

RCA Transistors and Semiconductor Diodes

- CHARACTERISTICS
- CIRCUITS
- THEORY
- INTERCHANGEABILITY DIRECTORY

RADIO CORPORATION OF AMERICA

SEMICONDUCTOR DIVISION

TRADEMARK(S) REGISTERED

SOMERVILLE, N. J.

PORM NO. BCD 108-

TRANSISTOR CONSIDERATIONS

INTRODUCTION

Transistors are a new form of electron device. They can perform many of the functions of an electron tube and, in addition, can do some things better and more efficiently than electron tubes. Unlike electron tubes which depend for their functioning on the flow of electrons through a vacuum, a gas, or a vapor, transistors make use of the flow of electric charge carriers in a solid — a semiconductor.

A semiconductor is a material having a conductivity lower than that of metals but higher than that of insulators. The conductivity of a material is determined by the number of charge carriers present. There are many varieties of semiconductors, but the two presently employed in the manufacture of transistors are germanium and silicon. Germanium in its very purest state behaves very much like an insulator because it has very few charge carriers. However, the conductivity of this material can be increased by the addition of almost infinitesimal amounts of certain impurities which cause an increase in the supply of charge carriers. Impurities such as antimony and arsenic increase the number of free electrons, or mobile negative charges while others such as gallium and indium increase the quantity of holes, or mobile positive charges.

The concept of a hole as a mobile positive charge with a definite mass and velocity dates back to 1931. This concept is really an abstraction from the equations of physics which describe the manner in which certain materials conduct electricity. These equations indicate that the material acts as if such a positive particle really existed. The term "hole" in the following discussion will denote a mobile "particle" having a positive charge. The notion of a hole is relatively new, but it is just as useful as the notion of the manner in which electricity is conducted by electrons. The conduction of electricity by electrons is also a very complex matter, though much is taken for granted about it.

A germanium crystal having more holes than free electrons is identified as p-type, because it depends on positive "particles" of electricity, holes, for conduction. On the other hand, a conducting germanium crystal having an excess of free electrons is identified as n-type, because it depends on negative particles of electricity, electrons, for conduction.

As previously implied, holes and mobile electrons are simultaneously present in both p-type and n-type materials. However, one kind of charge carrier predominates and is called the majority carrier. When a hole and a mobile electron meet, they combine with each other and cease to exist as *mobile* charges. This event is often referred to as a recombination. While this event is taking place, other electrons in the structure of the crystal are separated from the atoms they are associated with and result in new mobile electrons and holes to restore the equilibrium condition. There are many recombinations of holes and mobile electrons like these taking place every second in both p-type and n-type materials.

PRINCIPLES OF OPERATION

To gain some facility in the use of these concepts. consider the situation shown in Fig. 1. The applied electric field causes the holes in the p-type material

to drift towards its upper end. point "A". At the same time the free electrons in the wire are repelled by the negative terminal of the battery towards the same point. When electrons enter the p-type material, they readily find holes with which to recombine. This recombina-

tion depletes the region around point "A" of holes. The equilibrium condition is restored by the arrival of new holes generated by electron-hole pairs within the p-type material. The new free electrons, released by the electron-hole pairs, move towards the positive terminal of the battery, while the holes move towards the end of the p-type material nearest the negative terminal of the battery in order to maintain equilibrium with electrons arriving in this area.

Consider what happens when an n-type material

and a p-type material are joined by suitable means and a voltage is applied as indicated in Fig. 2. The holes in the p-type material are repelled by the battery voltage towards the junction between the n-type and p-type materials, and the electrons in the n-type material are also re-

the n-type material are also repelled by the battery voltage towards this junction. In the vicinity of the junction, the holes and electrons meet and combine with each other, and thereupon cease to exist as mobile carriers. In some cases holes will flow a short distance into the n-type material or electrons will flow a short distance into the p-type material before combining. At the opposite end of the n-type material more electrons arrive from the

negative terminal of the battery to replenish the electrons that combined with holes at the junction. Similarly, at the end of the p-type material farthest from the junction, electrons leave the crystal, because new holes are created in order to replenish those can-

P

celled at the junction.

Consider the case when the positions of the n-type and p-type materials are reversed as in Fig. 3.

© 1957 RADIO CORPORATION OF AMERICA. ALL RIGHTS RESERVED

· 2 ·

There is an initial movement of the holes in the p-type material away from the junction, due to the attraction forces established by the battery voltage. In like manner there is an initial movement of the electrons in the n-type material away from the junction. Thus, there are practically no majority carriers left at the junction and a barrier or depletion region is formed. Conduction across this region practically ceases because it has very few mobile charge carriers. The mobile charges left are minority carriers and are capable of maintaining a current of only a few microamperes.

OPERATION OF JUNCTION TRANSISTORS

The next case for consideration is illustrated in Fig. 4. The n-type material shown in Fig. 4 is only about one thousandth of an inch thick. The batteries maintain the voltage of the n-type material positive with respect to both p-type regions. There is, therefore, an initial movement of the mobile electrons in the

Fig. 4

base away from both junctions, and an initial movement of the holes in both of the p-type materials away from the base. After these initial displacements of charge carriers have taken place there is no further current flow because in the neighborhood of both junctions there are very few mobile charge carriers.

Consider the situation illustrated by Fig. 5. Since the voltage of battery B_2 is several times greater than the voltage of B_1 , the voltage of the upper piece of p-type material is more negative than the voltage of the n-type material. Therefore, as in the preceding example, the region around the junction marked "C"

Fig. 5

is almost devoid of charge carriers. However, in the vicinity of the junction marked "E" there is a relatively high concentration of charge carriers because the lower piece of p-type material has a voltage more positive than that of the n-type material. It might seem at first that no current can flow due to the

relative scarcity of charge carriers in the region of "C". However, the n-type material is relatively thin and may be regarded as porous as far as holes are concerned. The thin n-type material appears to be porous because this material has very few mobile negative charges relative to the number of holes diffusing through it, and because only a few of the holes will recombine with the electrons. Holes diffuse from the lower piece of p-type material near junction "E"

Fig. 6

through the n-type material and arrive at the upper piece of p-type material near junction "C". The lower piece of p-type material is referred to as the *Emitter*; the upper piece is referred to as the *Collector*. These names were adopted because the emitter emits charge carriers and the collector collects them. The junction marked "E" is, therefore, the emitter junction; the junction marked "C", the collector junction. The material between the two junctions is referred to as the *Base*. The complete structure constitutes the basic components of a p-n-p type of junction transistor such as the RCA-2N109, 2N175, 2N270 etc. A diagrammatic

Fig. 7

sketch showing the structural arrangement of a junctiontype transistor with associated simple circuit is shown in Fig. 6.

The discussion of Fig. 4 and Fig. 5 illustrates the fact that the base-to-emitter voltage can, by controlling the density of holes at junction "E", also control the differ-

ence in the density of the holes between junctions "C" and "E". This control leads in turn to control of the rate of diffusion of holes through the base. The current in the collector circuit corresponds to this rate of diffusion of holes. In practice, the collector current of a p-n-p type transistor can be varied from a few microamperes up to the maximum current rating without exceeding a base-to-emitter voltage of zero volts. Moreover, the power which the base-toemitter circuit utilizes in controlling the collector current is very small in comparison with the power available in the collector-to-emitter circuit.

A similar discussion for the n-p-n type of junction

transistor will lead up to the circuit shown in Fig. 7, which is similar to Fig. 5.

However, observe the change in the relative positions of the n-type and p-type materials and the change in the battery polarities. In this case electrons are emitted by the n-type emitter. The electrons diffuse through the p-type base and are collected by the n-type collector. This type of transistor is referred to as an n-p-n junction type.

POTENTIAL ENERGY DIAGRAM

Much of the preceding discussion concerning the principles of operation of a transistor can be sum-

marized by a potential-energy diagram. Such a diagram is shown in Fig. 8.

An electron at the negative terminal of a battery has more potential energy than an electron at the positive terminal. Similarly, if the transistor is a p-n-p type and the collector is, therefore, connected to the negative terminal of the battery, a hole has the least potential energy when it reaches the collector. This diagram also applies to an n-p-n transistor but differs in that an electron has the least potential energy when it reaches the collector. A statement covering both cases is that the majority carriers originating in the emitter region move in the direction of decreasing potential energy. It is important to note that a small amount of energy must be supplied by the base-toemitter circuit to move a majority carrier out of the emitter into the base. Because of the addition of this small amount of energy, the charge carrier has somewhat more potential energy in the emitter-to-collector circuit than it had before. Once the charge carrier has entered the base, the carrier mingles with the other charges in this region. Those carriers which find their way to the edge of the depletion region in the base are quickly swept across the depletion region by the electric field established by the collector-to-emitter supply voltage.

"DRIFT" TRANSISTORS

As previously noted, the signal current in a conventional transistor is transmitted across the base region by a diffusion process. The transit time of the charge carriers across this region is, therefore, relatively long. RCA has developed a technique for the manufacture of transistors which do not depend upon diffusion for the transmission of the signal across the base region. Transistors manufactured according to this new technique, such as the RCA-2N247, are known as "drift" transistors. Diffusion of charge carriers across the base region is eliminated and the charge carriers are propelled across this region by a "built-in" electric field. The resulting reduction in the transit time of the charge carriers permits "drift" transistors to be used at much higher frequencies than transistors of conventional design.

The "built-in" electric field is in the base region of the "drift" transistor. This field is achieved by utilizing an impurity density which varies from one side of the base to the other. The impurity density is high

next to the emitter and low next to the collector. Thus, there are more mobile electrons in the region near the emitter than in the region near the collector and they will try to diffuse evenly throughout the base. However, any displacement of the negative charge leaves a positive charge in the region from which the electrons came, because every atom of the base material was originally electrically neutral. The displacement of the charge creates an electric field that tends to prevent further electron diffusion so

that equilibrium condition is reached. The direction of this field is such as to prevent electron diffusion from the high density area near the emitter to the low density area near the collector. Therefore, holes entering the base will be accelerated from the emitter to the collector by the electric field.

Fig. 10

Thus the diffusion of charge carriers across the base region is augmented by the built-in electric field. A potential energy diagram for a drift transistor appears in Fig. 9.

The transistors discussed so far are known as junction transistors, and they may be made as either p-n-p types or n-p-n types. The essential idea in the manufacture of these transistors is to produce a sandwichtype assembly, i.e., p-type regions and n-type regions in intimate contact with each other. However, it is also possible to manufacture a transistor in which the points of certain kinds of wire touch the surface of an n-type crystal, as illustrated in Fig. 10. The points of the wires must be very close together. After the structure is completed, currents are passed through each of the two contact points in such a way that p-type material is formed in the region of the contact points. Such a transistor is referred to as a pointcontact transistor, and has largely been superseded by the junction-type of transistor.

The point-contact type of semiconductor diode is also made by a similar technique, but this type of semiconductor device utilizes only a single point contact. The crystal on which the point contact is made may be either p-type or n-type.

SIGNIFICANCE OF POLARITY

In the preceding discussion, reference was made to the particular kind of charge carriers present. The

following discussion will be in terms of conventional current flow, i.e. the flow of positive charge from the positive terminal of the battery to the negative terminal as shown in Fig. 11. The actual flow is a flow of negative charge (electrons) from

Fig. 11

the negative terminal of the battery to the positive terminal. Because the discussion is based on conventional current flow, the current will flow counterclockwise through the resistor and circuit. Suppose

that the magnitude of the current is 10 milliamperes. If the direction of the current is important to the discussion, it can be assumed that the

Fig. 12

positive direction of the flow of the positive charges is counterclockwise around the circuit and the value of the current is +10 milliamperes. However, if it had been assumed that the positive charges flowed in a clockwise direction, then the value of the current would be -10 milliamperes, the - sign indicating that the positive charges are actually flowing in a direction opposite to that assumed.

positive directions of voltage and conventional current flow at the input and output of any device as indicated in Fig. 12. For example, a germanium junction transistor of the p-n-p type would be connected into a common-emitter circuit in the manner indicated in Fig. 13. The assumed positive directions of dc voltage and conventional dc currents are in conformity with the custom indicated in Fig. 12. The emitter current IE is also assumed to flow into the transistor. Actually, the conventional base current IB flows out of the transistor; the emitter current, into the transistor; and the collector current I_G, out of the transistor. Thus, the algebraic sign of the numerical value of the base current and of the numerical value of the collector current is negative, while the algebraic sign of the numerical value of the emitter current is positive. Also, as indicated by Fig. 13 the base voltage and collector voltage are negative with respect to the emitter. Therefore, the algebraic sign of the numerical value of V_{BE} and of

It has been the custom for many years to assume

TRANSISTOR CONSIDERATIONS

Fig. 15. Average Base Characteristics.

V_{CE} is negative.

These conventions require that the sign of the numerical values shown on the typical characteristics in Fig. 14 and Fig. 15 be negative.

The collector characteristics also show that the collector current is many times greater than the base current. For example, at a collector-to-emitter voltage of -4 volts and a base current of -0.05 milliamperes the collector current is -5 milliamperes. Since it has been assumed that all the currents flow into the transistor, the following equation can be written.

$$\begin{split} I_{\scriptscriptstyle B} + I_{\scriptscriptstyle E} + I_{\scriptscriptstyle C} = 0 \\ I_{\scriptscriptstyle E} = - I_{\scriptscriptstyle B} - I_{\scriptscriptstyle C} \end{split}$$

When the numerical values for the base current and collector current are substituted in this equation, the following result is obtained.

$$I_E = -(-0.05) - (-5)$$

 $I_E = 5.05$ milliamperes

There are two facts to be observed from this result.

First, the collector current and emitter current are nearly equal, and second, the algebraic sign of the emitter current is positive, which indicates that the emitter current flows into the transistor as assumed.

Now, suppose that the resistance in the base circuit is reduced. This would cause the base current to increase in magnitude, for example, from -0.05 milliampere to -0.1 milliampere. This increase in base current will cause an increase in the magnitude of the collector current by about 4.5 milliamperes.

Because in practical circuits it is desirable to amplify signals, Fig. 13 has been redrawn in Fig. 16 with slight modifications.

When no signal is applied to the input, the transistor voltages and currents are at their quiescent values, and the top of the resistor in the base circuit is positive with respect to the bottom. Suppose a signal voltage V_{BE} of -0.045 volt is applied at the input. The top of the resistor in the base circuit is now less positive by 0.045 volt than it was before the signal was applied. More of the battery voltage V_{BB} must now appear between the base and emitter. The base current must, therefore, increase in magnitude from 0.05 milliampere to 0.1 milliampere. The collector current increases in magnitude by about 4.5 milliamperes, and the direction of flow is from top to bottom of the resistor in the collector circuit. Thus, V_{CE} becomes more positive in the indicated direction than it was before a V_{BE} of -0.045volt was applied at the input. The common-emitter type of circuit, with base input, produces a 180° phase reversal, and the change in the output current is much greater than the change in the input current. Moreover, the resistance in the collector circuit is normally

much greater than the resistance in the base circuit, resulting not only in a greater change in the collector current than in the base current, but also a greater change in the collector voltage than in the base voltage. Both of these factors contribute to the increase in the signal power output as compared with the signal power input.

Fig. 17 shows some typical amplifier circuits for junction transistors of the p-n-p type. These circuits may also be used for junction transistors of the n-p-n type provided the polarities are reversed.

TRANSISTOR CONSIDERATIONS

32CM-1900

- Fig. 17. Typical Amplifier Circuit Connections:
 - (a) Common-Base, Emitter-Input.
 - (b) Common-Emitter, Base-Input.
 - (c) Common-Collector, Base-Input.

DEFINITIONS

Alpha Cutoff Frequency. Frequency at which the forward current transfer ratio drops to 0.707 times its value at 1 kc.

Class A Amplifier. An amplifier in which the bias of the input electrode and the alternating input signal are such that output current flows at all times.

Class B Amplifier. An amplifier in which the bias of the input electrode is such that the output current is approximately zero when no alternating input signal is applied, and such that when an alternating input signal is applied, the output current flows for approximately one-half cycle.

DEFINITIONS (Continued)

Collector Transition Capacitance. The capacitance across the collector-to-base transition region. (A transition region is a region between two homogeneous semiconductor regions, in which the impurity concentration changes).

Large-Signal DC Current Transfer Ratio. The dc output current divided by the dc input current.

Small-Signal Current Transfer Ratio. The change in output current with ac output circuit shorted divided by the change in input current, measured at 1000 cycles per second.

Unilateralization. Unilateralization is a special case of neutralization in that the feedback parameters are completely balanced out. In the case of transistors, these feedback parameters include a resistive component in addition to capacitive component. Unilateralization changes a bilateral network into a unilateral network.

REFERENCES

For an analysis of drift transistors see — A. L. Kestenbaum and N. H. Ditrick, "Design, Construction and High-Frequency Performance of Drift Transistors", RCA Review, March 1957, Vol. 18, No. 1, pp. 12-23.

For a discussion of transistor physics, technology, and circuit applications, including 68-page bibliography, see — "Handbook of Semiconductor Electronics", McGraw-Hill Co., Inc., New York, New York, 1956.

