 V,	V1L = 0.4 V			-0.5			-0.5	mA
lo‡	$V_{CC} = 5.5 V,$	$V_0 = 2.35 V$	- 30		-112	- 30		-112	mA
ССН	$V_{CC} = 5.5 V$			21	34		21	34	mA
ICCL	$V_{CC} = 5.5 V$			26	39		26	39	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS-

TYPES SN54AS95, SN74AS95 4-BIT PARALLEL-ACCESS SHIFT REGISTER

switching characteristice (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$					
			SN54	SN54AS95		SN74AS95		
			MIN	MAX	MIN	MAX		
fmax			100		100		MHz	
^t PLH			2	11	2	10	ns	
tPHL	CLK	ŭ	2	10.5	2	9.5	115	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2-30

TYPES SN54ALS109A, SN54AS109, SN74ALS109A, SN74AS109 DUAL J·K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

- D2661, APRIL 1982-REVISED FEBRUARY 1984
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

		TYPICAL POWER
TYPE	TYPICAL MAXIMUM	DISSIPATION
TIFE	CLOCK FREQUENCY	PER FLIP-FLOP
'ALS109A	50 MHz	6 mW
'AS109	129 MHz	29 mW

description

These devices contain two independent J- \overline{K} positive-edgetriggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and \overline{K} input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and \overline{K} inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by grounding \overline{K} and trying J high. They also can perform as D-type flip-flops if J and \overline{K} are tied together.

The SN54ALS109A and SN54AS109 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS109A and SN74AS109 are characterized for operation from 0 °C to 70 °C.

	IN	IPUTS			OUTF	PUTS
PRESET	CLEAR	CLOCK	J	ĸ	Q	ã
L	н	х	x	х	н	L
н	L	x	х	x	L	н
L	L	х	х	×	н*	H*
чH	н	1	L	L	L	н
н	н	t	н	L	TOG	GLE
н	н	Ť	L	н	Q 0	ā0
н	н	t	н	н	н	L
н	н	L	х	x	Qn	ā

FUNCTION TABLE (EACH FLIP-FLOP)

* The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH} if the lows at Preset and Clear are near V_{IL} maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

SN54ALS109A, SN54AS109 . . . J PACKAGE SN74ALS109A, SN74AS109 . . . N PACKAGE

(TOP VIEW)

SN54ALS109A, SN54AS109 . . . FH PACKAGE SN74ALS109A, SN74AS109 . . . FN PACKAGE

NC-No internal connection

logic symbol

Pin numbers shown are for J and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54ALS109A, SN54AS109
SN74ALS109A, SN74AS109
Storage temperature range

Copyright © 1982 by Texas Instruments Incorporated

TYPES SN54ALS109A, SN74ALS109A DUAL J-R POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

recommended operating conditions

			SM	154ALS	109A	SN	74ALS1	09A	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				- 0.4			0.4	mA
^I OL	Low-level output current			4			8	mA	
fclock	Clock frequency		0		30	0		34	MHz
		PRE or CLR low	15			15			ns
tw	Pulse duration	CLK high	16.5			14.5			
		CLK low	16.5			14.5	_		1
	Setup time	Data	15		_	15		_	
t _{su}	before CLK↑ PRE or CLR inactive		10			10			ns
th	Hold time, data after CLK		0			0			ns
TA	Operating free-air temperation	ture	~ 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				S	54ALS	109A	SN	74ALS	109A	UNIT
P	ARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	MIN	TYP [†]	MAX	
Vik		$V_{CC} = 4.5 V,$	$I_{I} = -18 \text{ mA}$			-1.5			- 1.5	V
∨он		$V_{CC} = 4.5 V$ to 5.5 V,	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -	2		Vcc-	2		V
Vai		$V_{CC} = 4.5 V,$	IOL ≈ 4 mA		0.25	0.4		0.25	0.4	v
VOL		$V_{CC} = 4.5 V_{,}$	$V_{CC} = 4.5 V$, $I_{OL} = 8 mA$		-			0.35	0.5	ľ
	CLK, J, or K	N				0.1			0.1	
4	PRE or CLR	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.2			0.2	mA
	CLK, J, or K					20			20	
ЧН	PRE or CLR	$V_{CC} = 5.5 V$,	$V_{ } = 2.7 V$			40			40	μA
	CLK, J or K		$V_1 = 0.4 V$			-0.2			-0.2	mA
41	PRE or CLR	$V_{CC} = 5.5 V,$	$v_1 = 0.4 v$			-0.4			-0.4	mA
10 [‡]		$V_{CC} = 5.5 V,$	V ₀ = 2.25 V	- 30		-112	- 30		- 112	mA
ICC		$V_{CC} = 5.5 V_{,}$	See Note 1		2.4	4		2.4	4	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. NOTE 1: I_{CC} is measured with J, \vec{K} , CLK, and \vec{PRE} grounded, then with J, \vec{K} , CLK, and \vec{CLR} grounded.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	ΤΟ (ΟυΤΡυΤ)		$V_{CC} = 4.5 \text{ V to 5.5 V},$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = \text{MIN to MAX}$					
				LS109A	SN74				
			MIN	MAX	MIN	MAX			
f _{max}			30		34		MHz		
tPLH	PRE or CLR		3	15	3	13	ns		
tPHL	PRE OF CLR	u or u	5	17	5	15	115		
tPLH	CLK		5	18	5	16			
^t PHL			5	20	5	18	ns		

NOTE 2: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2i

TYPES SN54AS109, SN74AS109 DUAL J K POSITIVE EDGE TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

 $(0, \dots, 0) \in \mathbb{R}^{d}$

* .

recommended operating conditions

			S	154AS1	09	SN	74AS10	9	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage		2			2		_	V
VIL	Low-level input voltage				0.8			0.8	V
ЮН	High-level output current			- 2			- 2	mA	
IOL	Low-level output current			20			20	mA	
fclock	Clock frequency		0		90	0		105	MHz
		PRE or CLR low	4			4			ns
tw	Pulse duration	CLK high	4			4			
		CLK low	5.5			5.5			1
	Setup time	Data	5.5			5.5			ns
tsu	before CLK †	PRE or CLR inactive	2		_	2			
th	Hold time, data after CLK†	•	0			0			ns
TA	Operating free-air temperature		- 55		125	0	_	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS		S	N54AS1	09	S	N74AS1	09	UNIT
PA	RAMETER	1551 0	CONDITIONS	MIN	TYPT	MAX	MIN	TYP [†]	MAX	UNIT
VIK		$V_{CC} = 4.5 V_{,}$	lį = -18 mA			- 1.2			-1.2	V
∨он		$V_{CC} = 4.5 V \text{ to } 5.$	5 V , $I_{OH} = -2 mA$	V _{CC} -	2		Vcc-	2		v
VOL		$V_{CC} = 4.5 V,$	$l_{OL} = 20 \text{ mA}$		0.25	0.5		0.25	0.5	V
4		$V_{CC} = 5.5 V,$	$V_i = 7 V$			0.1			0.1	mA
1	CLK, J or K	$V_{CC} = 5.5 V_{c}$	VI ≈ 2.7 V			20			20	μA
ЧΗ	PRE or CLR	VCC = 5.5 V,	v = 2.7 v			40			40	μ ΄
	CLK, J or K		VI = 0.4 V			-0.5			0.5	mA
41	PRE or CLR	$V_{CC} = 5.5 V_{,}$	V = 0:4 V			- 1.8			- 1.8	mA
'o‡		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		- 112	mA
ICC		$V_{CC} = 5.5 V,$	See Note 1		11.5	17		11.5	17	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. NOTE 1: I_{CC} is measured with J, K, CLK, and $\overline{\text{PRE}}$ grounded, then with J, K, CLK, and $\overline{\text{CLR}}$ grounded.

switching characteristics (see Note 2)

PARAMETER	FROM {INPUT}	TO (OUTPUT)		V _{CC} = 4 C _L = 50 R _L = 500 T _A = MI	pF,)Ω,		UNIT	
			SN54AS109 SN74AS109		AS109			
			MIN	MAX	MIN	MAX		
fmax			90		105		MHz	
^t PLH	PRE or CLR	Q or Q	3	9	3	8		
^t PHL	FRE OF CLR	uoru		3.5	11.5	3.5	10.5	ns
^t PLH	CLK	Q or Q	3.5	10	3.5	9	ns	
^t PHL			4.5	10.5	4.5	9	115	

NOTE 2: For load circuit and voltage wavforms, see page 1-12 of the TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

TYPES SN54ALS136, SN74ALS136 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS D2837, MARCH 1984

 Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

 Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent Exclusive-OR gates with open-collector outputs. They perform the Boolean functions $Y = A \bigoplus B = \overline{A}B + A\overline{B}$ in positive logic.

A common application is a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN54ALS136 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS136 is characterized for operation from 0 °C to 70 °C.

logic symbol

Pin numbers shown are for J and N packages.

exclusive-OR logic

An Exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

FUNCTION TABLE

(each gate)

OUTPUT

Y

L

н

н

L

INPUTS

A

LL

L H

H L

н н

B

These are five equivalent Exclusive-OR symbols valid for an 'ALS136 gate in positive logic; negation may be shown at any two ports.

LOGIC IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same logic level (i.e., A = B).

EVEN-PARITY

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

Copyright © 1984, Texas Instruments Incorporated

SN54ALS136 . . . J PACKAGE SN74ALS136 . . . N PACKAGE (TOP VIEW)

(TOP VIEW)

1A	1	U14	Vcc
18	2	13	4B
1 Y 🗋	3	12	4A
2A [4	11	4Y
2B [5	10	3B
2Y [6	9	3A
GND [7	8	3Y

SN54ALS136 . . . FH PACKAGE SN74ALS136 . . . FN PACKAGE (TOP VIEW)

NC-No internal connection

TYPES SN54ALS136, SN74ALS136 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		 	7 V
Input voltage		 	7 V
Off-state output voltage		 	7 V
Operating free-air temperature range:	SN54ALS136	 	-55°C to 125°C
	SN74ALS136	 	0°C to 70°C
Storage temperature range		 	-65°C to 150°C

recommended operating conditions

		SI	SN54ALS136		SN74ALS136			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8		_	0.8	V
VOH	High-level output voltage			5.5			5.5	V
IOL .	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS		SN	SN74ALS136			UNIT		
PARAMETER	1651 0	UNDITIONS	MIN	TYPT	MAX	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$l_{\rm I} = -18 \rm mA$			- 1.5			- 1.5	V
ЮН	$V_{CC} = 4.5 V_{,}$	V _{OH} = 5.5 V			0.1			0.1	mA
Vai	$V_{CC} = 4.5 V_{,}$	$l_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	v
VoL	$V_{CC} = 4.5 V,$	$I_{OL} = 8 mA$					0.35	0.5	•
h.	$V_{CC} = 5.5 V_{,}$	$V_{I} = 7 V$			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	$V_{1} = 2.7 V$			20			20	μA
ίL	$V_{CC} = 5.5 V$	VI = 0.4 V			-0.1			-0.1	mA
^I CC	$V_{CC} = 5.5 V,$	All inputs at 4.5 V		3.9	5.9		3.9	5.9	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	το (ουτρυτ)		CL = 50 RL ≂ 2 k			UNIT
			SN54ALS136		SN74ALS136		
			MIN	MAX	MIN	MAX	
^t PLH	A or B		20	55	20	50	ns
^t PHL	(other input low)	1	3	18	3	15	115
tPLH	A or B		20	55	20	50	ns
^t PHL	(other input high)	· · · · · · · · · · · · · · · · · · ·	3	15	3	12	115

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54ALS151, SN54AS151, SN74ALS151, SN74AS151 **1 OF 8 DATA SELECTORS/MULTIPLEXERS**

D2661, APRIL 1982-REVISED FEBRUARY 1984

- 8-Line to 1-Line Multiplexers Can Perform As: **Boolean Function Generators** Parallel-to-Serial Converters **Data Source Selectors**
- Input Clamping Diodes Simplify System Design
- Fully Compatible With Most TTL Circuits
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers provide full binary decoding to select one of eight data sources. The strobe input (G) must be at a low logic level to enable the inputs. A high level at the strobe terminal forces the W output high and the Y output low.

The SN54ALS151 and SN54AS151 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS151 and SN74AS151 are characterized for operation from 0 °C to 70 °C.

OUTPUTS

н

D2

D3

 $\overline{D6}$

Y w

L DO DO

D1 D1

D2

D3

D4 D4

D5 **D**5

D6

D7 D7

FUNCTION TABLE

STROBE

G

н

L

L

L

L

L

L

L

L.

H = high level, L = low level, X = irrelevant

D0, D1 . . . D7 = the level of the D respective input

INPUTS

SELECT

х х

н 1

С в Α

х

L L L

L L н

L н L

L н н

н L L

н L н

н

н н н

SN54ALS151, SN54AS151 J PACKAGE
SN74ALS151, SN74AS151 N PACKAGE
(TOP VIEW)

SN54ALS151, SN54AS151 . . . FH PACKAGE SN74ALS151, SN74AS151 . . . FN PACKAGE (TOP VIEW)

NC-No internal connection

logic symbol

Pin numbers shown are for J and N packages.

Copyright © 1982 by Texas Instruments Incorporated

TYPES SN54ALS151, SN54AS151, SN74ALS151, SN74AS151 1 OF 8 DATA SELECTORS/MULTIPLEXERS

logic diagram (positive logic)

ALS AND AS CIRCUITS

TYPES SN54ALS151, SN74ALS151 1 OF 8 DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		S	154ALS	151	SN	74ALS1	51	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 1			-2.6	mA
IOL _	Low-level output current			12			24	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS		SI	54ALS	151	SN74ALS151			UNIT	
PARAMETER				TYP [†]	MAX	MIN	TYP [†]	MAX		
VIK	$V_{CC} = 4.5 V,$	$I_{\rm I} = -18 {\rm mA}$			- 1.5			- 1.5	v	
	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	OH = -0.4 mA	Vcc-	2		Vcc-	2			
∨он	$V_{CC} = 4.5 V,$	$I_{OH} = -1 \text{ mA}$	2.4	3.3					v	
	$V_{CC} = 4.5 V,$	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2			
Max	$V_{CC} = 4.5 V,$	loL = 12 mA		0.25	0.4		0.25	0.4	V	
VOL	$V_{CC} = 4.5 V_{,}$	IOL = 24 mA					0.35	0.5	l * .	
łį	V _{CC} = 5.5 V,	$V_1 = 7 V$			0.1			0.1	mA	
Чн	$V_{CC} = 5.5 V,$	$V_{1} = 2.7 V$			20			20	μA	
կլ	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.1			-0.1	mA	
lQ‡	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		- 112	- 30		- 112	mA	
ICC	$V_{CC} = 5.5 V,$	Inputs at 4.5 V		7.5	12		7.5	12	mA	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM TO (INPUT) {OUTPUT)	$V_{CC} = 4.5 V$ to 5.5 V, $C_L = 50 pF$, $R_L = 500 \Omega$, $T_A = MIN$ to MAX					
			SN54	ALS151	SN74	ALS151]
			MIN	MAX	MIN	MAX	
^t PLH	A, B, or C	Y	4	21	4	18	
^t PHL	A, B, OF C		8	28	8	24	ns
^t PLH	A D and	w	7	2.8	7	24	
tPHL	A, B, or C	vv	7	26	7	23	ns
^t PLH	A D	Y	3	12	3	10	
tPHL	Any D	Ť	5	18	5	15	ns
tPLH	Any D	w	3	18	3	15	
^t PHL	Any D	w	4	18	4	15	ns
^t PLH	G	Y	4	21	4	18	
tPHL	U	r	4	23	4	19	ns
tPLH	ច	w	5	23	5	19	
tPHL	0	vv	5	26	5	23	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12.

ALS AND AS CIRCUITS

TYPES SN54AS151, SN74AS151 1 OF 8 DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		s	N54AS	151	S	N74AS1	151	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	v
⊻н	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 12			15	mA
IOL	Low-level output current			32			48	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SI	154AS1	51	SN	74AS15	51		
	PARAMETER	TEST CONDIT	IONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		$V_{CC} = 4.5 V_{,}$	$l_{1} = -18 \text{ mA}$			-1.2			- 1.2	V	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$,	$I_{OH} = -2 \text{ mA}$	Vcc-	2		Vcc-	2			
∨он		$V_{CC} = 4.5 V,$	$I_{OH} = -12 \text{ mA}$	2.4	3.2] v	
		$V_{CC} = 4.5 V_{,}$	$I_{OH} = -15 \text{ mA}$				2.4	3.3			
1/		$V_{CC} = 4.5 V,$	lot = 32 mA		0.25	0.5				v	
VOL		$V_{CC} = 4.5 V.$	IOL = 48 mA	· ·				0.35	0.5	ľ	
L.	A, B, or C	V _{CC} = 5.5 V,	VI = 7 V			0.2			0.2	mA	
կ	Ali others	$v_{CC} = 5.5 v_{,}$	vi = / v			0.1			0.1] "```	
1	A, B, or C		V 0.7.V			40			40	μA	
hΗ	All others	$V_{CC} = 5.5 V,$	$V_{i} = 2.7 V$			20		_	20	μΑ	
	A, B, or C		V - 0.4 V			- 1			- 1	mA	
ΙL	All others	$V_{\rm CC} = 5.5 V,$	$V_{l} = 0.4 V$			-0.5			-0.5	mA	
lo‡		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA	
Icc		$V_{CC} = 5.5 V,$			18.6	30		18.6	30	mA	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM TO (INPUT) (OUTPU	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$					
			SN54	AS151	SN74A	S151	1	
			MIN	MAX	MIN	MAX	1	
^t PLH	A, B, or C	Y	4.5	16	4.5	14.5	ns	
^t PHL	A, B, or C		4.5	16	4.5	15	115	
^t PLH	A, B, or C	w	4	14.5	4	12	- ns	
tPHL.			4	14.5	4	12	'''	
^t PLH	Any D	Y	3	11.5	3	10.5	ns	
^t PHL	Any D	r	3	12	3	11		
^t PLH	Any D	D W	2	8	2	6.5	ns	
^t PHL	Any U	vv	1	5.5	1	4.5	113	
^t PLH	G	Y	4.5	16	4.5	14	ns	
tPHL	G	Y	3	12.5	3	11	115	
tPLH	 Ğ		1.5	7	1.5	6	ns	
tPHL 1	u	vv	3	11	3	10	115	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54ALS160A THRU SN54ALS163A, SN54AS160 THRU SN54AS163 SN74ALS160A THRU SN74ALS163A, SN74AS160 THRU SN74AS163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS D2661, APRIL 1982-REVISED FEBRUARY 1984

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- **Dependable Texas Instruments Quality and** Reliability

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'ALS160A, 'ALS162A, 'AS160, and 'AS162 are decade counters, and the 'ALS161A, 'ALS163A, 'AS161, and 'AS163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

The clear function for the 'ALS160A, 'ALS161A, 'AS160, and 'AS161 is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clock, load, or enable inputs.

The clear function for the 'ALS162A, 'ALS163A, 'AS162, and 'AS163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both countenable inputs (ENP and ENT) must be high to count, and ENT is fed forward to enable the ripple carry output. The ripple carry output (RCO) thus enabled will produce a high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT are allowed regardless of the level of the clock input.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The SN54ALS160A through SN54ALS163A and SN54AS160 through SN54AS163 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS160A through SN74ALS163A and SN74AS160 through SN74AS163 are characterized for operation from 0 °C to 70 °C.

> 「 TEXAS INSTRUMENTS POST OFFICE BOX 225012 . DALLAS TEXAS 75265

SN54ALS', SN54AS' J PACKAGE
SN74ALS', SN74AS' N PACKAGE
(TOP VIEW)

	2	15	J HCO
ΑĽ	3	14]QA
В	4	13	ΠoΒ
сГ	5	12	Πac
D	6	11	ΠαD
ENP 🗌	7	10] ENT
GND	8	9	LOAD

SN54ALS', SN54AS . . . FH PACKAGE SN74ALS', SN74AS' . . . FN PACKAGE (TOP VIEW)

NC-No internal connection

2

TYPES SN54ALS160A, SN54ALS162A, SN54AS160, SN54AS162 SN74ALS160A, SN74ALS162A, SN74AS160, SN74AS162 SYNCHRONOUS 4-BIT DECADE COUNTERS

logic symbols

'ALS160A AND 'AS160 DECADE COUNTERS WITH DIRECT CLEAR

'ALS162A AND 'AS162 DECADE

COUNTERS WITH SYNCHRONOUS CLEAR

'ALS160A and 'AS160 logic diagram (positive logic)

'ALS162A and 'AS162 decade counters are similar; however the clear is synchronous as shown for the 'ALS163A and 'AS163 binary counters.

Pin numbers shown are for J and N packages.

TYPES SN54ALS161A, SN54ALS163A, SN54AS161, SN54AS163 SN74ALS161A, SN74ALS163A, SN74AS161, SN74AS163 Synchronous 4-bit binary counters

14 J. 18 J.

ورد به بقد

logic symbols

'ALS161A AND 'AS161 BINARY COUNTERS WITH DIRECT CLEAR

'ALS163A and 'AS163 logic diagram (positive logic)

'ALS161A and 'AS161 synchronous binary counters are similar; however the clear is asynchronous as shown for the 'ALS160A and 'AS160 decade counters.

Pin numbers shown are for J and N packages.

TYPES SN54ALS160A, SN54ALS162A, SN54AS160, SN54AS162 SN74ALS160A, SN74ALS162A, SN74AS160, SN74AS162 Synchronous 4-bit decade counters

typical clear, preset, count, and inhibit sequences

'ALS160A, 'AS160, 'ALS162A, 'AS162

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('ALS160A and 'AS160 are asynchronous; 'ALS162A and 'AS162 are synchronous)
- 2. Preset to BCD seven
- Count to eight, nine, zero, one, two, and three
 Inhibit

2

TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPES SN54ALS161A, SN54ALS163A, SN54AS161, SN54AS163 SN74ALS161A, SN74ALS163A, SN74AS161, SN74AS163 SYNCHRONOUS 4-BIT BINARY COUNTERS

4 11

typical clear, preset, count, and inhibit sequences

- -

'ALS161A, 'AS161, 'ALS163A, 'AS163

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('ALS161A and 'AS161 are asynchronous; 'ALS163A and 'AS163 are synchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen, fifteen, zero, one, and two

1. 1.

4. Inhibit

TYPES SN54ALS160A THRU SN54ALS163A SN74ALS160A THRU SN74ALS163A SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		V
Input voltage		V
Operating free-air temperature range:	SN54ALS160A thru SN54ALS163A 55 °C to 125 °C	С
	SN74ALS160A thru SN74ALS163A 0°C to 70°	С
Storage temperature range		С

recommended operating conditions

				SN	54ALS1 THRU	60A	SN	174ALS1 THRU		
				SN	54ALS1	63A	SN	174ALS1	63A	UNIT
				MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage			4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input	voltage		2			2			V
VIL	Low-level input	voltage				0.8			0.8	V
юн	High-level output	it current				- 0.4			- 0.4	mA
IOL	Low-level output	t current				4			8	mA
fclock	Clock frequency			0		25	0		30	MHz
	Pulse duration	CLK high or low		20			16.5			ns
tw	Fuise duration	'ALS160A, 'ALS161A,	CLR low	20			15			ns
		A, B, C, D		20			15			
		LOAD		20			15			
	Catura time	ENP, ENT	'ALS160A, 'ALS161A	25			20			
t _{su}	Setup time before CLK1	ENF, ENI	'ALS162A, 'ALS163A	30			25			ns
	Defore CENT	'ALS160A, 'ALS161A	CLR inactive	10			10			
			CLR low	20			15			
		'ALS162A, 'ALS163A	CLR high (inactive)	10			10			
th	Hold time, all sy	nchronous inputs after C	CLKT	0			0			ns
TA	Operating free-a	ir temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ALS160A THRU SN54ALS163A			SN74ALS160A THRU SN74ALS163A			UNIT
					TYP [†]	MAX	MIN	TYP [†]	MAX	
Vik		$V_{CC} = 4.5 V_{,}$	$I_{I} = -18 \text{ mA}$			- 1.5			- 1.5	V
VOH		$V_{CC} = 4.5 V$ to 5.	$5 V, I_{OH} = -0.4 mA$	Vcc-	2		Vcc-	2		V
VOL		$V_{CC} = 4.5 V_{,}$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	v
VOL		$V_{CC} = 4.5 V,$	IOL = 8 mA					0.35	0.5	Ň
	LOAD, CLK or ENT		VI = 7 V			0.2			0.2	mA
4	All other	$V_{CC} = 5.5 V,$	v] = / v			0.1			0.1	
1	LOAD, CLK or ENT		VI = 2.7 V			40			40	
чн	All other	$V_{CC} = 5.5 V,$	$v_1 = 2.7 v_1$			20			20	μΑ
μL		$V_{CC} = 5.5 V_{,}$	$V_{I} = 0.4 V$			-0.2			-0.2	mA
lo‡	RCO	$V_{CC} = 5.5 V_{c}$	$V_0 = 2.25 V$	- 15		- 70	- 15		- 70	mA
[،] 0	Q	VCC = 5.5 V,	v0 = 2.25 v	- 30		-112	- 30		- 112	IIIA
ICC		$V_{CC} = 5.5 V$			12	21		12	21	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

TYPES SN54ALS160A THRU SN54ALS163A SN74ALS160A THRU SN74ALS163A Synchronous 4-bit decade and binary counters

1991 B. 1997 B.

'ALS160A, 'ALS161A switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54A	$C_{L} = 50$ $R_{L} = 500$ $T_{A} = MIN$ $ALS160A$ $ALS161A$	61A SN74ALS161A		UNIT
			MIN	MAX	MIN	MAX	
fm <u>ax</u>			25		30		MHz
^t PLH	CLK	RCO	8	30	8	26	ns
^t PHL		RCO	7	25	7	23	113
tPLH .	CLK	Any Q	4	18	4	15	ns
^t PHL		Any Q	6	20	6	17	
tPLH .	ENT	RCO	3	16	3	13	ns
tphl.		RCO	3	16	3	13	115
TPHL	CLR	Any Q	8	27	8	24	ns
^t PHL	CLR	RCO	11	31	11	28	ns

'ALS162A, 'ALS163A switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (оитрит)	$V_{CC} = 4.$ $C_{L} = 50 \text{ I}$ $R_{L} = 500$ $T_{A} = MiN$ SN54ALS162A SN54ALS163A		pF, Ω, 1 to MAX SN74A	LS162A	UNIT	
			SN54A MIN	LS163A MAX	SN74A MIN	LS163A MAX		
fmax			25	MAA	30		MHz	
tPLH	CLK	RCO	8	30	8	26		
^t PHL		RCO	7	25	7	23	ns	
^t PLH	CLK	Any Q	4	18	4	15	ns	
^t PHL		Any Q		6	20	6	17	115
^t PLH	ENT	RCO	3	20	3	17	ns	
tP <u>HL</u>		RCO	3	16	3	13	115	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54AS160 THRU SN54AS163 SN74AS160 THRU SN74AS163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		v
Input voltage		v
Operating free-air temperature range: SI	SN54AS160 thru SN54AS163	С
SI	SN74AS160 thru SN74AS163 0°C to 70°C	С
Storage temperature range		С

recommended operating conditions

_				SN54AS160			SP	74AS1	60	
				THRU SN54AS163		63	THRU			
				MIN	NOM	MAX	SN74AS163 MIN NOM MAX			UNIT
Vcc	Supply voltage			4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input	voltage		2			2			v
VIL	Low-level input					0.8			0.8	V
юн	High-level output	t current				- 2			- 2	mA
IOL	Low-level output	t current	current			20		_	20	mA
fclock	Clock frequency	ncy		0		65	0		75	MHz
	Pulse duration	CLK high or low		7.7			6.7			
tw	Fuise ouration	'AS160, 'AS161 CLF	low	10			8			ns
		A, B, C, D		10			8			
		LOAD		10			8			
•	Setup time	ENP, ENT		10			8			
^t su	before CLK [↑]	'AS160, 'AS161 CLF	inactive	10			8			ns
		'AS162, 'AS163	CLR low	14		_	12	_		
		AS162, AS163	CLR high (inactive)	10			9			
th	Hold time, all sy	nchronous inputs after	CLKt	2			0			ns
TA	Operating free-a	ir temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST COND	TEST CONDITIONS		SN54AS160 THRU SN54AS163			SN74AS160 THRU SN74AS163		
					TYPT	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 V,$	lj = −18 mA			-1.2			1.2	V
∨он		V _{CC} = 4.5 V to 5.	5 V, $I_{OH} = -2 \text{ mA}$	Vcc-	2		Vcc-	- 2		V
VOL		$V_{CC} = 4.5 V,$	IOL = 20 mA		0.25	0.5		0.25	0.5	V
	LOAD					0.3			0.3	
lj –	ENT	$V_{CC} = 5.5 V,$	V _I = 7 V			0.2			0.2	mA
	All other					0.1			0.1	
	LOAD		$V_{l} = 2.7 V$			60			60	
Iн	ENT	$V_{CC} = 5.5 V_{,}$				40			40	μA
	All other					20			20	
	LOAD					- 1.5			- 1.5	
հե	ENT	$V_{CC} = 5.5 V_{,}$	$V_{i} = 0.4 V$			- 1			- 1	mA
	All other					-0.5			-0.5	1
10 [‡]		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		- 112	mA
lcc		V _{CC} = 5.5 V			35	53		35	53	mA

[‡]All typical values are at $V_{CC} = 5 \text{ V}, \text{ T}_{A} = 25 \text{ °C}.$

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

TYPES SN54AS160 THRU SN54AS163 SN74AS160 THRU SN74AS163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

'AS160, 'AS161 switching characteristics (see Note 1)

PARAMETER	IMETER FROM TO (INPUT) (OUTPU	TO {OUTPUT}	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$ SN54AS160 SN74AS160 SN74AS161 SN74AS161				
			MIN	MAX	MIN	MAX	
fmax			65		75		MHz
^t PHL		RCO	2	14	2	12.5	
^t PLH	CLK	RCO (with LOAD high)	1	8.5	1	8	ns
^t PLH		RCO (with LOAD low)	3	17.5	3	16.5	1
tPLH			1	7.5	1	7	
^t PHL	CLK	Any Q	2	14	2	13	ns
^t PLH			1.5	10	1.5	9	
^t PHL	ENT RCO	RCO	1	9.5	1	8.5	ns
tPHL	CLR	Any Q	2	14	2	13	ns
^t PHL	CLR	RCO	2	14	2	12.5	ns

'AS162, 'AS163 switching characteristics (see Note 1)

PARAMETER	FROM	TO		ν,	UNIT		
	(INPOT)	(INPUT) (OUTPUT)		AS162 AS163	SN74A SN74A		
			MIN	MAX	MIN	MAX	
fmax			65		75		MHz
tPHL		RCO	2	14	2	12.5	
tPLH .	CLK	RCO (with LOAD high)	1	8.5	1	8	ns
^t PLH		RCO (with LOAD low)	3	17.5	3	16.5	1
tPLH .	CLK	A	1	7.5	1	7	
^t PHL	CLK	Any Q	2	14	2	13	ns
tPLH	ENT	RCO	1.5	10	1.5	9	ns
^t PHL	ENI	neo	1	9.5	1	8.5	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54ALS160A THRU SN54ALS163A, SN54AS160 THRU SN54AS163 SN74ALS160A THRU SN74ALS163A, SN74AS160 THRU SN74AS163 Synchronous 4-bit decade and binary counters

TYPICAL APPLICATION DATA

N-BIT SYNCHRONOUS COUNTERS

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The 'ALS160A, 'AS160, 'ALS162A, and 'AS162 will count in BCD and the 'ALS161A, 'AS161, 'ALS163A and 'AS163 will count in binary. Virtually any count mode (modulo-N, N1-to-N2, N1-to-maximum) can be used with this fast look-ahead circuit.

TO MORE SIGNIFICANT STAGES

TYPES SN54ALS168B, SN54ALS169B, SN54AS168, SN54AS169 SN74ALS168B, SN74ALS169B, SN74AS168, SN74AS169 SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS MARCH 1984

10004

- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

34

These synchronous presettable counters feature an internal carry look-ahead for cascading in high-speed counting applications. The 'ALS168B and 'AS168 are decade counters and the 'ALS169B and 'AS169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

SN54ALS',	SN54AS'	•	•	•	7	PACKAGE
SN74ALS',	SN74AS'		•	•	N	PACKAGE
	(TOP VI	E	W)		

U/D [] י	U16	<u>⊃oov</u> [
CLK 2	15	
A [3	14	<u>]</u> ⁰, ∧
B 🗌 4	13] QB
С∐́₅	12	Doc
D 🗌 6	11] QD
ENP 7	10] ENT
GND 8	9	LOAD

SN54ALS', SN54AS' ... FH PACKAGE SN74ALS', SN74AS' ... FN PACKAGE

NC-No internal connection

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous application without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP and ENT) must be low to count. The direction of the count is determined by the level of the U/\overline{D} input. When U/\overline{D} is high, the counter counts up; when low, it counts down. Input ENT is fed forward to enable the carry output. The riple carry output (\overline{RCO}) thus enabled will produce a low-level pulse while the count is zero (all inputs low) counting down or maximum (9 or 15) counting up. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transistions at \overline{ENP} or \overline{ENT} are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, LOAD, U/D) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The SN54ALS168B, SN54AS168, SN54ALS169B, and SN54AS169 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS168B, SN74AS168, SN74ALS169B, and SN74AS169 are characterized for operation from 0 °C to 70 °C.

TYPES SN54ALS168B, SN54AS168, SN74ALS168B, SN74AS168 SYNCHRONOUS 4-BIT UP/DOWN DECADE COUNTERS

'ALS168B, 'AS168 logic symbol

ALS AND AS CIRCUITS

Pin numbers shown are for J and N packages.

TYPES SN54ALS169B, SN54AS169, SN74ALS169B, SN74AS169 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

A state of the state

'ALS169B, 'AS169 logic symbol

Pin numbers shown are for J and N packages.

ł

TYPES SN54ALS168B, SN54AS168, SN74ALS168B, SN74AS168 SYNCHRONOUS 4-BIT UP/DOWN DECADE COUNTERS

'ALS168B, 'AS168 typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to BCD seven
- 2. Count up to eight, nine (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), nine, eight, and seven

TYPES SN54ALS169B, SN54AS169, SN74ALS169B, SN74AS169 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

reader that the

'ALS169B, 'AS169 typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen

TYPES SN54ALS168B, SN54ALS169B, SN74ALS168B, SN74ALS169B Synchronous 4-bit up/down decade and binary counters

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Input voltage	
Operating free-air temperature range:	SN54ALS168B, SN54ALS169B 55°C to 125°C
	SN74ALS168B, SN74ALS169B 0°C to 70°C
Storage temperature range	

recommended operating conditions

				SN54ALS168B SN54ALS169B		SN74ALS168B SN74ALS169B			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage		2			2			l v
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				-0.4			-0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		25	0		30	MHz
tw	Pulse duration	CLK high or low	20			16.5			ns
		A, B, C, or D	20			15			
	Setup time before CLK†	ENP or ENT	25			20			
tsu	Setup time before CLK	LOAD	20			15			ns
		U/D	20			15			
th	Hold time, data after CLK†		0			0			ns
TA	Operating free-air temperat	Operating free-air temperature			125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ALS168B SN54ALS169B	SN74ALS168B SN74ALS169B	UNIT
		MIN TYP [†] MAX	MIN TYPT MAX	
VIK	$V_{CC} = 4.5 V$, $I_{I} = -18 mA$	- 1.5	- 1.5	V
VOH	$V_{CC} = 4.5 V$ to 5.5 V, $I_{OH} = -0.4 mA$	V _{CC} -2	V _{CC} -2	v
	$V_{CC} = 4.5 V$, $I_{OL} = 4 mA$	0.25 0.4	0.25 0.4	
VOL	$V_{CC} = 4.5 V$, $I_{OL} = 8 mA$		0.35 0.5	ľ
1	$V_{CC} = 5.5 V,$ $V_{I} = 7 V$	0.1	0.1	mA
<u>-</u>	$V_{CC} = 5.5 V,$ $V_{I} = 2.7 V$	20	20	μA
IL.	$V_{CC} = 5.5 V, V_{I} = 0.4 V$	-0.2	-0.2	mA
10‡	$V_{CC} = 5.5 V,$ $V_{O} = 2.25 V$	- 30 - 112	- 30 - 112	mA
lcc	$V_{CC} = 5.5 V$	15 25	15 25	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

TYPES SN54ALS168B, SN54ALS169B, SN74ALS168B, SN74ALS169B SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS

'ALS168B, 'ALS169B switching characteristics (see Note 1)

- -

PARAMETER	RAMETER FROM	TO (OUTPUT)		$V_{CC} = 4.5 V$ to 5.5 V, $C_L = 50 pF$, $RL = 500 \Omega$, $T_A = MIN$ to MAX				
				LS168B		LS168B		
			SN54A MIN	LS169B MAX	SN74A MIN	LS169B MAX	{	
f			25	MAA	30		MHz	
†max			3	15	3	13	101112	
^t PLH	CLK	CLK RCO	-		-	_	ns	
^t PHL			6	22	6	18		
^t PLH	CLK	Any Q	2	15	2	13	ns	
^t PHL			5	20	5	16		
^t PLH	ENT	RCO	2	15	2	12		
^t PHL		neo	3	16	3	13	ns	
^t PLH	U/D	RCO	5	21	5	18		
^t PHL	1 0/0	U/D RCO	5	21	5	18	ns	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54AS168, SN54AS169, SN74AS168, SN74AS169 SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		
Input voltage		
Operating free-air temperature range:	SN54AS168, SN54AS169	
	SN74AS168, SN74AS169	
Storage temperature range		

recommended operating conditions

				N54AS1 N54AS1			N74AS1 N74AS1		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	v
юн	High-level output current				- 2			- 2	mA
^I OL	Low-level output current				20			20	mA
fclock	Clock frequency		0		65	0		75	MHz
tw	Pulse duration	CLK high or low	7.7			6.7			ns
		A, B, C, or D	10			8			
		ENP or ENT	10			8			
t _{su}	Setup time before CLK1	LOAD	10			8			ns
		U/D	10			8			
th	Hold time, data after CLK†		2			0		_	ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

_				SN	SN54AS168 SN74AS		SN54AS168		V74AS1	68	
	PARAMETER	TEST C	TEST CONDITIONS		154AS1	69	S	V74AS1	69	UNIT	
				MIN	TYPT	MAX	MIN	TYP [†]	MAX		
VIK		$V_{CC} = 4.5 V,$	lj = −18 mA			- 1.2			- 1.2	v	
Vor		$V_{CC} = 4.5 V \text{ to } 5.00 \text$	5 V, IOH = -2 mA	V _{CC} -	2		Vcc-	2		. V	
VOL		$V_{CC} = 4.5 V$,	IOL = 20 mA		0.25	0.5		0.25	0.5	v	
	LOAD, ENT, U/D	No. EEV	× 7 ×			0.2			0.2	mA	
Ч	All others	$v_{CC} = 0.5 v_{,}$	$CC = 5.5 V, V_{I} = 7 V$			0.1			0.1	IIIA	
	LOAD, ENT, U/D	No. FEN				40			40		
чн	All others	$V_{\rm CC} = 5.5 V_{\rm c}$	$V_1 = 2.7 V$			20			20	μA	
	LOAD, ENT, U/D					- 1			- 1		
μL	All others,	$V_{CC} \approx 5.5 V,$	$V_{i} = 0.4 V$			-0.5			-0.5	mA	
10‡		$V_{CC} = 5.5 V$,	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA	
lcc		$V_{CC} = 5.5 V$			41	63		41	63	mA	

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IQS.

TYPES SN54AS168, SN54AS169, SN74AS168, SN74AS169 SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS

A A 1997 1

'AS168, 'AS169 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)		C _L = 50 RL = 500 T _A = MIM	Ω, I to MAX		UNIT
				4AS168 4AS169	SN74AS168 SN74AS169		
			MIN	MAX	MIN	MAX	
fmax			65		75		MHz
^t PLH	CLK	RCO	3	17.5	3	16.5	
^t PHL		(LOAD high or low)	2	14	2	13	ns
tPLH	CLK	Any Q	1	7.5	1	7	ns
^t PHL		Any d	2	14	2	13	
^t PLH	ENT	RCO	1.5	10	1.5	9	
^t PHL]	ACO	1.5	10	1.5	9	ns
^t PLH	U/D	RCO	2	14	2	12	
^t PHL	1 0/0	Red	2	14.5	2	13	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2 ALS AND AS CIRCUITS

- -

TYPES SN54ALS174, SN54ALS175, SN54AS174, SN54AS175 SN74ALS174, SN74ALS175, SN74AS174, SN74AS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR D2661, APRIL 1982 – REVISED FEBRUARY 1984

1.5.10

SN

SN'

 'ALS174 and 'AS174 Contain Six Flip-Flops with Single-Rail Outputs

- 'ALS175 and 'AS175 Contain Four Flip-Flops with Double-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Applications Include: Buffer/Storage Registers Shift Registers Pattern Generators
- Fully Buffered Outputs for Maximum Isolation from External Disturbance ('AS only)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input and the 'ALS175 and 'AS175 feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positivegoing pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These circuits are fully compatible for use with most TTL circuits.

The SN54ALS174, SN54ALS175, SN54AS174, and SN54AS175 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS174, SN74ALS175, SN74AS174, and SN74AS175 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

1	NPUTS	OUTPUTS			
CLR	CLK	D	۵	۵t	
L	×	x	L	н	
н	t	н	н	L	
н	t	L	L	н	
н	L	х	Q0	ão	

t 'ALS175 and 'AS175 only

54ALS174, SN54	AS174 J PACKAGE
74ALS174, SN74	AS174 N PACKAGE
(TC	P VIEW)
	U ₁₆ V _{CC}
10 🗌 2	15 60
1D 🗌 3	14 🗍 6D
2D 🗌 4	13 🗍 5D
20 🗋 5	12 50
3D 🗌 6	11 🗋 4D
30 🗌 7	10 40

SN54ALS174, SN54AS174 . . . FH PACKAGE SN74ALS174, SN74AS174 . . . FN PACKAGE

9 CLK

GND 18

SN54ALS175, SN54AS175 . . . J PACKAGE SN74ALS175, SN74AS175 . . . N PACKAGE (TOP VIEW)

10 [2	15 40
1 🖸 🗌 3	14 🗍 4 🖸
1D 🚺 4	13 🗍 4D
2D 🗍 5	12 🗋 3D
2ā 🗌 6	11 🗋 30
20 🗌 7	10 🗋 30
GND [8	9] CLK

SN54ALS175, SN54AS175 . . . FH PACKAGE SN74ALS175, SN74AS175 . . . FN PACKAGE

Copyright © 1983 by Texas Instruments Incorporated

TYPES SN54ALS174, SN54ALS175, SN54AS174, SN54AS175 SN74ALS174, SN74ALS175, SN74AS174, SN74AS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

logic symbols

logic diagrams (positive logic)

Pin numbers shown are for J and N packages.

TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

ALS AND AS CIRCUITS

TYPES SN54ALS174, SN54ALS175, SN74ALS174, SN74ALS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

1.11

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	/
Input voltage	1
Operating free-air temperature range: SN54ALS174, SN54ALS175	;
SN74ALS174, SN74ALS175	;
Storage temperature range	;

recommended operating conditions

			-	N54ALS			74ALS1 74ALS1		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				-0.4			-0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		40	0		50	MHz
		CLR low	15			10			
tw	Pulse duration	CLK high	12.5			10			ns
		CLK low	12.5			10			1
	Setup time	Data	15			10			
tsu	before CLK†	CLR inactive	8			6			ns
th	Hold time, data after CL	(†	0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54ALS174 SN54ALS175		SN74ALS174 SN74ALS175			UNIT		
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX		
VIK	$V_{CC} = 4.5 V_{,}$	lj =18 mA			- 1.5			- 1.5	V	
Voн	V _{CC} = 4.5 V to 5.5	V I _{OH} = -0.4 mA	Vcc -	2		Vcc-	2		v	
Va	$V_{CC} = 4.5 V,$	IOL = 4 mA		0.25	0.4		0.25	0.4		
VOL	$V_{CC} = 4.5 V$	lot = 8 mA					0.35	0.5	ľ	
կ	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mĀ	
ίн	$V_{CC} = 5.5 V,$	$V_{ } = 2.7 V$			20			20	μA	
μL	$V_{CC} = 5.5 V_{,}$	V _I = 0.4 V			-0.1			-0.1	mA	
l0‡	$V_{CC} = 5.5 V_{,}$	$V_0 = 2.25 V$	- 30		-112	- 30		- 112	mA	
ALS174		Can Nata 1		11	19		11	19		
CC 'ALS175	$V_{\rm CC} = 5.5 V,$	See Note 1		8	14		9	14	A	

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}. NOTE 1: I_{CC} is measured with D inputs and CLR grounded, and CLK at 4.5 V.

TYPES SN54ALS174, SN54ALS175, SN74ALS174, SN74ALS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.$ $C_{L} = 50$ $R_{L} = 500$ $T_{A} = Min$	pF, Ω	5 V	UNIT	
				ALS174 ALS175		ALS174 ALS175		
			MIN	MAX	MIN	MAX		
f _{max}			40		50		MHz	
^t PLH		Any Q ('ALS175)	5	20	5	18		
^t PHL		Any Q	8	26	8	23	ns	
tPLH	OLK.	Αηγ Ο	3	17	3	15		
^t PHL	CLK	(or Q, 'ALS175)	5	20	5	17	ns	

NOTE 2: For load circuit and voltage waveforms, see page 1-12.

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\Box) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

TYPES SN54AS174, SN54AS175, SN74AS174, SN74AS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

 $i \in O$

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54AS174, SN54AS175 55 °C to 125 °C
SN74AS174, SN74AS175
Storage temperature range65 °C to 150 °C

1. - 1. - 1**4**

recommended operating conditions

					SN54AS174 SN54AS175			SN74AS174 SN74AS175		
				MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage				5	5.5	4.5	5	5.5	V
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
IOH	High-level output current					- 2			- 2	mA
IOL	Low-level output current					20			20	mA
fclock	Clock frequency			0		100	0		100	MHz
		CLR low		5.5			5			
	Pulse duration	CLK high		4			4			ns
tw	Pulse duration	CLK low	'AS174	6			6			ns
		CEN IOW	'A\$175	5			3		_	
		Data	'AS174	4			4			
t _{su}	Setup time Data	Data	'A\$175	3			3			ns
	before CLK†	CLR inactive	CLR inactive		_		6			1
^t h	Hold time, data after CLK †			1	_		1			ns
ТА	Operating free-air temperature			- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54AS174 SN54AS175			SN74AS174 SN74AS175		
			MIN	TYP	MAX		TYP [†]		UNIT
VIK	$V_{CC} = 4.5 V_{,}$	lj = -18 mA			- 1.2			- 1.2	V
VOH	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	′, I _{OH} = −2 mA	V _{CC} -	2		Vcc	- 2		V
VOL	$V_{CC} = 4.5 V_{,}$	l _{OL} = 20 mA		0.35	0.5		0.35	0.5	
<u>н</u>	V _{CC} = 5.5 V,	V ₁ = 7 V			0.1			0.1	mA
Ін	$V_{CC} = 5.5 V,$	$V_{1} = 2.7 V$			20			20	μA
lι	$V_{CC} = 5.5 V$,	$V_{1} = 0.4 V$			-0.5	_		-0.5	mA
lo [‡]	$V_{CC} = 5.5 V$,	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
'AS174		Eac Note 1		30	45		30	45	-
ICC 'AS175	$V_{CC} = 5.5 V,$	See Note 1		22.5	34		22.5	34	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS-NOTE 1: ICC is measured with D, CLK, and PRE grounded, then with D, CLK, and CLR grounded.

TYPES SN54AS174, SN54AS175, SN74AS174, SN74AS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

'AS174 switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		UNIT				
			SN54AS174		SN	74AS174		
			MIN	MAX	MIN	MAX		
fmax			100		100		MHz	
^t PHL	CLR	Any Q	5	15	5	14	ns	
^t PLH	CLK	Any Q	3.5	9.5	3.5	8	ns	
^t PHL	CLK		4.5	11.5	4.5	10		

'AS175 switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	то (оитрит)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega$ $T_{A} = \text{MIN to MAX}$				
			SN54AS175		SN	74AS175]	
			MIN	MAX	MIN	MAX		
fmax			100		100	_	MHz	
^t PLH	CLR	Any Q or Q	4	10	4	9		
^t PHL	CLA		4.5	15	4.5	13	ns	
tPLH	CLK	Any Q or Q	4	8.5	4	7.5		
tPHL	ULK		4	11	4	10	ns	

NOTE 2: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54AS250, SN74AS250 1-OF-16 DATA GENERATORS/MULTIPLEXERS WITH 3-STATE OUTPUTS DECEMBER 1983 - REVISED FEBRUARY 1984

100.00

- 4-Line to 1-Line Multiplexer that can Select 1 of 16 Data Inputs
- Applications: Boolean Function Generator Parallel-to-Serial Converter Data Source Selector
- Buffered 3-State Bus Driver Inputs Permit Multiplexing from N Lines to One Line
- Dependable Texas Instruments Quality and Reliability

description

The 'AS250 provides full binary decoding to select one of sixteen data sources with an inverting \overline{W} output. The selected sources are buffered with symmetrical propagation delay times. This reduces the possibility of transients occurring at the output.

A buffered enable output (\overline{G}) may be used for n-lineto-one-line cascading. Taking the \overline{G} high will place the output in a high-impedance state. In the highimpedance state, the output neither loads nor drives the bus lines significantly.

The enable (\overline{G}) does not affect the internal operations of the data selector/multiplexer. New data can be set up while the outputs are disabled.

The SN54AS250 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74AS250 is characterized for operation from 0 °C to 70 °C.

15 🗖 A

14 🗋 B

13 T C

SN54AS250	FH CHIP	CARRIER PACKAGE							
SN74AS250	FN CHIP	CARRIER PACKAGE							

w∐10

D []11

GND [12

.....

NC - No internal connection

ADVANCE INFORMATION

This document contains information on a new product. Specifications are subject to change without notice.

TYPES SN54AS250, SN74AS250 1-OF-16 DATA GENERATORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

logic symbol

logic diagram (positive logic)

2 ALS AND AS CIRCUITS

TYPES SN54AS250, SN74AS250 1-OF-16 DATA GENERATORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

FUNCTION TABLE									
		it	IPUT			OUTPUT			
Ğ	Α	B	С	D	Ei	W			
L	L	L	L	L	EO	EO			
Ł	н	L	Ł	L	E1	E1			
ι	Ł	н	L	L	E2	E2			
L	н	н	L	L	E3	E3			
L	Ł	Ł	н	L	E4	E4			
L	н	L	н	L	E5	E5			
Ł	L	н	н	Ľ	E6	E6			
Ł	н	н	н	L	E7	E7			
L	L	L	L	н	E8	E8			
L	н	L	L	н	E9	E9			
L	L	н	L	н	E10	E10			
L	н	н	L	н	E11	E11			
L	L	L	н	н	E12	E12			
L	н	L	н	н	E13	E13			
L	L	н	н	н	E14	E14			
L	н	н	н	н	E15	E15			
н	х	х	х	х	х	z			

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Input voltage	
Operating free-air temperature range:	SN54AS250 55 °C to 125 °C
	SN74AS250 0°C to 70°C
Storage temperature range	

recommended operating conditions

		SN54AS250			S	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
ViH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 12			- 15	mA
IOL	Low-level output current			32			48	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

TYPES SN54AS250, SN74AS250 **1.0F-16 DATA GENERATORS/MULTIPLEXERS** WITH 3-STATE OUTPUTS

DADAMETED	TEST CONDITIONS		S	SN54AS250			V74AS2	50	UNIT
PARAMETER	1651 C	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNIT	
VIK	$V_{\rm CC} = 4.5$ V,	lj = -18 mA			~ 1.2			- 1.2	V
	$V_{CC} = 4.5 V \text{ to } 5.5$	$5 V$, $I_{OH} = -2 mA$	Vcc-	2		Vcc-			
VOH	$V_{CC} = 4.5 V,$	$I_{OH} = -12 \text{ mA}$	2.4	3.2	_				1 v
	$V_{CC} = 4.5 V_{c}$	$I_{OH} = -15 \text{ mA}$				2.4	3.3		
VOL -	$V_{CC} = 4.5 V,$	$1_{OL} = 32 \text{ mA}$		0.25	0.5				l v
VOL	$V_{\rm CC} = 4.5 V_{\rm c}$	$I_{OL} = 48 \text{ mA}$					0.35	0.5	ľ
IOZH	$V_{CC} = 5.5 V_{,}$	V ₀ = 2.7 V			50			50	μA
IOZL	$V_{CC} = 5.5 V_{c}$	$V_0 = 0.4 V$			- 50			- 50	μA
li	$V_{CC} = 5.5 V_{,}$	V _I = 7 V			0.1			0.1	mA
ltH	$V_{CC} = 5.5 V_{c}$	$V_{I} = 2.7 V$			20			20	μA
ΙL	$V_{CC} = 5.5 V_{c}$	$V_{I} = 0.4 V$			-0.5			-0.5	mA
'o‡	$V_{\rm CC} = 5.5 \rm V_{c}$	$V_0 = 2.25 V$	- 30		- 112	- 30		-112	mA
		Outputs high		26			26	42	
^I CC	$V_{CC} = 5.5 V$	Outputs low		31			31	50	mA
		Outputs disabled		30			30	48	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	το (ουτρυτ)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$					
			SN54AS250 SN74AS250				4AS250		
			MIN	TYP [†]	MAX	MIN	MAX		
^t PLH	DATA	w		5	_	3	8		
^t PHL		· · · ·	3.5		2	6	ns		
^t PLH	SELECT			7.5	_	4	13		
^t PHL				7.5		4	10	ns	
^t PZH	G			4.5		2 7			
tPZL				12		4	20	ns	
tphz	Ğ	w		3.5		2 6			
^t PLZ		••		4.5		2	6	ns	

 $^\dagger All$ typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54AS298, SN74AS298 QUADRUPLE 2-INPUT MULTIPLEXER WITH STORAGE

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Applications:

Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data

Implements Separate Registers Capable of Parallel Exchange of Contents, yet Retains External Load Capability

Has Universal-Type Register for Implementing Various Shift Patterns; even Has Compound Left-Right Capability

 Dependable Texas Instruments Quality and Reliability

description

This quadruple two-input multiplexer with storage provides essentially the equivalent functional capabilities of two separate MSI functions (SN54AS157/SN74AS157 and SN54AS175/SN74AS175) in a single 16-pin package.

When the word-select (WS) input is low, Word 1 (A1, B1, C1, D1 is applied to the flip-flops. A high input to the word-select (WS) will cause the selection of Word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

The SN54AS298 is characterized for operation over the full military range of -55 °C to 125 °C. The SN74AS298 is characterized for operation from 0 °C to 70 °C.

D2661, DECEMBER 1983 - REVISED FEBRUARY 1984

SN54AS298 . . . J PACKAGE SN74AS298 . . . N PACKAGE (TOP VIEW) B2 1 U16 VCC A2 🛛 2 15 QA A1 🗍 3 14 QB в1 🗌 4 13 QC C2 [5 12 🗋 QD 11 CLK D2 🗌 6

10 🗍 WS

9 🗌 C1

SN54AS298 SN74AS298								
(TOP VIEW)								

D1 🛛 7

GND 8

NC-No internal connection

	FUNCTION TABLE												
	INP	OUTPUTS											
WORD SELECT		CLOCK	QA	QB	σc	αD							
	L	t	a1	b1	c1	d1							
	н	Ļ	a2	ь2	c2	d2							
	x	н	QA0	QBO	QCO	O_{DO}							

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

+ = transition from high to low level

a1, a2, etc. = the level of steady-state input at A1, A2, etc.

 $\Omega_{A0}, \, \Omega_{B0}, \, \text{etc.} = \text{the level of } \Omega_A, \, \Omega_B, \, \text{etc. entered on the}$

TEXAS

INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

most-recent 4 transition of the clock

input.

Copyright © 1983 by Texas Instruments Incorporated

TYPES SN54AS298, SN74AS298 QUADRUPLE 2-INPUT MULTIPLEXER WITH STORAGE

logic symbol

logic diagram (positive logic)

Pin numbers shown are for J and N packages.

2 ALS AND AS CIRCUITS

TYPES SN54AS298, SN74AS298 QUADRUPLE 2-INPUT MULTIPLEXER WITH STORAGE

 $(1,\ldots,1,n)$

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

t = 0.01

Supply voltage, V _{CC}
Input voltage
Operating free-air temperature range: SN54AS298 55 °C to 125 °C
SN74AS298
Storage temperature range

recommended operating conditions

			SI	SN54AS298			SN74AS298		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage					2			V
ViL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				- 2			- 2	mА
^I OL	Low-level output current Clock frequency Pulse duration, CLK high or low				20			20	mA
fclock			0		100	0		100	MHz
tw			5			5			ns
	Setup time before CLK 4	Data	4.5			4.5			ns
tsu		Word Select	13			13			
		Data	3.5			3.5			
th	Hold time after CLK ↓	Word Select	1			1			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN	SN54AS298		SN74AS298			UNIT
				MIN	TYP	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 V,$	lı = −18 mA			- 1			- 1	v
VOH		$V_{CC} = 4.5 V \text{ to } 5.5$	V, $I_{OH} = -2 \text{ mA}$	Vcc-	2		Vcc-	2		v
VOL		$V_{CC} = 4.5 V,$	l _{OL} = 20 mA		0.35	0.5		0.35	0.5	v
β		$V_{CC} = 5.5 \overline{V}$	V ₁ = 7 V			0.1			0.1	mA
Чн	WS	V _{CC} = 5.5 V,	$V_{i} = 2.7 V$			40			40	μA
чн	All other		vi = 2.7 v			20			20	
1	ws		$V_{1} = 0.4 V$			-0.75			-0.75	mA
μL	All other	$V_{CC} = 5.5 V,$	v] = 0.4 v			-0.5			-0.5	ma
10‡		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		- 112	- 30		-112	mA
Іссн		$V_{CC} = 5.5 V$			21	33		21	33	mA
ICCL		V _{CC} = 5.5 V			22	36		22	36	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characterisitcs (see Note 1)

PARAMETER	FROM (INPUT)	то (о трит)		$V_{CC} = 4$ $C_{L} = 50$ $R_{L} = 500$ $T_{A} = MR$	Ω,	ν.	UNIT	
			SN54	SN54AS298		SN74AS298		
			MIN	MAX	MIN	MAX		
fmax			100		100		MHz	
tPLH	CLK	۵	2	16	2	9	ns	
^t PHL			1	12	1	11		

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2-73
TYPES SN54AS298, SN74AS298 QUADRUPLE 2-INPUT MULTIPLEXER WITH STORAGE

TYPICAL APPLICATION DATA

This versatile multiplexer/register can be connected to operate as a shift register that can shift N-places in a single clock pulse.

The following figure illustrates a BCD shift register that will shift an entire 4-bit BCD digit in one clock pulse.

When the word-select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2, etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered in the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the 'AS298 is a register that can be designed specifically for supporting multiplier or division operations. The example below is a one-place/two-place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALUs) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.

TYPES SN54ALS620A THRU SN54ALS623A, SN54AS620 THRU SN54AS623 SN74ALS620A THRU SN74ALS623A, SN74AS620 THRU SN74AS623 Octal Bus transceivers

D2661, DECEMBER 1982-REVISED FEBRUARY 1984

- Bus Transceivers in High-Density 20-Pin DIP and the New Plastic and Ceramic Chip Carriers
- Local Bus-Latch Capability
- Choice of True or Inverting Logic
- Choice of 3-State or Open-Collector Outputs
- Dependable Texas Instruments Quality and Reliability

DEVICE	OUTPUT	LOGIC
'ALS620A, 'AS620	3-State	Inverting
'ALS621A, 'AS621	Open-Collector	True
'ALS622A, 'AS622	Open-Collector	Inverting
'ALS623A, 'AS623	3-State	True

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\overline{G}BA$ and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives the octal bus transceivers the capability to store data by

simultaneous enabling of GBA and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the 'ALS621A, 'AS621 and 'ALS623A, 'AS623 or complementary for the 'ALS620A, 'AS620 and 'ALS622A, 'AS622.

The -1 versions of the SN74ALS' parts are identical to their standard versions except that the recommended maximum IOL is increased to 48 mA. There are no -1 versions of the SN54ALS' parts.

The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

ENABLE	INPUTS	OPER	OPERATION				
ĞВА	GAB	'ALS620A, 'ALS622A 'AS620, 'AS622	'ALS621A, 'ALS623A 'AS621, 'AS623				
L	L	B data to A bus	B data to A bus				
н	н	à data to B bus	A data to B bus				
н	L	Isolation	Isolation				
		B data to A bus,	B data to A bus,				
L	н	A data to B bus	A data to B bus				

FUNCTION TABLE

Convright	0	1982	by	Texas	Instruments	Incorporated

			PA OKAGE
SN74ALS', S	SN/4AS	· · . N	PACKAGE
	(TOP V	IEW)	
GAB A1 A2 A3 A4 A5 A6 A7	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	19 0 18 0 17 0 16 0 15 0 14 0 14 0 19	/CC 6BA 31 32 33 34 35 36
	<u> </u>	E	
A8	<u>9</u>	12 📙 E	37
GND	[10	11]] E	38

SN54ALS', SN54AS' ... J PACKAGE

SN54ALS', SN54AS' ... FH PACKAGE SN74ALS', SN74AS' ... FN PACKAGE (TOP VIEW)

TYPES SN54ALS620A THRU SN54ALS623A, SN54AS620 THRU SN54AS623 SN74ALS620A THRU SN74ALS623A, SN74AS620 THRU SN74AS623 Octal Bus transceivers

logic symbols

Pin numbers shown are for J and N packages.

logic diagrams (positive logic)

TO OTHER SI

TRANSCEIVERS

'ALS622A, 'AS622

2

TEXAS VI INSTRUMENTS

2-76

TYPES SN54ALS620A, SN54ALS623A, SN74ALS620A, SN74ALS623A **OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS**

1.1.11

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	,
Input voltage: All inputs	1
I/O ports	1
Operating free-air temperature range: SN54ALS620A, SN54ALS623A	;
SN74ALS620A, SN74ALS623A	;
Storage temperature range	;

recommended operating conditions

....

			SN54ALS620A SN54ALS623A			SN74ALS620A SN74ALS623A		
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	v_
VIH	High-level input voltage	2			2			. V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			-12			-15	mA
lou	four local output oursest			12			24	~
IOL	Low-level output current						48†	mA
TA	Operating free-air temperature	- 5 5		125	0		70	°C

 $^{\dagger} \text{The extended limits apply only if V}_{CC}$ is maintained between 4.75 V and 5.25 V. The 48-mA limit applies for the SN74ALS620A-1 and SN74ALS623A-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

Р	ARAMETER	TEST COND	ITIONS		54ALS6 54ALS6			74ALS6 74ALS6		UNIT
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK		$V_{CC} = 4.5 V,$	l _i = −18 mA			-1.5			-1.5	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			
		$V_{\rm CC} = 4.5 V,$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		l v
VOH		$V_{CC} = 4.5 V,$	$I_{OH} = -12 \text{ mA}$	2						*
		$V_{CC} = 4.5 V,$	OH = -15 mA				2			1
		$V_{CC} = 4.5 V,$	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL		$V_{CC} = 4.5 V,$	I _{OL} = 24 mA							l v
		$(I_{OL} = 48 \text{ mA for} - 1 \text{ ver})$	sions)				0.35 0.5			
	Control inputs	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.1			0.1	
łį	A or B ports	$V_{CC} = 5.5 V_{,}$	$V_{I} = 5.5 V$			0.1	-		0.1	mA
	Control inputs					20			20	
hΗ	A or B ports§	$V_{\rm CC} = 5.5 V,$	$V_{I} = 2.7 V$			20			20	μA
	Control inputs					-0.1			-0.1	
կլ	A or B ports§	$V_{\rm CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.1			-0.1	mA
lo¶		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	30		112	mA
			Outputs high		24	39		24	34	
	'ALS620A	$V_{CC} = 5.5 V$	Outputs low		31	49		31	44	1
laa			Outputs disabled		33	52		33	47	mA
lcc			Outputs high		32	48		32	43	mA
	'ALS623A	$V_{CC} = 5.5 V$	Outputs low		39	55		39	50]
			Outputs disabled		42	60		42	55	1

ALS AND AS CIRCUITS

*All typical values are at V_{CC} = 5 V, T_A = 25°C
 *For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
 The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

TYPES SN54ALS620A, SN54ALS623A, SN74ALS620A, SN74ALS623A Octal Bus transceivers with 3-state outputs

PARAMETER	FROM (INPUT)	ΤΟ (ΟυΤΡυΤ)		$C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to}$	I = 500 Ω, 2 = 500 Ω, 3 = MIN to MAX 5620A SN74ALS6 MAX MIN		UNIT
				LS620A			
			MIN	MAX	MIN	MAX	
^t PLH_	- A	B	2	12	2	10	
^t PHL	^	B	2	12	2	10	ns
^t PLH	в	Α	2	12	2	10	
tPHL		8	2	12	2	10	ns
^t PZH	ĞВА	A	3	23	3	17	
tPZL	004	A	5	31	5	25	ns
tPHZ	GBA	A	2	14	2	12	
^t PLZ	GBA	A	3	22	3	18	ns
tPZH	GAB	8	3	23	3	18	
^t PZL		8	5	31	5	25	ns
^t PHZ	GAB		2	14	2	12	
tPLZ	GAB	8	3	22	3	18	ns

'ALS620A switching characteristics (see Note 1)

'ALS623A switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5$ V $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to}$ LS623A	MAX	ALS623A	UNIT
	[MIN	MAX	MIN	MAX	
tPLH			2	15	2	13	
^t PHL	- ^	В	3	13	3	11	ns
^t PLH	В	A	2	15	2	13	
^t PHL		A	3	13	3	11	ns
tPZH	Ğва	A	5	25	5	22	ns
^t PZL	004	<u>^</u>	5	25	5	22	115
^t PHZ	ĞВА	Α	2	19	2	16	
tPLZ		<u>^</u>	2	23	2	19	ns
tPZH	GAB	B	5	25	5	22	ns
tPZL			5	25	5	22	115
^t PHZ	GAB		2	19	2	16	ns
^t PLZ		5	2	23	2	19	118

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54ALS621A, SN54ALS622A, SN74ALS621A, SN74ALS622A OCTAL BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

. . .

Supply voltage, V _{CC}
Input voltage: All inputs and I/O ports
Operating free-air temperature range: SN54ALS621A, SN54ALS622A 55 °C to 125 °C
SN74ALS621A, SN74ALS622A 0°C to 70°C
Storage temperature range

recommended operating conditions

•

- -

			SN54ALS621A SN54ALS622A			SN74ALS621A SN74ALS622A		
		MIN	NOM	MAX	MIN	NOM	MAX]
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	v
∨он	High-level output voltage			5.5			5.5	V
				12			24	-
IOL	Low-level output current						48†	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

 $^{\dagger} \text{The extended limits apply only if V_{CC}}$ is maintained between 4.75 V and 5.25 V. The 48-mA limit applies for the SN74ALS621A-1 and SN74ALS622A-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				-	54ALS6			74ALS6		UNIT
PARAMETER		TEST C	TEST CONDITIONS		SN54ALS622A			SN74ALS622A		
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK		$V_{CC} = 4.5 V,$	$l_{I} = -18 \text{ mA}$			- 1.5			- 1.5	V
юн		$V_{CC} = 4.5 V$,	VOH = 5.5 V			0.1			0.1	mA
		$V_{CC} = 4.5 V_{,}$	$I_{OL} = 12 \text{ mA}$		0.25	0.4		0.25	0.4	
VOL		$V_{CC} = 4.5 V_{,}$	$i_{OL} = 24 \text{ mA}$					0.35	0.5	v
		(IOL = 48 mA for	-1 versions)					0.35	0.5	
L.	Control inputs	$V_{CC} = 5.5 V_{,}$	$V_i = 7 V$			0.1			0.1	mA
կ	A or B ports	$V_{CC} = 5.5 V,$	$\overline{V_l} = 5.5 V$			0.1			0.1	
1	Control inputs	Vcc = 5.5 V,	V1 = 2.7 V			20			20	μA
lιH	A or B ports §	vCC = 5.5 v,	$v_1 = 2.7 v_1$			20			20	μ
L.,	Control inputs	$V_{CC} = 5.5 V,$	$V_{1} = 0.4 V$			-0.1			-0.1	mA
կլ	A or B ports§	$v_{\rm CC} = 5.5 v_{\rm c}$	vi = 0.4 v			-0.1			-0.1	
	'ALS621A	$V_{CC} = 5.5 V$	Outputs high		29	45		29	40	
100	ALGOZIA	*CC = 5.5 V	Outputs low		35	53		35	48	mA
lcc	ALS622A	$V_{CC} = 5.5 V$	Outputs high		11	20		11	15	
	ALGOZZA	VCC = 5.5 V	Outputs low		20	33		20	28	

\$All typical values are at V_{CC} = 5 V, T_A = 25 °C. For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

TYPES SN54ALS621A, SN54ALS622A, SN74ALS621A, AN74ALS622A Octal bus tranceivers with open-collector outputs

'ALS621A switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)		$V_{CC} = 4.5 \text{ V to 5.5 V},$ $C_{L} = 50 \text{ pF},$ $R_{L} = 680 \Omega,$ $T_{A} = \text{MIN to MAX}$ SN54ALS621A SN74ALS621A					
			MIN	MAX	MIN	MAX		
tPLH		В	10	45	10	33	ns	
^t PHL	A		5	24	5	20		
^t PLH	в	A	10	45	10	33	ns	
^t PHL	В	~	5	24	5	20		
^t PLH	GBA	A	10	47	10	39		
tPHL	GBA		12	40	12	35	ns	
^t PLH	GAB	в	10	47	10	39	ns	
^t PHL	GAB	ð	12	40	12	35		

'ALS622A switching characteristics (see Note 1)

PARAMETER	FROM TO (INPUT) (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 680 \Omega,$ $T_{A} = \text{MiN to MAX}$ SN54ALS622A SN74ALS622A					
				LS622A				
			MIN	MAX	MIN	MAX		
^t PLH	А	в	8	42	8	35	ns	
^t PHL	~		5	23	5	19		
tPLH	B	A	8	42	8	35	- ns	
TPHL	В	^	5	23	5	19		
^t PLH	<u> </u>	A	8	45	8	38	_ ne	
^t PHL	GBA	^	10	40	10	35		
^t PLH	GAB	В	8	45	8	38		
TPHL.	GAB	D	10	40	10	35	ns	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

Texas
INSTRUMENTS
POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2;

TYPES SN54AS620, SN54AS623, SN74AS620, SN74AS623 Octal bus transceivers with 3-state outputs

1.1

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

1.11

Supply voltage, V _{CC}	
Input voltage: All inputs	
I/O ports	
Operating free-air temperature range: SN54AS620, SN54AS623	– 55 °C to 125 °C
SN74AS620, SN74AS623	0°C to 70°C
Storage temperature range	

recommended operating conditions

- -

--

			SN54AS620 SN54AS623			SN74AS620 SN74AS623		
		MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8		_	0.8	V
юн	High-level output current			-12			-15	mA
IOL	Low-level output current			48			64	mA`
ТA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

P	PARAMETER	TEST COND	ITIONS		154AS6 154AS6		SN74AS620 SN74AS623			UNIT
				MIN	TYP†	MAX	MIN	TYP†	MAX	1
Viк		$V_{CC} = 4.5 V,$	ij = −18 mA			- 1.2			-1.2	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$,	$I_{OH} = -2 \text{ mA}$	Vcc-2			V _{CC} -2			
		$V_{CC} = 4.5 V_{c}$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		1
vон		$V_{CC} = 4.5 V,$	$I_{OH} = -12 \text{ mA}$	2						v
		$V_{CC} = 4.5 V_{,}$	$I_{OH} = -15 \text{ mA}$				2			1
VOL		$V_{CC} = 4.5 V_{c}$	IOL = 48 mA		0.30	0.55				
		$V_{CC} = 4.5 V_{,}$	$l_{OL} = 64 \text{ mA}$					0.35	0.55	l v
	Control inputs	V _{CC} = 5.5 V,	VI = 7 V			0.1		_	0.1	
4	A or B ports	$V_{CC} = 5.5 V_{,}$	$V_{I} = 5.5 V$			0.1			0.1	mA
	Control inputs		V _I = 2.7 V			20			20	μА
ЧΗ	A or B ports [‡]	$V_{CC} = 5.5 V,$				70			70	
	Control inputs					-0.5			-0.5	
ιL	A or B ports [‡]	$V_{CC} = 5.5 V,$	$V_I = 0.4 V$			-0.75			-0.75	mA
IO §	·	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 50		-150	- 50		- 150	mA
			Outputs high		35	57		35	57	
	'AS620	$V_{CC} = 5.5 V$	Outputs low		74	122		74	122	1
lcc			Outputs disabled		48	77		48	77	mA
.00			Outputs high		57	93		57	93	
	'A\$623		Outputs low		116	189		116	189	
		-	Outputs disabled		71	116		71	116	1

[†]All typical values are at V_{CC2} = 5 V, T_A = 25°C. [‡]For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. §The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

Texas POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54AS620, SN54AS623, SN74AS620, SN74AS623 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'AS620 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	ETER		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$					
			SN54	A\$620	SN74/	AS620			
			MIN	MAX	MIN	MAX]		
tPLH .	A	B	1	8	1	7			
^t PHL		D	2	7	2	6	ns		
^t PLH	В	A	1	8	1	7			
tPHL		~	2	7	2	6	ns		
tPZH	ĞBA		2	8.5	2	8			
^t PZL	GBA	A	2	10	2	9	ns		
tPHZ	ĞBA	A	1	7.5	1	6			
tPLZ	GDA	A	2	15	2	12	ns		
^t PZH	CAR	В	2	9	2	8			
tPZL	GAB	В	2	10.5	2	9	ns		
tPHZ	GAB	В	1	6.5	1	6			
^t PLZ	GAB	В	2	16	2	13	ns		

'AS623 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R1 = 500 Ω, R2 = 500 Ω, T _A = MIN to MAX			UNIT
				AS623		A\$623	
			MIN	MAX	MIN	MAX	
^t PLH		В	1	10	1	9	ns
^t PHL		6	1	9	1	8	115
^t PLH		B A	1	10	1	9	ns
^t PHL	8		1	9.5	1	8.5	115
^t PZH	ĞВА	GBA A	2	11.5	2	11	ns
tPZL		^	2	11	2	10	115
tPHZ	GBA	A	1	8.5	1	7.5	ns
tPLZ	GBA	~	1	13.5	1	11.5	ns
^t PZH	GAR	В	2	13	2	11.5	
tPZL	GAB	b	2	12	2	11	ns
tPHZ	GAB	B	1	8	1	7	ns
^t PLZ		В	1	10.5	1	9	1.5

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

28

2-82

TYPES SN54AS621, SN54AS622, SN74AS621, SN74AS622 OCTAL BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

ц. н. н.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

 $r = r_{\rm A}$

Supply voltage, V _{CC}
Input voltage: All inputs and I/O ports
Operating free-air temperature range: SN54AS621, SN54AS622
SN74AS621, SN74AS622
Storage temperature range

recommended operating conditions

-

- -

- -

		-	SN54AS621 SN54AS622			SN74AS621 SN74AS622		
		MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	V
IOL	Low-level output current			48			64	mA
ΤA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER					N54AS6	21	S	N74AS6	21	
		TEST CONDITIONS		SN54AS622			SN74AS622			UNIT
				MIN	TYPT	MAX	MIN	TYPt	MAX	1
VIK		$V_{CC} = 4.5 V,$	$l_i = -18 \text{ mA}$			-1.2			-1.2	V
юн		$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V			0.1			0.1	mA
Max		$V_{CC} = 4.5 V,$	l _{OL} = 48 mA		0.30	0.5				
VOL		$V_{CC} = 4.5 V,$	l _{OL} = 64 mA					0.35	0.5	v
	Control inputs	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$			0.1			0.1	
11	A or B ports	$V_{CC} = 5.5 V,$	VI = 5.5 V			0.1			0.1	mA
t	Control inputs		V _I = 2.7 V			20			20	μΑ
ųн	A or B ports‡	$V_{CC} = 5.5 V,$				70			70	
1	Control inputs					-0.5			-0.5	
ίL	A or B ports‡	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.75			-0.75	- mA
	140004	Vee a E E V	Outputs high		48	79		48	79	
1	'AS621	$V_{CC} = 5.5 V$	Outputs low		116	189		116	189	1.
lcc	'AS622 V _{CC} = 5.5 V		Outputs high		24	39		24	39	mA
		Outputs low		63	103		63	103	1	

†All typical values are at V_CC = 5 V, T_A = 25 °C ‡For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

TYPES SN54AS621, SN54AS622, SN74AS621, SN74AS622 Octal bus transceivers with open-collector outputs

'AS621 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = MIN \text{ to MAX}$				
			SN54	A\$621	SN74/	AS621	1	
			MIN	MAX	MIN	MAX		
^t PLH	A	В	5	28.5	5	24	- ns	
^t PHL			1	8.5	1	7.5		
^t PLH	в		5	23	5	21	ns	
^t PHL	В	A	1	8.5	1	7.5		
^t PLH	 GBA		5	24	5	21	ns	
^t PHL	GBA	A	1	10	1	9		
tPLH	GAB		5	26	5	22		
tPHL	GAB	В	1	11	1	10	ns	

'AS622 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V_{CL}$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = MIN \text{ to}$	MAX				
			SN5	4AS622	SN74	AS622			
			MIN	MAX	MIN	MAX			
^t PLH	A	В	5	28.5	5 24.		ns		
^t PHL	7 î	6	1	8.5	1	8	115		
^t PLH	в	A	5	30	5	25			
^t PHL		<u>^</u>	1	8.5	1	8	ns		
tPLH	Ğва	A	5	26	5	22	ns		
^t PHL	GBA	<u>^</u>	1	11.5	1	10			
^t PLH	GAB	B	5	26	5	23			
^t PHL	GAB	AB B		11.5	1	10.5	ns		

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2

28

TYPES SN54ALS646 THRU SN54ALS649, SN54AS646, SN54AS648 SN74ALS646 THRU SN74ALS649, SN74AS646, SN74AS648 OCTAL BUS TRANSCEIVERS AND REGISTERS D2661, DECEMBER 1982-REVISED MARCH 1984

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- Choice of True or Inverting Data Paths
- Choice of 3-State or Open-Collector Outputs
- Included Among the Package Options Are Compact 24-pin 300-mil Wide DIPs and Both 28-pin Plastic and Ceramic Chip Carriers
- Dependable Texas Instruments Quality and Reliability

DEVICE	OUTPUT	LOGIC
'ALS646, 'AS646	3-State	True
'ALS647	Open-Collector	True
'ALS648, 'AS648	3-State	Inverting
'ALS649	Open-Collector	Inverting

description

These devices consist of bus transceiver circuits with 3-state or open-collector outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers on the low-to-high transition of the appropriate clock pin (CAB or CBA). The following examples demonstrate the four fundamental bus-management functions that can be performed with the octal bus transceivers and registers.

Enable (\overline{G}) and direction (DIR) pins are provided to control the transceiver functions. In the

transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select controls (SAB and SBA) can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when enable \overline{G} is active (low). In the isolation mode (control \overline{G} high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The -1 versions of the SN74ALS' parts are identical to the standard versions except that the recommended maximum I_{OL} is increased to 48 milliamperes. There are no -1 versions of the SN54ALS' parts.

The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

SN74ALS', S	N74	AS'P	NT PACKAGE
	(TO	P VIEW)	
CAB	Ī٦	U24	Vcc
SAB		23	CBA
DIR	[]3	22	SBA
A1	4	21	G
A2	[]5	20	B1
A3	6	19	B2
A4		18	B3
A5	[8	17 🗌	B4

16 B5

15 🗍 B6

14 B7

SN54ALS', SN54AS' . . . JT PACKAGE

SN54ALS', SN54AS'... FH PACKAGE SN74ALS', SN74AS'... FN PACKAGE (TOP VIEW)

A6 🗐 9

A7 [10

A8 🗌 11

GND 12

TYPES SN54ALS646 THRU SN54ALS649, SN54AS646, SN54AS648 SN74ALS646 THRU SN74ALS649, SN74AS646, SN74AS649 OCTAL BUS TRANSCEIVERS AND REGISTERS

2 ALS AND AS CIRCUITS

x L х REAL-TIME TRANSFER BUS A TO BUS B BUS B (23) (2) (22) SBA SAB

•

-

8

BUS

(2) (22)

SAB SBA

х х н х х н TRANSFER STORED DATA

TYPES SN54ALS646 THRU SN54ALS649, SN54AS646, SN54AS648 SN74ALS646 THRU SN74ALS649, SN74AS646, SN74AS648 Octal BUS Transceivers and registers

FUNCTION TABLE

		INP	UTS			DATA	A 1/O*	OPERATION OR FUNCTION				
Ĝ	DIR	САВ	СВА	SAB	SBA	A1 THRU A8	B1 THRU B8	'ALS646, 'ALS647 'AS646	'ALS648, 'ALS649 'AS648			
х	×	+	x	x	x	Input	Not specified	Store A, B unspecified	Store A, B unspecified			
x	x	x	•	х	×	Not specified	Input	Store B, A unspecified	Store B, A unspecified			
н	X	+	•	×	х			Store A and B Data	Store A and B Data			
н	x	H or L	H or L	х	×	Input	Input	Isolation, hold storage	Isolation, hold storage			
L	L	х	H or L	x	L			Real-Time B Data to A Bus	Real-Time B Data to A Bu			
L	L	х	×	х	н	Output	Input	Stored B Data to A Bus	Stored B Data to A Bus			
L	н	HorL	x	L	X			Real-Time A Data to B Bus	Real-Time A Data to B Bu			
L	н	х	x	н	х	input	Output	Stored A Data to B Bus	Stored A Data to B Bus			

*The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

functional block diagrams (positive logic)

'ALS648, 'AS648, 'ALS649

Pin numbers shown are for JT and NT packages.

2-87

2

TYPES SN54ALS646 THRU SN54ALS649, SN54AS646, SN54AS648 SN74ALS646 THRU SN74ALS649, SN74AS646, SN74AS649 Octal BUS Transceivers and registers

logic symbols

Pin numbers shown are for J and N packages.

2-88

2

TYPES SN54ALS646, SN54ALS648, SN74ALS646, SN74ALS648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3 STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	. 7 V
Input voltage: Control inputs	. 7 V
I/O ports	5.5 V
Operating free-air temperature range: SN54ALS646, SN54ALS648	25°C
SN74ALS646, SN74ALS648	70°C
Storage temperature range	50 °C

recommended operating conditions

			54ALSE		SN74ALS SN74ALS			
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			-12			- 15	mA
IOL .	Low-level output current			12			24	mA
OL							648 MAX 5.5 0.8 - 15	
fclock	Clock frequency							MHz
tw	Pulse duration, clocks high or low							ns
tsu	Setup time, A before CAB1 or B before CBA1							ns
^t h	Hold time, A after CAB1 or B after CBA1							ns
TA	Operating free-air temperature	- 55		125	0		70	°C

 † The extended condition applies if V_{CC} is maintained between 4.75 V and 5.25 V. The 48-mA limit applies for the SN74ALS646-1 and SN74ALS648-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST COND	ITIONS	SN54ALS646 SN54ALS648		SN74ALS646 SN74ALS648			UNIT		
				MIN	TYP‡	MAX	MIN	TYP‡	MAX		
VIK		$V_{CC} = 4.5 V,$	ij = -18 mA			-1.5			-1.5	V	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$,	$I_{OH} = -0.4 \text{ mA}$	Vcc-2			V _{CC} -2				
		$V_{CC} = 4.5 V,$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		1	
∨он		$V_{CC} = 4.5 V_{,}$	OH = -12 mA	2						v	
		$V_{CC} = 4.5 V,$	$I_{OH} = -15 \text{ mA}$				2			1	
		V _{CC} = 4.5 V,	$I_{OL} = 12 \text{ mA}$		0.25	0.4		0.25	0.4		
VOL		$V_{CC} = 4.5 V_{,}$	$l_{OL} = 24 \text{ mA}$					0.35	0.5	v	
		(IOL = 48 mA for -1 versions)									
	Control inputs	$V_{CC} = 5.5 V,$	$V_{I} = 7 V$		_	0.1			0.1 0.1		
4	A or B ports	V _{CC} = 5.5 V,	$V_1 = 5.5 V$			0.1				mA	
	Control inputs					20			20		
чн	A or B ports §	$V_{CC} = 5.5 V,$	$V_{i} = 2.7 V$			20			20	μA	
	Control inputs					-0.1			-0.1	· .	
μL	A or B ports§	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.2			-0.2	mA	
10¶		$V_{CC} = 5.5 V_{,}$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA	
			Outputs high		60			60	_		
	'ALS646		Outputs low		68			68		1	
1		No. EEV	Outputs disabled		68			68		1	
чсс		$V_{CC} = 5.5 V$	Outputs high		52	_		52		mA	
	'ALS648		Outputs low		57			57		1	
			Outputs disabled		58			58		1	

*All typical values are at V_{CC} = 5 V, T_A = 25 °C \$For I/O ports, the parameters I_H and I_L include the off-state output current. The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}. Additional information on these products can be obtained from the factory as it becomes available.

