

Q3/91 DL145

Military MECL Family Data

READY

FIRE

Package Outlines and Mechanical Data

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advanced Information

This heading on a data sheet indicates that the device is in sampling, pre-production, or first production stages. The disclaimer at the bottom of the page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

MILITARY MECL INTEGRATED CIRCUITS

Prepared by Military Products Operation Strategic Marketing and Technical Publications

This book presents technical data for a broad line of MECL (Military) integrated circuits. Complete specifications for the individual circuits are provided in the form of data sheets.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MECL, MECL 10K, MECL 10KH, MECL III and MOSAIC III are trademarks of Motorola Inc.

© MOTOROLA INC., 1991 First Edition First Printing "All Rights Reserved" .

· · ·

CONTENTS

Page

INDEX OF DEVICES
CHAPTER 1 — GENERAL INFORMATION1-1High-Speed Logic1-2Technical Data1-9Operational Data1-14Systems Design Considerations1-16Family Overview1-25Electrical Characteristics1-27System Basics1-29System Interconnect1-35Interfacing with ECLINPS1-45
CHAPTER 2 — MECL 10H
CHAPTER 3 — MECL 10K
CHAPTER 4 — MECL III
CHAPTER 5 — ECLinPS
CHAPTER 6 — PHASE-LOCKED LOOP
CHAPTER 7 — PACKAGE OUTLINES AND MECHANICAL DATA

INDEX OF DEVICES

Device	Function	Page
MECL 10KH - C	CHAPTER 2	
10H416	4-Bit Binary Counter	2-2
10H500	Quad 2-Input NOR Gate with Strobe	
10H501	Quad OR/NOR Gate	
10H502	Quad 2-Input NOR Gate	
10H503	Quad 2-Input OR Gate	
10H504	Quad 2-Input AND Gate	2-24
10H505	Triple 2-3-2-Input OR/NOR Gate	2-28
10H506	Triple 4-3-3-Input NOR Gate	2-32
10H507	Triple 2-Input Exclusive "OR"/Exclusive "NOR"	2-36
10H509	Dual 4-5-Input "OR/NOR" Gate	2-40
10H513	Quad Exclusive OR Gate	2-44
10H515	Quad Line Receiver	2-48
10H516	Triple Line Receiver	
10H517	Dual 2-Wide 2-3-Input "OR-AND/OR-AND-INVERT" Gate	2-56
10H518	Dual 2-Wide 3-Input "OR-AND" Gate	2-60
10H519	4-Wide 4-3-3-3-Input "OR-AND" Gate	2-64
10H521	4-Wide "OR-AND/OR-AND-INVERT" Gate	. 2-68
10H524	Quad TTL-TO-MECL Translator	2-72
10H525	Quad MECL-TO-TTL Translator	2-77
10H531	Dual Type D Master-Slave Flip-Flop	2-82
10H535	Dual J-K Master-Slave Flip-Flop	
10H536	Universal Hexadecimal Counter	
10H541	4-Bit Universal Shift Register	
10H558	Quad 2-Input Multiplexer (Non-Inverting)	
10H560	12-Bit Parity Generator-Checker	. 2-106
10H561	Binary To 1-8 Decoder (Low)	2-110
10H562	Binary To 1-8 Decoder	
10H564	8-Line Multiplexer	
10H571	Dual Binary To 1-4 Decoder (Low)	
10H574	Dual 4 To 1 Multiplexer	
1011374		2 100
10H576	Hex "D" Master-Slave Flip-Flop	. 2-135
10H581	4-Bit Arithmetic Logic Unit/Function Generator	
10H586	Hex "D" Master-Slave Flip-Flop With Reset	
10H588	Hex Buffer With Enable	
10H589	Hex Inverter With Enable	
10H609	Dual 4-5-Input OR/NOR Gate	2-161
10H610	Dual 3-Input 3-Output "OR" Gate	
10H750	MECL To TTL Translator	
10H751	Quad TTL/NMOS to MECL Translator	
MECL 10K - CH		
10500	Quad 2-Input NOR Gate With Strobe	3-2
10501	Quad OR/NOR Gate	
10502	Quad 2-Input NOR Gate	
10503	Quad 2-Input OR Gate	
10504	Quad 2-Input AND Gate	
10004	waav z mpur nive date	. 0-10

INDEX OF DEVICES (continued)

Device	Function	Page
MECL 10K —	CHAPTER 3 continued	
10505	Triple 2-3-2-Input OR/NOR Gate	3-22
10506	Triple 4-3-3-Input NOR Gate	3-26
10507	Triple 2-Input Exclusive "OR"/Exclusive "NOR"	3-30
10509	Dual 4-5-Input "OR/NOR" Gate	3-34
10513	Quad Exclusive OR Gate	3-38
10514	Triple Line Receiver	3-42
10515	Quad Line Receiver	
10516	Triple Line Receiver	
10517	Dual 2-Wide 2-3-Input "OR-AND/OR-AND-INVERT" Gate	
10518	Dual 2-Wide 3-Input "OR-AND" Gate	
10519	4-Wide 4-3-3-3-Input "OR-AND" Gate	3-62
10521	4-Wide "OR-AND/OR-AND-INVERT" Gate	
10523	Triple 4-3-3-Input Bus Driver	
10524	Quad TTL-TO-MECL Translator	
10525	Quad MECL-TO-TTL Translator	
10530	Dual Latch	3-84
10531	Dual Type D Master-Slave Flip-Flop	
10533	Quad Latch	
10535	Dual J-K Master-Slave Flip-Flop	
10536	Universal Hexadecimal Counter	
10537	Universal Decade Counter	3-112
10538	BI-Quinary Counter	
10541	4-Bit Universal Shift Register	
10553	Quad Latch	
10558	Quad 2-Input Multiplexer (Non-Inverting)	
10560	12-Bit Parity Generator-Checker	3-138
10561	Binary To 1-8 Decoder (Low)	3-142
10562	Binary To 1-8 Decoder (High)	
10563	Error Detector Correction Circuit	
10564	8-Line Multiplexer	3-156
10565	8-Input Priority Encoder	3-160
10566	5-Bit Magnitude Comparator	
10568	Quad Latch	
10570	9 + 2-Bit Parity Generator-Checker	3-174
10571	Dual Binary To 1-4 Decoder (Low)	3-178
10572	Dual Binary To 1-4 Decoder (High)	3-183
10573	Quad 2-Input Multiplexer/Latch	
10574	Dual 4 To 1 Multiplexer	
10575	Quint Latch	
10576	Hex "D" Master-Slave Flip-Flop	3-200
10578	Binary Counter	3-205
10579	Look-Ahead Carry Block	
10580	Dual 2-Bit Adder/Subtractor	3-214
10581	4-Bit Arithmetic Logic Unit/Function Generator	3-219
10582	2-Bit Arithmetic Logic Unit/Function Generator	

INDEX OF DEVICES (continued)

Device	Function	Page
MECL 10K - CH	IAPTER 3 continued	
10586	Hex "D" Master-Slave Flip-Flop With Reset	3-230
10590	Quad MST To MECL 10,000 Translator	
10591	Hex MECL 10,000 To MST Translator	3-240
10592	Quad Bus Driver	3-244
10595	Hex Inverter/Buffer	3-248
10597	Hex "AND" Gate	3-252
10598	Monostable Multivibrator	3-256
10610	Dual 3-Input 3-Output "OR" Gate	
10611	Dual 3-Input 3-Output "NOR" Gate	3-266
10612	High Speed Dual 3-Input 3-Output OR/NOR Gate	3-270
10616	High Speed Triple Line Receiver	3-274
10631	High Speed Dual Type D Master-Slave Flip-Flop	
10687	High Speed 2 x 1 Bit Array Multiplier Block	
MECL III — CHA	PTER 4	
1648M	Voltage-Controlled Oscillator	4-2
1650	Dual A/D Converter (-30°C to +85°C)	
1651	Dual A/D Converter (-30°C to +85°C)	
1654	Binary Counter (-30°C to +85°C)	
1660	Dual 4-Input OR/NOR Gate (-30°C to +85°C)	
1662	Quad 2-Input NOR Gate (-30°C to +85°C)	4-29
1664	Quad 2-Input OR Gate (-30°C to +85°C)	
1668	Dual Clock Latch (-30°C to +85°C)	
1670	Master-Slave Flip-Flop (-30°C to +85°C)	
1672	Triple 2-Input Exclusive-OR Gate (-30°C to +85°C)	4-49
1678	BI-Quinary Counter (-30°C to +85°C)	4-53
1690	UHF Prescaler Type D Flip-Flop (-30°C to +85°C)	4-59
1692	Quad Line Receiver (-30°C to +85°C)	
ECLinPS — CHA	APTER 5	
10E416	8-Bit Synchronous Binary Up Counter	5-2
10E501	Quad 4-Input OR/NOR Gate	5-5
10E504	Quint 2-Input AND/NAND Gate	5-7
10E507	Quint 2-Input XOR/XNOR Gate	5-9
10E511	1:9 Differential Clock Driver	5-11
10E512	Quad Driver	5-14
10E516	Quint Differential Line Receiver	5-16
10E531	4-Bit D Flip-Flop	5-18
10E541	8-Bit Shift Register	5-21
10E542	9-Bit Shift Register	5-24
10E543	9-Bit Hold Register	5-26
10E551	6-Bit D Register	5-28
10E556	3-Bit 4:1 Mux-Latch	5-30
10E558	5-Bit 2:1 Multiplexer	5-33
10E851	6-Bit D Register, Diff. Data Clock Inputs	5-35

INDEX OF DEVICES (continued)

Device	Function	Page
ECLinPS —	CHAPTER 5 continued	
100E416	8-Bit Synchronous Binary Up Counter	. 5-38
100E501	Quad 4-Input OR/NOR Gate	
100E504	Quint 2-Input AND/NAND Gate	. 5-43
100E507	Quint 2-Input XOR/XNOR Gate	. 5-45
100E511	1:9 Differential Clock Driver	. 5-47
100E512	Quad Driver	. 5-50
100E516	Quint Differential Line Receiver	. 5-52
100E531	4-Bit D Flip-Flop	. 5-54
100E541	8-Bit Shift Register	. 5-56
100E542	9-Bit Shift Register	. 5-59
100E543	9-Bit Hold Register	. 5-61
100E551	6-Bit D Register	. 5-63
100E556	3-Bit 4:1 Mux-Latch	. 5-65
100E558	5-Bit 2:1 Multiplexer	. 5-68
100E851	6-Bit D Register, Diff. Data Clock Inputs	. 5-70
PLL — CHA	PTER 6	
12502	Analog Mixer	. 6-2
12509	Two Modulus Prescaler	. 6-7
12511	Two Modulus Prescaler	. 6-14
12513	Two Modulus Prescaler	. 6-21
12514	Counter Control Logic	. 6-28
12515	Low Power Two Modulus Prescaler	. 6-33
12540	Phase-Frequency Detector	. 6-40
12561	Crystal Oscillator (2.0 MHz to 100 kHz)	. 6-45

High Speed-Logic

High speed logic is used whenever improved system performance would increase a product's market value. For a given system design, high-speed logic is the most direct way to improve system performance and emitter-coupled logic (ECL) is today's fastest form of digital logic. Emitter-coupled logic offers both the logic speed and logic features to meet the market demands for higher performance systems.

MECL PRODUCTS

Motorola introduced the original monolithic emitter-coupled logic family with MECL I (1962) and followed this with MECL II (1966). These two families are now obsolete and have given way to the MECL III (1600 series), MECL 10K, PLL (12000 series) and MECL 10H families.

Chronologically the third family introduced, MECL III (1968) is a higher power, higher speed logic. Typical 1.0 ns edge speeds and propagation delays along with greater than 500 MHz flip-flop toggle rate, make MECL III useful for high-speed test and communication equipment. Also, this family is used in the high-speed sections and critical timing delays of larger systems. For more general purpose applications, however, trends in the large high-speed systems showed the need for easy-to-use logic family with propagation delays on the order of 2.0 ns. To match this requirement, the MECL 10,000 Series was introduced in 1971.

An important feature of the MECL 10K is its compatibility with MECL III to facilitate using both families in the same system. A second important feature is its significant power economy—MECL 10K gates use less than one-half the power of MECL III.

Motorola introduced the MECL 10H product family in 1981. This MECL family features 100% improvements in propagation delay and clock speeds while maintaining power supply currents equal to MECL 10K. MECL 10H is voltage compensated allowing guaranteed dc switching parameters over a \pm 5.0% power supply range. Noise margins have been improved by 75% over the MECL 10K series.

Compatibility with MECL 10K and MECL III is a key element in allowing users to enhance existing systems by increasing the speed in critical timing areas. Also, many MECL 10H devices are pin out/functional duplications of the MECL 10K series devices. The emphasis of this new family will be placed on more powerful logic functions having more complexity and greater performance. With 1.0 ns propagation delays and 25 mW per gate, MECL 10H features the best speed-power product of any ECL logic family available today.

MECL IN PERSPECTIVE

In evaluating any logic line, speed and power requirements are the obvious primary considerations. Figure 1 provides the basic parameters of the MECL 10H, MECL 10K, and MECL III families. But they provide only the start of any comparative analysis, as there are a number of other important features that make MECL highly desirable for system implementation. Among these:

Complementary Outputs cause a function and its complement to appear simultaneously at the device outputs, without the use of external inverters. It reduces timing differential problems arising from the time delays introduced by inverters.

High Input Impedance and Low Output Impedance permit large fan out and versatile drive characteristics.

Insignificant Power Supply Noise Generation, due to differential amplifier design which eliminates current spikes even during signal transition period.

MECL FAMILY COMPARISON					
Feature	MECL 10H	10,100 Series	10,200 Series	MECL III	
1. Gate Propagation Delay	1.0 ns	2.0 ns	1.5 ns	1.0 ns	
2. Output Edge Speed *	1.0 ns	3.5 ns	2.5 ns	1.0 ns	
3. Flip-Flop Toggle Speed	250 MHz min	125 MHz min	200 MHz min	300-500 MHz min	
4. Gate Power	25 mW	25 mW	25 mW	60 mW	
5. Speed Power Product	25pJ	50 pJ	37 pJ	60 pJ	

* Output edge speed: MECL 10K/10H measured 20% to 80%, MECL III measured 10% to 90% of E out.

Figure 1. General Characteristics

Nearly Constant Power Supply Current Drain simplifies power-supply design and reduces costs.

Low Cross-Talk due to low-current switching in signal path and small (typically 850 mV) voltage swing, and to relatively long rise and fall times.

Wide Variety of Functions, including complex functions facilitated by Low power dissipation (particularly in MECL 10H and MECL 10K series). A basic MECL 10K gate consumes less than 8.0 mW in on-chip power in some complex functions.

Wide Performance Flexibility due to differential amplifier design which permits MECL circuits to be used as linear as well as digital circuits.

Transmission Line Drive Capability is afforded by the open emitter outputs of MECL devices. No "Line Drivers" are listed in MECL families, because every device is a line driver.

Wire-ORing reduces the number of logic devices required in a design by producing additional OR gate functions with only an interconnection.

Twisted Pair Drive Capability permits MECL circuits to drive twisted-pair transmission lines as long as 1000 feet.

Wire-Wrap Capability is possible with the MECL 10K family because of the slow rise and fall time characteristic of the circuits.

Open Emitter-Follower Outputs are used for MECL outputs to simplify signal line drive. The outputs match any line impedance and the absence of internal pulldown resistors saves power.

Input Pulldown Resistor of approximately 50 k Ω permit unused inputs to remain unconnected for easier circuit board layout.

MECL APPLICATIONS

Motorola's MECL product lines are designed for a wide range of systems needs. Within the computer market, MECL 10K is used in systems ranging from special purpose peripheral controllers to large mainframe computers. Big growth areas in this market include disk and communication channel controllers for large systems and high performance minicomputers.

The industrial market primarily uses MECL for high performance test systems such as IC or PC board testers. However, the bandwidths of MECL 10H, MECL 10K, MECL III, and 12,000 are required for many frequency synthesizer systems using high speed phase lock loop networks. MECL will continue to grow in the industrial market through complex medical electronic products and high performance process control systems.

MECL 10K and MECL III have been accepted within the Federal market for numerous signal processors and navigation systems.

BASIC CONSIDERATIONS FOR HIGH-SPEED LOGIC DESIGN

High-speed operation involves only four considerations that differ significantly from operation at low and medium speeds:

1. Time delays through interconnect wiring, which may have been ignored in medium-speed systems, become highly important at state-of-the-art speeds.

2. The possibility of distorted waveforms due to reflections on signal lines increases with edge speed.

3. The possibility of "crosstalk" between adjacent signal leads is proportionally increased in high-speed systems.

4. Electrical noise generation and pick-up are more determined at higher speeds.

In general, these four characteristics are speed-and frequency-dependent, and are virtually independent of the type of logic employed. The merit of a particular logic family is measured by how well it compensates for these deleterious effects in system applications.

The interconnect-wiring time delays can be reduced only by reducing the length of the interconnecting lines. At logic speeds of two nanoseconds, an equivalent "gate delay" is introduced by every foot of interconnecting wiring. Obviously, for functions interconnected within a single monolithic chip, the time delays of signals travelling from one function to another are insignificant. But for a great many externally interconnected parts, this can soon add up to an appreciable delay time. Hence, the greater the number of functions per chip, the higher the system speed. *MECL circuits, particularly those of the MECL 10K and MECL 10H Series are designed with a propensity toward complex functions to enhance overall system speed.*

Waveform distortion due to line reflections also becomes troublesome principally at state-of-the-art speeds. At slow and medium speeds, reflections on interconnecting lines are not usually a serious problem. At higher speeds, however, line lengths can approach the wavelength of the signal and improperly terminated lines can result in reflections that will cause false triggering (see Figure 2). The solution, as in RF technology, is to employ "transmission-line" practices and properly terminate each signal line with its characteristic impedance at the end of its run. *The low-impedance, emitter-follower outputs of MECL circuits facilitate transmission-line practices without upsetting the voltage levels of the system.*

The increase affinity for crosstalk in high-speed circuits is the result of very steep leading and trailing edges (fast rise and fall times) of the high-speed signal. These steep wavefronts are rich in harmonics that couple readily to adjacent circuits. In the design of MECL 10K and MECL 10H, the rise and fall times have been deliberately slowed. This reduces the affinity for crosstalk without compromising other important performance parameters.

From the above, it is evident that the MECL logic line is not simply capable of operating at high speed, but has been specifically designed to reduce the problems that are normally associated with high-speed operation.

	 				Н	GH	
l	EIVING (GATE				1111	
l	L	ow -		į			
	\sim		\sim				

Figure 3. MECL 10K Gate Structure and Switching Behavior

CIRCUIT DESCRIPTION

The typical MECL 10K circuit, Figure 3, consists of a differential-amplifier input circuit, a temperature and voltage compensated bias network, and emitter-follower outputs to restore dc levels and provide buffering for transmission line driving. High fan-out operation is possible because of the high input impedance of the differential amplifier input and the low output impedance of the emitter-follower outputs. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the OR function and its complement, the NOR function. The design of the MECL 10H gate is unchanged, with two exceptions. The bias network has been replaced with a voltage regulator, and the differential amplifier source resistor has been replaced with a constant current source. (See section 2 for additional MECL 10H information.)

Power-Supply Connections — Any of the power supply levels, V_{TT}, V_{CC}, or V_{EE} may be used as ground; however, the use of the V_{CC} node as ground results in best noise immunity. In such a case: V_{CC} = 0, V_{TT} = - 2.0 V, V_{EE} = - 5.2 V.

System Logic Specifications — The output logic swing of 0.85 V, as shown by the typical transfer characteristics curve, varies from a LOW state of V_{OL} = - 1.75 V to a HIGH state of V_{OH} = - 0.9 V with respect to ground.

Positive logic is used when reference is made to logical "0's" or "1's." Then

"0" = - 1.75 V = LOW "1" = 0.9 V = HIGH

Circuit Operation — Beginning with all logic inputs LOW (nominal - 1.75 V), assume that Q1 through Q4 are cut off because their P-N base-emitter junctions are not conducting, and the forward-biased Q5 is conducting. Under these conditions, with the base of Q5 held at - 1.29 V by the VBB network, its emitter will be one diode drop (0.8 V) more negative than the base, or - 2.09 V. (The 0.8 V differential is a characteristic of this P-N junction.) The base-to-emitter differential across Q1–Q4 is then the difference between the common emitter voltage (- 2.09 V) and the LOW logic level (- 1.75 V) or 0.34 V. This is less than the threshold voltage of Q1 through Q4 so that these transistors will remain cut off.

When any one (or all) of the logic inputs are shifted upwards from the - 1.75 V LOW state to the - 0.9 V HIGH state, the base voltage of that transistor increases beyond the threshold point and the transistor turns on. When this happens, the voltage at the common-emitter point rises from - 2.09 V to - 1.7 (one diode drop below the - 0.9 V base voltage of the input transistor), and since the base voltage of the fixed-bias transistor (Q5) is held at - 1.29 V, the base-emitter voltage Q5 cannot sustain conduction. Hence, this transistor is cut off.

This action is reversible, so that when the input signal(s) return to the LOW state, Q1 - Q4 are again turned off and Q5 again becomes forward biased. The collector voltages resulting from the switching action of Q1–Q4 and Q5 are transferred through the output emitter-follower to the output terminal. Note that the differential action of the switching transistors (one section being off when the other is on)

furnishes simultaneous complementary signals at the output. This action also maintains constant power supply current drain.

Current

ICC	Total	power	supply	current	drawn	from	the
	positi	ve supp	ly by a N	IECL uni	t under	test.	

- ICBO Leakage Current from input transistor on MECL devices without pulldown resistors when test voltage applied.
- ICCH Current drain from V_{CC} power supply with all inputs at logic HIGH level.
- ICCL Current drain from V_{CC} power supply with all inputs at logic LOW level.
- IE Total power supply current drawn from a MECL test unit by the negative power supply.
- IF Forward diode current drawn from an input of a saturated logic-to-MECL translator when that input is at ground potential.
- In Current into the input of the test unit when a maximum logic HIGH (VI_Hmax) is applied at that input.
- INH HIGH level input current into a node with a specified HIGH level (V_{IH}max) logic voltage applied to that node. (Same as I_{in} for positive logic).
- INL LOW level input current, into a node with a specified LOW level (VILmin) logic voltage applied to that node.
- IL Load current that is drawn from a MECL circuit output when measuring the output HIGH level voltage.
- IOH HIGH level output current: the current flowing into the output, at a specified HIGH level output voltage.
- IOL LOW level output current: the current flowing into the output, at a specified LOW level output voltage.

Ios Output short circuit current.

- **IOUT** Output current (from a device or circuit, under such conditions mentioned in context).
- IR Reverse current drawn from a transistor input of a test unit when VEE is applied at that input.
- ISC Short-circuit current drawn from a translator saturating output when that output is at ground potential.

Voltage

VBB Reference bias supply voltage.

- VBE Base-to-emitter voltage drop of a transistor at specified collector and base currents.
- VCB Collector-to-base voltage drop of a transistor at specified collector and base currents.
- VCC General term for the most positive power supply voltage to a MECL device (usually ground, except for translator and interface circuits).

VCC1	Most positive power supply voltage (output devices). (Usually ground for MECL devices.)
V _{CC2}	Most positive power supply voltage (current switches and bias driver). (Usually ground for MECL devices.)
VEE	Most negative power supply voltage for a circuit. (Usually –5.2 V for MECL devices.)
VF	Input voltage for measuring IF on TTL interface circuits.
VIH	Input logic HIGH voltage level (nominal value).
VIHmax	Maximum HIGH level input voltage: The most positive (least negative) value of high-level input voltage, for which operation of the logic element within specification limits is guaranteed.
VIHA	Input logic HIGH threshold voltage level.
VIHAmin	Minimum input logic HIGH level (threshold) voltage for which performance is specified.
VIHmin	Minimum HIGH level input voltage: The least positive (most negative) value of HIGH level input voltage for which operation of the logic element within specification limits is guaranteed.
VIL	Input logic LOW voltage level (nominal value).
VILmax	Maximum LOW level input voltage: The most positive (least negative) value of LOW level input voltage for which operation of the logic element within specification limits is guaranteed.
VILA	Input logic LOW threshold voltage level.
VILAmax	Maximum input logic LOW level (threshold) voltage for which performance is specified.
VILmin	Minimum LOW level input voltage: The least positive (most negative) value of LOW level input voltage for which operation of the logic element within specification limits is guaranteed.
Vin	Input voltage (to a circuit or device).
v _{max}	Maximum (most positive) supply voltage, permitted under a specified set of conditions.
VOH	Output logic HIGH voltage level: The voltage level at an output terminal for a specified output current, with the specified conditions applied to establish a HIGH level at the output.
VOHA	Output logic HIGH threshold voltage level.
VOHAmin	Minimum output HIGH threshold voltage level for which performance is specified.
VOHmax	Maximum output HIGH or high-level voltage for given inputs.
VOHmin	Minimum output HIGH or high-level voltage for given inputs.
VOL	Output logic LOW voltage level: The voltage level at the output terminal for a specified output current, with the specified conditions applied to establish a LOW level at the output.
VOLA	Output logic LOW threshold voltage level.
VOLAmax	Maximum output LOW threshold voltage level for which performance is specified.
VOLmax	Maximum output LOW level voltage for given inputs.

- Volmin Minimum output LOW level voltage for given inputs.
- VTT Line load-resistor terminating voltage for outputs from a MECL device.
- VoLS1 Output logic LOW level on MECL 10,000 line receiver devices with all inputs at VEE voltage level.
- Vols2 Output logic LOW level on MECL 10,000 line receiver devices with all inputs open.

Time Parameters

- t+ Waveform rise time (LOW to HIGH), 10% to 90%, or 20% to 80%, as specified.
- t- Waveform fall time (HIGH to LOW), 10% to 90%, or 20% to 80%, as specified.
- tr Same as t+
- tf Same as t-
- t+ Propagation Delay, see Figure 9.
- t-+ Propagation Delay, see Figure 9.
- tpd Propagation Delay, input to output from the 50% point of the input waveform at pin x.
- tx+Y± (Falling edge noted by or rising edge noted by +) to the 50% point of the output waveform at pin y (falling edge noted by – or rising edge noted by +). (Cf Figure 9.)
- tx + Output waveform rise time as measured from 10% to 90% or 20% to 80% points on waveform (whichever is specified) at pin x, with input conditions as specified.
- tx Output waveform rise time as measured from 10% to 90% or 20% to 80% points on waveform (whichever is specified) at pin x, with input conditions as specified.
- **fTog** Toggle frequency of a flip-flop or counter device.
- fshift Shift rate for a shift register.

Read Mode (Memories):

tACS	Chip Select Access Time
tRCS	Chip Select Recovery Time

tAA Address Access Time

Write Mode (Memories):

tw	Write Pulse Width
twsp	Data Setup Time Prior to Write
twhd	Data Hold Time After Write
twsa	Address Setup Time Prior to Write
twha	Address Hold Time After Write
twscs	Chip Select Setup Time Prior to Write
twncs	Chip Select Hold Time After Write
tws	Write Disable Time
twR	Write Recovery Time

CIRCUIT DESCRIPTION (continued)

Temperature:

T _{sta}	Maximum temperature at which device may be				
5	stored v	vithout	damage	or	performance
	degradatio	on.			
т.	lunction (or dia)	tomporatur	o of	an integrated

- TJ Junction (or die) temperature of an integrated circuit device.
- T_A Ambient (environment) temperature existing in the immediate vicinity of an integrated circuit device package.
- ØJA
 Thermal resistance of an IC package, junction to ambient.
- $\overline{\oslash}_{JC}$ Thermal resistance of an IC package, junction to case.
- Ifpm Linear feet per minute.
- CA Thermal resistance of an IC package, case to ambient.

Miscellaneous:

^e g TP _{in}	Signal generator inputs to a test circuit. Test point at input of unit under test.
TPout	Test point at output of unit under test.
D.U.T.	Device Under Test.
C _{in}	Input capacitance.
Cout	Output capacitance.
Zout	Output impedance.
PD	Total dc power applied to a device, not including any power delivered from the device to a load.
RL	Load resistance.
RT	Terminating (load) resistance.
Rp	An input pull-down resistor (i.e, connected to the most negative voltage).

P.U.T. Pin Under Test.

MECL POSITIVE AND NEGATIVE LOGIC

INTRODUCTION

The increasing popularity and use of emitter coupled logic has created a dilemma for some logic designers. Saturated logic families such as TTL have traditionally been designed with the NAND function as the basic logic function, however, the basic ECL logic function is the NOR function (positive logic). Therefore, the designer may either design ECL systems with positive logic using the NOR, or design with negative logic using the NAND. Which is the more convenient? On the one hand the designer is familiar with positive logic levels and definitions, and on the other hand, he/she is familiar with implementing systems using NAND functions. Perhaps a presentation of the basic definitions and characteristics of positive and negative logic will clarify the situation and eliminate misunderstanding.

Figure 4.

Truth Table						
Inputs Output						
Α	В	С				
LO	LO	н				
LO	н	LO				
HI LO LO						
HI HI LO						

HI = -0.9 volts

LO = -1.7 volts

Table 2.

Table 3.

١	Negative Logic			Positive Lo	ogic
Inp	outs	Output Inputs		uts	Output
A	В	С	A B		С
1	1	0	0	0	1
1	0	1	0	1	0
0	1	1	1	0	0
0	0	1	1	1	0

Figure 5a. Basic MECL Gate Circuit and Logic Function In Positive and Negative Nomenclature

LOGIC EQUIVALENCES

Binary logic must have two states to represent the binary 1 and 0. With ECL the typical states are a high level of - 0.9 volts and a low level of - 1.7 volts. Two choices are possible then to represent the binary 1 and 0. Positive logic defines the 1 or "true" state as the most positive voltage level, whereas negative logic defines the most negative voltage level as the 1 or "true" state. Because of the difference in definition of states, the basic ECL gate is a NOR function in positive logic and is a NAND function in negative logic.

Figure 5 more clearly shows the above comparison of functions. Table 1 lists the output voltage level as a function of the input voltage level of the MECL gate circuit shown Table 2 translates the voltage levels into the appropriate negative logic level which shows the function to be $C = \overline{A \times B}$; that is , the circuit performs the NAND function. Table 3 translates the equivalent positive logic function into $C = \overline{A + B}$, the NOR function.

Similar comparisons could be made for other positive logic functions. As an example, the positive OR function translates

to the negative AND function. Figure 5b shows a comparison of several common logic functions.

Any function available in a logic family may be expressed in terms of positive or negative logic, bearing in mind the definition of logic levels. The choice of logic definition, as previously stated, is dependent on the designer. Motorola provides both positive and negative logic symbols on data sheets for the popular MECL 10,000 logic series.

SUMMARY

Conversion from one logic from to another or the use of a particular logic form need not be a complicated process. If the designer uses the logic form with which he is familiar and bears in mind the previously mentioned definition of levels, problems arising from definition of logic functions should be minimized.

REFERENCE

Y. Chu, Digital Computer Design Fundamentals New York, McGraw-Hill, 1962

* Coincidence

Figure 5b. Comparative Positive and Negative Logic Functions

Technical Data

GENERAL CHARACTERISTICS AND SPECIFICATIONS

(See pages 1 - 5 through 1 - 7 for definitions of symbols and abbreviations.)

In subsequent sections of this Data Book, the important MECL parameters are identified and characterized, and complete data provided for each of the functions. To make this data as useful as possible, and to avoid a great deal of repetition, the data that is common to all functional blocks in a line is not repeated on each individual sheet. Rather, these common characteristics, as well as application information that applies to each family, are discussed in this section.

In general, the common characteristics of major importance are:

Maximum Ratings, including both dc and ac characteristics and temperature limits;

Transfer Characteristics, which define logic levels and switching thresholds;

DC Parameters, such as output levels, threshold levels, and forcing functions.

AC Parameters, such as propagation delays, rise and fall times and other time dependent characteristics. In addition, this section will discuss general layout and design guides that will help the designer in building and testing systems with MECL circuits.

LETTER SYMBOL AND ABBREVIATIONS

Throughout this section, and in the subsequent data sheets, letter symbols and abbreviations will be used in discussing electrical characteristics and specifications. The symbols used in this book, and their definitions, are listed on the preceding pages.

MAXIMUM RATINGS

The limit parameter beyond which the life of the devices may be impaired are given in Figure 6a. In addition, Figure 6b provides certain limits which, if exceeded, will not damage the devices, but could degrade the performance below that of the guaranteed specifications.

Characteristics	Symbol	Unit	MECL 10H	MECL 10K	MECL III
Power Supply	VEE	Vdc	-8.0 to 0	-8.0 to 0	-8.0 to 0
Input Voltage (V _{CC} = 0)	ViN	Vdc	0 to VEE	0 to VEE	0 to VEE
Output Source Current Continuous	Ιουτ	mAdc	50	50	40
Output Source Current Surge	ΙΟυΤ	mAdc	100	100	-
Storage Temperature	T _{sgt}	°C	-65 to + 150	-65 to + 150	-65 to + 150
Junction Temperature Ceramic Package (1)	Тj	°C	165	165	165 (2)
Junction Temperature Plastic Package (3)	ТJ	°C	140	140	140

Figure 6a. Limits Beyond Which Device Life May Be Impaired

- NOTES: 1. Maximum T_J may be exceeded (<250°C) for short periods of time (<240 hours) without significant reduction in device life.
 - 2. Except 1670 which has a maximum junction temperature = 145°C.
 - 3. For long term (≥ 10 yrs.) max T_J of 110°C required. Max T_J may be exceeded (≤ 175°C) for short periods of time (≤ 240 hours) without significant reduction in device life.

Characteristics	Symbol	Unit	MECL 10H	MECL 10K	MECL III
Operating Temperature Range Military (1)	TA	°C	-55 to +125	-55 to +125	-55 to +125
Supply Voltage (V _{CC} = 0)	VEE	Vdc	-4.94 to -5.46 (4)	-4.68 to -5.72 (2)	-4.68 to -5.72 (2)
Output Device Military		Ω	100 Ω to –2.0 Vdc	100 Ω to –2.0 Vdc	100 Ω to –2.0 Vdc (4)

Figure 6b. Limits Beyond Which Performance May Be Degraded

NOTES: 1. With airflow \geq 500 lfpm.

- 2. Functionality only. Data sheet limits are specified for $-5.2 \text{ V} \pm 5.0\%$.
- 3. Except 1648 which has an internal output pulldown resistor.
- 4. Functional and Data sheet limits.

Figure 7b. MECL 10H

MECL TRANSFER CURVES

For MECL logic gates, the dual (complementary) outputs must be represented by two transfer curves: one to describe the OR switching action and one to describe the NOR switching action. Typical transfer curves and associated data for the MECL 10K/10H family are shown in Figures 7a and 7b respectively. It is not necessary to measure transfer curves at all points of the curves. To guarantee correct operation it is sufficient merely to measure two sets of min/max logic level parameters.

The first set is obtained for 10K by applying test voltages, V_{IL}min and V_{IH}max (sequentially) to the gate inputs, and measuring the OR and NOR output levels to make sure they are between V_{OL}max and V_{OL}min, and V_{OH}max and V_{OH}min specifications.

The second set of logic level parameters relates to the switching thresholds. This set of data is distinguished by an "A" in symbol subscripts. A test voltage, V_{IL}Amax, is applied to the gate and the NOR and OR output are measured to see that they are above V_{OH}Amin and below the V_{OL}Amax levels, respectively. Similar checks are made using the test input voltage V_{IH}Amin.

The result of these specifications insures that:

a) The switching threshold (≈ V_{BB}) falls within the darkest rectangle; i.e. switching does not begin outside this rectangle;

b) Quiescent logic levels fall in the lightest shaded ranges;

c) Guaranteed noise immunity is met.

As shown in Figure 8, MECL 10K outputs rise with increasing ambient temperature. All circuits in each family have the same worst-case output level specifications regardless of power dissipation or junction temperature differences to reduce loss of noise margin due to thermal differences.