For a selection of papers describing research and development work of RCA as it applies to the theory, fabrication, and application of transistors see—"Transistors I", RCA Laboratories, Princeton, New Jersey, 1956.

For descriptions of transistor manufacturing techniques see — E. W. Herold, "Semiconductors and the Transistor", Journal of the Franklin Institute, February, 1955, Vol. 259, No. 2, pp. 87-106.

For a general discussion of transistors see—A. W. Lo, R. O. Endres, J. Zawels, F. D. Waldhauer, and C. Cheng, "Transistor Electronics", Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1955.

For a discussion of H Parameters see—R. F. Shea, "Transistor Audio Amplifiers", John Wiley and Sons Inc., New York, New York, 1955, Chapter 2.

For a derivation of the hybrid- π equivalent circuit from physical considerations see—L. J. Giacoletto, "Study of p-n-p Alloy Junction Transistors from DC Through Medium Frequencies", RCA Review, December, 1954, Vol. 15, No. 4, pp. 506-562.

For a compilation of linear active four-terminal network equations see-L. J. Giacoletto, "Terminology and Equations for Linear Active Four-Terminal Networks Including Transistors", RCA Review, March 1953, Vol. 14, No. 1, pp. 28-46.

For a discussion of T Parameters see—W. A. Shockley, "Electrons and Holes in Semiconductors", D. Van Nostrand Co., Inc., New York, New York, 1950, pp. 37-41.

For a discussion of transistor physics see—W. A. Shockley, "Electrons and Holes in Semiconductors", D. Van Nostrand Co., Inc., New York, New York, 1950.

Devices and arrangements shown or described herein may use patents of RCA or others. Information contained herein is furnished without responsibility by RCA for its use and without prejudice to RCA's patent right.

RCA TRANSISTOR

			GENERA	L DATA						MAXI						TV	PICAL	
\frown			Electrical		Mect	anical			'	RATI		1					RATIC	
(RCA)	CLASS OF	Minimum DC Collector- te-Base	Maximum DC Cellector Current	Maximum DC Emitter Corrent	Operat-	Dimen- sional Dutâne aed			(A)	bsolute	e Valı	Jes)				Aı Tempera	nbient iture = 2	25°C
	SERVICE	velts (ter stated	aµ for stated)	μa (for stated	ing Posi-	Basing or Lead					Collec	tor Dissi mw	pation	Ambient				
TYPE		DC Collector Current µa)	DC Collector- te-Base volts)	DC Emitter- te-Base volts)	1000 1	Arrange- mont see pages 14-16	DC Collector- te-Base volts	DC Emitter- to-Base volts	DC Collector Current ma	DC Emitter Current ma		t ambient nperature 55°C		Storage Temper- ature °C	Cir- cuit	DC Collecter- to-Emitter volts	DC Collector Current ma	Current Transfer Ratie at 1 Kc
Germa	inium, j	p-n-p,	alloy-j	unction	h ty	pes	L		L	1					L			•
2N77	Class A AF Amplifier	-30 at $I_{\rm C} = -20$	-10 at $V_{CB} = -12$	_	Any	н	-25	_	-15	15	_	35		-65 to +85	E E B		-0.7 -0.7 -0.7 -0.7	_
2N104	Class A AF Amplifier	-30 at $I_{\rm C} = -20$	-10 at $V_{CB} = -12$	-10 at $V_{EB} = -12$	Any	в	30	-12	- 50	50	150	80	35	-65 to +85	E C B B	-4 -6 -3 -3 -6	-0.7 -1 -0.2 -0.2 -1	
2N105	Class A AF Amplifier	-25 at I _C = -10	-7 at $V_{CB} = -12$		Any	с	-25		-15	15		35		-65 to +85	E E C B B	-1.3 -4 -1.3 -4 -1.3	-0.3 -0.7 -0.3 -0.7 -0.3	-
2N109	Large- Signal AF Amplifier	_	-14 at $V_{CB} = -25$	-14 at $V_{EB} = -12$	Any	в	-25 peak -12*	-12	-70 peak -35 avg.	70 peak 35 avg.	150	50	20	-65 to +85	E	-1	- 50	75∎
2N139	Class A 455-Kc Amplifier	-16 at $I_{C} = -10$	-6 at $V_{CB} = -12$	-12 at $V_{EB} = -0.5$	Any	в	-16	-0.5	-15	15	80	35	10	-65 to +85	E E B B	9 9 9 9	-0.5 -1 -0.5 -1	45 48 0.978 0.980
2N140	540-1640 Kc Converter	-16 at $I_{C} = -10$	-6 at $V_{CB} = -12$	-12 at $V_{EB} = -0.5$	Any	в	-16	-0.5	-15	15	80	35	10	-65 to +85	E B	9 9	-0.6 -0.6	75 0.987
2N175	Class A Low-Noise AF Amplifier	—	-12 at $V_{CB} = -25$	-12 at $V_{EB} = -12$	Any	в	-10	-10	-2	2	50	20	10	-65 to +85	E B	-4 -4	- 0.5 - 0.5	65 0.985
2N2O6	Class A AF Amplifier		-10 at $V_{CB} = -30$	-10 at $V_{EB} = -12$	Any	н	-30	- 12	- 50	50	75	_		-65 to +85	E C B B	5 3 5	$ \begin{array}{c} -1 \\ -0.2 \\ -0.2 \\ -1 \end{array} $	47 0.974 0.980
2N215					Like	RCA	-2N10	4 but	has fle	xible le	ads.	-					_	
2N217							-2 N 10											
2N218	•						-2N13											
2N219							-2N14					-						
2N220					Like	RCA	-2 N 17	5 but 1	nas fle:	xible le	ads.							
2N247	Class A RF Amplifier	-40 at $I_{\rm C} = -50$	-16 at $V_{CB} = -30$	$ \begin{array}{c} -50 \\ \text{at} \\ \mathbf{V}_{\text{EB}} = -0.5 \end{array} $	Any	E	-35	-0.5	-10	10	80	50	35	-65 to +85	E E B	-9 -9 -9	$-1 \\ -1 \\ -1$	60 60 0.984
2N269	Low- Level Switch	-25 at $I_{\rm C} = -20$	-2.5 at $V_{CB} = -2.5$	-2.5 at $V_{EB} = -2.5$	Any	D	-20	-9	-100	100	120	35	10	65 to +85	в	-6	-1	
2N270	Large- Signal AF Amplifier	—	-16 at $V_{CB} = -25$	-12 at $V_{EB} = -12$	Any	J	-25 peak -12*	-12	-150 peak -75 avg.		250	150	60	-65 to +85	E E	-1 - 6.7	-150 -19	<u>70</u> ■
2N274	Class A RF Amplifier	-40 at $I_{C} = -50$	-16 at $V_{CB} = -30$	-50 at $V_{EB} = -0.5$	Any	I	-35	0.5	-10	10	80	50	35	-65 to +85	E E B	-9 -9 -9	$-1 \\ -1 \\ -1 \\ -1$	60 60 0.984

Cutoff Data. Collector-to-Base Voltage and Collector Current values obtained with emitter open. Emitter Current values obtained with collector open. Ambient temperature = 25°C.
 Storage or Operating Temperatures above 85°C will affect the serviceability of the transistor.

B = Common-Base, Emitter-Input Circuit.
 C = Common-Collector, Base-Input Circuit.
 E = Common-Emitter, Base-Input Circuit.
 * For inductive load.
 Large-Signal DC Current Transfer Ratio.

CHARACTERISTICS CHART I

١	Amb		RATION operature =	•	t'd)		For CO	MMON	:	CIRCU Small-S	IT, BASi ignal Hy	CTERIS E INPUT ybrid-π F circuit, se	at Ambi Paramete	ers	perature :	= 25°C	RCA
Input	Powor Gain Load	Power	Generator	Noise Fac	or Noise	Alpha Cutoff Frequeacy	DC Collector- to-Emitter	RS Collector Current	Resistance		Conductan µmhos	CB		itaace uuf	Intrinsic Trans- conductance	Frequency For Unity Power Amplifi-	ТҮРЕ
Resistance ohms	Resistance ohms	Gain dh	Resistance ohms	Resistance	Factor† dh	Mc (l _{oxb})	volts (V _{CE})	ma (Ic)	ohms (r _{bb} ')	gb'e	Lee	fb'c	C _b 'e	C _{b'c}	μmbes (gm)	caties: Mc	
4			rameters and for some		Signal T Parc page 12.	ameters		Ge	erma	niu	m,	p-n-	p, a	iloy	-jun	ction	type
1980 2670 500000 215	100000 2670 10000 500000	44.1 34.5 17 32.5	1000	20000	6.5 	 0.70	-4	-0.7	240	407	6.8	0.13	5000	40	22300	1.7	2N77
1400 500000 	20000 18000 500000		518 	20000	12 max. 	0.53 0.70	-3 -6	-0.2 -1	300 290	174 727	1.28 6.62	0.3 0.36	1225 6900	36 40	5540 32000	1.6 1.6	2N10
4700 2300 500000 180	4700 20000 13000 500000	32.5 42 16 33.2	1000 	20000 	16.5 max. 	0.75 0.64	-1.3 -4	0.3 0.7	260 250	220 380	3.1 4.5	0.20 0.21	2500 4500	27 17	10000 21000	1.9 2.6	2N10
			_	_	_	_	For typical class B push-pull data, see page 12.										2N10
1000 500	70000 30000 	38.8 37.8			4.5 spot 4.5 spot 	6.8 6.7	-9 -9	-0.5 -1	85 75	425 800	4.6 8.6	0.22 0.25	540 1100	9.5 9.5	19300 38600	13 14	2N13
_700	75000	32	(Useful	conversi	on gain)	10	-9	-0.6	85	480	5.4	0.23	650	9.5	22600	16.5	2N14
2000	70000	43	1000	20000	6 max. —	0.85	-4	-0.5	190	296	6.6	0.279	3900	36	19200	2.06	2N17
1200 560000 	20000 18000 500000	46 30 35	1000	20000	9	0.62 0.78	-3 -5	-0.2 -1	210 200	225 710	2.3 7.6	0.27 0.4	2380 9400	48 35	7430 33400		2N20
		<u> </u>	. <u></u>	·	Like R	CA-2N	104 but	has fle	exible le	ads.		I			1		2N21
					Like R	CA-2N	109 but	has fle	exible le	ads.							2N21
						CA-2N											2N21
						CA-2N						<u>.</u>					2N21
	-	1.5			T	CA - 2N	175 but	has fle	exible le	ads.	r	<u> </u>	<u> </u>	1	-γ <u></u>	1	2N22
1350 170	70000 4500 	45 24 	← at 1.5 ← at 10		8 spot 	30	9	-1	40	640		_	200	1.7	37000	132	2N24
					_	12	Fo	r typic	al data	in Lo	w-Lev	el Switc	hing S	ervice,	see page	12.	2N26
400	400	35	-	-	·	-	For typical class B push-pull data, see page 12.									2N27	
1350 170	70000 4500	45□ 24□	← at 1.5 ← at 10		8 spot	 	9	-1	40	640			200	1.7	37000	132	2N27

[†] Measured with a noise diode and a thermocouple voltmeter with an equivalent noise bandwidth of 12.3 Kc and geometric mean of 3000 cps.

 Measured in a single-tuned unilateralized circuit matched to the generator and load impedances for maximum transfer of power (transformer insertion losses not included).

‡ This frequency (figure of merit) may be calculated from the equation:

 $f = \frac{1}{4 \pi} \sqrt{\frac{g_m}{r_{bb'} C_{b'c} C_{b'c}}}$

30

η.

RCA TRANSISTOR

			GENERA	L DATA						AAXI	MIIM					TY	PICAL	
\frown			Electrical		Mech	anical				RATI						OPE	RATIO	
RCA	CLASS OF	Minimum DC Collector-	Maximum DC Collector	Maximum DC Emitter		Dimen- sional Outline			(Ab	solute	Valı	ues)				Ar Tempera	nbient ture == 2	25°C
TYPE	SERVICE	to-Base volts (for staled DC Cellector Current بa)	Current µa (fer stated DC Collecter- to-Base velts)	Current بر (for stated DC Emitter- te-Base volts)	Operat- ing Posi- tion	and Basing or Lead Arrange- ment see pages 14-15	DC Collecter- te-Base volts			DC Emitter Current ma	1	ctor Dissipa mw at ambient mporature o 55°C		Ambient Sterage Temper- ature • °C	Cir- cuit	DC Cellector- to-Emitter volts	DC Collector Current ma	Current Transfer Ratio at 1 Kc
Germa	nium, p	o-n-p,	alloy-j	unction	ty	pes												
2N301	Large- Signal AF Power Amplifier	-40 at I _C = -2000	-220 at $V_{CB} = -12$	-2000 at $V_{EB} = -12$	Any	F	-40 peak -20*	-12	-2000 peak 1000 avg.	peak		12000	5500	65 to +85	E E E	1.5 1.5 13.6		70 ■ 75 —
2N301-A	Large- Signal AF Power Amplifier	-35 at I _c = -1000	-220 at $V_{CB} = -12$	-2000 at $V_{EB} = -12$	Any	F	-60 peak -30*	-12	2000 peak 1000 avg.	peak		12000	5500	-65 to +85	E	-1.5 -1.5 -13.6	1000 500 400	70 - 75
2N370	Class A RF Amplifier		-20 at $V_{CB} = -12$	-50 at $V_{EB} = -1.5$	Any	E	20	1.5	-10	10	80	35	10	-65 to +85	E E E	$-12 \\ -12 \\ -12 \\ -12$	$ \begin{array}{c} -1 \\ -1 \\ -1 \end{array} $	60 60 60
2N371	RF Oscillator	_	-20 at $V_{CB} = -12$	-50 at $V_{EB} = -0.5$	Any	E	-20	0.5	-10	10	80	35	10	-65 to +85	в	-12	1	0.984
2N372	RF Mixer		-20 at $V_{CB} = -12$	-50 at $V_{EB} = -0.5$	Any	E	- 2.0	-0.5	-10	10	80	35	10	-65 to +85	E	$-12 \\ -12 \\ -12$	$ -1 \\ -1 \\ -1 \\ -1 $	60 60 60
2N384	VHF Amplifier	_	-16 at $V_{CB} = -12$	-50 at $V_{EB} = -0.5$	Any	I	-30	-0.5	-10	10	120	70	35	-65 to +85	E B	12 12	-1.5 -1.5	
2N398	High- Voltage Switch	-105 at $I_{\rm C} = -50$	-14 at $V_{CB} = -2.5$	-50 at $V_{EB} = -50$	Any	G	-105	50	-100	100	50	10	-	-65 to +85	E	-0.35	-5	60 =
2N404	Low- Level Switch	-25 at $I_{\rm C} = -20$	-5at V _{CB} = -12	-2.5 at $V_{EB} = -2.5$	Any	G	- 25		-100	100	120	35	10	-65 to +85	в	-6	-1	-
2N405	Class A AF Driver		-14 at $V_{CB} = -12$	$ \begin{array}{c} -14 \\ at \\ V_{EB} = -12 \end{array} $	Any	в	-12	-2.5	-70	70	150	50	20	-65 to +85	E	-6	-1	35
2N406		<u> </u>			Like	RCA	-2 N 40)5 but	has fle	xible l	eads.							
2N407	Large Signal AF Amplifier		$ \begin{array}{c} -14 \\ at \\ V_{CB} = -12 \end{array} $	-14 at $V_{EB} = -2.5$	Any	, в	-20	-2.5	-70	70	150	50	20	$\begin{vmatrix} -65\\ to\\ +85 \end{vmatrix}$	E	-1	- 50	65
2N408					Lik	e RCA	-2 N 4	07 but	has fle	xible	leads.							
2N409	Class A 455-Kc Amplifier	-13 at $I_{C} = -10$	$\begin{vmatrix} -10 \\ at \\ V_{CB} = -12 \end{vmatrix}$	$ \begin{array}{c} -12 \\ at \\ V_{EB} = -0.5 \end{array} $	Any	у В	-12	-0.5	-15	15	80	35	10	-65 to +85	E E B B		$ \begin{array}{ c c } -0.5 \\ -1 \\ -0.5 \\ -1 \end{array} $	45 48 0.978 0.980
2N410					Like	RCA	-2N 40	9 but	has fle	xible l	eads.							
2N411	540-1640 Kc Converter	$ \begin{array}{c} -13 \\ at \\ I_{C} = -10 \end{array} $	-10 at $V_{CB} = -12$	$\begin{vmatrix} -12 \\ at \\ V_{\rm EB} = -0.5 \end{vmatrix}$	Ang	уВ	-12	-0.5	-15	15	80	35	10	-65 to +85		-9 -9	-0.6 -0.6	5 75 0.987
2N412					Lik	e RCA	-2 N 4	11 but	has fle	xible	eads.							

Cutoff Data. Collector-to-Base Voltage and Collector Current values obtained with emitter open. Emitter Current values obtained with collector open. Ambient temperature = 25°C.
 Storage or Operating Temperatures above 85°C will affect the serviceability of the transistor.