PRODUCT PREVIEW

This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS646, SN54ALS648, SN74ALS646, SN74ALS648 **OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS**

'ALS646 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (оитрит)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$					
			SN54ALS646	SN74ALS646				
			MIN TYPT MAX	MIN TYPT MAX				
f _{max}			_		MHz			
^t PLH	CBA or CAB	A or B	11	11				
^t PHL		13		13	– ns			
^t PLH	A or B	B or A	8	8	ns			
^t PHL	AOLP	BOFA	8	8				
tPLH	SBA or SAB‡	A or B	16	16	ns			
^t PHL	(with A or B high)	A or B	16	16				
^t PLH	SBA or SAB‡	A or B 15 15		15				
^t PHL	(with A or B low)	A or b	12	12	ns			
^t PZH	G	A or B	17	17				
tPZL	8	A OF B	20 20		ns			
^t PHZ	<u> </u>	A or 8	10	10				
tPLZ	u	A OF B	12	12	ns			
^t PZH	DIR	A or B	17	17				
tPZL		A OF B	20	20	ns			
tPHZ	DIR	A or B	10	10				
^t PLZ	UIN	A OF B	12	12	ns			

'ALS648 switching characteristics (see Note 1)

PARAMETER	FROM TO		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$					
	[SN54ALS648	SN74ALS648				
			MIN TYPT MAX	MIN TYPI MAX				
f _{max}					MHz			
^t PLH	CBA or CAB	A or B	11	11				
^t PHL	CBA OF CAB	AOrb	13	13	ns ns			
^t PLH	A or B	B or A	10	10				
^t PHL	A OF B	BOFA	12	12	ns			
^t PLH	SBA or SAB‡	A or B	16	16	ns			
TPHL	(with A or B high)	A OF B	16	16				
^t PLH	SBA or SAB‡	A or B	15	15	- 0			
^t PHL	(with A or B low)	A OF B	15	15	ns			
^t PZH	Ĝ	A or B	17	17				
^t PZL		A OF B	20	20	ns			
tPHZ	 G	A or B	10	10	-			
tPLZ	0	AOrb	12	12	ns			
tPZH	DIR	A or B	17	17				
^t PZL		A or B	20	20	ns			
^t PHZ	DIR	A or B	10	10				
tPLZ	DIA	A OF B	12	12	nŝ			

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]These parameters are measured with the internal output state of the storage register opposite to that of the bus input. Additional information on these products can be obtained from the factory as it becomes available.

PRODUCT PREVIEW

This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice. 2-90

TYPES SN54ALS647, SN54ALS649, SN74ALS647, SN74ALS649 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH OPEN COLLECTOR OUTPUTS

and num

. . .

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Input voltage	
Operating free-air temperature range: SN54ALS647, SN54	ALS649
SN74ALS647, SN74	ALS649
Storage temperature range	

recommended operating conditions

- +

- -

			154ALS		SN74ALS SN74ALS			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	V
IOL	Low-level output current			12			24	mA
UL	Low-level output current						481	mA
fclock	Clock frequency							MHz
tw	Pulse duration, clocks high or low							ns
t _{su}	Setup time, A before CAB [†] or B before CBA [†]							ns
^t h	Hold time, A after CAB† or B after CBA†							ns
TA	Operating free-air temperature	- 55		125	0		70	°C

t The extended condition applies if V_{CC} is maintained between 4.75 and 5.25 V. The 48-mA limit applies for the SN74ALS647-1 and SN74ALS649-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

P	ARAMETER	RAMETER TEST CONDITIONS		SN54ALS647 SN54ALS649			SN74ALS647 SN74ALS649			UNIT
				MIN TYP‡ MAX MIN TYP‡ MA		MAX	7			
VIK		$V_{CC} = 4.5 V$,	$l_{\rm H} = -18 {\rm mA}$			-1.5			-1.5	V
юн		$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V			0.1			0.1	mA
		$V_{CC} = 4.5 V,$	$i_{OL} = 12 \text{ mA}$		0.25	0.4				
VOL		$V_{CC} = 4.5 V,$	IOL = 24 mA					0.35	0.5	l v
	A or B ports Control inputs	(IOL = 48 mA for -	1 versions)							
L.	A or B ports	$V_{CC} = 5.5 V$,	$V_{ } = 5.5 V$			0.1			0.1	
կ	Control inputs	$V_{CC} = 5.5 V,$	VI = 7 V			0.1			0.1	mA
	A or B ports §	$V_{CC} = 5.5 V_{c}$				20			20	
ЧΗ	Control inputs	$v_{\rm CC} = 5.5 v$,	$V_{I} = 2.7 V$			20			20	μΑ
lu.	Control inputs	$V_{CC} = 5.5 V_{c}$	Vi = 0.4 V			-0.1			-0.1	
μL	A or B ports§	$-v_{\rm CC} = 5.5 v_{\rm c}$	$v_{1} = 0.4 v$			-0.2			0.1 0.35 0.5 0.1 0.1 20 20	mA
	'ALS647		Outputs high		52			52		
1	AL3047		Outputs low		62			62		1
чсс	141 5649	'ALS649	Outputs high		50			50		mA
	ALJU49		Outputs low		60			60		1

‡All typical values are at V_{CC} = 5 V, T_A = 25 °C §For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

Additional information on these products can be obtained from the factory as it becomes available.

283

PRODUCT PREVIEW

This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS647, SN54ALS649, SN74ALS647, SN74ALS649 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH OPEN COLLECTOR OUTPUTS

'ALS647 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	το (ουτρυτ)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 680 \Omega,$ $T_{A} = MIN \text{ to MAX}$					
			SN54ALS647	SN74ALS647	1			
			MIN TYPT MAX	MIN TYPT MAX				
fmax					MHz			
^t PLH	CBA or CAB	A or B24		24				
^t PHL	CBA OF CAB	A or B	15	15	ns			
^t PLH	A or B		24	24	ns			
^t PHL	A or B	B or A	12	12				
^t PLH	SBA or SAB‡		26	26				
^t PHL	(with A or Bhigh)	A or B	15	15	ns			
tPLH	SBA or SAB‡	A or B	26	26				
^t PHL	(with A or B low)	A or B	15	15	ns			
tPLH	G		24	24				
^t PHL	G	A or B	17	17	ns			
^t PLH	DIR	A P	24	24				
^t PHL	DIR	A or B	17	17	ns			

'ALS649 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (оитрит)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 680 \Omega,$ $T_{A} = \text{MIN to MAX}$						UNIT
ļ			SN54A	ALS6	49	SN74ALS649			1
			MIN TY	Pt .	MAX	MIN	TYPt	MAX	
fmax									MHz
^t PLH	CBA or CAB	A or B		24			24		ns
^t PHL	CBA OF CAB			15			15		
tPLH	A or B			24			24		
^t PHL	A or B	B or A	10			10			ns
^t PLH	SBA or SAB‡	A or B		26			26		ns
^t PHL	(with A or B high)	A OF B		15			15		
^t PLH	SBA or SAB‡	A or B		26			26		
^t PHL	(with A or B low)	A or B		15			15		ns
tPLH	<u> </u>	A or B		24			24		
tPHL	0	A OF B		17		17			ns
^t PLH	DIR	A or B		24			24		ns
^t PHL	Did	A OF B		17			17		

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 1: For load circuit and voltage waveforms, see page 1-12.

Additional information on these products can be obtained from the factory as it becomes available.

TYPES SN54AS646, SN54AS648, SN74AS646, SN74AS648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	,
Input voltage: Control inputs	
l/O ports	
Operating free-air temperature range: SN54AS646, SN54AS648)
SN74AS646, SN74AS648)
Storage temperature range	

,

recommended operating conditions

- +

- -

				SN54AS646 SN54AS648			SN74AS646 SN74AS648		
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output curren			- 12			-15	mĄ	
IOL	Low-level output curren	t			48			64	mA
fclock	Clock frequency		0		75	0		90	MH2
	Diana di si	Clock high	6			5			ns
^t w	Pulse duration	Clock low	7	_		6			
t _{su}	Setup time, A before C/	ABT or B before CBAT	7			6		-	ns
^t h	Hold time, A after CAB [†] or B after CBA [†]		0			0	_		ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

F	ARAMETER	TEST CONDITIONS			SN54AS646 SN54AS648			SN74AS646 SN74AS648		
				MIN	TYPI	MAX	MIN	TYPt	MAX	1
VIK		$V_{CC} = 4.5 V$,	l∣ = −18 mA			- 1.2			-1.2	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$,	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			Vcc-2	_		
		$V_{CC} = 4.5 V,$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		l v
Voh		$V_{CC} = 4.5 V_{c}$	OH = -12 mA	2						v
		$V_{CC} = 4.5 V_{c}$	OH = -15 mA				2			1
		$V_{CC} = 4.5 V_{,}$	IOL = 48 mA		0.35	0.55		_	_	<u> </u>
VOL		$V_{CC} = 4.5 V$,	I _{OL} = 64 mA			_		0.35	0.55	v
	Control inputs	$V_{CC} = 5.5 V$,	V ₁ = 7 V			0.1			0.1	
կ	A or 8 ports	$V_{CC} = 5.5 V_{,}$	$V_{I} = 5.5 V$			0.1			0.1	mA
	Control inputs		V _I = 2.7 V		_	20			20	μΑ
ін	A or B ports‡	$V_{\rm CC} = 5.5 V$,				70		_	70	
	Control inputs					-0.5			-0.5	
μL	A or B ports‡	$V_{CC} = 5.5 V,$	$V_{ } = 0.4 V$	-0.75		-0.75			-0.75	-0.75 mA
108		$V_{\rm CC} = 5.5 V_{\rm c}$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
			Outputs high		120	195		120	195	
	'AS646		Outputs low		130	211		130	211	mA
ICC		Vcc = 5.5 V	Outputs disabled		130	211		130	211	
		- VCC - 0.0 V	Outputs high		110	185		110	185	
	'AS648		Outputs low		120	195		120	195	1
			Outputs disabled		120	195		120	195	1

All typical values are at V_{CC} = 5 V, T_A = 25°C
 ‡For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
 §The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

TYPES SN54AS646, SN54AS648, SN74AS646, SN74AS648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

'AS646 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO {OUTPUT}	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$ $SN54AS846 \qquad SN74AS646$					
			MIN	MAX	MIN	MAX		
fmax			75		90		MHz	
tPLH	CBA or CAB	A or B	2	9.5	2	8.5		
TPHL	CBA or CAB	A 01 B	2	10	2	9	ns	
tPLH	A or B	B or A	2	11	2	9		
tPHL	A or B	B OF A	1	8	1	7	ns	
^t PLH	SBA or SAB†	A D	2	12	2	11		
^t PHL	(with A or B high)	A or B	2	10	2	9	ns	
^t PZH	Ğ		2	10	2	9		
tPZL	0	A or B	3	15	3	14	ns	
tPHZ	Ğ	A or B	2	11	2	9		
tPLZ	U	A OF B	2	11	2	9	ns	
tPZH	DIR	A P	3	19	3	16	ns	
tPZL		A or B	3	21	3	18		
tPHZ	DIR	A B	2	12	2	10		
tPLZ	DIR	A or B	2	12	2	10	ns	

'AS648 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54	$V_{CC} = 4$ $C_L = 50$ R1 = 500 R2 = 500 $T_A = MII$ AS648	ର ହ, ତ ହ, N to MAX	V, AS648	UNIT	
			MIN	MAX	MIN	MAX		
fmax			75		90		MHz	
tPLH	CBA or CAB	A or B	2	9.5	2	8.5		
^t PHL	CBA OF CAB	A or B	2	10	2	9	ns	
tPLH	A or B		2	9	2	8		
^t PHL	A or B	B or A	1	8	1	7	ns	
TPLH	SBA or SAB1	A or B	2	12	2	11		
tPHL.	(with A or Bhigh)	A or B	2	10	2	9	ns	
tPZH	G			10	2	9		
tPZL	<u> </u>	A or B	3	18	3	15	ns	
^t PHZ	G	A or B	2	11	2	9		
tPLZ	0		2	11	2	9	ns	
^t PZH	DIR	A or B	3	19	3	16		
^t PZL			3	21	3	18	ns	
tPHZ	DIR	A or B	2	12	2	10	ns	
^t PLZ		A OF B	2	12	2	10	ns	

These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

128

TYPES SN54ALS651 THRU SN54ALS654, SN54AS651, SN54AS652 SN74ALS651 THRU SN74ALS654, SN74AS651, SN74AS652 OCTAL BUS TRANSCEIVERS AND REGISTERS 2661, DECEMBER 1983-REVISED MARCH 1984

- **Bus Transceivers/Registers**
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- **Choice of True and Inverting Data Paths**
- Choice of 3-State or Open-Collector Outputs to A Bus
- Included Among the Package Options Are Compact 24-Pin 300-mil-Wide DIPs and Both 28-Pin Plastic and Ceramic Chip Carriers
- **Dependable Texas Instruments Quality and** Reliability

DEVICE	A OUTPUT	B OUTPUT	LOGIC
'ALS651, 'AS651	3-State	3-State	Inverting
'ALS652, 'AS652	3-State	3-State	True
'ALS653	Open-Collector	3-State	Inverting
ALS654	Open-Collector	3-State	True

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Enable GAB and GBA are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether realtime or stored data is transferred. A low input level selects real-time data, and a high selects stored data. The following examples demonstrate the four fundamental busmanagement functions that can be performed with the octal bus transceivers and registers.

lines will remain at its last state.

(TOP	VIEW)
CAB [] 1 SAB [] 2 GAB [] 3 A1 [] 4 A2 [] 5 A3 [] 6 A4 [] 7 A5 [] 8 A6 [] 9 A7 [] 10 A8 [] 11 GND [] 12	24 VCC 23 CBA 22 SBA 21 GBA 20 B1 19 B2 18 B3 17 B4 16 B5 15 B6 14 B7 13 B8
SN74ALS', SN74A	S´ FC PACKAGE S´ FN PACKAGE VIEW)
B B B B C C A B B C C A B B C C A B B C C A C A	

SN54ALS', SN54AS' . . . JT PACKAGE SN74ALS', SN74AS' . . . NT PACKAGE

NC - No internal connection

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CAB or CBA) regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and GBA. In this configuration each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus

The -1 versions of the SN74ALS651 through SN74ALS654 are identical to the standard versions except that the recommended maximum $|\Omega|$ is increased to 48 milliamperes. There are no -1 versions of the SN54ALS651 through SN54ALS654.

The SN54' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74' family is characterized for operation from 0°C to 70°C.

Copyright © 1983 by Texas Instruments Incorporated

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265 2-95

TYPES SN54ALS651 THRU SN54ALS654, SN54AS651, SN54AS652 SN74ALS651 THRU SN74ALS654, SN74AS651, SN74AS652 Octal Bus transceivers and registers

L L X X X L

REAL-TIME TRANSFER BUS B TO BUS A

- -

- -

TRANSFER STORED DATA TO A AND/OR B

1:

TYPES SN54ALS651 THRU SN54ALS654, SN54AS651, SN54AS652 SN74ALS651 THRU SN74ALS654, SN74AS651, SN74AS652 Octal BUS Transceivers and registers

						FU	NCTION TABLE		
		INP	UTS	_	-	DATA	A I/O*	OPERATION O	DR FUNCTION
GAB	GBA	САВ	СВА	SAB	SBA	A1 THRU A8	B1 THRU B8	'ALS651, 'ALS653 'AS651	'ALS652, 'ALS654 'AS652
L	н н	H or L	H or L	x x	x x	Input Input		Isolation Store A and B Data	Isolation Store A and B Data
х н	н	, ,	H or L	X X	x	Input Input	Not specified Output	Store A, Hold B Store A in both registers	Store A, Hold B Store A in both registers
L	×	H or L	t	x	x	Not specified	Input	Hold A, Store B	Hold A, Store B
L	L	Ť	1	х	х	Output	Input	Store B in both registers	Store B in both registers
L	L L	x x	X Hor L	× ×	L H	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus
н н	н н	X HorL	x x	L H	x x	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus
н	L	H or L	H or L	н	н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus	Stored A Data to B Bus and Stored B Data to A Bus

*The data output functions may be enabled or disabled by various signals, at the GAB and GBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic diagrams (positive logic)

- -

Pin numbers shown are for JT and NT packages.

'ALS652, 'AS652, 'ALS654

TYPES SN54ALS651 THRU SN54ALS654, SN54AS651, SN54AS652 SN74ALS651 THRU SN74ALS654, SN74AS651, SN74AS652 Octal Bus transceivers and registers

logic symbols

- -

- -

Pin numbers shown are for JT and NT packages.

TEXAS

TYPES SN54ALS651, SN54ALS652, SN74ALS651, SN74ALS652 OCTAL BUS TRANSCEIVERS AND REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted	d)
Supply voltage, V _{CC}	7 V
Input voltage: Control inputs	. 7 V
I/O ports	5.5 V
Operating free-air temperature range: SN54ALS651, SN54ALS652	– 55 °C to 125 °C
SN74ALS651, SN74ALS652	0°C to 70°C
Storage temperature range	– 65 °C to 150 °C

recommended operating conditions

- -

- -

				SN54ALS651 SN54ALS652			SN74ALS651 SN74ALS652			
			MIN	NOM	MAX	MIN	NOM	MAX		
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V	
∨ін	High-level input voltage	2			2			V		
VIL	Low-level input voltage			0.8			0.8	v		
юн	High-level output current			- 12			- 15	mA		
	I and the stand as made				12			24		
IOL	Low-level output current							481	mA	
^f clock	Clock frequency								MHz	
	Putes duration	CBA or CAB high							ns	
tw	Pulse duration	CBA or CAB low								
t _{su}	Setup time before CAB [†] or CBA [†]	A or B							ns	
th	Hold time after CAB [†] or CBA [†]	A or B							ns	
TA	Operating free-air temperature		- 55		125	0		70	°C	

t The extended condition applies if V_{CC} is maintained between 4.75 V and 5.25 V. The 48-mA limit applies for the SN74ALS651-1 and SN74ALS652-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

F	ARAMETER	TEST COND	TIONS		54ALS 54ALS			74ALS		UNIT
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	1
Viĸ		$V_{CC} = 4.5 V_{,}$	lj = −18 mA			-1.5			-1.5	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$,	$I_{OH} = -0.4 \text{ mA}$	Vcc-2			V _{CC} -2			
		$V_{CC} = 4.5 V_{r}$	^I OH = −3 mA	2.4	3.2		2.4	3.2		1
∨он		$V_{CC} = 4.5 V_{c}$	^I OH = -12 mA	2						l v
		$V_{CC} = 4.5 V_{,}$	¹ ОН = -15 mA				2			1
		$V_{CC} = 4.5 V_{,}$	¹ OL = 12 mA		0.25	0.4		0.25	0.4	
VOL		$V_{CC} = 4.5 V_{,}$	$I_{OL} = 24 \text{ mA}$					0.35	0.5	v
		(IOL = 48 mA for -1 ver	rsions)							
	Control inputs	$V_{CC} = 5.5 V_{c}$	$V_{I} = 7 V$			0.1			0.1	- mA
łį	A or B ports	$V_{CC} = 5.5 V,$	$V_{I} = 5.5 V$			0.1			0.1	
1	Control inputs	N 55V	$V_{I} = 2.7 V$			20			20	
ін	A or B ports §	$V_{CC} = 5.5 V,$				20			20	μΑ
	Control inputs					-0.1			-0.1	
μr	A or B ports §	$V_{CC} = 5.5 V,$	$V_I = 0.4 V$	-0.2		-0.2			-0.2	mA
101		$V_{\rm CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
			Outputs high		52			52		
	'ALS651		Outputs low		57			57		
ICC		V00 = 5 5 V	Outputs disabled		58			58		mA
-00		VCC = 5.5 V	Outputs high		60			60]
	'ALS652		Outputs low		68			68		
			Outputs disabled		68			68		

*All typical values are at V_{CC} = 5 V, T_A = 25°C
 *For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
 The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

PRODUCT PREVIEW

83

This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS651, SN54ALS652, SN74ALS651, SN74ALS652 OCTAL BUS TRANSCEIVERS AND REGISTERS

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$					
			SN54ALS651	SN74ALS651				
			MIN TYPT MAX	MIN TYPT MAX				
fmax					MHz			
tPLH	CBA or CAB	A or B	11	11	ns			
^t PHL			13	13	115			
^t PLH	A or B	B or A	10	10	ns			
^t PHL	AOIB	D OF A	12	12				
^t PLH	SBA or SAB‡	A or B	16	16				
^t PHL	(with A or B high)	A or B	16	16	ns			
tPLH	SBA or SAB‡		15	15	ns			
^t PHL	(with A or B low)	A or B	15	15				
tPZH	GBA		17	17				
tPZL .	GBA	A	20	20	ns			
tPHZ	GBA		10	10				
tPLZ	GBA	А	12	12	ns			
^t PZH	C419		19	19				
tPZL	GAB	В	22	22	ns			
tPHZ			12	12				
tPLZ	GAB	В	14	14	ns			

- -

'ALS652 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$				
			SN54ALS652	SN74ALS652			
			MIN TYPT MAX	MIN TYPE MAX]		
fmax					MHz		
tPLH	CRA -= CAR		11	11			
^t PHL	CBA or CAB	A or B	13	13	ns		
tPLH			8	8			
^t PHL	A or B	B or A	8	8	ns		
tPLH	SBA or SAB‡	A or B	16	16			
tPHL	(with A or B high)	A or B	16	16	ns		
tPLH	SBA or SAB‡	A or B	15	15	- ns		
^t PHL	(with A or B low)	A or B	12	12			
^t PZH	GBA		17	17			
tPZL	GBA	A	20	20	ns		
tPHZ	ĜBA		10	10			
tPLZ	GBA	Α	12	12	ns		
^t PZH	19		19				
tPZL	GAB	В	22	22	ns		
^t PHZ	CAR		12	12			
tPLZ	GAB	В	14	14	ns		

All typical values are at V_{CC} = 5 V, T_A = 25 °C.
 These parameters are measured with the internal output state of the storage register opposite to that of the bus input.
 NOTE 1: For load circuit and voltage waveforms, see page 1-12.

PRODUCT PREVIEW

This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice. 2-100

TYPES SN54ALS653, SN54ALS654, SN74ALS653, SN74ALS654 OCTAL BUS TRANSCEIVERS AND REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise no	ted)
Supply voltage, V _{CC}	7 V
Input voltage: All inputs and A I/O ports	7 V
B I/O ports	5.5 V
Operating free-air temperature range: SN54ALS653, SN54ALS654	– 55 °C to 125 °C
SN74ALS653, SN74ALS654	0°C to 70°C
Storage temperature range	– 65 °C to 150 °C

				SN54ALS653 SN54ALS654		SN74ALS653 SN74ALS654			UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX	1	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V	
∨ін	High-level input voltage		2			2			v	
VIL	Low-level input voltage				0.8			0.8	V	
∨он	High-level output voltage	A ports			5.5			5.5	V	
юн	High-level output current	B ports			-12			- 15	mA	
					12			24	•	
IOL	Low-level output current							48†	mA	
fclock	Clock frequency								MHz	
	Pulse duration	CBA or CAB high								
tw	Pulse duration	CBA or CAB low						MAX 5.5 0.8 5.5 -15 24	ns	
tsu	Setup time before CAB [↑] or CBA [↑]	A or B							ns	
th	Hold time after CAB1 or CBA1	A or B							ns	
ТA	Operating free-air temperature	•	- 55		125	0		70	°C	

 $^{\rm t}$ The extended condition applies if V_{CC} is maintained between 4.75 V and 5.25 V. The 48-mA limit applies for the SN74ALS653-1 and SN74ALS654-1 only.

- -

- -

P	ARAMETER	TEST COND	TIONS	SN54ALS653 SN54ALS654				74ALS6 74ALS6		UNIT
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	1
⊻ік		$V_{CC} = 4.5 V,$	lj = −18 mA			-1.5			-1.5	v
		$V_{CC} = 4.5 V \text{ to } 5.5 V,$	011	V _{CC} -2			V _{CC} -2			
Val	B ports	$V_{CC} = 4.5 V_{,}$	$^{1}OH = -3 mA$	2.4	3.2		2.4	3.2		v
∨он	B ports	$V_{CC} = 4.5 V,$	$I_{OH} = -12 \text{ mA}$	2						ľ
		$V_{CC} = 4.5 V_{r}$	^I OH = -15 mA				2			
юн	A ports	$V_{CC} = 4.5 V_{c}$	V _{OH} = 5.5 V			0.1			0.1	mA
		$V_{CC} = 4.5 V,$	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL		V _{CC} = 4.75 V,	$I_{OL} = 24 \text{ mA}$					0.35	0.5	l v
		(IOL = 48 mA for -1 versions)					1			
L	Control inputs	$V_{CC} = 5.5 V,$	VI = 7 V			0.1			0.1	
4	A or B ports	$V_{CC} = 5.5 V,$	V _I = 5.5 V			0.1			0.1	- mA
1	Control inputs	Vcc = 5.5 V,	$V_{ } = 2.7 V$			20			20	
ЧH	A or B ports§	VCC = 0.0 V				20			20	μΑ
L	Control inputs		V			~0.1			-0.1	
۹Ľ	A or B ports §	$V_{\rm CC} = 5.5 V,$	$V_{1} = 0.4 V$			~0.2			~0.2	mA
۱٥٩	B ports	$V_{CC} = 5.5 V$,	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
			Outputs high		52			52		
	'ALS653		Outputs low		57			57		1
ICC		- VCC = 5.5 V	Outputs disabled		58			58		
ιςς.			Outputs high		60			60		mA
	'ALS654	'ALS654	Outputs low		68			68		
			Outputs disabled		68			68		1

ALS AND AS CIRCUITS

*All typical values are at V_{CC} = 5 V, T_A = 25°C
 \$For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
 The output conditions have been chosen to produce a current that closely approximates one helf of the true short-circuit output current, I_{OS}.

PRODUCT PREVIEW

This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

2-101

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54ALS653, SN74ALS653 OCTAL BUS TRANSCEIVERS AND REGISTERS

'ALS653 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R_L = 680 \Omega, (A \text{ outputs})$ $R1 = R2 = 500 \Omega, (B \text{ outputs})$ $T_A = \text{MIN to MAX}$					
			SN54ALS653	SN74ALS653]			
			MIN TYPT MAX	MIN TYPT MAX				
f _{max}					MHz			
^t PLH	СВА	Α	24	24	пs			
tPHL			15	15	115			
tPLH	CAB	В	11	11				
^t PHL	CAB	в	13	13	ns			
^t PLH	A	8	10	10				
^t PHL	A		12	12	ns			
tPLH	B		24	24				
tPHL .	в	A	10	10	ns			
tPLH	SBA‡	A	26	26	ns			
tPHL	(with B high)	A	15	15				
tPLH	SBA‡		26	26	ns			
^t PHL	(with B low)	A	15	15				
^t PLH	SAB‡		16	16				
^t PHL	(with A high)	В	16	16	ns			
^t PLH	SAB‡		15	15				
^t PHL	(with A low)	8	15	15	ns			
^t PLH			24	24				
^t PHL	ĞBA	A	17	17	ns			
^t PZH			19	19				
tPZL	GAB	В	22	22	_ ns			
^t PHZ			12	12				
tPLZ	GAB	В	14	14	ns			

- -

All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 1: For load circuit and voltage waveforms, see page 1-12.

Additional information on these products can be obtained from the factory as it becomes available.

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS654, SN74ALS654 OCTAL BUS TRANSCEIVERS AND REGISTERS

'ALS654 switching characteristics (see Note 1)

- -

- -

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R_L = 680 \Omega, (A \text{ outputs})$ $R1 = R2 = 500 \Omega, (B \text{ outputs})$ $T_A = \text{MIN to MAX}$					
			SN54ALS654	SN74ALS654				
			MIN TYPT MAX	MIN TYPT MAX				
fmax					MHz			
^t PLH	СВА	Α	24	24	ns			
^t PHL	CBA	x	15	15	113			
^t PLH	CAB	В	11	11	ns			
^t PHL	CAB	в .	13	13	115			
^t PLH		в	8	8	ns			
^t PHL	A	В	8	8				
^t PLH	B A 24		24					
^t PHL	в	A	10	10	- ภ \$			
tPLH	SBA‡		26	26	กร			
^t PHL	(with B high)	А	15	15	113			
^t PLH	SBA‡		26	26				
^t PHL	(with B low)	A	15	15	ns			
^t PLH	SAB‡	в	16	16				
^t PHL	(with A high)	в	16	16	ns			
^t PLH	SAB‡	P	15	15				
^t PHL	(with A low)	В	12	12	ns			
^t PLH	GBA		24	24				
^t PHL	GBA	A	17	17	ns			
^t PZH	64B	в	19	19				
^t PZL	GAB	в	22	22	ns			
^t PHZ			12	12				
tPLZ	GAB	8	14	14	ns			

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 1: For load circuit and voltage waveforms, see page 1-12.

Additional information on these products can be obtained from the factory as it becomes available.

ALS AND AS CIRCUITS

93

TYPES SN54AS651, SN54AS652, SN74AS651, SN74AS652 **OCTAL BUS TRANSCEIVERS AND REGISTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Input voltage: Control inputs	
I/O ports	
Operating free-air temperature range: SN54AS651, SN54AS652	
SN74AS651, SN74AS652	0°C to 70°C
Storage temperature range	

recommended operating conditions

			SN54AS651 SN54AS652			SN74AS651 SN74AS652			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current			- 12			- 15	mA	
IOL	Low-level output current				48			64	mA
fclock			0		75	0		90	MHz
•	Bidas duration	CBA or CAB high	6			5			
tw	Pulse duration	CBA or CAB low	7			6			ns
t _{su}	Setup time before CAB1 or CBA1	A or B	7			6		_	ns
th	Hold time after CAB1 or CBA1	A or B	0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST COND	ITIONS	-	154AS6 154AS6		SN74AS651 SN74AS652			UNIT
				MIN	TYPt	MAX	MIN	TYP †	MAX	
VIK		$V_{CC} = 4.5 V,$	$l_{l} = -18 \text{ mA}$			-1.2			- 1.2	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -2 mA$	V _{CC} -2		_	Vcc-2		_	
		$V_{CC} = 4.5 V,$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		v
∨он		$V_{CC} = 4.5 \overline{V},$	10H = -12 mA	2						ľ
		$V_{CC} = 4.5 V,$	$I_{OH} = -15 \text{ mA}$				2			
		$V_{CC} = 4.5 V_{,}$	loL = 48 mA		0.35	0.55				v
VOL		$V_{CC} = 4.5 V,$	lOL = 64 mA					0.35	0.55] `
	Control inputs	$V_{CC} = 5.5 V$,	$V_{i} = 7 V$			0.1			0.1	mA
ų	A or B ports	$V_{CC} = 5.5 V,$	$V_{1} = 5.5 V$			0.1			0.1	mA
	Control inputs		$V_{ } = 2.7 V$			20			20	
ŀΗ	A or B ports‡	$V_{CC} = 5.5 V,$				70	_		70	1 μ Α
	Control inputs					-0.5			-0.5	mA
կլ	A or B ports‡	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			-0.75			-0.75	mA
lO §		$V_{\rm CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		112	mA
			Outputs high		110	185		110	185	
	'AS651		Outputs low		120	195		120	195	
		- V _{CC} = 5.5 V	Outputs disabled		130	195		130	195	- mA
lcc		VCC - 0.0 V	Outputs high		120	195		120	195	
	'AS652		Outputs low		130	211		130	211	
			Outputs disabled		130	211		130	211	

All typical values are at V_{CC} = 5 V, T_A = 25 °C ‡For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. §The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

TYPES SN54AS651, SN54AS652, SN74AS651, SN74AS652 OCTAL BUS TRANSCEIVERS AND REGISTERS

'AS651 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = \text{MIN to MAX}$				
				SN54AS651		SN74AS651	
fmax			75	MAX	MIN 90	MAX	MHz
tPLH			2	9.5	2	8.5	
^t PHL	CBA or CAB	A or B	2	10	2	9	ns
^t PLH	A or B	B or A	2	9	2	8	
tPHL			1	8	1	7	ns
tPLH .		A or B	2	12	2	11	
^t PHL	SBA or SAB1		2	10	2	9	ns
^t PZH	ĞВА		2	11	2	10	
^t PZL	GBA	Α	3	18	3	16	ns
^t PHZ	GBA	•	2	10	2	9	
tPLZ	GBA	A	2	10	2	9	ns
^t PZH	CAR	B	3	12	3	11	
^t PZL	GAB	в	3	20	3	16	ns
^t PHZ	GAB	В	2	11	2	10	
^t PLZ	GAB	в	2	12	2	11	ns

'AS652 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Phile 4	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$ $SN54AS652 \qquad SN74AS652$						
			MIN	MAX	MIN	MAX	1			
f _{max}			75		90		MH			
^t PLH	0.00		2	9.5	2	8.5				
tPHL	CBA or CAB	A or B	2	10	2	9	ns			
^t PLH			2	11	2	9				
^t PHL	A or B	B or A	1	8	1	7	ns			
^t PLH	CPA CAD4	A D	2	12	2	11				
^t PHL	SBA or SAB†	A or B	2	10	2	9	ns			
^t PZH	GBA		2	11	2	10				
tPZL	GBA	A	3	18	3	16	ns			
^t PHZ	ĞВА		2	10	2	9				
^t PHL	GBA	A	2	10	2	9	ns			
^t PZH	CAR		3	12	3	11				
^t PZL	GAB	В	3	20	3	16	ns			
^t PHZ	045		2	11	2	10				
tPLZ	GAB	В	2	12	2	11	ns			

These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 1: For load circuit and voltage waveforms, see page 1-12.

ALS AND AS CIRCUITS

2 ALS AND AS CIRCUITS

-

•

TYPES SN54ALS677, SN54ALS678, SN74ALS677, SN74ALS678 16-BIT ADDRESS COMPARATORS

- D2661, JUNE 1982-REVISED MARCH 1984
- ALS677 is a 16-bit Address Comparator with Enable
- ALS678 is a 16-bit Address Comparator with Latch
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'ALS677 and 'ALS678 address comparators simplify addressing of memory boards and/or other peripheral devices. The four P inputs are normally hard wired with a preprogrammed address. An internal decoder determines what input information applied to the 16 A inputs must be low or high to cause a low state at the output (Y). For example, a positive-logic bit combination of 0111 (decimal 7) at the P input determines that inputs A1 through A7 must be low and that inputs A8 through A16 must be high to cause the output to go low. Equality of the address applied at the A inputs to the preprogrammed address is indicated by the output being low.

The 'ALS677 features an enable input (G). When G is low, the device is enabled. When G is high, the device is disabled and the output is high regardless of the A and P inputs. The 'ALS678 features a transparent latch and a latch enable input (C). When C is high, the device is in the transparent mode. When C is low, the previous logic state of Y is latched.

The SN54ALS677 and SN54ALS678 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN54ALS677 and SN74ALS678 are characterized for operation from 0 °C to 70 °C.

	-									
SN54ALS677 JT PACKAGE										
SN74ALS677 NT PACKAGE										
(TOP VIEW)										
A2 2 23 5 A3 3 22 Y										
A4 4 21 P3										
A5 5 20 P2										
A6 🛛 6 19 🖵 P1										
A7 []7 18] PO A8 []8 17] A16										
A10 10 15 A14										
A11 11 14 A13										
GND 12 13 A12										
SN54ALS677 FH PACKAGE										
SN74ALS677 FN PACKAGE										
A A A A A A A A A A A A A A A A A A A										
A4]5 25 P3										
A5]6 24] P2										
A6 🛛 7 23 🗍 P1										
NC []8 22[] NC										
A7 09 21 0 PO										
AB 010 200 A16 A9 011 190 A15										
12 13 14 15 16 17 18										
A10 A11 A12 A12 A13 A14										
SN54ALS678 JT PACKAGE										
SN74ALS678 NT PACKAGE										
(TOP VIEW)										
$ \begin{array}{c} A1 \boxed{1} \\ 24 \\ A2 \\ 2 \\ 23 \\ 2 \\ 23 \\ 2 \\ 23 \\ 2 \\ 23 \\ 2 \\ 2$										
A4 4 21 P3										
A5 05 20 P2										
A6 🛛 6 19 🗍 P1										
A7 07 18 PO A8 08 17 A16										
A9 0 9 16 A15										
A10 10 15 A14										
$\begin{array}{c} A I I I I I I I I$										
SN54ALS678 FH PACKAGE										
SN74ALS678 FN PACKAGE										
(TOP VIEW)										
V C C C C A A										
4 3 2 1 28 27 26										
A4 🛛 5 25 🗍 P3										
A5 6 24 P2										
A6]7 23] P1 NC]8 22] NC										
A7 []9 21[] PO										
AB 10 20 A16										
A9 []11 19 [] A15										
12 13 14 15 16 17 18										
A11 A11 NC A12 A13 A13										
4 4 0 [–] 4 4 4										

Copyright © 1982, Texas Instruments Incorporated

TS 2

ALS AND AS CIRCUITS

2-107

TYPES SN54ALS677, SN54ALS678, SN74ALS677, SN74ALS678 16-Bit Address comparators

'ALS677	'ALS678	INPUTS COMMON TO 'ALS677 AND 'ALS678														OUTPUT						
G	С	РЗ	P2	P1	PO	A1	A2	A3	A4	Α5	A6	A7	A 8	A9	A10	A11	A12	A13	A14.	A15	A16	Y
L	н	L	L	L	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	L	L	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	L	н	L	L	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	L	н	н	L	Ł	Ł	н	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	н	L	L	L	L	L	L	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	н	L	н	L	L	L	L	L	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	н	н	L	L	i,	L	L	L	L	н	н	н	н	н	н	н	н	н	н	ι
L	н	L	н	н	н	L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	н	L
Ļ	н	Η.	L	L	Ĺ	L	L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	L
L	н	н	L	L	н	L	L	L	L	L	L	L	L	L	н	н	н	н	н	н	н	L
L	н	н	L	н	L	L	L	L	L	L	Ł	L	Ł	L	L	н	н	н	н	н	н	L
L	н	н	L	н	н	L	L	L	L	L	L	L	L	L	L	L	н	н	н	н	н	L
L	н	н	н	L	L	L	Ł	L	L	L	L	L	L	L	L	L	L	н	н	н	н	L
L	н	н	н	L	н	L	L	L	L	L	L	Ĺ	L	L	L	L	Ļ	L	н	н	н	L
L	н	н	н	н	L	L	L	L	L	L	L	L	L	L	Ĺ	L	L	L	L	н	н	L
L	н	н	н	н	н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	н	L
L	н	All other combinations														н						
н		'ALS677: Any combination													н							
	L	ALS678: Any combination													Latched							

FUNCTION TABLE

logic symbols

2

ALS AND AS CIRCUITS

Pin numbers shown are for JT and NT packages.

TYPES SN54ALS677, SN54ALS678, SN74ALS677, SN74ALS678 16-BIT ADDRESS COMPARATORS

logic diagrams (positive logic)

'ALS677

'ALS678

Pin numbers shown are for JT and NT packages.

TYPES SN54ALS677, SN54ALS678, SN74ALS677, SN74ALS678 16-Bit Address comparators

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		 7 V
Input voltage		 7 V
Operating free-air temperature range	: SN54ALS677, SN54ALS678	 55 °C to 125 °C
	SN74ALS677, SN74ALS678	
Storage temperature range		 65 °C to 150 °C

recommended operating conditions

			SN54ALS677 SN54ALS678			SN74ALS677 SN74ALS678			
		MIN	NOM	MAX	MIN	NOM	MAX		
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2	_		V	
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current			-1			-2.6	mA	
IOL	Low-level output current			12			24	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST COND	TEST CONDITIONS			677 678	SN SN	UNIT		
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
VIK	$V_{CC} = 4.5 V,$	$I_{I} = -18 mA$			- 1.5			- 1.5	V
	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -0.4 \text{ mA}$	Vcc-	2		Vcc-	2		
VOH	$V_{CC} = 4.5 V,$	$I_{OH} = -1 \text{ mA}$	2.4	3.3					v
	$V_{CC} = 4.5 V,$	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2		
Ve	$V_{CC} = 4.5 V,$	l _{OL} = 12 mA		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = 4.5 V,$	I _{OL} = 24 mA					0.35	0.5	v
lj –	$V_{CC} = 5.5 V,$	$V_{1} = 7 V$			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	$V_{ } = 2.7 V$			20			20	μA
hL	$V_{CC} = 5.5 V,$	$V_{ } = 0.4 V$			-0.1			0.1	mA
10 [‡]	$V_{CC} = 5.5 V_{,}$	$V_0 = 2.25 V$	- 30		- 112	- 30		- 112	mA
ALS677	Vcc = 5.5 V			21	33		21	33	mA
ICC /ALS678				21	35		21	35	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

TYPES SN54ALS677, SN54ALS678, SN74ALS677, SN74ALS678 16-BIT ADDRESS COMPARATORS

'ALS677 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4$ $C_{L} = 50$ $R_{L} = 500$ $T_{A} = MM$	pF,)Ω,	5 V,	UNIT
			SN54	ALS677	SN74	ALS677	
			MIN	MAX	MIN	MAX	
^t PLH	Any P	Y	4	28	4	25	ns
^t PHL		Ť	8	40	8	35	
^t PLH	Acu A	×	5	26	5	22	ns
^t PHL	Any A		5	40	5	35	113
^t PLH	G	×	3	15	3	13	ns
^t PHL]	Ŷ	5	30	5	25	

'ALS678 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V.$ $C_{L} = 50 \text{ pF}.$ $R_{L} = 500 \Omega.$ $T_{A} = \text{MIN to MAX}$				UNIT
			SN54	ALS678	SN74	ALS678]
			MIN	MAX	MIN	MAX]
^t PLH	Any P	Y	6	27	6	22	ns
^t PHL			10	52	10	43	
^t PLH	Any A	×	5	25	5	21	ns
^t PHL			5	40	5	35	
^t PLH [']	с	×	3	25	3	20	ns
^t PHL			15	54	15	48	115

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54ALS677, SN54ALS678, SN74ALS677, SN74ALS678 16-Bit Address comparators

TYPICAL APPLICATION INFORMATION

The 'ALS677 and 'ALS678 can be wired to recognize any one of $2^{16} - 1$ addresses. The number of ''lows'' in the address determines the input pattern for the P inputs. Then those system address lines that are low in the address to be recognized are connected to the lowest numbered A inputs of the address comparator and the system address lines that are high are connected to the highest numbered A inputs.