All of these specifications assume -5.2 V power supply operation. Operation at other power-supply voltages is possible, but will result in further transfer curve changes. Figure 9 gives rate of change of output voltages as a function of power supply.

Figure 8. Typical Transfer Characteristics as a Function of Temperature (MECL 10K)

VOLTAGE	MECL 10H	MECL 10K	MECL III
$\Delta V_{OH} / \Delta V_{EE}$	0.008	0.016	0.033
$\Delta V_{OL} / \Delta V_{EE}$	0.020	0.250	0.270
$\Delta V_{BB} / \Delta V_{EE}$	0.010	0.148	0.140

Figure 9. Typical Level Change Rates

NOISE MARGIN

"Noise margin" is a measure of the logic circuit's resistance to undesired switching. MECL noise margin is defined in terms of the specification points surrounding the switching threshold. The critical parameters of interest here are those designated with the "A" subscript (V_{OHA}min, V_{OLA}max, V_{IHA}min, V_{ILA}max) in the transfer characteristic curves. MECL 10H is specified and tested with V_{OHA}min equal V_{OH}min, V_{OLA}max equal V_{OL}max, V_{IHA}min equal V_{IH}min and V_{IL}max equal V_{IL}max. Guaranteed noise margin (NM) is defined as follows:

NMHIGH LEVEL = VOHAmin - VIHAmin

NMLOW LEVEL = VILAmax - VOLAmax

To see how noise margin is computed, assume a MECL gate drives a similar MECL gate, Figure 10.

At a gate input (point B) equal to V_{ILA}max, MECL gate #2 can begin to enter the shaded transition region.

This is a "worst-case" condition, since the V_{OLA}max specification point guarantees that no device can enter the transition region before an input equal to V_{ILA}max is reached. Clearly then, V_{ILA}max is one critical point for noise margin computation, since it is the edge of the transition region.

To find the other critical voltage, consider the output from MECL gate #1 (point A). What is the most positive value

possible for this voltage (considering worst case specifications)? From Figure 10 it can be observed that the V_{OLA} max specification insures that the LOW state OR output from gate #1 can be no greater than V_{OLA} max.

Note that VOLAmax is more negative than VILAmax.

Thus, with V_{OLA}max at the input to gate #2, the transition region is not yet reached. (The input voltage to gate #2 is still to the left of V_{ILA}max on the transfer curve.)

In order to ever run the chance of switching gate #2, we would need an additional voltage, to move the input from V_{OLA} max to V_{ILA} max. This constitutes the "safety factor" known as noise margin. It can be calculated as the magnitude of the difference between the two specification voltages, or for the MECL 10K levels shown:

Similarly, for a HIGH state:

Figure 10. MECL Noise Margin Data

Analogous results are obtained when considering the "NOR" transfer data

Note that these noise margins are absolute worst case conditions. The lessor of the two noise margins is that for the HIGH state, 125 mV. This then, constitutes the guaranteed margin against signal undershoot, and power or thermal disturbances.

As shown in the table, typical noise margins are usually better than guaranteed – by about 75 mV. For MECL 10H the "noise margin" is 150 mV for NM low and NM high. (See Operational Data section of this chapter for details.)

Noise margin is a dc specification that can be calculated, since it is defined by specification points tabulated on MECL data sheets. However, by itself, this specification does not give a complete picture regarding the noise immunity of a system built with a particular set of circuits. Overall system noise immunity involves not only noise margin specifications, but also other circuit-related factors that determine how difficult it is to apply a noise signal of sufficient magnitude and duration to cause the circuit to propagate a false logic state. In general, then, noise immunity involves line impedance, circuit output impedances, and propagation delay in addition to noise margin specifications. This subject to be discussed in greater detail in the MECL System Design Handbook HB205/D.

Family	Guaranteed Worst-Case dc Noise Margin (V)	Typical dc Noise Margin (V)
MECL 10H	0.150	0.270
MECL 10K	0.125	0.210
MECL III	0.115	0.200

Table 4. Noise Margin Computations

AC OR SWITCHING PARAMETERS

Time-dependent specifications are those that define the effects of the circuit on a specified input signal, as it travels through the circuit. They include the time delay involved in changing the output level from one logic state to another. In addition, they include the time required for the output of a circuit to respond to the input signal, designated as propagation delay, MECL waveform and propagation delay terminologies are depicted in Figure 11. Specific rise, fall, and propagation delay times are given on the data sheet for each specific functional block, but like the transfer characteristics, ac parameters are temperature and voltage dependent.

Figure 11. Typical Logic Waveforms

for MECL Logic Devices

SETUP AND HOLD TIMES

Setup and hold times are two ac parameters which can easily be confused unless clearly defined. For MECL logic devices, t_{setup} is the minimum time (50% – 50%) before the positive transition of the clock pulse (C) that information must be present at the Data input (D) to insure proper operation of the device. The t_{hold} is defined similarly as the minimum time after the positive transition of the clock pulse (C) that the information must remain unchanged at the Data input (D) to ensure proper operation. Setup and hold waveforms for logic devices are shown in Figure 12.

TESTING MECL 10H, MECL 10K AND MECL III

To obtain results correlating with Motorola circuit specifications certain test techniques must be used. A schematic of a typical gate test circuit is shown in Figure 13. This test circuit is the standard ac test configuration for most MECL devices. (Exceptions are shown with the device specifications.)

A solid ground plane is used in the test setup, and capacitors bypass V_{CC1} , V_{CC2} , and V_{EE} pins to ground. All power leads and signal leads are kept as short as possible.

The sampling scope interface runs directly to the 50 ohm inputs of Channel A and B via 50-ohm coaxial cable. Equal-length coaxial cables must be used between the test set and the A and B scope inputs. A 50-ohm coax cable such as RG58/U or RG188A/U, is recommended.

Interconnect fittings should be 50-ohm GR, BNC, Selector Conhex, or equivalent. Wire length should be < 1/4 inch from TPin to input pin and TPout to output pin.

The pulse generator must be capable of 2.0 ns rise and fall times for MECL 10K and 1.5 ns for MECL 10H and MECL III. In addition, the generator voltage must have an offset to give MECL signal swings of $\sim \pm 400$ mV about a threshold of $\sim + 0.7$ V when V_{CC} = + 2.0 V and V_{EE} = -3.2 V for ac testing of logic devices.

The power supplies are shifted + 2.0 V, so that the device under test has only one resistor value to load into the precision 50-ohm input impedance of the sampling oscilloscope. Use of this technique yields a close correlation between Motorola and customer testing. Unused outputs loaded with a 100-ohm resistor. The positive supply (V_{CC}) should be decoupled from the test board by RF type 25 μ F capacitors to ground. The V_{CC} pins are bypassed to ground with 0.1 μ F, as is the V_{EE} pin.

Additional information on testing MECL 10K and understanding data sheets is found in Application Notes AN579/D and AN701/D.

Figure 13. MECL Logic Switching Time Test Setup

Operational Data

POWER SUPPLY CONSIDERATIONS

MECL circuits are characterized with the V_{CC} point at ground potential and the V_{EE} point at – 5.2 V. While this MECL convention is not necessarily mandatory, it does result in maximum noise immunity. This is so because any noise induced on the V_{EE} line is applied to the circuit as a common-mode signal which is rejected by the differential action of the MECL input circuit. Noise induced into the V_{CC} line is not cancelled out in this fashion. Hence, a good system ground at the V_{CC} bus is required for best noise immunity. Also, MECL 10H circuits may be operated with V_{EE} at – 4.5 V with neqligible loss of noise immunity.

Power supply regulation which will achieve 10% regulation or better at the device level is recommended. The – 5.2 V power supply potential will result in best circuit speed. Other values for VEE may be used. A more negative voltage will increase noise margins at a cost of increased power dissipation. A less negative voltage will have just the opposite effect. (Noise margins and performance specifications of MECL 10H are unaffected by variations in VEE because of the internal voltage regulation.)

On logic cards, a ground plane or ground bus system should be used. A bus system should be wide enough to prevent significant voltage drops between supply and device and to produce a low source inductance.

Although little power supply noise is generated by MECL logic, power supply bypass capacitors are recommended to handle switching currents caused by stray capacitance and asymmetric circuit loading. A parallel combination of a 1.0 μ F and a 100 pF capacitor at the power entrance to the board, and a 0.01 μ F low-inductance capacitor between ground and the –5.2 V line every four to six packages, are recommended.

Most MECL 10H, MECL 10K and MECL III circuits have two V_{CC} leads. V_{CC1} supplies current to the output transistors and V_{CC2} is connected to the circuit logic transistors. The separate V_{CC} pins reduce cross-coupling between individual circuits within a package when the outputs are driving heavy loads. Circuits with large drive capability, similar to the 10510, have two V_{CC1} pins. All V_{CC} pins should be connected to the ground plane or ground bus as close to the package as possible.

For further discussion of MECL power supply considerations to be made in system designing, see the MECL System Design Handbook.

POWER DISSIPATION

The power dissipation of MECL functional blocks is specified on their respective data sheets. This specification does not include power dissipation in the output devices due to output termination. The omission of the internal output pulldown resistors permits the use of external terminations designed to yield best system performance. To obtain total operating power dissipation of a particular functional block in a system, the dissipation of the output transistor, under load, must be added to the circuit power dissipation.

The table in Figure 14 lists the power dissipation in the output transistors plus that in the external terminating resistors, for the more commonly used termination values and circuit configurations. To obtain true package power dissipation, one output-transistor power-dissipation value must be added to the specified package power dissipation for each external termination resistor used in conjunction with that package. To obtain system power dissipation, the stated dissipation in the external terminating resistors must be added as well. Unused outputs draw no power and may be ignored.

Terminating Resistor Value	Output Transistor Power Dissipation (mW)	Terminating Resistor Power Dissipation (mW)
150 ohms to – 2.0 Vdc	5.0	4.3
100 ohms to - 2.0 Vdc	7.5	6.5
75 ohms to – 2.0 Vdc	10	8.7
50 ohms to – 2.0 Vdc	15	13
2.0 k ohms to VEE	2.5	7.7
1.0 k ohm to VEE	4.9	15.4
680 ohms to VEE	7.2	22.6
510 ohms to VEE	9.7	30.2
270 ohms to VEE	18.3	57.2
82 ohms to V _{CC} and 130 ohms to V _{EE}	15	140

Figure 14. Average Power Dissipation In Output Circuit External Terminating Resistors

LOADING CHARACTERISTICS

The differential input to MECL circuits offers several advantages. Its common-mode-rejection feature offers immunity against power-supply noise injection, and its relatively high input impedance makes it possible for any circuit to drive a relatively large number of inputs without deterioration of the guaranteed noise margin. Hence, dc fanout with MECL circuits does not normally present a design problem.

Graphs showing typical output voltage levels as a function of the load current for MECL 10H, MECL 10K and MECL III shown in Figure 15. These graphs can be used to determine the actual output voltages for loads exceeding normal operation.

While dc loading causes a change in output voltage levels, thereby tending to affect noise margins, ac loading increases the capacitances associated with the circuit and, therefore, affects circuit speed, primarily rise and fall times.

MECL circuits typically have a 7 ohm output impedance and are relatively unaffected by capacitive loading on a positive-going output signal. However, the negative-going edge is dependent on the output pulldown or termination resistor. Loading close to a MECL output pin will cause an additional propagation delay of 0.1 ns per fanout load with a 50 ohm resistor to -2.0 Vdc or 270 ohms to -5.2 Vdc. A 100 ohm resistor to -2.0 Vdc or 510 ohms to -5.2 Vdc results in an additional 0.2 ns propagation delay per fanout load.

Terminated transmission line signal interconnections are used for best system performance. The propagation delay and rise time of a driving gate are affected very little by capacitance loading along a matched parallel-terminated transmission line. However, the delay and characteristic impedance of the transmission line itself are affected by the distributed capacitance. Signal propagation down the line will be increased by a factor, $\sqrt{-1 + C_d/C_0}$. Here C_0 is the normal intrinsic line capacitance, and C_d is the distributed capacitance due to loading and stubs off the line.

Maximum allowable stub lengths for loading off of a MECL 10K transmission line vary with the line impedance. For example, with $Z_O = 50$ ohms, maximum stub length would be 4.5 inches (1.8 in. for MECL III). But when $Z_O = 100$ ohms, the maximum allowable stub length is decreased to 2.8 inches (1.0 in. for MECL III).

The input loading capacitance of a MECL 10H and MECL 10K gate is about 2.9 pF and 3.3 pF for MECL III. To allow for the IC connector or solder connection and a short stub length, 5 to 7 pF is commonly used in loading calculations.

UNUSED MECL INPUTS

The input impedance of a differential amplifier, as used in the typical MECL input circuit, is very high when the applied signal level is low. Under low-signal conditions, therefore, any leakage to the input capacitance of the gate could cause a gradual buildup of voltage on the input lead, thereby adversely affecting the switching characteristics at low repetition rates.

All single-ended input MECL logic circuits contain input pulldown resistors between the input transistor bases and V_{EE}. As a result, unused inputs may be left unconnected (the resistor provides a sink for I_{CBO} leakage currents, and inputs are held sufficiently negative that circuits will not trigger due to noise coupled into such inputs). Input pulldown resistors values are typically 50 k Ω and are not to be used as pulldown resistors for preceding open-emitter outputs.

Some MECL devices do not have input pulldowns. Examples are the differential line receivers. If a single differential receiver within a package is unused, one input of that receiver must be tied to the VBB pin provided and the other input goes to VEE.

MECL circuits do not operate properly when inputs are connected to V_{CC} for a HIGH logic level. Proper design practice is to set a HIGH level as about – 0.9 volts below V_{CC} with a resistor divider, a diode drop, or an unused gate output.

(LOAD LINES FOR TERMINATION TO - 2.0 Vdc) 25°C

Figure 15. Output Voltage Levels versus DC Loading

Systems Design Considerations

THERMAL MANAGEMENT

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the IC junction temperatures low.

Electrical power dissipation in any integrated circuit is a source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature of 25°C in still air. The temperature increase, then, depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point.

The temperature at the junction is a function of the packaging and mounting system's ability to remove heat generated in the circuit – from the junction region to the ambient environment. The basic formula (a) for converting power dissipation to estimated junction temperature is:

$$T_{J} = T_{A} + P_{D}(\overline{\varnothing}_{JC} + \overline{\varnothing}_{CA})$$
(1)

$$T_{J} = T_{A} + P_{D}(\overline{\emptyset}_{JA})$$
(2)
where

T_J = maximum junction temperature

T_A = maximum ambient temperature

P_D = calculated maximum power dissipation including effects of external loads (see Power Dissipation on Page 1-14).

- $\overline{\emptyset}_{JC}$ = average thermal resistance, junction to case
- $\overline{\emptyset}_{CA}$ = average thermal resistance, case to ambient
- $\overline{\emptyset}_{JA}$ = average thermal resistance, junction to ambient

This Motorola recommended formula has been approved by RADC and DESC for calculating a "practical" maximum operating junction temperature for MIL-M-38510 (JAN) MECL 10K devices.

Only two terms on the right side of the equation (1) can be varied by the user – the ambient temperature and the device case-to ambient thermal resistance, $\overline{\mathcal{O}}_{CA}$. (To some extent the device power dissipation can be also controlled, but under recommended use the VEE supply and loading dictate a fixed power dissipation.) Both system air flow and the package mounting technique affect the $\overline{\mathcal{O}}_{CA}$ thermal resistance term. $\overline{\mathcal{O}}_{JC}$ is essentially independent of the air flow and external mounting method, but is sensitive to package material, die bonding method and die area.

For applications where the case is held at essentially a fixed temperature by mounting on a large or temperature-controlled heat sink, the estimated junction temperature is calculated by:

 $T_J = T_C + P_D(\overline{\emptyset}_{JC})$ (3) where $T_C =$ maximum case temperature and the other parameters are as previously defined.

The maximum and average thermal resistance values for standard MECL IC packages are given in Figure 16. In Figure 17, this basic data is converted into graphs showing maximum power dissipation allowable at various ambient temperatures (still air) for circuits mounted in different packages, taking into account the maximum permissible operating junction temperature for long term life (\geq 100,000 hours for ceramic packages).

	Thermal Resistance in Still Air									
Package Description							JA Natt)		JC Watt)	
No. Leads	Body Style	Body Material	Body WxL	Die Bond	Die Area (Sq. Mils)	Flag Area (Sq. Mils)	Avg.	Max.	Avg.	Max.
8	DIL	ALUMINA	1/4"x3/8"	SILVER/GLASS	2496	N/A	140	182	35	56
14	FLAT	ALUMINA	1/4"x1/4"	SILVER/GLASS	4096	N/A	165	215	28	45
14	DIL	ALUMINA	1/4"x3/4"	SILVER/GLASS	4096	N/A	100	130	25	40
16	FLAT	BEO	1/4"x3/8"	SILVER/GLASS	4096	N/A	88	114	13	21
16	FLAT	ALUMINA	1/4"x3/8"	SILVER/GLASS	4096	N/A	140	182	24	38
16	DIL	ALUMINA	1/4"x3/4"	SILVER/GLASS	4096	N/A	100	130	25	40
20	PLCC	EPOXY	0.035"x0.035"	EPOXY	4096	14,400	74	82	N/A	N/A
24	FLAT	BEO	3/8"x5/8"	SILVER/GLASS	8192	N/A	40	52	6	10
24	FLAT	ALUMINA	3/8"x5/8"	SILVER/GLASS	8192	N/A	64	83	11	18
24	DIL (6)	ALUMINA	1/2"x1-1/4"	SILVER/GLASS	8192	N/A	50	65	10	16
28	LCC	EPOXY	0.45"x0.45"	EPOXY	7134	28,900	65	68	N/A	N/A

Figure 16. Thermal Resistance Values For Standard MECL I/C Packages

AIR FLOW

The effect of air flow over the packages on $\overline{\emptyset}_{,1A}$ (due to a decrease in $\overline{\mathcal{O}}_{CA}$) is illustrated in the graphs of Figure 18. This air flow reduces the thermal resistance of the package, therefore permitting a corresponding increase in power dissipation without exceeding the maximum permissible operating junction temperature.

As an example of the use of the information above, the maximum junction temperature for a 16 lead ceramic dual-in-line packaged MECL 10K quad OR/NOR gate (10501L) loaded with four 50 ohm loads can be calculated. Maximum total power dissipation (including 4 output loads) for this guad gate is 195 mW. Assume for this thermal study that air flow is 500 linear feet per minute. From Figure 18, $\overline{\varnothing}_{JA}$ is 50°C/W. With TA (air flow temperature at the device) equal to 25°C, the following maximum junction temperature results:

 $T_{.1} = P_D(\overline{\emptyset}_{JA}) + T_A$

4000

3500

3000

2500

2000

1500

1000

500

0 25 50 75

MAXIMUM ALLOWED POWER DISSIPATION

MAXIMUM ALLOWED POWER DISSIPATION

 $T_{.1} = (0.195 \text{ W})(50^{\circ}\text{C/W}) + 25^{\circ}\text{C} = 34.8^{\circ}\text{C}$

24 LEAD

8 Lead

Under the above operating conditions, the MECL 10K quad

ALUMINA CERAMIC FOR

ALL PACKAGES

14 AND 16 LEAD

150 165

125

100

Figure 17a. Ambient Temperature Derating Curve

(Ceramic Dual-in-Line Package)

TA, AMBIENT TEMPERATURE - STILL AIR (°C)

gate has its junction elevated above ambient temperature by only 9.8°C.

Even though different device types mounted on a printed circuit board may each have different power dissipations, all will have the same input and output levels provided that each is subject to identical air flow and the same ambient air temperature. This eases design, since the only change in levels between devices is due to the increase in ambient temperature as the air passes over the devices, or differences in ambient temperature between two devices.

The majority of MECL 10H, MECL 10K, and MECL III users employ some form of air-flow cooling. As air passes over each device on a printed circuit board, it absorbs heat from each package. This heat gradient from the first package to the last package is a function of the air flow rate and individual package dissipation. Figure 19 provides gradient data at power levels of 200 mW, 250 mW, 300 mW, and 400 mW with air flow rate of 500 lfpm. These figures show the proportionate increase in the junction temperature of each dual-in-line package as the air passes over each device. For higher rates of flow the change in junction temperature from package to package down the airstream will be lower due to greater cooling.

16 LEAD

100

14 LEAD

125 150 165

TA, AMBIENT TEMPERATURE (°C - STILL AIR)

Figure 17c. Ambient Temperature Derating Curves

175 200

165 175 200

175 200 2000

1750

1500

1250

1000

750

500

250

⁰ 25

24 LEAD

8 Lead

50

75

POWER DISSIPATION (mW/Pkg)

MAXIMUM ALLOWED

Figure 18a. Airflow versus Thermal Resistance (Ceramic Dual-in-Line Package)

1000

Figure 18b. Airflow versus Thermal Resistance (Ceramic Flat Package)

Power Dissipation (mW)	Junction Temperature Gradient (°C/Package)
200	0.4
250	0.5
300	0.63
400	0.88

Figure 19. Thermal Gradient of Junction Temperature (16 Pin MECL Dual-in-Line Package)

Devices mounted on 0.062" PC board with Z axis spacing of 0.5". Air flow is 500 lfpm along Z axis.

THERMAL EFFECTS ON NOISE MARGIN

The data sheet dc specifications for standard MECL 10K,

Figure 18d. Airflow versus Thermal Resistance (LCC Flat Package)

10H, and PLL devices are given for an operating temperature range from -55° C to $+125^{\circ}$ C. These values are based on having an air flow of 500 lfpm over the socket or P/C board mounted packages with no special heat sinking (i.e., dual-in-line package mounted on lead seating plane with no contact between bottom of package and socket or P/C board and flat package mounted with bottom in direct contact with non-metallized area of P/C board).

The designer may want to use MECL devices under conditions other than those given above. The majority of the low-power device types may be used without air and with higher $\overline{\emptyset}_{JA}$. However, the designer must bear in mind that junction temperatures will be higher for higher $\overline{\emptyset}_{JA}$, even though the ambient temperature is the same. Higher junction temperatures will cause logic levels to shift.

As an example, a 300 mW 16 lead dual-in-line ceramic device operated at $\overline{\oslash}_{JA} = 100^{\circ}$ C/W (in still air) shows a HIGH logic level shift of about 21 mV above the HIGH logic level when operated with 500 lfpm air flow and a $\overline{\oslash}_{JA} = 50^{\circ}$ C/W. (Level shift = Δ T, I x 1.4 mV/°C).

If logic levels of individual devices shift by different amounts (depending on P_D and $\overline{\oslash}_{JA}$), noise margins are somewhat reduced. Therefore, the system designer must lay out the system bearing in mind that the mounting procedures to be used should minimize thermal effects on noise margin.

The following sections on package mounting and heat sinking are intended to provide the designer with sufficient information to insure good noise margins and high reliability in MECL system use.

MOUNTING AND HEAT SINK SUGGESTIONS

With large high-speed logic systems, the use of multilayer printed circuit boards is recommended to provide both a better ground plane and a good thermal path for heat dissipation. Also, a multilayer allows the use of microstrip line techniques to provide transmission line interconnections.

Two-sided printed circuit boards may be used where board dimensions and package count are small. If possible, the V_{CC} ground plane should face the bottom of the package to form the thermal conduction plane. If signal line must be placed on both sides of the board, the V_{EE} plane may be used as the thermal plane, and at the same time maybe used as a pseudo ground plane. The pseudo ground plane becomes the ac ground reference under the signal lines placed on the same side as the V_{CC} ground plane (now on the opposite side of the board from the packages), thus maintaining a microstrip signal line environment.

Two-ounce copper P/C board is recommended for thermal conduction and mechanical strength. Also, mounting holes for low power devices may be countersunk to allow the package bottom to contact the heat plane. This technique used along with thermal paste will provide good thermal conduction.

Printed channeling is a useful technique for conduction of heat away from the packages when the devices are soldered into a printed circuit board. As illustrated in Figure 20, this heat dissipation method could also serve as V_{EE} voltage distribution or as a ground bus. The channels should terminate into channel strips at each side or the rear of a plug-in type printed circuit board. The heat can then be removed from the circuit board, or board slide rack, by means of wipers that come into thermal contact with the edge channels.

Figure 20. Channel/Wiper Heat Sinking on Double Layer Board

For operating some of the higher power device types* in 16 lead dual-in-line packages in still air, requiring $\overline{\emptyset}_{JA} < 100^{\circ}$ C/W, a suitable heat sink is the IERC-LIC-214A2WCB shown in Figure 21. This sink reduces the still air $\overline{\emptyset}_{JA}$ to around 55°C/W. By mounting this heat sink directly on a copper ground plane (using silicone paste) and passing 500 lfpm air over the packages, $\overline{\emptyset}_{JA}$ is reduced to approximately 35°C/W, permitting use at higher ambient temperatures or in lowering TJ for improved reliability.

It should be noted that the use of a heat sink on the top surface of the dual-in-line package is not very effective in lowering the $\overline{\oslash}_{JA}$. This is due to the location of the die near the bottom surface of the package. Also, very little (< 10%) of the internal heat is withdrawn through the package leads due to the isolation from the ceramic by the solder glass seals and the limited heat conduction from the die through 1.0 to 1.5 mil aluminum bonding wire.

*1654, 1678, 10536, 10537 and 10582, Max PD >800 mW.

INTERFACING MECL TO SLOWER LOGIC TYPES

MECL circuits are interfacable with most other logic forms. For MECL/TTL/DTL interfaces, when MECL is operated at the recommended – 5.2 volts and TTL/DTL at + 5.0 V supply currently available translator circuits, such as the 10524 and 10525, may be used.

For systems where a dual supply (-5.2 V and + 5.0 V) is not practical, the 10H750 includes four single supply MECL to TTL translators, or a discrete component translator can be designed. For details, see MECL System Design Handbook (HB205/D). Such circuits can easily be made fast enough for any available TTL.

MECL also interfaces readily with MOS. With CMOS operating at + 5.0 V any of the MECL to TTL translators work very well, currently available translator circuits such as the 10H751 and 10H752 may be used.

Specific circuitry for use in interfacing MECL families to other logic types is given in detail in the MECL System Design Handbook.

Complex MECL 10K devices are presently available for interfacing MECL with MOS logic, MOS memories, TTL threestate circuits, and IBM bus logic levels. See Application Note AN720/D for additional interfacing information.

CIRCUIT INTERCONNECTIONS

Through not necessarily essential, the use of multilayer printed circuit boards offers a number of advantages in the development of high-speed logic cards. Not only do multilayer boards achieve a much higher package density, interconnecting leads are kept shorter, thus minimizing propagation delay between packages. This is particularly beneficial with MECL III which has relatively fast (1.0 ns) rise and fall times. Moreover, the unbroken ground planes made possible with multilayer boards permit much more precise control of transmission line impedances when these are used for interconnecting purposes. Thus multilayer boards are recommended for MECL III layouts and are justified when operating MECL 10H and MECL 10K at top circuit speed, when high-density packaging is a requirement, or when transmission line interconnects are used.

Point-to-point back-plane wiring without matched line terminations may be employed for MECL interconnections if line runs are kept short. At MECL 10K speeds, this applies to line runs up to 6 inches; for MECL 10H and MECL III up to 1 inch (Maximum open wire lengths for less than 100 mV undershoot). But, because of the open-emitter outputs of MECL 10H, MECL 10K and MECL III circuits, pull-down resistors are always required. Several ways of connecting such pull-down resistors are shown in Figure 22.

Resistor values for the connector in Figure 22a may range from 270 ohms to $k\Omega$ depending on power and load requirements. (See MECL System Design Handbook.) Power may be saved by connecting pull-down resistors in the range of 100 ohm to 150 ohms, to – 2.0 Vdc, as shown in Figure 23b. Use of a series damping resistor, Figure 23c, will extend permissible lengths of unmatched-impedance interconnections, with some loss of edge speed.

With proper choice of series damping resistor, line lengths can be extended to any length,** while limiting overshoot and undershoot to a predetermined amount. Damping resistors

** Limited only by line attenuation and band-width characteristics.

usually range in value from 10 ohms to 100 ohms, depending on the line length, fanout, and line impedance. The open emitter-follower outputs of MECL 10H, MECL III and MECL 10K give the system designer all possible line driving options.

One major advantage of MECL over saturated logic is its capability for driving matched-impedance transmission lines. Use of transmission lines retains signal integrity over long distances. The MECL 10H and MECL 10K emitter-follower output transistors will drive a 100 ohm termination line terminated to -2.0 Vdc. This is the equivalent current load of 22 mA in the HIGH logic state and 6 mA in the LOW state.

Parallel termination of transmission lines can be done in two ways. One, as shown in Figure 23a, uses a single resistor whose value is equal to the impedance (Z_O) of the line. A terminating voltage (V_{TT}) of -2.0 Vdc must be supplied to the terminating resistor.

Figure 22. Pull-Down Resistor Techniques

Another method of parallel termination uses a pair of resistors, R₁ and R₂. Figure 23b illustrates this method. The following two equations are used to calculate the values of R₁ and R₂:

- $R_1 = 1.6 Z_0$
- $R_2 = 2.6 Z_0$

Another popular approach is the series-terminated transmission line (see Figure 24). This differs from parallel termination in that only one-half the swing is propagated through the lines. The logic swing doubles at the end of the transmission line due to reflection on an open line, again establishing a full logic swing.

Figure 23a. Parallel Terminated Line

To maintain clean wave fronts, the input impedance of the driven gate must be greater than the characteristic impedance of the transmission line. This condition is satisfied by MECL circuits which have high impedance inputs. Using the appropriate terminating resistor (R_S) at point A (Figure 24), the reflections in the transmission line will be terminated.

The advantages of the series termination includes ease of driving multiple series-terminated lines, low power consumption, and low cross talk between adjacent lines. The disadvantage of this system is that loads may not be distributed along the transmission line due to the one-half logic swing present at intermediate points.

For board-to-board interconnections, coaxial cable may be used for signal conductors. The termination techniques just discussed also apply when using coax. Coaxial cable has the advantage of good noise immunity and low attenuation at high frequencies.

Twisted pair lines are one of the most popular methods of interconnecting cards or panels. The complementary outputs of any MECL function may be connected to one end of the twisted pair line, and any MECL differential line receiver to the other as shown in the example, Figure 25. RT is used to terminate the twisted pair line. The 1.0 to 1.5 V common-mode noise rejection of the line receiver ignores common-mode cross-talk, permitting multiple twisted pair lines to be tied into cables. MECL signals may be sent very long distances (> 1000 feet) on twisted pair, although line attenuation will limit bandwidth, degrading edge speeds when long line runs are made.

If timing is critical, parallel signals paths (shown in Figure 26) should be used when fanout to serve cards is required. This will eliminate distortion caused by long stub lengths off signal path.

Wire-wrapped connections can be used with MECL 10K. For MECL III and MECL 10H, the fast edge speeds (1.0 ns) create a mismatch at the wire-wrap connections which can cause reflections, thus reducing noise immunity. The mismatch occurs also with MECL 10K, but the distance between the wire-wrap connections and the end of the line is generally short enough so the reflections cause no problem.

Figure 23b. Parallel Termination-Thevenin Equivalent

Series damping resistors may be used with wire-wrapped lines to extend permissible backplane wiring lengths. Twisted pair lines may be used for even longer distances across large wire-wrapped cards. The twisted pair gives a more defined characteristic impedance (than a single wire), and can be connected either single-ended, or differentially using a line receiver.

The recommended wire-wrapped circuit cards have a ground plane on one side and a voltage plane on the other side to insure a good ground and a stable voltage source for the circuits. In addition, the ground plane near the wire-wrapped lines lowers the impedance of those lines and facilitates terminating the line. Finally, the ground plane serves to minimize cross talk between parallel paths in the signal lines. Point-to-point wire routing is recommended because cross talk will be minimized and line lengths will be shortest. Commercial wire-wrap boards designed for MECL 10K are available from several vendors.

MICROSTRIP AND STRIPLINE

Microstrip and stripline techniques are used with printed circuit boards to from transmission lines. Microstrip consists of a constant-width conductor on one side of a circuit board, with a ground plane on the other side (shown in Figure 27). The characteristic impedance is determined by the width and thickness of the conductor, the thickness of the circuit board, and the dielectric constant of the circuit board material.

Figure 27. PC Interconnection Lines For Use With MECL

Stripline is used with multilayer circuit boards as shown in Figure 27. Stripline consists of a constant-width conductor between two ground planes.

Refer to MECL System Design Handbook for a full discussion of the properties and use of these.

CLOCK DISTRIBUTION

Clock distribution can be a system problem. At MECL 10K speeds, either coaxial cable or twisted pair line (using the 10501 and 10515) can be used to distribute clock signals throughout a system. Clock line lengths should be controlled and matched when timing could be critical. Once the clocking signals arrive on card, a tree distribution should be used for large-fanouts at high frequency. An example of this application technique is shown in Figure 28.

Because of the very high clock rates encountered in MECL III systems, rules for clocking are more rigorous than in slower systems.

The following guidelines should be followed for best results.

A. On-card Synchronous Clock Distribution via Transmission Line

1. Use the NOR output in developing clock chains or trees. Do not mix OR and NOR outputs in the chain.

2. Use balanced fanouts on the clock drivers.

3. Overshoot can be reduced by using two parallel drive lines in place of one drive line with twice the lumped load.

4. To minimize clock skewing problems on synchronous sections of the system, line delays should be matched to within 1.0 ns.

5. Parallel drive gates should be used when clocking repetition rates are high, or when high capacitance loads occur. The bandwidth of a MECL III gate may be extended by paralleling both halves of a dual gate. Approximately 40 or 50 MHz bandwidth can be gained by paralleling two or three clock driver gates.

6. Fanout limits should be applied to clock distribution drivers. Four to six loads should be the maximum load per driver for best high speed performance. Avoid large lumped loads at the end of lines greater than 3 inches. A lumped load, if used, should be four or fewer loads.

7. For wire-OR (emitter dotting), two-way lines (busses) are recommended. To produce such lines, both ends of a transmission line are terminated with 100-ohms impedance. This method should be used when wire-OR connections exceed 1.0 inch apart on a drive line.

B. Off-Card Clock Distribution

1. The OR/NOR outputs of a 1660 may be used to drive into twisted pair lines or into flat, fixed-impedance ribbon cable. At the far end of the twisted pair a 1692 differential line receiver is used. The line should be terminated as shown in Figure 25. This method not only provides high speed, board-to-board clock distribution, but also provides system noise margin advantages. Since the line receiver operates independently of the VBB reference voltage (differential inputs) the noise margin from board to board is also independent of temperature differentials.

Figure 28. 64 Fanout Clock Distribution (Proper Termination Required)

LOGIC SHORTCUTS

MECL circuitry offers several logic design conveniences. Among these are:

1. Wire-OR (can be produced by wiring MECL output emitters together outside packages).

2. **Complementary Logic Outputs** (both OR and NOR are brought out to package pins in most cases).

An example of the use of these two features to reduce gate and package count is shown in Figure 29.

The connection shown saves several gate circuits over performing the same functions with non-ECL type logic. Also, the logic functions in Figure 29 are all accomplished with one gate propagation delay time for best system speed. Wire-ORing permits direct connections for MECL circuits to busses. (MECL System Design Handbook HB205/D and Application Note AN726/D).

FAN OUT = 4 EACH

Propagation delay is increased approximately 50 ps per wire-OR connection. In general, wire-OR should be limited to 6 MECL outputs to maintain a proper LOW logic level. The 10523 is an exception to this rule because it has a special V_{OL} level that allows very high fanout on a bus wire-OR line. The use of a single output pull-down resistor is recommended per wire-OR, to economize on power dissipation. However, two pull-down resistors per wire-OR can improve fall times and be used for double termination of busses.

Wire-OR should be done between gates in a package or nearby packages to avoid spikes due to line propagation delay. This does not apply to bus lines which activate only one driver at a time.