B = Common-Base, Emitter-Input Circuit.
 C = Common-Collector, Base-Input Circuit.
 E = Common-Emitter, Base-Input Circuit.
 * For inductive load.
 Large-Signal DC Current Transfer Ratio.

CHARACTERISTICS CHART I (Cont'd)

	ircuit, see p	gnal Hyl valent ci	moll-Si		MMON-	For CO/		TYPICAL OPERATION (Cont'd) Ambient Temperature = 25°C Power Gain Noise Factor Input Lead Power Generator Lead Noise								
Capacitance Intrinsic μμ1 candwidance Pewer TYPE		enductance µmhos	C		DC Cellector	DC Cellecter-	Alpha Cutoff									
$\begin{array}{c c} \mu \mu \mu \\ \hline conductance \\ \mu mhos \\ c_{b'e} \\ \hline c_{b'e} \\ c_{b'e} \\ \hline c_{b'e} \\ c_{b'e$	\$b'a С	Sce	₿b ['] e	Resistance ohms (r _{bb} ')	Current ma (I _C)	to-Emitter volts (VCE)	Frequency Mc (f _{cxb})	Factor† db	Load Resistance ohms	Generator Resistance ohms	Power Gain db	Lead Resistance ohms	Input Resistance obms			
-p, alloy-junction types	p-n-p	m, j	iniu	rmc	Ge	'5		nall-Signal T s on page 13				Small-	•			
sh-pull data, see page 13. 2N3O1	B push-p	d class	s A and	cal clas	or typi	F					32.5	34 				
sh-pull data, see page 13. 2N301-A	B push-p	d class	s A an	cal clas	or typi	F				+	32.5	34 	75 			
37800 21400 13700 132 2N370				;	10 Mc	🗲 at	17.6 db)	ful gain = ful gain = ful gain =	um use	(Maxin	50.5□ 26.2□ 17.0□	180000 18000 11000	1750 200 100			
bage 14. 132 2N371	, see page	al data	ditiona	For ad			30	3 Mc	up to 2	lications	on app	Oscillati	Fo			
37800 21400 13700 132 2N372				;	10 Mc	🗲 at	17.6 db)	ful gain = ful gain = ful gain =	num use	(Maxin	50.5□ 26.2□ 17.0□	180000 18000 11000	1750 200 100			
90 1.3 56800 250 2N384	_	_	960	50	-1.5	-12	100			— at 10. — at 50		28000 5000	400 30			
itching Service, see page 13. 2N398	ge Switch	-Volta	r High	data fo	lesign	For a		ications.	rol appl	off" cont	ge ''on-	igh-volta	For h			
ching Service, see page 13. 2N404	l Switchin	v-Leve	or Lov	data f	design	For	12	lications.	trol app	off" con	ed "on	edium-spe	For m			
— 40 37500 — 2N4O5	0.295	6.5	1070	120	-1	-6	_	_	_		43	85000	750			
2N406	IL		ads.	xible le	has fle	405 but	CA – 2N	Like R	· ·	1	1	I				
o of radio re- 0 milliwatts. 2N407	stages of ely 150 m	utput	ower o appro	i-pull p evels of	B push utput 1	d class ower o	ass A an ting at p	or use in cli ifiers opera	ended fo lio ampl	pe is int and aud	This ty ceivers					
2N408			ads.	xible le	has fle	407 but	CA2N	Like R								
540 9.5 19300 13 2N409 1100 9.5 38600 14 2N409		4.6 8.6	425 800	85 75	-0.5 -1	9 9-	6.8 6.7	4.5 spot□ 4.5 spot□ 			38.8□ 37.8□ 	70000 30000 —	1000 500 			
2N410			ads.	xible le	has fle	409 but	CA - 2N	Like R								
650 9.5 22600 16.5 2N411	0.23	5.4	480	85	-0.6	-9	10	gain) 	nversion	Jseful co	32 (1	75000	700			
2N412			ads.	xible le	has fle	411 but	CA – 2N	Like R								

† Measured with a noise diode and a thermocouple voltmeter with an equivalent noise bandwidth of 12.3 Kc and geometric mean of 3000 cps.
Measured in a single-tuned unilateralized circuit matched to the generator and load impedances for maximum transfer of power (transformer insertion losses not included).

This frequency (figure of merit) may be calculated from the equation:

$$f = \frac{1}{4 \pi} \sqrt{\frac{g_m}{r_{bb'} C_{b'e} C_{b'e}}}$$

٩,

RCA TRANSISTOR CHARACTERISTICS CHART II

			_			RACTERIST									
RCA				al H Parameters		BASE INPUT	at Ambien	t Temperatu		al T Paramete	ers				
TYPE	DC Collector- to-Emitter volts (V _{CE})	DC Cellector Current ma (I _C)	Input Resistance, Output Circuit Shorted ehms (ħ;)	Reverse Valtage Transfer Ratie, Input Circuit Opeu (h _r)	Ferward Current Transfer Ratio, Output Circuit Skorted (h _f)	Output Conductance, Input Circuit Open µmhos (t _o)	DC Collector- te-Emitter volts (V _{CE})	BC Collector Curront ma (1 _C)	Collector Resistance megohms (r _c)	Emitter Resistance ehms (r _e)	Base Resistance ehms (r _b)		Mutuai Resistance megokms (rm)		
Germa	nium	, p-n	-p, all	oy-junct	ion ty	pes		F	or equivalent	circuits, see p	age 14				
2N77	-4	-0.7	2720	3.23 x 10 ⁻⁴	55	14	-4	-0.7	3.93	23	1430		3.86		
2N104	-3 -6	-0.2 -1	6040 1667	17.2 x 10 ⁻⁴ 4.95 x 10 ⁻⁴	32 44	11.1 22.8	$-3 \\ -6$	-0.2 -1	2.95 1.974	155 21.7	960 690		2.86 1.93		
2N105	-1.3 4	-0.3 -0.7	4800 2880	9.1 x 10 ⁻⁴ 5.5 x 10 ⁻⁴	45 55	12.4 16.3		-0.3 -0.7	3.74 3.45	73 34	1400 976		3.66 3.39		
2N109	Zero-S Volt Peak ((per Zero-S (per MaxS	age Collector transist ignal D(transist Signal D	ltage C Base-to-Er Current or) C Collector (or) C Collector	nitter Current Current	-4.5 -0.15 -0 -35 - -2	sh-Puil Servi 9 volts 0.15 volt 40 ma 2 ma 13 ma	Signal- (bas Load I colle Signal Circuit Power Total D	Source Im e-to-base) (mpedance ctor) Frequency t Efficiency Gain∳ Harmonic	pedance (collector-t , Distortion		uit • 1500 400 1000 60 30 7 75	800 1000 69 33 7	% db		
2N139	(per transistor) -11.5 -13 ma MaxSignal Power Output 75 160 mw This type is intended for use in 455-Kc intermediate-frequency amplifier service.														
2N140	This type is intended for 540-1640 Kc converter service.														
2N175	4														
2N2O6	Derived 3 5	erived from a Common-Base, Emitter-Input Equivalent Circuit -3 -0.2 3.34 104 1270 3.25 -3 -0.2 137 3.8 $x 10^{-4}$ -0.974 0.3 -5 -1 1.82 21 580 1.78													
2N215					Like RC	A-2N104 b	out has f	lexible lead	ls.						
2N217					Like RC	A-2N109 t	out has f	lexible lead	ls.						
2N218					Like RC	A-2N139 1	out has f	lexible lead	ls.						
2N219					Like RC	CA-2N140 1	out has f	lexible lead	18.						
2N220					Like RC	CA-2N175 1	out has f	lexible lead	ls.						
2N247						nce between s cut to $\frac{5}{16}$ "									
2N269	DC C	ollector-1 at Vo at Vo	to-Base volts $B_{B} = -2.5$ $B_{B} = -12$ aximum ten Typical C Current	urrent, at 80°(), and with e nperature rise Operation in L	mitter open $\dots -50 \mu$ $\dots -60 \mu$ of transister	a a a or junctions	suc to-l mor (transist rvice for Max.	h that the base voltag re than — tor in free a Common- DC Collec		rrent will do r greater th d with emit 0. use-Input Ca tter Voltage	ouble for a an -2.5 v ter open 35°C/mw ircuit	dc co olts (llector- but not		
2N270	Zero-S Peak (Zero-S (per MaxS (per	Collector ignal DC transiste Signal D transiste	ltage C Base-to-Er Current (pe C Collector (or) C Collector (Current	1 -0.1 -11 -3	sh-Pull Serv 2 volts 1 volt 0 ma 2 ma 5 ma 0 ohms	Load Signa Circu Powe Tota	l Impedane al Frequen uit Efficien er Gain∳ Il Harmoni at 500 mw at 10 mw	ce (per colle cy cy c Distortior	ctor) 1:		1000 75 32 10 5	ohms cps % db % max. % max. mw		
2N274						ance betweer s cut to $\frac{5}{16}''$									

Measured at the primary of the output transformer.

•

- Unless otherwise specified, values are for 2 transistors.

RCA TRANSISTOR CHARACTERISTICS CHART II (Cont'd)

V

2N301 2N301-AC Class A C Supply Voltage Zero-Signal DC Base-to-Emitter Voltage -14.4 Class A -14.4^{+} voltsClass A Signal Frequency 400 2N301-ADC Supply Voltage Zero-Signal DC Collector Current Max-Signal DC Collector Current DC Collector-to-Emitter Voltage Signal-Source Impedance Load Impedance -0.8 -0.8 -13.6 -13.6 -13.6 -1005 -13.6 -1005 -13.6 -1005 -13.6 -1005 -1005 $-12000000000000000000000000000000000000$	Bit with the same in the field set of the set										D Ca		
TYPEChiefer (tree)		KCAI											
2N301 Typical Operation for Common-Emitter, Base-Input Circuit Service Class A Full-Null-Null Class A Full-Null-Null Class A Full-Null-Null Class A Full-Null-Null-Null Class A Full-Null-Null-Null-Null-Null-Null-Null-	ce Resistance megohms	Resistance ohms	Resistance ohms	Resistance megohms	Collector Current ma	Cellecter- te-Emitter volts	Conductance, nput Circuit Open µmhos	Transfer Ratio, Output Circuit Shorted	Transfer Ratie, Input Circuit Open	Output Circuit Shorted ohms	Collector Current ma	Collector- to-Emitter volts	TYPE
Service Class A Publishing Service Publishing Service Publishing <td></td> <td>ge 14</td> <td>ircuits, see pa</td> <td>equivalent c</td> <td>For</td> <td></td> <td>es</td> <td>on typ</td> <td>y-junct</td> <td>-p, allo</td> <td>p-n-</td> <td>nium,</td> <td>Germa</td>		ge 14	ircuits, see pa	equivalent c	For		es	on typ	y-junct	-p, allo	p-n-	nium,	Germa
2N301 Class A Pub-Null Class A Pub-Null 2N301-A DC Supply Voltage -14.4 -14.4 Voltage 400 2rc-Signal DC Bartio-DEmitter Voltage -0.4 -0.13 volt Signal Prequency 400 2rc-Signal DC Collector Current -0.4 -0.05 amp Total Harmine Distortion: 32.5 ast-Signal DC Collector Current -0.4 -0.05 amp at 2.7 waits -0 Signal Source Impedance 75 15 ohrms max-Signal Dower Output 2.7 2N370 This type is intended for use in radio-frequency amplifier service in short-wave receivers. Interlead Capacitance between base lead and collector lead is 2N371 The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the f mixe opt mum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc, if the collector sup opt with bit stage will deviate from 22 Mc by less than 7 Kc. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. 2N374 This type is intended for use in radio-frequency mixer service and interlead shield grounded. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. 2N374				out Circuit	r, Base-In	n-Emitte	or Commo	Operation	Typical				
2N301 DC Supply Voltage -14.4 -14.4 volt Signal Frequency 400 2N301-A Peak Collector Current -0.4 -0.3 and Power Gainty 32.5 2N301-A Peak Collector Current -0.4 -0.5 amp Power Gainty 32.5 2N301 Collector Current -0.4 -0.5 amp at 12 watts 10 2N302 Collector Collector Current -0.64 and at 12 watts 10 2N370 This type is intended for use in radio-frequency amplifier service in short-wave receivers. Interlead Capacitance between base lead and collector lead is 003 µd with leads cut to 3¼° and interlead shield grounded. 2N371 The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2NS71 and operating at 22 Mc, if the collector supprimum mixing operation. In an oscillator stage utilizing the 2NS71 and operating at 22 Mc, if the collector supprimum mixing operation. In an oscillator stage utilizing the 2NS71 and operating at 22 Mc, if the collector supprimum mixing operation. In an oscillator stage utilizing the 2NS71 and operating at 22 Mc, if the collector supprimum mixing operation. In an oscillator stage utilizing the 2NS71 and operating at 22 Mc, if the collector supprimum mixing operation. In the set of Capacitance between base lead and collector lead is 000	Class B	Cla						C					
2N301 Zero Signal DC Base-to-Emitter Voltage -0.24 -0.13 volt Circuit Efficiency 47 2N301-A Zero Signal DC Collector Current -0.8 -0.3 amp DC Collector Current -0.4 -0.05 amp At 2.7 watts 10 at 2.7 watts 10.03 µJ with leads cut to ½% and interlead and collector lead is 0.03 µJ with leads cut to ½% and interlead shield grounded. 2N370 This type is intended for use in radio-frequency amplifer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is 0.03 µJ with leads cut to ½% and interlead shield grounded. 2N371 The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc by leas than 7 Kc. Interlead Capacitance between base lead and collector lead is .003 µJ with leads cut to ½% and interlead shield grounded. 2N372 This type is intended for UHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .003 µJ with leads cut to ½% and interlead shield grounded. 2N384 This type is intended for UHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .003 µJ with leads cut to ½% and interlead shield grounded. 2N384 DC Collector Breakdown				equency	Signal Fr	1				age	ply Volta	DC Sup	
Zero-Signal DC Collector Current Max-Signal DC Collector Corrent DC Collector-to-Emitter Voltage Signal-Source Impedance-0.4 -0.05 and 25Total Harmonic Distortion: at 2.7 wats10 at 2.7 wats2N370This type is intended for use in radio-frequency amplifier service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 μd with leads cut to $\frac{5}{16}^{\circ}$ and interlead Shield grounded.12N370The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2N571 and operating at 22 Mc, if the collector sup drops from -12 to -8 volts, the frequency provided by this stage will deviate from 22 Mc by leas than 7 Kc. Interlead Capacitance between base lead and collector lead is .003 μd with leads cut to $\frac{5}{6}^{\circ}$ and interlead shield grounded.2N371This type is intended for use in radio-frequency mixer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 μd with leads cut to $\frac{5}{6}^{\circ}$ and interlead shield grounded.2N372This type is intended for use in radio-frequency mixer service. Interlead Capacitance between base lead and collector lead is .003 μd with leads cut to $\frac{5}{6}^{\circ}$ and interlead shield grounded.2N384Collector Breakdown Voltage with de collector current = $-50 \ \mu a$, dc emitter current = 0 typical		47 6		fficiency	Circuit E		0.13 volt	-0.24 -	tter Voltage	Base-to-Emit	nal DC I	Zero-Sig	
Max. Signal DC Collector Current0.64ampat 2.7 watts10C Collector-DEmitter Voltage7515ohmsat 12 watts	30● db	32.5	tortion:						rrent				2N301-A
Signal-Source Impedance 75 15 ohms Max-Signal Power Output 2.7 2N370 This type is intended for use in radio-frequency amplifier service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ¾ and interlead shield grounded. 1 2N371 The 2N371, in f oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc, if the collector supp drops from -12 to -8 volts, the frequency provided by this stage will deviate from 22 Mc by less than 7 Kc. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ¾ and interlead shield grounded. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ¾ and interlead shield grounded. 2N384 This type is intended for VHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ¾ and interlead shield grounded. 2N384 DC Collector Breakdown Voltage with de collector current = -0 µµa, de emitter current = -0 µµa, de collector current = -0 µµa, de collector current = -10 µµa, de collector current = -10 µµa, de collector current = -20 µµa, de	CHARACTERISTICS For COMMON-EMITTER CIRCUIT, BASE INPUT of Ambient Temperature = 25°C Small-Signal The converters Class A Push-Bull												
Load Impedance 34 6 ohms Emitter Resistor (unbypassed) 1 2N370 This type is intended for use in radio-frequency amplifier service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ½ and interlead shield grounded. 2N371 The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc, if the collector sup drops from -12 to -8 volts, the frequency provided by this stage will deviate from 22 Mc by less than 7 Kc. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ½ and interlead shield grounded. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ½ and interlead shield grounded. 2N384 This type is intended for VHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to ½ and interlead shield grounded. 2N384 DC Collector Breakdown Voltage with de collector current = -50 µa, de emitter current = -0 utypical													
2N370 Interlead Capacitance between base lead and collector lead is .003 μμf with leads cut to ½6" and interlead shield grounded. 2N371 The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc, if the collector supp drops from -12 to -8 volts, the frequency provided by this stage will deviate from 22 Mc by less than 7 Kc. 2N371 The 2N371, in rf oscillator service up to 23 Mc, can provide the required oscillator-injection voltage to the rf mixe optimum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc, if the collector supp drops from -12 to -8 volts, the frequency provided by this stage will deviate from 22 Mc by less than 7 Kc. 2N372 Interlead Capacitance between base lead and collector lead is .003 μμf with leads cut to ½6" and interlead shield grounded. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 μμf with leads cut to ½6" and interlead shield grounded. 2N384 This type is intended for VHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .094 μμf with leads cut to ½6" and interlead shield grounded. 2N398 DC Collector Breakdown Voltage with de collector current = -50 μa, de collector current = -50 μa, de collector current = -50 μa, de collector current = -20 μa, de collector curre													
2N371 optimum mixing operation. In an oscillator stage utilizing the 2N371 and operating at 22 Mc, if the collector supported by this stage will deviate from 22 Mc by less than 7 Kc. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to 3% and interlead shield grounded. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to 3% and interlead shield grounded. 2N372 This type is intended for use in radio-frequency mixer service in short-wave receivers. Interlead Capacitance between base lead and collector lead is .003 µµf with leads cut to 3% and interlead shield grounded. 2N384 This type is intended for VHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .094 µµf with leads cut to 3% and interlead shield grounded. 2N398 DC Collector Breakdown Voltage with dc collector current = -50 µa, dc emitter current = 0 typical		:rs.	5	ector lead is	d and colle	base lea	ce between	l Capacitar	Interlea	This typ			2N370
2N372Interlead Capacitance between base lead and collector lead is .003 $\mu\mu f$ with leads cut to $\frac{5}{6}^{\mu}$ and interlead shield grounded.2N384This type is intended for VHF amplifier and oscillator service. Interlead Capacitance between base lead and collector lead is .094 $\mu\mu f$ with leads cut to $\frac{5}{6}^{\mu}$ and interlead shield grounded.2N384DC Collector Breakdown Voltage with dc collector current = $-50 \ \mu a$, dc emitter current = 0 typical	xer stage for pply voltage	lector supply	c, if the coll by less than s	ng at 22 Mo om 22 Mc b ector lead is	nd operatin deviate fro nd and coll	N371 ar age will base lea	lizing the 2 1 by this st .ce between	or stage ut icy provide l Capacitai	In an oscilla ts, the freque Interlea	g operation.	m mixin	optimu	2N37 1
2N384Interlead Capacitance between base lead and collector lead is .094 $\mu\mu$ f with leads cut to $\frac{5}{16}^{\prime\prime\prime}$ and interlead shield grounded.2N398DC Collector Breakdown Voltage with dc collector current = $-50 \ \mu$ a, dc emitter current = 0 typical		i.	3	ctor lead is	d and colle	base lea	ce between	l Capacitar	Interlea	This ty			2N372
2N398with dc collector current = $-50 \ \mu a$, dc emitter current = 0 typical105 voltswith dc emitter current = $-50 \ \mu a$, dc collector current = 0 typical105 volts2N404DC Collector Breakdown Voltage with dc collector current = $-20 \ \mu a$, dc emitter current = 0 typical25 voltsDC Emitter Breakdown Voltage with dc emitter current = $-20 \ \mu a$, dc collector current = 0 typical25 voltsDC Emitter Breakdown Voltage with dc emitter current = $-20 \ \mu a$, dc collector current = 0 typical112N404DC Collector Breakdown Voltage minimum			5	ector lead is	d and colle	base lea	ce between	I Capacita	Interlea				2N384
2N404 DC Collector Breakdown Voltage with dc collector current = $-20 \ \mu a$, dc emitter current = 0 typical	-75 volts		rent = -50 $= 0$	emitter cur tor current pical	with dc dc collec ty]			$= -50 \ \mu a$,	ctor current rrent = 0	dc colle nitter cu typica	with	2N398
2N404with dc collector current = $-20 \ \mu a$, dc emitter current = 0 typical	-50 volts	50	· · · · · · · · · · · · ·	inimum	m			105 volts	· · · · · · · · · · · · · · ·	um	minim		
$2N405$ $2N406$ -6 -1 1115 2.93×10^{-4} 35 17.2 -6 -1 2.1 17 500 $2N407$ $2N408$ These types are intended for use in class A and class B push-pull service. $These types are intended for use in class A and class B push-pull service. $	-35 volts	-35	rent = -20 = 0	mitter curr tor current pical	with dc o dc collec ty	:			$= -20 \mu a,$	ctor current urrent = 0 1	dc collee nitter cu typica	with	2N404
2N407 2N408 These types are intended for use in class A and class B push-pull service.						-6	17.2	35	2.93 x 10 ⁻⁴	1115	-1	-6	
AN400			ervice.	push-pull s	nd class B	lass A a	for use in c	re intended	These types a				2N407
2N410		•	lifier service.	uency ampl	ediate-freq	: interme	e in 455- K	ended for u	types are int	These			2N409
2N411 2N412 These types are intended for 540-1640 Kc converter service.				ter service.	Kc conver	40-1640	ended for 5	ypes are in	These				2N411