For example, assume the comparator is to enable a device when the 16-bit system address is:

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	AO
н	н	L	Ł	н	н	L	L	н	н	L	L	н	н	н	н

Since the address contains 6 lows and 10 highs, the following connections are made:

P3 to 0 V, P2 to VCC, P1 to VCC, and P0 to 0 V.

System address lines A13, A12, A9, A8, A5, and A4 to comparator inputs A1 through A6 in any convenient order.

The remaining ten system address lines to comparator inputs A7 through A16 in any convenient order.

The output provides an active-low enabling signal.

The following circuit is a modulo-N synchronous counter. The 'ALS163 is connected to provide a low-level clear signal when $N = FEFF_{16}$.

MODULO-N SYNCHRONOUS COUNTER

2

TYPES SN54ALS679, SN54ALS680, SN74ALS679, SN74ALS680 12-BIT ADDRESS COMPARATORS

D2661, JUNE 1982-REVISED MARCH 1984

- 'ALS679 is a 12-Bit Address Comparator With Enable
- 'ALS680 is a 12-Bit Address Comparator With Latch
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'ALS679 and 'ALS680 address comparators simplify addressing of memory boards and/or other peripheral devices. The four P inputs are normally hard wired with a preprogrammed address. An internal decoder determines what input information applied to the 12 A inputs must be low or high to cause a low state at the output (Y). For example, a positive-logic bit combination of 0111 (decimal 7) at the P input determines that inputs A1 through A7 must be low and that inputs A8 through A12 must be high to cause the output to go low. Equality of the address applied at the A inputs to the preprogrammed address is indicated by the output being low.

The 'ALS679 features an enable input (\overline{G}). When \overline{G} is low, the device is enabled. When \overline{G} is high, the device is disabled and the output is high regardless of the A and P inputs. The 'ALS680 features a transparent latch and a latch enable input (C). When C is high, the device is in the transparent mode. When C is low, the previous logical state of Y is latched.

The SN54ALS679 and SN54ALS680 are characterized for operation over the full military temperature of -55 °C to 125 °C. The SN74ALS679 and SN74ALS680 are characterized for operation from 0 °C to 70 °C.

SN54ALS679 .	
SN74ALS679 . (TOP V	
	120 VCC
A3 🗍 3	18 Y
A4 □ 4 A5 □ 5	17 P3 16 P2
A6 []6	15 P1
A7 []7	14 PO
A8 []8 A9 []9	13 A12
	11 A10
SN54ALS679	. FH PACKAGE
SN74ALS679 .	
(TOP	VIEW)
A3 A2	e c c c
ر کوک	
A4] 4	18 1 Y
A5 [] 5	17 P3
A6]6 A7]7	16 [] P2 15 [] P1
Âs la	14 [] PO
5 9 10 1	1 12 13
6 Q Q	A11
5	(< <
SN544I S680	J PACKAGE
	J PACKAGE
SN74ALS680 .	N PACKAGE
SN74ALS680 . (TOP	N PACKAGE VIEW)
SN74ALS680 . (TOP) A1 11 A2 12	N PACKAGE VIEW) 720] ∨ _{CC} 19] c
SN74ALS680 . (TOP) A1 1 1 A2 2 A3 3	N PACKAGE VIEW) 720] V _{CC} 19] C 18] Y
SN74ALS680 . (TOP) A1 [] 1 A2 [] 2 A3 [] 3 A4 [] 4	N PACKAGE VIEW) 720] ∨ _{CC} 19] c
SN74ALS680 . (TOP) A1 1 1 A2 2 A3 3 A4 4 A5 5 A6 6	N PACKAGE VIEW) 20] V _{CC} 19] C 18] Y 17] P3 16] P2 15] P1
SN74ALS680 . (TOP ¹) A1 1 1 A2 2 2 A3 3 A4 4 A5 5 A6 6 A7 7 7	N PACKAGE VIEW) 20] VCC 19] C 18] Y 17] P3 16] P2 15] P1 14] P0
SN74ALS680 . (TOP ' A1 []1 A2 []2 A3 []3 A4 []4 A5 []5 A6 []6 A7 []7 A8 []8	N PACKAGE VIEW) 700 VCC 190 C 180 Y 170 P3 160 P2 150 P1 140 P0 130 A12
SN74ALS680 . (TOP ¹) A1 [1] A2 [2 A3 [3 A4 [4 A5 [5 A6 [6 A7 [7]	N PACKAGE VIEW) 20] VCC 19] C 18] Y 17] P3 16] P2 15] P1 14] P0
SN74ALS680 . (TOP - A1 []1 A2 []2 A3 []3 A4 []4 A5 []5 A6 []6 A7 []7 A8 []8 A9 []9 GND []10	N PACKAGE VIEW) 700 VCC 190 C 180 Y 170 P3 160 P2 150 P1 140 P0 130 A12 120 A11 110 A10
SN74ALS680 . (TOP ' A1 1 1 A2 2 A3 3 A4 4 A5 5 A6 6 A7 7 A8 8 B A9 9 GND 10 SN54ALS680 .	N PACKAGE VIEW) 200 V _{CC} 190 C 180 Y 170 P3 160 P2 150 P1 141 P0 131 A12 122 A11
SN74ALS680 . (TOP ' A1 1 1 A2 2 A3 2 A4 4 A5 5 5 A6 6 A7 7 A8 8 8 A9 9 GND 10 SN54ALS680 . SN74ALS680 . (TOP	N PACKAGE VIEW) 200 VCC 19 C 18 Y 17 P3 16 P2 15 P1 14 P0 13 A12 12 A11 11 A10 FH PACKAGE FN PACKAGE VIEW)
SN74ALS680 . (TOP ' A1 1 1 A2 2 A3 2 A4 4 A5 5 A6 6 A7 7 A8 7 GND 10 SN54ALS680 . SN74ALS680 . (TOP	N PACKAGE VIEW) 700 VCC 190 C 180 Y 177 P3 160 P2 150 P1 140 P0 130 A12 120 A11 110 A10 FH PACKAGE VIEW) SN PACKAGE
SN74ALS680 . (TOP ' A1 1 1 A2 2 A3 2 A4 4 A5 5 A6 6 A7 7 A8 7 GND 10 SN54ALS680 . SN74ALS680 . (TOP	N PACKAGE VIEW) 700 VCC 190 C 180 Y 177 P3 160 P2 150 P1 140 P0 130 A12 120 A11 110 A10 FH PACKAGE VIEW) SN PACKAGE
SN74ALS680 . (TOP ' A1 []1 A2 []2 A3 []3 A4 []4 A5 []5 A6 []6 A7 []7 A8 []8 A9 []9 GND []10 SN54ALS680 . SN74ALS680 . (TOP	N PACKAGE VIEW) 700 VCC 190 C 180 Y 177 P3 160 P2 150 P1 140 P0 130 A12 120 A11 110 A10 FH PACKAGE VIEW) SN PACKAGE
SN74ALS680. (TOP - A1 1 1 A2 2 A3 2 A4 4 A5 5 A6 6 A7 7 A8 8 SN54ALS680. SN74ALS680. SN74ALS680. (TOP C C C A4 4 A5 5 SN74ALS680.	N PACKAGE VIEW) 200 VCC 19 C 18 Y 17 P3 16 P2 15 P1 14 P0 13 A12 12 A11 11 A10 FH PACKAGE VIEW) 20 S 20 S 18 Y 18 Y 19 C 19 C 10 P2 10 C 10 C 10 C 10 C 10 P2 10 C 10 P2 10 C 10
SN74ALS680 . (TOP ' A1 1 1 1 A2 2 A3 3 A4 4 A5 5 A6 6 A7 7 7 A8 8 A9 9 GND 10 SN54ALS680 . SN74ALS680 . (TOP SN54ALS680 . SN74ALS680 . SN74ALS680 .	N PACKAGE VIEW) 200 VCC 190 C 191 C 198 Y 117 P3 160 P2 15 P1 140 P0 130 A12 120 A11 111 111 111 111 111 120 A11 110 FH PACKAGE VIEW) 200 200 200 200 200 200 200 20
SN74ALS680. (TOP - A1 1 1 A2 2 A3 2 A4 4 A5 5 A6 6 A7 7 A8 8 SN54ALS680. SN74ALS680. SN74ALS680. (TOP C C C A4 4 A5 5 SN74ALS680.	N PACKAGE VIEW) 200 VCC 19 C 18 Y 17 P3 16 P2 15 P1 14 P0 13 A12 12 A11 11 A10 FH PACKAGE VIEW) 20 S 20 S 18 Y 18 Y 19 C 19 C 10 P2 10 C 10 C 10 C 10 C 10 P2 10 C 10 P2 10 C 10
SN74ALS680. (TOP ' A1 1 1 A2 2 A3 3 A4 4 A5 5 A6 6 A7 7 A8 8 GND 10 SN54ALS680. SN74ALS680. (TOP C 2 2 A4 4 A5 5 SN54ALS680. SN74ALS680. (TOP) C 2 2 A4 4 A5 5 SN54ALS680. (TOP) C 2 2 A4 4 A5 5 SN54ALS680. (TOP) C 2 2 C 2 2 A4 4 A5 5 SN54ALS680. (TOP) C 2 2 C 2 C 2	N PACKAGE VIEW) 200 VCC 190 C 191 C 191 P2 150 P1 140 P0 131 A12 121 A11 110 A10 FH PACKAGE VIEW) 200 P2 150 P1 161 P2 170 P3 161 P2 170 P3 161 P2 170 P3 161 P2 170 P3 170 P3
SN74ALS680 . (TOP ' A1 1 1 1 A2 2 2 A3 2 A4 4 A5 5 A6 6 A7 7 SN54ALS680 . SN74ALS680 . (TOP 3 2 A4 4 A5 5 SN54ALS680 . SN74ALS680 . (TOP 3 2 A4 4 A5 5 SN74ALS680 . (TOP) 3 2 A4 7 A5 7 SN74ALS680 . (TOP) 3 2 A4 7 A5 7 SN74ALS680 . (TOP) 3 2 A4 7 A5 7 SN74ALS680 . (TOP) 3 2 A4 7 A5 7 SN74ALS680 . (TOP) 3 2 A4 7 A5 7 A5 7 A5 7 A5 7 A5 7 A5 7 A5 7 A5	N PACKAGE VIEW) 200 VCC 190 C 191 C 191 P2 150 P1 140 P0 131 A12 121 A11 110 A10 FH PACKAGE VIEW) 200 P2 150 P1 161 P2 170 P3 161 P2 170 P3 161 P2 170 P3 161 P2 170 P3 170 P3

ALS AND AS CIRCUITS

Copyright © 1984, Texas Instruments Incorporated

TYPES SN54ALS679, SN54ALS680, SN74ALS679, SN74ALS680 12-Bit Address comparators

ALS679	'AL\$680	INPUTS COMMON TO 'ALS679 AND 'ALS680									OUTPUT							
Ğ	С	P3	P2	P1	PO	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	Y
L	н	L	L	ι	L	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	L	L	н	L	н	н	н	н	н	н	н	н	н	н	н	L
L	н	L	L	н	L	L	Ł	н	н	н	н	н	н	н	н	н	н	L
L	н	L	L	н	н	L	L	L	н	н	н	н	н	н	н	н	н	L
L	н	L	н	L	L	L	L	L	L	н	н	н	н	н	н	н	н	L
L	н	L	н	L	н	L	L	L	L	L	н	н	н	н	н	н	н	L
L	н	L	н	н	L	L	L	L	L	L	L	н	н	н	н	н	н	L
L	н	L	н	н	н	L	L	L	L	L	L	Ł	н	н	н	н	н	L
L	н	н	L	L	L	L	L	L	L	L	Ł	L	L	н	н	н	н	L
L	н	н	L	L	н	L	L	L	L	L	L	L	L	L	н	н	н	L
ι	н	н	L	н	٤	L	L	L	L	L	L	L	L	L	L	н	н	L
L	н	н	Ł	н	н	L	L	L	L	L	L	L	L	L	L	L	н	L
ι	H	н	H	L	ι	٤	L	£	L	Ł	L	L	L	н	н	н	ι	٤.
L	H	н	н	ι	н	L	L	L	L	L	ι	٤	L	£	н	н	L	L.
L	H	н	н	н	L	Ł	L	L	L	٤	L	L	L.	ι	L.	н	L	. ۲
L	н	н	н	н	н	L	i.	Ĺ	L	L	Ł	L	L	Ł	L	L	L	L
L	H		All other combinations										н					
н			ALS679: Any combination								_	н						
	L	'ALS680: Any combination								Latched								

2 ALS AND AS CIRCUITS

* The three shaded rows of the function table show combinations that would normally not be used in address comparator applications. The logic symbols above are not valid for these combinations in which P = 12, 13, and 14. If symbols valid for all combinations are required, starting with the fourth Exclusive-OR from the bottom, change P > 9 to P = 9...11/13...15, P > 10 to P $\approx 10/11/14/15$, and P ≥ 11 to P = 11/15.

Pin numbers shown are for J and N packages.

TYPES SN54ALS679, SN54ALS680, SN74ALS679, SN74ALS680 12-BIT ADDRESS COMPARATORS

logic diagrams (positive logic)

- -

Pin numbers shown are for J and N packages.

TYPES SN54ALS679, SN54ALS680, SN74ALS679, SN74ALS680 12-Bit Address comparators

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		 7 V
Input voltage		 7 V
Operating free-air temperature range:	SN54ALS679, SN54ALS680	 – 55 °C to 125 °C
	SN74ALS679, SN74ALS680	 0 °C to 70 °C
Storage temperature range		 -65 °C to 150 °C

- - -

recommended operating conditions

			SN54ALS679 SN54ALS680			SN74ALS679 SN74ALS680			
		MIN	NOM	MAX	MIN	NOM	MAX		
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current			- 1			~ 2.6	mA	
^I OL	Low-level output current		_	12			24	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			54ALS		SN SN	UNIT		
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX]
VIK	$V_{CC} = 4.5 V,$	l _l = -18 mA			- 1.5			-1.5	v
	$V_{CC} = 4.5 V$ to 5.5 V,	OH = -0.4 mA	Vcc-	2		Vcc-	2		
∨он	$V_{CC} = 4.5 V,$	OH = -1 mA	2.4	3.3				_] v
	$V_{\rm CC} = 4.5 V,$	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2		
-	$V_{\rm CC} = 4.5 V,$	IOL = 12 mA		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = 4.5 V,$	$I_{OL} = 24 \text{ mA}$					0.35	0.5	ľ
4	$V_{\rm CC} = 5.5 V_{\rm c}$	VI = 7 V			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	V ₁ = 2.7 V			20			20	μA
μ	$V_{CC} = 5.5 V,$	$V_{I} = 0.4 V$			- 0.1			0.1	mA
'0 [‡]	$V_{CC} = 5.5 V_{,}$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA
'ALS679	$V_{CC} = 5.5 V$			17	28		17	28	mA
CC 'ALS680	VCC = 5.5 V			18	27		18	27	

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 \,^{\circ}C$.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

TEXAS INSTRUMENTS

TYPES SN54ALS679, SN54ALS680, SN74ALS679, SN74ALS680 12-Bit Address comparators

'ALS679 switching characteristics (see Note 1)

- -

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$					
			SN54	ALS679	SN74	ALS679]		
			MIN	MAX	MIN	MAX			
^t PLH	A D.	Y -	4	28	4	25			
^t PHL	Απγ Ρ	1	8	40	8	35	ns		
^t PLH	A. 2014 A		5	26	5	22	-		
^t PHL	Any A	T	5	35	5	30	ns		
^t PLH	Ğ	×	3	15	3	13	ns		
^t PHL	3	Y	5	30	5	25			

'ALS680 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (оитрит)		$V_{CC} = 4$ $C_{L} = 50$ $R_{L} = 500$ $T_{A} = Min$	pF Ω	5 V	UNIT
			SN54	ALS680	SN74	ALS680	
			MIN	MAX	MIN	MAX	
^t PLH	Any P	×	6	27	6	22	ns
^t PHL		· · ·	10	43	10	38	กร
^t PLH		×	5	25	5	21	ns
^t PHL		,	5	28	5	25	115
^t PLH	с	×	3	25	3	20	ns
tPHL .	3	, I	15	48	15	42	115

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54ALS679, SN54ALS680, SN74ALS679, SN74ALS680 12-BIT ADDRESS COMPARATORS

TYPICAL APPLICATION INFORMATION

The 'ALS679 and 'ALS680 can be wired to recognize any one of 212 addresses. The number of 'lows' in the address determines the input pattern for the P inputs. Then those system address lines that are low in the address to be recognized are connected to the lowest numbered A inputs of the address comparator and the system address lines that are high are connected to the highest numbered A inputs.

For example, assume the comparator is to enable a device when the 12-bit system address is:

A11	A10	A9	A8	Α7	A6	A5	A4	A3	A2	A1	A0
н	н	L	L	н	н	L	L	н	н	н	н

Since the address contains 4 lows and 8 highs, the following connections are made:

P3 to 0 V, P2 to VCC, P1 to 0 V, and P0 to 0 V.

System address lines A9, A8, A5, and A4 to comparator inputs A1 through A4 in any convenient order.

The remaining eight system address lines to comparator inputs A5 through A12 in any convenient order.

The output provides an active-low enabling signal.

The following circuit is a register bank decoder that examines the 14 most significant bits (A0 through A13) of a 20-bit address to select banks corresponding to the hex addresses 10000, 10040, 10080, and 100C0.

REGISTER BANK DECODER

2

TYPES SN54AS756, SN54AS757, SN74AS756, SN74AS757 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

.

D2261, DECEMBER 1983-REVISED FEBRUARY 1984

- **Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers**
- Eliminates the Need for 3-State Overlap Protection
- P-N-P Inputs Reduce DC Loading
- **Dependable Texas Instruments Quality and** Reliability
- **Open-Collector Versions of 'AS240, 'AS241**

description

These octal bus transceivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters by eliminating the need for three-state overlap protection. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical G (active-low output control) inputs, and complementary G and \overline{G} inputs. These devices feature high fan-out and improved fan-in.

The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

SN54AS' J PACKAGE SN74AS' N PACKAGE (TOP VIEW)								
1 G [1 1 A1 2 2 Y4 3 1 A2 4 2 Y3 5 1 A3 6 2 Y2 7 1 A4 8 2 Y1 9 GND 10	20 V _{CC} 19 2G/2G' 18 1Y1 17 2A4 16 1Y2 15 2A3 14 1Y3 13 2A2 12 1Y4 11 2A1							

SN54AS' . . . FH PACKAGE SN74AS' ... FN PACKAGE (TOP VIEW)

*2G for 'AS756 or 2G for 'AS757

TYPES SN54AS756, SN54AS757, SN74AS756, SN74AS757 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

logic symbols

logic diagrams (positive logic)

-

TEXAS V INSTRUMENTS

TYPES SN54AS756, SN54AS757, SN74AS756, SN74AS757 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage
Off-state output voltage
Operating free-air temperature range: SN54AS756, SN54AS757
SN74AS756, SN74AS757
Storage temperature range

recommended operating conditions

			SN54AS756 SN54AS757		SN74AS756 SN74AS757			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX]
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
∨н	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
∨он	High-level output voltage			5.5			5.5	v
IOL	Low-level output current			48			64	mA
TA	Operating free-air temperature	~ 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54AS SN54AS			N74AS7 N74AS7		UNIT	
				MIN	TYPT	MAX	MIN	TYP [†]	MAX		
VIK		$V_{CC} = 4.5 V_{,}$	l∣ = −18 mA			- 1.2			- 1.2	V V	
юн		$V_{CC} = 4.5 V_{,}$	V _{OH} = 5.5 V			0.1			0.1	mA	
VOL		$V_{CC} = 4.5 V,$	= 4.5 V, I _{OL} = 48 mA			0.55		_			
VOL		$V_{CC} = 4.5 V,$	l _{OL} = 64 mA						0.55	1	
Ч		$V_{CC} = 5.5 V,$	V ₁ = 7 V			0.1			0.1	mA	
ЧΗ		$V_{CC} = 5.5 V,$	$V_{1} = 2.7 V$			20			20	μA	
 ۱ _{۱۱}	'AS757 A inputs only	V _{CC} = 5.5 V,	V1 = 0.4 V			- 1			- 1	mA	
	All other					0.5			~0.5		
	140750		Output high		9	15		9	15		
100	ICC VCC = 5.5 V Output low (AS757	I Output high	Output low		51	80		51	80		
100			Output high		21	33		21	33	mA	
A5757		Output low		61	95		61	95	1		

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

34

TYPES SN54AS756, SN54AS757, SN74AS756, SN74AS757 Octal Buffers and line drivers with Open-Collector Outputs

'AS756 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (о трит)		CL = 50 RL = 50			UNIT
			SN54	1AS756	SN7	4AS756	
			MIN	MAX	MIN	MAX	
tPLH	A	Y	3	20	3	19	
tPHL			1	7	1	6	ns
^t PLH	G	×	3	22	3	19.5	
^t PHL		, ř	1	8.5	1	7.5	ns

'AS757 switching characteristics (see Note 1)

PARAMÉTER	FROM (INPUT)	TO (OUTPUT)		CL = 50 RL = 50			UNIT
			SN54	A\$757	SNT	74A\$757]
			MIN	MAX	MIN	MAX	
^t PLH			3	19.5	3	18.5	
^t PHL	А	Y	1	7	1	6	ns
tPLH	1 <u>G</u>		3	21	3	20	ns
tPHL	10		· 1	8	1	7	""
^t PLH	2G	v	3	22.5	3	21	ns
^t PHL	20	•	1	8.5	1	7.5	115

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54AS758, SN54AS759, SN74AS758, SN74AS759 QUADRUPLE BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

DECEMBER 1983 - REVISED FEBRUARY 1984

- 2-Way Asynchronous Communication Between Data Buses
- P-N-P Inputs Reduce Loading
- Dependable Texas Instruments Quality and Reliability
- Open-Collector Versions of 'AS242, 'AS243

description

These four-data-line transceivers are designed for asynchronous two-way communications between data buses.

The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

logic symbol

logic diagrams (positive logic)

SN74' N PACKAGE (TOP VIEW)							
A1 [A2 [A3 [$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VCC GBA NC B1 B2 B3 B4					

SN54' . J PACKAGE

SN54'				FH PACKAGE
SN74'				FN PACKAGE
	(1	го	P	VIEW)

NC-No Internal connection

FUNCTION TABLE

INPUTS		'A\$758	'A\$759
GAB	GBA	A3/56	A3759
L	L	Ā to B	A to B
н	н	B to A	B to A
н	L	Isolation	Isolation
	Latch A and B		Latch A and B
Ľ	н	$(A = \overline{B})$	(A = B)

ALS AND AS CIRCUITS

Copyright © 1983 by Texas Instruments Incorporated

TEXAS V INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPES SN54AS758, SN54AS759, SN74AS758, SN74AS759 QUADRUPLE BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Input voltage: All inputs and I/O ports	
Operating free-air temperature range: SN54AS758, SN54AS759	
SN74AS758, SN74AS759	0°C to 70°C
Storage temperature range	

recommended operating conditions

			SN54AS758 SN54AS759		SN74AS758 SN74AS759			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX]
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	v
IOL	Low-level output current			48			64	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER TEST CONDITIONS			SN54AS758 SN54AS759			SN74AS758 SN74AS759				
				MIN	TYPT	MAX	MIN	TYP [†]	MAX	1	
VIK		$V_{CC} = 4.5 V_{c}$	$l_{1} = -18 mA$			- 1.2			-1.2	V	
юн		$V_{CC} = 4.5 V_{,}$	$V_{OH} = 5.5 V$			0.1			0.1	mA	
VOL		$V_{CC} = 4.5 V,$	IOL = 48 mA			0.55				v	
*OL		$V_{CC} = 4.5 V,$	$I_{OL} = 64 \text{ mA}$						0.55] `	
4	Control inputs	$V_{CC} = 5.5 V_{,}$	V ₁ = 7 V			0.1			0.1	mA	
"	A or B ports	$V_{CC} = 5.5 V_{c}$	VI = 5.5 V			0.1	0.1				
hai	Control inputs	Vac - FEV	$V_{CC} = 5.5 V, V_{t} = 2.7 V$			20			20		
ήн	A or B ports	VCC = 5.5 V,				50			50	μΑ	
	Control inputs					~ 0.5		_	-0.5		
μL	'AS758 A or B ports [‡]	$V_{CC} = 5.5 V_{,}$	$V_{I} = 0.4 V$			-0.5			-0.5	mA	
	'AS759 A or B ports [‡]					- 1			-1		
	'AS758		Outputs high		17	27		17	27		
100	M3756			Outputs low		38	60		38	60	
'CC	ICC (AS759	$V_{CC} = 5.5 V$	Outputs high		27	43		27	43	mA	
	M3703		Outputs low	47	74		47	74	1		

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡]For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

Texas
POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54AS758, SN54AS759, SN74AS758, SN74AS759 QUADRUPLE BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

'AS758 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 4.5 V C _L = 50 pF, R _L = 500 Ω, T _A = MIN to		,	UNIT
			SN54	SN54AS758		SN74AS758	
			MIN	MAX	MIN	MAX	1
^t PLH	A or B	B or A	3	20.5	3	19.5	
^t PHL	AOrb	BORA	1	7	1	6	ns
tPLH	GBA	A	3	22	3	19.5	
^t PHL	GBA		1	8.5	1	7.5	ns
tPLH	ĞАВ	в	3	22	3	21	ns
^t PHL	GAB	6	1	8.5	1	8	115

'AS759 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V$ to 5.5 V, $C_L = 50 pF$, $R_L = 500 \Omega$, $T_A = MIN$ to MAX				
			SN54/	SN54AS759		SN74AS759		
			MIN	MAX	MIN	MAX		
^t PLH	A or B	B or A	3	21	3	20		
^t PHL	AULP	BOFA	1	7	1	6	ns	
^t PLH	GBA	A	3	21	3	20		
^t PHL	GDA	<u>^</u>	1	8	1	7	ns	
^t PLH	GAB	В	3	22.5	3	21		
^t PHL	GAD	Б	1	8.5	1	7.5	ns	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

-4

ALS AND AS CIRCUITS

-

TYPES SN54AS760, SN74AS760 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

- Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers
- Eliminates the Need For 3-State Overlap Protection
- P-N-P Inputs Reduce DC Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability
- Open-Collector Version of 'AS244

description

1<u>G (1)</u>

1A1 (2)

1A2 (4)

1A3 (6)

144

(8)

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters by eliminating the need for 3-state overlap protection. Taken together with the 'AS756 and 'AS757, these devices provide the choice of selected combinations of inverting outputs, symmetrical \overline{G} (active-low input control) inputs, and complementary G and \overline{G} inputs.

The SN54AS760 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AS760 is characterized for operation from 0°C to 70°C.

functional block diagram (positive logic)

Pin numbers shown are for J and N packages

DECEMBER	1983-REVISED	FEBRUARY	1984

SN54AS760 J PACKAGE SN74AS760 N PACKAGE (TOP VIEW)					
1G 1 1A1 2 2Y4 3 1A2 4 2Y3 5 1A3 6 2Y2 7 1A4 8 2Y1 9 GND 10	20 VCC 19 2G 18 1Y1 17 2A4 16 1Y2 15 2A3 14 1Y3 13 2A2 12 1Y4				

SN54AS760 . . . FH PACKAGE SN74AS760 . . . FN PACKAGE (TOP VIEW)

UITS 2

Copyright © 1983 by Texas Instruments Incorporated

TEXAS T INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

94

TYPES SN54AS760, SN74AS760 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	. 7 V
Input voltage	.7V
Off-state output voltage	. 7 V
Operating free-air temperature range: SN54AS760	5°C
SN74AS760	0°C
Storage temperature range	0°C

recommended operating conditions

		SI	SN54AS760			SN74AS760			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
Voн	High-level output voltage			5.5			5.5	V	
IOL	Low-level output current			48			64	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER TEST CONDITIONS		S	N54AS7	760	S	N74AS7	60	UNIT	
PARA			IDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 V_{,}$	$I_{I} = -18 \text{ mA}$			- 1.2			- 1.2	v
юн		$V_{CC} = 4.5 V_{,}$	VOH = 5.5 V			0.1			0.1	mA
Max		$V_{CC} = 4.5 V,$	i _{OL} = 48 mA			0.55				v
VOL		$V_{CC} = 4.5 V$	loL = 64 mA						0.55	ľ
Ч		$V_{CC} = 5.5 V_{,}$	VI = 7 V			0.1			0.1	mA
чн		$\overline{V_{CC}} = 5.5 \overline{V},$	$V_{I} = 2.7 V$			20			20	μA
ЧL — —	G	V _{CC} = 5.5 V,	$V_{1} = 0.4 V$			~ 0.5			-0.5	mA
	A	VCC = 5.5 V,	vi = 0.4 v			- 1			- 1	IIIA
100		Vec = 55 V	Outputs high		20	32		20	32	mA
'cc	$V_{CC} = 5.5 V$		Outputs low		60	94		60	94	

'AS760 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	ΤΟ (ΟυΤΡυΤ)		CL = 50 RL = 50			UNIT
			SN54AS760		SN74AS760		
			MIN	MAX	MIN	MAX	1
^t PLH			3	19.5	3	18.5	ns
tPHL	1 ^	Y Y	1	7	1	6	
^t PLH			3	19.5	3	18.5	ns
tPHL	G	, ¹	1	8	1	7	1 "*

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

TYPES SN54AS762, SN54AS763, SN74AS762, SN74AS763 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN COLLECTOR OUTPUTS

£

- Included Among the Package Options Are 20-Pin DIPs and Both Plastic and Ceramic Chip Carriers
- 'AS762 Has True and Complementary Outputs
- 'AS763 Has Complementary G and G inputs
- **Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers**
- Eliminates the Need for 3-State Overlap Protection
- Current Sinking Capability Up to 64 mA
- **Dependable Texas Instruments Quality and** Reliability

description

These octal buffers and line drivers are designed specifically to improve the performance of three-state memory address drivers, clock drivers, and busoriented receivers and transmitters by eliminating the need for 3-state overlap protection. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical G (active-low output control) inputs, and complementary G and G inputs.

The SN54AS762 and SN54AS763 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AS762 and SN74AS763 are characterized for operation from 0 °C to 70°C.

logic symbols

Pin numbers shown are for J and N packages.

SN54AS' J PACKAGE SN74AS' N PACKAGE (TOP VIEW)					
1 <u></u> [1	U20	1 ′cc		
141	2	19	2G∕2G*		
274	3	18	111		
1A2	4	17	2A4		
2Y3	5	16	1 1 1 2		
1A3	6	15	2A3		
2 Y 2	7	14	1 1 1 3		
1A4 🗌	8	13	2A2		
2Y1	9	12	1 1 1 4		
GND	10	11	2 4 1		

DECEMBER 1983-REVISED FEBRUARY 1984

SN54AS' . . . FH PACKAGE SN74AS' ... FN PACKAGE (TOP VIEW) 20, 2Y4 2 1 20 19 1A2 4 18 [111 17

*2G for 'AS762 or 2G for 'AS763

2 ALS AND AS CIRCUITS

Copyright © 1983 by Texas Instruments Incorporated

TEXAS INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2-129

TYPES SN54AS762, SN54AS763, SN74AS762, SN74AS763 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	7 V
Off-state output voltage	7 V
Operating free-air temperature range: SN54AS762, SN54AS763	to 125 °C
SN74AS762, SN74AS763	to 70 °C
Storage temperature range	to 150 °C

recommended operating conditions

			SN54AS762 SN54AS763		SN74AS762 SN74AS763			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	v _
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
V _{OH}	High-level output voltage			5.5			5.5	V
[‡] OL	Low-level output current			48			64	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		PARAMETER TEST CONDITIONS		SN54AS762 SN54AS763			SN74AS762 SN74AS763			UNIT
				MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 V_{,}$	ij = -18 mA			- 1.2			- 1.2	v
юн		$V_{CC} = 4.5 V_{,}$	$V_{OH} = 5.5 V$	_		0.1			0.1	mA
Vai		$V_{CC} = 4.5 V_{,}$	$I_{OL} = 48 \text{ mA}$			0.55				v
VOL		$V_{CC} = 4.5 V,$	$I_{OL} = 64 \text{ mA}$		_				0.55	1 °
Ϊ <u>Ι</u>		$V_{CC} \approx 5.5 V$,	V ₁ = 7 V			0.1			0.1	mA
ŀн		$V_{CC} = 5.5 V$,	VI = 2.7 V			20			20	μA
կլ	AS762 2A inputs only	V _{CC} = 5.5 V,	$V_{I} = 0.4 V$			- 1			1	mA
	All other					-0.5			-0.5	
	'A\$762	$V_{CC} = 5.5 V$	Output high		15	23		15	23	
100	A3762	$v_{CC} = 5.5 v$	Output low		55	87		55	87	1
icc	'A\$763		Output high		10	16		10	16	mA
	A3/03	$V_{CC} = 5.5 V$	Output low		52	82		52	82	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

TYPES SN54AS762, SN54AS763, SN74AS762, SN74AS763 OCTAL BUFFERS AND LINE DRIVERS WITH OPEN-COLLECTOR OUTPUTS

'AS762 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V to 5.5 V C_{L} = 50 pF,$ R _L = 500 Ω, T _A = MIN to MAX		:	UNIT	
			SN54	4AS762	SN74	4AS762]
			MIN	MAX	MIN	MAX	
tPLH	1A	1Y	з	20	3	19	ns
^t PHL	18		1	7	1	6	115
^t PLH	2A	2Y	3	19.5	3	18.5	
tPHL	ZA	21	1	7	1	6	ns
tPLH	Ğ	1Y	3	22	3	19.5	ns
^t PHL	6		1	8	1	7.5	115
^t PLH	Ğ	2Y	3	20	3	19	-
TPHL	6	21	1	8	1	7	ns

'AS763 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO {OUTPUT}	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = \text{MIN to MAX}$			UNIT	
			SN54	A\$763	SN7	4A\$763]
			MIN	MAX	MIN	MAX	
^t PLH		Y	3	20	3	19	
^t PHL	A	, t	1	7	1	6	ns
^t PLH	G	v	3	22	3	19.5	
TPHL	8		1	8.5	1	7.5	ns
^t PLH	6	×	3	22	3	20	
^t PHL	G		1	8.5	1	8	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

- - -

TYPES SN54ALS810, SN74ALS810 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES

D2837, MARCH 1984

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent Exclusive-NOR gates. They perform the Boolean functions $Y = \overline{A \oplus B} = (A + \overline{B}) \cdot (\overline{A} + B)$ in positive logic.

A common application is a true/complement element. If one of the inputs is high, the other input will be reproduced in true form at the output. If one of the inputs is low, the signal on the other input will be reproduced inverted at the output.

The SN54ALS810 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS810 is characterized for operation from 0 °C to 70 °C.

_	
1A 🚺 1	
1B[]2	13 🗋 4B
1 Y 🗖 3	12 🗋 4 A
2A 🗖 4	11 🗋 4 Y
2B 🗌 5	10 🗍 3B
2Y 🗌 6	9 🗋 3 A
GND 7	8 🗍 3 Y

SN54ALS810 . . . FH PACKAGE SN74ALS810 . . . FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

exclusive-NOR logic

An exclusive-NOR gate has many applications, some of which can be represented better by alternative logic symbols.

FUNCTION TABLE

(each gate)

OUTPUT

Y

н

L

L

н

INPUTS

н

A B

LL

L H

ΗĹ

н

These are five equivalent Exclusive-NOR symbols valid for an 'ALS810 gate in positive logic; negation may be shown at any one port, or at all three of them.

LOGIC IDENTITY ELEMENT

The output is active (High) if all inputs stand at the same logic level (i.e., A = B).

PRODUCT PREVIEW This document contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

384

EVEN-PARITY

The output is active (High) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (Low) if an odd number of inputs (i.e., only 1 of the 2) are active.

Copyright © 1984, Texas Instruments Incorporated

2-133

TYPES SN54ALS810, SN74ALS810 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		7 V
Input voltage		7 V
Operating free-air temperature range:	SN54ALS810	– 55 °C to 125 °C
	SN74ALS810	0°C to 70°C
Storage temperature range		-65°C to 150°C

recommended operating conditions

		SM	SN54ALS810		SN74ALS810			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 0.4			-0.4	mA
OL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54AL		810	SA	SN74ALS810		
r anadic i ch	TEST CON	DITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	lj = -18 mA			- 1.5			~ 1.5	V
∨он	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	$I_{OH} = -0.4 \text{ mA}$	Vcc-	2		Vcc -	2	_	V
VOL	$V_{CC} = 4.5 V_{,}$	IOL = 4 mA		0.25	0.4		0.25	0.4	v
*0L	$V_{CC} = 4.5 V,$	OL = 8 mA					0.35	0.5	ľ
4	$V_{CC} = 5.5 V,$	VI = 7 V			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V_{,}$	V ₁ = 2.7 V			20			20	μA
lιL	$V_{CC} = 5.5 V,$	Vi = 0.4 V	_		- 0.1			- 0.1	mA
10 [‡]	$V_{CC} = 5.5 V,$	V ₀ = 2.25 V	- 30		- 112	- 30		- 112	mA
'cc	$V_{CC} = 5.5 V,$	A at 4.5 V, B at 0 V		5	7.5		5	7.5	mA

[†]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS-

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		CL = 50 RL = 50		5 V,	UNIT
			SN54	ALS810	SN74	ALS810	
			MIN	MAX	MIN	MAX	
tPLH	A or B		5	23	5	20	
^t PHL	(other input low)	,	3	17	3	14	ns
^t PLH	A or B		5	21	5	18	
^t PHL	(other input high)	ł	3	17	3	14	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

2

TYPES SN54ALS811, SN74ALS811 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES WITH OPEN-COLLECTOR OUTPUTS D2837, MARCH 1984

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent Exclusive-NOR gates with open-collector outputs. They perform the Boolean functions $Y = \overline{A \oplus B} = (\overline{A + B}) \cdot (\overline{A} + B)$ in positive logic.

A common application is a true/complement element. If one of the inputs is high, the other input will be reproduced in true form at the output. If one of the inputs is low, the signal on the other input will be reproduced inverted at the output.

The SN54ALS811 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS811 is characterized for operation from 0 °C to 70 °C.

	U14	hvee
		<u></u> vcc
1B[]2	13	☐ 4B
1 Y 🗌 3	12	□4A
2A [4	11	∐4Y
2B [5	10	🗋 ЗВ
2 Y 🗌 6	9]] 3A
GND [7	8	🗌 3Y

SN54ALS811 . . . FH PACKAGE SN74ALS811 . . . FN PACKAGE (TOP VIEW)

logic symbol

(each gate) INPUTS OUTPUT A B Y L ι н L н L н Ł L н н н

FUNCTION TABLE

NC-No internal connection

ALS AND AS CIRCUITS

exclusive-NOR logic

An exclusive-NOR gate has many applications, some of which can be represented better by alternative logic symbols.

These are five equivalent Exclusive-NOR symbols valid for an 'ALS811 gate in positive logic; negation may be shown at any one port, or at all three of them.

LOGIC IDENTITY ELEMENT

The output is active (high) if all inputs stand at the same logic level (i.e., A = B).

The output is active (high) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (low) if an odd number of inputs (i.e., only 1 of the 2) are active.

Copyright © 1984, Texas Instruments Incorporated

TYPES SN54ALS811, SN74ALS811 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		 	7 V
Input voltage		 	7 V
Off-state output voltage		 	7 V
Operating free-air temperature range:	SN54ALS811	 	55 °C to 125 °C
	SN74ALS811	 	0°C to 70°C
Storage temperature range		 	65°C to 150°C

recommended operating conditions

		SM	SN54ALS811			74ALS8	11	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	V
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			SN	54ALS	311	SN	74ALS	311	
PARAMETER	1251 0	ONDITIONS	MIN	TYP	MAX	MIN	TYPT	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$I_I = -18 \text{ mA}$			- 1.5			- 1.5	V
ЮН	$V_{CC} = 4.5 V_{c}$	V _{OH} = 5.5 V			0.1			0.1	mĀ
VOL	$V_{CC} = 4.5 V,$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = 4.5 V,$	IQL = 8 mA					0.35	0.5	v
1	$V_{CC} = 5.5 V$,	$V_{I} = 7 V$			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V_{,}$	$\overline{V_1} = 2.7 V$			20			20	μÂ
41,	$V_{CC} = 5.5 V_{,}$	$V_{I} = 0.4 V$			-0.1			-0.1	mA
ICC I	V _{CC} = 5.5 V,	A at 4.5 V, B at 0 V		5	7.5		5	7.5	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	το (ουτρυτ)		$V_{CC} = 4$ $C_L = 50$ $R_L = 24$ $T_A = MI$	pF,		UNIT	
			SN54	ALS811	SN74	4ALS811		
			MIN	MAX	MIN	MAX		
^t PLH	A or B	×	25	60	25	55	ns	
^t PHL	(other input low)	,	5	30	5	28	115	
^t PLH	A or B		20	55	20	50	ns	
tPHL	(other input high)		5	28	5	23	113	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54ALS841, SN54AS841, SN54ALS842, SN54AS842 SN74ALS841, SN74AS841, SN74ALS842, SN74AS842 **10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS** DECEMBER 1983 - REVISED FEBRUARY 1984

SN54ALS841, SN54AS841 . . . JT PACKAGE

SN74ALS841, SN74AS841 . . . NT PACKAGE

(TOP VIEW)

00 00 ۱D

3D

₫3 2D

U24 VCC

23 10

21 30

- 3-State Buffer-Type Outputs Drive Bus-Lines Directly
- **Bus-Structured Pinout**
- Provide Extra Bus Driving Latches Necessary for Wider Address/Data Paths or **Buses with Parity**
- **Buffered Control Inputs to Reduce DC** Loading
- Power-Up High-Impedance State
- Package Options Include Both Plastic and **Ceramic Chip Carriers in Addition to Plastic** and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 10-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The ten latches are transparent D-type. The 'ALS841 and 'AS841 have noninverting data (D) inputs. The 'ALS842 and 'AS842 have inverting D inputs.

A buffered output control (OC) input can be used to place the ten outputs in either a normal logic state (high or low levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54ALS841, SN54AS841, SN54ALS842. and SN54AS842 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS841, SN74AS841, SN74ALS842, and SN74AS842 are characterized for operation from 0°C to 70°C.