Figure 29. Use of Wire-OR and **Complementary Outputs**

System Considerations - A Summary of Recommendations

	MECL 10H	MECL 10K	MECL III
Power Supply Regulation	± 5.0% (1)	10% (2)	10% (2)
On-Card Temperature Gradient	20°C	Less Than 25°C	Less Than 25°C
Maximum Non-Transmission Line Length (No Damping Resistor)	1.0"	8.0"	1.0"
Unused Inputs	Leave Open (3)	Leave Open (3)	Leave Open (3)
PC Board	Multilayer	Standard 2-Sided or Multilayer	Multilayer
Cooling Requirements	500 lfpm Air	500 lfpm Air	500 lfpm Air
Bus Connection Capability	Yes (Wire-OR)	Yes (Wire-OR)	Yes (Wire-OR)
Maximum Twisted Pair Length (Differential Drive)	Limited By Cable Re- sponse Only, Usually >1000'	Limited By Cable Re- sponse Only, Usually >1000'	Limited By Cable Re- sponse Only, Usually >1000'
The Ground Plane to Occupy Percent Area of Card	>75%	>50%	>75%
Wire Wrap may be used	Not Recommended	Yes	Not Recommended
Compatible with MECL 10,000	Yes	-	Yes

(1) All dc and ac parameters guaranteed for V_{EE} = – 5.2 V \pm 5.0%. (2) At the devices (functional only).

(3) Except special functions without input pull-down resistors.

Family Overview

INTRODUCTION

Recent advances in bipolar processes have led to a proliferation of very high speed LSI and VLSI gate arrays in high end computer applications. The advent of these high speed arrays has created a need for a high speed logic family to tie or "glue" them together. Because arrays have a finite amount of circuitry and I/O pins, glue functions which are sensitive to either of these parameters may be better performed off the array. In addition glue functions which require very tight skew control may be difficult to perform on an array due to the inherent skew of the larger packages associated with large gate arrays. Therefore although the trend is to push more and more of the logic onto the array, there are design constraints which make performing some of the logic, such as clock distribution, multiplexing, decoding, latching, memory addressing and translating, in glue an attractive alternative.

The high end computer segment is not the only market segment pushing for higher performance logic parts. ATE, instrumentation and communication designs can have data rate requirements ranging from 300 MHz to as high as 2.5 GHz. Because large high speed arrays do not always lend themselves to the passing high frequency signals on and off chip, portions of the designs must be realized with discrete logic. The current bipolar logic families are not capable of operating at these high frequencies.

To answer the call for a very high speed bipolar logic family Motorola has designed and produced the ECLinPS (ECL in Pico Seconds) logic family. The family was designed to meet the most stringent of system requirements in speed, skew and board density as well as maintaining compatibility to existing ECL families.

ECL DESIGN BENEFITS

The speed benefits of an ECL design over those of alternative logic technologies are well documented, however there are a number of other important features that make ECL an attractive technology for system designs. The ECLinPS logic family as with other ECL families afford the following advantages:

COMPLEMENTARY OUTPUTS

Complimentary outputs are available on many functions with equal propagation delays between the two paths. This alleviates the need for external inverters and saves system power and board space while maintaining exceptional system timing.

TRANSMISSION LINE DRIVE CAPABILITY

The low output impedance, high input impedance and high current drive capability of ECL makes it an ideal technology for driving transmission lines. Regardless of the technology, as a system speeds increase, interconnect becomes more of a transmission line phenomenon. With ECL no special line driving devices are necessary as all ECL devices are line drivers.

CONSTANT POWER SUPPLY CURRENT DRAIN

Because of the differential amplifier design used for ECL circuits the current is not switched on and off but rather simply steered between two paths. Thus the current drain of an ECL device is independent of the logic state and the frequency of operation. Thus current stability greatly simplifies system power supply design.

INPUT PULLDOWN RESISTORS

ECL inputs have 50 k Ω -75 k Ω internal pulldown resistor which pull the input to VEE (logic Low) when left open. This allows unused inputs to be left open and greatly simplifies logic design.

DIFFERENTIAL DRIVE CAPABILITY

Because of the presence of the high current drive complimentary outputs, ECL circuits are ideally suited for driving twisted pair lines or cables over long distances. With common mode noise rejection of 1 V or more ECL line receivers are less susceptible to common mode noise. In addition their differential inputs need only a few hundred millivolt voltage differences to correctly interpret the logic.

HIGH SPEED DESIGN PHILOSOPHY

Today a truly high speed logic family needs more than simply short propagation delays. The minimization of all types of skew as well as a level of logic density which affords a smaller amount of board space for equivalent function are also necessities of a high speed family. The following summary will outline the steps taken by Motorola to achieve these goals in the development of the ECLinPS logic family.

FAST PROPAGATION DELAYS

The ECLinPS family boasts 500 ps maximum packaged gate delays and typical flip-flop toggle frequencies of 1.4 GHz. Simple gate functions show typical propagation delays of 360 ps at 25 mW of power for a speed power product of only 9 pJ. For higher density devices internal gates run at 100 ps with 5 mW of power for a speed of power product of only 0.5 pJ.

INTERNAL DIFFERENTIAL INTERCONNECT

The propagation delay window size, skew between rising and falling inputs and susceptibility to noise are all phenomena which are exacerbated by V_{BB} switching reference variation. By extensively using differential interconnects internal to the chip the ECLinPS family has been able to achieve superior performance in these areas.

PROPAGATION DELAY TEMPERATURE INSENSITIVITY

The variation of propagation delay through an ECLinPS device across temperature is typically less than 50 ps. This stability allows for faster designs due to tighter delay windows across temperature.
INPUT IMPEDANCE AND LOADING CAPACITANCE

The input structures of the ECLinPS family show a positive real impedance across the applicable input frequency range. This ensures that the system will remain stable and operate as designed over a wide range of input frequencies. The input loading capacitance typically measures only 1.5 pF and is virtually independent of input fanout as the device capacitance is less than 5% of the total. Because the propagation delay of a signal down a transmission line is adversely affected by loading capacitance, the overall system speed is enhanced.

INPUT BUFFERS

To minimize propagation delays in a system environment, inputs with a large internal fanout are buffered to minimize the loading capacitance on the transmission line.

HIGH LEVEL OF INTEGRATION

28 pin designs allow for the design of 9 bit functions for implementation in byte plus parity applications. Full byte plus parity implementation reduces total package count and saves expensive board space.

SPACE EFFICIENT PACKAGE

The surface mount CERQUAD package affords a high level of integration with a minimum amount of required board space. Quad layout of the package equalizes pin lengths thus minimizing the skew between similar internal paths.

FLOW THROUGH PIN ASSIGNMENT

Input and output pins have been laid out in a flow through pattern with the inputs on one side of the package and the outputs on the other. This flow through pattern helps to simplify the PC board layout operation.

MULTIPLE VCCO PINS

To minimize the noise generated in simultaneous switching situations, a minimum of three single ended outputs per V_{CCO} has been employed in the family. Optimum placement of these V_{CCO}s also results in superior output to output skew.

ADVANCED BIPOLAR PROCESSING

The ECLinPS logic family is fabricated using Motorola's MOSAIC III process, a process which is two generations ahead of the process used in the development of the 10H family. The small geometries and feature size of the MOSAIC III process enables the ECLinPS logic family to boast of a nearly three fold improvement in speed at less than half the power of the existing ECL logic families.

The MOSAIC III process is a double polysilicon process which uses a unique self-alignment scheme for device electrode and isolation definition. The process feature self aligned submicron emitters as well as polysilicon base, collector and emitter electrodes. In addition polysilicon resistors, diodes and capacitors are available to minimize the parasitic capacitance of an ECL gate. Figure 30 shows a cross section for an NPN device using the MOSAIC III process.

Figure 30. MOSAIC III Cross Section

By incorporating the use of polysilicon contacts and resistors through the MOSAIC III process, the parasitic capacitances of an ECLinPS gate are minimized, thus minimizing the time constants which comprise the switching delays of the gate. The resultant gates show delays of 100 ps for internal gates and 200 ps for output gates capable of driving 50 Ω loads. The small geometries of the process, nearly 350% reduction in device area compared to a 10H device, allow these internal gate delays to be achieved at only 800 µA of current.

UNIVERSAL COMPATIBILITY

Each member of the ECLinPS family is available in both of the existing ECL standards: 10 E series devices are compatible with the MECL 10H family; 100 E series devices are compatible with ECL 10K. In addition, to maintain compatibility with temperature compensated, three level series gated arrays, the 100 E devices are guaranteed to operate without degradation to a V_{EE} of –5.46 V.

The section below presents a comparison between the two standards in the new context of the ECLinPS family. The user is also referred to the Electrical Characteristics section of this book as well as appropriate family databooks and other literature for descriptive information on the earlier ECL families.

Because no supplier previous to Motorola has offered both ECL standards on an identical process, comparison of existing 10H and 10K style devices has some limitations. Comparison of the two standards fabricated with two different processes has sometimes led to the erroneous conclusion that there are inherent AC performance differences between them. In reality this is not the case. The only inherent difference between the two standards is the difference in the behavior of the DC characteristics with temperature.

AC PERFORMANCE

From an IC design standpoint, the only differences between a 10 E device and a 100 E device in the ECLinPS family are a small temperature compensation network in the 100 E output gate, and very minimal differences in the two bias generator networks. Therefore, one would expect that from an AC standpoint, the performance of the two standards in the ECLinPS family should be nearly identical; measurements prove this to be the case. There is no significant measurable difference in the rise/fall times, propagation delays or toggle frequencies when comparing a 10 E and a 100 E device. The minor difference between previous 10H and 10K designs is due to the fact that the two are fabricated on different processes, and in some cases are designed for operation at different power levels.

SUMMARY

Summarizing the above information; in general the two ECL design standards, although differing somewhat in DC parameters, are nearly identical when one compares the AC performance for a given device. There may be very small differences in the AC measurements due to the slightly smaller output swing of the 100E device. However, these differences are negligible when compared to the absolute value of the measurements. Therefore from an AC standpoint there is no real advantage in using one standard over the other, thus removing AC performance as a decision variable in high speed system design.

PACKAGING

During the definition phase of the ECLinPS family much attention was placed on the identification of a suitable package for the family. The package had to meet the criteria of minimum parasitics and propagation delays along with an attractive I/O versus board space relationship. Although the DIP package offered a level of familiarity and convenience, the performance of the package with a very high speed logic family was inadequate. In addition to the obvious parasitics and board space problems, the propagation delays through the DIP package were nearly twice as long as the delay through the silicon.

The 28 pin CERQUAD package emerged as the clear favorite both internally and with the high speed market in general. The package offers a quad layout to minimize both lead lengths and lead length differences. As a result, the parasitics and delays of the package are very well suited for a high speed logic family. In addition, the nearly matched lead lengths allow for tighter skew among similar paths through the chip.

The board density potential of the CERQUAD is also attractive in that it allows for a nearly 100% reduction in board space when compared to the DIP alternative. The package is approximately a half inch square with 50 mil spaced leads. More detailed measurements can be found in the package section of this databook.

Thermally the standard CERQUAD exhibits a θ_{JA} of 33.4°C per watt at 500 lfpm air flow. With this thermal resistance most 28 pin functions can be implemented with the MOSAIC III process without encountering any severe thermal problems.

Electrical Characteristics

PARAMETERS DEFINITIONS

The device data sheets in Chapter 5 contain specifications for the propagation delays for each of the devices in the ECLinPS family. In addition, where applicable, set-up/hold times and maximum toggle frequency (f_{max}) reset recovery and minimum pulse width specifications are also included. Table 5 in this section lists the rise/fall time specification for the family. The waveforms and terminologies used in describing the propagation delays and rise/fall times of the ECLinPS family are depicted in Figure 31.

Skew Times

In the design of high speed systems skew plays nearly as important a role as propagation delay. The majority of the devices in the ECLinPS family have the skew between outputs

specified. This skew specification represents the typical difference between the dealys of similar paths on a single chip. No maximum value for skew is specified due to the difficulty in the production testing of this parameter. The user is encouraged to contact an ECLinPS application engineer to obtain actual evaluation data if this parameter is critical in their designs.

SET-UP AND HOLD TIMES

Propagation delays and rise/fall times are generally well understood parameters, however there is sometimes confusion surrounding the definition of the setup/hold and f_{max} parameters. Motorola defines the setup time of a device as the minimum time, prior to the transition of the clock, that an input must be stable to ensure that the device operates properly. The hold time, on the other hand, is defined as the minimum time that an input must remain stable after the transition of the clock to ensure that the device operates properly. Figure 32 illustrates the way in which Motorola defines setup and hold times.

Release Times

Release times are defined as the minimum amount of time an input must wait to be clocked after an enable, master reset or set signal is deactivated to ensure proper operation. Because more times than not this specification is in reference to a master reset operation this parameter is often called reset recovery time. 1

Figure 32. ECLinPS Set-Up and Hold Waveforms

fmax Measurement

In general f_{max} is measured in the manner shown in Figure 33 with the fail criterion being either a swing of 600 mV or less, or a miscount. However in some cases the feedback method of testing can lead to a pessimistic value of f_{max} because the feedback path delay is such that the setup times of the device are violated. If this is the case it is necessary to have two free running signal generators to ensure that the setup times are observed. This parameter, along with $f_{\rm shift}$ and $f_{\rm count}$, represents the maximum frequency at which a particular flip flop, shift register or counter can be clocked with the divide, shift or count operating guaranteed. This number is generated from worst case operating conditions, thus under nominal operating conditions the maximum toggle frequency is higher.

Figure 33. fmax Measurement

AC TESTING ECLinPS DEVICES

The introduction of the ECLinPS family raised the performance of silicon logic to a new domain. As the propagation delays of logic devices became ever faster the task of correlating between test setups becomes increasingly challenging. To obtain test results which correlate with Motorola, various testing techniques must be adhered to. A typical schematic for an ECLinPS test setup is illustrated in Figure 34. A solid ground plane is a must in the test setup, as the two power supplies are bypassed to this ground plane. A 20 μ F capacitor from the two power supplies to ground is used to dampen any supply variations. An RF quality 0.01 μ F capacitor from each power pin to ground is used to decouple the fixture.

These 0.01 μ F capacitors should be located as close to the power pins as possible. In addition, all of the power leads should be kept as short as possible. The power supplies are shifted by + 2.0 V so that the load comprises only the precision 50 Ω input impedance of the oscilloscope. Use of this technique will assure that the customer and Motorola are terminating devices into equivalent loads and will improve test correlation. To further standardize testing, any unused outputs should be loaded with 50 Ω to ground.

Because the power supplies are shifted, the input levels must also be shifted by an equal amount. Table 5 gives the typical input levels for the ECLinPS family and their corresponding + 2.0 V shifted levels.

10 Exxx	Typical	Shifted
VIL	- 1.75	+ 0.25
VIH	- 1.90	+ 1.10
100 Exxx	Typical	Shifted
VIL	- 1.70	+ 0.30
VIH	- 0.95	+ 1.05

ECL Levels After Translating By +2.0 V

The test fixture should be in a controlled impedance 50 Ω environment, with any non-50 Ω interconnects, or stubs, kept as short as possible (< 1/4"). This controlled impedance environment will help to minimize overshoot and ringing, two phenomena which can lead to inaccuracies in AC measurements. To minimize degradation of the input and output edge rates, a 50 Ω coaxial cable with Teflon dielectric is recommended, however any other cable with a bandwidth of >5.0 GHz is adequate. In addition, the cables from the device under test (DUT) to the inputs of the scope should be matched in length to prevent any errors due to different path lengths from the DUT to the scope.

The interconnection fittings should be 50 Ω SMA straight or SMA launchers to minimize impedance mismatches at the interface of the coax and the test PC board. Although a Teflon laminate board is preferable, an FR4 laminate board is acceptable as long as the signal traces are kept to five inches or less. Longer traces will result in significant edge rate degradation of the input and output signals.

To make the board useful for incoming inspection or other volume testing the board needs to be fitted with a socket. Although not suitable for AC testing due to different pin lengths and large parasitics, there are through hole sockets which are adequate for CD testing of ECLinPS devices. For AC testing purposes a 28 pin surface mount socket is recommended.

Finally, to ensure correlation between Motorola and the customer, high performance state-of-the-art measuring equipment should be used. The pulse generator must be capable of producing the required input levels with rise and fall times of 500 ps. In addition, if f_{max} is going to be tested, a frequency of up to 1.5 GHz may be needed. The oscilloscope should also be of the utmost in performance with a minimum bandwidth of 5.0 GHz.

System Basics

POWER SUPPLY CONSIDERATIONS

The following text gives a brief description of the requirements and recommendation for treatment of power supplies in an ECLinPS system design. A more thorough narration on the general subject of power supplies can be found in the Motorola MECL System Design Handbook (HB205/D).

VCC SUPPLY

As with all previous ECL families, the ECLinPS logic family is designed to operate with negative power supplies, in other words, with V_{CC} connected to ground. However ECLinPS circuits will work fine with positive power supplies as long as special care has been taken to ensure a stable, quiet V_{CC} supply. The output voltage levels for a positive supply system can be determined by simply subtracting the absolute value of the standard negative output levels from the desired V_{CC} .

To provide as small an AC impedance as possible, and minimize power bus IR drops, the V_{CC} supply should have a dedicated power plane. By providing a full ground plane in the system the designer ensures that the current return path for the signal traveling down a transmission line does not encounter any major obstructions. It is imperative that the noise and voltage drops be as small as possible on the V_{CC} plane as the internal switching references and output levels are all derived off of the V_{CC} power rail. Thus any perturbations on this rail could adversely affect the noise margins of a system.

VEE = VEE	(min) to VEE(max); VCC =	• V _{CCO} = 0	GND								
			$T_A = 0^{\circ}C$		T _A = 25°C		T _A = 85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _r t _f	Output Rise/Fall Time (20 - 80%)	300		800	300		800	300		800	ps

Table 5.	Family	Output	Edge	Rate	Specification
----------	--------	--------	------	------	---------------

VEE SUPPLY

To take advantage of increased logic density and temperature compensated outputs, many designers are building array options with both temperature compensated output levels and $a-5.2 V V_{EE}$ supply. To alleviate any problems with interfacing these arrays to ECLinPS 100 E devices, Motorola has specified the operation of 100 E devices to include the standard 10H V_{EE} voltage range. Moreover, because of the superior voltage compensation of the bias network, this guarantee comes without any changes in the DC or AC specification limits. With the availability of both 10H and 10K compatible devices in the ECLinPS family there is generally no need to run 10 E devices at 10K voltage levels. If however this is desired, the 10 E devices will function at 100 E V_{EE} levels with, at worst, a small degradation in AC performance for a few devices due to soft saturation of the current source device.

Although both the 10 E and 100 E devices can tolerate variations in the VFF supply without any detrimental effects, it is recommended that the VFF supply also have a dedicated power plane. If this is not feasible, constraint care should be taken so that the IR drops of the VEE bus do not create a VEE voltage outside of the specification range. To provide the switching currents resulting from stray capacitances and asymmetric loading, the VEE power supply in an ECL system needs to be bypassed. It is recommended that the VEE supply be bypassed at each device with an RF quality .01uF capacitor to ground. In addition the supply should also be by passed to ground with a 1 μ F - 10 μ F capacitor at the power inputs to a board. If a separate output termination plane is used, the VEE supply will be of a static nature as the output switching current will return to ground via the VTT supply, thus the bypassing of every device may be on the conservative side. If the design is going to include a liberal use of serial or Thevenin equivalent termination schemes a properly bypassed VEE plane is essential.

VTT SUPPLY

The output edge rates of the ECLinPS family necessitate an almost exclusive use of controlled impedance transmission lines for system interconnect (the details of this claim will be discussed in a latter section). Thus, unless Thevenin equivalent termination schemes are going to be used, a V_{TT} supply is a must in ECLinPS designs. The choice of using only Thevenin equivalent termination schemes to save a power supply should not be made lightly as the Thevenin scheme consumes up to ten times more power than the equivalent parallel termination to a -2.0V V_{TT} supply.

As was the case for the V_{EE} supply, a dedicated power plane, liberally bypassed as described above, should be used for the V_{TT} supply. In designs which rely heavily on parallel termination schemes the V_{TT} supply will be responsible for returning the switching current of the outputs to ground, therefore a low AC impedance is a must. For bypassing, many SIP resistor packs have bypass capacitors integrated in their design to supply the necessary bypassing of the supply. The use of SIP resistors will be discussed more thoroughly in a latter chapter.

HANDLING OF UNUSED INPUTS AND OUTPUTS

UNUSED INPUTS

All ECLinPS devices have internal $50 \, k\Omega$ -75 k Ω pulldown resistors connected to V_{EE}. As a result, an input which is left open will be pulled to V_{EE} and thus set at a logic LOW. These internal pulldowns provide more than enough noise margin to keep the input from turning on if noise is coupled to the input, therefore there is no need to tie the inputs to V_{EE} external to the package.

In addition, by shorting the inputs to V_{EE} external to the package one removes the current limiting effect of the pulldown resistor and under extreme V_{EE} conditions the input transistor could be permanently damaged. If there are concerns about leaving sensitive inputs, such as clocks, open they should be tied low via an unused output or a quiet connection to V_{TT}.

Unless otherwise noted on the data sheets, the outputs to differential input devices will go to a defined state when the inputs are left open. This is accomplished via an internal clamp. Note that this clamp will only take over if the voltage at the inputs fall below ≈ -2.5 V. Therefore if equal voltages of greater than -2.5 V are placed on the inputs the outputs will attain an undefined midswing state.

Unlike saturating logic families, the inputs to an ECLinPS, or any ECL device, cannot be tied directly to V_{CC} to implement a logic HIGH level. Tying inputs to V_{CC} will saturate the input transistor and the AC and DC performance will be seriously impaired. A logic HIGH on an ECLinPS input should be tied to a level no higher than 600 mV below the V_{CC} rail and more typically no higher than the specified V_{IHmax} limit. A resistor or diode tree can be used to generate a logic HIGH level or more commonly an output of an unused gate can be used.

UNUSED OUTPUTS

The handling of unused outputs is guided by two criteria: power dissipation and noise generation. For single ended output devices it is highly recommended to leave unused outputs unterminated as there are no benefits in the alternative scheme. This not only saves the power associated with the output but also reduces the noise on the V_{CC} line by reducing the current being switched through the inductance of the V_{CC} pins. For the counters and shift registers of the family the count and shift frequencies will be maximized if the parallel outputs are left unterminated. Of course for applications where these parallel outputs are needed, this is not a viable alternative.

For the differential outputs, on the other hand, things are a little less cut and dry. If either of the outputs of a complimentary output pair is being used, both outputs of the pair should be terminated. This termination scheme minimizes the current being switched through the V_{CC} pin and thus minimizes the noise generated on V_{CC}. If, however, neither of the outputs of a complimentary pair are being used it makes most sense to leave these unterminated to save power. Note that the E511 device has special termination rules; these rules are outlined on the data sheet for the device.

MINIMIZING SIMULTANEOUS SWITCHING NOISE

A common occurrence among ECL families is the generation of crosstalk and other noise phenomena during simultaneous switching situations. Although the noise generated in ECL systems is minor compared to other technologies there are methods to even further minimize the problem.

Figure 35 illustrates the two output scenarios of an ECL device: differential outputs and single ended outputs. During switching, the current in the output device will change by \approx 17 mA when loaded in the normal 50 Ω to - 2.0 V load. With differential outputs, as one output switches from a low to a high state, the other switches from high to a low state simultaneously thus the resultant current change through the V_{CCO} connection is zero. The current simply switches between the two outputs. However for the single ended output, the current change flows through the V_{CCO} connection of the output device. This current change through the V_{CCO} pin of the package causes a voltage spike due to the inductance of the pin.

Traditionally, manufacturers of ECL products have attempted to combat this problem by providing a separate V_{CC} pin for the output device (V_{CCO}, V_{CCA} etc.) and the internal circuitry. By doing this the noise generated on the V_{CCO} of the output devices would see a high impedance internal to the chip and not couple onto the the V_{CC} line which controls the output and internal bias levels. Unfortunately in practice the noise generated on the V_{CCO} would couple into the chip V_{CC} through the collector base capacitance of the output device, thus a large portion of the noise seen on the V_{CCO} line.

For the ECLinPS family and its associated edge speeds it was decided that multiple V_{CCO} pins would be necessary to minimize the inductance and the associated noise generation. A design rule was established so that there would be no more than three single ended outputs per V_{CCO} pin. Initially the V_{CC} and V_{CCO} pins were kept isolated from one another. However it was discovered that in certain applications the parasitics of the package and the output device would combine to produce an instability which resulted in the outputs going into an oscillatory state. To alleviate this oscillation problem it was necessary to make the V_{CC} and V_{CCO} pins the noise generated is equal to or less than that of previous ECL families.

To further reduce the noise generated there are some things that can be done at the system level. As mentioned above there should be adequate bypassing of the V_{CC} line and the guidelines for the handling of unused outputs should be followed. In addition, for wide single ended output devices an increase in the characteristic impedance of the transmission line interconnect will result in a smaller time rate of change of current; thus reducing the voltage glitch caused by the inductance of the package. This noise improvement should, of course, be weighed against the potential slowing of the higher impedance trace to optimize the performance of the entire system. In addition, the connection between the device V_{CC} pins and the ground plane should be as small as possible to minimize the inductance of the V_{CC} line. Note that a device mounted in a socket will exhibit a larger amount of VCC noise due to the added inductance of the socket pins.

EFFECTS OF CAPACITIVE LOADS

The issue of AC parametric shifts with load capacitance is a common concern especially with designers coming from the TTL and CMOS worlds. For ECLinPS type edge speeds wire interconnect starts acting like transmission lines for lengths greater than 1/2". Therefore in ECLinPS designs, for the majority of cases, the load on an output is seen by the transmission line and not the output of the driving device. The effects of load capacitance on transmission lines will be discussed in detail in the next section.

If the load is close to the driving output (<1/2"), the resulting degradation will be 15 - 25 ps/pF for both propagation delays and edge rates. In general, a capacitive load on an emitter follower has a greater impact on the falling edge than the rising edge. Therefore the upper end of the range given above represents the effect on fall times and the associated propagation delays while the lower end represents the effect on the rising output parameters. For ECLinPS devices the capacitive load produced by an input ranges from 1.2 pF to 2.0 pF. The majority (~ 95%) of this capacitance is contributed by the package with very little added by the internal input circuitry. For this reason the range is generally a result of the difference between a corner and a center pin for the LCC package. A good typical capacitance value for a center pin is 1.4 pf and for a corner pin 1.7 pf. The capacitances for the other pins can be deduced through a linear interpolation.

WIRED-OR CONNECTIONS

The use of wired-or connections in ECL designs is a popular way to reduce total part count and optimize the speed performance of a system. The limitation of OR-tying ECL outputs has always been a combination of increased delay per OR-tie and the negative going disturbance seen at the output when one output switches from a high to a low while the rest of the outputs remain high. For high speed devices the latter problem is the primary limitation due to the increased sensitivity to this phenomena with decreasing output transition times. The following paragraph will attempt to describe the wire-OR glitch phenomena from a physical perspective.

Figure 36 illustrates a typical wire-OR situation. For simplicity the discussion will deal with only two outputs, however the argument could easily be expanded to include any number of outputs. If both the A and the B outputs start in the high state they will both supply equal amounts of current to the load. If the B output then transitions from a high to a low the line at the emitter of B will see a sudden decrease in the line voltage. This negative going transition on the line will continue downward at the natural fall time of the output until the A output responds to the voltage change and supplies the needed current to the load. This lag in the time it takes for A to correct the load current and return the line to a quiescent high level is comprised of three elements: the natural response time of the A output, the delay associated with the trace length between the two outputs and the time it takes for a signal to propagate through the package. The trace delay can be effectively forced to zero by OR-tying adjacent pins.

The resulting situation can then be considered "best case". In this best case situation, if the delay through the package is not a significant portion of the transition time of the output, the resulting negative going glitch will be relatively small ($\approx 100 \text{ mV}$). A disturbance of this size will not propagate through a system. As the trace length between OR-tied outputs increases, the magnitude of the negative going disturbance will increase. Older ECL families specified the maximum delay allowed between OR-tied outputs to prevent the creation of a glitch which would propagate through a system.

As this glitch phenomena is a physical limitation, due to decreased edge rates, ECLinPS devices are susceptible to the problem to an even greater degree than previous slower ECL families. The package delay of even the 28-lead LCC is a significant portion of the transition times for an ECLinPS device. Therefore even in the best case situation described above one can expect an \approx 200 mV glitch on the OR-tied line. A glitch of this magnitude will not propagate through the system but it is significantly worse than the best case situation of earlier ECL families. In fact as long as the distance between OR-tied outputs is kept less than 1/2" the resulting line disturbance will not be sufficient to propagate through most systems.

Figure 36. Typical Wire-OR Configuration

With this in mind the following recommendations are offered for OR-tying in ECLinPS designs. First OR-tying of clock lines should be avoided as even in the best case situation the disturbance on the line is significant and could cause false clocking in some situations. In addition wire ORed outputs should be from the same package and preferably should be adjacent pins. Non adjacent outputs should be within 1/2" of each other with the load resistor connection situated near the midpoint of the trace (Figure 36). By following these guidelines the practice of wire-ORing ECL outputs can be expanded to the ECLinPS family without encountering problems in the system.

A detailed discussion of wire-OR connections in the ECLinPS world of performance is beyond the scope of this text. For this reason a separate application note has been written which deals with this situation in a much more thorough manner. Anyone planning to use wire-OR connections in their ECLinPS design is encouraged to contact a Motorola representative to obtain this application note.

CLOCK DISTRIBUTION

Clock skew is a major contributor to the upper limit of operation of a high speed system, therefore any reduction in this parameter will enhance the overall performance of a system. Through the ECLinPS family and new offerings in the 10H family Motorola is providing devices uniquely designed to meet the demands of low skew clock distribution.

By far the largest contributor to system skew is the variation between different process lots of a given device. This variation is what defines the total delay window specified in the data sheets. This window can be minimized if the devices are fully differential due to the output level defined thresholds which ensure a "centered" input swing. The propagation delay windows of single ended ECL and other System Basics logic technologies are intimately tied to variations in the input thresholds. As illustrated in Figure 37 although the delays when measured from the threshold of the input to the 50% point of the output are equal; when measured from the specified 50% point of the input to the 50% point of the output the delays will vary with any shift in the switching reference. Obviously the magnitude of the delay difference is also proportional to the edge rate of the input. In addition to increasing the size of the delay windows, this reference shift will cause the duty cycle of the output of a device to be different than that of the input. Unfortunately these thresholds are perhaps the most difficult aspects of a logic device to control.

As a result for the ultimate in low skew performance differential ECL devices are a must. A quick perusal of the ECLinPS portion of this databook will reveal a relatively large number of totally differential devices which will lend themselves nicely to very low skew applications such as clock distribution.

Figure 37. Delay versus Switching Reference Offset

In addition to these generic differential devices there are several devices which were designed exclusively for clock distribution systems. With past ECL families designers were forced to build clock distribution trees with devices which were compromises at best. The ECLinPS family, however, was built around the E511 clock distribution chip; a fully differential 1:9 fanout device which boasts within part skews as well as part to part skews unequaled in today's market.

Additionally, to further deskew clock lines the E595 programmable delay chip will be available. Although static delay lines can remove built in path length difference skew they can not compensate for variations in delays of the devices in the clock path. The E595 allows the user to delay a signal over a 2 ns range in 20 ps steps. Through the use of this device the designer can match skews between clocks to 20 ps.

Although these two devices satisfy the needs for many ECL designers they do overlook the needs of a special subset; the designer who mixes ECL and TTL technologies. When translating between ECL and TTL much of the skew performance gained through the E511 is lost when passed through the translator and distributed in TTL. To solve this problem a new set of translators have been introduced in the MECL 10H family. The 1041 and 1043 receive a differential ECL input and f an out nine TTL outputs with a guaranteed unparalleled skew between the TTL outputs. The 1040 and 1042 take differential ECL inputs and generate low skew TTL outputs which are ideal for driving clocks in 68030 and 68040 microprocessor systems. By using the ECL aspects of the E511 to distribute clock lines across the backplane to TTL cards and receiving and translating these signals with the 1040, 1041, 1042 or 1043 a TTL clock distribution tree can be designed with a performance level unheard of with past logic families.

Figure 38. Clock Synchronization Schemes

Through the development of a library of differential devices, specialized low skew distribution chips and high resolution programmable delay chips Motorola has serviced the need for low skew clock distribution designs. These offerings open the door for even higher performance next generation machines.

METASTABILITY BEHAVIOR

The metastability behavior and measurement of a flip flop is a complicated subject and necessitates much more time than is available in this forum for a thorough explanation. As a result, the following description is of an overview nature. Anyone interested in a more thorough narration on the subject is encouraged to contact a Motorola representative to acquire the application note which contains a more detailed discussion on the subject.

In many designs occasions arise where an asynchronous signal needs to be synchronized to the system clock. Generally this task is accomplished with the use of a single or series of D flip-flops as pictured in Figure 38. Because the data signal and the clock signal are asynchronous the system designer cannot guarantee that the setup and hold specifications for the device will be met. This in and of itself would not cause a problem if it was not for the metastable behavior of a D flip-flop. The metastable behavior of a flip-flop is described by the outputs of a device attaining a non defined logic level or perhaps going into an oscillatory state when the data and the clock inputs to the flip flop switch simultaneously. It has been shown that this metastable behavior occurs across technology boundaries as well as across performance levels within a technology.

For ECL the characteristic of a flip-flop in a metastable state is a device whose outputs are in a non-defined state near the midpoint of a normal output swing. The output will return randomly to one of the two defined states some time later (Figure 39). The two parameters of importance when discussing metastability are the metastability window; the window in time for which a transition on both the data and the clock will cause a metastable output, and the settling time; the time it takes for a metastable output to return to a defined state.

Figure 39. Metastable Behavior of an ECL Flip Flop

For the single flip flop design of Figure 37, the data being fed into system 2 will be in an undefined state and thus unusable if the synchronizing flip flop enters a metastable state. Because of this a more popular design incorporates multiple flip flop chains with cascading data inputs and clock inputs which are delayed with respect to each other. This redundancy of flip flops helps to reduce the probability that the data entering system 2 will be at an undefined level which could wreak havoc on the logic of that system. This reduction in probability relies on the fact that even if the preceding flip flop goes metastable it will settle to a defined state prior to the clocking of the following flip flop. Obviously, once the first flip flop goes metastable there is an even chance that it will settle in the wrong state and thus information will be lost. However, there are error detection and correction methods to circumvent this problem. The larger the flip flop chain the lower the probability of metastable data being fed into system 2.

Unfortunately for ECLinPS levels of performance both the window width and the settling time are difficult or impossible to measure directly. The metastable window for an ECLinPS flip flop is assuredly less than 5 ps and most likely less than 1 ps based on SPICE level simulation results. In either case, with today's measuring equipment it would be impossible to measure this window width directly. Although it is feasible to measure the settling time for a given occurrence, this parameter is not fixed but rather is of a variable length which makes it impossible to provide an absolute guarantee.

The challenge then becomes, how to characterize metastability behavior given the above circumstances. The standard method in the industry is to use Stoll's¹ equation, combined with the standard MTBF equation, to develop the following relationship:

MTFB = $1/(2 * f_C * f_D * T_P * 10 - (\Delta t/\tau))$ where:

f_C: Clock Frequency

fD: Data Frequency

TP: FF Propagation Delay

∆t: Time Delay Between FF Clocks

τ: Time Delay Between FF Clocks

Note that the clock frequency, data frequency and time delay between flip flops are user defined parameters, thus it is up to Motorola to provide only the propagation delays and the resolution time constants for the ECLinPS flip flops.

The propagation delays are obviously already defined so this leaves only the resolution time constant yet to be determined. An evaluation fixture was fabricated and several ECLinPS flip flops were evaluated for resolution time constants. The results of the evaluation showed that the time constant was somewhat dependent on the part type as all the flip flops in the ECLinPS family do not use the same general design. The time constants range from 125 - 225 ps depending on the part type.