ъ.

RCA SEMICONDUCTOR DIODES

		R	ECTIFIER	SERVICE (Fe	or Frequ	encies o	f 25 cps	and ab	ove)		
	MA			5							
Peak	Forwar	d Current	Fault	Ambient Temperature	Minimum Forward Current		-	-		Minimum Peak Inverse Voitage for Zero	Capacitance Between Stud Tips
inverse velts	Peak ma	Average • ma	Current A ma	Range °C	ma At DC volts = 1	At DC velts $= -3$	At DC volts = -10	At DC volts = -50	At DC volts = -100	Dynamic Resistance volts	(Apprex.) µµf
60	150	50	500	-50 to $+75$	5	_	30	500	_	75	1
100	150	50	500	-50 to +75	4	5			•500	120	1
50	150	50	500	-50 to +75	5	_	7	100		75	1
100	150	50	500	-50 to +75	4		_		600	120	1
	linverse velts 60 100 50	Peak Inverse voltsForwar6015010015050150	MAXIMUM (AbsolutePeak Inverse voltsForward CurrentPeak maAverage* ma6015050100150505015050	MAXIMUM RATING: (Absolute Values)Peak Inverse voltsForward Current Peak maFault Current ma6015050500100150505005015050500	MAXIMUM RATINGS (Absolute Values)Peak Inverse voltsAmbient CurrentAmbient Fault Current ma maAmbient Temperature Range oC6015050500-50 to +7510015050500-50 to +755015050500-50 to +75	MAXIMUM RATINGS (Absolute Values)Peak Inverse voltsAmbient Forward Current Peak MaAmbient Fault Current maMinimum Forward Current Range $^{\circ}C$ Minimum Forward Current Minimum Forward Current Ma $^{\circ}C$ Minimum Forward Current Minimum Forward Current Ma At DC volts $= 1$ 6015050500 -50 to $+75$ 510015050500 -50 to $+75$ 45015050500 -50 to $+75$ 5	MAXIMUM RATINGS (Absolute Values)Peak Inverse voltsForward Current Forward Current Peak MaAmbient Temperature Range \circ CMinimum Forward Current maPeak Inverse voltsAverage* maFault Current maAmbient Temperature Range \circ CMinimum Forward at DC volts at DC volts at DC volts at DC volts at DC volts at DC volts at DC volts a t D	MAXIMUM RATINGS (Absolute Values)CHA (Ambient Temperature Range \circ CMinimum Forward Current Minimum Forward Current Max. Average Max. Average \circ CMinimum Forward Current Minimum Forward Current Max. Average \circ CMinimum Forward Current Minimum Forward Current Max. Average \circ CMinimum Forward Current Max. Average Max. Average \circ CMinimum Forward Current Max. Average \circ CMinimum Forward Current Max. Average \bullet At DC velts \bullet 10015050500 -50 to $+75$ 5 $$ 3010015050500 -50 to $+75$ 5 $$ 7	MAXIMUM RATINGS (Absolute Values)CHARACTERI (Ambient Temperatur Forward Current Max. Average Inverse Current μ^a Peak Inverse voltsForward Current Max MaxFault Fault Current maAmbient Temperature Range oCMinimum Forward Current ma At DC volts At DC volts At DC volts At DC volts At DC volts $a - 10$ Max. Average Inverse Current μ^a Peak Inverse voltsAverage maFault Current ma maAmbient Temperature Range oCMinimum Forward Current ma At DC volts At DC volts At DC volts $a - 10$ Max. Average Inverse Current μ^a 6015050500 -50 to $+75$ 5 $$ 30 10015050500 -50 to $+75$ 45 $$ $$ 5015050500 -50 to $+75$ 5 $$ 7100	(Absolute Values) (Ambient Temperature = 25° C) Peak Inverse volts Forward Current Fault Current ma Ambient Temperature Range $\circ C$ Minimum Forward Current ma Max. Average Inverse Current μ^2 60 150 50 500 -50 to +75 5 30 500 100 150 50 500 -50 to +75 4 5 *500 50 150 50 500 -50 to +75 5 7 100	MAXIMUM RATINGS (Absolute Values)CHARACTERISTICS (Ambient Temperature $= 25^{\circ}$ C)Peak Inverse voltsForward Current maFault Current maAmbient Temperature Range \circ CMinimum Forward Current maMax. Average Inverse Current μ^a Minimum Peak Inverse Voltage μ^a Peak Inverse voltsAverage maFault Current maAmbient Temperature Range \circ CMinimum Forward Current ma μ^a Minimum μ^a Max. Average Inverse Current μ^a Peak Inverse Voltage Temperature Range μ^a Minimum μ^a Peak Inverse VoltageMinimum Peak Inverse Voltage μ^a 6015050500 -50 to $+75$ 5 $$ 30500 $-$ 7510015050500 -50 to $+75$ 45 $$ $ \cdot500$ 1205015050500 -50 to $+75$ 5 $$ 7100 $$ 75

.14.

Averaged over one conduction cycle.

Maximum Fault Current is the highest value of current that should be permitted to flow through the diode under a fault condition such as load short circuit. Values are for time durations up to one second.

EQUIVALENT CIRCUITS

SMALL-SIGNAL HYBRID-# PARAMETERS:

Derived from the accompanying one-generator equivalent circuit and applicable over the useful frequency range of the transistor.

SMALL-SIGNAL H PARAMETERS:

Derived from the accompanying two-generator equivalent circuit and applicable over the audio frequency range.

SMALL-SIGNAL T PARAMETERS:

Derived from the accompanying one-generator equivalent circuit and applicable over the audio frequency range.

DIMENSIONAL OUTLINES

1N34-A, 1N38-A, 1N54-A, and 1N58-A

*ARROW INDICATES DIRECTION OF FORWARD (EASY) CURRENT AS INDICATED BY DC AMMETER, 92CS-7980RI

Δ

В

2N104, 2N109, 2N139, 2N140, 2N175, 2N405, 2N407, 2N409, and 2N411

DIMENSIONAL OUTLINES (Cont'd)

BASE EMITTER EMITTER O48" ±.007" O48" ±.007" O48" ±.007" BASE BASE COLLECTOR COLLECTOR COLLECTOR O17" +.002" O17" +.002" O17" +.002" O17" +.002" O17" -.001" DIA. DIA BASE O48" ±.007" O192" ±.007" O192

2N247, 2N370, 2N371, and 2N372

.375" MAX. METAL CASE

Ε

2N215, 2N217, 2N218, 2N219, 2N220,

2N269, 2N406, 2N408, 2N410, and 2N412

92CS-9148RI

D

· 15 ·

 The specified lead diameter applies in the zone between 0.050" and 0.250" from the base seat. Between 0.250" and 1.50" a maximum of 0.021" diameter is held. Outside of these zones, the lead diameter is not controlled.

2N301 and 2N301A

DIMENSIONAL OUTLINES (Cont'd)

· 16 ·

The following directory has been prepared to guide designers, experimenters, and servicemen in selecting the proper RCA transistor type as a replacement and to help identify and describe many of the transistor types which have been introduced on the market by different manufacturers. More than 500 type designations are listed including junction types, point-contact types and phototransistors.

In using the Transistor Directory, note that the basic type designations of different manufacturers may have been assigned according to different systems. Some basic designations consist only of a number such as 210, 355, 1032, etc.; others consist of a combination of letters and digits such as 2N77, X78, SB100, etc. In either case the basic designation may or may not have a prefix composed of one or more letters, such as CK, GT, H, OC, ZJ, etc., which indicates the particular manufacturer. For certain transistors, this prefix becomes an essential part of the type designation when as sometimes happens, two or more manufacturers utilize the same designation for different transistor types.

Identifying information about the Type To Be **Replaced** including the following: (1) manufacturer's prefix, if any, (2) the basic type designation in bold face, (3) symbol to designate the manufacturer, (4) symbol to indicate the description, for example, GPA=Germanium, p-n-p, Alloy-Junction Type (denotes the structural arrangement and kind of semiconductor materials used in the device), and (5) class of service is charted in the first five columns. The next two columns show the RCA Direct Replacement Type, or the RCA Similar Type, respectively, when one or the other is available.

Basic designations shown in Column 2 of the tabulation are listed in numerical -- alphabetical sequence. Those starting with a digit are given first; those starting with a letter appear at the end of the tabulation.

Types listed in the Similar RCA Type column (Column 6) are not directly interchangeable with the types listed in the Basic Designation column because of mechanical and/or electrical differences. For more information as to degree of similarity refer to respective transistor data.

How to Use

1. Look in Column 2 for basic designation of type to be replaced.

2. If type to be replaced has a prefix, look for that prefix in Column 1.

For example: If type CK-762 is to be replaced, find the basic designation 762 in Column 2 and the prefix CK in Column 1.

3. Consult Column 6 for corresponding RCA **Direct Replacement Type.**

4. If no Direct RCA Replacement Type is shown consult Column 7 for RCA Similar Type and obtain respective transistor data to determine degree of similarity.

KEY TO SYMBOLS IN COLUMN 3

A B CBS CC DEL GE GT HA	 Amperex Bendix Bogue (Germanium Products) CBS-Hytron Clevite Corporation Delco General Electric General Transistor Hughes Aircraft 	MH N NA NU P RCA RK	Motorola Mallory Minneapolis-Honeywell Nucleonics National 'Aircraft National Union Philco Radio Corporation of Americ Raytheon SYMBOLS IN COLUMN	SS TEC TI TS	 Radio Recepter Sylvania Sprague Scientific Specialities Transitron Texas Instruments Tung-Sol Western Electric Westinghouse
	= Germanium, Point-Contact Type = Germanium, n-p-n, Allov-Junction	Type			n, Alloy-Junction Type 1. Grown-Junction Type

GNA = Germanium, n-p-n, Alloy-Junction Type	SNG = Silicon, n-p-n, Grown-Junction Type
GNG = Germanium, n-p-n, Grown-Junction Type	SPA = Silicon, p-n-p, Alloy-Junction Type
GPA = Germanium, p-n-p, Alloy-Junction Type	SPG = Silicon, p-n-p, Grown-Junction Type
GPD = Germanium, p-n-p, "Drift" Type	SD = Semiconductor Diode
GPG = Germanium, p-n-p, Grown-Junction Type	
GPS = Germanium, p-n-p, Surface-Barrier Type	

* RCA types shown in this column are direct replacements under all circumstances for corresponding types to be replaced.

† RCA types shown in this column are not directly interchangeable with the types to be replaced because of mechanical and/or electrical differences. For more information as to degree of interchangeability, refer to respective type data or write to Commercial Engineering, RCA, Somerville, New Jersey.

Information contained herein has been carefully checked and is believed to be reliable but no responsibility is assumed for inaccuracies. The reporting of errors to Commercial Engineering, RCA, Somerville, N. J., will be appreciated.