TEXAS

TYPES SN54ALS841, SN54AS841, SN54ALS842, SN54AS842 SN74ALS841, SN74AS841, SN74ALS842, SN74AS842 10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

FUNCTION TABLES

'ALS841, 'A	S841
-------------	------

IN	IPUTS		OUTPUT
ŌĊ	С	D	۵
L	н	н	н
L	н	L	L
L	L	х	Q0
н	х	х	z

'ALS841, 'AS841 logic symbol

9D (10) (15) 90 10D (11) (14) 100	OC (1) C (13) 1D (2) 2D (3) 3D (4) 4D (5) 5D (6) 5D (8) 8D (9)	EN C1 1D Þ V	(23) (22) (21) (20) (20) (20) (10) (10) (10) (11) (10) (10) (10) (1
9D (10) (15) 9Q	7D (8)		(17) 70
	9D (10) (11)		(15) 90

'ALS842, 'AS842

IN	PUTS		OUTPUT
ŌC	С	ī	Q
[L	н	н	L
L	н	Ł	н
L	L	х	Q0
н	x	x	z

'ALS841, 'AS841 logic diagram (positive logic)

Pin numbers shown are for JT and NT packages.

2-138

TYPES SN54ALS841, SN54AS841, SN54ALS842, SN54AS842 SN74ALS841, SN74AS841, SN74ALS842, SN74AS842 10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

'ALS842, 'AS842 logic symbol

'ALS842, 'AS842 logic diagram (positive logic)

Pin numbers shown are for JT and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V _{CC}
SN54ALS841, SN54AS841, SN54ALS842, SN54AS842

TYPES SN54ALS841, SN54ALS842 SN74ALS841, SN74ALS842 **10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS**

recommended operating conditions

				SN54ALS841 SN54ALS842			SN74ALS841 SN74ALS842			
			MIN	NOM	MAX	MIN	NOM	MAX	[
Vcc	Supply voltage	Supply voltage		5	5.5	4.5	5	5.5	v	
ViH	High-level input voltage		2			2			V	
VIL	Low-level input voltage				0.8			0.8	V	
юн	High-level output current				- 1			-2.6	mA	
IOL .	Low-level output current				12			24	mA	
	Pulse duration anable Chief	'ALS841								
tw	Pulse duration, enable C high	'ALS842							ns	
t _{su}	Setup time, data before enable CI								ns	
		'ALS841								
th	th Hold time, data after enable C↓	'ALS842							ns	
TA	Operating free-air temperature		- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					54ALS			74ALS		UNIT
P	ARAMETER	TEST CO	NDITIONS	S	154ALS	342	SN	74ALS	342	UNIT
				MIN	TYP	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 V,$	$I_{\rm I} = -18 {\rm mA}$			- 1.5			- 1.5	v
		$V_{CC} = 4.5 V \text{ to } 5.5$	V, $I_{OH} = -0.4 \text{ mA}$	Vcc-	2		Vcc-	2		
∨он		$V_{CC} = 4.5 V_{c}$	$I_{OH} = -1 \text{ mA}$	2.4	3.3					V V
		$V_{CC} = 4.5 V,$	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2		
VOL		$V_{CC} = 4.5 V,$	$I_{OL} = 12 \text{ mA}$		0.25	0.4		0.25	0.4	v
		$V_{CC} = 4.5 V,$	$l_{OL} = 24 \text{ mA}$					0.35	0.5	v
IOZH		$V_{CC} = 5.5 V,$	$V_0 = 2.7 V$			20			20	μA
IOZL		$V_{CC} = 5.5 V,$	$V_0 = 0.4 V$			- 20			- 20	μA
4		$V_{CC} = 5.5 V$,	Vi = 7 V			0.1			0.1	mA
Чн		$V_{CC} = 5.5 V,$	V ₁ = 2.7 V			20			20	μA
հե		$V_{CC} = 5.5 V,$	$V_{1} = 0.4 V$			-0.1			-0.1	mA
10‡		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 15		- 70	- 15		- 70	mA
			Outputs high							
	'ALS841		Outputs low						0.4 0.5 20 0.1 20 -0.1 -70	
ICC		V _{CC} = 5.5 V	Outputs disabled		25			25		mA
		ער <u>י י</u> טיי ך	Outputs high							
	'ALS842		Outputs low			_				
			Outputs disabled		28			28		

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

Additional information on these products can be obtained from the factory as it becomes available.

2-140

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

• •

284

TYPES SN54ALS841, SN54ALS842 SN74ALS841, SN74ALS842 10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

'ALS841 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = MIN \text{ to MAX}$		UNIT	
			SN	54ALS	341	St	74ALS	841	
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
tPLH	D		7				7		
tPHL		DQ		9			9		ns
tPLH	с	Q							
^t PHL		<u>u</u>							ns
^t PZH	<u> </u>	Q							ns
^t PZL	00	<u> </u>							115
^t PHZ	50	Q							ns
^t PLZ	00	<u> </u>							113

'ALS842 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to MAX}$					UNIT
				154ALS			174ALS8		-
			MIN	TYP	MAX	MIN	TYP [†]	MAX	
^t PLH	ā	D Q		11			11		ns
^t PHL		4		- 9			9		115
tPLH	с	a							-
^t PHL	C C	u						ns	
^t PZH	ōc	Q							ns
^t PZL	00	u							115
tPHZ	50	Q							ns
^t PLZ									

ALS AND AS CIRCUITS N

.

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

Additional information on these products can be obtained from the factory as it becomes available.

34

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54AS841, SN54AS842 SN74AS841, SN74AS842 **10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS**

recommended operating conditions

			SN54AS841 SN54AS842			SN74AS841 SN74AS842		
		SI						
		MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			-24			- 24	mA
IOL	Low-level output current			32		_	48	mA
tw	Pulse duration, enable C high	5			4			ns
tsu	Setup time, data before enable C4	3.5			2.5			ns
th	Hold time, data after enable Ci	3.5			2.5			ns
ТA	Operating free-air temperature	- 55		125	0		70	°C

- -

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54AS841 SN54AS842		SN74AS841 SN74AS842			UNIT		
					TYP [†]	MAX	MIN	TYP	MAX		
VIK		$V_{CC} = 4.5 V_{c}$	l _l = – 18 mA			- 1.2			- 1.2	v _	
		$V_{CC} = 4.5 V \text{ to } 5.$	5 V, I _{OH} ≕ −2 mA	V _{CC} - 2		V _{CC} - 2					
∨он		$V_{CC} = 4.5 V$,	$I_{OH} = -15 \text{ mA}$	2.4	3.2		2.4	3.2		v	
		$V_{CC} = 4.5 V,$	$I_{OH} = -24 \text{ mA}$	2			2				
VOL		$V_{CC} = 4.5 V_{.}$	$i_{OL} = 32 \text{ mA}$		0.25	0.5				v	
*OL		$V_{CC} = 4.5 V,$	l _{OL} = 48 mA					0.35	0.5	v	
OZH		$V_{CC} = 5.5 V_{,}$	$V_0 = 2.7 V$		-	50			50	μA	
lozl		$V_{CC} = 5.5 V_{,}$	$V_0 = 0.4 V$			- 50			- 50	μA	
tj		$V_{CC} = 5.5 V$,	$V_i = 7 V$			0.1			0.1	mA	
ін		$V_{CC} = 5.5 V$,	$V_{ } = 2.7 V$			20			20	μA	
1IL III		$V_{CC} = 5.5 V$	VI = 0.4 V			- 0.5			-0.5	mA	
10‡		$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mA	
			Outputs high		36	60		36	60		
	'AS841		Outputs low	Outputs low 58 94	58	94] [
'cc		$-V_{CC} = 5.5 V$	Outputs disabled 56	92		56	92	mA			
	'AS842		Outputs high		38	62		38	62		
			Outputs low		60	97		60	97		
			Outputs disabled		58	95		58	95		

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

Texas 👯 **INSTRUMENTS** POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54AS841, SN54AS842 SN74AS841, SN74AS842 10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

1414 - 141 - 1

'AS841 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V_{C_{L}} = 50 pF,$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = MIN to 00000000000000000000000000000000000$	MAX		UNIT	
			SN54 MIN	AS841 MAX	MIN	4AS841 MAX	4	
tPLH			1	8.5	1	6.5		
tPHL		a	1	10	1	9	ns	
^t PLH	с		2	13	2	12		
^t PHL		a	2	13	2	12	ns	
^t PZH	50	Q.	2	13.5	2	10.5		
^t PZL		u	2	14.5	2	11.5	ns	
^t PHZ	<u>oc</u>		Q	1	10	1	8	ns
tPLZ		<u> </u>	1	10	1	8	115	

'AS842 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = \text{MIN to MAX}$					
				SN54AS842		SN74AS842		
			MIN	MAX	MIN	MAX		
^t PLH	ត .	a	1	11	1	8.5	ns	
^t PHL		3	1	10	1	9	113	
^t PLH	с	Q	2	13	2	12	ns	
^t PHL	1	a	2	13	2	12	ns	
^t PZH		Q	2	14.5	2	12		
^t PZL		u	2	15	2	12.5	ns	
tPHZ	. <u>oc</u>	z	Q	1	10	1	8	
^t PLZ		<u>u</u>	1	10	1	8	ns	

NOTE 1: For load circuits and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

ALS AND AS CIRCUITS

.

TYPES SN54ALS843, SN54AS843, SN54ALS844, SN54AS844 SN74ALS843, SN74AS843, SN74ALS844, SN74AS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS DECEMBER 1983-REVISED FEBRUARY 1984

- 3-State Buffer-Type Outputs Drive Bus-Lines Directly
- Bus-Structured Pinout
- Provide Extra Bus Driving Latches Necessary for Wider Address/Data Paths or Buses with Parity
- Buffered Control Inputs to Reduce DC Loading
- Power-Up High Impedance
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 9-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The nine latches are transparent D-type. The 'ALS843 and 'AS843 have noninverting data (D) inputs. The 'ALS844 and 'AS844 have inverting D inputs.

A buffered output control (\overline{OC}) input can be used to place the nine outputs in either a normal logic state (high or low levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control (\overline{OC}) does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are off.

The SN54ALS843, SN54AS843, SN54ALS844, and SN54AS844 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS843, SN74AS843, SN74ALS844, and SN74AS844 are characterized for operation from 0 °C to 70 °C.

SN54ALS843, SN54AS843 . . . JT PACKAGE SN74ALS843, SN74AS843 . . . NT PACKAGE (TOP VIEW) U24 Vcc 1 30 23 10 10 2 2D 🖸 3 22 20 3D 21 30 đ 20 40 4D 5D 19[] 50 6D 🗍 18 60 7D 6 17 70 9D [] 10 15 90 CLB ъŧБ PRF GND 12 13 C SN54ALS843, SN54AS843 FH PACKAGE

SN54ALS844, SN54AS844 . . . JT PACKAGE SN74ALS844, SN74AS844 . . . NT PACKAGE

.,			•••		•			
(TOP VIEW)								
ōč	d٦	U 24	Þ١	vcc				
۱D		23	ים	10				
2D		22	בן	2Q				
ЗÐ	□₄	21	1:	3Q				
4Đ	□ 5	20	۵.	10				
5D	6	19	۱ 🛛	50				
6D	D 7	18	b١	5Q				
7D	6	17	Б:	70				
8D	C e C	16	b۱	3Q				
9D	1 10	15	Ε.	ρe				
CLR	D 11	14	ħ١	PRE				
GND	12	13	6،	C				

SN54ALS844, SN54AS844 . . . FH PACKAGE SN74ALS844, SN74AS844 . . . FN PACKAGE

NC-No internal connection

Copyright © 1983 by Texas Instruments Incorporated

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 ALS AND AS CIRCUITS

2-145
TYPES SN54ALS843, SN54AS843, SN54ALS844, SN54AS844 SN74ALS843, SN74AS843, SN74ALS844, SN74AS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

OUTPUT

a

н

L

н

Ł

н QO

z

(23) 10

(22) 20

30

. 40

50

(21)

(20)

(19)

(18)

(17) 70 60

(16) 80

(15) 90

'ALS843, 'AS843

х х

х х

х

х

INPUTS

н

EN

R

S2

C1

1D Þ Δ

PRE CLR ÖĈ С D

L н L x х

н L L

Ł

н н Ł н L

н н L н н

н н L L х

х

ōc

2D

3D

4D

5D

6D

7D ·

CLR (11)

PRE (14)

c (13)

(2) 1D

(3)

(4)

(5)

(6)

(7)

(8)

(9) 8D 9D (10)

logic symbol

L L

x

(1)

'ALS844, 'AS844

			NPUT	S		OUTPUT
	PRE	ĊLR	ŌČ	С	D	٥
	L	н	L	x	х	н
ĺ	н	L	L	х	x	L
	L	L	L	х	x	н
	н	н	L	н	L	н
ĺ	н	н	L	н	н	L
	н	н	L	Ł	x	α _Ο z
	х	x	н	x	x	Z

'ALS843, 'AS843 logic diagram (positive logic)

Pin numbers shown are for JT and NT packages. This symbol is in accordance with IEEE Std 9 and recent decisions of IEEE.

> PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

2-146

2

TYPES SN54ALS843, SN54AS843, SN54ALS844, SN54AS844 SN74ALS843, SN74AS843, SN74ALS844, SN74ALS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

. .

logic symbol

ALS AND AS CIRCUITS

2

Pin numbers shown are for JT and NT packages. This symbol is in accordance with IEEE Std 9 and recent decisions of IEEE.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	
Input voltage	
Voltage applied to a disabled 3-state ou	tput
Operating free-air temperature range:	SN54AS843, SN54AS844 55°C to 125°C
	SN74AS843, SN74AS844
Storage temperature range	

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS843, SN54ALS844 SN74ALS843, SN74ALS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

recommended operating conditions

_			-	SN54ALS843 SN54ALS844			SN74ALS843 SN74ALS844		
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	55	4.5	5	5.5	V
√ін	High-level input voltage		2			2			V
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current				- 1			-2.6	mA
^I OL	Low-level output current				12			24	mA
	Pulse duration, enable C high	'ALS843							ns
tw	Pulse duration, enable C high	ALS844							
t _{su}	Setup time, data before enable C I						_		ns
•	Heid time, data after eachie Ci	'ALS843							
th	Hold time, data after enable C4	'ALS844							ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARA	METER	TEST COND	ITIONS		N54ALS N54ALS			SN74ALS843 SN74ALS844			
				MIN	TYP [†]	MAX	MIN	TYP [†]	MAX		
VIK		$V_{CC} = 4.5 V_{c}$	ij =18 mA			- 1.5			- 1.5	v	
		$V_{CC} = 4.5$ to 5.5 V,	I _{OH} = ~0.4 mA	V _{CC} -2		V _{CC} -2					
Voн		$V_{CC} = 4.5 V,$	$I_{OH} = -1 \text{ mA}$	2.4	3.3					v	
		$V_{CC} = 4.5 V,$	IOH = −2.6 mA				2.4	3.2			
VOL		$\overline{V_{CC}} = 4.5 V,$	IOL = 12 mA		0.25	0.4		0.25	0.4	v	
•01	Г	$\overline{V}_{CC} = 4.5 V,$	I _{OL} = 24 mA					0.35	0.5	`	
lozh		$V_{CC} = 5.5 V_{,}$	V0 = 2.7 V		_	20			20	μA	
lozl		$V_{CC} = 5.5 V_{r}$	V ₀ = 0.4 V			- 20			- 20	μA	
4		$\overline{V_{CC}} = 5.5 V,$	V _I = 7 V		-	0.1			0.1	mA	
Чн		$V_{CC} = 5.5 V,$	VI = 2.7 V	·		20			20	μA	
կլ		$V_{CC} = 5.5 V,$	V ₁ = 0.4 V			-0.1			- 0.1	mA	
		$V_{CC} = 5.5 V,$	V ₀ = 2.25 V	- 15		- 70	- 15		- 70	mA	
			Outputs high								
	'ALS843		Outputs low								
1		$V_{CC} = 5.5 V$	Outputs disabled	25		25			mA		
lcc		VCC = 0.5 V	Outputs high								
	'ALS844		Outputs low								
			Outputs disabled	28			28				

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

¹The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

Additional information on these products can be obtained from the factory as it becomes available.

2-148

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS843, SN54ALS844 SN74ALS843, SN74ALS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

'ALS843 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega$ $R2 = 500 \Omega$ $T_{A} = \text{MIN to}$		UNIT	
			SN54ALS843	SN74ALS843		
			MIN TYP [†] MAX	MIN TYP [†] MAX		
^t PLH		Q	7	7	ns	
^t PHL]	<u> </u>	9	9		
^t PLH	с	Q			ns	
^t PHL		<u> </u>			115	
^t PLH	PRE	۵			ns	
^t PHL	CLR	٥			ns	
^t PZH	50	<u>a</u>			ns	
^t PZL		ŭ			15	
^t PHZ	<u> </u>	<u> </u>			ns	
^t PLZ	50				.13	

'ALS844 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)			VCC = 4.5 V to 5.5 V, C _L = 50 pF, R1 = 500 Ω, R2 = 500 Ω, T _A = MIN to MAX					
			SN54ALS844 MIN TYP [†] MAX	SN74ALS844 MIN TYP [†] MAX					
^t PLH	<u>_</u>	Q.	7	7	ns				
^t PHL	1	u	9	9	ns				
^t PLH	с	Q			ns				
^t PHL					115				
^t PLH	PRE	Q			ns				
tPHL	CLR	Q			ns				
^t PZH	- oc	٩			ns				
^t PZL		U			115				
^t PHZ	<u>oc</u>	٩			ns				
^t PLZ	50	<u> </u>							

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

Additional information on these products can be obtained from the factory as it becomes available.

TYPES SN54AS843, SN54AS844 SN74AS843, SN74AS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

recommended operating conditions

			SN54AS843 SN54AS844			SN74AS843 SN74AS844			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	55	4.5	5	5.5	V
⊻н	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
¹ OH	High-level output current				- 24			- 24	mA
^I OL	Low-level output current	_			32			48	mА
tw	Pulse duration, enable C high	CLR or PRE low	5			4		_	กร
•₩	r also daradon, onable o high	C high	5			4			
tsu	Setup time, data before enable C4		3.5			2.5			ns
th	Hold time, data after enable C1		3.5	_		2.5		_	ns
		PRE	17			15		-	
tr	Recovery time	CLR	16			14			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARA	WETER	TEST CO	ONDITIONS	-	N54AS			N74AS8		UNIT
_				MIN	TYP [†]	MAX	MIN	TYP	MAX	
VIK		$V_{CC} = 4.5 V,$	$l_{1} = -18 \text{ mA}$			-1.2			- 1.2	V
		$V_{CC} = 4.5 V,$	$i_{OH} = -2 \text{ mA}$	Vcc-	V _{CC} -2		V _{CC} -2			
Vон		$V_{CC} = 4.5 V,$	I _{OH} = -15 mA	2.4	2.4 3.2		2.4	3.2		l v
		$V_{CC} = 4.5 V,$	I _{OH} - 24 mA	2						
VOL		$V_{CC} = 4.5 V,$	IOL = 32 mA		0.25	0.5				
101		$V_{CC} = 4.5 V$	IOL = 48 mA					0.35	0.5	l v
IOZH		$V_{CC} = 5.5 V,$	V ₀ = 2.7 V			50			50	μA
IOZL		$\overline{V_{CC}} = 5.5 V$,	V ₀ = 0.4 V			- 50			- 50	μA
ų		$V_{CC} = 5.5 V$,	V _I = 7 V			0.1			0.1	mA
ιн		$V_{CC} = 5.5 V_{,}$	VI = 2.7 V			20			20	μA
ιL		$V_{CC} = 5.5 V_{,}$	$V_{ } = 0.4 V$			-0.5			-0.5	mA
¹ 0 [‡]		$V_{CC} = 5.5 V_{,}$	V ₀ = 2.25 V	- 30		- 112	- 30		- 112	mA
			Outputs high		37	62		37	62	
	ʻAS843		Outputs low		56	92		56	92	
lcc		$V_{CC} = 5.5 V_{,}$	Outputs disabled		56	92		56	92	mA
			Outputs high		39	64		39	64	
	'AS844		Outputs low		58	95		58	95	
			Outputs disabled		58	95		58	95	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

TYPES SN54AS843, SN54AS844 SN74AS843, SN74AS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

'ALS843 switching characteristics (see Note 1)

- -

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 \text{ M}$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = \text{MIN to}$	MAX		UNIT	
				AS843		AS843		
			MIN	MAX	MIN	MAX		
^t PLH	D	۵ –	1	8.5	1	6.5	ns	
^t PHL			1	10	1	9		
tPLH		0	2	13	2	12	ns	
^t PHL	С		2	13	2	12	110	
^t PLH	PRE	Q	2	12	2	10	កទ	
tPHL	ČLR	٩	2	14	2	13	ns	
^t PZH	oc		2	13.5	2	10.5	ns	
tPZL		٩	2	14.5	2	11.5	1/3	
tPHZ	- dc		1	10	1	8	ns	
^t PLZ			1	10	1	8		

'ALS844 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5$ $C_{L} = 50 \text{ pF}$ $R1 = 500 \Omega$ $R2 = 500 \Omega$ $T_{A} = MIN t$				UNIT	
			SN54	AS844	SN74/	AS844		
			MIN	MAX	MIN	MAX		
^t PLH	D	ρ α	1	11	1	8.5	ns	
^t PHL			1	11	1	10		
^t PLH	с	0	2	14	2	12.5	ns	
^t PHL			2	14	2	13	115	
^t PLH	PRE	٥	2	12	2	10	ns	
^t PHL	CLR	٥	2	14.5	2	13.5	ns	
tPZH	ōc	٥	2	14.5	2	12	ns	
^t PZL			2	15	2	13.5	115	
^t PHZ	<u>oc</u>	Q	1	10	1	8	ns	
^t PLZ		u	1	10	1	8	ns	

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54ALS843, SN54AS843, SN54ALS844, SN54AS844 SN74ALS843, SN74AS843, SN74ALS844, SN74AS844 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

D flip-flop signal conventions

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called $\overline{{f Q}}$ and those producing complementary data are called ${f Q}.$ An input that causes a Q output to go high or a $\overline{ extsf{Q}}$ output to go low is called Preset; an input that causes a $\overline{ extsf{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and $\overline{\mathsf{CLR}}$) if they are active-low.

The devices on this data sheet are second-source designs and the pin-name convention used by the original manufacturer has been retained. That makes it necessary to designate the inputs and outputs of the inverting circuit \overline{D} and Q. In some applications it may be advantageous to redesignate the inputs and outputs as D and $\overline{\mathbf{Q}}$. In that case, outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators () on PRE and CLR remain since these inputs are still active-low, but that the presence or absence of the polarity changes at \overline{D} , Q, and $\overline{\Omega}$. Of course pin 5 (Q) is still in phase with the data input D, but now both are considered active high.

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS845, SN54AS845, SN54ALS846, SN54AS846 SN74ALS845, SN74AS845, SN74ALS846, SN74AS846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS D2825, DECEMBER 1983-REVISED FEBRUARY 1984

- 3-State Buffer-Type Outputs Drive Bus-Lines Directly
- Bus-Structured Pinout
- Provides Extra Bus Driving Latches Necessary for Wider Address/Data Paths or Buses with Parity
- Buffered Control Inputs to Reduce DC Loading
- Power-Up High-Impedance State
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches are transparent D-type. The 'ALS845 and 'AS845 have noninverting data (D) inputs. The 'ALS846 and 'AS846 have inverting \overline{D} inputs. Since \overline{CLR} and \overline{PRE} are independent of the clock, taking the \overline{CLR} input low will cause the eight Q outputs to go low. Taking the \overline{PRE} input low will cause the eight Q outputs to go high. When both \overline{PRE} and \overline{CLR} are taken low, the outputs will follow the preset condition.

A buffered output control (OC) input can be used to place the eight outputs in either a normal logic state (high or low levels) or a highimpedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

NC-No internal connection

Copyright © 1983 by Texas Instruments Incorporated

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

83

IEXAS V INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPES SN54ALS845, SN54AS845, SN54ALS846, SN54AS846 SN74ALS845, SN74AS845, SN74ALS846, SN74AS846 **8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS**

The output controls ($\overline{OC1}$, $\overline{OC2}$, $\overline{OC3}$) do not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54ALS845, SN54AS845, SN54ALS846, and SN54AS846 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS845, SN74ALS845, SN74ALS846, and SN74AS846 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLES

			NPUT	s	_		OUTPUT
PRE	CLR	ÕC1	OC2	003	С	D	a
٤	н	L	L	L	х	х	н
н	L	L	L	L	х	х	L
L	L	L	L	L	х	х	н
н	н	L	L	L	н	L	L
н	н	L	L	L	н	н	н
н	н	L	L	L	L	х	00
х	X	L	L	н	Х	х	z
х	х	Ł	н	L	х	х	z
х	х	L	н	н	х	х	z
х	х	н	L	L	х	х	z
х	х	н	L	н	х	х	z
х	х	н	н	L	х	х	z
х	<u>x</u>	н	н	н	x	х	Z

'ALS845, 'AS845

INPUTS OUTPUT PRE OC2 D CLR OC1 **OC3** С Q L н L L L х х н н L L L L х х L L Ł L х х н L L н н н L L L L н н н L L L н н L QO н L х н L Ł Ł х z H х х L L х Ż х х L н L х х х х L н н х х z х х н L L х х z х z х н L н х х х х

'ALS846, 'AS846

logic symbols

2

ALS AND AS CIRCUITS

	ALS845,	'AS845	5
$ \begin{array}{c c} \hline 0C1 \\ \hline 0C2 \\ \hline 0C3 \\ \hline \end{array} $	8	EN	
PRE (14) CLR (11) CLR (13)	S2 R C1		
$1D \frac{(3)}{(4)}$	1D [> 2 🗸	(22) (21) 10
2D			(20) 30
4D (6)		_	(19) 40
5D (7) 6D (8)		_	(17) 60
7D <u>(9)</u> 8D <u>(10)</u>			(16) 70 (15) 80
			- 84

	AL3040,	A3040	,
$\frac{\overrightarrow{\text{OC1}}}{\overrightarrow{\text{OC2}}} \xrightarrow{(1)}{\cancel{2}}$	&	EN	
PRE (14) CLR (11) CLR (13)	S2 R C1		
$1\overline{D} \frac{(3)}{(4)} $	1D D	> 2▽	(22) (21) 20
3D (6) /			(20) (19) 40
$5\overline{D} \frac{(7)}{(6)} \frac{1}{(6)} \frac{1}{(7)} \frac{1}{(6)} \frac{1}{(7)} \frac{1}{($	_		(18) (17) (17) 60
7D (9) / 8D (10) /			(16) (15) 80

Pin numbers shown are for JT and NT packages. These symbols are in accordance with IEEE Std 9 and recent decisions of IEEE.

2 - 154

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

((x x	н н	н н	L H	x x	x x	z z
	001		ALS84				
	OC2 OC3 PRE CLR C	(2) (23) (14) (11) (13)	S2 R C1	EN			
	1D 2D 3D 4D 5D	$\begin{array}{c} (4) \\ (5) \\ (6) \\ (6) \end{array}$	1D		20	(2 (2 (1 (1	$\begin{array}{c} 2) \\ 10 \\ (1) \\ 20 \\ 0) \\ 30 \\ 9) \\ 40 \\ 8) \\ 7) \\ 50 \end{array}$

TYPES SN54ALS845, SN54AS845, SN54ALS846, SN54AS846 SN74ALS845, SN74AS845, SN74ALS846, SN74AS846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

logic diagrams (positive logic) ALS845, AS845

'ALS846, 'AS846

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	7 V
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range:	
SN54ALS845, SN54AS845, SN54ALS846, SN54AS846	–55°C to 125°C
SN74ALS845, SN74AS845, SN74ALS846, SN74AS846	-0°C to 70°C
Storage temperature range	65°C to 150°C

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TEXAS VI INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPES SN54ALS845, SN54ALS846 SN74ALS845, SN74ALS846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

recommended operating conditions

			SN54ALS845 SN54ALS846			SN74ALS845 SN74ALS846			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
√ін	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				- 1			-2.6	mA
IOL	Low-level output current				12			24	mA
. –	Pulse duration	CLR or PRE low							
tw		C high							ns
t _{su}	Setup time, data before enable C+								ns
A .		'ALS845		_					1
th	Hold time, data after enable C↓	'ALS846							ns
TA	Operating free-air temperature		- 55		125	0		70	°C

- -

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	PARAMETER	TEST C	TEST CONDITIONS		154ALS8 154ALS8		SN74ALS845 SN74ALS846			UNIT
				MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 V,$	l ₁ = -18 mA			- 1.5			- 1.5	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \ I_{OH} = -0.4 \text{ m}$			Vcc-	2		Vcc-	2		
∨он		$V_{CC} = 4.5 V_{,}$	IOH = -1 mA	2.4	3.3					v
		$V_{CC} = 4.5 V,$	IOH = -2.6 mA				2.4	3.2		
Vai		$V_{CC} = 4.5 V,$	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	v
VOL		$V_{CC} = 4.5 V_{,}$	IOL = 24 mA					0.35	0.5	1 *
^I OZH		$V_{CC} = 5.5 V_{,}$	V ₀ = 2.7 V			20			20	μA
^I OZL		$V_{CC} = 5.5 V$,	V ₀ = 0.4 V			- 20			- 20	μA
4		$V_{CC} = 5.5 V_{,}$	VI = 7 V			0.1			0.1	mA
ЧΗ		$V_{CC} \approx 5.5 V_{,}$	$V_1 = 2.7 V$			20			20	μA
41		$V_{CC} = \overline{5.5} V,$	$V_{I} = 0.4 V$			-0.1			-0.1	mA
10 [‡]		$\overline{V_{CC}} = 5.5 V_{,}$	$V_0 = 2.25 V$	15		- 70	- 15		- 70	mA
			Outputs high							
	'ALS845		Outputs low							
100		Vcc = 5.5 V	Outputs disabled		25			25		mA
1CC		VCC = 5.5 V	Outputs high							
	'ALS846		Outputs low							
			Outputs disabled		28			28		•

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

Additional information on these products can be obtained from the factory as it becomes available.

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TYPES SN54ALS845, SN54ALS846 SN74ALS845, SN74ALS846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

'ALS845 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	то (оитрит)	$V_{CC} = 4.5 \text{ V}_{CC} = 50 \text{ pF}.$ $R1 = 500 \Omega$ $R2 = 500 \Omega$ $T_{A} = \text{MIN to}$ $SN54ALS845$		UNIT	
			MIN TYP [†] MAX	MIN TYP [†] MAX		
tPLH	a	Q	7	7	ns	
^t PHL		d	9 9		115	
^t PLH	с	Q			ns	
^t PHL	_	4			113	
^t PLH	PRE	Q			ns	
tphl	CLR	Q			ns	
^t PZH	77	2				
^t PZL		δο α			กร	
tPHZ	z <u>õc</u> Q				ns	
^t PLZ					.13	

'ALS846 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 V_{CL} = 50 \text{ pF},$ R1 = 500 Ω R2 = 500 Ω T _A = MIN to		UNIT	
			SN54ALS846	SN74ALS846		
			MIN TYP [†] MAX	ΜΙΝ ΤΥΡ [†] ΜΑΧ		
^t PLH	ō	Q	7	7	ns	
^t PHL	, D	u u	9	9		
^t PLH	с	۵			-	
^t PHL	-				ns	
^t PLH	PRE	٥			ns	
^t PHL	CLR	۵			ns	
^t PZH	<u> </u>	Q			ns	
^t PZL	50	-				
^t PHZ	- oc	Q			ns	
tPLZ	50					

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

Additional information on these products can be obtained from the factory as it becomes available.

PRODUCT PREVIEW This page contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

3

TYPES SN54AS845, SN54AS846 SN74AS845, SN74AS846 **8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS**

recommended operating conditions

			SN54AS845 SN54AS846			SN74AS845 SN74AS846			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
∨ін	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current				- 24			- 24	mA
^I OL	Low-level output current				32			48	mA
•	Pulse duration	CLR or PRE low	5			4			
tw	Fuse duration	C high	5			4			ns
tsu	Setup time, data before enable C1	-	3.5			2.5			ns
th	Hold time, data after enable C1		3.5			2.5			ns
	Receivery time	PRE	17			15			ns
tr	Recovery time	CLR	16			14			
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER	TEST CO	NDITIONS		N54AS8 N54AS8			174AS8 174AS8		UNIT	
				MIN	TYP [†]	MAX	MIN	TYP [†]	MAX		
VIK		$V_{\rm CC} = 4.5 \rm V,$	łj = −18 mA			-1.2			-1.2	V	
		$V_{CC} = 4.5 V$	l _{OH} = ~2 mA	V _{CC} -	2		Vcc-	2			
∨он		$V_{CC} = 4.5 V$,	$I_{OH} = -15 \text{ mA}$	2.4	3.2		2.4	3.2] v	
		$V_{CC} = 4.5 V_{,}$	l _{OH} = −24 mA	2			2				
VOL		$V_{CC} = 4.5 V,$	t _{OL} = 32 mA		0.25	0.5				v	
VOL		$V_{CC} = 4.5 V,$	l _{OL} = 48 mA					0.35	0.5] `	
^I OZH		$V_{CC} = 5.5 V$,	$V_0 = 2.7 V$			50			50	μA	
IOZL		$V_{CC} = 5.5 V$,	$V_0 = 0.4 V$			- 50			- 50	μA	
Ч		$V_{CC} = 5.5 V$,	V ₁ = 7 V			0.1			0.1	mA	
ЧΗ		$V_{CC} = 5.5 V_{,}$	$V_{1} = 2.7 V$			20			20	μA	
ΙL		$V_{CC} = 5.5 V$,	$V_{ } = 0.4 V$			-0.5			-0.5	mA	
10 [‡]		$V_{CC} = 5.5 V$,	$V_0 = 2.25 V$	- 30		- 112	- 30		- 112	mA	
			Outputs high		35	58		35	58		
	'AS845		Outputs low		52	85		52	85]	
loo	'cc	$V_{CC} = 5.5 V$	Outputs disabled		52	85		52	85		
,00		VCC - 5.5 V	Outputs high		36			36		mA	
	'AS846		Outputs low		53			53			
			Outputs disabled		53			53			

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

Additional information on these products can be obtained from the factory as it becomes available.

ż

TYPES SN54AS845, SN54AS846 SN74AS845, SN74AS846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

'AS845 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V_{C_{L}}$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = MIN \text{ to}$,	UNIT
			SN54	IAS845	SN74	AS845	1
	1		MIN	MAX	MIN	MAX]
^t PLH	D	Q	1	8.5	1	6.5	ns
^t PHL	1 0	ä	1	10	1	9	
^t PLH	с	Q	2	13	2	12	ns
^t PHL	1 ~	u u	2	13	2	12] ""
tPLH	PRE	Q	2	12	2	10	ns
^t PHL	CLR	٥	2	14	2	13	ns
tPZH	- 50	_	2	13.5	2	10.5	
^t PZL] 00	Q	2	14.5	2	11.5	ns
^t PHZ	<u> </u>	<u> </u>	1	10	1	8	ns
^t PLZ	1 ~~	Q	1	10	1	8	

'AS846 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	$\begin{array}{c} V_{CC} = 4.5 \ V \ to \ 5.5 \ V, \\ C_L = 50 \ pF, \\ R1 = 500 \ \Omega, \\ (OUTPUT) \\ T_A = MIN \ to \ MAX \end{array}$				
			SN54AS846	SN74AS846		
			ΜΙΝ ΤΥΡ [†] ΜΑΧ	ΜΙΝ ΤΥΡ [†] ΜΑΧ		
tPLH	ā	a	4	4	ns	
tPHL		u	4.5	4.5		
^t PLH	с	Q			ns	
^t PHL		u			115	
^t PLH	PRE	٩	5	5	ns	
^t PHL	CLR	۵	5.5	5.5	ns	
tPZH	<u> </u>	Q	6	6		
tPZL		4	6	6	ns	
tPHZ	77	OC Q 4 4 5 5 5		4	ns	
^t PLZ				5	115	

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

Additional information on these products can be obtained from the factory as it becomes available.

TYPES SN54ALSB45, SN54AS845, SN54ALS846, SN54AS846 SN74ALS845, SN74AS845, SN74ALS846, SN74AS846 **8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS**

D flip-flop signal conventions

It is normal TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called Q. An input that causes a Q output to go high or a $ar{ extsf{Q}}$ output to go low is called Preset; an input that causes a $ar{ extsf{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active-low.

The devices on this data sheet are second-source designs and the pin name convention used by the original manufacturer has been retained. That makes it necessary to designate the inputs and outputs of the inverting circuit D and Q. In some applications it may be advantageous to redesignate the inputs and outputs as D and \overline{Q} . In that case, outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators () on PRE and CLR remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at D, Q, and \overline{Q} . Of course pin 5 (Q) is still in phase with the data input D, but now both are considered active high.

DECEMBER 1983-REVISED APRIL 1984

 4-Line to 1-Line Data Selectors/Multiplexers That Can Select 1 of 16 Data Inputs. Typical Applications:

> Boolean Function Generators Parallel-to-Serial Converters Data Source Selectors

- Cascadable to n-Bits
- 3-State Bus Driver Outputs
- 'AS850 Offers Clocked Selects; 'AS851 Offers Enable-Controlled Selects
- Has a Master Output Control (G) for Cascading and Individual Output Controls (GY, GW) for Each Output
- Package Options Include both Plastic and Ceramic Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These four-line to one-line data selectors/multiplexers provide full binary decoding to select one-of-sixteen data sources with complementary Y and W outputs. The 'AS850 has a clock-controlled select register allowing for a symmetrical presentation of the select inputs to the decoder while the 'AS851 has an enable-controlled select register allowing the user to select and hold one particular data line.

A buffered group of output controls (\overline{G} , \overline{GY} , GW) can be used to place the two outputs in either a normal logic (high or low logic level) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without the need for interface or pull-up components.

SN54AS850, SN54AS851 . . . JD PACKAGE SN74AS850, SN74AS851 . . . N PACKAGE (TOP VIEW) U28∐VCC 07 🛛 1 D6 🗌 2 27 D8 D5 🛛 3 26 D9 D4 🛛 4 25 D10 D3 ∏5 24 D11 D2 🗍 6 23 D12 D1 []7 22 D13 21 014 DO 🛛 8 GT 🗍 9 20 D15 Ğ []10 19 🗌 Y GW []11 18 SO CLK/SC * 351 17 W []13 16 S2 GND 114 15 🗋 S3

SN54AS850, SN54AS851 . . . FH PACKAGE SN74AS850, SN74AS851 . . . FN PACKAGE (TOP VIEW)

*CLK for 'AS850 or SC for 'AS851

ALS AND AS CIRCUITS

The output controls do not affect the internal operations of the data selector/multiplexer. New data can be setup while the outputs are in the high-impedance state.

The SN54AS850 and SN54AS851 are characterized for operation over the full military temperature range from -55 °C to 125 °C. The SN74AS850 and SN74AS851 are characterized for operation from 0 °C to 70 °C.

TEXAS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

ADVANCE INFORMATION This document contains information on a new product. Specifications are subject to change without notice. Copyright © 1983 by Texas Instruments Incorporated

				SELECTION	TABLE	
S	ELECT	INPUT	rs	'AS850	'A\$851	INPUT
S 3	S2	S1	S 0	CLK	SC	SELECTED
L	L	L	L	†	L	DO
L	L	L	н	t	L	D1
L	L	н	L	t t	L	D2
L	L	н	н	†	L	D3
L	н	L	L	<u>†</u>	L	D4
L	н	L	н	t	L	D5
L	н	н	L	t	L	D6
L	н	н	н	t	Ĺ	D7
н	L	L	Ł	t	L	D8
н	L	L	н	t	L	D9
H	L	н	L	t t	L	D10
н	L	н	н	t	L	D11
н	н	Ľ.	ι	t	L	D12
н	н	Ł	н	t	L	D13
н	н	н	L	t	L	D14
н	н	н	н	t	L	D15
х	x	x	x	H or L	н	Dn

INDUT OF FOTION TADLE

 \mbox{Dn} = the input selected before the most-recent low-to-high transition of CLK or SC.

logic symbols

OUTPUT FUNCTION TABLE

Ĝ	GY	GW	001	PUTS
G	GT	GW	Y	w
н	Х	х	z	z
L	н	L	z	z
L	L	L	D	z
L	н	н	z	D
L	L	н	Ð	D

D = level of selected input D0-D15

'AS850 logic diagram (positive logic) (see inset for 'AS851)

93

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		
Operating free-air temperature range: SN	54AS850, SN54AS851	
Storage temperature range		

recommended operating conditions

				N54AS8	50	S	174AS8	50 [′]	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltag	e	2			2			V
VIL	Low-level input voltag	e			0.8			0.8	V
юн	High-level output curre	ent			- 12			~15	mA
IOL	Low-level output curre	nt			32			48	mA
fclock	Clock frequency					0		60	MHz
	Pulse duration	CLK high				8			ns
tw		CLK low				8			115
t _{su}	Setup time, select inp	uts before CLK†				10			ns
th	Hold time, select input	s after CLK†				0			ns
TA	Operating free-air tem	perature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

BADAMETED.	7507.0		S	154AS8	50	S	N74AS8	50	
PARAMETER	TEST C	ONDITIONS	MIN	TYPT	MAX	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$l_1 = -18 \text{ mA}$			- 1.2			- 1.2	V
	$V_{\rm CC} = 4.5$ V to 5.	5 V, IOH = -2 mA	Vcc-	2		Vcc-	2		
∨он	$V_{\rm CC} = 4.5 V_{,}$	IOH = -12 mA	2	3.2					v
	$V_{\rm CC} = 4.5 V$	IOH = -15 mA				2	3.3		
Ve	$V_{CC} = 4.5 V,$	I _{OL} = 32 mA		0.25	0.5				v
VOL	$\overline{V_{CC}} = \overline{4.5} V,$	IOL = 48 mA					0.35	0.5	ľ
Гозн	$V_{CC} = 5.5 V_{,}$	$V_0 = 2.7 V$			50			50	μA
IOZL	$V_{CC} = 5.5 V_{,}$	V ₀ = 0.4 V			- 50			- 50	μA
li	$V_{\rm CC} = 5.5 V,$	VI = 7 V			0.1			0.1	mA
Чн	$V_{CC} = 5.5 V,$	V _I = 2.7 V			20			20	μA
D, G	$V_{CC} = 5.5 V_{c}$	V1 = 0.4 V			-1			- 1	mA
IL All others	VCC = 5.5 V,	V = 0:4 V			-0.5			-0.5	- IIIA
lo‡	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 30		-112	- 30		-112	mΑ
100	Vcc = 5.5 V	Outputs active		50			50	81	mA
lcc	VCC - 5.5 V	Outputs disabled		52			52	85	<u>~</u>

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[‡]The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit current, IOS.