As an example, for a system with a 100 MHz clock and 75 MHz data rate the required delay between clock edges of a cascaded flip flop chain for the E551 register, assuming a τ of 200 ps, would be:

MTFB = 1/(2 *100 MHz *75 MHz *800 ps *10 –(Δ t/200 ps)) where:

solving for an MTBF of 10 years yields:

Δt: = 3.1 ns therefore:

 $T_D = \Delta t$: + $T_P = 3.9 \text{ ns}$

So for an MTBF of 10 years, for the above situation, the second flip-flop should be clocked 3.9 ns after the first. Similar results can be found by applying the equation to different data and clock rates as well as different acceptable MTBF rates.

¹Stoll, P. "How to Avoid Synchronization Problems," VLSI Design. November/December 1982. pp. 56 - 59.

System Interconnect

INTRODUCTION

As mentioned earlier, edge rates of the ECLinPS family are such that most interconnects must be treated as transmission lines. Thus, a controlled impedance environment is necessary to produce predictable interconnect delays as well as limiting the reflection phenomena of undershoot and overshoot. The three most common techniques for circuit and/or system interconnect at high data rates are microstrip, stripline and coaxial cable: both microstrip and stripline are printed circuit board methods whereas coaxial cable is most often used for interconnecting different parts of a system which are separated by relatively large distances. For slower speed applications (<300MHz) a twisted pair scheme also works well. The scope of writing will not include the twisted pair technique, however a detailed discussion of this topic can be found in the MECL System Design Handbook. Finally, wirewrap boards are not recommended for the ECLinPS family because the fast edge speeds exceed the capabilities of normal wirewrapped connections. Mismatches at the connections cause reflections which distort the fast signal, significantly reducing the noise immunity of the system and perhaps causing erroneous operation.

PRINTED CIRCUIT BOARDS

Printed circuit boards (PCB's) provide a reliable and economical means of interconnecting electrical signals between system components. Printed circuit boards consist of a dielectric substrate over which the conducting printed circuit material is placed. Three major categories of printed circuit boards exist:

- 1. Single-sided boards
- 2. Double-sided boards
- 3. Multilayer boards

The most common printed circuit board material used for digital designs is a glass-epoxy laminate. These boards use fiberglass dielectric with copper foils bonded to both sides of the dielectric material by an epoxy resin. Other substrate materials include fiberglass dielectric with a polyimide resin and fiberglass dielectric with a teflon resin. For multilayer boards the inner layers are separated by sheets of prepreg which acts as both a dielectric material and a bonding agent between layers.

The choice of substrate material depends on the function for which the board will be used, the environment in which the board is to operate, and costs. Table 6 lists several physical qualities which characterize several of the available PCB types. Each available substrate material has its own properties which makes it ideally suited for particular applications.

GLASS-EPOXY

Possesses good moisture absorption, chemical, and heat resistance properties as well as mechanical strength over standard humidity and temperature ranges. The most widely used versions are G10 and FR4, the fire resistant version of G10.

GLASS-POLYIMIDE

Good for elevated temperature operation because of its tight tolerance of the coefficient of thermal expansion. Very hard material, so it may damage drilling equipment when being drilled.

GLASS-TEFLON

Good for use when a low dielectric material is required. Very soft material, so it may be difficult to build features requiring precise geometries. Relatively expensive material.

MICROSTRIP

A microstrip line is the easiest printed circuit interconnect to fabricate because it consists simply of a ground plane and flat signal conductor separated by a dielectric (Figure 40)

The characteristic impedance, Z_O , of a microstrip line is given by:

$$Z_{O} = \frac{87}{\sqrt{(\epsilon_{r} + 1.41)}} \quad \text{In} \quad \frac{(5.98 * h)}{(0.8w + t)} \quad (\text{eqt. 1})$$

where:

 ϵ_r = Relative Dielectric Constant of the Substrate

w = Width of the Signal Trace

t = Thickness of Signal Trace

h = Thickness of the Dielectric

Equation 1 is accurate to within ±5% when:

0.1 < w/h < 3.0 and $1 < \epsilon_r < 15$

Material	Dielectric Constant	Dissipation Factor	Thermal Coefficient of Expansion	Tensile Modulus
Glass-Epoxy	4.8 (1MHz)	0.022 (1MHz)	13 - 16 (10 ⁻⁶ /°C)	2.5
PTFE	2.1 (10GHz)	0.0004 (10GHz)	224 (10 ⁻⁶ /°C)	0.05
Glass-Polyimide	4.5 (1MHz)	0.10 (1MHz)	12 - 14 (10 ⁻⁶ /°C)	2.8

Table 6. Characteristics of Common PCB Materials

To mitigate the effects of electric field fringing, an additional constraint is that the width of the ground plane be such that it extends past each edge of the signal line by at least the width of the signal line.

Figure 41. Microstrip Impedance versus Trace Width

Figure 41 is a plot of characteristic impedance as a function of trace width and dielectric thickness for a dielectric constant of 4.8 and a trace thickness of 1.4 mils (1 ounce copper.) Using the equation for C_O developed in the previous chapter and Equation1 above the capacitance per unit length can be calculated for various trace widths. Figure 42 plots C_O versus trace width for several different dielectric thicknesses. In addition Figure 42 plots C_O versus the characteristic impedance for a microstrip line for the dielectric constant and trace thickness given above.

The propagation delay for a signal on a microstrip line is described by the following equation:

$$T_{PD} = 1.016 \sqrt{(0.475 * \epsilon_r + 0.67)} \text{ ns/foot}$$
 (eqt. 2)

where:

 ε_r = Dielectric Constant of the Board Material

Note that the propagation delay is dependent only on the dielectric constant of the PCB substrate. Figure 43 plots the propagation delay of a microstrip line versus the dielectric constant of the PCB.

Figure 43. Propagation Delay versus Dielectric Constant

STRIPLINE

Stripline is a printed circuit board interconnect in which a signal conductor is placed in a dielectric medium which is "sandwiched" between two conducting layers (Figure 44)

Figure 44. Stripline Structure

The characteristic impedance of the stripline is given by:

$$Z_{O} = -\frac{60}{\sqrt{\varepsilon_{f}}} \quad \ln\left[-\frac{4b}{0.67\pi(0.8w+t)}\right] \quad (eqt. 3)$$

where:

 ϵ_r = Relative Dielectric Constant of the Substrate

w = Width of the Stripline

t = Thickness of the Stripline

h = Distance Between the Two Ground Planes

Equation 3 is accurate for the following dimension ratios:

w/(b - t) < 0.35 and t/b < 0.25

Once again, using a fairly typical ε_r of 4.8 and a copper trace thickness of 1.4 mils, the characteristic impedance of a stripline interconnect can be plotted for various trace widths and dielectric thicknesses (Figure 45)

Figure 45. Stripline Impedance versus Trace Width

As was the case with a microstrip line the capacitance per unit length of a stripline trace can be calculated using $C_0 = T_{pd}/Z_0$. The graphs of Figure 46 plot the capacitance of a stripline structure for a number of trace widths as well as the C_0 versus the characteristic impedance of the line.

The propagation delay of a stripline trace is governed by the simple equation:

$$T_{PD} = 1.016 \sqrt{\epsilon_r} \text{ ns/ft}$$
 (eqt. 4)

where:

 ε_r = Dielectric Constant of the Board Material

Again the propagation delay of the trace is dependent only on the relative dielectric constant of the PCB substrate. Using Equation 4 the delay of the line can be plotted versus dielectric constant (Figure 47)

Figure 46. Stripline Capacitance versus Impedance and Trace Width

Figure 47. Stripline Propagation Delay versus Dielectric Constant

GENERAL INFORMATION

Since fiberglass-epoxy is by far the most widely used substrate in the industry two important considerations should be mentioned:

1. The propagation delay for microstrip is \approx 145 ps per inch whereas that for stripline is \approx 185 ps per inch. Since the propagation delay is governed by the dielectric of the substrate, a board material with a lower dielectric constant than glass-epoxy is required if a lower propagation delay is desired.

2. Cross coupled noise due to board geometries may require a substrate material with a lower dielectric constant. For example, the distance from the signal trace to the ground plane is a function of the substrate dielectric constant for a specified line characteristic impedance. Hence the switching energy coupled into adjacent traces on the same signal plane is also a function of the dielectric constant. If the dielectric thickness and trace width must be maintained for a given line impedance, the spacing between traces must be increased to maintain the noise margin. Since the dielectric constant of glass-epoxy is relatively large, the increase in spacing between the traces may be unacceptable. So, a substrate material with a lower dielectric constant may be desirable. Generally if the distance between traces is maintained at twice the distance to the ground plane, coupling between traces will be minimal.

Finally, printed circuit signal line shape variations play a significant role in modulating both the capacitance and inductance per unit length for a transmission line; in other words shape variations cause reflections. Bends in printed circuit traces cause an increase in the capacitance per unit length and a decrease in the inductance per unit length with a pronounced effect for angles of 90° or more. Two techniques available to compensate for shape changes are:

- 1. Maintain a uniform trace width.
- Cut the corners of the trace such that the length of the diagonal cut is in the range of 1.6 to 2.0 times the trace width.

Figure 48 illustrates these two techniques.

Figure 48. Compensation for Capacitive Effects of Trace Angles

COAXIAL CABLE

Coaxial cable is a two conductor transmission line consisting of a concentric inner conductor surrounded by a dielectric which in turn is surrounded by a tubular outer conductor (Figure 49). It is ideal for transmitting high frequency signals over long distances because of its well defined and uniform characteristic impedance. Moreover, crosstalk is minimized by the ground shield provided by the outer conductor.

The propagation delay is derived in the same way as a stripline interconnect and thus is described by Equation 4. Therefore as with stripline structures the delay is a function of only dielectric constant. The characteristic impedance and capacitance per unit length are parameters specified by the coaxial cable manufacturer, hence the designer should look to the cable manufacturer for these parameters.

Figure 49. Cross Section of Coaxial Cable

COAXIAL CABLE LENGTHS

The ECLinPS family operates with rise times as fast as several hundred picoseconds, thus coaxial cable must be able to transmit these pulses without introducing a significant distortion. Viewing the ECLinPS output as a single time constant driver circuit terminated with a 50 Ω load, the required line bandwidth (f_c) can be calculated as follows.

$$f_{\rm C} = 0.35/t_{\rm R}$$
 (eqt. 5)

where:

tp = 10% to 90% Rise Time

Converting the typical 20%-80% rise time value of 400 ps to an equivalent 10%-90% rise time value of 530 ps, and using Equation 5 yields a bandwidth value of $f_c = 660MHz$

Below 1 GHz the primary loss mechanism in transmission lines is skin effect, as dielectric losses for materials such as polyethylene and teflon are insignificant below this value. Since attenuation due to skin effect is proportional to the square root of frequency a log-log plot of attenuation versus frequency produces a linear result. The maximum coaxial cable lengths for the ECLinPS family can be derived from the plot in Figure 50.

Figure 50. Coaxial Cable Attenuation versus Frequency

Typically for an ECL system the minimum peak to peak signal swing is 600 mV. The nominal peak to peak signal swing for the ECLinPS family is approximately 850 mV. Thus, the maximum permissible attenuation is:

Loss (dB) =
$$20 * \log (V_{IN}/V_O)$$

= $20 * \log (0.85/0.6) = 3.0 dB$

From Figure 50 the loss at 660MHz for RG58/U cable is 15 dB/100 feet. Therefore, the maximum length is

Max Length = 100 ft. * (3.0 dB/15 dB) = 20 ft.

Additional information concerning coaxial cable can be found in Motorola's MECL System Design Handbook (HB205/D).

SUMMARY OF VALUES

Table 7 is a compilation of propagation delays at nominal dielectric values for the three types of interconnects discussed.

Interconnect	T _{PD}	٤r
Microstrip	145 ps/in	4.8
Stripline	185 ps/in	4.8
Coaxial Cable	123 ps/in	2.1

Table 7. Comparison of Interconnect Medium

TERMINATION TECHNIQUES

From transmission line theory, a signal propagating down the line is partially reflected back to the source if the line is not terminated in its characteristic impedance. The magnitude of the reflected voltage signal is governed by the load reflection coefficient, P_L . $\rho_{L} = (R_{T} - Z_{O}) / (R_{T} + Z_{O})$

(eqt. 6)

where: R_T = Load Impedance, and Z_O = Characteristic Impedance of the Line

When the reflected signal arrives at the source it is re-reflected back toward the load with a magnitude dictated by the source reflection coefficient, P.S.

$$\rho_{\rm S} = (R_{\rm S} - Z_{\rm O}) / (R_{\rm S} + Z_{\rm O})$$
 (eqt. 7)

where:

 R_S = Source Impedance Z_O = Characteristic Impedance of the Line

The reflected signal continues to be re-reflected by the source and load impedances and is attenuated with each passage over the transmission line. The output response appears as a damped oscillation asymptotically approaching the steady state value. This phenomena is often referred to as ringing.

The importance of minimizing the reflected signals lies in their adverse affect on noise margin and the potential for driving the input transistors of the succeeding stage into saturation. Both of these phenomena can lead to less than ideal system performance. To minimize the potential hazards associated with reflections on transmission lines three basic termination techniques are available:

- 1. Minimizing Unterminated line lengths
- 2. Parallel Termination
- 3. Series Termination

UNTERMINATED LINES

Figure 51 illustrates an unterminated transmission line. This configuration is also referred to as a stub or an open line.

Figure 51. Unterminated Transmission Line

The function of R_E is to provide the drive current for a high to low transition at the driver output. Since the reflection coefficient at the load is of opposite polarity to that at the source, the signal will be reflected back and forth over the transmission line with the polarity changing after each reflection from the source impedance. Thus, steps appear at the input to the receiving gate. When R_E is too large steps appear in the trailing edge of the propagating signal that slows the edge speed of the input to the receiving gate, subsequently causing an increase in the net propagation delay. A reasonable negative-going signal swing at the input of the receiving gate results when the value of R_E is selected to produce an initial step of 600 mV at the driving gate. Hence:

$$(V_{OH} - V_{EE})/(R_E + Z_O) * Z_O \ge 0.6$$

6.2Z_O ≥ R_E (10E), 4.9Z_O ≥ R_E (100E) (eqt. 9)

Load resistors of less than 180 Ω should not be used because the heavy load may cause a reduction in noise immunity when the output is in the high state due to an increased output emitter-follower VBE drop.

When the driver gate delivers a full ECL swing, the signal propagates from point A arriving at point B a time T_D later. At point B the signal is reflected as a function of ρ_L . The input impedance of the receiving gate is large relative to the line characteristic impedance, therefore:

$$\rho_{L} = (R_{T} - Z_{O}) / (R_{T} + Z_{O}) \approx 1$$
 (eqt. 10)

A large positive reflection occurs resulting in overshoot. The reflected signal reaches point A at time $2T_D$, and a large negative reflection results because the output impedance of the driver gate is much less than the line characteristic impedance (i.e. $R_D \ll Z_D$). In this case the reflection coefficient is negative.

$$\rho_{\rm S} = (R_{\rm O} - Z_{\rm O}) / (R_{\rm O} + Z_{\rm O})$$
 (eqt. 11)

The signal is re-reflected back toward the load arriving at time $3T_D$ resulting in undershoot at point B. This re-reflection of

signals continues between the source and load impedances causing ringing to appear on the output response.

The impetus in restricting interconnect lengths is to mitigate the effects of overshoot and undershoot. A handy rule of thumb is that the undershoot can be limited to less than 15% of the logic swing if the two way line delay is less than the rise time of the pulse. With an undershoot of <15% the physics of the situation will result in an overshoot which will not cause saturation problems at the receiving input. Thus, the maximum line length can be determined using Equation 12.

Further, the propagation delay increases with gate loading, thus the actual delay per unit length (TPD') is given as:

 $T_{PD}' = T_{PD} * \sqrt{(1 + C_D / (L^* C_O))}$

Substitution of the modified delay per unit length into Equation 12 and rearranging yields Equation 13:

$$t_R \ge (2^*L)^*T_{PD}^*\sqrt{(1+C_D/(L^*C_O))}$$
 (eqt. 13)

Solving Equation 13 for the maximum line length produces:

$$L_{max} = 0.5 * (\sqrt{(C_D / C_O)} ** 2) + (t_B/T_{PD}) ** 2) - C_D/C_O$$
(eqt. 14)

Assuming a worst case capacitance of 2 pF and a rise time of 200 ps for the ECLinPS family gives a value of 0.3 inches for the maximum open line length.

Table 8 shows maximum open line lengths derived from SPICE simulations for single and double gate loads, a maximum overshoot of 40% and undershoot of 20% was assumed. The simulation results indicate that for a 50 Ω line a stub length of \leq 0.3 inches will limit the overshoot to less than 40%, and the undershoot to within 20% of the logic swing. Signal traces will most assuredly be larger than 0.3" for all but the simplest of interconnects, thus for most practical applications it will be necessary to use ECLinPS devices in a controlled impedance environment.

	Micro	ostrip	Stri	pline
Z _O (Ω)	Fanout = 1	Fanout = 2	Fanout = 1	Fanout = 2
	L _{max} (in)	L _{max} (in)	L _{max} (in)	L _{max} (in)
50	0.3	0.2	0.3	0.15
68	0.3	0.15	0.25	0.1
75	0.3	0.15	0.25	0.1
82	0.3	0.1	0.25	0.1
90	0.3	0.1	0.25	0.1
100	0.25	0.1	0.25	0.1

Table 8. SPICE Derived Maximum Open Line Lengths for ECLinPS Designs

PARALLEL TERMINATION

When the fastest circuit performance or the ability to drive distributed loads is desired, parallel termination is the method of choice. An important feature of the parallel termination scheme is the undistorted waveform along the full length of the line. A parallel terminated line is one in which the receiving end is terminated to a voltage (V_{TT}) through a resistor (R_T) with a value equal to the line characteristic impedance (Figure 52a). An advantage of this technique is that power consumption can be decreased by a judicious choice of V_{TT}. For 50 Ω systems the typical value of V_{TT} is negative two volts.

Figure 52a. Parallel Termination to VTT

Figure 52b. Thevenin Equivalent Parallel Termination

Figure 52. Parallel Termination Schemes

Although the single resistor termination to V_{TT} conserves power, it offers the disadvantage of requiring an additional supply voltage. An alternate approach to using a single power supply is to use a resistor divider network as shown in Figure 52b. The Thevenin equivalent of the two resistors is a single resistor equal to the characteristic impedance of the line, and terminated to V_{TT}. The values for resistors R₁ and R₂ may be obtained from the following relationships:

$$\begin{array}{ll} R_2 = (V_{EE} / V_{TT}) * Z_O & (eqt. 15) \\ R_1 = (R_2 * V_{TT}) / (V_{EE} - V_{TT}) & (eqt. 16) \end{array}$$

For a nominal 10E supply voltage of -5.2V and VTT of -2V:

R ₂ = 2.6 * Z _O	(eqt. 17)
$R_1 = R_2 / 1.6$	(eqt. 18)

For a nominal 100 E supply voltage of -4.5V and VTT of -2V

$$R_2 = 2.25 * Z_0$$
 (eqt. 19)
 $R_1 = R_2 / 1.25$ (eqt. 20)

Table 9 provides a reference of values for the resistor divider network of Figure 52b.

	10	E	10	0 E
Ζ_Ο (Ω)	R ₁ (Ω)	R₂ (Ω)	R ₁ (Ω)	R₂ (Ω)
50	81	130	90	113
70	113	182	126	158
75	121	195	135	169
80	130	208	144	180
90	146	234	161	202
100	162	260	180	225
120	194	312	216	270
150	243	390	. 270	338

Table 9. Thevenin Termination Resistor Values

For both configurations, when the equivalent termination resistance matches the line impedance no reflection occurs because all the energy in the signal is absorbed by the termination. Hence, the primary tradeoff between the two types of termination schemes are power versus power supply requirements. As mentioned earlier, the V_{TT} scenario requires an extra power supply, however the Theveninization technique will consume 10 fold more DC power. Fortunately this extra power consumption will not be seen on the die, therefore both techniques will result in the same die junction temperatures.

ECLinPS output drivers consists of emitter followers designed to drive a 50 Ω load into a negative two volt supply (VTT). Under these conditions the nominal 10 E output levels are –1.75 volts at 5 mA for the low state and –0.9 volts at 22 mA for the high state. For the 100 E devices the nominal output levels are –0.955 volts at 20.9 mA for the high state and –1.705 volts at 5.9 mA for the low state.

Figure 53 shows the nominal output characteristics for ECLinPS devices driving various load impedances returned to a negative two volt supply. This plot applies to both 10 E and 100 E versions of the ECLinPS family. The output resistances R_H (high state output resistance) and R_L (low state output resistance) are obtained from the reciprocal of the slope at the desired operating point. Many applications require loads other than 50 Ω , the resulting V_{OH} and V_{OL} levels can be estimated using the following technique.

where:

 $HOUT = (-770 \text{ mV} - \text{V}_{TT}) / (6 \Omega + \text{R}_{T})$

and VOL = -1710 mV - 8*ILOUT

(eqt. 22)

(eqt. 23)

where:

 $I_{LOUT} = (-1710 \text{ mV} - \text{V}_{TT}) / (8 \Omega + \text{R}_{T})$

100 E DEVICES

The equivalent output circuit is shown in Figure 55. The output levels are estimated from Figure 55 as follows:

VOH = -830 mV - 6*1HOUT

where:

 $I_{HOUT} = (-830 \text{ mV} - \text{V}_{TT}) / (6 \Omega + R_T)$

10 E DEVICES

The equivalent output circuit is shown in Figure 54. The output levels are estimated from Figure 54 as follows:

 $V_{OH} = -770 \text{ mV} - 6^{*I}_{HOUT}$ (eqt. 21)

Figure 54. Equivalent Model for Calculating 10 E Output Levels

Figure 55. Equivalent Circuit for Calculating 100 E Output Levels

and V_{OL} = -1660 mV - 8*I_{LOUT} (eqt. 24)

 $I_{LOUT} = (-1660 \text{ mV} - \text{V}_{TT}) / (8 \Omega + \text{R}_{T})$

where:

SIP RESISTORS

The choice of resistor type for use as the termination resistor has several alternatives. Although the use of a discrete. preferably chip resistor, offers the best isolation and lowest parasitic additions there are SIP resistor packs which will work fine for ECLinPS designs, SIP resistors offer a level of density which is impossible to obtain using their discrete counterparts. However, there are some guidelines which the user should follow when using SIP resistor packs. Always terminate complimentary outputs in the same pack to minimize inductance effects on the SIP power pin. Noise generated on this pin will couple directly into all of the resistors in the pack. In addition, the SIP package should incorporate bypass capacitors in the design (Figure 56). These capacitors are necessary to help maintain a solid VTT level within the package, again mitigating any potential crosstalk or feedthrough effects. A 10 pin SIP like the DALE CSRC-10B21-500J/103M, is suitable for providing 50 Ω terminations while maintaining a relatively noise free environment to non-switching inputs.

Figure 56. Standard ECL 10 pin SIP

SERIES TERMINATION TECHNIQUE

Series Damping is a technique in which a termination resistance is placed between the driver and the transmission line with no termination resistance placed at the receiving end of the line (Figure 57).

Series Termination is a special case of series damping in which the sum of the termination resistor (R_{ST}) and the output impedance of the driving gate (R_O) is equal to the line characteristic impedance.

 $R_{ST} + R_O = Z_O$

Figure 57. Series Termination

Series termination techniques are useful when the interconnect lengths are long or impedance discontinuities exist on the line. Additionally, the signal travels down the line at half amplitude minimizing problems associated with crosstalk. Unfortunately, a drawback with this technique is the possibility of a two step signal appearing when the driven inputs are far from the end of the transmission line. To avoid this problem the distance between the end of the transmission line and input

gates should adhere to the guidelines specified in Table 8 from the section on unterminated lines.

SERIES TERMINATION THEORY

When the output of the series terminated driver gate switches, a change in voltage (ΔV_B) occurs at the input to the transmission line:

$$\Delta V_{B} = V_{IN} * (Z_{O}) / (R_{ST} + R_{S} + Z_{O})$$
 (eqt. 25)

where:

VIN = Internal Voltage Change

Z_O = Line Characteristic Impedance

R_S = Output Impedance of the Driver Gate

RST = Termination Resistance

Since $Z_{O} = R_{ST} + R_{S}$ substitution into Equation 25 yields:

$$\Delta V_{\rm B} = V_{\rm IN} / 2 \qquad (eqt. 26)$$

From Equation 26 an incident wave of half amplitude propagates down the transmission line. Since the transmission line is unterminated at the receiving end, the reflection coefficient at the load is approximately unity; therefore the reflection causes the voltage to double at the receiving end. When the reflected wave arrives at the source end its energy is absorbed by the series resistance producing no further reflections as the impedance is equal to the characteristic impedance of the line.

An extension of the series termination technique using parallel fanout eliminates the problem of lumped loading at the expense of extra transmission lines (Figure 58).

Figure 58. Parallel Fanout using Series Termination

CALCULATION OF RE

 $R_{\rm E}$ functions to establish V_{OH} and V_{OL} levels and to provide the negative going drive into R_{ST} and Z_O when the driver output switches to the low state. The value of $R_{\rm E}$ must be such that the required current is supplied to each transmission line while not allowing the output transistor to turn off when switching from a high to a low state. An appropriate model is to treat the output entitle rollower as a simple switch (Figure 59).

Figure 59. Equivalent Circuit for RE Determination

The worst case scenario occurs when the driver output emitter follower is cutoff during a negative going transition. When this happens the switch can be considered opened, and at the instant it opens the line characteristic impedance behaves as a linear resistor returned to V_{OH} . The model becomes a simple series resistive network as shown in Figure 60.

Figure 60. Equivalent Circuit with Output Cutoff

The maximum current occurs at the instant the switch opens and is given by Equation 27.

$$I_{MAX} = (V_{OH} - V_{EE}) / (R_E + R_{ST} + Z_O)$$
 (eqt. 27)

The initial current must be sufficient to generate a transient voltage equal to half of the logic swing since the voltage at the receiving end of the line doubles for the series terminated case. To insure the pull down current is large enough to handle reflections caused by discontinuities and load capacitances the transient voltage is increased by 25%. Therefore,

$$I_{\rm INIT} = (1.25^{*}V_{\rm SWING}/2) / Z_{\rm O}$$
 (eqt. 28)

To satisfy the initial constraints IMAX > IINIT

$$(V_{OH} - V_{EE})/(R_E + R_{ST} + Z_O) > (1.25*V_{SWING}/2)/Z_O$$

For the 10 E series:

7.10 *
$$Z_O - R_{ST} \ge R_E$$
 (eqt. 29)
For the 100 E series:
 $V_{OH} = -0.955 V, V_{SWING} = 0.75, V_{EE} = -4.5 V$
6.56 * $Z_O - R_{ST} > R_E$ (eqt. 30)

Figure 58 showed a modification of the series termination scheme in which several series terminated lines are driven by a single ECL gate. The principle concern when applying this technique is to maintain the current in the output emitter follower below the maximum rated value. The value for R_E can be calculated by viewing the circuit in terms of conductances.

$$G_E > G_1 + G_2 + ... + G_n$$
 (eqt. 31)

For the 10 E series:

For the case where $Z_{O1}=Z_{O2}=...=Z_{On}$ and $R_{ST1}=R_{ST2}=...R_{STn}$

$$R_E \le (7.10 * Z_O + R_{ST}) / n$$
 (eqt. 32)

where n is the number of parallel circuits.

For the 100 E series:

For the case where $Z_{O1}=Z_{O2}=...=Z_{On}$ and $R_{ST1}=R_{ST2}=...R_{STn}$

 $R_E \le (6.56 * Z_O + R_{ST}) / n$ (eqt. 33)

where n is the number of parallel circuits.

When a series terminated line is driving more than a single ECL load the issue of maximum number of loads must be addressed. The factor limiting the number of loads is the voltage drop across the termination resistor caused by the input currents to the ECL loads when the loads are in the quiescent high state. A good rule of thumb is to determine if the loss in high state noise margin is acceptable. The loss in noise margin is given by

$$NM_{LOSS} = I_{T} * (R_{ST} + R_{O}) \qquad (eqt. 34)$$

Figure 61. Noise Margin Loss Example

where:

IT = Sum of INH Currents

For the majority of devices in the ECLinPS family the typical maximum value for quiescent high state input current is 150 μ A. Thus for the circuit shown in Figure 61 in which three gate loads are present in a 50 Ω environment the loss in high state noise margin is calculated as:

 $NM_{LOSS} = 3 * 150 \,\mu A * 50 \,\Omega = 22.5 \,mV$

ECLinPS I/O SPICE MODELING KIT

Due to the heavier reliance on simulation tools for initial prototyping, Motorola has put together a SPICE modeling kit aimed at aiding the customer in modeling board interconnect behavior. The kit includes representative drivers and receivers as well as the necessary SPICE model parameters. In addition tips are provided for simulating a wide range of output conditions. The kit, in conjunction with todays CAD tools, can greatly simplify the design and characterization of critical nets in a design. Anyone interested in obtaining a copy is encouraged to contact an ECLinPS Application Engineer.

Interfacing With ECLinPS

INTERFACING TO EXISTING ECL FAMILIES

There currently exists two basic standards for high performance ECL logic devices: 10H and 10K. To maximize system flexibility each member of the ECLinPS family is available in both of the existing ECL standards: 10 E series devices are compatible with the MECL 10H family; 100 E series devices are compatible with ECL 10K.

The difference in the DC behavior of the outputs of the two different standards necessitates caution when mixing the two technologies into a single ended input design. As illustrated in Figures 62 and 63 and Table 10, there is no problem when a 10H device is used to drive a 10K device, however problems arise when the scenario is reversed. For the case of a 10K device driving a 10H device the worst case noise margin is reduced to 35 mV, a noise margin which is unacceptable for most designs. Since the problems of interfacing are an output tracking rate versus a V_{BB} tracking rate problem if the system uses only differential interconnect between the two technologies there will be no loss of noise margin and the design will operate as desired.

Fortunately the ECLinPS family, by offering devices in both standards, allows the user to integrate higher performance technology into his design without having to battle these interface problems.

Another area of concern when interfacing to older slower logic families is the behavior of ECLinPS devices with slower input edge rates. Typically, other than clock inputs, the ECLinPS family will function properly for edge speeds of up to 20 ns. For edges significantly slower than 20 nS the Schmitt trigger circuit of Figure 64 can be used to sharpen the edge rates reliably.

Obviously a very slow edge rate will amplify differences in delay paths due to any offset of the V_{BB} switching reference. This extra delay should be included in speed calculations of a design. For calculation purposes a worst case ± 200 ps/ns gate-gain delay (delay versus input edge rate) can be assumed or a more typical value of ± 75 ps/ns can be used.

Drvr > Rcvr	NM - High	NM - Low
10H > 10H	150 mV	150 mV
10H > 10K	145 mV	125 mV
10K > 10K	130 mV	135 mV
10K > 10H	35 mV	130 mV

Figure 62. Interfacing 10H ECL and 10K ECL

Figure 63. Interfacing 10H ECL and 10K ECL (continued)

Clock inputs on flip flop devices in the ECLinPS family are especially sensitive to slow edge rates. Flip flops have been successfully clocked in a noise free bench setup environment with edge rates of up to 20 ns. However in ATE systems where more noise is present, clocking problems arise with input edge rates of greater than 6 or 7 ns. To ensure reliable operation in a system with input clock edges slower than 7 ns it is recommended that the signals be buffered with an ECLinPS buffer circuit (E522, E516, E501 etc) or, for extreme conditions, the Schmitt trigger of Figure 64 to provide the gain necessary to sharpen the edges on the clock pulse.

Figure 64. Schmitt Trigger w/ 100 mV of Hysteresis

INTERFACING TO TTL/CMOS LOGIC

To interface ECLinPS devices to TTL or CMOS subsystems there exists several new product offerings, as well as several existing devices, in the MECL 10H family which are ideally suited to the task. These translation devices are specially suited for clock distribution, DRAM driving as well as general purpose translation in both single supply and dual supply environments.

In mixed technology environments it is recommended that the noisy supplies of TTL and CMOS circuits be isolated from the ECL supplies. This can be done either through separate power planes in the board or a common plane with isolated ECL and TTL power sub-planes. The planes of common voltages (ie. ECL V_{CC} and TTL ground for split supply systems or common V_{CC} and ground for a single supply system) should then be connected to a common system ground or power supply through an appropriate edge connector.

INTERFACING TO GaAs LOGIC

In general, GaAs logic is designed to interface directly with ECL, however in some instances the worst case V_{OH} of a GaAs output can go as high as -0.3V. An ECLinPS device, depending on the input structure, may become saturated when driven with a -0.3V signal. It is recommended that if the designer is using a GaAs device which produces these -0.3V signals in an ECLinPS design he contact a Motorola Applications Engineer to determine if the ECLinPS device being driven will be susceptible to saturation.

AC COUPLING

In some cases it may be necessary to interface an ECLinPS design with a signal which lacks any DC offset. The differential devices in the ECLinPS family are ideally suited for this application. As pictured in Figure 65 the signal can be AC coupled and biased around the V_{BB} switching reference of the device. Note that this scheme only works for a data stream with no DC bias, for data streams such as RZ or unencoded NRZ DC restoration must be performed prior to AC coupling it to an ECLinPS device.

Figure 65. AC Couple Circuit

The 50 Ω resistor of Figure 65 provides the termination impedance while the VBB pin provides the DC offset. The capacitor used to couple the signal must have an impedance of <<50 Ω for all frequency components of the input signal. Because large capacitors appear somewhat inductive at high frequencies it may be necessary to use a small capacitor in parallel with a larger one to achieve satisfactory operation. In addition it is important to bypass the VBB line when used in this manner to minimize the noise coupled into the device.

Because the AC signal is biased around V_{BB}, the output of the ECLinPS device when AC coupled will have a duty cycle identical to the input. Thus this type of application is ideal for transforming high frequency sinusoidal waveforms from an oscillator into a square wave with a 50% duty cycle. The E816 device is a specialized line receiver with a much higher bandwidth than alternative ECLinPS devices, therefore for frequencies of >500MHz it is recommended that the designer use this device.

The above mentioned scenario will work fine as long as the input signal is present, however if the the inputs to the AC coupled device are left open problems may occur. With no input signal both inputs will go to V_{BB} and an undefined output, and perhaps an oscillating output, will result. If a defined output is necessary for an open input scenario, the circuit of Figure 66 can be used. The resistor tree between V_{CC} and V_{BB} creates an offset between the two inputs so that if the driving signal is lost a stable defined output will occur.

Figure 66. AC Couple Circuit with DC Offset

Unfortunately this configuration will adversely affect the duty cycle of the output. Depending on the frequency of the output, the duty cycle will change due to the longer distance to thresold on a rising edge as opposed to a falling edge. With this in mind, it becomes obvious that the smallest feasible offset would be the best solution. For stability a minimum of 25 mV is recommended, however this will not produce full ECL levels at the outputs of an E516 and thus another differential gate should be used to further amplify the signal. The gain of the E816 on the other hand is sufficient to produce acceptable levels at the outputs for DC input voltage differences of 25 mV. If a 150 mV offset is used full ECL levels will be seen at the outputs of the E516 however the price in duty cycle skew will be high. Of course if the signal is divided after it is received the duty cycle will be restored.

When using the circuit of Figure 66 care should be taken to limit the current sunk by the V_{BB} pin to a maximum of 0.5 mA. To achieve an offset of greater than 25 mV for the circuit of Figure 66 the DC current will necessarily need to be greater than 0.5 mA. To alleviate this dilemma one of the gates of the E516 can be configured as pictures in Figure 67 to generate a V_{BB} reference with the necessary current sinking capability. A single gate configured in this way will source or sink up to 10 mA without a significant shift in the generated V_{BB} level. If more current is needed several gates can be connected in parallel to provide the extra drive capability.

Note that the circuit pictured in Figure 66 will result in the Q outputs going high when the inputs are left open. If the opposite is desired the resistor to V_{CC} can be tied to the inverting input and V_{BB} to the non-inverting input.

Figure 67. High Current VBB Generator

Í

MECL 10H 2

ELECTRICALLY TESTED PER: 5962-8759001

The 10H416 is a high-speed synchronous, presettable, cascadable 4-bit binary counter. It is useful for a large number of conversion, counting and digital integration applications.