TEC TEC TEC TEC TEC GPA GPA GPA GPA GPA

BOG BOG BOG S S GNG GNG GNG GPA GNA

BOG RCA RCA RK GE GNG GPA GPA GPA GPA

De-scrip-tion

GPA GPA GPA GNA GNA

GNA GPA GNG GNG GNG

GPA GPA GPA GPA GC CBS A GT RCA WE

GPA GPA GPA GPA

GPA GPA GPA GPA

GPA GPA GPA GPA

SNG SNG SNG GPA GNJ TI TI TI GP TI

GNG GNG GNG GPS GPS ТІ ТІ ТІ Р Р

GPA GPA GPA GPA

GPA GPA GPA GPA GPA

GPA

GNG GNG GNG GNG GNG

GPA GPA GPA GPA GPA

GNG GNG GNG GNG GNG GE GE GE GE

GE RK RK BCA RCA GPA GPA GPA GPA GPA

* * * * 1 GNA GPA GNA GNG

TI TI TI MAL MAL GNG GNG GPA GPA

SPR BOG BOG BOG BOG GC SNG SNG SNG SNG

BOG BOG BOG BOG GE SNG SNG SNG SNG GNG

1	2	3	4	5	6	1	 1	2 pe To Be F	3	4
Mfr. Prefix	Basic Desig- nation	Mír.	ea De- scrip- tion	Class of Service	Replace by RCA Type*	Similar RCA Type:	Mfr. Prefix	Basic Desig- nation	Mfr.	De seri
НН	1 2 2A 2B 2C	MH MH CC CC CC	GPA GPA GC GC GC	AF Power Ampl AF Power Ampl AF Amplifier Switching Switching			1	2N85 2N86 2N87 2N88 2N88 2N89	TEC TEC TEC TEC TEC	GI GI GI GI
	2D 2E 2G 2H 2L	CC CC CC CC	GC GC GC GC GC	Switching AF Amplifier Switching AF Amplifier Switching				2N90 2N91 2N92 2N94 2N94A	TEC TEC TEC S S	GI GI GI GI GI GI GI
	2N21 2N21A 2N22 2N23 2N24	WE WE WE WE WE	6C 6C 6C 6C	Switching AF Amplifier Switching Switching AF Amplifier				2N95 2N96 2N97 2N97A 2N98	S RCA BOG BOG BOG	63 61 63 63 63
	2N25 2N26 2N27 2N28 2N29	WE WE WE WE	GC GC GNG GNG GNG	AF Amplifier Switching AF Amplifier AF Amplifier Switching		2N104 2N104		2N98A 2N99 2N100 2N101 2N102	BOG BOG S S	6 6 6 6 6
	2N30 2N31 2N32 2N32A 2N33	GE GE RCA RCA RCA	6C 6C 6C 6C 6C	AF Amplifier Oscillator Switching Switching Oscillator				2N103 2N104 2N105 2N106 2N107	BOG RCA RCA RK GE	6 6 6 6
	2N34 2N34 2N34 2N34 2N34 2N34A	GT RCA 8 TEC RCA	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109 2N109 2N109 2N109		2N108 2N109 2N109 2N109 2N109 2N110	CBS A GT RCA WE	6 6 6 6 6 6
	2N35 2N35 2N36 2N36 2N37	RCA S CBS GT CBS	GNA GNA GPA GPA GPA	AF Amplifier AF Amplifier General Use General Use General Use		2N217 2N109 2N109		2N111 2N111 2N111 2N111 2N111A 2N112	CC GT RK RK CC	0 6 6 6 6
	2N37 2N37 2N38 2N38 2N38 2N38	GT TEC CBS GT TEC	GPA GPA GPA GPA GPA	General Use General Use AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109 2N109 2N109 2N109		2N112 2N112 2N112A 2N113 2N113 2N113	GT RK RK CC GT	6 6 6 6
	2N38A 2N38A 2N39 2N39 2N39 2N39	CRS GT GT NU TEC	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier General Use General Use General Use		2N109 2N109		2N113 2N114 2N114 2N115 2N115 2N116	RK GT RK A CBS	6 6 6 6
	2N40 2N40 2N40 2N41 2N41 2N42	GT NC TEC RCA GT	GPA GPA GPA GPA GPA	General Use General Use General Use AF Amplifier General Use		2N105		2N117 2N118 2N119 2N123 2N124	T] T] T] GP Ti	8 8 6 6 6
	2N 42 2N 42 2N 43 2N 43 2N 43 2N 43	NU TEC GE GT TEC	GPA GPA GPA GPA GPA	General Use General Use AF Amplificr AF Amplificr AF Amplifier		2N 109 2N 109 2N 109 2N 109		2N125 2N126 2N127 2N128 2N129	ТТ Т1 Р Р	6 6 6 6
	2N43A 2N43A 2N44 2N44 2N44 2N44	GE TEC GE GT TEC	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N206 2N206 2N109 2N109 2N109 2N109		2N130 2N130 2N131 2N131 2N131 2N132	6Т ЯК 6ТС ЯК 6Т	6 6 6 6 6 6
	2N44A 2N45 2N45 2N45 2N45 2N46	GE GE GT TEC RCA	GPA GPA GPA GPF GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109 2N109 2N105		2N132 2N133 2N133 2N135 2N135 2N136	RK GT RK GE GE	6 6 6 6
	2N47 2N48 2N49 2N50 2N51	P P CC CC	GPA GPA GPA GC GC	AF Amplifier AF Amplifier AF Amplifier Switching Switching		2N105 2N105 2N105		2N137 2N138 2N138A 2N139 2N140	GE RK RK BCA RCA	6 6 6 6 6 6
	2N52 2N53 2N54 2N55 2N56	CC CC WL WL WL	GC GC GPA GPA GPA	Oscillator Switching AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109		2N141 2N142 2N143 2N144 2N144 2N145	я я я я П	6 0 0 0 0 0 0 0 0 0
	2N57 2N62 2N63 2N63 2N63	МН Р GTC ВК ТЕС	GPA GPA GPA GPA GPA	AF Power Ampl General Use AF Amplifier AF Amplifier AF Amplifier		2N109 2N217 2N217 2N217 2N217		2N146 2N147 2N148 2N148 2N148 2N149	T1 T1 T1 T1 T1	6 6 6 6
	2N64 2N64 2N64 2N65 2N66	GT RK TEC GT WE	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Power Ampl		2N217 2N217 2N217 2N217 2N217		2N149A 2N150 2N150A 2N151 2N151 2N152	TI TI TI MAL MAL	6 6 6 6 6
	2N67 2N68 2N69 2N71 2N72	WE 8 WE WL RCA	GC GPA. GPA GPA GC	Switching AF Power Ampl AF Amplifier AF Amplifier Switching				2N133 2N134 2N155 2N156 2N158	MAL MAL CBS CBS CBS	6 6 6 6
	2N73 2N74 2N75 2N76 2N76	WL WL GE TEC	GPA GPA GPA GPA GPA	Switching Switching Switching AF Amplifier AF Amplifier		2N104 2N104		2N159 2N160 2N160A 2N161 2N161A	SPR BOG BOG BOG BOG	6 82 82 82 81 82 82
	2N77 2N78 2N79 2N80 2N81	RCA GP RCA CBS GE	GPA GNG GPA GPA GPA	AF Amplifier IF-RF Amplifier AF Amplifier AF Amplifier AF Amplifier	2N77	2N139 2N206		2N162 2N162A 2N163 2N163A 2N166	BOG BOG BOG BOG GE	8 8 8 8 8 6
	2N82 2N83 2N83A 2N84 2N81A	CBS TEC TEC TEC TEC	GPA GPA GPA GPA GPA	AF Amplifier AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl				2N167 2N168 2N168A 2N169 2N169A	GE GE GE GE	6 6 6 6 6

5	6	1	 1	2 pe To Be	3	4
Class of Service	Replace by RCA Type*	Similar RCA Type;	Mfr. Prefix	Banic Desig- nation	Mfr.	De- scrip- tion
AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109 2N105 2N105		2N170 2N172 2N173 2N174 2N175	GE TI DEL DEL RCA	GNG GNG GPA GPA GPA
AF Amplifier Switching Switching Switching Switching		2N105 2N139 2N139		2N176 2N178 2N179 2N180 2N181	M M CB8 CB8	GPA GPA GPA GPA GPA
AF Power Ampl AF Amplifier AF Amplifier Switching AF Amplifier		2N206		2N182 2N183 2N184 2N185 2N185	CBS CBS CBS TI GR	GNA GNA GNA GPA GPA
Switching Switching AF Amplifier AF Amplifier AF Amplifier				2N186A 2N187 2N187A 2N188 2N188A	GE GE GE GE	GPA GPA GPA GPA GPA
AF Amplifier AF Amplifier AF Amplifier AF Amplifier General Use	2N104 2N105	2N104 2N218		2N189 2N190 2N191 2N192 2N193	GE GE GE S	GPA GPA GPA GPA GNA
AF Amplifier AF Amplifier AF Amplifier AF Amplifier Switching	2N109 2N109 2N109			2N194 2N195 2N196 2N197 2N198	S TEC TEC TEC TEC	GNA GPA GPA GPA GPA
IF Amplifier IF Amplifier IF Amplifier IF Amplifier IF Amplifier		2N218 2N218 2N218 2N218 2N218 2N218	•.	2N199 2N200 2N204 2N205 2N206	TEC TEC TEC TEC RCA	GРА Сра Сра Сра Сра
IF Amplifier FF Amplifier IF Amplifier IF Amplifier IF Amplifier	2N 139 2N 139	2N218 2N218 2N218 2N218		2N207 2N207A 2N207B 2N211 2N212	r P S S	GPA GPA GPA GNA GNA
IF Amplifier Converter Converter AF Power Ampl AF Amplifier	2N 139 2N 140 2N 140	2N175		2N213 2N214 2N215 2N216 2N216 2N217	S RCA S A	GNA GNA GPA GNA GPA
AF Amplifier AF Amplifier AF Amplifier Switching Switching		2N404		2N217 2N218 2N219 2N220 2N222	RCA BCA BCA RCA GT	GРА GРА GРА GРА GРА
Switching Switching Switching 4 Mc Amphifier 455 Kc Ampl		2N247 2N247		2N223 2N224 2N225 2N226 2N227	Р Р Р Р	GPA GPA GPA GPA OPA
AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N105 2N105 2N105 2N105 2N105		2N228 2N229 2N230 2N231 2N232	S S MAL P P	GNA GNA GPA GPS GPS
AF Amplifier AF Amplifier AF Amplifier IF-RF Amplifier IF-RF Amplifier	2N139	2N105 2N175 2N175 2N175 2N139		2N233 2N233A 2N234 2N234 2N234A 2N235	S B R B	GNA GNA GPA GPA GPA
IF-RF Amplifier AF Amplifier AF Amplifier IF Amplifier Converter	1	2N406 2N406		2N235A 2N236A 2N237 2N238 2N238 2N240	B B NA TI P	GPA GPA GPA GPA GPS
AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl 155 Kc Ampl		2N218		2N241 2N241A 2N242 2N243 2N243 2N244	GE GE S TI TI	GPA GNA GPA SNG SNG
155 Kc Ampl 155 Kc Ampl 262 Kc Ampl 262 Kc Ampl 262 Kc Ampl 262 Kc Ampl		2N218 2N218		2N245 2N246 2N247 2N248 2N249	Т1 Т1 ВСА Т1 Т1	SNG SNG GPD GPG GPA
262 Ke Ampl 262 Ke Ampl 262 Ke Ampl AF Amplifier AF Power Ampl				2N250 2N251 2N252 2N253 2N254	ті ті ті п	GPA GPA GPA GNG GNG
AF Power Ampl AF Power Ampl AF Amplifier AF Power Ampl AF Power Ampl		2N301 2N301 2N301		2N255 2N256 2N257 2N260 2N260Λ	CBS CDS CC CC CC CC	GPA GPA GPA SPA SPA
Switching RF Amplifier RF Amplifier RF Amplifier RF Amplifier				2N261 2N262 2N262A 2N263 2N263 2N265	СС СС СС ТТ СВ	SPA SPA SPA SNG GPA
RF Amplifier RF Amplifier RF Amplifier RF Amplifier IF Amplifier		2N218		2N266 2N267 2N268 2N269 2N269 2N270	GE RCA CC RCA RCA	GPA GPD GPA GPA GPA
Switching IF Amplifier Converter IF Amplifier IF Amplifier		2N269 2N139 2N140 2N139 2N139 2N139		2N272 2N274 2N277 2N278 2N278 2N279	CC RCA DEL DEL A	GPA GPD GPA GPA GPA

For key to symbols in columns 3 and 4, see page 17.

• RCA has discontinued this type

7

Similar RCA Type;