Additional information on these products can be obtained from the factory as it becomes available.

TYPES SN54AS850, SN74AS850 1 OF 16 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics (see Note 1)

			V _{CC} = 4.5 CL = 50 p	V to 5.5 V, F,			
	FROM	то	R1 = 500	Ω,			
PARAMETER	(INPUT)	(OUTPUT)	R2 = 500	Ω,		UNF	
			T _A = MIN	to MAX			
			SN54AS850		AS850	1	
			MIN TYP [†] MAX	MIN	MAX		
fmax				60		MHz	
tPLH	Any D	Y	5	3	10.5		
^t PHL	Any D	Ť	7	3	11	ns	
^t PLH	Any D	w	5	3	8	ns	
^t PHL	Any D	vv	3.5	1	6	115	
^t PLH	CLK	Y	10.5	3	14.5		
^t PHL		Ť	. 12	3	17.5	ns	
^t PLH	CLK	w	10	3	15	ns	
^t PHL		vv	9	3.5	13		
^t PZH	G	Y	5	2	8	ns	
^t PZL		'	6	3	11		
^t PHZ	- G	Y	5	1	6	ns	
tPLZ		T T	5.5	2	8		
^t PZH	G	w	5	2	8	ns	
^t PZL		vv	11	3	21	115	
^t PHZ	G	w	5	1	6	ns	
tplz		**	5.5	2	8	115	
^t PZH	GY	Y	5	2	8	ns	
tPZL		1	6	3	11		
^t PHZ	GY	Y	5	1	6	ns	
tplz		,	5.5	2	8		
^t PZH	GW	w	6	2	10	ns	
tPZL		vv	11	3	25		
tPHZ	GW	w	3.5	1	6	ns	
tPLZ		vv	7.5	2	11	1	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPES SN54AS851, SN74AS851 1 OF 16 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

recommended operating conditions

			S	N54AS8	51	SI	N74AS8	51	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage)	2			2			V
VIL	Low-level input voltage				0.8			0.8	V
юн	High-level output current	nt			- 12			- 15	mA
lo∟	Low-level output currer	nt			32			48	mA
tw	Pulse duration	SC low				10			ns
t _{su}	Setup time, select inpu	ts before SC †				4.5			ns
th	Hold time, select inputs	after SC 1				0			
TA	Operating free-air temp	erature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST	ONDITIONS	S	N54AS8	51	S	V74AS8	51	UNIT
			MIN	TYP [†]	MAX	MIN	TYPT	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	$I_{I} = -18 \text{ mA}$			-1.2			- 1.2	V
	$V_{CC} = 4.5 V \text{ to } 5.$	$5 V, I_{OH} = -2 mA$	Vcc-	2		Vcc-	2		
∨он	$V_{CC} = 4.5 V_{,}$	IOH = -12 mA	2	3.2					[v
	$V_{CC} = 4.5 V_{,}$	$I_{OH} = -15 \text{ mA}$		_		2	3.3		
VOL	$V_{CC} = 4.5 V_{,}$	IOL = 32 mA		0.25	0.5				v
·0L	$V_{CC} = 4.5 V_{,}$	$i_{OL} = 48 \text{ mA}$					0.35	0.5	ľ
lozh	$V_{CC} = 5.5 V,$	$V_0 = 2.7 V$			50			50	μA
IOZL	$V_{CC} = 5.5 V,$	$V_0 = 0.4 V$			- 50			- 50	μA
4	$V_{CC} = 5.5 V$,	V ₁ = 7 V			0.1			0.1	mA
н	$V_{CC} = 5.5 V$,	$V_1 = 2.7 V$			20			20	μA
	$V_{CC} = 5.5 V_{c}$	$V_1 = 0.4 V$			- 1			- 1	mA
All others	VCC = 5.5 V,	VI = 0.4 V			-0.5			-0.5	mA
lo [‡]	$V_{CC} = 5.5 V_{,}$	$V_0 = 2.25 V$	- 30	_	-112	- 30		-112	mA
lcc	Vcc = 5.5 V	Outputs active		50			50	81	m A
'CC	VCC - 5.5 V	Outputs disabled		52			52	85	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit current, I_{OS}.

Additional information on these products can be obtained from the factory as it becomes available.

TYPES SN54AS851, SN74AS851 **1 OF 16 DATA SELECTORS/MULTIPLEXERS WITH 3 STATE OUTPUTS**

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5$ $C_{L} = 50 \text{ pl}$ R1 = 500 R2 = 500 $T_{A} = \text{MIN}$	n, n,		UNIT
			SN54AS851		AS851	ŀ
			MIN TYP [†] MAX	MIN	MAX	
^t PLH	- Any D	Y	5	3	10.5	
^t PHL		I	7	3	11	ns
^t PLH	Any D	w	5	3	8	ns
^t PHL	Ally D	**	3.5	1	6	ris
^t PLH	S0, S1, S2, S3	Y	12	3	18	ns
^t PHL	30, 31, 32, 33	,	15	3	19	15
^t PLH	S0, S1, S2, S3	w	12	3	16	ns
tphl	30, 31, 32, 33	**	10	3	15	115
^t PLH	SC	Y	12	3	18	
^t PHL	- 30	'	15	3	20	ns
^t PLH	sc	w	12	3	16	
^t PHL	30		11	3	15	ns
^t PZH	G	Y	5.5	2	8	
^t PZL		1	7	3	11	ns
tPHZ	ā	Y	3.5	1	6	
^t PLZ	7	1	5	2	8	ns
^t PZH	G	w	5.5	2	8	
^t PZL		vv	11	3	21	ns
^t PHZ	ā	w	3.5	1	6	D.C.
^t PLZ		vv	5	2	8	ns
^t PZH	GY	Y	5.5	2	8	
^t PZL		T	7	3	11	ns
tPHZ	ĞΫ	Y	3.5	1	6	
^t PZL		r	6	2	8	ns
^t PZH	GW	w	6	2	10	
^t PZL	GW	vv	12	3	25	ns
^t PHZ	CINI	-	4	1	6	
tPLZ	GW	w	8	2	11	ns

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 1: For load circuit and voltage waveforms, see page 1-12 of The TTL Data Book, Volume 3.

TYPICAL APPLICATION DATA

The 'AS850 or 'AS851 can be used as a 1-of-16 Boolean function generator. Figure 1 shows the 'AS850 in one example.

FIGURE 1-1-OF-16 BOOLEAN FUNCTION GENERATOR

TYPES SN54AS850, SN74AS850 **1 OF 16 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS**

ALS AND AS CIRCUITS

2

FIGURE 2-1-OF-32 DATA/SELECTOR/MULTIPLEXER

TYPES SN54AS850,SN74AS850 **1 OF 16 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS**

Texas **INSTRUMENTS** POST OFFICE BOX 225012 . DALLAS, TEXAS 75265 48

D2661, DECEMBER 1982-REVISED FEBRUARY 1984

- Included among the Package Options Are Compact, 24-Pin, 300-mil-Wide Dips and Both 28-Pin Plastic and Ceramic Chip Carriers
- Buffered 3-State Outputs Drive Bus Lines Directly
- Cascadable to n-Bits
- Eight Selectable Transceiver/Port Functions:
 - A to B or B to A
 - Register to A or Register to B
 - Shifted to A or Shifted to B
 - --- Off-Line Shifts (A and B Ports in High-Impedance State)
 - Register Clear
- Particularly Suitable for Use in Signature-Analysis Circuitry
- Serial Register Provides:
 - Parallel Storage of Either A or B Input Data
 - Serial Transmission of Data from Either A or B Port
- Dependable Texas Instruments Quality and Reliability

NC - No internal connection

description

The 'AS877 features two 8-bit I/O ports (A1-A8 and B1-B8), an 8-bit parallel-load, serial-in, parallel-out shift register, and control logic. With these features, this device is capable of performing eight selectable transceiver or port functions, depending on the state of the three select lines S0, S1, and S2. These functions include: transferring data from port A to port B or vice versa (i.e., the transceiver function), transferring data from the register to either port, serial shifting data to either port, performing off-line shifts (with A and B ports in high-impedance state), and clearing the register. Synchronous parallel loading of the internal register can be accomplished from either port on the positive transition of the clock while serially shifting data in via the SERIN input. The 'AS877 is ideally suited for applications needing signature-analysis circuitry to enhance system verification and/or fault analysis. All serial data is shifted right. All outputs are buffer-type outputs designed specifically to drive bus lines directly and all are 3-state except for Q8, which is a totempole output.

The SN54AS877 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74AS877 is characterized for operation from 0°C to 70°C.

Copyright © 1982 by Texas Instruments Incorporated TEXAS 2-INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 2

					FUNC	TION TABL	.Е				
MODE S2 S1 S0	CLOCK	SERIN	A1 Q1 B1	A2 Q2 B2	A3 Q3 B3	A4 Q4 B4	A5 Q5 B5	A6 Q6 B6	A7 Q7 B7	A8 Q8 B8	PORT FUNCTION
LLL	H or L	х	Z Q _n A1	Z Q _n A2	Z Q _n A2	Z Q _n A4	Z Q _n A5	Z Q _n A6	Z Q _n A7	Z Q _n A8	А ТО В
ιιι	Ť	x	Z A1 A1	Z A2 A2	Z A3 A3	Z A4 A4	Z A5 A5	Z A6 A6	Z A7 A7	Z A8 A8	AIUB
LLH	H or L	х	B1 Q _n Z	B2 Q _n Z	B3 Q _n Z	84 Q _n Z	B5 Q _n Z	B6 Q _n Z	87 Q _n Z	B8 Q _n Z	ВТОА
ιιн	t	х	B1 B1 Z	B2 B2 Z	B3 B3 Z	B4 B4 Z	85 B5 Z	B6 B6 Z	B7 B7 Z	B8 B8 Z	BIOA
LHL	HorL	х	X Q _n Q1	X Q _n Q2	X Q <mark>n Q</mark> 3	X Q _n Q4	X Q _n Q5	X Q _n Q6	X Q _n Q7	Χ Δ _n Δ8	Q _N TO B _N
LHL	1	x	Z A1 A1	Z A2 A2	Z A3 A3	Z A4 A4	Z A5 A5	Z A6 A6	Z A7 A7	Z A8 A8	an io bn
LHH	H or L	х	Q1 Q _n X	02 0 _n X	03 0 _n X	Q4 Q _n X	Q5 Q _n X	06 0 _n X	07 0 _n X	08 0 _n X	Q _N TO A _N
L Н Н	t	х	B1 B1 Z	B2 B2 Z	83 B3 Z	B4 B4 Z	B5 B5 Z	86 86 Z	B7 B7 Z	88 88 Z	QN TO AN
ΗЦΙ	HorL	х	Z Q _n Q1	Z Q _n Q2	Z Q _n Q3	2 Q _n Q4	Z Q _n Q5	Z 0 _n 06	Z Q _n Q7	Z Q _n Q8	SHIFT
нцц	t	н	ΖНН	Z Q1 Q1	Z Q2 Q2	Z Q3 Q3	Z Q4 Q4	Z Q5 Q5	Z Q6 Q6	Z Q7 Q7	то
нсс	1	L	ZLL	Z Q1 Q1	Z Q2 Q2	Z Q3 Q3	Z Q4 Q4	Z Q5 Q5	Z Q6 Q6	Z Q7 Q7	В
ΗГΗ	H or L	х	Q1 Q _n Z	Q2 Q _n Z	Q3 Q _n Z	Q4 Q _n Z	05 0 _n Z	QG Q _n Z	07 0 _n Z	08 Q _n Z	SHIFT
нсн	1	н	ннг	Q1 Q1 Z	Q2 Q2 Z	Q3 Q3 Z	Q4 Q4 Z	Q5 Q5 Z	Q6 Q6 Z	Q7 Q7 Z	то
нсн	t	L	LLZ	Q1 Q1 Z	Q2 Q2 Z	Q3 Q3 Z	Q4 Q4 Z	Q5 Q5 Z	Q6 Q6 Z	Q7 Q7 Z	A
ннг	H or L	×	ZQnZ	ZQnZ	Z Q _n Z	ZQnZ	Z Q _n Z	ZQnZ	z a _n z	Z Q _n Z	
ннг	†	н	ZHZ	Z Q1 Z	Z Q2 Z	Z Q3 Z	Z Q4 Z	Z Q5 Z	Z Q6 Z	Z Q7 Z	SHIFT
ннг	t	L	ZLZ	Z Q1 Z	Z 02 Z	Z Q3 Z	Z Q4 Z	Z Q5 Z	Z Q6 Z	Z Q7 Z	
ннн	H or L	х	Z Q _n Z	Z Qn Z	Z Q _n Z	z Q _n z	ZQnZ	z Q _n z	ZQnZ	z a _n z	CLEAR
ннн	1	х	ZLZ	ZLZ	ZLZ	ZLZ	ZLZ	ZLZ	ZLZ	ZLZ	

n = level of Qn(n = 1, 2, . . 8) established on most recent 1 transition of CLK. Q1 thru Q8 are the shift register outputs; only Q8 is evailable externally. The double inversions that take place as data travels from port to port are ignored in this table.

Pin numbers shown are for JJ and NT packages.

Texas 🦑 **INSTRUMENTS** POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2 ALS AND AS CIRCUITS

128

logic diagram (positive logic)

Texas

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

ALS AND AS CIRCUITS

absolute maximum ratings over free-air temperature range

Supply voltage, V _{CC}	v
Input voltage: All inputs	v
I/O ports	٧
Voltage applied to a disabled 3-state output	
Operating free-air temperature range: SN54AS877	
SN74AS877	С
Storage temperature range	С

recommended operating conditions

				SN54AS	877	S	N74AS	377	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	v
1	High toyol output ourport	A1-A8, B1-B8			- 12			- 15	mA
юн	High-level output current	Q8			- 2			- 2	
1		A1-A8, B1-B8			32			48	mA
IOL	Low-level output current	Q8			20			20	JINA
fclock	Clock frequency		0		45	0		50	MHz
tw	Duration of clock pulse		11			10			ns
tsu	Setup time before CLK [†]	A1-A8, B1-B8 SERIN	5.5			5.5			ns
		S0, S1, S2	5.5			5.5			
	Hold time, data after CLK †	A1-A8, B1-B8 SERIN	0			0			ns
		S0, S1, S2	0			0			
TA	Operating free-air temperature		- 55	_	125	0		70	°C

Additional information on these products can be obtained from the factory as it becomes available.

PARAMETER		TEET CONDITIONS		SN54AS877 SN74AS877		877	UNIT			
		TEST CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	AX
VIK		$V_{CC} = 4.5 V_{,}$	l₁ = −18 mA			-~ 1.2			- 1.2	V
	A1-A8	$V_{CC} = 4.5 V_{c}$	¹ OH = -12 mA	2	3.2					
∨он	B1-B8	$V_{CC} = 4.5 V,$	$I_{OH} = -15 \text{ mA}$				2	3.3		v
	All outputs	$V_{CC} = 4.5 V \text{ to } 5.5 V, I_{OH} = -2 \text{ mA}$		Vcc-	2		Vcc-	2		
	All outputs except Q8	$V_{CC} = 4.5 V,$	$I_{OL} = 32 \text{ mA}$		0.25	0.5				
VOL	All outputs except do	$V_{CC} = 4.5 V,$	$I_{OL} = 48 \text{ mA}$					0.35	0.5	l v
	Q8	$V_{CC} = 4.5 V_{,}$	$l_{OL} = 20 \text{ mA}$		0.25	0.5		0.25	0.5	
	S0, S1, S2	VCC = 5.5 V, V	$V_I = 7 V$			0.3			0.3	mA
ŧį.	CLK and SERIN		vi - 7 v			0.1			0.1	
	A1-A8, B1-B8	$V_{CC} = 5.5 V,$	$V_{I} = 5.5 V$			0.2			0.2	
	S0, S1, S2					60			60	
Чн	CLK and SERIN	V _{CC} = 5.5 V,	$V_{I} = 2.7 V$			20			20	μΑ
	A1-A8, B1-B8‡					70			70	
	S0, S1, S2					- 1			- 1	
hL.	CLK and SERIN	V _{CC} = 5.5 V,	$V_{I} = 0.4 V$			-0.5		_	-0.5	mA
	A1-A8, B1-B8 [‡]					-0.75			-0.75	
1 - 5	Except Q8		V	- 30		- 112	- 30		-112	mA
١Oð	Q8	$V_{CC} = 5.5 V,$	$V_0 = 2.25 V$	- 20		-112	~ 20		-112	mA
ICC		$V_{CC} = 5.5 V$			136	220		136	220	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[‡]For I/O ports, the parameters I_{IH} and I_{IL} include the output currents I_{OZH} and I_{OZL}, respectively.

⁵The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SNEA	$V_{CC} = 4$ $C_L = 50$ R1 = 500 R2 = 500 $T_A = MII$ AS877	οΩ, οΩ,		UNIT
			MIN	MAX	MIN	MAX	
fmax			45		50		MHz
^t PLH	Any A port	Anu Brant	2	8.5	2	7	
^t PHL		Any B port	3	10.5	3	9	ns
^t PLH	Any B port	A	2	9	2	7.5	ns
^t PHL		Any A port	3	10.5	3	9	
^t PLH	S0, S1, S2	Any A or B	3	11.5	3	10	ns
^t PHL	50, 51, 52	port	2	9.5	2	8	115
tPLH	CLK	Any A or B	2	11	2	9	ns
^t PHL	CLK	port	3	13	3	11.5	113
^t PLH	C) K		2	10.5	2	8	
^t PHL	CLK	08	3	10	3	8.5	ns
^t PHZ			2	7.5	2	6.5	
tPLZ	60 61 60	Any A or B	3	13	3	10.5	ns
^t PZH	SO, S1, S2	port	2	9	2	7	
tPZL			3	11.5	3	9.5	ns

NOTE 1: For load circuit and voltage waveforms, see page 1-12.

14

TYPICAL APPLICATION DATA

2-176

12

TYPES SN54ALS1245A, SN74ALS1245A **OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS**

- 'Bidirectional Bus Transceivers in High-Density 20-Pin Packages
- Lower-Power Version of 'ALS245A
- 'ALS1245A is Identical to 'ALS1645A
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

This octal bus transceiver is designed for asynchronous two-way communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (G) can be used to disable the device so the buses are effectively isolated.

The -1 version of the SN74ALS1245A is identical to the standard versions except that the recommended maximum IOL is increased to 24 milliamperes. There is no -1 version of the SN54ALS1245A.

The SN54ALS1245A is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS1245A is characterized for operation from 0°C to 70°C.

FUNCTION TABLE							
CON	TROL						
INPUTS		OPERATION					
Ġ	DIR						
L	L	B data to A bus					
L	н	A data to B bus					
н	x	Isolation					

logic diagram (positive logic)

D2661, DECEMBER 1982-REVISED FEBRUARY 1984

SN54ALS12 SN74ALS12			
DIR 0 A1 0 A2 0 A3 0 A4 0 A6 0 A7 0	1 U 2 3 4 5 6 7 8	20 19 18 17 16 15 14 13	VCC G B1 B2 B3 B4 B5 B6
A8 [GND [9 10	12	87 88

SN54ALS1245A . . . FH PACKAGE SN74ALS1245A . . . FN PACKAGE

logic symbol

Copyright © 1982 by Texas Instruments Incorporated

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54ALS1245A, SN74ALS1245A Octal BUS Transceivers with 3-state outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		
Input voltage: All inputs		
I/O ports		 5.5 V
Operating free-air temperature range:	SN54ALS1245A	
	SN74ALS1245A	 0°C to 70°C
Storage temperature range		

recommended operating conditions

		SM	SN54ALS1245A			SN74ALS1245A			
		MIN	NOM	MAX	MIN	NOM	MAX		
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
юн	High-level output current			~ 12			- 15	mA	
la:	Low-level output current			8			16	mA	
^I OL	Low-level output current						24	mA	
TA	Operating free-air temperature	- 55	-55 125 0 70		°C				

 $^{\dagger} \text{The extended limit applies only if V}_{\text{CC}}$ is maintained between 4.75 V and 5.25 V.

The 24-mA limit applies for the SN74ALS1245A-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		7507.000		SN54ALS1245A SN74ALS1245A MIN TYP [‡] MAX MIN TYP [‡] MAX		245A					
		TEST CON	DITIONS			MAX	AX				
VIK		$V_{CC} = 4.5 V,$	$l_{\rm I} = -18 \rm mA$			- 1.5			- 1.5	V	
		$V_{CC} = 4.5 V$ to 5.	$5 V, I_{OH} = -0.4 mA$	Vcc -	2		Vcc-	2			
		$V_{CC} = 4.5 V,$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2] _	
∨он		$V_{CC} = 4.5 V,$	Юн = -12 mA	2						l v	
		$V_{CC} = 4.5 V_{,}$	¹ OH ≃ −15 mA				2				
VOL		$V_{CC} = 4.5 V,$	IOL = 8 mA		0.25	0.4		0.25	0.4		
		$V_{CC} = 4.5 V$,	IOL = 16 mA					0.35	0.5	v	
		(IOL = 24 mA for	– 1 version)					0.35 0.5			
	Control inputs	$V_{CC} = 5.5 V_{,}$	V _I = 7 V			0.1			0.1	mA	
łı –	A, B ports§	$V_{CC} = 5.5 V$,	$V_{I} = 5.5 V$			0.1			0.1] "```	
	Control inputs	$V_{CC} = 5.5 V_{c}$	VI = 2.7 V			20			20	μΑ	
ŧн	A, B ports §	$v_{CC} = 5.5 v_{,}$	VI - 2.7 V			20			20] "	
	Control inputs		$V_{I} = 0.4 V$			-0.1			-0.1	mA	
կլ	A, B ports§	$V_{\rm CC} = 5.5 V,$	VI = 0.4 V			-0.1			0.1 0.1 20 20		
101		$V_{CC} = 5.5 V_{,}$	$V_0 = 2.25 V$	~ 30		-112	- 30		- 112	mA	
			Output high		21	33		21	`30		
lcc		$V_{CC} = 5.5 V$	Output low		23	36		23	-1.5 0.4 0.5 0.1 20 20 -0.1 -0.1 -112	mA	
			Output disabled		25	40		25	36		

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

 $^{§}\mbox{For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.$

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

TYPES SN54ALS1245A, SN74ALS1245A OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_{L} = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_{A} = MIN \text{ to } MAX$ $SN54ALS1245A SN74ALS1245A$			UNIT
			MIN	MAX	MIN	MAX	
^t PLH	A D		2	15	2	13	
^t PHL	A or B	B or A	2	15	2	13	ns
^t PZH	Ğ	A or B	8	28	8	25	ns
^t PZL		AOLP	8	28	8	25	ns
^t PHZ	G	A or B	2	14	2 12		ns
tPLZ	G	A 01 D	3	22	3	18	113

NOTE 1: For load circuit and voltage waveforms, see page 1-12 of the TTL Data Book, Volume 3.

284

2-180

•

Supplement to The TTL Data Book Volume 3

General Information

ALS and AS Circuits

2

1

Applications

3
Advanced Schottky Family (ALS/AS) Application

Contents

Title	Page
INTRODUCTION TO ADVANCED SCHOTTKY FAMILY	
Speed-Power Slots Filled By Advanced Schottky TTL	
Additional Advantages Offered by 'ALS and 'AS Devices	
Concepts of Defining 'ALS and 'AS	
Compatibility With Other TTL	
Fanout	
Using the Schottky Barrier-Diode	
Analysis of Schottky-Clamped Transistor	
Analysis of 'ALS and 'AS NAND Gates	
Circuit Parameters	
Transfer Characteristics	
Input Characteristics	
Low-Level Input Current	
Input Clamping Diode Test	
High-Level Input Current	
Input Breakdown Test	
Output Characteristics	
High-Level Output Characteristics	
Low-Level Output Characteristics	
Switching Speed	
DC Noise Margins	
Specified Logic Levels and Thresholds	
Noise Rejection	
GUIDELINES FOR SERIES 'ALS/'AS TTL SYSTEM DESIGN	
Power Supply Regulation	
Supply Voltage Ripple	
Noise Considerations	
Noise Types and Control Methods	
Shielding	
Grounding and Decoupling	
Cross Talk	
Back-Panel Interconnections	
Printed Circuit Card Conductors	
Transmission-Line Driving Reflections	
APPENDIXES	
A Normalized Load Factors	3-43
B Letter Symbols Terms and Definitions	

• APPLICATIONS

3-4

List of Illustrations

Figure	Title	Page	
1	Speed-Power Relationships of Digital Integrated Circuits		
2	Series 54/74 TTL Family Compatible Levels Showing DC Noise Margins	. 3-9	
3	Fanout Capability	. 3-9	
4	Baker Clamp	. 3-9	
5	Schottky Clamped-Transistor	. 3-9	
6	Schottky Barrier-Diode		
7	Schottky Barrier-Diode Energy Diagrams		
8	Metal-N Diode Current-Voltage Characteristics		
9	Difference Between P-N and Schottky Barrier-Diodes		
10	Standard Process ('LS/'S)		
11	Advanced Process ('ALS/'AS)	3-11	
12	'ALS00A NAND Gate Schematic	3-12	
13	'AS00 NAND Gate Schematic	3-13	
14	Input Voltage vs Output Voltage 'ALS/'AS		
15	Input Current vs Input Voltage for TTL Families	3-15	
16	Low-Level Input Current vs High-Level Input Voltage		
17	DC Equivalent Input Circuit for Series 'ALS Gates	3-16	
18	Equivalent Output Circuit for 'ALS/'AS Gates	3-17	
19	High-Level Output Voltage vs High-Level Output Current	3-17	
20	Low-Level Output Circuit for 'ALS/'AS Gates	3-18	
21	Low-Level Output Voltage vs Low-Level Output Current	3-19	
22	High- to Low-Level Propagation Delay vs Load Capacitance	3-19	
23	Low- to High-Level Propagation Delay vs Load Capacitance	3-19	
24	Power Dissipation per Gate vs Frequency	3-20	
25	Stray Coupling Capacitance	3-21	
26	Evaluations of Gate Response to Fast Input Pulses	3-21	
27	Theoretical Required Pulse Width vs Pulse Amplitude for 'ALS and 'AS Inputs	3-22	
28	Parameter Measurement Information	3-23	
29	Effect of Source Impedance on Input Noise	3-25	
30	Spurious Output Produced by Supply Voltage Ripple	3-26	
31	Effect of Ground Noise on Noise Margin	3-26	
32	Typical Logic Circuit with Noisy Input	3-26	
33	Diagram Representing a Gate Driving a Transmission Line		
34	Noise Generation Caused by Poor Transmission-Line Return	3-27	
35	Ideal Transmission-Line Current Handling	3-28	-
36	Circuit With Effective Capacitive Loading		3
37	Supply Current Transient Comparisons	3-29	
38	Transmission-Line Power Buses	3-31	
39	Capacitive Storage Supply Voltage System		NS
40	Commonly Used Power Distribution and Decoupling System	3-31	Z
41	Equivalent Circuit for Sending Line		TIO
42	Equivalent Circuit for Cross Talk	3-32	F-
43	Capacitive Cross Talk Between Two Signal Lines		PLICA
44	Coupling Impedances Involved in Cross Talk		õ
45	Equivalent Cross-Talk Network		Ţ
46	Microstrip Line		5
47	Strip Line	3-34	A
48	Line Spacing Versus Cross-Talk Constant		
49	TTL Bergeron Diagram		
50	'ALS/'AS Driving Twisted Pair	3-35	

List of Illustrations (Continued)

Figure	Title	Page
51	'AS -ve Transition Bergeron Diagram	3-36
52	'AS -ve Voltage/Time Plot	3-36
53	'AS +ve Transition Bergeron Diagram	3-37
54	'AS +ve Voltage/Time Plot	3-37
55	'ALS -ve Transition Bergeron Diagram	3-38
56	'ALS -ve Voltage/Time Plot	3-38
57	'ALS +ve Transition Bergeron Diagram	3-39
58	'ALS +ve Voltage/Time Plot	3-39
59	Oscilloscope Photograph of 'AS00 - ve Transition Using 50-Ohm Line	3-40
60	Oscilloscope Photograph of 'AS00 + ve Transition Using 50-Ohm Line	3-40
61	Oscilloscope Photograph of 'AS00 - ve Transition Using 25-Ohm Line	3-40
62	Oscilloscope Photograph of 'AS00 + ve Transition Using 25-Ohm Line	3-40
63	Oscilloscope Photograph of 'ALSOOA - ve Transition Using 50-Ohm Line	3-40
64	Oscilloscope Photograph of 'ALSOOA + ve Transition Using 50-Ohm Line	3-40
65	Oscilloscope Photograph of 'ALSOOA - ve Transition Using 25-Ohm Line	3-41
66	Oscilloscope Photograph of 'ALSOOA + ve Transition Using 25-Ohm Line	3-41

List of Tables

Table

Title

Table	Title	Page
Ι	Typical Performance Characteristics by TTL Series	. 3-8
II	Worst-Case Output Parameters	3-20
III	Guidelines for Systems Design for Advanced Schottky TTL	3-22
IV	Guidelines for Printed Circuit Board Layout Advanced Schottky TTL	3-24
v	Guidelines for General Usage of Advanced Schottky TTL	3-25
VI	Guidelines for Gates and Flip-Flops Using Advanced Schottky TTL	3-25
VII	Typical Impedance of Microstrip Lines	3-34
VIII	Typical Impedance of Strip Lines	3-34
A-I	Normalized Input Currents	3-43
A -11	Fanout Canability	3-44

INTRODUCTION

The purpose of this Application Report is to assist the designers of high-performance digital logic systems in the use of the new series of Advanced Schottky-clamped* TTL integrated circuits.

Detailed electrical characteristics of these devices are provided and, if available, tables have been included that compare specific parameters of the devices with those of other logic families. In addition, interfamily information is provided to allow system designers to mix logic families in the same circuit. This allows the designer to use the relative merits of each logic family in high preformance state-of-theart designs.

The major subject areas covered in this Application Report are as follows:

- Advanced Schottky process
- Fanouts
- Transfer characteristics
- Input and output parameters
- Speed and power information
- Noise margins
- Power supply considerations
- Noise sources and their abatement
- Back panel and printed circuit wiring guidelines
- Line driving and receiving

INTRODUCTION TO ADVANCED SCHOTTKY-CLAMPED TTL

Series 54/74 transistor-transistor logic (TTL) has, since its introduction in 1965, become the most popular digital integrated circuit logic family ever offered. Its popularity has allowed the development of high-volume production techniques which have made it the most economical approach to the implementation of major portions of medium-to-high performance digital logic systems. These systems range from simple decision making to highly complex real-time computer installations that handle worldwide data processing.

The proliferation of and economical impact of these digital logic systems has created a demand for constant improvement in efficiency. In response to demand, Texas Instruments examined the advantages gained by Schottky clamping. An increase in speed and performance was discovered in the use of Schottky barrier-diode clamping. The process was patented in the United States and the Schottky series 54S/74S catalog parts were made available in the early 1970s. A series 54LS/74LS was introduced later. The series 54LS/74LS was slower that the 54S/74S series but had a much lower power consumption.

Recent innovations in integrated circuit design have made it possible to develop two new families: the Advanced Schottky (54AS/74AS) series and the Advanced Low-Power Schottky (54ALS/74ALS) series. The 'ALS and 'AS series provide considerable higher speeds than the 'LS and 'S series, respectively. The 'ALS series offers a substantial reduction in power consumption over the 'LS series, and the 'AS series offers a substantial reduction in power consumption over the 'S series. The 'ALS/'AS series is pin-to-pin compatible with the 'LS/'S series.

SPEED-POWER SLOTS FILLED BY 'ALS AND 'AS TTL

Digital integrated circuits have historically been characterized for both speed and power. The series 54S/74S devices contain 19 mW NAND gates and 125-MHz flip-flops and the series 54LS/74LS devices contain 2-mW NAND gates and 45-MHz flip-flops. Either of these logic families could be used to design a 2-MHz system, therefore categorization strictly on the basis of power and speed is inconclusive with respect to system efficiency. To provide a means of measuring the overall circuit efficiency and performance, a speed-power product efficiency index for integrated circuit is obtained by multiplying the gate propagation delay by the gate power dissipation.

Table I provides propagation delay times, power dissipation, and speed-power product for the Texas Instruments TTL series. In addition, it provides flip-flop frequency for each family as an indicator of system performance. The speed-power product rating system (measured in picojoules) is divided into circuits where speed is the prime factor and circuits where low-power is the prime factor. The 'ALS series speed-power product is approximately 4 times less than that of the 'LS series and the 'AS series speed-power product is approximately 4 times less than the 'S series. Figure 1 is a graphic analysis of the speed-power points for the various TTL families.

ADDITIONAL ADVANTAGES OFFERED BY 'ALS AND 'AS DEVICES

The 'ALS and 'AS devices offer the following additional advantages:

- TTL compatible with 54/74, 54S/74S, 54L/74L, 54LS/74LS, and 54H/74H series gates for selectively upgrading existing systems
- 2. Suppresses the effects of line ringing and significantly reduces undershoot
- 3. Higher thresholds (noise immunity) and better stability across operating free-air temperature range
- 4. Input current requirement reduced by up to 50%

^{*}Integrated Schottky-Barrier-diode-clamped transistor is patented by Texas Instruments Incorporated, U.S. Patent Number 3,463,975.

		N	INIMIZI	NG POWER			MI	NIMIZIN	G DELAY T	ME
CIRCUIT TECHNOLOGY	FAMILY	PROP DELAY	PWR DISS	SPD/PWR PRODUCT	MAXIMUM FLIP-FLOP FREQ	FAMILY	PROP	PWR DISS	SPD/PWR PRODUCT	MAXIMUM FLIP-FLOP FREQ
		(ns)	(mW)	{pJ}	(MHz)		(ns)	(mW)	(pJ)	(MHz)
Gold Doped	TTL	10	10	100	35	TTL	10	10	100	35
	LTTL	33	1	33	3	HITL	6	22	132	50
Schottky Clampad	LS TTL	9	2	18	45	S TTL	3	19	57	125
Schottky Clamped	'ALS	4	1.2	4.8	70	'AS	1.7	8	13.6	200

Table I. Typical Performance Characteristics by TTL Series

Figure 1. Speed-Power Relationships of Digital Integrated Circuits

- 5. Fanout is doubled
- Terminated lines or controlled impedance circuit boards are normally not required.
- The 'AS series offers shorter propagation delays and higher clock frequencies with relatively low power consumption.
- The maximum flip-flop frequency has been increased to 200 MHz.

CONCEPTS OF DEFINING SERIES 'AS AND 'ALS

O APPLICATIONS

Both the 'ALS and 'AS series are electrically and pinout compatible with existing TTL series. The 'ALS series is suitable for replacing all TTL families except in the very highest frequency applications. Replacement with 'ALS will result in lower power consumption, smaller power supply current spikes, and, in some cases, better noise immunity than the other families. In those cases where a very high operating frequency is required, the 'AS series can be used. The 'AS devices require less than one-half of the supply current of the 'S series and has approximately twice the clocking frequency. The 'ALS devices are ideal for improving effeciency at the lower speeds. The 'AS devices

3-8

are ideal for replacement of high-speed logic families including ECL 10K series.

Compatibility With Other TTL Families

To ensure complete electrical compatibility in systems using or intending to use a mixture of existing TTL families and the new 'ALS/'AS families, specific guidelines have been implemented. These guidelines ensure the continuation of desirable characteristics and incorporate newer techniques to improve performance and/or simplify the use of TTL families. Figure 2 illustrates the comparison of essential parameters of each family and shows that complete compatibility is maintained throughout the 54/74 families.

Fanout

The compatible ratings for fanout simplify the implementation of logic and provide a freedom of choice in the use of any of the seven performance ranges to design a digital logic system. Any of the Texas Instruments TTL series gates can be used to drive any other gate without the use of an interface or level-shifting circuit. The use of totempole-(push-pull) type output stages provides a low output impedance and the capability for both sourcing and sinking current. The output is easily adapted for driving MOS and CMOS circuits as well as the interface circuits between the output and the devices it controls. Figure 3 illustrates fanout capability.

USING THE SCHOTTKY BARRIER DIODE

The Advanced Schottky Family has been developed from two earlier concepts: the Baker Clamp and the Schottky Barrier-Diode (SBD). The use of the Baker Clamp and SBD concepts resulted in the Schottky Clamped Transistor. The Schottky clamped transistor produced the increased switching speed associated with the S series integrated circuits. The additional advances that have led to the development of 'ALS and 'AS gates and the actual gates are discussed later.

Analysis of the Schottky Clamped Transistor

The use of the Baker Clamp, shown in Figure 4, is a method of avoiding saturation of a discrete transistor. The diode forward voltage is 0.3 V to 0.4 V as compared to 0.7 V for the base-emitter junction diode. When the transistor is turned on, base current drives the transistor toward

saturation. The collector voltage drops, the germanium diode begins to conduct forward current, and excess base drive is diverted from the base-collector junction of the transistor. This causes the transistor to be held out of deep saturation, the excess base charge to not be stored, and the turn-off time to be dramatically reduced.

A germanium diode cannot be incorporated into a monolithic silicon integrated circuit. Therefore, the germanium diode must be replaced with a silicon diode which

Figure 5. The Schottky-Clamped Transistor

has a lower forward voltage drop than the base-collector junction of the transistor. A normal p-n diode will not meet this requirement. The SBD illustrated in Figure 5 can be used to meet the requirement.

The SBD illustrated in Figure 6 is a rectifying metalsemiconductor contact formed between a metal and a highly doped N semiconductor.

Figure 6. Schottky Barrier-Diode

The qualitative physics of an SBD is illustrated in Figure 7. The valence and conduction bands in a metal overlap make available a large number of free-energy states. The free-energy states can be filled by any electrons which are injected into the conduction band. A finite number of electrons exist in the conduction band of a semiconductor. The number of electrons depends mainly upon the thermal energy and the level of impurity atoms in the material. When a metal-semiconductor junction is formed, free electrons flow across the junction from the semiconductor, via the conduction band, and fill the free-energy states in the metal. This flow of electrons builds a depletion potential across the barrier. This depletion potential opposes the electron flow and, eventually, is sufficient to sustain a balance where there is no net electron flow across the barrier.

Under forward bias (metal positive), there are many electrons with enough thermal energy to cross the barrier potential into the metal. This forward bias is called "hot injection." Because the barrier width is decreased as forward bias V_F increases, forward current will increase rapidly with an increase in V_F .

When the SBD is reverse biased, electrons in the semiconductor require greater energy to cross the barrier. However, electrons in the metal see a barrier potential from the side essentially independent of the bias voltage and a small net reverse current will flow. Since this current flow is relatively independent of the applied reverse bias, the reverse current flow will not increase significantly until avalanche breakdown occurs.

A simple metal-n semiconductor collector contact is an ohmic contact while the SBD contact is a rectifying contact. The difference is controlled by the level of doping in the semiconductor material. As the doping is increased, the contact becomes more ohmic. Figure 8 illustrates the currentvoltage characteristics according the doping applied. Current in the SBD is carried by majority carriers. Current in the p-n junction is carried by minority carriers. The resultant minority carrier storage causes the switching

Figure 8. Metal-N Diode Current-Voltage Characteristics

Figure 7. Schottky Barrier-Diode Energy Diagrams

• APPLICATIONS

time of a p-n junction to be limited when switched from forward bias to reverse bias. A p-n junction is inherently slower than an SBD even when doped with gold.

Another major difference between the SBD and p-n junction is the forward voltage drop. For diodes of the same surface area, the SBD will have a larger forward current at the same forward bias regardless of the type of metal used. The SBD forward voltage drop is lower at a given current than a p-n junction. Figure 9 illustrates the current carriers and forward current-voltage characteristics differences between the SBD and p-n junction. The SBD meets the requirements of a silicon diode which will clamp a silicon n-p-n transistor out of saturation.

The Advanced Schottky process differs from the Schottky process in that it uses ion implantation of impurities instead of diffusion. Ion implantation gives greater control on the depth of doping and resolution. Because of a thinner epitaxial layer and smaller all around geometries, smaller parasitic capacitances are encountered. The performance of the SBD is also enhanced by the use of oxide isolation of the transistors. This reduces the collector-substrate capacitance. Figure 10 illustrates the 'LS/'S process which consists of conventional masks, junction isolation, and a

Page 61 1 1 1 1 1 1

Figure 10. Standard Process ('LS/'S)

Figure 11. Advanced Process ('ALS/'AS)

standard metal system and Figure 11 illustrates the 'ALS/'AS process which consists of composed masks, ion implantation, oxide isolation, and a standard metal system.

Analysis of 'ALS and 'AS NAND Gates

The 'ALS and 'AS NAND gates in Figures 12 and 13 combine the desirable features of improved TTL circuits with the technological advantages of full Schottky clamping, ion implantation, and oxide isolation to achieve very fast switching times at a reduced speed-power product. The improvements and advantages are as follows:

- 1. Full Schottky clamping of all saturating transistors virtually eliminates storing excessive base charge and significantly enhances turn-off time of the transistors.
- Elimination of transistor storage time provides stable switching times across the temperature range.
- 3. An active turn-off is added to square up the transfer characteristic and provide an improved high-level noise immunity.

Figure 12. 'ALSOOA NAND Gate Schematic

- 4. Input and output clamping is implemented with Schottky diodes to reduce negative-going excursions on the inputs and outputs. Because of its lower forward voltage drop and fast recovery time, the Schottky input diode provides improved clamping action over a conventional p-n junction diode.
- The ion implantation process allows small geometries giving less parasitic capacitances so that switching times are decreased.
- The reduction of the epi-substrate capacitance using oxide isolation also decreases switching times.