- Counting Frequency, 200 MHz Minimum
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- · Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS							
FUNCTION	DIL	FLATS	LCC	BURN-IN			
				(CONDITION C)			
V _{CC1}	1	5	2	GND			
Q ₁	2	6	3	51 Ω to V _{TT}			
Q ₀	3	7	4	51 Ω to V _{TT}			
TC	4	8	5	51 Ω to V _{TT}			
PE	5	9	7	OPEN			
CE	6	10	8	OPEN			
P ₀	7	11	9	GND			
VEE	8	12	10	VEE			
P1	9	13	12	GND			
P2	10	14	13	GND			
P3	11	15	14	GND			
MR	12	16	15	OPEN			
CP	13	1	17	CP1			
Q3	14	2	18	51 Ω to VTT			
Q ₂	15	3	19	51 Ω to V _{TT}			
V _{CC2}	16	4	20	GND			

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

PIN NAMES

NAME FUNCTION

PE	Parallel Load Enable (Active Low)
Pn	Parallel Inputs
CP	Clock Inputs (Clocks on Positive Transition)
CE	Count Enable (Low to Count)
MR	Master Reset (High forces all Q Outputs Low)
тс	Terminal Count (10010, Low at HLLH; 10016 Low at HHHH)
Qn	Counter Outputs

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8759001 3) 883: 10H416/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTE: This diagram is provided for understanding of logic operation only. It should not be used for evaluation of propagation delays as many gate functions are achieved internally without incurring a full gate delay.

TRUTH TABLE

CE	PE	MR	СР	FUNCTION
L	L	L	Z	Load Parallel (Pn to Qn)
н	L	L	z	Load Parallel (P _n to Q _n)
L	н	L	z	Count
н	н	L	z	Hold
x	х	L	zz	Master Respond; Slave Hold
x	х	н	x	Reset (Q _n = Low, TC = High)

L = Low

H = High Voltage Level

X = Don't Care

Z = Clock Pulse (Low to High)

ZZ = Clock Pulse (High to Low)

Features include assertion inputs and outputs on each of the four master/slave counting flip-flops. Terminal count is generated internally in a manner that allows synchronous loading at nearly the speed of the basic counter.

NOTES

- 1. L₁ and L₂ = equal length of 50 Ω impedance line, < 5.0 pF.
- 2. $R_T = 50 \Omega$ termination of scope.
- 3. Decoupling 0.1 μ F from gnd to V_{EE} and V_{CC}.

4. V_{CC1} = V_{CC2} = 2.0 V.

5. VEE = -3.2 V.

Figure 2. Test Circuit and Waveforms (Clock to Output)

MOTOROLA MILITARY MECL DATA 2-4

Figure 3. Test Circuit and Waveforms (Master Reset to Output)

10H416 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = -55 °C	-0.84	-1.95	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units		TEST V	OLTAGE A	APPLIED 1	O PINS BEL	ow	
	Functional	+ 25	5 °C	+ 125 °C		- 55	5 °C		Pinouts r					ssignments	
	Functional Parameters:	Subgroup 1		Subgroup 2		Subgroup 3			$V_{CC} = 0 V$, Output Load = 100 Ω to - 2.0 V						
		Min	Max	Min	Max	Min	Max	1	VIH1 VIL1 VEE1 VEE2 VCC					P.U.T.	
VOH	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	V	9 - 11, 7, 13	13	8		1, 16	2 - 4, 14, 15	
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	V	12, 13	13	8		1, 16	2 - 4, 14, 15	
VOHA	High Output Voltage	- 1.01	- 0.78	-0.65	- 0.65	- 1.06	- 0.84	V			8	8	1, 16	2 - 4, 14, 15	
VOLA	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v			8	8	1, 16	2 - 4, 14, 15	
IEE	Power Supply Current	- 115		- 126		- 126		mA			8		1, 16	8	
Iн	Input Current High		265		450		450	μA	5 - 7, 9 - 11		8		1, 16	5 - 7, 9 - 11	
liH1	Input Current High		700		1190		1190	μA	912		8		1, 16	12	
ΙL	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 9 - 13		8	1, 16	5 - 7, 9 - 13	

10H416 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL				
T _A = 25 °C	-0.780	-1.950	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.650	-1.950	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.840	-1.950	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter			Lin	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25	5° C	+ 12	5° C	- 55	5° C		1	Pinouts referenced are for DIL package, check Pin						
	Parameters:	Subgi	roup 9	Subgroup 10		Subgroup 11			V_{CC} = 2.0 V, Output Load = 100 Ω to GND							
		Min	Max	Min	Max	Min	Max]	VIN	VOUT	PS1	PS2	Vcc	VEEL	Clk	P.U.T.
tTLH	Rise Time	0.5	2.1	0.5	2.2	0.5	2.0	ns	5 - 13	4	9 - 11	7	1, 16	8		2, 3, 14, 15
tTHL	Fall Time	0.5	2.1	0.5	2.2	0.5	2.0	ns	5 - 13	4	9 - 11	7	1, 16	8		2, 3, 14, 15
^t pd	Propagation Delay															
	Clk to Q	1.0	2.6	1.0	2.9	1.0	2.5	ns	12, 13	14	7, 9 - 11	7	1, 16	8	ļ	2 - 4, 15
	Clk to TC	0.7	2.6	0.7	2.9	0.7	2.5	ns	12, 13	14	7, 9 - 11	7	1, 16	8		2 - 4, 15
	MR to Q	0.7	2.6	0.7	2.9	0.7	2.5	ns	12, 13	14	7, 9 - 11	7	1, 16	8		2 - 4, 15
^t SET	Setup Time															
	P _n to Clk	2.0		2.0		2.0		ns	5 - 7	3, 14	5, 7, 9 - 11		1, 16	8	13	3, 14
	CE or PE to Clk	2.5		2.5		2.5		ns	5 - 7	3, 14	5, 7, 9 - 11		1, 16	8	13	3, 14
tHOLD	Hold Time															
	Clk to Pn	1.0		1.0		1.0		ns	5 - 7	3, 14	5, 7, 9 - 11		1, 16	8	13	3, 14
	Clk to PE or CE	0.5		0.5		0.5		ns	5 - 7	3, 14	5, 7, 9 - 11		1, 16	8	13	3, 14
fCount	Count Frequency	200		200		200		MHz	13	3	9		1, 16	8	-	2, 4, 14, 15

Quad 2-Input NOR Gate with Strobe

ELECTRICALLY TESTED PER: MPG 10H500

The 10H500 is a quad 2 Input NOR gate. Each gate has 3 inputs, two of which are independent and one of which is tied common to all four gates.

The MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply.

- Propagation Delay, 1.0 ns Typical
- 40 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
AOUT	2	6	3	51 Ω to V _{TT}								
BOUT	3	7	4	51 Ω to V _{TT}								
A _{IN}	4	8	5	OPEN								
A _{IN}	5	9	7	OPEN								
BIN	6	10	8	OPEN								
BIN	7	11	9	OPEN								
VEE	8	12	10	VEE								
Common Input	9	13	12	OPEN								
C _{IN}	10	14	13	OPEN								
C _{IN}	11	15	14	OPEN								
DIN	12	16	15	OPEN								
DIN	13	1	17	OPEN								
COUT	14	2	18	51 Ω to V_{TT}								
DOUT	15	3	19	51 Ω to V_{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$ $V_{EE} = -5.7 V MAX / -5.2 V MIN$

Military 10H500

2) SMD: N/A 3) 883: 10H500/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

- 1. Unused outputs should be loaded 100 $\Omega\,$ to GND.
- 2. Length of CoaxA and CoaxB should be equal for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_r = t_f = 2.0 \text{ ns} (20\% 80\%) \pm 0.2 \text{ ns}.$

b) frequency = 1.0 MHz.

NOTES

10H500 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	V _{EE1}	VEE2	VEEL					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.65	-1.95	-0.11	-1.48	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = -55 °C	-0.84	-1.95	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW										
	Functional Parameters:	+ 2! Subgi			5 °C roup 2		i °C roup 3		Pinouts referenced are for DIL pa V _{CC} = 0 V, Output Lo						-				
	Falameters.	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIHA	VILA	VEE1	V _{EE2}	Vcc	P.U.T.			
VOH	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v		4, 5, 10, 11			8		1, 16	2, 3, 14, 15			
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	v	4-7, 9-13				8		1, 16	2, 3, 14, 15			
VOHA	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v				4-7, 9-13	8	8	1, 16	2, 3, 14, 15			
VOLA	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v			4-7, 9-13		8	8	1, 16	2, 3, 14, 15			
IEE	Power Supply Current	- 26		- 29		- 29		mA					8		1, 16	8			
Чн	Input Current High		295		500		500	μA	4-7, 10-13				8		1, 16	4-7, 10-13			
liH1	Input Current High		360		610		610	μA	9				8		1, 16	9			
ηL	Input Current Low	0.5		0.3		0.5		μА		4-7, 9-13			8		1, 16	4-7, 10-13			

10H500 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	V _{EE1}	V _{EE2}	VEEL				
T _A = 25 °C	-0.78	-1.95	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.11	-1.48	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter			Lin	nits			Units	nits TEST VOLTAGE APPLIED TO PINS BELOW						
Functional Parameters:		+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		- 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, All tests referenced to Fig 1, Output Load = 100 Ω to GND						
	Falameters.	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P.U.T.		
ttlh ,	Rise Time	0.5	1.8	0.66	2.34	0.6	2.1	ns	4, 6	2, 3	1, 16	8	2, 3, 14, 15		
^t THL	Fall time	0.5	1.8	0.66	2.34	0.6	2.1	ns	4, 6	2, 3	1, 16	8	2, 3, 14, 15		
^t PLH	Propagation Delay Low to High	0.6	1.5	0.84	2.04	0.66	1.92	ns	10, 13	14, 15	1, 16	8	2, 3, 14		
^t PHL	Propagation Delay High to Low	0.6	1.5	0.84	2.04	0.66	1.92	ns	10, 13	14, 15	1, 16	8	2, 3, 14		

ELECTRICALLY TESTED PER: 5962-8750301

The 10H501 is a quad 2-input **OR/NOR** gate with one input from each gate common to pin 12.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 40 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
AOUT	2	6	3	50 Ω to VTT								
BOUT	3	7	4	50 Ω to V_{TT}								
AIN	4	8	5	50 Ω to V_{TT}								
AOUT	5	9	7	50 Ω to V_{TT}								
BOUT	6	10	8	50 Ω to V_{TT}								
BIN	7	11	9	50 Ω to VTT								
VEE	8	12	10	VEE								
DOUT	9	13	12	510 Ω to V _{TT}								
୦ _{IN}	10	14	13	510 Ω to V_{TT}								
COUT	11	15	14	510 Ω to V_{TT}								
Common Input	12	16	15	OPEN								
D _{IN}	13	1	17	50 Ω to V_{TT}								
COUT	14	2	18	50 Ω to V_{TT}								
DOUT	15	3	19	50 Ω to VTT								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX / -2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H501

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750301 3) 883: 10H501/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

3. C_L = (test jig) ≤ 5.0 pF.

10H501 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	V _{EE2}						
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94						
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94						
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94						

Symbol	Parameter			Lin	nits			Units			TEST VO	LTAGE AP	PLIED T	O PINS B	ELOW	
	Functional	+ 25		+ 12		- 55			Р			re for DIL	•	-	-	nments
	Parameters:	Subgr	roup 1	Subgr	oup 2	Subgr	oup 3				VCC = 0	/, Output	Load = I	00 \$2 10 -	2.0 V	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P.U.T.
Vон	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	4, 7, 10 12, 13	4, 7, 10 12, 13			8		1, 16	2, 3, 5, 6, 9, 11, 14, 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	v	4, 7, 10 12, 13	4, 7, 10 12, 13		-	8		1, 16	2, 3, 5, 6, 9, 11, 14, 15
VOHA	High Output Voltage	- 1.01	- 0.78	⁻ -0.86	- 0.65	- 1.06	- 0.84	v			4, 7, 10 12, 13	4, 7, 10 12, 13	8	8	1, 16	2, 3, 5, 6, 9, 11, 14, 15
VOLA	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v			4, 7, 10 12, 13	4, 7, 10 12, 13	8	8	1, 16	2, 3, 5, 6, 9, 11, 14, 15
IEE	Power Supply Current	- 26		- 29		- 29		mA					8		1, 16	8
Чн1	Input Current High		265		425		425	μА	4, 7, 10, 13				8		1, 16	4, 7, 10, 13
112	Input Current High		535		850		850	μΑ	12				8		1, 16	12
ηΓ	Input Current Low	0.5		0.3		0.5		μA		4, 7, 10 12, 13				8	1, 16	4, 7, 10, 12, 13

10H501 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	est Voltag	je Value	s (Volts)		
Temperature	V _{IH1}	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE A	PPLIED TO P	INS BELOW
	Functional Parameters:		5 °C roup 9		5 °C oup 10		5 °C oup 11	-	Pin				theck Pin Assignments 00 Ω to GND
	T arameters.	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P.U.T.
tτlh	Rise Time (common)	0.4	1.65	0.4	1.7	0.4	1.65	ns	4	2, 5	1, 16	8	2
ťτнl	Fall time (common)	0.4	1.65	0.4	1.7	0.4	1.65	ns	7	3	1, 16	8	2, 5
^t PLH	Propagation Delay Low to High (common)	0.5	1.6	0.5	1.8	0.5	1.6	ns	12	5	1, 16	8	2
^t PHL	Propagation Delay High to Low (common)	0.5	1.6	0.5	1.8	0.5	1.6	ns	12	15	1, 16	8	2, 5
ţтгн	Rise Time (others)	0.4	1.6	0.4	1.6	0.4	1.6	ns	4	2, 5	1, 16	8	2
^t THL	Fall time (others)	0.4	1.6	0.4	1.6	0.4	1.6	ns	7	3	1, 16	8	2, 5
^t PLH	Propagation Delay Low to High (others)	0.3	1.5	0.3	1.7	0.3	1.5	ns	12	5	1, 16	8	2
^t PHL	Propagation Delay High to Low (others)	0.3	1.5	0.3	1.7	0.3	1.5	ns	12	15	1, 16	8	2, 5

Quad 2-Input NOR Gate

ELECTRICALLY TESTED PER: 5962-8755701

The 10H502 is a quad 2-input **NOR** gate. The 10H502 provides one gate with **OR/NOR** outputs. This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay and no increases in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 40 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
BOUT	3	7	4	51 Ω to V_{TT}
AIN	4	8	5	51 Ω to V _{TT}
AIN	5	9	7	OPEN
BIN	6	10	8	51 Ω to V _{TT}
BIN	7	11	9	OPEN
VEE	8	12	10	VEE
DOUT	9	13	12	51 Ω to VTT
CIN	10	14	13	51 Ω to V _{TT}
CIN	11	15	14	OPEN
DIN	12	16	15	51 Ω to V _{TT}
DIN	13	1	17	OPEN
COUT	14	2	18	51 Ω to VTT
DOUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

Military 10H502

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8755701 3) 883: 10H502/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

10H502 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	e Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = - 55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units	[<u></u>	TEST	VOLTAGE	APPLIE	D TO PIN	BELOW	
	Functional	+ 2 Subgr	5 °C		5 °C roup 2		5 °C roup 3	-		Pinouts				kage, che l = 100 Ω		signments
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE1	V _{EE2}	Vcc	P.U.T.
VOH	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	12, 13	4-7 12, 13			8		1, 16	2, 3, 9, 14, 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	v	5-7 10-13	10-13			8		1, 16	2, 3, 9, 14, 15
VOH1	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v			12, 13	4, 6 10-13	8	8	1, 16	2, 9, 15
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v			4-7 10-13	12, 13	8	8	1, 16	2, 9, 15
IEE	Power Supply Current	- 26		- 29		- 29		mA					8		1, 16	8
4н1	Input Current High		265		425		425	μA	4, 7 10-13				8		1, 16	4, 7, 10-13
Ι _{ΙL}	Input Current Low	0.5		0.3		0.5		μA		4-5 10-13			8		1, 16	4, 7, 10-13

10H502 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	e Value	s (Volts)		
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	VEE2	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = - 55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW										LOW	
	Functional		5 °C roup 9		5 °C oup 10		5 °C oup 11		Pino			ckage, check P bad = 100 Ω to	in Assignments GND
	Parameters:	Min	Max	Min	Max	Min	Max		VIN	VOUT	VCC	VEEL	P.U.T.
^t TLH	Rise Time	0.5	1.6	0.55	1.7	0.5	1.5	ns	5, 7, 11, 13	2, 3, 14, 9, 15	1, 16	8	2, 3, 9, 14, 15
tTHL	Fall time	0.5	1.6	0.55	1.7	0.5	1.5	ns	5, 7, 11, 13	2, 3, 14, 9, 15	1, 16	8	2, 3, 9, 14, 15
^t PLH	Propagation Delay Low to High	0.4	1.25	0.4	1.5	0.4	1.25	ns	5, 7, 11, 13	2, 3, 14, 15	1, 16	8	2, 3, 9, 14, 15
^t PHL	Propagation Delay High to Low	0.4	1.25	0.4	1.5	0.4	1.25	ns	5, 7, 11, 13	2, 3, 14, 15	1, 16	8	2, 3, 9, 14, 15

ELECTRICALLY TESTED PER: 5962-8756501

The 10H503 is a quad 2-input **OR** gate. The 10H503 provides one gate with **OR/NOR** outputs.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 40 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
BOUT	3	7	4	51 Ω to VTT
AIN	4	8	5	GND
AIN	5	9	7	OPEN
BIN	6	10	8	GND
BIN	7	11	9	OPEN
VEE	8	12	10	VEE
COUT	9	13	12	51 Ω to V _{TT}
DIN	10	14	13	GND
DIN	11	15	14	OPEN
CIN	12	16	15	GND
CIN	13	1	17	OPEN
DOUT	14	2	18	51 Ω to V _{TT}
COUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H503

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756501 3) 883: 10H503/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TPOUT to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

10H503 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Т	est Volta	ge Value	es (Volts	5)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE1	V _{EE2}	V _{EE2}
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units			TEST VO	LTAGE A	PPLIED 1	O PINS E	BELOW	
	Functional		5 °C	ļ	25 °C		5°C			Pinouts r				-		ignments
	Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3				VCC = C	V, Outp	ut Loau =	100 12 10) - 2.0 V	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE1	V _{EE2}	Vcc	P.U.T.
Vон	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	4 - 7 10 - 13				8		1, 16	2, 3, 9, 14, 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.363	- 1.95	- 1.61	v	12, 13	4 - 7 10 - 13			8		1, 16	2, 3, 9, 14, 15
VOH1	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v			4 - 7 10 - 13	12, 13	8	8	1, 16	2, 3, 9, 14, 15
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.363	- 1.95	-1.61	v			12, 13	4 - 7 12, 13	8	8	1, 16	2, 3, 9, 14, 15
IEE	Power Supply Current	- 26		- 29		- 29		mA					8		1, 16	8
інт	Input Current High		265		425		425	μA	4 - 7 12, 13				8		1, 16	4 - 7, 10 - 13
կլ	Input Current Low	0.5		0.3		0.5		μΑ		4 - 7 10 - 13				8	1, 16	4 - 7, 10 - 13

10H503 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	je Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	V _{IL2}	PS1	PS2	V _{EE1}	VEE2	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE AF	PPLIED TO PI	NS BELOW		
	Functional Parameters:		5 °C roup 9		25 °C oup 10		5 °C oup 11		Pinouts referenced are for DIL package, check Pin Assignments V_CC = 2.0 V, Output Load = 100 Ω to GND						
	Parameters:	Min	Max	Min	Max	Min	Max		VIN VOUT VCC VEEL P.U.T.						
^t TLH	Rise Time	0.5	1.8	0.5	1.9	0.5	1.7	ns	5, 7, 11	2, 3, 14	1, 16	8	3, 9, 14, 15		
^t THL	Fall time	0.5	1.8	0.5	1.9	0.5	1.7	ns	5, 7, 11	2, 3, 14	1, 16	8	3, 9, 14, 15		
^t PLH	Propagation Delay Low to High	0.4	1.4	0.5	1.65	0.4	1.4	ns	13	9, 15	1, 16	8	2, 3, 9, 14		
^t PHL	Propagation Delay High to Low	0.4	1.4	0.5	1.65	0.4	1.4	ns	13	9, 15	1, 16	8	2, 3, 14, 15		

ELECTRICALLY TESTED PER: 5962-8750401

The 10H504 is a quad 2-input AND gate. One of the gates has both AND/ NAND outputs available.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 55 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
BOUT	3	7	4	51 Ω to VTT
A _{IN}	4	8	5	GND
A _{IN}	5	9	7	GND
B _{IN}	6	10	8	GND
B _{IN}	7	11	9	GND
VEE	8	12	10	VEE
DOUT	9	13	12	51 Ω to VTT
CIN	10	14	13	GND
C _{IN}	11	15	14	GND
D _{IN}	12	16	15	GND
D _{IN}	13	1	17	GND
COUT	14	2	18	51 Ω to V_{TT}
DOUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H504

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750401 3) 883: 10H504/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. * Applies to gate 4 only.

Figure 1. Switching Test Circuit and Waveforms

10H504 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	est Voltag	e Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.13	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units			TEST VO	LTAGE A	PPLIED 1	TO PINS E	BELOW	
	Functional	+ 2 Subgi	5 °C roup 1		5 °C roup 2		5 °C roup 3			Pinouts r		d are for I 0 V, Outp	•	•		ignments
	Parameters:	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P.U.T.
Vон	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	4 - 7 10 - 13				8		1, 16	2, 3, 9, 14, 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	v	4 - 7 10 - 13				8		1, 16	2, 3, 9, 14, 15
VOH1	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	4 - 7 10 - 13		4 - 7 10 - 13	12, 13	8	8	1, 16	2, 3, 9, 14, 15
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v	5 - 7 10 - 13	-	12, 13	4 - 7 10 - 13	8	8	1, 16	2, 3, 9, 14, 15
IEE	Power Supply Current	- 35		- 39		- 39		mA					8		1, 16	8
Чн	Input Current High		220		350		350	μΑ	5, 6 11, 12				8		1, 16	5, 6, 11, 12
Чнт	Input Current High		265		425		425	μΑ	4, 7 10, 13				8		1, 16	4, 7, 10, 13
ΙL	Input Current Low	0.5		0.3		0.5		μΑ		4, 7, 10 12, 13				8	1, 16	4 - 7, 10 - 13

10H504 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	je Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.13	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE	APPLIED TO	PINS BELO	N
	Europhia and	+ 2	5 °C	+ 12	!5 °C	- 55	5 °C		Pin					Assignments
	Functional Parameters:	Subg	oup 9	Subgr	oup 10	Subgr	oup 11			V _{CC} :	= 2.0 V, Ou	tput Load = '	100 Ω to GN	ID
		Min	Max	Min	Max	Min	Max		VIN	VOUT	VIH2	Vcc	VEEL	P.U.T.
^t TLH	Rise Time	0.3	1.5	0.6	1.65	0.3	1.4	ns	4	2	5	1, 16	8	3, 9, 14, 15
t _{THL}	Fall time	0.3	1.5	0.6	1.65	0.3	1.4	ns	4	2	5	1, 16	8	3, 9, 14, 15
^t PHL	Propagation Delay High to Low	0.55	1.9	0.45	1.9	0.4	1.7	ns	4	2	5	1, 16	8	3, 9, 14, 15
^t PHH	Propagation Delay High to High	0.5	1.7	0.55	1.8	0.4	1.55	ns	4	2	5	1, 16	8	2, 3, 9,14
^t PLL	Propagation Delay Low to Low	0.4	1.6	0.45	1.75	0.4	1.6	ns	4	2	5	1, 16	8	2, 3, 9,14, 15
^t PLH	Propagation Delay Low to High	0.4	1.4	0.45	1.7	0.4	1.4	ns	13	9	12	1, 16	8	2, 3, 9,14, 15

Triple 2-3-2 Input OR/NOR Gate

ELECTRICALLY TESTED PER: 5962-8750701

The 10H505 is a triple 2-3-2 input **OR/NOR** gate. This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in clock frequency and propagation delay and no increase in powersupply current.

- Propagation Delay, 1.0 ns Typical
- 35 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V _{TT}
A _{IN}	4	8	5	OPEN
A _{IN}	5	9	7	51 Ω to V _{TT}
BOUT	6	10	8	51 Ω to V _{TT}
BOUT	7	11	9	51 Ω to V _{TT}
VEE	8	12	10	VEE
BIN	9	13	12	51 Ω to V _{TT}
BIN	10	14	13	OPEN
BIN	11	15	14	OPEN
CIN	12	16	15	OPEN
CIN	13	1	17	51 Ω to V_{TT}
COUT	14	2	18	51 Ω to V_{TT}
COUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H505

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750701 3) 883: 10H505/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

2

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

MOTOROLA MILITARY MECL DATA 2-29

10H505 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	je Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	V _{IL2}	PS1	PS2	VEE1	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = - 55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAG	APPLIE	D TO PIN	S BELOW	
	Functional		5 °C		5 °C		5 °C	-		Pinouts				(age, che = 100 Ω t		signments
	Parameters:		roup 1		roup 2		roup 3	4	<u> </u>					<u> </u>		
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE1	VEE2	Vcc	P.U.T.
∨он	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	4, 5 9-13	4, 5 9-13	2		8		1, 16	2, 3, 6, 7, 14, 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	v	4, 5 9-13	4, 5 9-13			8		1, 16	2, 3, 6, 7, 14, 15
VOH1	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v			4, 5 9-13	4, 5 9-13	8	8	1, 16	2, 3, 6, 7, 14, 15
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v			4, 5 9-13	4, 5 9-13	8	8	1, 16	2, 3, 6, 7, 14, 15
IEE	Power Supply Current	- 21		- 23		- 23		mA					8		1, 16	8
liH1	Input Current High		265		425		425	μА	4, 5 9-13				8		1, 16	4, 5 , 9 - 13
41	Input Current Low	0.5		0.3		0.5		μΑ		4, 5 9-13				8	1, 16	4, 5, 9 - 13

10H505 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	VEE2	VEEL					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = - 55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAGE A	PPLIED TO	PINS BELOW
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	i °C		Pi				check Pin Assignments
	Parameters:	Subgi	roup 9	Subgro	oup 10	Subgr	oup 11		•	VC	c = 2.0 V, Out	put Load = 1	DO Ω to GND
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P.U.T.
THL	Fall Time	0.5	1.4	0.65	1.5	0.4	1.3	ns	4	3	1, 16	8	2, 6, 7, 14, 15
^t TLH	Rise Time	0.5	1.4	0.65	1.5	0.4	1.3	ns	4	3	1, 16	8	2, 3, 6, 7, 14, 15
^t PHL1	Propagation Delay High to Low	0.45	1.6	0.45	1.6	0.45	1.5	ns	4	2	1, 16	8	3, 6, 7, 14, 15
^t PLH1	Propagation Delay Low to High	0.4	1.4	0.4	1.6	0.4	1.2	ns	4	2	1, 16	8	3, 6, 7, 14, 15
^t PHL2	Propagation Delay High to Low	0.4	1.4	0.4	1.5	0.4	1.3	ns	4	2	1, 16	8	3, 6, 7, 14, 15
^t PLH2	Propagation Delay Low to High	0.45	1.4	0.45	1.6	0.45	1.5	ns	4	2	1, 16	8	3, 6, 7, 14, 15

ELECTRICALLY TESTED PER: 5962-8756401

The 10H506 is a Triple 4-3-3 input **NOR** gate. This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply.

- Propagation Delay, 1.0 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
BOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V_{TT}
A _{IN}	4	8	5	51 Ω to VTT
AIN	5	9	7	OPEN
AIN	6	10	8	OPEN
AIN	7	11	9	OPEN
VEE	8	12	10	VEE
B _{IN}	9	13	12	OPEN
B _{IN}	10	14	13	51 Ω to VTT
B _{IN}	11	15	14	OPEN
C _{IN}	12	16	15	OPEN
C _{IN}	13	1	17	OPEN
C _{IN}	14	2	18	51 Ω to V_{TT}
COUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 10H506

AVAILABLE AS

2) SMD: 5962-8756401 3) 883: 10H506/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

MOTOROLA MILITARY MECL DATA 2-33

10H506 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIH1 VIL1 VIH2 VIL2 PS1 PS2 VEE1 VEE2 VE											
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 2 Subgi	5 °C		25 °C roup 2		5 °C roup 3	-		Pinouts	reference VCC =	d are for I 0 V, Outp	•	• •		gnments
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P.U.T.
Vон	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v		4 - 7 9 - 14			8		1, 16	2, 3, 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.363	- 1.95	- 1.61	v	4 - 7 9 - 14				8		1, 16	2, 3, 15
VOH1	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v				4 - 7 9 - 14	8	8	1, 16	2, 3, 15
V _{OL1}	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.363	- 1.95	-1.61	v			4 - 7 9 - 14		8	8	1, 16	2, 3, 15
IEE	Power Supply Current	- 21		- 23		- 23		mA					8		1, 16	8
liH1	Input Current High		310		500		500	μΑ	4 - 7 9 - 14				8		1, 16	4 - 7, 9 - 14
Ι _Ι Γ	Input Current Low	0.5		0.3		0.5		μΑ		4 - 7 9 - 14				8	1, 16	4 - 7, 9 - 14

10H506 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL		
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94		
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94		
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94		

Symbol	Parameter			Lin	nits			Units		TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional		5 °C		5 ℃		5°C		Pin	Pinouts referenced are for DIL package, check Pin Assignm V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Parameters:		roup 9		oup 10	· · · · ·	oup 11						·			
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P.U.T.			
ттгн	Rise Time	0.6	1.8	0.55	1.9	0.5	1.7	ns	6	3	1, 16	8	2, 15			
^t THL	Fall time	0.6	1.8	0.55	1.9	0.5	1.7	ns	10	2	1, 16	8	3, 15			
^t PHL	Propagation Delay High to Low	0.5	1.75	0.55	1.8	0.5	1.7	ns	13	15	1, 16	8	2, 3			
^t PLH	Propagation Delay Low to High	0.5	1.75	0.55	1.8	0.5	0.5 1.7		13	15	1, 16	8	2, 3			

MOTOROLA MILITARY MECL DATA 2-35

Triple 2 Input Exclusive "OR"/Exclusive "NOR" Gate

ELECTRICALLY TESTED PER: 5962-8772701

The 10H507 is a triple 2 input **Exclusive OR/NOR** gate. This MECL 10H part is a functional/pinout dupication of the standard MECL 10K family part, with 100% improvement in clock frequency and propagation delay and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 60 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
VCC1	1	5	2	GND								
AOUT	2	6	3	51 Ω to V_{TT}								
AOUT	3	7	4	51 Ω to V_{TT}								
AIN	4	8	5	GND								
AIN	5	9	7	OPEN								
N.C.	6	10	8	OPEN								
BIN	7	11	9	OPEN								
VEE	8	12	10	Vcc								
BIN	9	13	12	GND								
BOUT	10	14	13	51 Ω to V _{TT}								
BOUT	11	15	14	51 Ω to V _{TT}								
COUT	12	16	15	51 Ω to V _{TT}								
COUT	13	1	17	51 Ω to V _{TT}								
CIN	14	2	18	GND								
CIN	15	3	19	OPEN								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H507

1) JAN: N/A 2) SMD: 5962-8772701 3) 883: 10H507/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

10H507 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH1												
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	- 4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	- 4.94	-2.94				
T _A = - 55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	- 4.94	-2.94				

Symbol	Parameter	Limits								٦	EST VOLT	AGE APPLI	ED TO P	INS BEL	ow	
	Functional	+ 25		+ 12			°C			Pinouts r	eferenced				-	nments
	Parameters:	Subgr	oup 1	Subgr	oup 2	Subgr	oup 3				VCC = 0	V, Output L	.oad = 10	ο Ω το -	2.0 V	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P.U.T.
VOH	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v	4, 5, 7, 9, 14, 15	4, 5, 7, 9, 14, 15			8		1, 16	2, 3, 10-13
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	- 1.61	v	4, 5, 7, 9, 14, 15	4, 5, 7, 9, 14, 15			8		1, 16	2, 3, 10-13
VOH1	High Output Voltage	- 1.01	- 0.78	-0.86	- 0.65	- 1.06	- 0.84	v		4, 7, 14	4, 5, 7, 9, 14, 15	4, 5, 7, 9, 14, 15	8	8	1, 16	2, 3, 10-13
V _{OL1}	Low Output Voltage	- 1.95	- 1.58	- 1.95	-1.565	- 1.95	-1.61	v	5, 9, 15		4, 5, 7, 9, 14, 15	4, 5, 7, 9, 14, 15	8	8	1, 16	2, 3, 10-13
IEE	Power Supply Current	- 28		- 31		- 31		mA	5, 7, 15				8		1, 16	8
JIH	Input Current High		220		425		425	μA	4, 9, 14				8		1, 16	4, 9, 14
liH1	Input Current High		265		425		425	μA	5, 7, 15				8		1, 16	5, 7, 15
ΙL	Input Current Low	0.5		0.3		0.5		μA		4, 5, 7 9, 14, 15				8	1, 16	4, 5, 7, 9, 14, 15

10H507 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	P _{S2}	V _{EE1}	V _{EE2}	VEEL		
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	- 4.94	-2.94		
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	- 4.94	-2.94		
T _A = - 55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	- 4.94	-2.94		

Symbol	Parameter	Limits						Units	hits TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25		+ 12			5°C		Pinouts referenced are for DIL package, check Pin Assignn						-
	Parameters:	Subgr	oup 9	Subgro	oup 10	Subgr	oup 11		$V_{CC} = 2.0 V$, Output Load = 100 Ω to GND						0 GND
		Min	Max	Min	Max	Min	Max	1	VIN VOUT VCC VEEL PS1 PS2				P.U.T.		
tтlн	Rise Time	0.5	1.6	0.5	1.9	0.5	1.5	ns	4	3	1, 16	8	5	5	2, 10-13
tτнL	Fall Time	0.5	1.6	0.5	1.9	0.5	1.5	ns	5	2	1, 16	8	5	5	3, 10-13
^t PHL	Propagation Delay High to Low	0.4	1.6	0.4	1.9	0.4	1.5	ns	7	11	1, 16	8	9	9	2, 3, 10, 12, 13
^t PLH	Propagation Delay Low to High	0.4	1.6	0.4	1.9	0.4	1.5	ns	14	13	1, 16	8	14	14	2, 3, 10-12

Dual 4-5 Input "OR/NOR" Gate

ELECTRICALLY TESTED PER: 5962-8985601

The 10H509 is a dual 4-5 input **OR/NOR** gate. This MECL10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 40 mW Max/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated

2

MECL 10K-Compatible

PIN ASSIGNMENTS FUNCTION DIL FLATS LCC BURN-IN (CONDITION C) VCC1 1 5 2 GND AOUT 2 6 3 51 Ω to V _{TT} AOUT 3 7 4 51 Ω to V _{TT} AIN 4 8 5 51 Ω to V _{TT}												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
AOUT	2	6	3	51 Ω to V _{TT}								
AOUT	3	7	4	51 Ω to V_{TT}								
AIN	4	8	5	51 Ω to V _{TT}								
A _{IN}	5	9	7	GND								
AIN	6	10	8	OPEN								
AIN	7	11	9	OPEN								
VEE	8	12	10	VEE								
B _{IN}	9	13	12	OPEN								
BIN	10	14	13	OPEN								
BIN	11	15	14	OPEN								
B _{IN}	12	16	15	GND								
BIN	13	1	17	51 Ω to V_{TT}								
BOUT	14	2	18	51 Ω to V_{TT}								
BOUT	15	3	19	51 Ω to V_{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H509

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8985601 3) 883: 10H509/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- Perform test in accordance with test table; each output is tested separately.
 All input and output cables to the scope are equal lengths of 50 Ω coaxial
- cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.