2N139 2N140 2N301

2N301

2N109 2N270

2N269 2N269 2N269 2N109 2N109

2N270 2N109 2N270 2N109 2N270

2N109 2N109 2N109 2N109 2N109

2N219 2N217 2N217 2N217 2N217 2N217

2N109 2N206 2N206 2N206 2N206

2N105 2N105 2N105

2N270 2N270 2N270 2N270 2N270 2N270

2N218 2N218

2N218 2N218 2N301 2N301 2N301

2N301 2N301 2N220 2N217

2N217 2N217 2N301

2N247 2N270

2N140 2N139 2N139

2N406

2N247 2N301A

2N215

2N247

2N269 2N270

2N274

2N206

2N215 2N217

2N217 2N218 2N219 2N220

Replac by RCA Type*

2N175

5

Class of Service

RF Amplifier Converter AF Power Ampl AF Power Ampl AF Amplifier

AF Power Ampl AF Power Ampl AF Power Ampl General Use General Use

Switching Switching Switching AF Amplifier AF Amplifier

AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier

AF Amplifier AF Amplifier AF Amplifier AF Amplifier Oscillator

Converter AF Amplifier AF Amplifier AF Amplifier AF Amplifier

AF Amplifier AF Amplifier General Use General Use AF Amplifier

AF Amplifier AF Amplifier AF Amplifier Oscillator Converter

AF Amplifier AF Amplifier AF Amplifier IF Amplifier AF Amplifier

AF Amplifier IF Amplifier Converter AF Amplifier General Use

AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier

AF Amplifier General Use AF Power Ampl 455 Kc Ampl 455 Kc Ampl

RF Amplifier RF Amplifier AF Power Ampl AF Power Ampl AF Power Ampl

AF Power Amp AF Power Amp AF Amplifier AF Amplifier Switching

AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier

AF Amplifier AF Amplifier RF Amplifier RF Amplifier AF Amplifier

AF Power Ampl AF Power Ampl Converter 455 Kc Ampl 455 Kc Ampl

AF Power Ampl AF Amplifier AF Power Ampl General Use General Use

General Use General Use General Use Switching AF Amplifier

AF Amplifier RF Amplifier Switching Switching AF Amplifier

Switching RF Amplifier AF Power Ampl AF Power Ampl AF Amplifier

Class of Service

Switching AF Power Ampl AF Power Ampl AF Power Ampl AF Amplifier

AF Amplifier Switching AF Driver AF Driver AF Amplifier

AF Amplifier IF Amplifier IF Amplifier Converter Converter

IF Amplifier IF Amplifier IF Amplifier IF Amplifier RF Amplifier

RF Amplifier RF Amplifier RF Amplifier Power Switch Power Switch

Power Switch AF Amplifier AF Power Ampl Switching Switching

Switching Switching Switching RF Amplifier RF Amplifier

RF Amplifier RF Amplifier IF Amplifier IF Amplifier RF Amplifier

AF Power Ampl AF Power Ampl AF Power Ampl RF Amplifier RF Amplifier

RF Amplifier AF Power Ampl AF Power Ampl AF Power Ampl RF Amplifier

RF Amplifier RF Amplifier RF Amplifier RF Amplifier VHF Amp

RF Amplifier RF Amplifier RF Amplifier RF Amplifier RF Amplifier

RF Amplifier Video Amplifier Video Amplifier AF Power Ampl Switching

Switching Switching RF Amplifier Switching RF Amplifier

RF Amplifier AF Power Ampl Switching ⊕ ⊕

AF Power Ampl AF Power Ampl AF Power Ampli AF Amplifier AF Amplifier

AF Amplifier AF Power Ampl

θ AF Amplifier

⊕ ⊕ AF Amplifier

AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier

AF Amplifier Switching AF Amplifier AF Power Amp AF Power Amp

Switching AF Amplifier AF Amplifier AF Amplifier

Ð AF Amplifier Replace by RCA Type*

2N398

2N404 2N405 2N406 2N406 2N407

2N408 2N409 2N410 2N411 2N412

1	2	3	4	5	6	1	_ 1	2	3	4
Mfr.	Basic Desig-	Replac M(r.	De-	Class of	Replace by RCA	Similar RCA	M6.	Desig-	Mfr.	De- ocrip-
Prefix	nation 2N280		tion GPA	AF Amplifier AF Amplifier	Type*	Type: 2N215	Prefix	2N398	RCA	Lion GPA
	2N281 2N282 2N283 2N284		GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N215		2N399 2N400 2N401 2N402	B B WL	GPA GPA GPA GPA
	2N284A 2N285A 2N290 2N291 2N292	A B DEL Tl GE	GPA GPA GPA GPA GNA	AF Amplifier AF Power Ampl AF Power Ampl AF Amplifier AF Amplifier		2N270 2N410		2N403 2N404 2N405 2N406 2N407	WL RCA RCA RCA RCA	GPA GPA GPA GPA GPA
	2N293 2N296 2N297 2N299 2N299 2N300	OE S CC P P	GNA OPA GPA GPS GPS	AF Amplifier AF Power Ampl AF Power Ampl RF Amplifier RF Amplifier		2N410 2N301A 2N301A		2N408 2N409 2N410 2N411 2N411	BCA RCA RCA BCA RCA	GPA GPA GPA GPA GPA
i	2N302 2N303 2N306 2N307 2N307	RК ВК В В ТВ	GPA GPA GNA GPA GPA	Switching Switching General Use AF Power Ampl AF Power Ampl		2N269 2N269 2N301 2N301		2N413 2N413A 2N414 2N414 2N414A 2N415	RK RK RK NK	GPA GPA GPA GPA GPA
	2N308 2N309 2N310 2N311 2N311	TI TI TI GT M	GPA GPA GPA GPA GPA	RF Amplifier RF Amplifier AF Amplifier Switching Switching		2N247 2N247 2N247 2N404 2N404		2N415A 2N416 2N417 2N419 2N420	ЯК ЯК ЯК В В	GPA GPA GPA 'GPA GPA
	2N312 2N313 2N314 2N315 2N315 2N316	GT GE GE GT	ONA GNA GNA GPA GPA	Switching AF Amplifier AF Amplifier Switching Switching		2N404 2N404		2N421 2N422 2N424 2N425 2N425 2N426	B RK TI RK RK	GPA GPA SNA GPA GPA
	2N317 2N318 2N319 2N320 2N321	GT GT GE GE	бра бра бра бра бра	Switching		2N404 2N270 2N270 2N270		2N427 2N428 2N430 2N431 2N432	RK RK GE GE GE	GPA GPA SNA SNA SNA
	2N322 2N323 2N324 2N325 2N326	GE GE GE S	GPA GPA GPA GPA GNA	AF Amplifier AF Amplifier AF Amplifier AF Power Ampl AF Power Ampl		2N406 2N270 2N301 2N301	1	2N433 2N434 2N438 2N438 2N439 2N440	GE GE CBS CBS CBS	SNA SNA GNA GNA GNA
	2N327 2N328 2N329 2N330 2N331	ВК ЯК ЯК ЯК ЯСА	SPA SPA SPA SPA GPA	Switching Switching Switching Switching AF Amplifier	2N331			2N441 2N442 2N443 2N448 2N448 2N449	DEL DEL GE GE	GPA GPA GPA GPA GNA
	2N332 2N332 2N332 2N333 2N333	BOG TI TEC BOG TI	SNA SNA SNA SNA SNA	General Use General Use General Use General Use General Use			Н Н	2N450 2N451 3 3A 3N22	GE GE MH WH WE	GNA GNA GPA GPA GNG
	2N333 2N334 2N334 2N334 2N335	TEC BOG TI TEC BOG	SNA SNA SNA SNA SNA	General Use General Use General Use General Use General Use				3N23 3N23A 3N23B 3N23C 3N25	BOG BOG BOG BOG TI	GNG GNG GNG GNG GPG
	2N335 2N335 2N336 2N336 2N337	TI TEC BOG TI TI	SNA SNA SNA SNA SNA	General Use General Use General Use General Use Switching				3N26 3N27 3N29 3N30 3N31	TI TI GE GE	SNG SNG GNA GNA GNA
	2N338 2N339 2N340 2N341 2N342	71 TI TI TI TI	SNA SNA SNA SNA	Switching AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl			н	3N32 3N33 3N34 4A 4JD1B2	ТІ ТІ ТІ МН GE	SNG SNG SNG GPA GPA
	2N343 2N344 2N345 2N346 2N347	TI P P BOG	SNA GPS GPS GPS SNA	AF Power Ampl IF-RF Ampl IF-RF Ampl IF-RF Ampl AF Power Ampl		2N274 2N274 2N384		4JD1B3 4JD1B4 4JD4A2 4JD4A3 4JD4A3	GE GE GE GE	GPA GPA GNG GNG GNG
	2N348 2N349 2N352 2N353 2N354	BOG BOG P P P	SNA SNA GPA GPA SPA	AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl General Use		2N301 2N301	н	4JD4A5 5 5A 5B 5C	GE MJI SPR CC CC	GNG GPA GC SD SD
	2N355 2N356 2N357 2N358 2N359	P GT GT RK	SPA GNA GNA GNA GPA	Switching Switching Switching Switching AF Amplifier			H SS H	6 6 7 8D 8E	MH SS MIL SPR SPB	GPA SD GPA GPA GPA
	2N360 2N361 2N362 2N363 2N363 2N370	RK RK RK RCA	GРА GРА GРА GРА GРА	AF Amplifier AF Amplifier AF Amplifier AF Amplifier RF Amplifier	2N370		н	8F 10 10A 10A 10B	SPR MH CC SPR CC	GPA GPA SD GPA SD
	2N371 2N372 2N377 2N378 2N378 2N379	RCA RCA S TS TS	GPA GPA GPA GPA GPA	Oscillator RF Mixer Switching Switching Switching	2N371 2N372	2N301	ZJ	10B 10C 11A 11B 12	SPR SPR CC CC GE	GPA GPA 8D 8D 8NG
	2N380 2N381 2N382 2N383 2N383 2N384	TS TS TS RCA	СРА СРА СРА 51РА 52РА	Switching AF Amplifier AF Amplifier AF Amplifier VHF Amplifier	2N384	2N301A 2N270 2N270	MN MN MN ZJ GT	13A 13B 13C 13 13 14	M M M GE GT	GPA GPA GPA GNG GPA
	2N385 2N386 2N387 2N388 2N388 2N389	8 P R 8 TI	GNA GPA GPA GNA SNG	Switching AF Power Ampl AF Power Ampl Switching AF Power Ampl		2N301A	RR ZJ GT OC ZJ	14 14 14H 16 16	RR GE GT A GE	GPA SD GPA GPA SPA
	2N393 2N394 2N395 2N396 2N397	P GE GE GE	GPA GPA GPA GPA GPA	RF Amplifier Switching Switching Switching Switching		2N404 2N404 2N404 2N404 2N404	MN GT RR GT	17A 19 20 20 20H	CC M GT RR GT	SD GPA GPA GPA GPA

	1	1 2 3 4 Type To Be Replaced		5	. 6	1		
Similar RCA Type;		Mfr. Prefix	Basic Desig- nation	Mfr.	De- scrip- tion	Class of Service	Replace by RCA Type*	Similar RCA Type;
2N104		MN RR GT MN MN	21 21 24 24 25	м RN GT M	GPA GPA GPA GPA GPA	AF Power Ampl AF Amplifier AF Amplifier AF Power Ampl AF Power Ampl		2N301 2N301
2N139		MN MN GT RR	26 28 29 34 34	M M GT RB	GPA GPA GPA GPA	AF Power Ampl AF Power Ampl AF Power Ampl AF Amplifier AF Amplifier		2N301
			34A 34B 34C 34D 34E	NU NU NU NU	GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N105 2N105 2N105 2N109 2N109
2N218 2N218 2N218 2N218 2N218 2N218 2N247		T GT GT RR	34F 34HV 34S 38 38	NU GT GT GT RR	GPA GPA GPA GPA GPA	AF Amplifier Switching Detector AF Amplifier AF Amplifier		2N109 2N77
2N247 2N247		0C 0C 0C 0C 0C	44 45 50 51 65	A A A A	GPA GPA GC GC GPA	RF Amplifier RF Amplifier Oscillator Switching AF Amplifier		2N247 2N247 2N105
2N404		GT OC RR OC OC	66 66 66 70	GT A BB A	GPA GPA SD GPA	⊕ AF Amplifier ⊕ AF Amplifier AF Amplifier		2N105 2N105 2N77 2N77
2N401 2N401 2N404		2J OC 2J OC	71 71 72 72 73	A GE A GE A	GPA GNG GPA GNG GPA	RF Amplifier AF Amplifier VHF Amplifier AF Amplifier RF Amplifier		2N247 2N109 2N247
		ZJ GT GT OC GT GT	73 74 75 76 81 81H	GE GT GT A GT GT	GNG GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier Switching AF Amplifier AF Amplifier		2N247 2N109 2N105
		GT GT GT GT GT	81HS 82 83 87 88	GT GT GT GT	GPA GPA GPA GPA GPA	AF Amplifier Switching Switching Switching Switching Switching		2.1100
		DR DR DR GT GT	100 101 102 109 122	TS TS TS GT GT	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier Switching	2N109	2N269
		GT RR DR DR DR	123 125 126 128 129	GT RR TS TS TS	GPA GPA GPA GPA GPA	Switching AF Amplifier AF Amplifier AF Amplifier General Use		2N105 2N105
		DR DR DR DR DR	130 131 132 149 150	2 2 2 3 2 2 3	GPA GPA GPA GPA GPA	General Use General Use General Use General Use AF Power Ampl		
		GT DR DR TS TS	153 154 155 161 162	57 12 12 12 12 12 12 12 12 12 12 12 12 12	GPA GPA GPA GPA GPA	Switching General Use General Use AF Amp General Use		2N109 2N103
		TS TS TS GT	163 164 165 166 167	78 75 75 75 75 75 75	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier Switching		2N104 2N104 2N109 2N175
		TS	176 200 201 202 206	ТS ТI ТI ТI ТI	GPA GNG GNG GNG GNG	AF Power Ampl General Use General Use General Use AF Amplifier		2N77
2N218 2N218		GT	207 208 210 210 220	TI •TI GT TI TI	GNG GNG GPA GNG GNG	AF Amplifier AF Amplifier Switching AF Amplifier IF Amplifier		2N77 2N77
2N218 2N270		GT	221 222 222 223 224	ті ті бт ті ті	CNG GNG GPA GNG GNG	IF Amplifier IF Amplifier General Use Converter IF Amplifier		2N139 2N104 2N140
2N270 2N270			225 227 228 229 234	ті ті ті ті ті	GNG GNG GNG GNG GPA	IF Amplifier IF Amplifier Converter Detector IF Amplifier		2N139 2N140
2N109 2N109			235 300 301 302 310	דו דו דו דו דו	GPA GPA GPA GPA GPA	Converter AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109 2N109 2N109
2N105 2N301		RD RD RD RD	317 317A 320 320 321A	GPC GPC N GPC GPC	SNG SNG SPA SNG SNG	RF Amplifier RF Amplifier AF Amplifier RF Amplifier RF Amplifier		
2N109 2N105		RD RD RD	322 324 324A 330 340	GPC GPC GPC N N	SNG SNG SNG GPA GPA	RF Amplifier RF Amplifier RF Amplifier AF Amplifier AF Amplifier		
	1 1							

For key to symbols in columns 3 and 4, see page 17.

Continued on page 20

۰.

1 2 3 4 Type To Be Replaced

Basic Desig-nation

Mfr. Prefix

5

Class of Service

De-scrip-tion

Mfr.

Replace by RCA Type*

Similar RCA Type;

_1 	2 pe To Be	3 Benlac	<u>4</u>	5	6	1	I 1	<u>1</u> т.	2 pe To Be F	3 tenluc	<u>4</u>	5	6	Τ
Mír. Prefix	Basic Desig- nation	Mtr.	De- scrip- tion	Class of Service	Replace by RCA Type*	Similar RCA Type‡		Mfr. Prefix	Basic Desig- nation	Mfr.	ed De- scrip- tion	Class of Service	Replace by RCA Type*	Sin R Ty
	350 352 353 355 501	ті ті ті ті ті	GPA GPA GPA GPA GPG	ÁF Amplifier AF Amplifier AF Amplifier AF Power Ampl VHF Amplifier	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2N109 2N109 2N109			10101 10123 A0 A1 A2	WL WL NA NA	GPA GPA GC GC GC	Switching Switching AF Amplifier AF Amplifier AF Amplifier	1770	2N
TS TS TS TS TS	612 613 615 616 617	TS TS TS TS TS	GPA GPA GPA GPA GPA	AF Power Ampl AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier					AO1 CQ1 FS2500 G11 G11A	P NA BOG GE GE	GPS GPA GNG GC GC	AF Amplifier AF Amplifier General Use Oscillator Oscillator		27
TS TS	618 619 620 621 630	TS TS TS TS TS	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N139 2N140			GA52609 GA52829 GA52830 GA52837 GA52996	WE WE WE WE	GNG GPA GPA GC GC	AF Amplifier AF Amplifier Switching Switching Switching		
CK CK CK	700 721 722 725 727	TJ RK RK RK RK	GNG GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N104 2N104 2N104 2N104 2N104			GFT20 GFT21 GFT26 GFT32 GFT44	* * * *	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Power Ampl AF Amplifier RF Amplifier		2N 2N 2N 2N
CK CK CK GT	751 754 758 759 759	ВК ВК ВК ОТ	ОРА Сра ОРА Сра Сра	AF Amplifier AF Amplifier AF Amplifier RF Amplifier Switching		2N109 2N139 2N139			GFT45 GFT26 GT547A GT547B HA1	N N S CBS	GPA GPA GNA GNA GPA	RF Amplifter AF Power Ampl IF-RF Ampl Switching AF Amplifier		27
CK GT CK CK	760 760 761 761 762	RK GT RK GT RK	GPA GPA GPA GPA GPA	RF Amplifier 455 Kc Ampl RF Amplifier 455 Ke Ampl Converter	2N139 2N139 2N140	2N139 2N139			HA1 HA2 HA3 HA8 HA9	NA CBS CBS CBS CBS	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N 2N 2N 2N 2N
GT GT CK CK	762 763 764 766 766A	GT GT GT RK RK	GPA GPA GPA GPA GPA	Converter RF Amplifier Switching RF Amplifier RF Amplifier	2N140	2N140 2N140			HA10 HC1 HD197 HF1 HS1	CBS CBS CBS NA NA	GPA GPA GPA GPA GPA	AF Amplifier Switching AF Power Ampl RF Amplifier Switching		27
CK CK CK	768 790 791 793 800	ВК ВК ВК ВК Т1	GPA 8PA 8PA 8PA GNG	Converter AF Amplifier AF Amplifier AF Amplifier G					HS2 HS3 HS4 1F1 IF3	NA NA NA NA	GPA GPA GPA GPA GPA	Switching Switching Switching IF Amplifier IF Amplifier		2N 2N
CK CK GT	830 870 871 903 903	ТІ ВК ЯК GT Ті	GNG GPA GPA GNA SNG	Converter AF Amplifier AF Amplifier Switching AF Amplifier		2N140			J1 J2 J3 JP1 L5108	NA NA NA P	OPA GPA OPA GPA GPS	AF Amplifier AF Amplifier AF Amplifier AF Amplifier RF Amplifier		27 27 27 27 27
GT GT	904 904 904, 905 905	ті 6т ті 6т ті	8NG GNA SNG GNA SNG	AF Amplifier Switching AF Amplifier Switching AF Amplifier					L5121 L5122 N119 NPN3 OC32	P TI GPC N	GPS GPS SNG GNG GPA	Switching Switching AF Amplifier AF Amplifier AF Amplifier		2N 2N 2N
GT GT	910 925 926 947 948	ТІ ТІ ТІ СТ СТ	SNA SNG SNG GNA GNA	General IF-RF Ampl IF-RF Ampl Switching Switching					OC33 OC34 OC360 S0 S1	N N NA NA	GPA GPA GPA CC GC	AF Amplifier AF Amplifier AF Amplifier Switching Switching		2N 2N
GT	949 951 952 953 970	ст ті ті ті ті	GNA SNG SNG SNG SNG	Switching AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl	i				S2 SB100 SB100 SB101 SB101 SB101	NA P SPR P SPR	GC GPS GPS GPS GPS	Switching IF Amplifier IF Amplifier RF Amp RF Amp		25 25
CTP CTP CTP CTP CTP CTP	1002 1003 1004 1005 1006	00 76 76 76 76 70	OPA GPA GPA GPA GPA	AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl					SB102 SB102 SB103 SB103 SB5122	SPR SPR P SPR SPR	GPS GPS GPS GPS GPS	RF Amplifier RF Amplifier IF-RF Ampl IF-RF Ampl Switching		
	1032 1033 1034 1035 1036	00 00 00 00 00 00	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		2N109 2N109 2N109 2N109 2N109 2N109			ST10 ST11 ST12 ST13 ST30	TEC TEC TEC TEC TEC	SNA SNA SNA SNA SNA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		
CTP CTP CTP CTP CTP	1102 1103 1104 1108 1109	8 8 8 8 8 8 8 8 8	GPA GPA GPA GPA GPA	AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl AF Power Ampl					ST31 ST32 ST33 ST40 ST41	TEC TEC TEC TEC TEC	SNA SNA SNA SNA SNA	AF Amplifier AF Amplifier AF Amplifier AF Amplifier AF Amplifier		
CTP CTP CTP	1111 1112 1117 1320 1330	22 23 23 23 23	GPA GPA GPA GPA GPA	AF Power Ampl AF Power Ampl AF Power Ampl AF Amplifier AF Amplifier		2N 109 2N 109			ST42 T1000 T1001 T1040 T1041	TEC P P P P	SNG GPA GPA GPA GPA	RF Amplifier RF Amplifier AF Power Ampl AF Power Ampl AF Power Ampl		2N 2N
	1340 1350 1360 1390 1400	CC CC CC CC CC	GPA GPA GPA GPA GPA	AF Amplifier AF Amplifier AF Amplifier IF-RF Ampl IF-RF Ampl		2N109 2N109 2N109 2N139 2N139 2N139			T1050 T1164 T1166 X2 X15	Р Р Р ТІ ТІ	GN GPA GPA GNG BNG	AF Amplifier Switching Switching AF Power Ampl AF Amplifier		2N 2N
ND ND ND RD	1410 2517A 2518A 2520A 2521A	CC BOG BOG BOG BOG	GPA GNG GNG GNG GNG	IF-RF Ampl General Usc Switching RF Amplifier Switching		2N139			X30A X31A X32A X78 X107	GPC GPC GPC CC CC	SNA SNA SNA CPA GPA	General Use General Use General Use AF Power Ampl AF Power Ampl		
RD RD HA HA HA	2523A 2525A 5001 5002 5003	BOG BOG HA HA HA	GNG GNG GNA GNA GNA	Switching AF Amplifier AF Amplifier AF Amplifier AF Amplifier					X113 X114 X120 X133 X134	B CC B	GPA GPA GPA GPA GPA	Switching AF Power Ampl AF Power Ampl Switching Switching		
11A 11A HA HA 11A	5005 5009 5011 5012 5014	НА НА НА НА НА	GNA GNA GNA GNA GNA	General Use General Use AF Amplifier AF Amplifier AF Amplifier				RD RD	X137 X140 X145 X300 X300A	B B GPC GPC	GPA GPA GPA GNG GNG	Switching AF Power Ampl AF Power Ampl RF Amplifier RF Amplifier		1
11A HA HA HA	5016 5020 5021 7501 9052	НА НА НА ПА ТІ	GNA GNA ONA SPA SNG	Switching Switching Switching AF Amplifier AF Amplifier				RD RD	X301 X302 XD5081 XD5082 XH10	GPC GPC WL WL MH	GNG GNG GPA GPA GPA	RF Amplifier RF Amplifier AF Amplifier AF Amplifier AF Power Ampl		

For key to symbols in columns 3 and 4, see page 17.