A key feature of the 'ALS and 'AS families is the improvement in typical input-threshold voltage. Figure 12 is a schematic diagram of the 'ALS00A NAND gate. Figure 13 is a schematic diagram of the 'AS00 NAND gate. The input threshold voltage of the devices is determined by the equation:

$$VT = V_{BE} \text{ of } Q2 + V_{BE} \text{ of } Q3$$

+ V_{BE} of Q5 - V_{BE} of Q1A
(or V_{BE} of Q1B) (1)

From Eq. (1) it can be determined that the input threshold voltage is two times V_{BE} or approximately 1.4 V. Low-level input current I_{IL} is reduced in the 'ALS00A/'AS00 gates because of the improved input circuits. Buffering by transistors Q1A (or Q1B) and Q2 causes a significant reduction in low-level input current. Low-level input current is determined by the equation:

$$I_{IL} = V_{CC} - V_{BE} \text{ of } Q1A - V_I / [R(h_{FE} \text{ of } Q1A + 1)]$$
(2)

By using Eq. (2) low-level input current is reduced by at least the factor of h_{FE} of Q1A + 1 and is typically - 10 μ A for the 'ALS00A and - 50 μ A for the 'AS00. Highlevel output voltage V_{OH} is determined primarily by V_{CC},

Figure 13. 'AS00 NAND Gate Schematic

resistors R4 and R7, and transistors Q6 and Q7. With no load, the high-level output voltage is approximately equal to $V_{CC} - V_{BE}$ of Q6 because the voltage across resistor R4 is 0 V. For medium-level currents, the high-level output voltage is equal to $V_{CC} - V_{BE}$ of Q6 - V_{BE} of Q7 because of the Darlington gain of transistors Q6 and Q7. The current through resistor R3 is typically less than 1 μ A and, therefore, the voltage drop is negligible. As conduction through transistors Q6 and Q7 is increased, the voltage drop across limiting resistor R7 will increase until the Schottky clamping diode of transistor Q6 starts to become forward biased. At this point, the current through resistor R3 (and the voltage drop) is no longer negligible and the high-level output voltage is determined by:

$$V_{OH} = V_{CC} - I_{OH through R7} \times R7$$

- V_{CE} of Q6 - V_{BE} of Q7 (3)

Low-level output voltage V_{OL} is determined by the turning on of transistor Q5. When the input is high and transistor Q2 is turned on, high-current transistor Q5 is turned on by a current path through transistor Q3 and resistor R3. Sufficient base drive is supplied to keep transistor Q5 fully turned on at an apparent output resistance of 14 Ω for 'ALS and 6 Ω for 'AS.

The fanout is up to 40 for a '54ALS device that is driving a '54ALS device and up to 80 for a '74ALS device, that is driving a '74ALS device and provides a guaranteed low-level output current of 4 mA and 8 mA, respectively.

The increase in speed-power product of '54ALS/'74ALS devices, a factor four times better than '54LS/'74LS devices, is due to the design consideration of the quiescent and switching operations of the circuit. In the quiescent state, transistor Q2 allows the use of a reduced low-level input current. This reduces the fanout and reduces the overall quiescent current requirements.

The design of diodes D2 and D3 (or transistor Q8) and transistor Q4 enhances the speed-power product of the device. Transistor Q4 reduces the turn-off time and consequently the current transients caused by conduction

overlap of transistor Q5. The same principle is used by diodes D2 and D3 and transistor Q3 in turning off transistor Q7. In addition, the active turn-off design produces a square transfer characteristic.

The 'AS00 gate has additional circuits not on the 'ALS00A gate. The circuits are added to enhance the throughput of the 'AS Family.

Transistor Q10 has been added as a discharge path for the base-collector capacitance of transistor Q5. Without transistor Q10, rising voltages at the collector of transistor Q5 would force current, via the base-collector capacitance, into the base of transistor Q5 causing it to turn on. However, diode D10 causes transistor Q10 to turn on (during rising voltage) and keeps transistor Q5 turned off. Diodes D6 and D9 serve as a discharge path for capacitor-diode D10.

CIRCUIT PARAMETERS

Worst-case testing of 'ALS/'AS devices provides a margin of safety. [All dc limits shown on the data sheet are guaranteed over the entire temperature range ($-55^{\circ}C$ to 125 °C) for series 54ALS/54AS and 0 °C to 70 °C for series 74ALS/74AS)]. In addition, the dc limits are guaranteed over the entire supply voltage range (4.5 V to 5.5 V).

Transfer Characteristics

Since the most common application for a logic gate is to drive a similar logic gate, the input and output logic levels must be compatible. The input and output logic levels for 'ALS/'AS devices are as follows:

- V_{IL} The voltage value required for a low-level input voltage that guarantees operation
- V_{IH} The voltage value required for a high-level input voltage that guarantees operation
- V_{OL} The guaranteed maximum low-level output voltage of a gate
- V_{OH} The guaranteed minimum high-level output voltage of a gate.

With the exception of high-level ouput voltage (which is a direct function of supply voltage), these values remain virtually unchanged over the temperature range and under normal operating conditions of the device.

Analysis of the input and output response characteristics of 'ALS/'AS TTL gates is necessary to understand the operation of these devices in most system applications. The dc response characteristics can best be depicted by an input voltage V_I versus output voltage V_O transfer plot.

Figure 14 plots the 'ALS/'AS characteristics as compared with members of other TTL logic families.

As shown in Figure 14, the 'ALS and 'AS devices exhibit a much better output savings when compared with standard TTL devices. The better high-level output voltage is primarily because of the active turn off of the low-level output transistor. The diode voltage drop in the normal output is replaced by a low-current V_{BE} voltage drop. This provides

Figure 14. Input Voltage vs Output Voltage of 'ALS/'AS

3-14

a better high-level noise immunity in 'ALS and and 'AS over standard TTL devices.

Input Characteristics

To use 'ALS/'AS devices fully, a knowledge of the input and output characteristics is required. This is particularly true when a device interfaces with a device not in the same TTL series. In addition, knowledge of voltage and current relationships for all elements is important for proper design.

Figure 15 illustrates a typical plot for input current I_I versus input voltage, V_I , characteristics for 'ALS/'AS gate inputs during normal operation. A typical series 54/74 characteristic plot is also shown for reference. Any device used to drive a TTL gate must source and sink current. Conventionally, current flowing toward a device input terminal is designated as positive and current flowing out

of a device input terminal is designated as negative. Lowlevel input current is negative current because it flows out of the input terminal. High-level input current is a positive current because it flows into the input terminal.

For transmission line conditions, a more accurate plot of the reverse bias section of these curves is required. These curves, Figure 16, are characteristic of the input clamping diode.

Low-Level Input Current

Figure 17 illustrates the dc equivalent of a standard 'ALS/'AS input circuit and shows the input current paths during a low-level input state. The low-level input current is primarily determined by resistor R1. However, low-level input current is also a function of the supply voltage, the ambient temperature, and the low-level input voltage. To

Figure 15. Input Current vs Input Voltage for TTL Families

Figure 16. Low-Level Input Current vs High-Level Input Voltage for TTL Families

assure desired device operation under all possible conditions, the worst-case test is performed on all devices. Supply voltage is taken to the highest allowable value to cause the low-level input current to be at a maximum. With the exception of the input under test, all unused inputs are taken to a high level. This enhances any contribution of these inputs to the low-level input current of the emitter under test.

Input Clamping Diode Test

The quality of the input clamping SBD (D2 in Figure 17) is tested by ensuring that the forward voltage drop is not

Figure 17. DC Equivalent Input Circuit for Series 'ALS Gate

greater than -1.2 V for 'AS and -1.5 V for 'ALS with a forward current of 18 mA. These values are guaranteed at minimum supply voltage and are valid across the operating temperature range. The characteristic of the input diode is illustrated in Figure 16.

High-Level Input Current

Another input parameter that must be measured and controlled is high-level input current. To ensure desired device operation under all possible conditions, the worst-case test is performed with all unused inputs grounded and supply voltage at its maximum value. This provides the highest value of low-level input current. Those devices with a high-level input current of sufficient magnitude to cause a degradation of high-level output voltage at an output must be screened out.

Input Breakdown Test

An additional high-level input current test is performed to check for base-emitter breakdown under the application of the full range of input voltages. This test is performed under the worst-case supply voltage conditions and is important because the base-emitter junction is small and can easily be overdissipated during the breakdown conditions.

Output Characteristics

The most versatile TTL output configuration is the pushpull (totem-pole) type. The totem-pole output has a low output impedance drive capability at both high and low logic levels. Both 'ALS and 'AS families use this configuration and have fanouts of 40 in both the high- and low-level states.

High-Level Output Characteristics

The ability of the totem-pole output to supply high-level output current is parametrically tested by applying a highlevel input current value during measurement of high-level output voltage. However, the quality of the output stage is best indicated by parametrically measuring its current sourcing I_{OS} capability when connected to ground. Figure 18 shows the equivalent output circuit under high-level output conditions.

Figure 19 illustrates typical high-level characteristics. When measuring worst-case high-level output voltage, minimum supply voltage is used. A worst-case low-level input voltage is applied to an input and all unused inputs are tied to supply voltage.

Low-Level Output Characteristics

Figure 20 shows that section of the output drive circuit which produces a low-level output voltage V_{OL} . This characteristic is also tested at minimum supply voltage. Figure 21 illustrates the typical curve.

Switching Speed

Two switching-speed parameters are guaranteed on Series 'ALS and 'AS gates: propagation delay time for a high-level to a low-level at the output t_{PHL} , and a low-level to high-level transition time t_{PLH} . Both parameters are specified with respect to the input pulse using standard test conditions as follows:

$$V_{CC} = 4.5 V \text{ to } 5.5 V$$
$$C_L = 50 \text{ pF}$$
$$R_L = 500$$
$$T_A = \text{MIN to MAX}$$

Under these conditions, times in the order of 4 ns for 'ALS and 1.7 ns for 'AS are typical. Figures 22 and 23 illustrate how the propagation delay time for 'ALS and 'AS devices vary with load capacitance.

Most current in the output stage is drawn when both output transistors are on (i.e., during output transitions, the average power dissipation of a gate with a totem-pole output increases with operating frequency). This is caused by more high-current transitions per second at the output as the frequency increases. Figure 24 illustrates the effect for both 'ALS and 'AS devices.

Figure 19. High-Level Output Voltage vs High-Level Output Current

DC Noise Margins

Noise margin is a voltage specification which guarantees the static dc immunity of a circuit to adverse operating conditions. Noise margin is defined as the difference between the worst-case input logic level (V_{IH} minimum or V_{IL})

maximum) and the guaranteed worst-case output (V_{OH} minimum or V_{OL} maximum) specified to drive the inputs. Table II lists the worst-case output limits for the 'AS and 'ALS families.

Figure 20. Low-Level Output Circuit for 'ALS/'AS Gates

Figure 21. Low-Level Output Voltage vs Low-Level Output Current

3-18

Figure 23. Low- to High-Level Propagation Delay vs Load Capacitance

Figure 24. Power Dissipation per Gate vs Frequency

Specified Logic Levels and Thresholds

The high-level noise margin is obtained by subtracting V_{IH} minimum from V_{OH} minimum. The low-level noise margin is obtained by subtracting V_{IL} maximum from V_{OL} maximum. The worst-case high-level noise margin is guaranteed to be at least 500 mV for both 'AS and 'ALS devices and at least 300 mV for low-level noise immunity across the operating free-air temperature ranges.

The usefulness of noise margins at the system design level is the ability of a device to be impervious to noise spikes at the input. The input voltage falls into one of three categories: low-logic state (between ground and 0.8 V), threshold region (between 0.8 V and 2 V), or high-logic state (between 2 V and V_{CC}). If an input voltage remains exclusively in the low-logic or high-logic state, it can undergo any excursions within that state. A level change from 5.5 V to 2 V or from ground to 0.8 V should not affect the output state of the device. To guarantee an expected output level change, the appropriate input has to undergo a change from one input state to the other input state (i.e., a transition through the threshold region). If a device will not remain in the correct state when voltage excursions on the input are occurring, it is violating its truth table.

Noise Rejection

The ability of a logic element to operate in a noise environment involves more than the dc or ac noise margins previously discussed. To present a problem, an externally generated noise pulse must be received into the system and cause a malfunction. Stable logic systems with no storage

PARAMETER (V)	'AS (0 °C to 70 °C)	'ALS (0°C to 70°C)	'AS (-55°C to 125°C)	'ALS (-55°C to 125°C)
VIH(MIN)	2	2	2	2
VIL(MAX)	0.8	0.8	0.8	0.8
VOH(MIN) @ CC = 4.5 V*	2.5	2.5	2.5	2.5
V _{OL} (MAX)	0.5	0.5	0.5	0.4
High Level Noise Margin (V _{OH} -V _{IH})	0.5	0.5	0.5	0.5
Low Level Noise Margin (V _{IL} -V _{OL})	0.3	0.3	0.3	0.4

Table II. Worst Case Output Paramete	ladie	adie II. worst U	ase out	idut rar	ameter
--------------------------------------	-------	------------------	---------	----------	--------

*Actual specification for VOH(min) is VCC - 2 V.

3

elements are practically impervious to ac noise. However, large dc voltages could cause noise problems. Systems with triggerable storage elements or those operating fast enough for the noise to appear as a signal are much more susceptible to noise.

The noise voltage must be radiated or coupled into the circuit. The amount of noise required to develop a given voltage is a function of the circuit impedance. Because of the low output impedance of TTL circuits, noise immunity is improved. Noise is transferred from the source (with some arbitrary impedance) through a coupling impedance to the impedance of the circuit under consideration.

Figure 25 shows a circuit where the coupling impedance is stray capacitance and the load impedance is provided by the gates. The relatively tight coupling of this circuit and the loading effect on the driving source is significant enough

Figure 25. Stray Coupling Capacitance

to be considered. However, since the source effect is difficult to assess and is in a direction to improve rather than degrade the noise rejection, its effects are ignored. This results in a worst-case type of response indication. In the case of radiated noise, the source resistance is a definite factor in noise coupling and essentially replaces the reactive coupling impedance.

By ignoring the driving source impedance to make conditions more nearly standard, it is possible to determine a set of curves relating the developed noise pulse to the noise source amplitude, the noise rise or fall time, the coupling impedance, and the load impedance. Curves have been developed¹ for several different input waveforms. Since the 'ALS waveform is essentially a ramp with a dv/vt of 1 V/ns (approximately 2.5 V/ns for 'AS), the most applicable curve is that for a ramp input.

Figure 26(a) shows the equivalent circuit from which the ramp response plot in Figure 26(b) was developed. The input pulse (shown as a heavy line) is a step signal with a liner rise requiring unit time (normalized). The output pulse is represented analytically by

$$e_0 = \tau (1 - e^{-t/\tau})$$

$$\tau = RC$$

with holding for unit time. This is followed by an exponentially decaying voltage with a time constant τ . Values

of τ and i on the figure are normalized by the value of the total rise time of the stimulated noise pulse e_i . Using Figure 26(b), the pulse width and amplitude of the coupled noise pulse can be estimated.

Figure 26. Evaluations of Gate Response to Fast Input Pulses

As an example, using the circuit shown in Figure 25, apply a noise pulse of 3 V in amplitude and rising at 1 V/ns with gate 2 at a high-logic state. Assume a nominal output impedance of 58 Ω (30 Ω for 'AS) and coupling capacitance of 10 pF. Use the following formula:

$$\tau = \text{RC} = (10 \times 10^{-12})(58)$$

= 0.58 × 10^{-9} = 0.58 ns

$$\text{Total rise time} = \frac{3 \text{ V}}{1 \text{ V/ns}} * = 3 \text{ ns}^{1}$$

**2.5 V/ns for 'AS

[†]1.2 ns for 'AS

To convert the normalized values of τ and i in Figure 26(b) to actual values, multiply by 3 ns. The output voltage scale will be multiplied by 3 V. Using the $\tau = 0.58$ curve gives a peak e₀ of 1.5 V (0.5 × 3) and a pulse width of 3 ns at the 50% points. To determine whether this pulse will cause interference, enter these values (1.5 V and 3 ns) on the graph shown in Figure 27. Since the gates have approximately 1.8 V of noise immunity at this point, they should not be affected. **APPLICATIONS**

Figure 27. Theoretical Required Pulse Width vs Pulse Amplitude for 'AS and 'ALS Inputs

If an open-collector gate is used with a passive 1 $k\Omega$ pullup resistor, the situation would change. Use the following formula:

$$\tau = (10 \times 10^{-12})(1 \times 10^3)$$

= 10 × 10^{-9} = 10 ns
Total rise time = $\frac{3 V}{1 V/ns^{**}} = 3 ns^{\dagger}$

**2.5 V/ns for 'AS †1.2 ns for 'AS

Now the amplitude (from the curves) approaches 3 V (0.96 \times 3) and the pulse width at the 50% points is approximately 10 ns (1 \times 10). The next gate will propagate this pulse.

This example is an oversimplification. The coupling impedances are complex (but resolvable into RLC series coupling elements) and the gate output impedance changes with load. Our purpose is to show why and how the low impedance of the active TTL output rejects noise and to make a comparison with a passive pull-up.

The ability to operate in a noisy environment is an interaction of the built-in operating margins, the time required for the device to react, and the ease with which a noise voltage is developed. In all cases, except the ability to react to short noise pulses, the TTL design has emhasized noise rejection.

Nothing has been discussed concerning noise in devices other than gate circuits. Many MSI devices are complex gate networks and, because of their small size, are more superior

ITEM	GUIDELINE
Single wire connections	Wire lengths up to approximately 12 inches may be used. A form of ground plane is desirable. Use point-to-point routing rather than parallel. If the wire is longer than 12 inches, use either a dense ground plane with the wire routed as close to it as possible, or use a twisted-pair cable.
Coaxial and twisted-pair cables	Design around approximately 80 Ω to 100 Ω of characteristic impedance. Cross talk increases at higher impedances. Use a coaxial cable of 93 Ω impedance (e.g., Microdot 293–3913). For twisted-pair cable, use number 26 or number 28 wire with the insulation twisted at the rate of 30 turns per foot.
Transmission-line-ground	Ensure that transmission-line ground returns are carried through at both transmitting and receiving ends. V _{CC} decoupling ground, device ground, and transmission-line ground should have a common tie point.
Cross talk	Use point-to-point back-panel wiring to minimize noise pickup between lines. Avoid long unshielded parallel runs. However, if they must be used, they should carry signals that propagate in the same direction.
Reflections	Reflections occur when data interconnects become long enough that 2-line propagation delays are pulse transition times. For series TTL, reflections are normally of no importance for lines shorter than 12 inches.
Resistive pull-up	If fanout of driving output permits, use approximately 300 Ω of resistive pull-up at the receiving end of long cables. This provides added noise margin and more rapid rise times.

Table III. Guidelines for Systems Design for Advanced Schottky TTL

in a noisy environment operation than their discrete gate equivalents. Noise tolerance of latching devices is implied in the setup times, hold times, clock pulse width, data pulse widths, and similar parameters. Output impedances and input noise margins are quite similar to those of the gates and may be treated in a similar manner. If a latching device does become noise triggered, the effective error is stored and does not disappear with the noise.

Parameter measurement information is shown in Figure 28.

NOTES:1. CL includes probe and jig capacitance.

- 2. All input pulses have the following characteristics PRR \leq 1 MHz, t_r = t_f = 2 ns, duty cycle = 50%.
- 3. When measuring propagation delay times of 3-state outputs, switch S1 is open.
- 4. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Figure 28. Parameter Measurement Information

3

APPLICATIONS

GUIDELINES FOR SERIES 'ALS/'AS TTL SYSTEM DESIGN

System layout and design requirements for Advanced Schottky TTL circuits are essentially the same as those guidelines which have previously been established and are applicable for all high-performance digital systems. Tables III through VI provide a brief summary of the solutions to most design decisions needed to implement systems using Advanced Schottky TTL. Supplementary data which may be useful for developing specific answers to unique problems is provided later.

POWER SUPPLY REGULATION

Power supply regulation cannot be treated as if it is an independent characteristic of the device involved. Power supply regulation, along with temperature range, affects noise margins, fanout, switching-speed, and several other parameters. The characteristics most affected are noise margin and fanout. When these two parameters are within the specified limits, the power-supply regulation will normally be within specified limits. However, on a device where auxiliary parameters are more critically specified, a more restrictive power-supply regulation is normally required. When power-supply regulation is normally required. When power-supply regulation is normally operate satisfactorily. However, if high ambient-noise levels and extreme temperatures are encountered, failures may occur.

Application of a supply voltage above 7 V (absolute maximum rating) will result in damage to the circuit.

Since power dissipation in the package is directly related to supply voltage, the maximum recommended supply voltage for TTL devices is specified at 5.5 V. This provides an adequate margin to ensure that functional capability and long-term reliability are not jeopardized.

High-level output voltage is almost directly proportional to supply voltage (i.e., a drop in supply voltage causes a drop in high-level output voltage and an increase in supply voltage results in an increase in high-level output voltage. Because of this relationship, high-level output voltage for 'ALS/'AS devices is specified as supply voltage $-2 V (V_{CC} - 2 V)$.

Since high-level output voltage is directly related to supply voltage, the output current of the device is also directly related. The output current value is established by choosing output conditions to produce a current that is approximately one-half of the true short-circuit current.

It is advantageous to regulate or clamp the maximum supply voltage at 5.5 V including noise ripple and spikes. When this conditions exists, unused AND and NAND gates can be connected directly to the supply voltage.

SUPPLY VOLTAGE RIPPLE

Ripple in the supply voltage is generally considered a part of the supply voltage regulation. However, when combined with other effects (e.g., slow rise times), ripple voltage is more significant.

The effect of ripple voltage V_R can appear on either the supply voltage V_{CC} or the ground supply GND. When ripple appears on the supply voltage, it causes modulation of the input signal. The extent of the effect depends upon circuit parameters and source impedance.

The turning on of transistor Q5, shown in Figures 12 and 13, is controlled by the voltage at the base of transistor Q2 with respect to ground in accordance with the formula:

 $V_B = V_{BE}$ of Q2 + V_{BE} of Q3 + V_{BE} of Q5

ITEM	GUIDELINE
Signal connection	s Whenever possible, distribute loads along direct connections. Signal leads should be kept as short as possible.
	However, lead lengths of up to 15 inches will perform satisfactorily. This is especially for large boards that
.	use a ground plane, ground, and/or V _{CC} plane. In addition, it will perform satisfactorily for small boards using
	ground mesh or grid. In high-frequency applications, avoid radial fanouts and stubs. If they must be used to
	drive some loads, reduce lead length proportionally and avoid sharp bends. Normal on-board fanouts and
	interconnections do not require terminations. Response of lines driving large numbers or highly capacitive loads
	can be improved with terminations of 300 Ω to V _{CC} and 600 Ω to ground in parallel with the last load if fanout
	of the driving output permits.
Conductor widths	Signal-line widths down to 0.015 inch are adequate for most signal leads.
Signal-line spacin	Signal-lead spacing on any layer down to 0.015 inch can be used especially if care is taken to avoid adjacent
	use of maximum length and minimum spacing. Increase spacing wherever layout permits. Pay particular attention
	to clock and/or other sensitive signals.
Insulator material	Thickness of insulation material used for a multilayer board is not critical. If ground and V _{CC} planes or meshes
	are used, their capacitive proximity can be used to reduce the number of decoupling capacitors needed and
	this also supplements the supply bypass capacitor.

ITEM	, GUIDELINE
Power supply	For RF bypass supply primary, maintain ripple and regulation at less than or equal to 10%.
V _{CC} decoupling	Decouple every 2 to 5 packages with RF capacitors of 0.01 to 0.1 μ F. Capacitors should be located as near as possible to the decoupled devices. Decouple line driving or receiving devices separately with 0.1 μ F capacitors between V _{CC} and the ground pins.
On-board grounding	A ground plane is essential when the PCB is relatively large (over 12 inches). Smaller boards will work with ground and/or V_{CC} mesh or grid.
System grounding	Try to simulate bus bars with a width to thickness ratio greater than or equal to 4. This can be accomplished by multiple parallel wires or by using flat braid. Performance will be enhanced when a copper or silver-copper bus is used. The width to thickness ratio required will vary between systems, but greater than or equal to 4 will satisfy most systems.

Table V. Guidelines for General Usage of Advanced Schottky TTL

Table VI. Guidelines for Gates and Flip-Flops Using Advanced Schottky TTL

ITEM	GUIDELINE
Data input rise and fall times	Reduce input rise and fall times as driver output impedance increases. Rise and fall times should be equal to or less than 50 ns/V and essentially free of noise ripple.
Unused input of AND and NAND gates and unused preset and	Tie the unused input of AND and NAND gates and the unused preset and/or clear inputs of flip-flops as follows:
clear inputs of flip-flops	 Directly to V_{CC}, if the input voltage rating of 5.5 V maximum is not exceeded.
	 Through a resistor equal to or greater than 1 kΩ to V_{CC}. Several inputs can be tied to one resistor.
	Directly to a used input of the same gate, if maximum fanout of driving device will not be exceeded. Only the high-level loading of the driver is increased.
	 Directly to an unused gate output, if the gate is wired to provide a constant high-level output. Input voltage should not exceed 5.5 V.
Unused input of NOR gates	Tie unused input to used input of same gate, if maximum fanout of driving device will not be exceeded or tie unused input to ground.
Unused gates	Tie input of unused NAND and NOR gates to ground for lowest power drain. Tie inputs of unused AND gates high and use output for driving unused AND or NAND gate inputs.
Increasing gate/buffer fanout	Connect gates of same package in parallel.
Clock pulse of flip-flops	Drive clock inputs with a TTL output. If not available, rise and fall times should be less than 50 ns/V and free of ripple noise spikes.

When ripple voltage is modulated onto the input voltage, the amplitude depends on the source impedance (Figure 29). The amplitude can be determined by the following equation:

$$\Delta \mathbf{V}_{\mathbf{R}} = \mathbf{V}_{\mathbf{R}} \left(\frac{\mathbf{R}1/\beta}{\mathbf{R}1/\beta + \mathbf{R}2} \right)$$
$$= \mathbf{V}_{\mathbf{R}} \left(\frac{\mathbf{R}1}{\mathbf{R}1 + \beta \mathbf{R}2} \right)$$

where R1 = source impedance

 β = gain of transistor Q1.

Ripple voltage has the effect of adding extra pulses to the input signal (Figure 30). When ripple voltage appears in the ground supply, the threshold voltage is modulated and extra pulses occur (Figure 31).

Although decreasing the source impedance will reduce the effects of ripple voltage, it cannot be eliminated entirely because the emitter-base junction has an apparent resistance of approximately 30 Ω . Because of cancellation between the

3

APPLICATIONS

driving gate and the driven gate, low-frequency ripple is not a problem.

Figure 30. Spurious Output Produced by Supply Voltage Ripple

Figure 31. Effect of Ground Noise on Noise Margin

NOISE CONSIDERATIONS

Extraneous voltages and currents (called noise) introduced into a digital logic circuit are discussed in the following paragraphs. Figure 32(a) is a typical digital logic circuit consisting of a NAND gate and a J-K flip-flop. When a small noise pulse is coupled onto the clock input [(Figure 32(b)], the flip-flop does not respond and the Q output is correct. However, when a large noise pulse is coupled onto the clock input [(Figure 32(c)], the flip-flop sees the pulse as a clock transition and an erroneous Q output occurs. Therefore, it is essential to protect digital logic circuits from noise.

Noise Types and Control Methods

The noise types encountered in digital logic systems, their source, and the method of controlling them are as follows:

> External noise -- External noises radiated into the system. The sources include circuit breakers, motor brushes, arcing relay contacts, and magnetic-field-generating. The methods of controlled to be considered are shielding, grounding, or decoupling.

- Power-line noise Noise coupled through the ac or dc power distribution system. The initial sources and controlling methods are the same as for external noise.
- Cross talk Noise induced into signal lines from adjacent signal lines. Controlling methods to consider are shielding, grounding, decoupling, and, where possible, increasing the distance between the signal lines.
- Signal-current noise Noise generated in stray impedances throughout the circuit. The controlling methods to consider are shielding, grounding, decoupling, and, where possible, reduction of stray capacitance in the circuit.
- Transmission-line reflections Noise from unterminated transmission lines that cause ringing and overshoot. The method of control is to use, where possible, terminated transmission lines.
- Supply-current spikes Noise caused by switching several digital loads simultaneously. The controlling method is to design, where possible, the system so that digital loads are not switched simultaneously.

Figure 32. Typical Logic Circuit with Noisy Input

Shielding

In addition to its own internally generated noise, electrical equipment must operate in an extremely noisy environment. Noise pulses, which may come from a number of sources, consist of an electrostatic field, and electromagnetic field, or both. The noise waveform must be prevented from entering the equipment. This is accomplished by shielding. Since the noise fields are usually changing at a rapid rate, the shield required to exclude them may be very small. For effective exclusion, the sensitive circuits must be completely shielded.

Aluminum or similar materials are effective in stopping electrostatic noise. However, only a ferrous metal can successfully protect equipment against magnetic fields. While it is helpful to connect the system to earth ground, the shield system must be complete and must be grounded to the system ground to prevent the shield from coupling noise into the system.

External noise may be conducted into the system by the power lines. Decoupling and filtering of these lines should be standard design procedure.

Grounding and Decoupling

The total propagation delay is of secondary importance in generation of internal noise. The actual transition time determines the amplitude and frequency spectrum of the generated signal at the higher harmonics. Application of the Fourier integral to series 'ALS/'AS waveforms shows frequency components of significant amplitude that exceed 100 MHz. Because of the frequency spectrum generated when an 'ALS/'AS device switches, a system using these devices must consider problems caused by radio frequency (RF) even though the repetition rates may be only a few megahertz. The transient currents generated by charging capacitors, changes in the levels of dc, line driving, etc., must be considered. In Figure 33 for example, a gate driving a transmission line is represented by a voltage source E, having an output impedance ZS connected to an impedance Z₀, and loaded with a resistance R_L.

Figure 33. Diagram Representing a Gate Driving a Transmission Line

Until after a reflected pulse returns from the termination of the transmitting device, line termination is not a factor in drive current. In a practical TTL circuit, the line termination must be high relative to the line impedance. For explanation purposes, assume that the source voltage is 5 V in amplitude, the output impedance of the source voltage makes the line impedance is 50 Ω . When the source voltage makes the transition from 0 V to 5 V, the voltage across the input of the line V_I is determined by the following equation:

$$V_{I} = E \frac{Z_{0}}{Z_{S} + Z_{0}} = 2.5 V$$

where

E = source voltage $Z_0 =$ line impedance

Z_S = source impedance

For the 50 Ω line to become charged, the current that must flow onto the line is determined by the following equation:

$$I_{\text{line}} = \frac{V_{\text{in}}}{Z_0} = \frac{2.5}{50} = 50 \text{ mA}$$

In addition, this current flows in the ground return, which, in this case, is the transmission-line ground. If the line and return are originated and terminated close to the driving and receiving devices, there is no discontinuity in the line. Where the ground is poorly returned, the current flow sees the discontinuity in the cable as a high impedance and a noise spike is generated (i.e., the ground current sees a low impedance and a current cancellation if the ground is properly carried through and, if not, it sees a high impedance). Figure 34 presents a specific example. Assume that the gate driving the line is switched from the high to low state. Current flow is indicated by the arrow marked with an I. Since the line is improperly returned to the driver, a pulse is developed across the impedance. A possible consequence is the false output of gate 3 (G3).

*Impedance of poor ground return

Figure 34. Noise Generation Caused by Poor Transmission-Line Return

If the ground return is properly connected, the proper results are obtained. The impedance discontinuity is eliminated and current cancellation occurs at the ground point. Undesirable voltage spikes are then eliminated. Two empirical rules to reduce transmission-line currents have been established and have been found to be effective (Figure 35).

- Carry all returns, including twisted pair and coaxial cables, to a good ground termination. Ground line returns close to the driving and receiving devices.
- 2. Decouple the supply voltage of line-driving and line-receiving gates with a $0.1-\mu F$ disk ceramic capacitor.

As the devices change state, current levels change because of the different device currents required in each state, the external loading, the transients caused by charging and discharging capacitive loads, and the conduction overlap in the totem-pole output stage. When a gate changes states, its internal supply current changes from high to low (these values are stated on the data sheet for each device). In addition, any capacitance, stray or otherwise, must be charged or discharged for a logic state change. The capacitance must be charged by a current determined by

$$I = C \frac{dv}{dt}$$
(4)

If the total stray capacitance on a gate output, the logic-level voltage excursion, and the associated rise or fall times are known, then the ideal-case instantaneous current during the transition can be calculated.

Broken arrow shows path of line-charging current

Figure 35. Ideal Transmission-Line Current Handling

From Eq. (4) it can be determined that the current transient for charging load capacitance will increase with higher speed TTL circuits. Therefore, the Series 54ALS/74ALS devices will have lower transient current than the Series 54AS/74AS devices. Another parameter that should be considered is the value of R7 (shown in Figures 12 and 13). Resistor R7 acts as a limit on the charging current.

The current required for charging load capacitance C_L (Figure 36) is supplied by the supply voltage when the transition is from logic low to logic high at the output of gate 1 (G1). When the output of G1 goes from high to low, the load capacitance is shorted to ground by transistor Q5 (shown in Figures 12 and 13) and has no effect on supply current.

Figure 36. Circuit with Effective Capacitive Loading

A characteristic common to all TTL totem-pole output stages contributes an additional current transient when the output changes from a logic low to a logic high. This transient, or spike, is caused by the overlap in conduction of the output transistors Q7 and Q5 (shown in Figures 12 and 13). The situation arises because transistor Q7 can turn on faster than transistor Q5 can turn off. This places a direct circuit consisting of transistors Q7 and Q5 and resistor R4 between supply voltage and ground. For all series 'ALS TTL circuits, the maximum possible peak current can be determined by

$$I_{CC}max = \frac{V_{CC} - V_{CEQ6} - V_{BEQ7} - V_{CEQ5}}{R7}$$

However, due to the active turnoff circuit (consisting of R5, R6, and Q4), Q5 will be only slightly in the linear region and the current spike will be less.

The total supply-current switching transient is then a combination of three major effects: the difference in highlevel and low-level supply current, the charging of load capacitance, and the conduction overlap. Tests were performed to demonstrate these effects. The results are shown in Figure 37. Six types of series TTL devices were tested with no load (i.e., the oscilloscope was connected to the output only when measuring V_O and the photographs were double exposed). This was to approximate the effects of conduction overlap isolated from the transient caused by charging load capacitance. Different vertical scales were used on some of the photographs.

The results are almost as predicted. The low-power devices have the lower transients. Since it is the fastest circuit, the SN74AS00 device should be highest. However, a decrease is shown, and the reason for the decrease is explained (Figure 39). The additional circuits to reduce conduction overlap of the output transistors result in a smaller transient even though the typical switching time is 1.7 ns compared to 9 ns for the Series 54/74LS.

The second series of tests shown in Figure 37 cover a capacitive load of 50 pF. For this test, all of the supply current transient peaks increase in amplitude and width.

Because of the larger transient currents, voltage spikes on the supply voltage measured at the IC package are also increased.

From these tests, it can be concluded that the condition to be avoided (the only one that can be avoided) is unnecessary stray capacitance in circuit wiring. The charging of load capacitance, in most cases, overshadows the other two effects with respect to noise produced on the supply voltage line by switching current transients.

The flow paths of these currents have been investigated to determine the grounding and decoupling necessary to counteract their effects. Supply voltage decoupling may be accomplished by one of two methods. Maintaining low impedance from the individual circuit supply voltage to

3-29

Figure 37(b). Supply-Current Transient Comparisons

3-30

ground is common to both methods. In the first method, the supply voltage line may be considered as a transmission line back to a low impedance supply. The positive bus can be laminated with a ground bus to form a strip transmission line of extremely low impedance. This line can be electrically approximated with lumped capacitances as shown in Figure 38. The inductances are usually a distributed component which must be minimized to lower the line impedance.

Figure 38. Transmission-Line Power Buses

The second method is to consider the supply voltage bus as a dc connecting element only and to provide a lowimpedance path near the devices for the transient currents to be grounded (Figure 39).

Figure 39. Capacitive Storage Supply Voltage System

For effective filtering and decoupling, the capacitors must be able to supply the change in current for a period of time greater than the pulse width of this current. Since the problem is essentially one of dc changes due to logic state coupled with high-frequency transients associated with the changes, two different values of time constant must be considered. Capacitors combining the high capacitance required for long periods with the low series reactance required for fast transients are prohibitive in cost and size. A good compromise is the arrangement shown in Figure 40.

The typical component values may be found for the RF capacitor C2 by assuming that the parameters have common values as follows:

$$\Delta I_{CC} = 50 \text{ mA}$$
$$\Delta V = 0.1 \text{ V}$$
$$\Delta T = 20 \text{ ns}$$

Then the equation is as follows:

1.1

$$C2 = \frac{\Delta I_{CC}}{\Delta V / \Delta T} = \frac{(50)(20) \times 10^{-12}}{0.1 / (20 \times 10^{-9})}$$
$$= \frac{50 \times 10^{-3}}{0.1} = 10,000 \times 10^{-12}$$
$$= 0.01 \ \mu F$$

The same method may be used for the low-frequency capacitor C1. However, the factor ΔT , which was a worstcase transient time for calculating C1, now becomes a bit ambiguous. An analysis of the current cycling on a statistical basis is the best method in all but the simplest systems. The recommended procedure is to decouple using 10 μ F to 50 μ F capacitors.

Figure 40. Commonly Used Power Distribution and Decoupling System

A discrete inductance of 2 μ H to 10 μ H is sometimes used for additional decoupling. However, its benefits are questionable and its usefulness should be evaluated for the individual system. The low-pass filter formed must be capable of keeping the transients confined and off the distribution bus. The possibility of resonance in the inductor or LC combination must be considered.

Noise spikes on the supply voltage line that do not force the gate output below the threshold level do not present a serious problem. Downward spikes as large as 3 V can be tolerated on the supply voltage line without propagating through the logic system. The system designer can be confident that supply voltage noise can be handled even with minimal consideration.

Ground noise, however, cannot be treated lightly. Pulses on a high-impedance ground line can easily exceed the noise threshold. Only if a good ground system is maintained can this problem be overcome. If proper attention is paid to the ground system, noise problems can be minimized.

The concept of a common-ground-plane structure as used in RF and high-speed digital systems is quite different from the concept of the common-ground point as used in lowfrequency circuits. The more closely the chassis and ground can approach to being an integral unit, the better the noise suppression characteristics of the system. Consequently, all parts of the chassis and ground bus system must be bound tightly together both electrically and mechanically. Floating or poorly grounded sections not only break the integrity of the ground system, but may actually act as a noise distribution system.

For grounds and decoupling on printed circuit boards, the most desirable arrangement is a double-clad or multilayer board with a solid ground plane or a mesh. Where component density prohibits this, the ideal should be relaxed only as far as necessary. Cross talk and ground noise can be reduced on large boards with a ground plane. Some suggestions for board grounds where a plane is not practical are as follows:

- 1. Use as wide a ground strap as possible.
- Form a complete loop around the board by bringing both sides of the board through separate pins to the system ground.

The supply voltage line can provide part of the ground mesh on the board, provided it is properly decoupled. For a TTL system, a good guideline is 0.01 µF per synchronously driven gate and at least 0.1 µF for each 20 gates, regardless of synchronization. This capacitance may be lumped, but is more effective if distributed over the board. A good rule is to permit no more than 5 inches of wire between any two package supply-voltage points. Radio-frequency-type capacitors must be used for decoupling. Disk ceramics are best. It is sometimes a good practice to decouple the board from the external supply-voltage line with a 2.2 μ F capacitor. However, this is optional and the RF capacitors are still required. In addition, it is recommended that gates driving long lines have the supply voltage decoupled at the gate supply voltage terminal and that the capacitor ground, device ground, and transmission-line ground be connected to a common point.

Cross Talk

When currents and voltages are impressed on a connecting line in a system, it is impossible for adjacent lines to remain unaffected. Static and magnetic fields interact and opposing ground currents flow, creating linking magnetic fields. These cross-coupling effects are lumped together and called cross talk.

Back-Panel Interconnections

Interconnecting signal lines can be grouped into three broad categories: coaxial lines, twisted-pair lines, and straight wire lines. Because of the low impedance and shielding characteristics of coaxial cable, its cross talk is minimal and is not a problem with TTL.

Figure 41 illustrates a practical type of signal transmission line. The mutual reactances L_m and C_m which form the noise coupling paths and the line parameters L_s and C_g which govern the line impedance, will vary with the type of line used. Since cross talk is a function of the ratio of the mutual impedances to the line characteristic impedances, the selection of transmission-line type must be at least partially a factor in cross-talk considerations.

ALL GATES SN74ALS00

Figure 41. Equivalent Circuit for Sending Line

The use of direct-wired connections is the simplest and lowest cost method, but they are also the poorest for noise rejection. If the lead is not cabled tightly together with similar leads, direct leads up to 12 inches in length can be used.

When the length of the signal line is increased, the line impedance is seen by the driving and receiving gates. As shown in Figure 42, a pulse sent along the sending line G3 and G4 will be coupled via the coupling impedance Z_c onto the receiving line G1 and G2, which can be in either of the two logic states. The extent to which cross talk will occur depends on the type of lines used and their relationship to each other.

(Z_C) - COUPLING IMPEDANCE

Figure 42. Equivalent Circuit for Cross Talk

The voltage impressed on the sending line by gate G3 is determined by the equation:

$$V_{\rm SL} = \frac{V_{\rm G3}Z_0}{R_{\rm S3} + Z_0} \tag{5}$$

where

V_{G3} = open-circuit logic voltage swing generated by gate G3

 R_{S3} = output impedance of gate G3

- $Z_0 = line impedance$
- V_{SL} = voltage impressed on the sending line.

The relationship for the equation is illustrated in Figures 43 and 44.

The coupling from the sending line to the receiving line can be represented by taking coupling impedance Z_c into

Figure 43. Capacitive Cross Talk Between Two Signal Lines

account. An equivalent circuit to represent the coupling from the sending line to the receiving line is shown in Figure 44.

As the voltage impressed on the sending line propagates farther along the line, it can be represented as voltage source V_{SL} with a source impedance of Z_{01} (Figure 45). V_{SL} is then coupled to the receiving line via the coupling capacitance, where the impedance looking into the line is line impedance in both directions. Therefore the equation becomes

$$v_{RL} = v_{SL} \frac{\frac{z_0}{2}}{(1.5 z_0 + z_0)}$$

The voltage impressed on the receiving line (V_{RL}) then propagates along the receiving line to gate G2 which can be considered as an open circuit and voltage doubling occurs. Therefore:

$$V_{in(2)} = 2 V_{RL} = V_{G3} \left(\frac{1}{1.5 + \frac{Z_c}{Z_0}} \right) \left(\frac{Z_0}{RS3 + Z_0} \right)$$

In the switching period, the transistor has a very low output impedance. Then $R_{S3} \ll Z_0$ and $V_{in(2)}$ can be simplified to the following:

The term $V_{in(2)}/V_{G3}$ can be defined as the cross-talk coupling constant.

The worst-case for signal line cross talk occurs when sending and receiving lines are close together but widely separated from a ground return path. The lines then have a high characteristic impedance and a low coupling impedance.

For example, if we assume a coupling impedance of 50 pF at 150 MHz with a line impedance of approximately 200 Ω then:

$$\frac{V_{in(2)}}{V_{G3}} = 0.62$$

1.1.1.1

This level is unsatisfactory because none of the very highspeed logic circuits has a guaranteed noise margin greater than one-third of the logic swing. Such potential cross talk can be avoided by not using the close spacing of conductors.