10H509 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	V _{EE1}					
T _A = 25 °C	-0.78	-1.95	-1.11	+0.31	-1.475	-1.105	0	-5.2					
T _A = 125 °C	-0.65	-1.95	0.96	+0.36	-1.400	-1.000	0	-5.2					
T _A = -55 °C	-0.84	-1.95	-1.16	+0.28	-1.510	-1.255	0	-5.2					

Symbol	Parameter	er Limits Units TEST VOLTAGE APPLIED								PPLIED TO	TO PINS BELOW					
	Functional Parameters:		5 °C roup 1	+ 125 °C Subgroup 2		– 55 °C Subgroup 3			Pine			IL package, check Pin Assignments it Load = 100 Ω to - 2.0 V				
	Falameters.	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	Vcc	VEE1	P. U. T.	
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.06	-0.88	v	4 - 7 9 - 13	4 - 7 9 - 13			1, 16	8	2, 3, 14, 15	
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.655	v	4 – 7 9 – 13	4 – 7 9 – 13			1, 16	8	2, 3, 14, 15	
Vотн	High Output Voltage	-0.96		0.845		-1.1		v			4 – 7 9 – 13	4-7 9-13	1, 16	8	2, 3, 14, 15	
VOTL	Low Output Voltage		-1.6		-1.525		-1.635	v			4 - 7 9 - 13	4 - 7 9 - 13	1, 16	8	2, 3, 14, 15	
IEE	Power Supply Current	-14		-16		- 16		mA					1, 16	8	8	
Чн	Input Current High		265		450		450	μΑ	4 - 7 9 - 13				1, 16	8	4 – 7, 9 – 13	
μL	Input Current Low	0.5		0.3		0.5		μΑ		4 - 7 9 - 13			1, 16	8	4 – 7, 9 – 13	

10H509 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test _		Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	V _{IL2}	VITL	VITH	Vcc	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.11	+0.31	-1.475	-1.105	0	-2.94						
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-2.94						
T _A = −55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-2.94						

Symbol	Parameter Functional Parameters:		Limits							TEST VOLTAGE APPLIED TO PINS BELOW:						
		+25 °C Subgroup 9		+125 °C Subgroup 10		–55 °C Subgroup 11			Pinc				e, check Pin Assignments : 100 Ω to GND			
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	P.U.T.			
t T LH	Rise Time	0.4	2.1	0.4	2.3	0.35	2.0	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			
tTHL	Fall Time	0.4	2.1	0.4	2.3	0.35	2.0	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			
t _{PLH}	Propagation Delay Low to High	0.3	1.3	0.45	1.6	0.25	1.3	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			
tPHL	Propagation Delay High to Low	0.3	1.3	0.45	1.6	0.25	1.3	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			

Quad Exclusive OR Gate

ELECTRICALLY TESTED PER: 5962-8755801

The 10H513 is a Quad Exclusive OR Gate with an enable common to all gates. The outputs may be wire-ORed together to perform a 4-bit comparison function (A = B). The enable is active LOW.

- 250 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
AOUT	2	6	3	51 Ω to V_{TT}								
BOUT	3	7	4	51 Ω to V _{TT}								
A _{IN}	4	8	5	GND								
A _{IN}	5	9	7	OPEN								
BIN	6	10	8	GND								
B _{IN}	7	11	9	OPEN								
VEE	8	12	10	VEE								
Enable	9	13	12	OPEN								
CIN	10	14	13	GND								
CIN	11	15	14	OPEN								
D _{IN}	12	16	15	GND								
D _{IN}	13	1	17	OPEN								
COUT	14	2	18	51 Ω to V_{TT}								
DOUT	15	3	19	51 Ω to VTT								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Truth Table											
Inp	out	Ē	Output								
L	L	L	L								
L	н	L	н								
н	L	L	н								
н	н	L	L								
Ø	ø	н	L								

Ø = Don't Care

Military 10H513

AVAILABLE AS 1) JAN: N/A 2) SMD: 5962-8755801

X = CASE OUTLINE AS FOLLOWS: PACKAGE: CERDIP: E CERFLAT: F

3) 883: 10H513/BXAJC

LCC: 2

The letter "M" appears before the slash on LCC.

2

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. 2:1 divider may be used.
- 5. L₁ = L₂: Matched for equal time delays.

2. $f_{IN} = 1.0 \text{ MHz.}$ 3. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns}$

10H513 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	V _{IH1}	VIL1	PS1	PS2	VIL2	VIH2	Vcc	VEE1	V _{EE2}					
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.46	-4.94					
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.46	-4.94					
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.46	-4.94					

Symbol	Parameter			Lin	nits			Units		TE	ST VOLTA	GE APPL	IED TO	PINS BE	LOW	
	Functional		5 °C		+ 125 °C - 55 °C				Pinouts referenced are for DIL package, check Pin Assignments							nments
	Parameters:	Subg	roup 1	Subgroup 2		Subgroup 3			$V_{CC} = 0$ V, Output Load = 100 Ω to - 2.0 V							
		Min	Max	Min	Max	Min	Max]	VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P. U. T.
V _{OH}	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4 - 7 11, 13				8		1, 16	2, 3, 14, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v					8		1, 16	2, 3, 14, 15
V _{OHA}	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4 - 7 10 - 13		4 - 7 10 - 13	4 - 7 10 - 13		8	1, 16	2, 3, 14, 15
VOLA	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4 - 7 10 - 13		4 - 7 10 - 13	4 - 7 10 - 13		8	1, 16	2, 3, 14, 15
IEE	Power Supply Current	-42		-46		-46		mA					8		1, 16	8
Чн1	Input Current High		320		510		510	μΑ	4, 6 10, 12				8		1, 16	4, 6, 10, 12
I _{H2}	Input Current High		270		430		430	μΑ	5, 7 11, 13				8		1, 16	5, 7, 11, 3
Інз	Input Current High		740		1100		1100	μA	9				8		1, 16	9
Ι _{ΙL}	Input Current Low	0.5		0.3		0.5		μA		4 - 7 9 - 11 13, 14			8		1, 16	4 - 7, 9 - 13

10H513 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	PS1	PS2	VIL2	VIH2	Vcc	VEEL						
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-2.94						
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-2.94						
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-2.94						

Symbol	Parameter			Lin	nits			Units		т	EST VOL	TAGE AP	PLIED TO	PINS BE	LOW
	Functional	+25° C +125° C Subgroup 9 Subgroup 10		-55	-55° C			Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:			Subgroup 10		Subgroup 11		1	V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P _{S2}	P.U.T.
ţтгн	Rise Time	0.6	1.9	0.6	2.0	0.5	1.8	ns	4, 5	2	1, 16	8	4, 5	4, 5	3, 14, 15
^t THL	Fall Time	0.6	1.9	0.6	2.0	0.5	1.8	ns	4, 5	2	1, 16	8	4, 5	4, 5	3, 14, 15
tPLH Data	Propagation Delay Low to High (A or B to Out)	0.4	1.8	0.5	1.9	0.4	1.7	ns	4, 5	2	1, 16	8	4, 5	4, 5	3, 14, 15
^t PHL Data	Propagation Delay High to Low (A or B to Out)	0.4	1.8	0.5	1.9	0.4	1.7	ns	4, 5	2	1, 16	8	4, 5	4, 5	3, 14, 15
^t PLH Enable	Propagation Delay Low to High (Enable to Out)	0.5	2.4	0.6	2.5	0.5	2.3	ns	4, 5	2	1, 16	8	4, 5	4, 5	3, 14, 15
^t PHL Enable	Propagation Delay High to Low (Enable to Out)	0.5	2.4	0.6	2.5	0.5	2.3	ns	4, 5	2	1, 16	8	4, 5	4, 5	3, 14, 15

ELECTRICALLY TESTED PER: 5962-87501

The 10H515 is a quad differential amplifier designed for use in sensing differential signals over long lines. This MECL 10H part is a functional/ pinout duplication of the standard MECL 10K family part, with 100% improvement in counting frequency, and no increase in power-supply current.

The base bias supply (VBB) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active current sources provide the 10H515 with excellent common mode rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to VBB (pin 9) to prevent upsetting the current source bias network.

- Propagation Delay, 1.0 ns Typical
- 160 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
VCC1	1	5	2	GND								
AOUT	2	6	3	51 Ω to V _{TT}								
BOUT	3	7	4	51 Ω to V _{TT}								
AIN	4	8	5	VBB								
AIN	5	9	7	GND								
B _{IN}	6	10	8	GND								
BIN	7	11	9	VBB								
VEE	8	12	10	VEE								
V _{BB}	9	13	12	VBB								
CIN	10	14՝	13	VBB								
CIN	11	15	14	GND								
DIN	12	16	15	GND								
DIN	13	1	17	VBB								
COUT	14	2	18	51 Ω to V _{TT}								
DOUT	15	3	19	51 Ω to V _{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

 V_{B}^{--} = All pins designated for V_{BB} must be tied together, no external voltage applied.

Military 10H515

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-87501 3) 883: 10H515/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

- 4. P_W ≥ 20 ns.
- 5. PRF = 1.0 MHz.

6. $t_{f} = t_{f} = 1.0 \text{ ns} \pm 0.1 \text{ ns}$ measured at (20% - 80%).

Figure 1. Switching Test Circuit and Waveforms
10H515 QUIESCENT LIMIT TABLE

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
	VIH1	VIH1 VIL1 VIH2 VIL2 PS1 PS2 VEE1 VEE2 VCB													
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-5.2						
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-5.2						
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-5.2						

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAG	E APPLI	ED TO PI	NS BELC	w		
	Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C						•	- ·		n Assignments		
	Parameters:	Subgr	oup 1	Subgi	roup 2	Subgi	roup 3			v	CC = 0 V,	Output I	Load = 10	00 Ω to -:	2.0 V, V _C	:B = -5.2 V.		
		Min	Max	Min	Max	Min	Max]	VIH1	VIL1	VIH2	VIL2	V _{EE1}	VEE2	Vcc	VBB	(PUT) LD ₁	
Vон	High Output Voltage	-1.01	0.78	-0.86	-0.65	1.06	-0.84	v	** 5, 6, 11, 12	** 4, 7, 10, 13			8		1, 16		2, 3, 14, 15	
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	** 4, 7, 10, 13	** 5, 6, 11, 12			8		1, 16		2, 3, 14, 15	
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v			** 5, 6, 11, 12	** 4, 7, 10, 13	8	8	1, 16		2, 3, 14, 15	
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v			** 4, 7, 10, 13	** 5, 6, 11, 12	8	8	1, 16		2, 3, 14, 15	
V _{BB1}	Reference Voltage	-1.37	-1.25	-1.31	-1.19	-1.41	-1.27	v					8		1, 16		*** 9	
IEE	Power Supply Current	-26		29		-29		mA					8		1, 16		8	
μн	Input Current High		95		150		150	μA	4 - 7, 10 - 13				8		1, 16		4 – 7, 10 – 13	
СВО	Input Current	-1.0		-1.0		-1.5		μΑ					8		1, 16	** 4 – 7, 10 – 13	4 – 7, 10 – 13	

** connected to pin 9.

*** Measure voltage on pin 9, while it is connected to other pins.

10H515 QUIESCENT LIMIT TABLE

* ELECTRICAL CHARACTERISTICS

Test Temperature		Test Voltage Values (Volts)														
	VIH1	V _{IL1}	VIH2	VIL2	PS1	PS2	VEEL	V _{EE1}	V _{EE2}							
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94							
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94							
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94							

Symbol	Parameter			Lin	nits			Units		TEST V	OLTAGE APP	LIED TO PIN	IS BELOW:
	Functional		5°C		5 °C		5°C		Pinouts referenced are for DIL package, V _{CC} = 2.0 V, Output Load = 1				-
	Parameters:	Subgi			oup 10	Subgr	·						······
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P.U.T.
tτιμ	Rise Time	0.5	1.4	0.5	1.7	0.5	1.4	ns	4	2	1, 16	8	3, 14, 15
tτης	Fall Time	0.5	1.4	0.5	1.7	0.5	1.4	ns	7	3	1, 16	8	2, 14, 15
^t PHL	Propagation Delay High to Low	0.45	1.2	0.5	1.8	0.45	1.2	ns	10	14	1, 16	8	2, 3, 15
^t PLH	Propagation Delay Low to High	0.45	1.2	0.5	1.4	0.45	1.2	ns	13	14	1, 16	8	2, 3, 14

Triple Line Receiver

ELECTRICALLY TESTED PER: 5962-8750201

The 10H516 is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in clock frequency and propagation delay and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 125 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to VTT
AOUT	3	7	4	51 Ω to V_{TT}
AIN	4	8	5	GND
AIN	5	9	7	VBB
BOUT	6	10	8	51 Ω to V_{TT}
BOUT	7	11	9	51 Ω to V_{TT}
VEE	8	12	10	VEE
BIN	9	13	12	GND
B _{IN}	10	14	13	VBB
V _{BB}	11	15	14	VBB
CIN	12	16	15.	GND
CIN	13	1	17	VBB
COUT	14	2	18	51 Ω to V_{TT}
COUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX - 2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

VBB = All pins designated for VBB must be tied together, no external voltage applied.

Military 10H516

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750201 3) 883: 10H516/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 inches (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

2

. . .

10H516 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 V.

Test Temperature				Test V	oitage	Values	(Volts)							
remperature	VIH1	VIH1 VIL1 VIH2 VIL2 PS1 PS2 VEE1 VEE2 VEEL VCE												
T _A = 25°C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94	-5.2				
T _A = 125°C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94	-5.2				
T _A = -55°C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94	-5.2				

Symbol	Parameter			Lin	nits			Units	[TEST	T VOLTAG	E APP	LIEDT	O PINS E	BELOW		
	Functional Parameters:	+ 25 Subgr		+ 12 Subgi	5 °C roup 2	– 55 Subgr	5 °C roup 3			Pinc		enced are CC = 0 V,			-	ck Pin Ass to - 2.0 V	signment	S
	i arameters.	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE 1	VEE 2	vcc	ν _{BB}	VCB	P. U. T.
VOH	High Output Voltage	-1.01	-0.78	0.86	-0.65	-1.06	-0.84	v	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13			8		1, 16			2, 3, 6, 7, 14, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	1.95	-1.61	v	4, 5, 9, 10, 12, 13, 14	4, 5, 9, 10, 12			8		1, 16			2, 3, 6, 7, 14, 15
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4, 5, 9, 11, 12	4, 5, 9, 11, 12	4, 5, 9, 11, 12	4, 5, 9, 10, 13	8	8	1, 16	4, 5, 9, 11, 12		2, 3, 6, 7, 14, 15
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4, 5, 9, 11, 12	4, 5, 9, 11, 12	4, 5, 9, 11, 12	4, 5, 9, 10, 13	8	8	1, 16	4, 5, 9, 11, 12		2, 3, 6, 7, 14, 15
V _{BB1}	Reference Voltage**	-1.37	-1.25	-1.31	-1.15	-1.41	-1.27	v						8	1, 16			11
IEE	Power Supply Current	-21		-23		-23		mA	4, 9, 12	5, 10, 13			8		1, 16			8
μн	Input Current High		140		235		235	μΑ	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13			8		1, 16			4, 5, 9, 10, 12, 13
ІСВО	Input Leakage Current	-1.0		-1.0		-1.5		μΑ	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13				8	1, 16	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13

** For VBB1 connect pin 5, 10, 13 to pin 11.

10H516 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test Temperature				Test V	/oltage	Values	(Volts)								
	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	V _{EE1}	V _{EE2}	VEEL	VCB					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94	-5.2					
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94	-5.2					
T _A = -55 °C	-0.84														

Symbol	Parameter			Lin	nits			Units		TEST VO	TAGE APPLIED	TO PINS BELO	W
	Functional Parameters:		5 °C roup 9	+ 125 °C Subgroup 10		– 55 °C Subgroup 11			Pino	uts referenced a V _{CC} = 2.0	re for DIL packa V, Output Load	-	-
			Max	Min	Max	Min	Max		VIN	VOUT	Vcc	V _{EE1}	P.U.T
t _{TLH}	Rise Time	0.4	1.35	0.4	1.5	0.4	1.25	ns	12	15	1, 16	8	2, 3, 6, 7, 14, 15
tTHL	Fall Time	0.4	1.35	0.4	1.5	0.4	1.25	ns	12	15	1, 16	8	2, 3, 6, 7, 14, 15
tPHL	Propagation Delay	0.4	1.4	0.4	1.6	0.4	1.3	ns	4	2	1, 16	8	2, 3, 6, 7, 14, 15
^t PLH	Propagation Delay	0.4	1.4	0.4	1.6	0.4	1.3	ns	4	2	1, 16	8	2, 3, 6, 7, 14, 15

Dual 2-Wide 2-3-Input "OR-AND/OR-AND-INVERT" Gate

ELECTRICALLY TESTED PER: MPG 10H517

The 10H517 is a general purpose logic element designed for use in data control, such as digital multiplexing or data distribution. Pin 9 is common to both gates. This MECL 10H part is a functional pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 160 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNI	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V _{TT}
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	OPEN
A2 _{IN}	6	10	8	OPEN
A2IN	7	11	9	OPEN
VEE	8	12	10	VEE
A2 _{IN,} B2 _{IN}	9	13	12	OPEN
B2 _{IN}	10	14	13	OPEN
B2 _{IN}	11	15	14	OPEN
B1 _{IN}	12	16	15	OPEN
B1 _{IN}	13	1	17	OPEN
BOUT	14	2	18	51 Ω to V_{TT}
BOUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H517

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10H517/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

- **NOTES** 1. Length of $Coax_A$ and $Coax_B$ should be equal for equal time delay.
- 2. Unused outputs should be loaded 100 Ω to ground.
- 3. 2:1 divider may be used.
- 4. $t_{f} = t_{f} = 1.0 \text{ ns} \pm 0.1 \text{ ns}$ measured at (20% 80%).
- 5. P_W ≥ 20 ns.
- 6. PRF = 1.00 MHz.
- 7. $R_1 = 50 \Omega$ resistor in series with 50 Ω coax constituting the 100 Ω load.

10H517 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)														
Temperature	VIH	VIL	VIHA	VILA	PS1	P _{S2}	V _{EE1}	VEE2	VEEL							
T _A = 25 °C	-0.78	-1.95	-1.13	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94							
T _A = 125 °C	-0.63	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94							
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94							

Symbol	Parameter			Lin	nits			Units			TEST VC	LTAGE A	PPLIED 1	O PINS B	ELOW	
	Functional	+ 25	5 °C	+ 12	25°C	- 55	5°C			Pinouts	reference	d are for I	DIL packa	ige, check	Pin Assig	nments
	Parameters:	Subgr	oup 1	Subg	roup 2	Subgr	roup 3	}			VCC =	0 V, Outp	out Load =	= 100 Ω to	- 2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA	VILA	VEE1	VEE2	Vcc	P. U. T.
Vон	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4 - 7 9 - 13				8		1, 16	2, 3, 14, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4 - 7 9 - 13				8		1, 16	2, 3, 14, 15
VOHA	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4 - 7 9 - 13		4 - 7 9 - 13	4 - 7 9 - 13	8	8	1, 16	2, 3, 14, 15
VOLA	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4 - 7 9 - 13		4 - 7 9 - 13	4 - 7 9 - 13	8	8	1, 16	2, 3, 14, 15
IEE	Power Supply Current	-26		-29		-29		mA					8		1, 16	8
liH1	Input Current High		320		510		510	μΑ	4, 5, 12, 13				8		1, 16	4, 5, 12, 13
IIH2	Input Current High		365		590		590	μΑ	6, 7 10, 11				8		1, 16	6, 7, 10, 11
Інз	Input Current High		460		755		755	μА	9				8		1, 16	9
۱ _{IL}	Input Current Low	0.3		0.3		0.5		μА		4 - 7 9 - 13			8		1, 16	7, 9 - 13

10H517 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Tes	st Voltage	e Values	(Volts)			
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.13	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.63	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE	APPLIED	TO PINS BEL	ow
	Functional		5 °C		5 °C		5 °C		Pin			•	•	n Assignments
	Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11			VCC	= 2.0 V, O	utput Loa	d = 100 Ω to 0	ind
		Min	Max	Min	Max	Min	Max]	VIN	VOUT	Vcc	VEEL	PS1	P.U.T.
^t TLH	Rise Time	0.5	1.6	0.5	1.7	0.5	1.5	ns	4, 6, 11 12	2, 14, 15	1, 16	8	4, 6 11, 12	2, 3, 14, 15
t THL	Fall Time	0.5	1.6	0.5	1.7	0.5	1.5	ns	4, 6, 11 12	2, 14, 15	1, 16	8	4, 6 11, 12	2, 3, 14, 15
^t PHL	Propagation Delay High to Low	0.54	1.62	0.6	1.8	0.54	1.62	ns	4, 6, 11 12	2, 14, 15	1, 16	8	4, 6 11, 12	2, 3, 14, 15
^t PLH	Propagation Delay Low to High	0.54	1.62	0.6	1.8	0.54	1.62	ns	4, 6, 11 12	2, 14, 15	1, 16	8	4, 6 11, 12	2, 3, 14, 15

Dual 2-Wide 3-Input "OR-AND" Gate

ELECTRICALLY TESTED PER: 5962-8755901

The 10H518 is a basic logic building block providing the **OR/AND** function, useful in data control and digital multiplexing applications.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 160 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN	I ASSIGNMI	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
A1 _{IN}	3	7	4	OPEN
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	GND
A2 _{IN}	6	10	8	GND
A2 _{IN}	7	11	9	GND
VEE	8	12	10	VEE
A2 _{IN} , B2 _{IN}	9	13	12	GND
B2 _{IN}	10	14	13	GND
B2IN	11	15	14	OPEN
B1 _{IN}	12	16	15	GND
B1 _{IN}	13	1	17	OPEN
B1 _{IN}	14	2	18	OPEN
BOUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H518

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8755901 3) 883: 10H518/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

Figure 1. Switching Test Circuit and Waveforms

10H518 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	e Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE1	VEE2	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.450	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		•	TEST VOL	TAGE AP	PLIED TO	PINS BE	LOW	
	Functional	+ 25	5 °C	+ 12	5 °C	- 58	5 °C			Pinouts re			• •		Pin Assigr	nments
	Parameters:	Subgr	roup 1	Subg	roup 2	Subg	roup 3				$V_{CC} = 0$	V, Outpu	t Load =	100 Ω to -	2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE1	VEE2	Vcc	P. U. T.
Vон	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3-7 9-14				8		1, 16	2, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	10, 13	3 - 7 9 - 14			8		1, 16	2, 15
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3-7 9-14	3 - 7 9 - 14	3 - 7 9 - 14		8	8	1, 16	2, 15
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	3 - 7 9 - 14	3 - 7 9 - 14		3-7 9-14	8	8	1, 16	2, 15
IEE	Power Supply Current	-26		-29		-29		mA					8		1, 16	8
ίн	Input Current High		275		465		465	μΑ	3 - 5 12 - 14				8		1, 16	3 - 5, 12 - 14
^I IH1	Input Current High		320		545		545	μΑ	6, 7 10, 11				8		1, 16	6, 7, 10, 11
ÌIH2	Input Current High		415		710		710	μА	9				8		1, 16	9
١ _{١L}	Input Current Low	0.5		0.3		0.5		μΑ		3-7 9-14				8	1, 16	3 - 7, 9 - 14

10H518 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	e Value	s (Volts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	V _{EE1}	VEE2	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.450	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE A	PPLIED TO P	PINS BELOW	
	Functional Parameters:		5 °C roup 9		25 °C oup 10	- 55 Subgr			P				, check Pin Ass 100 Ω to GND	ignments
	Farameters.	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P.U.T
t _{TLH}	Rise Time	0.5	1.6	0.5	1.7	0.5	1.5	ns	9.	15	1, 16	8	5, 6, 14	2
^t THL	Fall Time	0.5	1.6	0.5	1.7	0.5	1.5	ns	9	15	1, 16	8	5, 6, 14	2
^t PHL	Propagation Delay	0.5	1.7	0.55	1.85	0.5	1.7	ns	4	2	1. 16	8	9, 13	15
^t PLH	Propagation Delay	0.5	1.7	0.55	1.85	0.5	1.7	ns	4	2	1. 16	8	9, 13	15

ELECTRICALLY TESTED PER: 5962-8772801

The 10H519 is a 4-wide 4-3-3-3 input **OR/AND** gate with one input from two gates common to pin 10.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 160 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNA	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
A1 _{IN}	3	7	4	GND
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	OPEN
A1 _{IN}	6	10	8	OPEN
A2 _{IN}	7	11	9	OPEN
V _{EE}	8	12	10	VEE
A2 _{IN}	9	13	12	OPEN
A2 _{IN} , A3 _{IN}	10	14	13	GND
A3 _{IN}	11	15	14	OPEN
A3 _{IN}	12	16	15	OPEN
A4IN	13	1	17	OPEN
A4 _{IN}	14	2	18	OPEN
A4 _{IN}	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

Military 10H519

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8772801 3) 883: 10H519/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- 1. All other outputs loaded 100 $\Omega\,$ to GND.
- 2. $L_1 = L_2$: Matched for equal time delays.
- 3. P_W ≥ 20 ns.
- 4. PRF = 1.0 MHz.
- 5. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns}.$

10H519 QUIESCENT LIMIT TABLE*

* ELECTRICAL CHARACTERISTICS

Test Temperature			Te	st Voltag	e Value:	s (Volts))		
	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	VEE1	VEE2
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW								
	Functional	+ 2	5 °C	+ 12	5 °C	- 5	5 °C		F						n Assignm	ents
	Parameters:	Subgi	roup 1	Subg	roup 2	Subg	roup 3				VCC = 0 /	/, Output	Load = 10	00 Ω to - 2	2.0 V	
	i i	Min	Max	Min	Max	Min	Max]	VIH1	VIL1	VIH2	VIL2	VEE1	VEE2	Vcc	P. U. T.
VOH	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3-7 9-15				8		1, 16	2
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	3, 7, 10 11, 13	3-7 9-15			8		1, 16	2
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3-7 9-15	3-7 9-15	3-7 9-15		8	8	1, 16	2
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	3-7 9-15	3-7 9-15		3-7 9-15	8	8	1, 16	2
IEE	Power Supply Current	-26		29		-29		mA					8		1, 16	8
Чн	Input Current High		295		500		500	μΑ	3-7 9-15				8		1, 16	3 - 7 9 - 15
liH1	Input Current High		360		610		610	μΑ	10				8		1, 16	10
ηL	Input Current Low	0.5		0.3		0.5		μΑ		3 – 7 9 – 15				8	1, 16	3 – 7 9 – 15

10H519 QUIESCENT LIMIT TABLE*

* ELECTRICAL CHARACTERISTICS

Test			Te	st Voltag	e Values	s (Volts)			
Temperature	V _{IH1}	V _{IL1}	VIH2	V _{IL2}	PS1	PS2	VEEL	V _{EE1}	V _{EE2}
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW:						W:	
	Functional		5°C		5 °C		5 °C						ge, check Pin Assignments = 100 $Ω$ to GND		
	Parameters:		roup 9		oup 10	Subgroup 11									
		Min	Max	Min	Max	Min	Max		VIN	Vouт	Vcc	VEEL	PS1	P.U.T	
^t TLH	Rise Time	0.8	2.0	0.8	2.3	0.8	1.9	ns	10	2	1, 16	8	4, 14	2	
^t THL	Fall Time	0.8	2.0	0.8	2.3	0.8	1.9	ns	10	2	1,16	8	4, 14	2	
^t PLH	Propagation Delay Pin 10	0.75	2.25	0.8	2.55	0.75	2.2	ns	4	2	1. 16	8	7, 12, 13	2	
^t PHL	Propagation Delay Pin 10	0.75	2.25	0.8	2.55	0.75	2.2	ns	4	2	1. 16	8	7, 12, 13	2	
^t PHL	Propagation Delay Exclude Pin 10	0.75	2.5	0.8	2.8	0.75	2.4	ns	4	2	1. 16	8	7, 12, 13	2	
^t PLH	Propagation Delay Exclude Pin 10	0.75	2.5	0.8	2.8	0.75	2.4	ns	4	2	1.16	8	7, 12, 13	2	

4-Wide "OR-AND/OR-AND-INVERT" Gate

ELECTRICALLY TESTED PER: 5962-8773001

The 10H521 is a basic logic building block providing the simultaneous OR-AND/OR-AND-INVERT function, used in data control and digital multiplexing applications.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increases in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 40 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNA	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	GND
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	OPEN
A1 _{IN}	6	10	8	OPEN
A2 _{IN}	7	11	9	OPEN
VEE	8	12	10	VEE
A2 _{IN}	9	13	12	OPEN
A2 _{IN} , A3 _{IN}	10	14	13	GND
A3 _{IN}	11	15	14	OPEN
A3 _{IN}	12	16	15	OPEN
A4IN	13	1	17	OPEN
A4IN	14	2	18	OPEN
A4 _{IN}	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H521

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8773001 3) 883: 10H521/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

- 1. All input and output cables to the scope are equal length of 50 $\ensuremath{\Omega}$ coaxial cable. Wire length should be < 1/4 inch from TP_{IN} to input pin and TPOUT to output pin.
- 2. Outputs not under test are connected to a 100 Ω resistor to ground.
- 3. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns}.$
- 4. $P_{W \ge} 20 \text{ ns.}$
- 5. PRF = 1.00 MHz.
- 6. 2:1 divider may be used.
- 7. L1 = L2 Matched for equal time delay.

Figure 1. Switching Test Circuit and Waveforms

10H521 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test Temperature			ÈTe	est Volta	ge Value	es (Volts)		
	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	V _{EE1}	VEE2
T _A = 25 °C	-0.78	-1.95	-1.13	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units		•	TEST VOL	TAGE AP	PLIED TO	PINS BE	LOW	
	Functional		5 °C		5 °C		5 °C			Pinouts re					Pin Assign	ments
	Parameters:	Subgr	roup 1	Subgi	roup 2	Subg	roup 3				VCC = 0	V, Output	Load = 1	00 Ω to -	2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P. U. T.
Vон	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4 - 7 9 - 15	4-7 9-15			8		1, 16	2, 3
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4 – 7 9 – 15	4 - 7 9 - 15			8		1, 16	2, 3
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4, 7 11, 13	4, 7 11, 13	4 - 7 9 - 15	4 - 7 9 - 15	8	8	1, 16	2, 3
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4, 7 11, 13		4 - 7 9 - 15	4 – 7 9 – 15	8	8	1, 16	2, 3
IEE	Power Supply Current	-26		-29		-29		mA					8		1, 16	8
ίн	Input Current High		295		500		500	μΑ	4 – 7, 9 11 – 15				8		1, 16	4 – 7, 9 11 – 15
Чнт	Input Current High		360		610		610	μΑ	10				8		1, 16	10
ηL	Input Current Low	0.5		0.3		0.5		μА		4 - 7 9 - 15				8	1, 16	4 – 7, 9 – 15

10H521 QUIESCENT LIMIT TABLE*

* ELECTRICAL CHARACTERISTICS

Test Temperature			Т	est Volta	ge Value	es (Volts)		
	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	VEEL	V _{EE1}	V _{EE2}
T _A = 25 °C	-0.78	-1.95	-1.13	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units		TEST VO	OLTAGE A	PPLIED T	O PINS BELOW	
	Functional	+ 2	5°C	+ 12	5 °C	- 5	5 °C		Pinouts			•	ge, check Pin Assig	gnments
	Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11	1		VCC =	2.0 V, Ou	tput Load	= 100 Ω to GND	
		Min	Max								VEEL	PS1	P.U.T	
^t TLH	Rise Time	0.5	1.8	0.5	2.1	0.5	1.7	ns	5, 9, 10, 12, 15	2, 3	1, 16	8	5, 9, 10, 12, 15	2, 3
^t THL	Fall Time	0.5	1.8	0.5	2.1	0.5	1.7	ns	5, 9, 10, 12, 15	2, 3	1, 16	8	5, 9, 10, 12, 15	2, 3
^t Pd	Propagation Delay (Pin 10)	0.45	1.8	0.55	2.4	0.45	1.8	ns	5, 9, 10, 12, 15	• 2, 3	1. 16	8	5, 13	2, 3
^t Pd	Propagation Delay (Exclude Pin 10)	0.6	2.0	0.7	2.6	0.55	2.0	ns	5, 9, 10, 12, 15	2, 3	1. 16	8	5, 9, 12, 15	2, 3

ELECTRICALLY TESTED PER: 5962-8756001

The 10H524 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems.

This 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in powersupply current.

- Propagation Delay, 1.5 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNA	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION C)
BOUT	1	5	2	51 Ω to V_{TT}
AOUT	2	6	3	51 Ω to V _{TT}
BOUT	3	7	4	51 Ω to V _{TT}
AOUT	4	8	5	51 Ω to V _{TT}
A _{IN}	5	9	7	VCC
Common Strobe	6	10	8	VCC
BIN	7	11	9	Vcc
VEE	8	12	10	VEE
VCC	9	13	12	Vcc
CIN	10	14	13	Vcc
DIN	11	15	14	Vcc
COUT	12	16	15	$_{\rm 1}$ 51 Ω to V_TT
DOUT	13	1	17	51 Ω to V_{TT}
DOUT	14	2	18	51 Ω to V_{TT}
COUT	15	3	19	51 Ω to V_{TT}
GND	16	4	20	GND

BURN - IN CONDITIONS: V_{TT} = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H524

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756001 3) 883: 10H524/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

NOTES

1. 50 Ω termination to ground located in each scope channel input.

2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be < 164 inch from TP_{IN} to input pin and TP_{OUT} to output pin.