٦,

The circuits shown in the following pages are included in this Booklet to illustrate some of the more important applications of RCA transistors and semiconductor diodes. These circuits are not necessarily examples of commercial practice. They have been conservatively designed and are capable of excellent performance. Electrical specifications are given for circuit components to assist those interested in home construction. Layouts and mechanical details are omitted because they vary widely with the requirements of individual set builders and with the sizes and shapes of the components employed.

Performance of these circuits depends as much on

the quality of the components selected and the care employed in layout and construction as on the circuits themselves. Good signal reproduction from receivers and amplifiers requires the use of goodquality speakers, transformers, inductors, and input sources (microphones, phonograph pickups, etc.).

Information on the characteristics of each RCA transistor and semiconductor diode will be found on pages 8, 9, 10, 11 and 12. This information will prove of assistance in understanding and utilizing the circuits.

The following circuits will be found in the subsequent pages:

INDEX

Page

Circuit

Two-Transistor Receiver	21
Four-Transistor Receiver	22
Six-Transistor Receiver	23
Three-Tube, Two-Transistor Receiver	23
Four-Transistor Reflex Receiver	24
Five-Transistor Reflex Receiver	25
RF and Mixer-Oscillator Stages for	
3-Band Receiver	28
Audio Power Amplifier	25
Automobile Receiver Audio Amplifier	25
High-Gain, Low-Distortion, Low-Drain	
Audio Amplifier	29
Phonograph Preamplifier	
Phonograph Amplifier	

MICROPHONE PREAMPLIFIER

B =9 volts, VS300 or VS301 C1 =52 μ f, electrolytic, 12 v. C2 =50 μ f, electrolytic, 12 v. C3 =2.5 μ f, electrolytic, 25 v. M = RCA-239S1 2 ½" Speaker P = Plug to make connection to audio amplifier R1 =10000 ohms, 0.5 watt R2 =68000 ohms, 0.5 watt R3 =1200 ohms, 0.5 watt R4 =8200 ohms, 0.5 watt S =Switch, push-button, double-pole single throw, non-locking

NOTE:

The low-frequency characteristics of the RCA-239S1 2 ½" speaker can be improved for operation as a micro-phone by gluing a small disk of felt over each of the holes, except one, on the back of the speaker. The last hole should be covered with a piece of fibre or cardboard having a ½" hole. A baffle such as a case should be pro-vided for the speaker. If an enclosed vided for the speaker. If an enclosed case is used, a 1/8" hole should be drilled in the case.

Page
26
26
26
21
30
30
30
31
29
31
31
29

TWO-TRANSISTOR RECEIVER Standard AM Broadcast Band

Ferrite loop antenna, 540-Α A = -4 circle toop antenna, of 1600 Kc B = 9 volts, VS300 or VS301 C1 = Variable capacitor, 540-1600 Kc

 $\begin{array}{c} 540-1600\ {\rm Kc}\\ {\rm C2}=0.01\ \mu{\rm f},\ {\rm paper},\ 150\ {\rm v}.\\ {\rm C3}=0.05\ \mu{\rm f},\ {\rm paper},\ 150\ {\rm v}.\\ {\rm C4}=0.001\ \mu{\rm f},\ {\rm paper},\ 150\ {\rm v}.\\ {\rm C5}=10\ \mu{\rm f},\ {\rm paper},\ 150\ {\rm v}.\\ {\rm C6}=0.1\ \mu{\rm f},\ {\rm electrolytic},\ 3\ {\rm v}.\\ {\rm C7}=100\ \mu{\rm f},\ {\rm electrolytic},\ 5\ {\rm v}.\\ {\rm R1}=0.1\ {\rm megohm},\ 0.5\ {\rm watt}\\ {\rm R2}=50\ {\rm ohms},\ 0.5\ {\rm watt}\\ {\rm R3}={\rm Volume-control}\ {\rm potentionm-eter},\ 5000\ {\rm ohms},\ 0.5\ {\rm watt}\\ {\rm R4}=5600\ {\rm ohms},\ 0.5\ {\rm watt}\\ {\rm R4}=5600\ {\rm ohms},\ 0.5\ {\rm watt}\\ \end{array}$

R5=10000 ohms, 0.5 watt R5 = 10000 ohms, 0.5 watt R6 = 220 ohms, 0.5 watt SP = Speaker, high-sensitivity T1 = Interstage audio trans-former to provide a 30000-ohm load at the primary terminals with a 1000-ohm load between the secondary nsitivity load between the secondary terminals. DC primary current = 0.5 ma. DC primary resistance = 1000 ohms. resistance = 1000 onms. T2 = Output transformer to provide a 500-ohm load at the primary terminals with the desired speaker connected to the secondary terminals.

.

FOUR-TRANSISTOR RECEIVER Standard AM Broadcast Band

B =9 volts, VS300 or VS301 C1 = Trimmer capacitor, $0.20 \mu\mu f$ C2 = Variable capacitor, 12-230 $\mu\mu f$ C3 = 0.05 uf, paper, 150 v. C4 = 0.04 μ f, mica, 150 v.	C8 = 10 μ f, electrolytic, 15 v. C9 = 0.05 μ f, paper, 150 v. C10 = 0.05 μ f, paper, 150 v. C11 = 75 μ f, mica, 150 v. C12 = 0.05 μ f, paper, 150 v. C13 = 220 μ μ f, mica, 150 v. C14 = 0.05 μ f, paper, 150 v.
$C5 = 220 \ \mu\mu f$, mica, 150 v.	$C15 = 0.05 \ \mu f$, paper, 150 v.
C6 = Variable capacitor,	$C16 = 33 \ \mu\mu f$, mica, 150 v.
10-105 μμf	$C17 = 220 \ \mu\mu f$, mica, 150 v.
$C7 = Trimmer \ capacitor,$	$C18 = 0.05 \ \mu f$, paper, 150 v.
0-20 µµf	C19 = 2 μ f, electrolytic, 15 v.

C10 = 0.00 µJ, paper, 150 v. C19 = 2 µJ, electrolytic, 15 v.
T1 = Antenna transformer wound on the largest feasible ferrite core to provide the following characteristics: Primary Inductance (With secondary open) 353 µh Primary Q at 1 Mc, mounted on chassis with secondary open 200
Equivalent output resistance across secondary terminals, at 1 Mc with primary tuned 600 ohms
The primary should be wound on one end of the ferrite rod with spacing between turns equal to the thickness of the wire.
The secondary should be wound on the opposite end of the ferrite rod with no spacing between turns (close wound). The end of the primary winding nearest the secondary is the ground end. Use #7/41 Litz wire. A ferrite rod about 8" long and 3\st" in diameter will provide excellent results.
T2 = Oscillator transformer. Wind as follows:
Using a threaded resinite coil form about 1" long with in-ternal threads to match a 3\st". diameter ferrite core about 3\st" in diagram. The winding between terminals and A2 on the circuit diagram. The winding between terminals and A2 consists of a 10-turn winding and is wound on top of the 4-turn winding. The winding between terminals C1 and C2 is wound on top of the coil form winding and is a wound on top of about 3\st". All the windings and extend over a length of about 3\st". All the windings and convenient terminals for making connections to the windings. When the transformer is completed, connect a 120-µf capacitor across the 115-turn winding and tune the ferrite core to obtain should be 100 or greater.

C20 = 50 μ f, electrolytic, 15 v. C21 = 50 μ f, electrolytic, 15 v. C22 = 100 μ f, electrolytic, 15 v. R1 = 33,000 ohms, $\frac{1}{3}$ watt R3 = 820 ohms, $\frac{1}{3}$ watt R4 = 120,000 ohms, $\frac{1}{3}$ watt R5 = 18,000 ohms, $\frac{1}{3}$ watt R6 = 1200 ohms, $\frac{1}{3}$ watt R7 = 75,000 ohms, $\frac{1}{3}$ watt R8 = 560 ohms, $\frac{1}{3}$ watt

R9 =560 ohms, ½ watt R10 =150,000 ohms, ½ watt R11 =1200 ohms, ½ watt R12 =2000 ohms, ½ watt R13 =100 ohms, ½ watt R14 =10,000 ohms, ½ watt R15 =Volume control, 2500 ohms, ½ watt R16 =5600 ohms, ½ watt R16 =5600 ohms, ½ watt R17 =220 ohms, ¼ watt SP =Speaker

۴

T3, T4, T5 = Intermediate-frequency transformers. Using ma-terials like those described for the oscillator transformer T2, wind T3, T4, and T5 to meet the following requirements:

	Т3	T4	T 5
Tuned resistance at primary tap	118,000	15,300	17,200 ohms
Primary (terminals 3 and 5): Reflected resistance with secondary terminated	206,000	29,000	10,900 ohms
Secondary (terminals 1 and 2): Reflected resistance with primary terminated	1,000	500	1,000 ohms
Turns Ratios: Terminals 4 and 3 to terminals 5 and 3 Terminals 5 and 3 to terminals 2 and 1	1.17 14.35	2.48 7.62	3.16 3.3
Core (Ferrite):			
Unloaded Q (mounted in chassis) Loaded Q (mounted	110	61	110
in chassis)	35	35	35

5 =Class A output transformer, primary impedance = 500 ohms, secondary impedance = 12 ohms. **T6**

SIX-TRANSISTOR RECEIVER Standard AM Broadcast Band

NOTE: Transformers T1, T2, T3, T4, and T5 are the same as those described for the 4-transistor receiver.

THREE-TUBE, TWO-TRANSISTOR RECEIVER с_{іі} CONVERTER DET. & AUDIO AMP. POWER OUTPUT AMP TYPE TYPE TYPE TYPE C17 20109 IR5 T2 Тз 105 Тд = T5 3 8 g 000020000 ತ್ರ 000000000 C20 000000000 C8 000000000 R2 C18 RIO C14 212 R 8 SP Сз Ţ C9 T_I ş Rg R4 000 13 ş R5 TYPE 20109 C₁₅ Ş Rg R6 FIL A+ B+ R AVC +±c16 c 21 ţ ٢ -11141-1 中中中 -6 6 s 卞 B B2 C19

- A = Loop antenna, 540-1600 Kc B1 = 4.5 volts B2 = 67.5 volts C1 = Ganged tuning capacitor, $10-274 \mu fl$ C2 = Trimmer capacitor, $2-15 \mu \mu fl$ C3 = 56 $\mu \mu fl$, ceramic C4 = 0.1 μfl 100 v. C5 = Ganged tuning capacitor, $\cdot 7.5-122.5 \mu \mu fl$ C6 = Trimmer capacitor, $2-15 \mu \mu fl$ $2-15 \ \mu\mu f$ C7 = 0.02 μf paper 100 v. C8 = Trimmer capacitor
 - C9 =0.05 μ f, paper, 100 v. C10 = Trimmer capacitor C11 = 5 μ f, silver mica C12 = Trimmer capacitor C13 = 82 μ f, ceramic C14 = Trimmer capacitor C15 = 82 μ f, ceramic C16 = 50 μ f, paper, 150 v. C16 = 50 μ f, paper 200 v. C17 = 0.005 μ f, paper 200 v. C18 = 0.04 μ f, paper, 100 v. C20 = 0.04 μ f, paper, 100 v. C21 = 0.02 μ f, paper, 100 v. R1 = 3.3 megohms, 0.25 watt R2 = 100,000 ohms, 0.25 watt $C9 = 0.05 \ \mu f$, paper, 100 v.
- R3 = 4700 ohms, 0.25 w. R4 = 10 megohms, $\frac{1}{4}$ w. R5 = 1000 ohms, $\frac{1}{4}$ w. R6 = 1 meg. $\frac{1}{2}$ w. pot. vol.

- R6 =1 meg. $\frac{1}{2}$ w. pot. vol. control. R7 =10 megohms $\frac{1}{4}$ w. R8 = 360,000 ohms $\frac{1}{4}$ w. R9 = 3000 ohms $\frac{1}{4}$ w. R10 = 100 ohms $\frac{1}{4}$ w. R10 = 100 ohms $\frac{1}{4}$ w. T1 = Oscillator coil for use with tuning capacitor of 7.5-122.5 μ df, and 455 Kc IF trans-former T2, T3 = 455 Kc IF trans-formers
- T4 = Driver transformer, primary impedance = 100,000 ohms, primary resistance = 2900 ohms, secondary im-pedance (base-to-base) = 1500 ohms, secondary resistance = 30 ohms 30 ohms.
- T5 = Output transformer, pri-mary impedance (collector-to-collector) = 400 ohms, primary resistance = 20 ohms, secondary impedance = 11 ohms, secondary resistance = 1 ohm.

FOUR-TRANSISTOR REFLEX RECEIVER Standard AM Broadcast Band

$B \simeq 9$ volts, VS300 or VS306	$C17 = 0.04 \ \mu f$, paper, 150 v.
C1 = Trimmer capacitor,	$C18 = 50 \ \mu f$, electrolytic, 15 v.
0-20 μμf	$C19 = 10 \ \mu f$, electrolytic, 15 v.
C2 = Variable capacitor,	C20 = 10 μ f, electrolytic, 15 v.
12-230 µµf	C21 = 50 μ f, electrolytic, 15 v.
C3 = 0.04 μ f, paper, 150 v.	R1 = 33,000 ohms, 0.5 watt
C4 = 0.04 μ f, paper, 150 v.	R2 = 2.400 ohms, 0.5 watt
C5 = Fixed tuner capacitor,	R3 = 820 ohms, 0.5 watt
220 µµf	R4 = 120,000 ohms, 0.5 watt
C6 = Variable capacitor, 10-	R5 = 18,000 ohms, 0.5 watt
105 µµf	R6 = 510 ohms, 0.5 watt
C7 = Trimmer capacitor,	$R_7 = 1.200 \text{ ohms}, 0.5 \text{ watt}$
0-20 μμf	$R_{8} = 1,200$ ohms, 0.5 watt
$C8 = 10 \ \mu f$, electrolytic, 15 v.	
	R9 = 68,000 ohms, 0.5 watt
C9 = 0.04 μ f, paper, 150 v.	R10 = 3,900 ohms, 0.5 watt
$C10 = 75 \ \mu\mu f, mica, 150 \ v.$	R11 = 1,000 ohms, 0.5 watt
C11 = Fixed tuner capacitor,	R12 = 680 ohms, 0.5 watt
220 µµf	R13 = 100 ohms, 0.5 watt
$C12 = 0.04 \ \mu f$, paper, 150 v.	R14 = Volume-control
$C13 = 0.02 \ \mu f$, paper, 150 v.	potentiometer, 2500 ohms,
$C14 = 10 \ \mu f$, electrolytic, 15 v.	0.5 watt
C15 = Fixed tuner capacitor,	R15 = 1200 ohms, 0.5 watt
220 µµf	$R_{16} = 4700 \text{ ohms}, 0.5 \text{ watt}$
$C16 = 0.05 \ \mu f$, paper, 150 v.	
010 - 0.00 µi, paper, 100 v.	R17 = 1500 ohms, 0.5 watt

- T1 = Antenna transformer wound on the largest feasible ferrite core to provide the following characteristics: Primary Inductance (With secondary open) 353 μh Primary Q at 1 Mc, mounted on chassis with secondary open 200 Equivalent output resistance across secondary terminals, at 1 Mc with primary tuned 600 ohms
 The primary should be wound on one end of the ferrite rod with spacing between turns equal to the thickness of the wire.
 The secondary should be wound on the opposite end of the ferrite rod with no spacing between turns (close wound). The end of the primary wholing nearest the secondary is the ground end. Use #7/41 Litz wire. A ferrite rod about 8" long and %" in diameter will provide excellent results.
 T2 = Oscillator transformer. Wind as follows:
 Using a threaded resinite coil form about 1" long with internal threads to match a ¼"-diameter ferrite core about ½" in length, wind 4 turns near the center of the coil form. This winding is located between the terminals marked Al and A2 on the circuit diagram. The winding and is wound

on top of the 4-turn winding. The winding between terminals C1 and C2 is wound on top of the other two windings and is a multilayer 115-turn winding. This winding should extend over a length of about $\%^{\prime\prime}$. All the windings are universally wound with #5/44 Litz wire. A resinite collar with 6-terminals may be fitted over one end of the coil form to provide secure anchorage for the ends of the windings and convenient terminals for making connect is $120\,\mu\mu a$ capacitor across the 115-turn winding and tune the ferrite core to obtain resonance at 1.455 Mc with the other two windings open circuited. The Q of this winding under the same conditions should be 100 or greater.