Figure 45. Equivalent Cross-Talk Network

Mutual coupling can be reduced by using coaxial cable or shielded twisted pairs. When mutual inductance and capacitance are decreased, line capacitance is increased and imposes restrictions on the driver. Coaxial cable combines very high mutual impedance with low characteristic impedance and shielding. It effectively eliminates cross talk, but is necessary in only the noisiest environments. Twisted pairs are adequate for most applications and are typically less expensive and easier to use.

Figure 44. Coupling Impedances Involved in Cross Talk

Printed Circuit Card Conductors

Signal interconnections on a two-sided or multilayer printed circuit card can be grouped into two general categories: microstrip lines and strip lines. The microstrip line (Figure 46) consists of a signal conductor separated from a ground plane by a dielectric insulating material. A strip line (Figure 47) consists of a signal conductor within a dielectric insulating material and the conductor being centered between two parallel conductor planes. The important features of these type of printed circuit conductors are that the impedances are highly predictable, can be closely controlled, and the process is relatively inexpensive because standard printed circuit board manufacturing techniques are used. Typical impedances of these types of conductors with respect to their physical size and relative spacings are shown in Tables VII and VIII.

Table VII. Typical Impedance of Microstrip Lines

Dimensions		Line Impedance	Capacitance
H (mils)	W (mils)	Z _O (Ω)	per Foot (pF)
6	20	35	40
6	15	40	35
15	20	56	30
15	15	66	26
30	20	80	20
30	15	89	18
60	20	105	16
60	15	114	14
100	20	124	13
100	15	132	12

Relative dielectric constant = 5

Table VIII. Typical Impedance of Strip Lines

Dimens	ions	Line Impedance	Conseitence
H'a = H'b = (mils)	W (mils)	ZO (ມ)	Capacitance per Foot (pF)
6	20	27	80
6	15	32	70
10	20	34	67
10	15	40	56
12	20	37	57
12	15	43	48
20	20	44	48
20	15	51	42
30	20	55	39
30	15	61	35

Relative dielectric constant ≈5, and H'a = H'b

Cross talk on a printed circuit board is also a function of the mutual reactances and the line parameters which govern the line impedance. A microstrip line and a strip line are, by definition, conductors placed relatively close to a ground plane. Therefore, they have at least one inherent property which tends to reduce cross talk. In addition, the thickness (H) of the dielectric and the spacing (S) of the conductors can be implemented selectively to reduce the amount of possible cross talk. The effects of these two dimensions on cross talk have been evaluated and are shown graphically in Figure 48. The data shown can be used to estimate the maximum crosstalk which will be encountered under the most unfavorable conditions.

Figure 48. Line Spacing Versus Cross-Talk Constant

Transmission-Line Driving Reflections

When the interconnections used to transfer digital information become long enough so that line propagation delay is equal to or greater than the pulse transition times, the effects of reflections must be considered. These reflections are created because most TTL interconnections are not terminated in their characteristic impedance. Reflections lead to reduced noise margins, excessive delays, ringing, and overshoot. Some method must be used to analyze these reflections. Because neither the gate input nor output impedance is linear, basic transmission-line equations are applicable but unwieldy. Transmission-line characteristics of TTL interconnections can be analyzed by using a simple graphic technique.

Figure 49 shows piecewise linear plots of a gate input and both (logic-high and logic-low) states of the output for a typical TTL device. The output curves are plotted with positive slopes. The input is inverted because it is at the receiving end of a transmission line. The logic-high and logiclow intersections are indicated on the plot. These points are the steady-state values which will be observed on a lossless transmission line (Figure 50).

Figure 50 shows a typical TTL interconnection using a twisted-pair cable which, in this example, has a characteristic impedance of approximately 30 Ω . To evaluate a logic-high to logic-low 'AS transition see Figures 51 and 52. The equation $-1/Z_0$ ($Z_0 = 30 \Omega$), which represents the transmission line, is superimposed on the output characteristic curves in the Bergeron plot. Since evaluation of a logic-high to logic-low transition is desired, the $-1/Z_0$ line starts at the point of intersection of the impedance curves of the input and output for a logic-high state. The slope $-1/Z_0$ then proceeds toward the logic-low output curve. At time t_0 , the driver output voltage is determined by the intersection of

Figure 49. TTL Bergeron Diagram

Figure 50. 'ALS/'AS Driving Twisted Pair

 $-1/Z_0$ and the logic-low output curve (1.2 V). The transmission-line slope now becomes $1/Z_0$ and is drawn toward the input curve. At time $t_1 [t_{(n+1)}-t_n =$ time delay of line], the receiving gate sees -1.7 V. Now the line slope changes back to $-1/Z_0$ and the output curve for a logic low is approached. This action continues until the logic-low intersection is reached. Figure 52 plots driver and receiver voltages versus time for this example.

A logic-low to logic-high transition is treated in approximately the same manner (Figure 53). The Bergeron line $-1/Z_0$ starts at the intersection for a logic low. At time t_0 , the driver output rises to 2.2 V and, at time t_1 , the receiving gate input goes to approximately 4.35 V. Both output and input voltages are plotted in Figure 54.

Figures 55 through 58 illustrate 'ALS transitions and are treated in the same manner as the 'AS.

The scope photographs in Figures 59 through 66 show the effectiveness of the graphic techniques. In most cases, the calculated and experimental values of voltage steps agree within reason. The ringing that appears for the open wire is not immediately obvious. This is because the input and output curves in this region lie practically along the positive horizontal axis. At the scale used for graphic analysis, it is difficult to go much beyond the first few reflections. The graphic analysis is idealized and stray capacitance and inductance are not considered. **APPLICATIONS**

Figure 51. 'AS - ve Transition Bergeron Diagram

Figure 52. 'AS - ve Voltage/Time Plot

0

Figure 53. 'AS + ve Transition Bergeron Diagram

Figure 54. 'AS +ve Voltage/Time Plot

Figure 55. 'ALS - ve Transition Bergeron Diagram

Figure 56. 'ALS - ve Voltage/Time Plot

Figure 57. 'ALS + ve Transition Bergeron Diagram

Figure 58. 'ALS + ve Voltage/Time Plot

TRANSITION $(1 \rightarrow 0)$

Figure 59. Oscilloscope Photograph of 'AS001 - ve Transition Using 50-Ohm Line

TRANSITION (0 -+ 1)

Figure 60. Oscilloscope Photograph of 'AS00 + ve Transition Using 50-Ohm Line

Figure 62. Oscilloscope Photograph of 'AS00 + ve Transition Using 25-Ohm Line

Figure 63. Oscilloscope Photograph of 'ALS00A – ve Transition Using 50-Ohm Line

Figure 64. Oscilloscope Photograph of 'ALS00A + ve Transition Using 50-Ohm Line

وريوم برماك لأرب

TRANSITION (1 -> 0)

Figure 65. Oscilloscope Photograph of 'ALS00A - ve Transition Using 25-Ohm Line

Figure 66. Oscilloscope Photograph of 'ALS00A + ve Transition Using 25-Ohm Line

References

د امان محموظ در المهمت_{ا ع}ين ا

- I. W.C. Elmore and M. Sands, Electronics Experimental Techniques, McGraw-Hill Book Co., New York, 30ff. (1949).
- 2. M. Williams and S. Miller, Series 54ALS/74ALS Schottky TTL Applications B215, Texas Instruments Limited, Bedford, England, August 1982.

Acknowledgment

This application report is an updated version of Reference 2 with significant contributions by the technical engineering staff at Texas Instruments and particularly by Rock Cozad, Rich Moore, and Bob Strong.

•

က APPLICATIONS

3-42

Appendix A Normalized Load Factors

Normalizing output drive capability and input current requirements can be very useful to designers of systems using two or more of the TI TTL series of devices. It provides a set of load factors (input cuurent requirements in Table A-I), which can be summed and compared directly to the fanout capability (see Table A-II) of the output being considered. The load factor values shown are valid for any input rated at one unit load.

The loading of these type of outputs can be checked from any column. However, most designs use one of the series as the basic building block and, since the tables cover each series individually, the designer has the choice of working from the column containing the normalized fanout. As an example, the designers of a system using series 'AS as the basic circuit will probably find that the use of the 'AS00 and 'AS1000 columns will suit best because both fanout and load factors are expressed for these series of devices.

The use of these simple and easy-to-remember numbers was developed within each series to make the verification of output loading a matter of counting the number of inputs connected to a particular output. When mixtures of series are used, a common denominator (normalized factor) becomes useful.

USE OF TABLES A-I AND A-II

Every possible combination of the seven 54/74 TTL families is included in these tables. If, for example, the existing system used 74S series logic and it is desired that some of it be replaced by series 74ALS logic, a quick check should be made on whether the 'ALS can be supplied with sufficient input current. By taking the 74S row and 'ALS, column figures of 2.5 and 20 are obtained for high- and low-level loads, respectively (see Table A-I). This indicates that, for high logic levels, two and one-half 'ALS gates can be driven for each 'S series gate removed. However, if more 74S series gates are being driven by this 'ALS device, the fanout between 'ALS and 'S series gate is required, you can now use Table A-II.

The 'ALS row and the 'S column are chosen. The figures are 8 for the high-logic level and 4 for the low-logic level. In this case the lowest figure is taken so that the interconnection is reliable for both logic states. So each 'ALS gate inserted will drive 4 'S series gates.

Table A-I is normally used (in combination with Table A-II) when replacing one logic family with another in an existing system.

Table A-II is normally used when originally designing a system which employs several TTL families to optimize performance.

SERIES	I/O	INPUT CURRENT (mA)	INPUT CURRENT NORMALIZED									
			'00 '	'H00	'L00	'LS00	'S00	'AS00	'ALSOOA	'A\$1000	'ALS1000A	
54/7400	HI	0.04	1	0.8	4	2	0.8	2	2	2	2	
54/7400	LO	1.6	1	0.8	8.89	4	0.8	3.2	16	3.2	16	
54H/74H00	н	0.05	1.25	1	5	2.5	1	2.5	2.5	2.5	2.5	
54H/74H00	LO	2	1.25	1	11.13	5	1	4	20	4	20	
54/74L00	н	0.01	0.25	0.2	1	0.5	0.2	0.5	0.5	0.5	0.5	
54/74L00	LO	0.18	0.11	0.09	1	0.45	0.09	0.36	1.8	0.36	1.8	
54LS/74LS00	н	0.02	0.5	0.4	2	1	0.4	1	1	1	1	
54LS/74LS00	LO	0.4	0.25	0.2	2.22	1	0.2	0.8	4	0.8	4	
54S/74S00	н	0.05	1.25	1	5	2.5	1	2.5	2.5	2.5	2.5	
54S/74S00	LO	2	1.25	1	11.11	5	1	4	20	4	20	
54AS/74AS00	HI	0.02	0.5	0.4	2	1	0.4	1	1	1	1	
54AS/74AS00	LO	0.5	0.31	0.25	2.78	1.25	0.25	1	5	1	5	
54ALS/74ALS00A	HI	0.02	0.5	0.4	2	1	0.4	1	1	1	1	
54ALS/74ALSOOA	ŁO	0.1	0.06	0.05	0.56	0.25	0.05	0.2	1	0.2	1	
54AS1000	н	0.02	0.5	0.4	2	1	0.4	1	1	1	1	
54AS1000	LO	0.5	0.31	0.25	2.78	1.25	0.25	1	5	1	5	
54ALS1000A	HI	0.02	0.5	0.4	2	1	0.4	1	1	1	1	
54ALS1000A	LO	0.1	0.06	0.05	0.56	0.25	0.05	0.2	1	0.2	1	

Table A-I. Normalized Input Currents

APPLICATIONS

SERIES	1/0	OUTPUT CURRENT (mA)	OUTPUT DRIVE NORMALIZED									
			`00 `	'H00	'L00	'LS00	'S00	'AS00	'ALSOOA	'AS1000	'ALS1000A	
			*HI 0.04	0.05	0.01	0.02	0.05	0.02	0.02	0.02	0.02	
			[†] LO 1.6	2	0.18	0.4	2	0.5	0.1	0.5	0.1	
54/7400	н	0.4	10	8	40	20	8	20	20	20	20	
54/7400	LO	16	10	8	88.89	40	8	32	160	32	160	
54H/74H00	ні	0.5	12.5	10	50	25	10	25	25	25	25	
54H/74H00	LO	20	12.5	10	111.11	50	10	40	200	40	200	
54L00	н	0.1	2.5	2	10	5	2	5	5	5	5	
54L00	LO	2	1.25	1	11.11	5	1	4	20	4	20	
74L00	ні	0.2	5	4	20	10	4	10	10	10	10	
74L00	LO	3.6	2.25	1.8	20	9	1.8	7.2	36	7.2	36	
54LS/74LS00	н	0.4	10	8	40	20	8	20	20	20	20	
54LS00	LO	4	2.5	2	22.22	10	2	8	40	8	40	
74LS00	LO	8	5	4	44.44	20	4	16	80	16	80	
54S/74S00	HI	1	25	20	100	50	20	50	50	50	50	
54S/74S00	LO	20	12.5	10	111.11	50	10	40	200	40	200	
54AS/74AS00	HI	2	50	40	200	100	40	100	100	100	100	
54AS/74AS00	LO	20	12.5	10	111.11	50	10	40	200	40	200	
54ALS/74ALSOOA	HI	0.4	10	8	40	20	8	20	20	20	20	
54ALSOOA	LO	4	2.5	2	22.22	10	2	8	40	8	40	
74ALSOOA	LO	8	5	4	44.44	20	4	16	80	16	80	
54AS1000	н	40	1000	800	4000	2000	800	2000	2000	2000	2000	
54AS1000	LO	40	25	20	222.22	100	20	80	400	80	400	
74AS1000	н	48	1200	960	4800	2400	960	2400	2400	2400	2400	
74AS1000	LO	48	30	24	266.67	120	24	96	480	96	480	
54ALS1000A	н	1	25	20	100	50	20	50	50	50	50	
54ALS1000A	LO	12	7.5	6	66.67	30	6	24	120	24	120	
74ALS1000A	н	2	65	52	260	130	52	130	130	130	130	
74ALS1000A	10	24	15	12	133.33	60	12	48	240	48	240	

Table A-II. Fanout Capability (Output Currents Normalized to Input Currents)

*Input Current HI

[†]Input Curent LO

3-44

Appendix B

. . . .

Letter Symbols, Terms, and Definitions

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronics Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use. The definitions are grouped into sections applying to voltages, currents, switching characteristics, and classification of circuit complexity.

VOLTAGES

VIH High-level input voltage

An input voltage level within the more positive (less negative) of the two ranges of values used to represent the binary variables. A minimum value is specified which is the least-positive (most-negative) value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

VIL Low-level input voltage

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables. A maximum value is specified which is the most-positive (least-negative) value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.

VT + Positive-going threshold voltage

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T-} .

VT - Negative-going threshold voltage

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, V_{T+} .

VOH High-level output voltage

The voltage at an output terminal for a specified output current IOH with input conditions applied that according to the product specification will establish a high level at the output.

VOL Low-level output voltage

The voltage at an output terminal for a specified output current IOL with input conditions applied that according to the product specification will establish a low level at the output.

VO(on) On-state output voltage

The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the on state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

VO(off) Off-state output voltage

The voltage at an output terminal for a specified output current with input conditions applied that according to the specification will cause the output switching element to be in the off state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

CURRENT

IIH High-level input current

The current flowing into* an input when a specified high-level voltage is applied to that input.

IIL Low-level input current

The current flowing into* an input when a specified low-level voltage is applied to that input.

*Current flowing out of a terminal is a negative value.

IOH High-level output current

The current flowing into* the output with a specified high-level output voltage VOH applied.

Note: This parameter is usually specified for open-collector outputs intended to drive other logic circuits.

IO(off) Off-state output current

The current flowing into^{*} an output with a specified output voltage applied and input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This parameter is usually specified for open-collector outputs intended to drive devices other than logic circuits or for three-state outputs.

IOS Short-circuit output current

The current flowing into^{*} an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

ICCH Supply current, output(s) high

The current flowing into* the V_{CC} supply terminal of a circuit when the reference output(s) is (are) at a high-level voltage.

ICCL Supply current, output(s) low

The current flowing into* the V_{CC} supply terminal of a circuit when the reference output(s) is (are) at a low-level voltage.

DYNAMIC CHARACTERISTICS

fmax Maximum clock frequency

The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause a change of output state with each clock pulse.

tHZ Output disable time (of a three-state output) from high level

The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.

tLZ Output disable time (of a three-state output) from low level

The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.

tPLH Propagation delay time, low-to-high-level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.

tPHL Propagation delay time, high-to-low-level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

tTLH Transition time, low-to-high-level output

The time between a specified low-level voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level.

tTHL Transition time, high-to-low-level output

The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high level to the defined low level.

tw Average pulse width

The time between 50% amplitude points (or other specified reference points) on the leading and trailing edges of a pulse.

*Current flowing out of a terminal is a negative value.

th Hold time

The time interval for which a signal or pulse is retained at a specified input terminal after an active transition occurs at another specified input terminal.

. . . .

trelease Release time

The time interval between the release from a specified input terminal of data intended to be recognized and the occurrence of an active transition at another specified input terminal.

Note: When specified, the interval designated "release time" falls within the setup interval and constitutes, in effect, a negative hold time.

t_{su} Setup time

The time interval for which a signal is applied and maintained at a specified input terminal before an active transition occurs at another specified input terminal.

tZH Output enable time (of a three-state output) to high level

The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level.

tZL Output enable time (of a three-state output) to low level

The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.

CLASSIFICATION OF CIRCUIT COMPLEXITY

Gate equivalent circuit

A basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that number of individual logic gates that would have to be interconnected to perform the same function.

LSI Large-scale integration

A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit. In this context a major subsystem or system, whether logical or linear, is considered to be one that contains 100 or more equivalent gates or circuitry of similar complexity.

MSI Medium-scale integration

A concept whereby a complete subsystem or system function is fabricated as a single microcircuit. The subsystem or system is smaller than for LSI, but whether digital or linear, is considered to be one that contains 12 or more equivalent gates or circuitry of similar complexity.

SSI Small-scale integration

Integrated circuits of less complexity than medium-scale integration (MSI).

*Current flowing out of a terminal is a negative value.

1

Texas Instruments Semiconductor Technical Literature

TTL Data Book, Vol. 1, 1984, 336 pages.

Product guide for all TI TTL devices, functional indexes, alphanumeric index, and general information.

TTL Data Book, Vol. 2, 1984, 1,000 pages.

Detailed specifications and application information on the TI family of Low-power Schottky (LS), Schottky (S), and standard TTL logic devices.

TTL Data Book, Vol. 3, 1984, 792 pages.

Detailed specifications and application information on the TI family of Advanced Low-power Schottky (ALS) and Advanced Schottky (AS) logic devices.

TTL Data Book, Vol. 4, 1984, 416 pages.

Detailed specifications and application information on the Tl family of bipolar field-programmable logic (FPL), programmable readonly memories (PROM), randomaccess memories (RAM), microprocessors, and support circuits.

High-speed CMOS Logic Data Book, 1984, 580 pages.

Detailed specifications and application information on the TI family of High-speed CMOS logic devices. Includes product selection guide, glossary, and alphanumeric index.

Linear Circuits Data Book, 1984, 820 pages.

Detailed specifications on operational amplifiers, voltage comparators, voltage regulators, dataacquisition devices, a/d converters, timers, switches, amplifiers, and special functions. Includes LinCMOSTM functions. Contains product guide, interchangeability guide, glossary, and alphanumeric index.

Interface Circuits Data Book, 1981, 700 pages.

Includes specifications and applications information on TTL logic interface circuits, as well as product profiles on the line drivers/receivers and peripheral drivers.

Optoelectronics Data Book, 1983, 480 pages.

Contains more than 300 device types representing traditional optoelectronics (IREDs, LEDs, détectors, couplers, and displays), special components (avalanche, photodiodes, and transimpedance amplifiers), fiber optic components (sources, detectors, and interconnecting cables), and new image sensors (linear and arrays).

MOS Memory Data Book, 1984, 456 pages.

Detailed specifications on dynamic RAMs, static RAMs, EPROMs, ROMs, cache address comparators, and memory controllers. Contains product guide, interchangeability guide, glossary, and alphanumeric index. Also, chapters on testing and reliability.

TMS7000 Family Data Manual, 1983, 350 pages.

Detailed specifications and application information on TI's family of microprogrammable 8-bit microcomputers. Includes architecture description, device operation, instruction set, electrical characteristics, and mechanical data. TMS7000 microcomputers include versions in CMOS and SMOS and with on-board UART.

TMSxxxxx Microcomputer Data Manuals

These manuals contain detailed specifications and application information on specific TMSxxxxx microcomputers and peripherals. Include architecture description, device operation, instruction set, electrical characteristics, and mechanical data.

Assembly Language

Programmer's Guides. TMS32010, 1983, 160 pages. TMS99000, 1983, 322 pages. TMS7000, 1983, 160 pages. Include general programming information, assembly instructions, assembler directives, assembler output, and application notes.

TMS32010 User's Guide, 1984, 400 pages.

Detailed application information on the TMS32010 Digital Signal Processor. Detailed reference manual on use of the TMS320 instruction set. Data sheets included.

Fundamentals of Microcomputer Design, 1982, 584 pages.

University textbook. Subjects include microprocessors, software, instruction sets, microcomputer programming, high-level languages, hardware features, microcomputer memory, and I/O design. A design example is included.

Understanding SeriesTM Books The Understanding Series books form a library written for anyone who wants to learn quickly and easily about today's technology, its impact on our world, and its application in our lives. Each book is written in bright, clear, down-to-earth language and focuses on one aspect of what's new in today's electronics. Engineering concepts and theory are explained using simple arithmetic. Technical terms are explained in layman's language. Ideal for self-paced, individualized instruction. Currently 13 different titles in the series.

Write for current availability and prices to:

Texas Instruments Information Publishing Center P.O. Box 225012 MS-54 Dallas, TX 75265

April 1984

.

TI Worldwide Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514. Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, 8102 N. 23rd Ave., Suite 1B, Phoenix, AZ 85021, (602) 995-1007.

Re 8041 (002) 99-1001. CALIPORNIA: Irvine, 17991 Cartwright Rd., Irvine, CA 92714, (714) 660-1200; Sacramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929-1521, San Diego, 433 View Rdge Ave., Suite B., San Diego, CA 92123, (714) 278-9000; Santa Clars, 5353 Betsy Ross Dr., Santa Clara, CA 9554, (408) 960-0000; Tormance, 19505 Hamilton Sr., Bldg, A., Suite I, Torrance, CA 90562, (213) 973-2571; Woodland Hills, 21202 Ervin St., Woodland Hills, CA 91467, (213) 704-7759.

COLORADO: Aurora, 1400 S. Potomac Ave., Suite 101, Aurora, CO 80012, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074.

FLORIDA: Fr. Lauderdale, 2765 N.W. 62nd Sr., Fr. Lauderdale, Fl. 33309, (105) 973-8502; Maisland, 2601 Maisland Center Parkway, Mariland, Fl. 32751, (105) 660-6600; Tampa, 5010 W. Kennedy Blvd., Suite 101, Tampa, FL. 34609, (813) 870-6420.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-3000.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46815, (219) 424-5174; Indianapolia, 2346 S. Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd., Waltham, MA 02154, (617) 895-9100.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuquerque, NM 87110, (505) 395-2555.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East Syracuse, NY 13057, (1315) 463-9291; Endicott, 112 Nanticoke Ave. P.O. Boo fils, Endicott, NY 13760, (607) 754-3900; Melville, YI Huntington Quadrangle, Suite SC10, P.O. Box 2916, Melville, NY 11747, (1516) 454-6600; Poughkeepsie, 385 South Rd., Poughkeepsie, NY 12601, (914) 473-2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623, (716) 424-5400.

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 2809 Highwoods Blvd., Suite 100, Raleigh, NC 27625, (1919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwoo OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 7615 East 63rd Place, 3 Memorial Place, Tulsa, OK 74133, (918) 250-0633.

OREGON: Beaverton, 6700 SW 105th St., Suite 110, Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 260 New York Dr., Ft. Washington, PA 19034, (215) 643-6450, Corsopolis, 420 Rouser Rd. 3 Airport Office Park, Corsopolis, PA 15108, (412) 771-8550.

. . . .

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909, Austrin, TX 78723, (512) 250-7655, Richardsonft 1001 E. Campbell Rd., Richardson, TX 75000, (214) 680-5082, Houston, 9100 Southwest Frey, Suite 217, Houston, TX 7036, (713) 778-6592, San Antonio, 1000 Central Parkway South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Murray, 5201 South Green SE, Suite 200, Murray, UT 84107, (801) 266-8972.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400.

WISCONSIN: Brookfield, 450 N. Sunny Slope, Suite 150, Brookfield, WI 53005, (414) 785-7140.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bidg. 6, Redmond, WA 98052, (206) 881-3080.

CANADA: Neppan, 101 Woodle Drive, Mallom Center, Neppan, Ontario, Canada, K2H9C4, (613) 726-1970; Richmond Hill, 200 Centre St. E., Richmord Hill J4C1B1. Ontario, Canada, (1410 884-9181; St. Laurent, Vile St. Laurent Quebec, 1940 Trans Canada Hwy, St. Laurent, Quebec, Canada H451R7, (514) 314-3635 F

ARGENTINA, Texas Instruments Argentina S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, 394-2963.

AUSTRALIA (6. NEW ZEALAND). Texas Instruments Australia Ltd.: 6-10 Talavera Rd., North Ryde (5ydney). New South Wales, Australia 2110, 02 + 887-1122; 5th Floor, 418 5r. Kilda Ruad, Melbourner, Victoria, Australia 3004. 03+267-6677; 171, Philip Hughway, Ehabethe, South Australia 5112, 08 + 255-2066.

AUSTRIA, Texas Instruments Ges.m.b.H.: Industriestrabe 8/16, A-2345 Brunn/Gebirge, 2236-846210.

BELGIUM, Texas Instruments N.V. Belgium S.A.: Mercure Centre, Raketstraat 100, Rue de la Fusee, 1130 Brussels, Belgium, 02/720.80.00.

BRAZIL, Texas Instruments Electronicos do Brasil Ltda.: Av. Faria Lima, 2003, 20 0 Andar-Pinheiros, Cep-01451 Sao Paulo, Brazil, 815-6166.

DENMARK, Texas Instruments A/S, Marielundvej 46E, DK-2730 Herlev, Denmark, 2 - 91 74 00.

FINLAND, Texas Instruments Finland OY: PL 56, 00510 Helsinki 51, Finland, (90) 7013133.

Freisnin 11, Frinkino, (2017/01/01/01) FRANCE, Tessa Instruments France: Headquarters and Prod. Plant, BP 05, 06270 Villeneuve-Louber, (93) 20-01-01; Paris Office, BP 67 8: 10. Avenue Morane-Sauliner, 78/141 Veltry-Villacoublar, (19) 966-97-12; Lyon Sales Office, LOree Deculy, Baument B, Chemin de la Forstiere, 69/130 Eculy, (7) 831-04-40, Strasbourg Sales Office, Le Sebastopol 3, Quar Kleber, 67055 Strasbourg Sales Office, Le Sebastopol 3, Quar Kleber, 67055 Strasbourg Sales (168) 1221-266, Renne, 12-25 Sales Office, Le Perplote – 2, Chemin de Bgesonime de la Office, Notify Parada—146 Pat Parada, 13000 Mancille, (91) 2725-30. 37-25-30

Creating useful products and services for you

GERMANY, Texas Instruments Deutschland GmbH: Hag-gerty-trasse 1, D-8050 Freising, 08161-801; Kurfuerstendamt 195/196, D-1000 Berlin 15, 0204827365; III, Hagen 43K/sh-belstrasse, D-4300 Easen, 0201-24250; Frankfurter Allee 6-8, D-6336 Eschborn 1, 06196-43074; Hamburger Strasse 11, D-2000 Hamburg 76, 040-2201194; Kirchhortestrasse 2, D-3000 Hamburg 76, 040-2201194; Kirchhortestrasse 2, D-3000 Hamburg 76, 040-2201194; Kirchhortestrasse 2, D-3000 Hamburg 76, 040-220149; Kirchhortestrasse 2, D-3000 Hamburg 76, 040-220149; Kirchhortestrasse 2, D-3000 Hamburg 76, 040-2205 Millioner 2, Neihortestrasse 1, D-3000 Hamburg 76, 040-220 Kirkitern 2, Neihortestrasse 2, D-300 Hamburg 76, 040-220 Kirkitern 2, Neihortestrasse 2, Neihortestr

HONG KONG (+ PEOPLES REPUBLIC OF CHINA), Texas Instruments Asia Ltd.: 8th Floor, World Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, Hong Kong, 3 + 722-1223.

IRELAND, Texas Instruments (Ireland) Limited: 25 St. Stephens Green, Dublin 2, Eire, 01 609222.

Carta, V., Casa Instruments Semiconducton Italia Spa: Viale Delle Science, I., 02015 Citraducale (Riett), Italy, 0746 694, I., Via Salaria KM 24 (Palazio Coama), Monterotondo Scalo (Rome), Italy, 06 9004395; Viale Europa, 38-44, 20093 Cologno Monzee (Malano), 02 2523641; Coreo Sviezera, 165, 10100 Torino, 1643, 011 774545; Via J. Barotti, 6, 45100 Bologna, Italy, 051 355851.

JAPAN, Texas Instruments Asua Ltd: «F Acyana Fuji Bidg, 6-12, Kita Acyama 3-Chome, Minato-ku, Tokyn, Japan 107, 03-498-2111, Okash Branch, SF, Ninsho Jewa Bidg, 30, 2014-Chome, Higashi-ku, Osaka, Japan 541, 06-204-1881; Nagoya Branch, JP Duni Toyota Weet Bidg, 10-27, Meisk 4-Chome, Nakamura-ku, Nagoya, Japan 450, 052-583-8691.

KOREA, Texas Instruments Supply Co.: Room 201, Kwangpoong Bidg., 24-1, Hwayand-Dong, Sung dong-ku, 133 Seoul, Korea, 02 + 464-6274/5.

MEXICO, Texas Instruments de Mexico S.A.: Poniente 116, No. 489, Colonia Vallejo, Mexico, D.F. 02300, 567-9200.

MIDDLE EAST, Texas Instruments: No. 13, 1st Floor Mannau Bldg., Diplomatic Area, Manama, P.O. Box 26335, Bahrain, Arabian Gulf, 973 - 72 46 81.

NETHERLANDS, Texas Instruments Holland B.V., P.O. Box 12995, (Bullewijk) 1100 AZ Amsterdam, Zuid-Oost, Holland (020) 5602911.

NORWAY, Texas Instruments Norway A/S: Kr. Augustsgt. 13, Oslo 1, Norway, (2) 20 60 40.

PHILIPPINES, Texas Instruments Asia Ltd.: 14th Floor, Ba-Lepanto Bidg., 8747 Paseo de Roxas, Makati, Metro Manila, Philippines, 882465.

PORTUGAL, Texas Instruments Equipamento Electronico (Portugal), Lda.: Rua Eng. Frederico Ulinch, 2650 Moreira Da Maia, 4470 Maia, Pirtugal, 2-9481003.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, THAILAND), Texas Instruments Asia Ltd. P.O. Box 138, Unit 02/208, Block 6, Kolam Ayer Industral Est., Kallang Sector, Singapore 13)4, Republic of Singapore, 747-2255.

SPAIN, Texas Instruments Espana, S.A.: C/Jose Lazaro Galdiano No. 6, Madrid 16, 1/458, 14, 58, C/Balmes, 89 Barcelona-8, 25360 00/253 29 02.

SWEDEN, Texas Instruments International Trade Corporation (Sverigefilialen): Box 39103, 10054 Stockholm, Sweden, 08 / 235480.

SWITZERLAND, Texas Instruments, Inc. Riedstrasse 6, CH-8953 Dietikon (Zuerich) Switzerland, 1-740 2220.

TAIWAN, Texas Instruments Supply Co.: 10th Floor, Fu-Shing Bldg., 71 Sung-Kiang Road, Taiper, Taiwan, Republic of China, 02 + 521-9321.

UNITED KINGDOM, Texas Instruments Limited: Manton Lane, Bedford, MK41 7PA, England, 0234 67466; St. James, House, Wellington Road North, Stockport, SK4 2RT, England, 061 442-6448. BF

TI Sales Offices

ALABAMA: Huntaville, (205) 837-7530. ARIZONA: Phoenix, (602) 995-1007.

CALIFORNIA: Irvine, (714) 660-1200; Sacramento, (916) 929-1521; San Diego, (714) 278-9600; Santa Clara, (408) 980-9000; Torrance, (213) 973-2571; Woodland Hills, (213) 704-7759.

COLORADO: Aurora, (303) 695-2800.

CONNECTICUT: Wallingford, (203) 269-0074. FLORIDA: Ft. Lauderdale, (305) 973-8502; Maitland, (305) 660-4600; Tampe, (813) 870-6420.

GEORGIA: Atlanta, (404) 452-4600.

ILLINOIS: Arlington Heights, (312) 640-3000.

INDIANA: Ft. Wayne, (219) 424-5174, Indianapolis, (317) 248-8555.

IOWA: Cedar Rapids, (319) 395-9550.

MARYLAND: Bakimore, (301) 944-8600. MASSACHUSETTS: Wakham, (617) 895-9100. MICHIGAN: Farmington Hills, (313) 553-1500.

MINNESOTA: Edina, (612) 830-1600. MISSOURI: Kanaas City, (816) 523-2500; St. Louis, (314) 569-7600.

NEW JERSEY: Clark, (201) 574-9800.

NEW MEXICO: Albuquerque, (505) 345-2555.

NEW YORK: East Syracuse, (315) 463-9291; Endicott, (607) 754-9900; Melville, (516) 454-6600; Poughkeepsie, (914) 473-2900; Rochester, (716) 424-5400.

NORTH CAROLINA: Charlotte, (704) 527-0930; Raleigh, (919) 876-2725.

OH1O: Beachwood, (216) 464-6100; Dayton. (513) 258-3877.

OKLAHOMA: Tulsa, (918) 250-0633.

OREGON: Beaverton, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, (215) 643-6450; Cornopolis, (412) 771-8550.

TEXAS: Austin, (512) 250-7655; Houston, (713) 778-6592; Richardson, (214) 680-5082; San Antonio, (512) 496-1779. UTAH: Murray, (801) 266-8972.

UTAH: Murray, (801) 200-89/2.

VIRGINIA: Fairfax, (703) 849-1400.

WISCONSIN: Brookfield, (414) 785-7140. WASHINGTON: Redmond, (206) 881-3080.

CANADA: Nepean, Ontario (613) 726-1970; Richmond Hill, Ontario (416) 884-9181; St. Laurent, Quebec (514) 334-3635.

TI Regional Technology Centers

CALIFORNIA: Irvine, (714) 660-8140, Hotline: (714) 660-8164. Santa Clara-(408) 748-2220. Hotline: (408) 980-0305.

GEORGLA: Atlanta, (404) 452-4682, Horline: (404) 452-4686. ILLINOIS: Chicago, (312) 640-2909, Horline: (312) 228-6008. MASSACHUSETTS: Boaton, (617) 890-6671. Horline: (617) 890-4271.

TEXAS: Dallas, (214) 680-5066, Hotline: (214) 680-5096.

TI Distributors

TI AUTHORIZED DISTRIBUTORS IN U.S.: Arrow Electronics Diplomat, Inc. ESCO Electronics General Radio Supply Company Graham Electronics Harrison Equipment Co. International Electronics Harrison Equipment Co. International Electronics Kierulff Electronics LCOMP, Incorporated Marshall Industries Milgray Electronics Newark Electronics Newark Electronics Rochester Radio Supply Time Electronics Rochester Radio Supply Time Electronics R. V. Weatherford Co. Wyle Laboratories

TI AUTHORIZED DISTRIBUTORS IN CANADA: CESCO Electronics, Inc.

Future Electronics ITT Components L. A. Varah, Ltd.

ALABAMA: Arrow (205) 882-2730; Marshall (205) 881-9235.

ARIZONA: Phoenix, Arrow (602) 968-4800; Kierulff (602) 243-4101; Marshall (602) 968-6181; Wyle (602) 249-2232; Tucson, Kierulff (602) 624-9986.

Tucson, Kerull (6/2) 0:47-990. CALIFORNIA: Los Angeles-Omage County, Artow (213) 701-7500, (714) 838-5422, Keruliff (213) 725-0325, (714) 731-5711; Manhall (213) 999-5001, (213) 442-7204, (714) 556-6400, R.V. Weatherfund (714) 643-9005, (213) 649-518, (714) 621-1261; Wife (213) 322-8100, (714) 863-9955, Sacramento, Artow (916) 927-756, Wyle (916) 648-5782; San Diego, Artow (916) 93-756, Wyle (916) 648-5782; San Diego, Artow (916) 93-57456, Wyle (916) 648-5782; San Diego, Artow (916) 93-56400, Kierulif (616) 278-2112; Manhall (169) 7578-9500, Wyle (619) 656-9171; San Francisco Bay Area, Artow (408) 745-6600, Kierulif (619) 272-7300, Santa Barbara, R. V. Weatherford (609) 905-8551.

COLORADO: Arrow (303) 696-1111; Kierulff (303) 790-4444; Wyle (303) 457-9953.

CONNECTICUT: Arrow (203) 265-7741; Diplomar (203) 797-9674; Kierulff (203) 265-1115; Marshall (203) 265-3622, Milgray (203) 795-0714.

FLORIDA: Ft. Lauderdale, Arrow (305) 776-7790, Diploma (305) 974-8300; Kierulif (305) 486-4004; Orlando, Arrow (305) 725-1480; Milgray (305) 647-75747; Tampa, Diplomat (813) 443-4514; Kierulif (813) 576-1966.

Creating useful products and services for you. GEORGIA: Arrow (404) 449-8252; Kierulff (404) 447-5252; Marshall (404) 923-5750.

ILLINOIS: Arrow (312) 397-3440; Diplomat (312) 595-1000; Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark (312) 638-4411.

INDIANA: Indianapolis, Arrow (317) 243-9353, Graham (317) 634-8202, Ft. Wayne, Graham (219) 423-3422. IOWA: Arrow (319) 395-7230.

KANSAS: Kansas City, Hall-Mark (913) 888-4747; Wichita, LCOMP (316) 265-9507.

MARYLAND: Arrow (301) 247-5200; Diplomat (301) 995-1226; Kierulff (301) 636-5800; Milgray (301) 468-6400.

MASSACHUSETTS: Arrow (617) 933-8130; Diplomat (617) 935-6611; Kierulff (617) 667-8331; Marshall (617) 272-8200; Time (617) 935-8080.

MICHIGAN: Detroit, Arrow (313) 971-8220; Manhall (313) 525-5850; Newark (313) 967-0600; Grand Rapids, Arrow (616) 243-0912.

MINNESOTA: Arrow (612) 830-1800; Hall-Mark (612) 854-3223; Kierulff (612) 941-7500.

MISSOURI: Kansaa City, LCOMP (816) 221-2400; St. Louis, Artow (314) 567-6888; Hall-Mark (314) 291-5350; Kierulff (314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968.

NEW JERSEY: Arrow (201) 575-5300, (609) 596-8000; Dplomar (201) 785-1830; General Radio (609) 964-8560; Kreniff (201) 575-6750; Marshall (201) 882-0320, (609) 234-9100; Milgray (609) 983-5010.

NEW MEXICO: Arrow (505) 243-4566; International Electronics (505) 345-8127.

NEW YORK: Long Island, Arrow (516) 231-1000; Diplomat (516) 454-6334; JACO (516) 273-5500; Marshall (516) 273-2424; Milgrav (516) 420-900; Rochester, Arrow (716) 275-000; Marshall (716) 235-7620; Rochester: Radio Supply (716) 454-7800; Syncausa, Arrow (315) 652-1000; Diplomat (315) 652-5000; Marshall (607) 754-1570.

NORTH CAROLINA: Arrow (919) 876-3132, (919) 725-8711; Kierulff (919) 872-8410.

OHIO: Cincinnati, Graham (513) 772-1661; Hali-Mark (513) 503-5980; Cleveland, Arrow (216) 248-3990; Hali-Mark (216) 394-6021; Kievolff (216) 857-658; Columbus, Hali-Mark (614) 891-4555, Dayton, Arrow (513) 435-5563; ESCO (513) 226-1133; Marshall (513) 236-8088.

OKLAHOMA: Arrow (918) 665-7700; Hall-Mark (918) 665-3200; Kierulff (918) 252-7537.

OREGON: Arrow (503) 684-7690; Kierulff (503) 641-9150; Wyle (503) 640-6000.

PENNSYLVANIA: Arrow (412) 856-7000, (215) 928-1800; General Radio (215) 922-7037.

TEXAS: Austin, Arrow (512) 835-4180; Hall-Mark (512) 258-8848; Kendif (512) 835-2000; Dullas, Arrow (214) 866-7303; Hall-Mark (214) 91-1147; International Electronics (214) 233-9323; Kendif (214) 941-2400; Wyle, (214) 235-9953; El Paso, International Electronics (915) 596-3400; Houston, Armw (211) 510-4700; Hall-Mark (113) 781-6400; Harrson Equipment (113) 879-2000; Kendif (113) 530-3700; (113) 530-700; Arrow (113) 510-4700; Hall-Mark (113) 781-6400; Harrson Equipment (113) 879-2000; Kendif (113) 530-700; Arrow (113) 530-700; Harrow (

UTAH: Diplomat (801) 486-4134; Kienulff (801) 973-6913; Wyle (801) 974-9953.

VIRGINIA: Arrow (804) 282-0413.

WASHINGTON: Arrow (206) 643-4800; Kierulff (206) 575-4420; Wyle (206) 453-8300.

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414) 761-3000; Kierulff (414) 784-8160.

101-3003; Kerkulli (1917) 707-6100; CANADA: Calgary, Furue (403) 486-0974; Varah (403) 230-1235; Hamilton, Varah (410) 561-9911; Montreal, CESCO (514) 735-5511; Furue (514) 694-7700; ITT Componens (514) 735-511; Furue (514) 694-7700; ITT Componens (514) 735-711; Furue (514) 694-7700; ITT Components (613) 820-8713; JUNE (514) 694-7813; ITT Components (613) 226-7905; Varah (613) 932-4728; Quebec Cirp, CESCO (418) 667-4231; Toronon, CESCO (416) 661-920; Furue (614) 663-5583; ITT Components (416) 630-7971; Vancouver, Future (504) 485-555; Varah (604) 873-511; ITT Components (604) 270-7805; Winnipeg, Varah (204) 633-6190. BF

813) 443-4514; Kierulff (813) 576-196

F