10H524 QUIESCENT LIMIT TABLE*

Test					1	est Volta	ige Value	s (Volts))				
Temperature	VIH1	VIL1	VRH	VR	VF	PS1	VEEL	V _{EE1}	V _{EE2}	BVIN	Vcc	VCCH	VGG
T _A =25 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0
TA=125 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0
T _A =55 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0

Symbol	Parameter			Lin	nits			Units			TEST VO	OLTAGE A	PPLIED	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	DL Low Output Voltage High Output		5 °C		5 °C		5 °C						-	-	-	-					
		Subgi	roup 1	Subg	roup 2	Subg	roup 3	ļ		'D1 = '	– 10 MA, I	D2 = -20	mA Outp	GND							
	i	Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE1	VEE2	GND	Vcc	P. U. T.				
Vон		-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v			5-7	10, 11	8		16	9	1 - 4 12 - 15				
VOL		-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v			5 - 7 10, 11	5, 7 10, 11	8		16	9	1 - 4 12 - 15				
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	5 – 7 10, 11	5 – 7 10, 11	5 – 7 10, 11		8	8	16	9	1 - 4 12 - 15				
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	5 - 7 10, 11	5 – 7 10, 11	5 – 7 10, 11	7	8	8	16	9	1 - 4 12 - 15				
IEE	Power Supply Current	-66		-72		-72		mA					8		16	9	8				
lF1	Forward Current		-3.2		-3.2		-3.2	mA			6	5, 7 10, 11		8	16	9	5, 7 10, 11				
IF2	Forward Current		-12.8		-12.8		-12.8	mA			5, 7 10, 11			8	16	9	6				

* ELECTRICAL CHARACTERISTICS

10H524 QUIESCENT LIMIT TABLE*

Test					T	est Volta	nge Value	s (Volts))				
Temperature	VIH1	VIL1	VRH	VR	٧F	PS1	VEEL	VEE1	V _{EE2}	BVIN	Vcc	VCCH	VGG
T _A =25 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0
T _A =125 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0
T _A =55 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0

Symbol	Parameter			Lin	nits			Units		т	EST VOLT	AGE APP	5,7 6 8 16 5,7				
		+ 2	5°C	+ 12	25 °C	- 5	5 °C		Pin	outs refer	enced ar	e for DIL p	backage,	check	Pin Assi	gnment	s
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3	1	l I	D1 = - 10	mA, I _{D2} =	- 20 mA	Output L	oad = 1	00 Ω to	–2.0 V	
		Min	Max	Min	Max	Min	Max	1	VF	٧ _R	VRH	BVIN	ID1	ID2	VEE1	GND	Vcc
VID	Input Clamp Voltage		-1.5		-1.5		-1.5	v						6	8	16	5, 7 10, 11
ICCL	Positive Power Supply Current Drain		25		25		25	mA	10					8		16	9
ІССН	Positive Power Supply Current Drain		16		18		16	mA			5 - 7 10, 11				8	16	9
IIN	Input Current	·····	1.0		1.0		1.0	mA	6			5 - 7 10, 11			8	16	5, 7 10, 11
^I R1	Reverse Current		50		50		50	μА	6	5, 7 10, 11					8	16	5, 7 10, 11
I _{R2}	Reverse Current		200		200		200	μΑ	5, 7 10, 11	6					8	16	6

* ELECTRICAL CHARACTERISTICS

10H524 QUIESCENT LIMIT TABLE *

Test					Т	est Volta	ige Value	s (Volts))				
Temperature	VIH1	VIL1	VRH	VR	٧F	PS1	VEEL	V _{EE1}	V _{EE2}	BVIN	Vcc	VCCH	VGG
T _A =25 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0
T _A =125 °C	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0
T _A =55 ℃	+2.0	+0.8	+4.0	+2.4	+0.4	+6.0	-2.94	-5.46	-4.94	+5.5	+5.0	+7.0	+2.0

Symbol	Parameter			Lin	nits			Units			TEST VO	OLTAGE A	PPLIED	TO PINS B	ELOW
	Functional		5 °C		5 °C		5 °C						• •		Pin Assignments
	Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11			'D1 = ·	– 10 mA, I	D2 = - 20	mA Outp	ut Load =	100 Ω to GND
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	VCCH	VEEL	VGG	PS1	P.U.T
tr	Rise Time	0.45	2.0	0.5	2.5	0.4	1.8	ns	5	4	9	8	16	6	1 – 3, 12 – 15
tf	Fall Time	0.45	2.0	0.5	2.5	0.4	1.8	ns	5	4	9	8	16	6	1 – 3, 12 – 15
^t PHL	Propagation Delay Pin 6	0.55	2.5	0.85	3.6	0.5	2.0	ns	10	12	9	8	16	6	1 – 4, 13 – 15
^t PLH	Propagation Delay Pin 6	0.55	2.5	0.85	3.6	0.5	2.0	ns	10	12	9	8	16	6	1 – 4, 13 – 15
^t PHL	Propagation Delay Pins 5, 7, 10, 11	0.55	2.4	0.85	3.5	0.55	2.1	ns	10	12	9	8	16	6	1 – 4, 13 – 15
^t PLH	Propagation Delay Pins 5, 7, 10, 11	0.55	2.4	0.85	3.5	0.55	2.1	ns	10	12	9	8	16	6	1 – 4, 13 – 15

*** ELECTRICAL CHARACTERISTICS**

Dual MECL-to-TTL Translator

ELECTRICALLY TESTED PER: 5962-8750801

The 10H525 is a quad translator for interfacing data and control signals between the MECL section and saturated logic section of digital systems.

This 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in powersupply current.

- Propagation Delay, 2.5 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{BB}	1	5	2	VBB								
AIN	2	6	3	2 K Ω to VEE								
A _{IN}	3	7	4	VBB								
AOUT	4	8	5	360 Ω to V _{CC}								
BOUT	5	9	7	2 K Ω to VEE								
BIN	6	10	8	V _{BB}								
BIN	7	11	9	VCC								
VEE	8	12	10	VEE								
VCC	9	13	12	V _{CC}								
CIN	10	14	13	V _{BB}								
CIN	11	15	14	2 K Ω to VEE								
COUT	12	16	15	360 Ω to V _{CC}								
DOUT	13	1	17	360 Ω to V _{CC}								
DIN	14	2	18	V _{BB}								
D _{IN}	15	3	19	2 K Ω to GND								
GND	16	4	20	GND								

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H525

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750801 3) 883: 10H525/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cable. Wire length should be < 0.250 inch (6.35 mm) from TPIN to input pin and TPOUT to output pin. Ω
- 3. All diodes are 1N3064 or equivalent. Ω

2

MOTOROLA MILITARY MECL DATA 2-78

10H525 QUIESCENT LIMIT TABLE *

Test Temperature							•	Test Volt	age Valu	es (Volts)							Test Current (milliAmps)	
	VIH	VIH VIL VIHA VILA PS1 PS2 VEE VEE1 VEE2 VIHH VILH VIHL VILL VCC VBB VIHS VILS												юн	IOL				
T _A = 25 °C	-0.78	-1.95	-1.11	-1.48	-0.89	-1.69	-5.2	-5.46	-4.94	+0.22	-0.95	-1.78	-2.95	+5.0	Pin 1	-0.89	-1.69	-2.0	+20
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	-0.76	-1.64	-5.2	-5.46	-4.94	+0.35	-0.95	-1.65	-2.95	+5.0	Pin 1	-0.76	-1.64	-2.0	+20
T _A = -55 °C	-0.84	-1.95	-1.16	-1.51	-0.99	-1.72	-5.2	-5.46	-4.94	+0.16	-0.95	-1.84	-2.95	+5.0	Pin 1	-0.99	-1.72	-2.0	+20

Symbol	Parameter			Lin	nits			Units			TE	ST VOLTA	GE APP	LIED TO	PINS BE	LOW		
		+ 25	5°C	+ 12	5 °C	- 55	5 °C			Pinc	outs refer	enced are	for DIL	package	, check F	Pin Assign	ments	
	Functional	Subgr	oup 1	Subg	roup 2	Subg	oup 3	1	GND = (Pin 16), Output Load = 100 Ω to GND									
{	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH	VIHH	VIHL	VIL	VOL	VILL	VILH	VEE1/2	VOH	P. U. T.
VOH	High Output Voltage	2.5		2.5		2.5		v	3, 7 11, 15	3, 7 11, 15	3, 7 11, 15	2, 3, 6 7, 10, 11 14, 15		2, 6, 10, 11, 14	2, 6, 10, 14	8	4, 5 12, 13	4, 5 12, 13
VOL	Low Output Voltage		0.5		0.5		0.5	v	2, 3, 6 7, 11 15	2, 6 10, 14	2, 3, 6 10, 14	3, 7 11, 15	4, 5 12, 13	3, 7 11, 15	3, 7 11, 15	8		4, 5 12, 13
VOLS	Output Voltage		0.5		0.5		0.5	v					4, 5 12, 13			2, 3, 6 7, 8, 10, 11, 14, 15	4	4, 5 12, 13

* ELECTRICAL CHARACTERISTICS

10H525 QUIESCENT LIMIT TABLE*

Test Temperature							•	Test Volt	age Valu	es (Volts)							Test Current (milliAmps)
	VIH	IH VIL VIHA VILA PS1 PS2 VEE VEE1 VEE2 VIHH VILH VIHL VILL VCC VBB VIHS VILS												VILS	ЮН			
T _A = 25 °C	-0.78	-1.95	-1.11	-1.48	-0.89	-1.69	-5.2	-5.46	-4.94	+0.22	-0.95	-1.78	-2.95	+5.0	Pin 1	-0.89	-1.69	-2.0
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	-0.76	-1.64	-5.2	-5.46	-4.94	+0.35	-0.95	-1.65	-2.95	+5.0	Pin 1	-0.76	-1.64	-2.0
T _A = -55 °C	-0.84	-1.95	-1.16	-1.51	-0.99	-1.72	-5.2	-5.46	-4.94	+0.16	-0.95	-1.84	-2.95	+5.0	Pin 1	-0.99	-1.72	-2.0

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW										
	Functional		5 °C roup 1		25 °C roup 2		5 °C roup 3			Pino			e for DIL 16), Outp			•	nments	
	Parameters:		·															
		Min	Max	Min	Max	Min	Max		VIH	VIHA	VIL	VILA	VBB	VEE	VEE1/2	ЮН	IOL	P. U. T.
VOH1	High Output Voltage	2.5		2.5		2.5		v			2, 6 10, 14	2, 6 10, 14	1, 3, 7 11, 15		8	4, 5 12, 13		4, 5 12, 13
VOL1	Low Output Voltage		0.5		0.5		0.5	v		2, 6 10, 14	2, 6 10, 14		1, 3, 7 11, 15		. 8		4, 5 12, 13	4, 5 12, 13
VBB	Reference Voltage	-1.37	-1.25	-1.31	-1.19	-1.41	-1.27	v					1, 3, 7 11, 15	8				1
IEE	Power Supply Current	-40		-44		-44		mA					1, 3, 7 11, 15	2, 6 10, 14	8			8
ICCL	Positive Power		40		40		40	mA					1, 3, 7 11, 15	2, 6 10, 14	8			9
ICCH	Supply Drain Current		63 ·		63		63	mA	2, 6 10, 14				1, 3, 7 11, 15		8			9
Сво	Input Leakage Current	-1.0		-1.0		-1.5		μА					1, 2, 3 6, 7, 10, 11, 14, 15		2, 3, 6 7, 8 10, 11 15			2, 3, 6, 7, 10, 11, 14, 15
los	Short Circuit Current	-150	-60	-150	-60	-150	-60	mA			2, 6 10, 14		1, 3, 7 11, 15		8			4, 5, 12, 13
IINH	Input Current		145		225		225	μA	2, 3, 6 7, 10 11, 14 15				1, 2, 3 6, 7, 10, 11, 14, 15		8			2, 3, 6, 7, 10, 11, 14, 15

* ELECTRICAL CHARACTERISTICS

10H525 QUIESCENT LIMIT TABLE*

Test Temperature								Test Volt	age Valu	es (Volts)							Test Current (milliAmps)
	VIH	VIL VIHA VILA PS1 PS2 VEE VEE1 VEE2 VIHH VILH VIHL VILL VCC VBB VIHS VILS												юн				
T _A = 25 °C	-0.78	-1.95	-1.11	-1.48	-0.89	-1.69	-5.2	-5.46	-4.94	+0.22	-0.95	-1.78	-2.95	+5.0	Pin 1	-0.89	-1.69	-2.0
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	-0.76	-1.64	-5.2	-5.46	-4.94	+0.35	-0.95	-1.65	-2.95	+5.0	Pin 1	-0.76	-1.64	-2.0
T _A = -55 °C	-0.84	-1.95	-1.16	-1.51	-0.99	-1.72	-5.2	-5.46	-4.94	+0.16	-0.95	-1.84	-2.95	+5.0	Pin 1	-0.99	-1.72	-2.0

Symbol	Parameter			Lin	nits			Units		•	TEST VOL	TAGE API	PLIED TO P	INS BELO	w
	Functional Parameters:	+ 25 Subgr			5 °C oup 10		5 °C oup 11		Pinouts referenced are for DIL package, check Pin Assignments GND = (Pin 16), Output Load = (See Figure 1).						
		Min	Max	Min	Max	Min	Max	ĺ	VIN	Vout	VBB	V _{EE2}	VILS	P _{S2}	P.U.T.
^t TLH	Rise Time	0.3	1.3	0.3	2.0	0.3	1.4	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7 11, 15	8	2, 6, 10, 14	10	4, 5, 12, 13
^t THL	Fall Time	0.3	1.3	0.3	2.0	0.3	1.4	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7 11, 15	8	2, 6, 10, 14	10	4, 5, 12, 13
^t PHL/PLH	Propagation Delay	0.85	3.2	0.9	3.5	0.8	2.9	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7 11, 15	8	2, 6, 10, 14	10	4, 5, 12, 13

* ELECTRICAL CHARACTERISTICS

Dual D Type Master-Slave Flip-Flop

ELECTRICALLY TESTED PER: 5962-8756101

The 10H531 is a MECL 10H part which is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- 340 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
Q ₁	2	6	3	51 Ω to V_{TT}								
$\overline{Q_1}$	3	7	4	51 Ω to V_{TT}								
R ₁	4	8	5	51 Ω to V _{TT}								
S ₁	5	9	7	GND								
C _{E1}	6	10	8	OPEN								
D ₁	7	11	9	OPEN								
VEE	8	12	10	VEE								
с _С	9	13	12	OPEN								
D ₂	10	14	13	OPEN								
C _{E2}	11	15	14	OPEN								
S ₂	12	16	15	GND								
R ₂	13	1	17	51 Ω to V_{TT}								
$\overline{Q_2}$	14	2	18	51 Ω to V_{TT}								
Q ₂	15	3	19	51 Ω to V_{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H531

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756101 3) 883: 10H531/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

VIN

I	R-S Truth	Table
R	S	Q _{n + 1}
L	L	Q _n
L	н	н
н	L	L
н	н	N.D.

C	Clock Truth Table								
С	D	Q _{n + 1}							
L	Ø	Qn							
н	L	L							
н	н	Н							

 $\emptyset = Don't Care$ C = $\overline{CE} + CC$

VOUT

V_{CC1} = V_{CC2} = 2.0 V

N.D.	= N	lot D	efine	be

A clock H is a clock transition from a Low to High state

Note: Do not remove power during sequence of tests.

Figure 3. Timing Diagram

MOTOROLA MILITARY MECL DATA 2-84

NOTES

- thold is min. time after positive transition of the clock pulse that information must remain unchanged at the data input.
- 2. For all thold tests, pulse width should not be less than 20 ns.

NOTES

- 1. t_{setup} is the min. time before the positive transition of the clock information must be present at the data input.
- 2. For all setup tests, pulse widths should not be less than 20 ns.

Data precedes clock by \leq 1.5 ns (setup)

Figure 4. THOLD Waveforms

P_{S1}
10H531 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to –2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	VEEL	V _{EE1}	V _{EE2}					
T _A = 25 °C	-0.780	-1.950	-1.110	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94					
T _A = 125 °C	-0.650	-1.950	-0.960	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94					
T _A = -55 °C	-0.840	-1.950	-1.160	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:		5 °C roup 1		5 °C roup 2	– 59 Subgi	5 °C roup 3		F					, check Pin Assignments 00 Ω to - 2.0 V		
	Falanieleis.	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VEE1	V _{EE2}	Vcc	P.U.T.		
Vон	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4, 5 12, 13	4 - 7 9 - 13	8		1, 16	2, 3, 14, 15		
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	5, 12	4 - 7 9 - 13	8		1, 16	2, 3, 14, 15		
V _{OH1}	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v			8	8	1, 16	2, 3, 14, 15		
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v			8	8	1, 16	2, 3, 14, 15		
¹ EE	Power Supply Current	-56		62		-62		mA		6, 11	8		1, 16	8		
Ιн	Input Current High		390		660		660	μA	9		8		1, 16	9		
Чнт	Input Current High		310		530		530	μA	6, 11		8		1, 16	6, 11		
liH2	Input Current High		465		790		790	μА	4, 5 12, 13		8		1, 16	4, 5, 12, 13		
Чнз	Input Current High		285		485		486	μA	7, 10		8		1, 16	7, 10		
μL	Input Current Low	0.5		0.3		0.5		μA		4 - 7 9 - 13		8	1, 16	4 – 7, 9 – 13		

MOTOROLA MILITARY MECL DATA 2-86

10H531 QUIESCENT LIMIT TABLE*

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to –2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	V _{IL1}	V _{IH2}	V _{IL2}	PS1	PS2	VEEL	V _{EE1}	V _{EE2}						
T _A = 25 °C	-0.780	-1.950	-1.110	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94						
T _A = 125 °C	-0.650	-1.950	-0.960	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94						
T _A = -55 °C	-0.840	-1.950	-1.160	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94						

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:		5 °C roup 9		5 °C oup 10	– 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Falameters.	Min	Max	Min	Max	Min Max			VIN	VOUT	VEEL	P.U.T			
tr	Rise Time	0.5	2.0	0.6	2.2	0.45	1.8	ns	4, 5	3	1, 16	8	2, 14, 15		
tf	Fall Time	0.5	2.0	0.6	2.2	0.45	1.8	ns	4, 5	3	1, 16	8	2, 14, 15		
^t pd	Propagation Delay CLK, CE, Set, Reset	0.7	2.15	0.7	2.2	0.6	2.1	ns	10, 11	15	1. 16	8	2, 3, 14		
^t SET	Set Up Time	0.7		0.7		0.7		ns	6, 7, 10, 11	2, 15	1.16	8	2, 3, 14, 15		
tHOLD	Hold Time	0.8		0.8		0.8		ns	6, 7, 10, 11	2, 15	1, 16	8	2, 3, 14, 15		
ftog	Toggle Frequency	250		250	1	250		MHz					(See Fig. 2)		

Dual J-K Master-Slave Flip-Flop

ELECTRICALLY TESTED PER: 5962-8750501

The 10H535 is a dual master-slave dc coupled J-K flip-flop. The device is provided with asynchronous set(s) and Reset (R). These set and reset inputs override the clock.

A common clock is provided with separate $\overline{J}\mathcal{-}\overline{K}$ inputs. When the clock is static, the $\overline{J}\mathcal{-}\overline{K}$ inputs do not effect the output.

The output states of the flip-flop change on the positive transition of the clock.

- Propagation Delay, 1.5 ns Typical
- 410 mW Max/Pkg (No Load)
- f_{Tog} = 250 MHz Max
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
VCC1	1	5	2	GND								
Q ₁	2	6	3	51 Ω to V _{TT}								
$\overline{Q_1}$	3	7	4	51 Ω to VTT								
R ₁	4	8	5	51 Ω to V_{TT}								
S ₁	5	9	7	GND								
K ₁	6	10	8	OPEN								
$\overline{J_1}$	7	11	9	OPEN								
VEE	8	12	10	VEE								
С	9	13	12	OPEN								
$\overline{J_2}$	10	14	13	OPEN								
K ₂	11	15	14	OPEN								
S ₂	12	16	15	GND								
R ₂	13	1	17	51 Ω to V_{TT}								
$\overline{Q_2}$	14	2	18	51 Ω to V_{TT}								
Q ₂	15	3	19	51 Ω to V _{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H535

1) JAN: N/A 2) SMD: 5962-8750501 3) 883: 10H535/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H535

F	R-S Truth Table										
R	R S Q _{n+1}										
L	L	Qn									
L	н	н									
н	L	L									
н	н	N.D.									

Clock Truth Table									
J	ĸ	Q _{n + 1}							
L	L	Q _n							
н	L	L							
L	Н	н							
н	н	Qn							

N.D. = Not Defined

A clock H is a clock transition from a Low to High state

L2

5. f_{IN} = 1.0 MHz.

NOTES

6. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns}.$

Figure 1. Switching Test Circuit and Waveforms

NOTES

TST = Minimum set up time for Toggle.
THT = Minimum hold time for Not Toggle.

Figure 2. Set, Reset and Toggle Waveforms

MOTOROLA MILITARY MECL DATA 2-90

10H535 -QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to –2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	V _{EE2}						
T _A = 25 °C	-0.780	-1.950	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94						
T _A = 125 °C	-0.650	-1.950	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94						
T _A = - 55 °C	-0.840	-1.950	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94						

Symbol	Parameter			Lin	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW							
	Frankland	+ 25	5°C	+ 12	5 °C	- 55	5 °C			Pinouts r	eferenced	are for DI	L packag	e, check l	Pin Assign	ments
	Functional Parameters:	Subgr	oup 1	Subgr	oup 2	Subgr	oup 3			V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V						
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE2	VEE1	Vcc	P. U. T.
VOH	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4, 5, 12, 13					8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4, 5, 12, 13					8	1, 16	2, 3, 14, 15
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4, 5, 12, 13	4 – 7 9 – 13	4, 5, 12, 13	4 – 7 9 – 13	8	8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4, 5, 12, 13	4 - 7 9 - 13	4, 5 12, 13	4 – 7 9 – 13	8	8	1, 16	2, 3, 14, 15
IEE	Power Supply Current	-68		-75		-75		mA						8	1, 16	8
Чн	Input Current High		285		460		460	μA	6, 7, 10, 11					8	1, 16	6, 7, 10, 11
liH1	Input Current High		420		675		675	μA	9					8	1, 16	9
IIH2	Input Current High		500		800		800	μA	4, 5, 12, 13					8	1, 16	4, 5, 12, 13
IJL	Input Current Low	0.5		0.3		0.5		μА		4 – 7 9 – 13			8		1, 16	4 - 7, 9 - 13

10H535 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	V _{EE1}	V _{EE2}	V _{EE2}					
T _A = 25 °C	-0.780	-1.950	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.650	-1.950	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = -55 °C	-0.840	-1.950	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
	F	+ 25	5° C	+ 12	+ 125° C -55° C				Pinouts referenced are for DIL package, check Pin Assignments							
	Functional Parameters:	Subgi	Subgroup 9		Subgroup 10		Subgroup 11		V_{CC} = 2.0 V, Output Load = 100 Ω to GND							
		Min	Max	Min	Max	Min	Max	1	PS2	VIN	VOUT	Vcc	VEEL	P.U.T.		
tTLH1 tTLH1	Rise Time 1 or Fall Time 1	0.5	2.0	0.7	2.4	0.5	2.0	ns	6, 7, 10, 11	4, 5, 9, 14	2, 3, 14, 15	[.] 1, 16	8	2, 3, 14, 15		
tTLH2 tTLH2	Rise Time 2 or Fall Time 2	0.5	2.0	0.7	2.4	0.5	2.0	ns	6, 7, 10, 11	4, 5, 9, 14	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PLH1 ^t PLH1	Propagation Delay 1 Set, Reset	0.7	2.3	0.7	2.6	0.5	2.3	ns	6, 7, 10, 11	4, 5, 9, 14	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PLH2 ^t PLH2	Propagation Delay 2 Clock	0.7	2.3	0.7	2.6	0.5	2.3	ns	6, 7, 10, 11	4, 5, 9, 14	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t SETUP	Setup Time	1.5		1.5		1.5		ns	6, 7, 10, 11	6, 7, 10, 11	3, 14	1, 16	8	3, 14		
^t HOLD	Hold Time	1.0		1.0		1.0		ns	6, 7, 10, 11	6, 7, 10, 11	3, 14	1, 16	8	3, 14		
ftog	Toggle Frequency	250		250		250		MHz	6, 7, 10, 11	6, 7, 10 -11	3, 14	1, 16	8	3, 14		

Universal Hexadecimal Counter

ELECTRICALLY TESTED PER: 5962-870010101

The 10H536 is a high speed synchronous hexadecimal counter. This MECL 10H part which is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Counting Frequency, 250 MHz Minimum
- 900 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION C)
V _{CC1}	1	5	2	GND
Q ₂	2	6	3	51 Ω TO VTT
Q ₃	3	7	4	51 Ω TO V_{TT}
COUT	4	8	5	51 Ω TO V_{TT}
D ₃	5	9	7	GND
D ₂	6	10	8	GND
S2	7	11	9	OPEN
VEE	8	12	10	VEE
S1	9	13	12	OPEN
CIN	10	14	13	OPEN
D ₁	11	15	14	GND
D ₀	12	16	15	GND
CLK	13	1	17	CP1
Q ₀	14	2	18	51 Ω TO VTT
Q ₁	15	3	19	51 Ω TO V _{TT}
V _{CC2}	16	4	20	GND

MPO

Military 10H536

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8700101 3) 883: 10H536/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

FUNCTION SELECT TABLE											
CIN	S ₁	S ₂	OPERATING MODE								
Ø	L	L	Preset (Program)								
L	L	н	Increment (Count Up)								
н	L	н	Hold Count								
L	н	L	Decrement (Count Down)								
н	н	L	Hold Count								
Ø H H Hold (Stop Count)											

 $\varnothing = \text{Don't Care}$

				SEQUE	ENTIAL T	RUTH TAB	LE •					
S ₁	S ₂	D ₀	D ₁	D ₂	D ₃	Carry IN	Clock ••	QO	Q ₁	Q2	Q3	Carry OUT
L	L	L	L	н	н	Ø	н	L	L	н	н	L
L	н	ø	Ø	Ø	ø	L	н	н	L	н	н	н
L	н	Ø	Ø	Ø	ø	<u>ι</u>	н	L	н	н	н	н
L	н	Ø	Ø	Ø	Ø	L	н	н	н	н	н	L
L	н	Ø	Ø	Ø	Ø	н	L	н	н	н	н	н
L	н	Ø	Ø	Ø	ø	н	н	н	н	н	н	н
н	н	Ø	Ø	Ø	Ø	Ø	н	н	н	н	н	н
L	L	н	н	L	L	Ø	н	н	н	L.	· L	L
н	L	Ø	Ø	Ø	Ø	L	н	L	н	L.	L	н
н	L	Ø	Ø	Ø	Ø	L	н	н	L	L	L	н
н	L	Ø	Ø	Ø	Ø	L	н	L	L	L	L	L
н	L	Ø	Ø	Ø	Ø	L	н	н	н	н	н	н

Ø = Don't Care

• Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.

•• A clock H is defined as a clock input transition from a low to a high logic level.

NOTE FLIP FLOPS WILL TOGGLE WHEN ALL $\widetilde{\mathsf{T}}$ INPUTS ARE LOW.

Figure 1. Logic Diagram

MOTOROLA MILITARY MECL DATA 2-94

10H536 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	ViH2	VIL2	P _{S1}	PS2	VEE1	V _{EE2}	VEEL					
T _A = 25 °C	-0.780	-1.950	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.650	-1.950	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = - 55 °C	-0.840	-1.950	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units		TEST VOL	TAGE AP	PLIED TO	PINS BELOW	1
	Functional	+ 25			5 °C	- 55			Pinor	uts referenced				-
	Parameters:	Subgr	oup 1	Subgi	oup 2	Subgr	oup 3			ACC = 0	v, Outpu	t Load = 1	00 Ω to - 2.0	v
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	V _{EE2}	V _{EE1}	Vcc	P. U. T.
Vон	High Output Voltage	-1.046	0.819	-0.899	-0.692	-1.099	-0.882	v	3 - 6, 11 - 14	13		8	1, 16	2, 3, 4, 14, 15
VOL	Low Output Voltage	-1.95	-1.592	-1.95	-1.578	-1.95	-1.623	v	13	13		8	1, 16	2, 3, 4, 14, 15
VOH1	High Output Voltage	-1.046	-0.819	-0.899	-0.692	-1.099	-0.882	v			8	8	1, 16	2, 3, 4, 14, 15
VOL1	Low Output Voltage	-1.95	-1.592	-1.95	-1.578	-1.95	-1.623	v			8	8	1, 16	2, 3, 4, 14, 15
IEE	Power Supply Current	-149		-164		-164		mA				8	1, 16	8
Чн	Input Current High		225		365		365	μΑ	9			8	1, 16	9
liH1	Input Current High		260		415		415	μА	10			8	1, 16	10
IIH2	Input Current High		320		520		520	μA	5, 6, 11 - 13			8	1, 16	5, 6, 11 - 13
IIH3	Input Current High		405		655		655	μА	7			8	1, 16	7
μL	Input Current Low	0.5		0.3		0.5		μА		5 - 7, 10 - 13	8		1, 16	5, 6, 11 - 13

10H536 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to –2.0 volts.

Test			Tes	st Voltage	e Values	(Volts)			
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	V _{EE2}
T _A = 25 °C	-0.780	-1.950	-1.11	-1.48	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.650	-1.950	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.840	-1.950	-1.16	-1.51	+1.01	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units		TEST V	OLTAGE	APPLIE	D TO PIN	S BELOV	v
	Functional		5° C	+ 12			5° C		Pino			•	•		ssignments
	Parameters:		roup 9		oup 10		oup 11	4					oad = 100		
		Min	Max	Min	Max	Min	Max		VIN	VOUT	PS1	PS2	Vcc	VEEL	P.U.T.
^t TLH	Rise Time	0.7	2.1	0.7	2.3	0.7	2.3	ns	7, 13	4	11, 12	9, 10	1, 16	8	2, 3, 14, 15
^t THL	Fall Time	0.7	2.1	0.7	2.3	0.7	2.3	ns	7, 13	4	11, 12	9, 10	1, 16	8	2, 3, 14, 15
tpd	Propagation Delay														
	Clk to Q	0.7	3.2	0.7	3.5	0.7	3.5	ns	10	. 4	11, 12	9, 13	1, 16	8	2, 3, 14, 15
	Clk to Carry Out	0.7	7.0	0.7	7.7	0.7	7.7	ns	10	4	11, 12	9, 13	1, 16	8	2, 3, 14, 15
	Carry In to Carry Out	0.7	3.0	0.7	3.5	0.7	3.5	ns	10	4	11, 12	9, 13	1, 16	8	2, 3, 14, 15
^t SET	Setup Time														
	Data (D ₀ to C)	2.0		2.0		2.0		ns	12, 13	14		7, 9	1, 16	8	2, 3, 14, 15
	Select (S to C)	3.5		3.5		3.5		ns	12, 13	14		7, 9	1, 16	8	2, 3, 14, 15
	Carry In $(\overline{C_{IN}}$ to C)	2.0		2.0		2.0		ns	12, 13	14		7, 9	1, 16	8	2, 3, 14, 15
	(C to CIN)	0.0		0.0		0.0		ns	12, 13	14		7, 9	1, 16	8	2, 3, 14, 15
tHOLD	Hold Time														
	Data (D ₀ to C)	0.0		0.0		0.0		ns	12, 13	14		7,9	1, 16	. 8	2, 3, 14, 15
	Select (S to C)	-0.5		-0.5		-0.5		ns	12, 13	14	1	7,9	1, 16	8	2, 3, 14, 15
	Carry In $(\overline{C_{IN}}$ to C)	150		150		150		ns	12, 13	14	1	7,9	1, 16	8	2, 3, 14, 15
	(C to $\overline{C_{IN}}$)	2.0		2.2		· 2.2		ns	12, 13	14	<u> </u>	7,9	1, 16	8	2, 3, 14, 15
fCount	Count Frequency	250		250		250	-	MHz	12	13	9		1, 16	8	3, 14

Four Bit Universal Shift Register

ELECTRICALLY TESTED PER: 5962-8751101

The 10H541 is a four-bit universal shift register. This device is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power-supply current.

- Shift frequency, 250 MHz min
- 610 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNI	MENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q ₂	2	6	3	51 Ω to V_{TT}
Q ₃	3	7	4	51 Ω to V_{TT}
С	4	8	5	CP1
DR	5	9	7	OPEN
D ₃	6	10	8	GND
S ₂	7	11	9	OPEN
VEE	8	12	10	VEE
D ₂	9	13	12	GND
S ₁	10	14	13	OPEN
D ₁	11	15	14	GND
D ₀	12	16	15	GND
DL	13	1	17	OPEN
Q ₀	14	2	18	51 Ω to V_{TT}
Q ₁	15	3	19	51 Ω to V_TT
V _{CC2}	16	4	20	GND
IRN - IN CON	DITION	IS:		

PIN ASSIGNMENTS

Military 10H541

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8751101 3) 883: 10H541/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

SE	LECT		OUTPUTS							
S ₁	S ₂	OPERATING MODE	Q _{0n+1}	Q _{1n+1}	Q _{2n+1}	Q _{3n+1}				
L	L	Parallel Entry	D ₀	D ₁	D ₂	D ₃				
L	н	Shift Right *	Q1 _n	Q2n	Q3n	DR				
н	L	Shift Left *	DL	Q0n	Q1n	Q2n				
н	н	Stop Shift	Q0n	Q1n	Q2n	Q3n				

* Outputs as exist after pulse at "C" input conditions as shown, (Pulse = Positive transition of the clock input.).

10H541

SWITCHING TEST CIRCUIT

NOTES

- 1. Unused outputs should be loaded 100 Ω to ground.
- 2. Length of CoaxA and CoaxB should be equal for equal time delay.
- 3. 2:1 divider maybe used.
- 4. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns}$ (20% to 80%)

10H541

NOTES

1. VIN has the following characteristics:

a) pulse width ≥ 20 ns. b) frequency = 2.0 MHz.

c) t_f and $t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns} (20\% - 80\%)$.

Figure 2. Switching Test Circuit Waveforms

10H541 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature	Test Voltage Values (Volts)													
remperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	VEE1	VEE2					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94					
TA = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94					
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94					

Symbol	Parameter			Lin	nits			Units		TEST VOLTAGE	APPLIED .	TO PINS I	BELOW	
	Functional Parameters:		5 °C roup 1		25 °C roup 2		5 °C roup 3		Pinouts	referenced are for V _{CC} = 0 V, Out	•	•		ignments
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	V _{EE2}	VEE1	Vcc	P.U.T.
VOH	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	4, 6, 9, 11, 12	4		8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	4	4, 6, 9, 11, 12		8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v			8	8	1, 16	2 - 4, 13 -15
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v			8	8	1, 16	2 - 4, 13 -15
^I IH1	Input Current High		255		405		405	μА	5, 6, 9, 11 - 13			8	1, 16	5, 6, 9, 11 -13
IH2	Input Current High		260		415	;	415	μΑ	7, 10			8	1, 16	7, 10
lнз	Input Current High		320		510		510	μА	4			8	1, 16	4
հլ	Input Current Low	0.5		0.3		0.5		μА		4 - 7, 9 - 13	8		1, 16	4 - 7, 9 - 14
lEE	Power Supply	-102		-112		-112		mA			8		1, 16	8

10H541 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature	Test Voltage Values (Volts)												
remperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	V _{EE1}	VEE2				
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-2.94	-5.46	-4.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-2.94	-5.46	-4.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-2.94	-5.46	-4.94				

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional		5 °C		25 °C	L	5 °C		1				n Assignments	
	Parameters:	Subgr	roup 9	Subgr	oup 10	Subgr	oup 11		v	CC = 0 V, Outp	ut Load =	100 12 to G	ND	
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P.U.T.	
^t TLH	Rise Time	0.7	2.0	0.7	2.2	0.7	1.7	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t THL	Fall Time	0.7	2.0	0.7	2.2	0.7	1.7	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t PLH	Propagation Delay	1.0	1.9	1.1	2.1	1.0	2.0	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t PHL	Propagation Delay	1.0	1.9	1.1	2.1	1.0	2.0	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
tSetup	Setup Time Data Inputs	1.5		1.5		1.5		ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t hold	Hold Time Data Input	1.0		1.0		1.0		ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
tSetup	Setup Time Select Input	3.0		3.0		3.0		ns	4, 7, 10, 12	3, 14	1, 16	8	2, 3, 14, 15	
thold	Hold Time Select Inputs	1.0		1.0		1.0		ns	4, 7, 10, 12	3, 14	1, 16	8	2, 3, 14, 15	
ftog	Toggle Frequency	250		250		250		MHz	4, 12	4	1, 16	8	14	

Quad 2-Input Multiplexer (Non-Inverting)

ELECTRICALLY TESTED PER: 5962-8756601

The 10H558 is a quad two channel multiplexer with common input select. A "high" level select enables input D00, D10, D20 and D30 and a "low" level select enables input D01, D11, D21 and D31.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.5 ns Typical
- 290 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- · Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNA	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
Q0	1	5	2	51 Ω to VTT
Q1	2	6	З	51 Ω to V _{TT}
D11	3	7	4	51 Ω to V _{TT}
D10	4	8	5	OPEN
D01	5	9	7	GND
D00	6	10	8	OPEN
NC	7	11	9	OPEN
VEE	8	12	10	VEE
Select	9	13	12	OPEN
D31	10	14	13	GND
D30	11	15	14	OPEN
D21	12	16	15	GND
D20	13	1	17	OPEN
Q3	14	2	18	51 Ω to V _{TT}
Q2	15	3	19	51 Ω to V _{TT}
VCC	16	4	20	GND

BURN - IN CONDITIONS:

VTT = -2.0 V MAX/-2.2 V MIN VEE = -5.7 V MAX/-5.2 V MIN

	Truth	Table	
Select	D0	D1	Q
L	Ø	L	L
L	Ø	н	н
Н	L	Ø	L
Н	н	Ø	н

 \emptyset = Don't Care

Military 10H558

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756601 3) 883: 10H558/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H558

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. Unused outputs connected to 100 Ω resistor to ground.
- 3. 2:1 divider may be used.
- 4. L1 = L2: Matched for equal time delay.
- 5. $R_1 = 50 \Omega$ resistor in series with 50 Ω coax constituting the 100 Ω load.
- 6. $t_f = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns} (20\% 80\%).$
- 7. P_W ≥ 20 ns.
- 7. PRF = 1.0 MHz.