T3, T4, T5 = Intermediate-frequency transformers. Using ma-terials like those described for the oscillator transformer T2, wind T3, T4, and T5 to meet the following requirements:

m 1	Т3	T4	T 5
Tuned resistance at primary tap	118,000	15,300	2,260 ohms
Primary (terminals 3 and 5): Reflected resistance with secondary terminated	206,000	29,000	1,000 ohms
Secondary (terminals 1 and 2): Reflected resistance with secondary terminated	1,000	500	1,000 ohms
Turns Ratios: Terminals 4 and 3 to terminals 5 and 3 Terminals 5 and 3 to terminals 2 and 1	1.17 14.35	2.48 7.62	8.4 1
Core (Ferrite):			
Unloaded Q (mounted in chassis) Loaded Q (mounted in chassis)	110 35	61 85	100 30
in chalonoy	00	00	00

6 = Class A output transformer, primary impedance = 400 ohms, secondary impedance = 12 ohms. T6

FIVE-TRANSISTOR REFLEX RECEIVER Standard AM Broadcast Band

AUDIO POWER AMPLIFIER Class B; Output, 15 Watts

Class A: Output, 4 Watts

= 14.4 volts (12-volt automo- $C1 = 500 \ \mu f$, electrolytic, 15 v.

R1 = 27 ohms, 1 watt R2 = 1 ohm, 1 watt

R3 = Bias-control potentiometer, 500 ohms, 1 watt
T1 = Driver transformer
T2 = Class A output transformer, primary impedance = 15 ohms secondary impedance = 3.2 ohms

۰,

ONE-STAGE NEUTRALIZED 455-KC IF AMPLIFIER

B =9 volts, VS300 or VS301 C1 =220 $\mu\mu$ f, mica, 150 v. C2 =0.05 paper, 150 v. C3 =10 μ f, electrolytic, 15 v. C4 =220 $\mu\mu$ f, mica, 150 v. C5 =0.05 μ f, paper, 150 v. C7 =0.05 μ f, paper, 150 v. C7 =0.05 μ f, paper, 150 v. C9 =7 $\mu\mu$ f, mica, 150 v. C10 =0.05 μ f, paper, 150 v. R1 = 33000 ohms, 0.5 watt R2 =1000 ohms, 0.5 watt R3 =560 ohms, 0.5 watt R4 = 5000 ohms, volume control, 1 watt R5 = 10000 ohms, 0.5 watt

T1=Doubled-tuned IF trans-former, unloaded Q of pri-

mary and secondary = 120, loaded Q of primary = 41, tuned resistance of primary = 190,000 ohms, loaded Q of secondary = 50, tuned re-sistance of secondary = 190,000 ohms, reflected im-pedance of secondary = 138,000 ohms, impedance of secondary = 1700 ohms, co-efficient of coupling = 82%.

T2 =Single-tuned IF trans-former, unloaded Q = 120, loaded Q = 45.5, primary impedance = 17,000 ohms, secondary impedance = 1000 ohms, tuned resistance = 1000 ohms.

TWO-STAGE UNNEUTRALIZED 455-KC IF AMPLIFIER

TWO-STAGE, 10.7-MC IF AMPLIFIER

B =9 volts, VS300 or VS301 C1 = 30 $\mu\mu t$, mica, 500 v. C2 = 1000 $\mu\mu t$, mica, 500 v. C3 = 8.5 $\mu\mu t$, mica, 500 v. C4 = 0.05 μt , paper, 0.5 watt C5 = Variable capacitor, 2-30

C5 = Variable capacitor, 2-30 $\mu\mu f$ C6 = 0.05 μf , paper, 150 v. C7 = 0.05 μf , paper, 150 v. C8 = 0.05 μf , paper, 150 v. C9 = 0.05 μf , paper, 150 v. C10 = Variable capacitor, 2-30 μµf

C11 = 0.05 μ f, paper, 150 v. C12 = 30 μ gf, mica, 500 v. R1 = 39000 ohms, 0.5 watt R2 = 5600 ohms, 0.5 watt R3 = 1000 ohms, 0.5 watt R4 = 680 ohms, 0.5 watt R5 = 39000 ohms, 0.5 watt R6 = 5600 ohms, 0.5 watt R7 = 1000 ohms, 0.5 watt

T1 = Tap transformer, primary impedance (terminal 1 to terminal 3) = 4250 ohms,

tap impedance (terminal 1 to terminal 2) = 170 ohms, un-loaded Q = 150, loaded Q = 27.3, Turns Ratio = 5:1

T2 = IF airs core transformer, inductance to tune with 30 $\mu\mu f$, unloaded Q = 150, loaded Q = 27.3, Turns Ratio = 5:1

T3 = IF air- core transformer, unloaded Q = 150, loaded Q = 27.3, Turns Ratio = 5:1

PHONOGRAPH PREAMPLIFIER

NOTE: With low-inductance pickup, R1 = 2000 chms, R5 = 200 ohms. With high-inductance pickup, omit R1, R5 = 1000 ohms. With piezoelectric-crystal pickup, R1 = 47000 ohms, R5 = 500 ohms, also insert a paper capacitor of 100 $\mu\mu$ f in series with the pickup.

PHONOGRAPH AMPLIFIER Class B, Output 200 mw

B =9 volts, VS300 or VS301 C1 = 0.01 μ f, paper, 150 v. C2 =1 μ f, electrolytic, 12 v. C3 =50 μ f, electrolytic, 12 v. C4 = 0.003 μ f, paper, 150 v. C5 = 0.002 μ f, paper, 150 v. C6 = 0.04 μ f, paper, 150 v. P = Phonograph cartridge, ceramic

ceramic

ceramic R1 =1 megohm, 0.5 watt R2 =0.22 megohm, 0.5 watt R3 =4700 ohms, 0.5 watt R4 =1500 ohms, 0.5 watt

R5 = Potentiometer, 5000 ohms, 0.5 watt, volume-control R6 = Potentiometer, 0.1 meg-ohm, 0.5 watt, bass-boost R7 = 0.22 megohm, 0.5 watt R8 = 680 ohms, 0.5 watt R9 = 27 ohms, 0.5 watt R10 = 33 ohms, 0.5 watt SP = Speaker

T1 = Interstage audio trans-former with center-tapped secondary to provide a 3000-

2

ohm load at the primary terminals with a 5000-ohm load between the outer sec-ondary terminals. DC pri-mary current = 1.5 ma. DC primary resistance = 300 ohms.

T2=Output transformer with center-tapped primary to provide a 550-ohm load be-tween the outer primary terminals with the desired speaker connected to the secondary terminals. DC current unbalance between halves of primary = 1 ma. DC primary resistance = 15 ohms per section.

Battery Current:

~

No-signal current = 6 ma Average current = 26 ma Peak current = 42 ma

RF and MIXER-OSCILLATOR STAGES for 3-BAND RECEIVER Utilizing Types 2N370, 2N371, and 2N372.

Radio-Frequency Tuner Circuit Coil Data

	ANT	ENNA		INTE	RSTAG	E	OSCILLATOR		
COIL	T1 (Standard Broadcast Band)	L2 (4.5 to 11.5 Mc)	L1 (10.5 to 23 Mc)	L5 (Standard Broadcast Band)	L4 (4.5 to 11.5 Mc)	L3 (10.5 to 23 Mc)	T4 (Standard Broadcast Band)	T3 (4.5 to 11.5 Mc)	T2 (10.5 to 23 Mc)
Total primary turns	127	21	18	225	21	12	120	18	10
1st primary tap- turns from bottom	-	2	1	13	2	1	12	2	1
2nd primary tap- turns from bottom	-	7	4	-	6	6	-	-	-
Secondary turns	7	-	-	12	-	-	2	1	1
Wire size	10/38 Litz	#22	#24	7/41 Litz	#22	#24	7/41 Litz	#28	#28
Coil diameter (inside) – inches	.33	5⁄8	3⁄8	1/4	5⁄8	3⁄8	1/4	1/4	1/4
Turns per inch	24	24	24	Univer- sal	24	24	Univer- sal	60	11

HIGH-GAIN, LOW-DISTORTION, LOW-DRAIN AUDIO AMPLIFIER Class B; Output, 250 mw; Power Gain, approx. 90 db Input Impedance, approx. 7500 ohms

 $B = 12 \text{ volts}, 9 \text{ cells from VS087} \\ \text{battery assembly or 8 VS035} \\ \text{batteries connected in series} \\ C1 = 1 \text{ af, paper, 150 v.} \\ C2 = 2 \text{ af, electrolytic, 12 v.} \\ C3 = 0.05 \text{ af, electrolytic, 12 v.} \\ C4 = 0.05 \text{ af, paper, 150 v.} \\ R1 = Volume-control potentionmeter 10000 ohms, 0.5 watt \\ R2 = 0.15 \text{ megohm, 0.5 watt} \\ R4 = 10000 \text{ ohms, 0.5 watt} \\ R4 = 10000 \text{ ohms, 0.5 watt} \\ R5 = 0.27 \text{ megohm, 0.5 watt} \\ R6 = 10 \text{ ohms, 0.5 watt} \\ R7 = 10000 \text{ ohms, 0.5 watt} \\ R7 = 1$

R8 =15000 ohms, 0.5 watt R9 =60 ohms, 0.5 watt R10 =15000 ohms, 0.5 watt R11 =1000 ohms, 0.5 watt T1 =Interstage audio trans-former with center-tapped secondary to provide a 25000-ohm load at the primary terminals with a 3000-ohm load between the outer secondary terminals. DC primary current =1 ma. DC primary resistance =300 ohms.

T2 =Output transformer with center-tapped primary to provide a 300-ohm load between the outer primary terminals with the desired speaker connected to the secondary terminals. DC current unbalance between halves of primary =5 ma. DC primary resistance =20 ohms per section. Battery Current:

Battery Current: No-signal current = 3.8 ma Average current = 18 ma Peak current = 50 ma

HEARING AID

GRID-DIP METER For Measuring Rensonant Frequencies from 2 to 50 Mc (approx.)

B = 9 volts, VS300	1
C1 = 10 $\mu\mu f$, mica, 500 v. C2 = 0.05 μf , paper, 150 v.	Į
C3 = 0.05 μ f, paper, 150 v. C4 = Variable capacitor, 10-100	1
$\mu\mu f$ C5 = 5 $\mu\mu f$, mica, 500 v.	I
L1 = Air-core plug-in coil to resonate with C4	F

•

NOTE: R1 and R2 may be replaced with a single 1000-ohm resistor, but there will be a small decrease in output at the lower and higher frequencies.

B =1.5 volts, VS034 C1 =4 μ f, electrolytic, 3 v. C2 =10 μ f, electrolytic, 3 v. C3 =4 μ f, electrolytic, 3 v. C4 =10 μ f, electrolytic, 3 v. C5 =1 μ f, electrolytic, 3 v. E = Earphone, 2000-ohm MK = Microphone, 1000-ohm, magnetic R1 =12000 ohms, $\frac{1}{8}$ watt R2 =6800 ohms, $\frac{1}{8}$ watt

R3, R4, R5 = 1500 ohms, ½ watt R6 = Potentiometer, 0.1 megohm, ½ watt, volume-control R7 = 15000 ohms, ½ watt R8 = 6800 ohms, ½ watt R10 = 1500 ohms, ½ watt R11 = 5600 ohms, ½ watt

R11 = 56000 ohms, 1/8 watt

HIGH-GAIN TRANSFORMERLESS SIGNAL-TRACING PROBE

B =6 volts, 4 VS035 batteries connected in series C1 = 0.001 μ f, mica, voltage rating as required C2 = 0.5 μ f, paper C3 = 25 μ f, electrolytic, 6 v. C4, C5, C6 = 0.5 μ f, paper

 $\begin{array}{l} R6 = 1 \mbox{ megohm, } 0.5 \mbox{ watt} \\ R7 = 1000 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R8 = 0.01 \mbox{ megohm, } 0.5 \mbox{ watt} \\ R9 = 1000 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R10 = 0.7 \mbox{ megohm, } 0.5 \mbox{ watt} \\ R11 = 47 \mbox{ ohms, } 0.5 \mbox{ watt} \end{array}$

10**4**14

+

B1 = 4.5 volts, 3 VS034 bat-teries connected in series B2 = 4.5 volts, 3 VS034 bat-teries connected in series C1 = 0.25 μ f, electrolytic, 6 v.

C2 = Variable capacitor, 10-335 μµf

C3 = Trimmer capacitor, 2-20 $\mu\mu f$ R1 = 47000 ohms, $\frac{1}{8}$ watt

 $R2 = 56000 \text{ ohms}, \frac{1}{8} \text{ watt}$

R3 = 33000 ohms, 1/8 watt

P=Primary winding of T1 S = Switch

S1, S2 = secondary windings of T1

T1 = Transformer wound as fol-lows: Using a threaded resi-nite coil form and a ½" ferrite core with matching threads, wind 180 turns of #7/41 Litz wire over a length of about ½". This winding will have more than one layer and is the primary winding P. The secondary winding S1 and S2, are wound on top of the primary winding S1 has 10 turns, and winding S2, 3 turns. A resinite collar with terminals may be fitted over one end of the coil form to provide connections to all the windings.

NOTE: The fundamental frequency of oscillation is about 0.4 to 0.85 megacycles per second. The second harmonic fre-quencies from 0.8 to 1.7 megacycles per second may be used but will provide a smaller output. The modulation frequency is about 500 cycles per second.

TELEPHONE PICKUP AMPLIFIER

- B =12 volts, 9 cells from VS087 battery assembly or 8 VS035 batteries connected in series C1 = 10 μ 1, electrolytic, 6 v. C2 = 1 μ 1, paper, 150 v. C3 = 0.01 μ 1, paper, 150 v. C4 = 0.01 μ 1, paper, 150 v. C5 = 0.04 μ 1, paper, 150 v. C6 = 50 μ 1, electrolytic, 12 v. L1 = Telephone pickup coil R1 = 0.1 megohms, 0.5 watt R2, R3 = 10000 ohms, 0.5 watt R4 = 1500 ohms, 0.5 watt R5 = Potentiometer, 0.1 meg-ohm, 0.5 watt, volume-con-trol trol

R6 = 10000 ohms, 0.5 watt R7 = 5100 ohms, 0.5 watt R8 = 680 ohms, 0.5 watt R9 = 75 ohms, 0.5 watt

R10 = 10 ohms, 0.5 watt SP = Speaker

- Sr = Speaker T1 = Interstage audio trans-former with a center-tapped secondary to provide a 9000-ohm load at the primary terminals with a 9000-ohm load between the outer sec-ondary terminals.
- ondary terminals. T2 = Output transformer with a center-tapped primary to provide a 750-ohm load at the outer primary terminals with the desired speaker connected to the secondary terminals.

Battery Current: No-signal current = 6 maAverage current = 10.3 maPeak current = 23 ma

· 30 ·

SENSITIVE RELAY

B = 22.5 volts, VS084 R1 = 1000 ohms, 0.5 watt R2 = Bias-control potentiom-eter, 0.1 megohm, 0.5 watt R4 = Input-impedance-control potentiometer, 1000 ohms, 0.5 watt R5 = Sensitivity-control poten-tiometer, 0.1 megohm, 0.5 watt

R3 = 10 ohms, 0.5 watt

watt R6=1000 ohms, 0.5 watt

NOTES: (1) If a signal source with internal resistance is used, omit R1 and connect a jumper between terminals 3 and 4 as shown. Adjust R4 for best performance.

Adjust R4 for best performance. (2) If a signal source with a low internal resistance is used, connect the source between terminals 3 and 4, omitting the jumper. Connect R1 as shown. Adjust R4 to provide a direct connection from R3 to terminal 3. (3) Relays having a dc coil resistance of less than 10000 ohms may be used, provided the battery voltage is proportionately reduced. In such event, circuit sensitivity will be reduced.

CODE-PRACTICE OSCILLATOR

B = VS036 (see note) C1, C2 = 0.01 μ , paper, 150 v. H = Headphones, 2000-ohm, magnetic R1 = 2200 ohms, 0.5 watt R2 = 27000 ohms, 0.5 watt R3 = 3000 ohms, 0.5 watt R4 = Volume control potentio-meter, 50000 ohms, 0.5 watt

NOTE: One to three series-connected RCA-VS036 dry cells may be used, depending upon the volume level desired.

PORTABLE LOW-DRAIN HIGH-VOLTAGE POWER SUPPLY

B =12 volts, 9 cells from VS087 battery assembly or 8 VS035 batteries connected in series C1 = 0.01 µf, paper, 150 v. C2 = 0.1 µf, paper, 600 v. R1 = 22000 ohms, 0.5 watt T1 = Transformer with 15-turn primary, 5-turn tickler and 530-turn secondary

.

.

. .

.

F

. .