Figure 1. Switching Test Circuit and Waveforms

10H558 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
remperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE1	V _{EE2}	VEEL						
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94						
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94						
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94						

Symbol	Parameter		Limits Units TEST VOLTAGE APPLIED TO PINS BELOW												w	
	Functional		5° C		5° C		- 55° C		Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 0 V, Output Load = 100 Ω to GND							
	Parameters:		roup 1		roup 2		roup 3	ļ	L	·				12 10 GNI		
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE1	VEE2	Vcc	P.U.T.
Vон	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3, 5, 10, 12				8		16	1, 2, 14, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v					8		16	1, 2, 14, 15
VOH1	High Output Voltage	-1.01	-1.78	-0.86	-0.65	-1.06	-0.84	v	3 - 6, 9 -13				8	8	16	1, 2, 13, 15
V _{OL1}	Low Output Voltage	-1.95	-0.58	-1.95	-1.565	-1.95	-1.61	v	3 - 6, 9 -13		3 - 6, 9 -13	9	8	8	16	1, 2, 14, 15
IEE	Power Supply Current	-48		-53		-53		mA			9	3 - 6, 9 -13	8		16	8
^I IH1	Input Current High		295		475		475	μΑ	9				8		16	9
liH2	Input Current High		320		515		515	μA	3 - 6, 9 -13				8		16	3 - 6, 9 - 13
ηL	Input Current	0.5		0.3		0.5		μΑ		3-6 9-13			8		16	3 - 6, 9 - 13

10H558 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
remperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE1	VEE2	VEEL						
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94						
TA = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94						
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94						

Symbol	Parameter			Lin	nits			Units	TE	ST VOLTAGE AP	PLIED TO	PINS BEL	NS BELOW		
	Functional	+ 2	5 °C	+ 12	5 °C	- 58	5 °C			renced are for Di		-	-		
	Parameters:	Subg	roup 9	Subgroup 10		Subgroup 11			, i	CC = 2.0 V, Outp	ut Load =	100 12 10	2 to GND		
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	P.U.T.		
tτlh	Rise Time	0.7	2.0	0.7	2.2	0.7	2.2	ns	3 - 6, 10 - 13	1, 2	16	8	1, 2, 14, 15		
tτн∟	Fall Time	0.7	2.0	0.7	2.2	0.7	2.2	ns	3 - 6, 10 - 13	1, 2	16	8	1, 2, 14, 15		
^t PLH	Propagation Delay Data to Output	0.5	1.8	0.5	2.2	0.5	1.9	ns	3 - 6	1, 2, 10 - 13	16	8	1, 2, 14, 15		
^t PLH	Propagation Delay Data to Output	0.5	1.8	0.5	2.2	0.5	1.9	ns	3 - 6	1, 2, 10 - 13	16	8	1, 2, 14, 15		
^t PHL	Propagation Delay Select to Output	1.0	2.7	1.0	3.0	1.0	2.7	ns	3 - 6, 10 - 13	1, 2	16	8	1, 2, 14, 15		
^t PLH	Propagation Delay Select to Output	1.0	2.7	1.0	3.0	1.0	2.7	ns	3 - 6, 10 - 13	1, 2	16	8	1, 2, 14, 15		

12-Bit Parity Generator Checker

ELECTRICALLY TESTED PER: 5962-8756201

The 10H560 is a 12-bit parity generator-checker. The output goes high when an odd number of inputs are high providing the odd parity function. Unconnected inputs are pulled to a logic low allowing parity detection and generation for less than 12 bits.

The 10H560 is a functional pin duplication of the standard 10K family part with 100% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 2.5 ns Typical
- 480 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- · Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNI	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Out	2	6	3	51 Ω to VTT
IN1	3	7	4	GND
IN ₂	4	8	5	OPEN
IN ₃	5	9	7	OPEN
IN4	6	10	8	OPEN
IN ₅	7	11	9	OPEN
VEE	8	12	10	VEE
IN ₆	9	13	12	OPEN
IN ₇	10	14	13	GND
IN ₈	11	15	14	OPEN
INg	12	16	15	OPEN
IN10	13	1	17	OPEN
IN ₁₁	14	2	18	OPEN
IN12	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX - 2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

Truth Table	
Input	Output
Sum of High Level Inputs	Pin 2
Even	Low
Odd	High

Military 10H560

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756201 3) 883: 10H560/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H560

Figure 1. Switching Test Circuit and Waveforms

MOTOROLA MILITARY MECL DATA 2-107

10H560 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
	VIH1	VIL1	VIH2	V _{IL2}	PS1	PS2	V _{EE1}	VEE2	VEEL						
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94						
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94						
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94						

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAGE	APPLIE	TO PINS	BELOW	
	Functional	+ 2	5 °C	+ 12	5 °C	- 55	5 °C		Pin				package,		-	nents
	Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3	1		v	CC = 0 V,	Output L	.oad = 10) Ω to - 2.	0 V	
		Min	Max	Min	Max	Min	Max]	VIH1	VIL1	VIH2	VIL2	V _{EE2}	V _{EE1}	Vcc	P.U.T.
· V _{OH}	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3 - 7 9 - 15	3 - 7				8	1, 16	2
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	3 - 7 9 - 15	3-7 9-15			i	8	1, 16	2
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3 - 7 9 - 11 13	4 - 7 9 -15	3, 5, 7 10, 12 14	12	8	8	1, 16	2
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	3 - 7 9 - 14	4 - 7 9 -15	4, 6, 9 11, 13 15	3	8	8	1, 16	2
IEE	Power Supply Current	-78		-88		-88		mA						8	1, 16	8
ΙΗ	Input Current High		245		390		390	μА	4, 5, 9 10, 13, 14					8	1, 16	4, 5, 9, 10, 13, 14
liH1	Input Current High		285		455		455	μА	3, 6, 7 11, 12 15					8	1, 16	3, 6, 7, 11, 12, 15
μ	Input Current Low	0.5		0.3		0.5		μΑ		3 - 7 9 - 15				8	1, 16	3 - 7, 9 - 15

MOTOROLA MILITARY MECL DATA 2-108

10H560 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature	4 4	Test Voltage Values (Volts)													
remperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL						
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94						
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94						
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94						

Symbol	Parameter			Lin	nits			Units	hits TEST VOLTAGE APPLIED TO PINS BELOW									
	Functional Parameters:	+ 25 Subgr		+ 12 Subgro		- 55 Subgr	i °C oup 11		Pinc			DIL packag		Pin Assignme o GND	ents			
	Falameters.	Min	Max	Min	Max	Min	Max	1	P _{S2}	VIN	VOUT	Vcc	VEEL	P _{S1}	P.U.T.			
t _{TLH}	Rise Time	0.55	1.8	0.75	1.9	0.55	1.8	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t THL	Fall Time	0.55	1.8	0.75	1.9	0.55	1.8	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
tPLH1	Propagation Delay (3, 5, 7, 10, 12, 14)	1.2	2.9	1.35	3.2	1.15	2.8	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PHL1	Propagation Delay (3, 5, 7, 10, 12, 14)	1.45	3.0	1.7	3.4	1.4	2.8	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PHL2	Propagation Delay (3, 5, 7, 10, 12, 14)	1.3	2.9	1.55	3.2	1.25	2.9	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PLH2	Propagation Delay (3, 5, 7, 10, 12, 14)	1.4	3.2	1.55	3.6	1.35	2.8	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PLH1	Propagation Delay (4, 6, 9, 11, 13, 15)	1.1	2.9	1.25	3.2	1.05	2.7	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PHL1	Propagation Delay (4, 6, 9, 11, 13, 15)	1.15	2.7	1.35	3.2	1.1	2.6	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PHL2	Propagation Delay (4, 6, 9, 11, 13, 15)	1.2	2.8	1.45	3.0	1.15	2.6	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1, 16	8	4 - 7, 9 - 15	2			
^t PLH2	Propagation Delay (4, 6, 9, 11, 13, 15)	1.1	3.0	1.25	3.3	1.1	2.8	ns	4 - 7, 9 - 15	4 - 7, 9 - 15	2	1,16	8	4 - 7, 9 - 15	2			

ELECTRICALLY TESTED PER: 5962-8756701

The 10H561 provides parallel decoding of a three bit binary word to one of eight lines. The 10H561 is useful in high-speed multiplexer/demultiplexer applications. The 10H561 is designed to decode a three bit input word to one of eight output

lines. The 10H561 output will be low when selected while all other outputs are high. The enable inputs, when either or both are high, force all outputs high.

The 10H561 is a true parallel decoder. This eliminates unequal parallel path delay times found in other decoder designs. These devices are ideally suited for multiplexer/demultiplexer applications.

- Propagation Delay, 1.5 ns Typical
- 470 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	Pi	N ASSIGNN	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Ē0	2	6	3	GND
Q ₃	3	7	4	VTT
Q ₂	4	8	5	VTT
Q ₁	5	9	7	VTT
Q ₀	6	10	8	VTT
Α	7	11	9	OPEN
VEE	8	12	10	VEE
В	9	13	12	OPEN
Q ₇	10	14	13	VTT
Q ₆	11	15	14	VTT
Q ₅	12	16	15	VTT
Q4	13	1	17	VTT
С	14	2	18	GND
Ē1	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 10H561

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756701 3) 883: 10H561/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H561 TRUTH TABLE

Enable	Inputs		Inputs					Out	puts			
E1	E0	с	В	A	Q ₀	Q ₁	Q ₂	Q3	Q4	Q ₅	Q ₆	Q7
L	L	L	L	L	L	н	н	н	н	н	н	н
L	L	L	L	н	н	L	н	н	н	н	н	н
L	L	L	н	L	н	н	L	н	н	н	н	н
L	L	L	н	н	н	н	н	L	н	н	н	н
L	L	н	L	L	н	н	н	н	L	н	н	н
L	L	н	L	н	н	н	н	н	н	L	н	н
L	L	н	н	L	н	н	н	н	н	н	L	н
L	L	н	н	н	н	н	н	н	н	н	н	L
н	ø	ø	ø	ø	н	н	н	н	н	н	н	н
ø	н	ø	ø	Ø	н	н	н	н	н	н	н	н

Ø = Don't Care

NOTES

- 1. All other outputs loaded 100 Ω to ground.
- 2. 2:1 divider may be used. 3. $L_1 = L_2$: Matched for equal time delay.
- 4. $R_L = 50 \Omega$.

Figure 1. Switching Test Circuit

NOTES

- 1. V_{IN} = 20 ns.
- 2. f_{IN} = 1.0 MHz.
- 3. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns} (20\% 80\%).$

Figure 2. Switching Test Circuit Waveforms

10H561 QUIESCENT LIMIT TABLE*

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)											
remperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE1	V _{EE2}	VEEL				
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter			Lin	nits			Units			TEST	/OLTAGE	APPLIED	TO PINS	BELOW	
	Functional	+ 25			5 °C		5 °C			Pinouts		d are for D 0 V, Outpu	•	•		gnments
	Parameters:	Subgr Min	Max	Subgi Min	roup 2 Max	Subgi Min	roup 3 Max	-	VIH1	VIL1	VIH2	V _{IL2}	VEE1	VEE2	Vcc	P.U.T.
VOH	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	2, 7, 9	VIL1	THZ	VIL2	8	VEEZ	1, 16	3 - 6, 10 - 13
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.535	-1.95	-1.61	v	7, 9, 14				8		1, 16	3 - 6, 10 - 13
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	7, 9, 14		2, 7, 9 14, 15	7, 9, 14	8	8	1, 16	3 - 6, 10 - 13
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.535	-1.95	-1.61	v	7, 9, 14		7, 9, 14		8	8	1, 16	3 - 6, 10 - 13
IEE	Power Supply Current	-76		-84		-84		mA	2, 7, 9, 14, 15				8		1, 16	8
ιн	Input Current High		275		465		465	μΑ	2, 7, 9, 14, 15				8		1, 16	2, 7, 9, 14, 15
41.	Input Current Low	0.5		0.3		0.5		μА		2, 7, 9, 14, 15				8	1, 16	2, 7, 9, 14, 15

10H561 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL		
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94		
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94		
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94		

Symbol	Parameter	Limits Units								TES	T VOLTAGE A	PPLIED	TO PINS B	ELOW	
	Functional		5 °C		5 °C		- 55 °C Subgroup 11		Pin		ced are for DI	-		-	ments
	Parameters:	Min	roup 9 Max	Min	oup 10 Max	Min	Max		P _{S2}	VIN	VOUT	Vcc	VEEL	PS1	P.U.T.
^t TLH	Rise Time	0.55	1.5	0.6	1.6	0.55	1.5	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
tthr	Fall Time	0.55	1.5	0.6	1.6	0.55	1.5	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
^t PLH1	Propagation Delay Data	0.85	2.1	1.05	2.3	0.8	1.9	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
^t PHL1	Propagation Delay Data	0.65	2.2	0.7	2.3	0.6	2.2	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
^t PLH	Rise Time for Pins Enable	1.25	2.3	1.4	2.6	1.15	2.2	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
^t PHL	Rise Time for Pins Enable	0.8	2.3	0.9	2.4	0.8	2.3	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
^t PLH2	Propagation Delay Data	0.75	2.1	0.85	2.3	0.7	2.0	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13
^t PHL2	Propagation Delay Data	0.8	2.2	1.0	2.4	0.75	2.2	ns	7, 9 14, 15	2, 7, 9, 14	3 - 6, 10 -13	1, 16	8	7, 9 14	3 - 6 10 - 13

MOTOROLA MILITARY MECL DATA 2-114

Binary to 1-8 Decoder (High)

ELECTRICALLY TESTED PER: MPG 10H562

The 10H562 provides parallel decoding of a three bit binary word to one of eight lines. The 10H562 is useful in high-speed multiplexer/demultiplexer applications.

The 10H562 is designed to decode a three bit input word to one of eight output lines. The 10H562 output will be low when selected while all other outputs are low. The enable inputs, when either or both are high, force all outputs low.

The 10H562 is a true parallel decoder. This eliminates unequal parallel path delay times found in other decoder designs. These devices are ideally suited for multiplexer/demultiplexer applications.

- Propagation Delay, 1.5 ns Typical
- 460 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- · Voltage Compensated
- MECL 10K-Compatible

	Pi	N ASSIGNA	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
E ₀	2	6	3	OPEN
Q ₃	3	7	4	VTT
Q ₂	4	8	5	VTT
Q ₁	5	9	7	VTT
Q ₀	6	10	8	VTT
Α	7	11	9	GND
VEE	8	12	10	VEE
В	9	13	12	OPEN
Q7	10	14	13	VTT
Q ₆	11	15	14	VTT
Q5	12	16	15	VTT
Q4	13	1	17	VTT
С	14	2	18	OPEN
Ē1	15	3	19	OPEN
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT =	– 2.0 V	' MAX/ – 2.2 V M	Ν
VEE =	– 5.7 V	MAX/ - 5.2 V MI	N

Military 10H562

2

AN: N/A

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10H562/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H562 TRUTH TABLE

Enable	Inputs		Inputs		Outputs							
E1	E0	С	В	A	QO	Q1	Q2	Q3	Q4	Q5	Q ₆	Q7
L	L	L	L	L	н	L	L	L	L	L	L	L
L	L	L	L	н	L	н	L	L	L	L	L	L
L	L	L	н	L	L	L	н	L	L	L	L	ι
L	L	L	н	н	L	L	L	н	L	L	L	ι
L	L	н	L	L	L	L	L	L	н	L	L	L
L	L	н	L	н	L	L	L	L	L	н	L	L
L	L	н	н	L	L	L	L	L	L	L	н	L
L	L	н	н	н	L	L	L	ι	L	L	L	н
н	ø	ø	ø	ø	L	L	L	L	L	L	L	L
ø	н	ø	ø	ø	L	L	L	L	L	L	L	L

Ø = Don't Care

NOTES

- 1. All other outputs loaded 100 Ω to ground.
- 2. 2:1 divider may be used.
- 3. L₁ = L₂: Matched for equal time delay. 4. R_L = 50 Ω .

Figure 1. Switching Test Circuit

MOTOROLA MILITARY MECL DATA 2-116

10H562

NOTES

 V_{IN} has the following characteristics: 1. $P_W = 20$ ns. 2. $f_{IN} = 1.0$ MHz.

3. $t_{f} = t_{f} = 1.0 \text{ ns} \pm 0.1 \text{ ns} (20\% - 80\%).$

10H562 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature													
	VIH	٧ _{IL}	VIH1	VIL1	PS1	PS2	V _{EE1}	V _{EE2}	VEEL				
T _A = 25 °C	-0.780	0.780 -1.95 -1.10 -1.480 +1.11 +0.31 -5.46 -4.94 -2.94											
T _A = 125 °C	-0.735	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.840	1.840 -1.95 -1.16 -1.510 +1.01 +0.28 -5.46 -4.94 -2.94											

Symbol	Parameter		Limits								TEST V	OLTAGE	APPLIED	TO PINS	BELOW	
	Functional	+ 25 Subgr			5 °C oup 2		5 °C Jroup 3			Pinouts				kage, che = 100 Ω		signments
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	V _{EE2}	V _{EE1}	Vcc	P.U.T.
Vон	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	7, 9, 14					8	1, 16	3 - 6, 10 - 13
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.363	-1.95	-1.61	v	2, 15					8	1, 16	3 - 6, 10 - 13
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	7, 9, 14		2, 7, 9 14, 15	7, 9 14, 15	8	8	1, 16	3 - 6, 10 - 13
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.363	-1.95	-1.61	v	7, 9, 14		7, 9, 14	2, 7, 9 14, 15	8	8	1, 16	3 - 6, 10 - 13
IEE	Power Supply Current	-76		-84 _.		-84		mA						8	1, 16	8
ЧΗ	Input Current High		275		465		465	μΑ	2, 7, 9 14, 15					8	1, 16	2, 7, 9, 14, 15
μL	Input Current Low	0.5		0.3		0.5		μΑ		2, 7, 9 14, 15			8		1, 16	2, 7, 9, 14, 15

10H562 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)												
remperature	VIH	VIL	VIH1	VIL1	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.780	0.780 -1.95 -1.10 -1.480 +1.11 +0.31 -5.46 -4.94 -2.94												
T _A = 125 °C	-0.735	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = -55 °C	-0.840	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Symbol Parameter Limits Units TEST VOLTAGE APPLIED TO PINS					PINS BE	LOW								
	Functional Parameters:	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		- 55 °C Subgroup 11		1	1	Pinouts referenced are for DIL package, check Pin Assignmen V_{CC} = 2.0 V, Output Load = 100 Ω to GND					
		Min	Max	Min	Max	Min	Max		P _{S2}	VIN	VOUT	Vcc	VEEL	P _{S1}	P.U.T.
tтlн	Rise Time	0.6	1.9	0.6	2.0	0.6	1.8	ns	7, 9 14, 15	2, 7, 9,14	3 - 6, 10 - 13	1, 16	8	7, 9 14, 15	3 - 6, 10 - 13
tτнL	Fall Time	0.6	1.9	0.6	2.0	0.6	1.8	ns	7,9 14,15	2, 7, 9,14	3 - 6, 10 - 13	1, 16	8	7, 9 14, 15	3 - 6, 10 - 13
tPLH	Propagation Delay	0.7	2.4	0.8	2.7	0.7	2.3	ns	7, 9 14, 15	2, 7, 9,14	3 - 6, 10 - 13	1, 16	8	7, 9 14, 15	3 - 6, 10 - 13
^t PHL	Propagation Delay	0.7	2.4	0.8	2.7	0.7	2.3	ns	7, 9 14, 15	2, 7, 9,14	3 - 6, 10 - 13	1, 16	8	7, 9 14, 15	3 - 6, 10 - 13

8-Line Multiplexer

ELECTRICALLY TESTED PER: 5962-8772901

The 10H564 is a MECL 10H part which is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power supply current.

The 10H564 is designed to be used in data multiplexing and parallel to serial conversion applications. Full parallel gating provides equal delays through any data path. The 10H564 incorporates an output buffer, eight inputs and an enable. A high on the enable forces the output low. The open emitter output allows the 10H564 to be connected directly to a data bus. The enable line allows an easy means of expanding to more than 8 lines using additional 10H564's.

- Propagation Delay, 1.5 ns Typical
- 455 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS							
FUNCTION	DIL	FLATS	LCC	BURN-IN			
				(CONDITION C)			
VCC1	1	5	2	GND			
Enable	2	6	3	OPEN			
X ₃	3	7	4	OPEN			
X ₂	4	8	5	OPEN			
X ₁	5	9	7	OPEN			
x ₀	6	10	8	GND			
А	7	11	9	OPEN			
VEE	8	12	10	VEE			
В	9	13	12	OPEN			
С	10	14	13	OPEN			
X ₄	11	15	14	OPEN			
х ₅	12	16	15	OPEN			
х ₆	13	1	17	OPEN			
X7	14	2	18	OPEN			
Z	15	3	19	51 Ω to VTT			
V _{CC2}	16	4	20	GND			

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H564

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8772901 3) 883: 10H564/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H564 TRUTH TABLE								
	AD	_						
ENABLE	С	В	A	Z				
L	L	L	L	×o				
L	L	L	н	×1				
L	L	н	L	X2				
L	L	н	н	x ₃				
L	н	L	L	X4				
L	н	L	н	×5				
L	н	н	L	× ₆				
L	н	н	н	Х ₇				
н	ø	ø	Ø	L				

Ø = Don't Care

NOTES

- 1. All other outputs loaded 100 $\boldsymbol{\Omega}$ to ground.
- 2. 2:1 divider may be used.
- 3. $L_1 = L_2$: Matched for equal time delay.
- 4. $R_{L} = 50 \Omega$.

NOTES

.

 V_{IN} has the following characteristics: 1. $P_W = 20$ ns.

2. f_{IN} = 1.0 MHz.

3. $t_r = t_f = 1.0 \text{ ns} \pm 0.1 \text{ ns} (20\% - 80\%).$

Figure 2. Switching Test Circuit Waveforms

2

MOTOROLA MILITARY MECL DATA 2-122

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	V _{IH2}	V _{IL2}	PS1	P _{S2}	V _{EE1}	V _{EE2}	VEEL				
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter		Limits					Units			TEST	VOLTAG	E APPLIE	D TO PIN	IS BELOV	/
	Functional	+ 2	5 °C	+ 12	25 °C	- 55	i °C			Pinou				• •		Assignments
	Parameters:	Subgi	roup 1	Subg	roup 2	Subgi	oup 3				۷C	C = 0 V, O	utput Lo	ad = 100	Ω to - 2.0	v
		Min	Max	Min	Max	Min	Max]	VIH1	VIL1	VIH2	VIL2	VEE2	VEE1	Vcc	P.U.T.
VOH	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3 - 7 9 - 14	2, 9 10				8	1, 16	15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	2, 7, 9 10, 14	2 - 7 9 - 14				8	1, 16	15
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3 - 7 9 - 13	2, 7, 9 10	3 - 5, 7 9 - 14	2, 7 9, 10	8	8	1, 16	15
V _{OL1}	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	7, 9 10, 14	2, 7, 9 10	2	3 - 6 11 - 14	8	8	1, 16	15
IEE	Power Supply Current	-75		-83		-83		mA						8	1, 16	8
ЧΗ	Input Current High		320		510		510	μΑ	2 - 7 9 - 14					8	1, 16	2 - 7, 9- 14
ΙL	Input Current Low	0.5		0.3		0.5		μA		2 - 7 9 - 14			8		1, 16	2 - 7, 9 - 14

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL			
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94			
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94			
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94			

Symbol	Parameter	Τ	Limits							TEST	VOLTAGE	APPLIED	TO PINS	BELOW	
	Functional		5 °C		5 °C		5 °C		Pinouts referenced are for DIL package, check Pin Assignment V_{CC} = 0 V, Output Load = 100 Ω to GND					nents	
	Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11			VCC =	0 V, Outp	ut Load =	100Ω to G	iND	
		Min	Max	Min	Max	Min	Max		PS2	VIN	VOUT	VCC	VEEL	PS1	P.U.T.
tτlh	Rise Time	0.5	1.7	0.5	1.7	0.5	1.7	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2-7 9-14	15
^t THL	Fall Time	0.5	1.7	0.5	1.7	0.5	1.7	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2-7 9-14	15
^t PLH	Propagation Delay Address to Output	1.45	2.7	1.6	3.2	1.4	2.6	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2 - 7 9 - 14	15
^t PHL	Propagation Delay Address to Output	1.45	3.2	1.6	3.4	1.4	3.1	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2 - 7 9 - 14	15
tPLH	Propagation Delay Data to Output	1.0	2.3	1.15	2.6	1.0	2.2	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2 - 7 9 - 14	15
^t PHL	Propagation Delay Data to Output	1.1	2.7	1.6	3.4	1.0	2.5	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2 - 7 9 - 14	15
^t PLH	Propagation Delay Enable to Output	0.5	1.9	0.55	2.0	0.45	2.0	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2 - 7 9 - 14	15
^t PHL	Propagation Delay Enable to Output	0.66	2.0	0.7	2.0	0.55	2.0	ns	2 - 7 9 - 14	2 - 7 9 - 14	15	1, 16	8	2 - 7 9 - 14	15

Dual Binary to 1-4 Decoder (Low)

ELECTRICALLY TESTED PER: 5962-8756801

The 10H571 is a binary coded 2 line to dual 4 line decoder with selected outputs low. With either \overline{E}_0 or \overline{E}_1 high, the corresponding selected 4 outputs are high. The common enable \overline{E} , when high, forces all outputs high.

- Propagation Delay, 2.0 ns Typical
- 460 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION C)
Voor	1	5	2	GND
VCC1 E1	2	6	3	GND
•		0	5	GND
Q ₁₃	3	7	4	51 Ω to V _{TT}
Q ₁₂	4	8	5	51 Ω to V _{TT}
Q ₁₁	5	9	7	51 Ω to V _{TT}
Q ₁₀	6	10	8	51 Ω to VTT
в	7	11	9	OPEN
VEE	8	12	10	VEE
Α	9	13	12	OPEN
Q ₀₃	10	14	13	51 Ω to V _{TT}
Q ₀₂	11	15	14	51 Ω to V_TT
Q ₀₁	12	16	15	51 Ω to V _{TT}
Q ₀₀	13	1	17	51 Ω to V _{TT}
Ē0	14	2	18	GND
Ē	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN VFE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H571

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756801 3) 883: 10H571/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H571 TRUTH TABLE

En	able Inpu	ıts	Inp	uts				Out	puts			
Ē	E ₀	E1	A	В	Q10	Q11	Q12	Q13	Q ₀₀	Q ₀₁	Q ₀₂	Q ₀₃
L	L	L	L	L	L	н	н	н	L	н	н	н
L	L	L	L	н	н	L	н	н	н	L	н	н
L	L	L	н	L	н	н	L	н	н	н	L	н
L	L	L	н	н	н	н	н	L	н	н	н	L
L	L	н	L	L	н	н	н	н	L	н	н	н
L	н	L	L	L	ĺ L	н	н	н	н	н	н	н
н	ø	ø	ø	ø	н	н	н	н	н	н	н	н

Ø = Don't Care

NOTES

- 1. All other outputs loaded 100 Ω to ground.
- 2. 2:1 divider may be used.
- 3. L1 = L2: Matched for equal time delay.
- 4. RL = 50 Ω.

Figure 1. Switching Test Circuit

NOTES

- 1. V_{IN} = 20 ns. 2. f_{IN} = 1.0 MHz.
- 3. $t_{f} = t_{f} = 1.0 \text{ ns} \pm 0.1 \text{ ns}$ (20% 80%).

Figure 2. Switching Test Circuit Waveforms

.

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	V _{EE1}	V _{EE2}	VEEL			
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-4.94	-2.94	-5.46			
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-4.94	-2.94	-5.46			
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-4.94	-2.94	-5.46			

Symbol	Parameter	Limits						Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:	+ 25 Subgr			5 °C roup 2	- 55 Subgi	5 °C roup 3		Pinouts referenced are for DIL package, check Pin Assignmen V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V				nments			
	Falameters.	Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	V _{IH2}	VIL2	V _{EE2}	V _{EE1}	Vcc	P.U.T.
∨он	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	15					8	1, 16	3 - 6, 10 - 13
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.363	-1.95	-1.61	v	7, 9					8	1, 16	3 - 6, 10 - 13
VOH1	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	7, 9		2, 7, 9 15	7, 9	8	8	1, 16	3 - 6, 10 - 13
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.363	-1.95	-1.61	v	7, 9		7, 9	2, 7, 9 15	8	8	1, 16	3 - 6, 10 - 13
IEE	Power Supply Current	-77		-85		-85		mA						8	1, 16	8
ιн	Input Current High		275		465		465	μА	2, 7, 9 14, 15					8	1, 16	2 - 7, 9, 15
μL	Input Current Low	0.5		0.3		0.5		μA		2, 7, 9 14, 15				8	1, 16	2 - 7, 9, 15

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	V _{IL2}	P _{S1}	PS2	V _{EE1}	V _{EE2}	VEEL				
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-4.94	-2.94	-5.46				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-4.94	-2.94	-5.46				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-4.94	-2.94	-5.46				

Symbol	Parameter	Limits						Units		TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:		5 °C roup 9	+ 12 Subgr	5 °C oup 10		5 °C oup 11		Pinouts referenced are for DIL package, check Pin Ass V_{CC} = 2.0 V, Output Load = 100 Ω to GND				ignments			
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P.U.T.		
^t TLH	Rise Time	0.5	2.0	0.6	2.2	0.4	2.2	ns	2, 7, 9, 14	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13		
^t THL	Fall Time	0.5	2.0	0.6	2.2	0.4	2.2	ns	2, 7, 9, 14	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13		
tPLH	Propagation Delay	0.5	3.0	0.5	3.2	0.5	3.2	ns	2, 7, 9, 14	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13		
^t PHL	Propagation Delay	0.5	3.0	0.5	3.2	0.5	3.2	ns	2, 7, 9, 14	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13		

ELECTRICALLY TESTED PER: 5962-8750601

The 10H574 is a Dual 4-to-1 Multiplexer. This device is a functional/pinout duplication of the standard MECL 10K part, with 100% improvement in propagation delay and no increase in power supply current.

- Propagation Delay, 1.5 ns Typical
- 440 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNI	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q ₀	2	6	3	51 Ω to V _{TT}
DO0	3	7	4	OPEN
DO2	4	8	5	OPEN
DO1	5	9	7	GND
DO3	6	10	8	GND
А	7	11	9	GND
VEE	8	12	10	VEE
в	9	13	12	GND
D13	10	14	13	GND
D11	11	15	14	OPEN
D12	12	16	15	GND
D10	13	1	17	OPEN
Enable	14	2	18	OPEN
Q1	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT = -2.0 V MAX/-2.2 V MIN VEE = -5.7 V MAX/-5.2 V MIN

Military 10H574

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750601 3) 883: 10H574/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H574
TRUTH TABLE

ENABLE	ADDRES	S INPUTS	Ουτι	PUTS
Ē	В	A	Q ₀	Q ₁
н	Ø	ø	L	L
L	, L	L	D ₀₀	D ₁₀
L	L	н	D ₀₁	D ₁₁
L	н	L	D ₀₂	D ₁₂
L L	н	н	D ₀₃	D ₁₃

Ø = Don't Care

NOTES

- 1. Unused outputs loaded 100 Ω to ground.
- $\begin{array}{l} \text{R}_{\text{L}} = 1.0 \text{ MHz}. \\ \text{R}_{\text{L}} = 1.0 \text{ MHz}. \\ \text{R}_{\text{L}} = 1.0 \text{ ns} \pm 0.1 \text{ ns} (20\% 80\%). \\ \text{R}_{\text{L}} = 50 \ \Omega. \\ \text{S}. \ \text{PW} = 20 \text{ ns}. \end{array}$

Figure 2. Switching Test Circuit Waveforms

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	V _{IL2}	PS1	PS2	V _{EE1}	V _{EE2}	VEEL				
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter			Lin	nits			Units	ts TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:	+ 25 Subgi	5 °C roup 1		25 °C roup 2	- 55 °C Subgroup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V								
	l'alameters.	Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	V _{EE1}	V _{EE2}	Vcc	P.U.T.
VOH	High Output Voltage	-1.01	-0.78	-0.86	-0.65	-1.06	-0.84	v	3 - 7 9 - 14	7, 9, 14			8		1, 16	2, 15
VOL	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	3, 7, 9, 13, 14	3 - 7 9 - 14			8		1, 16	2, 15
VOL1	Low Output Voltage	-1.95	-1.58	-1.95	-1.565	-1.95	-1.61	v	7, 9, 14		7, 9, 14	3 - 7 9 - 13	8	8	1, 16	2 - 4 13 - 15
VOH1	High Output Voltage	-1.01	-0.78	-1.86	-0.65	-1.06	-0.84	v	3 - 7 9 - 13		3 - 7 9 - 13	7, 9, 14	8	8	1, 16	2, 15
μн	Power Supply Current		300		475		475	μА	3 - 7 9 - 13				8		1, 16	3 - 7, 9 - 13
^I IH1	Input Current High		420		670		670	μА	14				8		1, 16	14
۱ _۱ ۲	Input Current Low	0.5		0.3		0.5		μA		3 - 7 9 - 14			8		1, 16	3 - 7, 9 - 14
IEE	Power Supply Drain Current	-73		-80		-80		mA					8		1, 16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	P _{S1}	PS2	VEEL	VEE1	V _{EE2}				
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94				
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94				
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94				

Symbol	Parameter			Lin	nits			Units	its TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25			5° C		° C		Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11		V_{CC} = 2.0 V, Output Load = 100 Ω to GND							
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P.U.T.		
^t TLH	Rise Time	0.5	1.7	0.5	2.0	0.4	1.65	ns	3 - 7, 9 -14	2, 15	1, 16	8	3 - 5, 9, 11 - 13	2, 15		
^t THL	Fall Time	0.5	1.7	0.5	2.0	0.4	1.65	ns	3 - 7, 9 -14	2, 15	1, 16	8	3 - 5, 9, 11 - 13	2, 15		
^t PLH ^t PHL	Propagation Delay (A & B) note 1	1.2	2.9	1.5	3.6	1.1	2.75	ns	3 - 7, 9 -14	2, 15	1, 16	8	3 - 5, 9, 11 - 13	2, 15		
^t PLH ^t PHL	Propagation Delay (Data X & Y) note 2	1.0	2.4	1.0	2.9	0.8	2.25	ns	3 - 7, 9 -14	2, 15	1, 16	8	3 - 5, 9, 11 - 13	2, 15		
^t PLH tPHL	Propagation Delay (Enable) note 3	0.5	1.8	0.5	2.0	0.5	1.7	ns	3 - 7, 9 -14	2, 15	1, 16	8	3 - 5, 9, 11 - 13	2, 15		

Notes

1. Pins 7, 9.

2. Pins 3 - 6, 10 - 13.

3. Pins 14.

Hex "D" Master-Slave Flip-Flop

ELECTRICALLY TESTED PER: 5962-8751201

The 10H576 contains six master slave type "D" flip-flops with a common clock. This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in clock frequency and propagation delay and no increase in power-supply current.

- Propagation Delay, 1.7 ns Typical
- 675 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNA	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q ₀	2	6	3	51 Ω to V_{TT}
Q ₁	3	7	4	51 Ω to V _{TT}
Q ₂	4	8	5	51 Ω to V_{TT}
DO	5	9	7	GND
D1	6	10	8	GND
D ₂	7	11	9	GND
VEE	8	12	10	VEE
Clock	9	13	12	CP1
D ₃	10	14	13	GND
D ₄	11	15	14	GND
D ₅	12	16	15	GND
Q ₃	13	1	17	51 Ω to V_{TT}
Q4	14	2	18	51 Ω to V_{TT}
Q5	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

Military 10H576

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8751201 3) 883: 10H576/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

CLOCK TRUTH TABLE										
С	D	Q _{n + 1}								
L	Ø	Qn								
H.	L	L								
Н*	н	н								

Ø = Don't Care

* A clock H is a clock transition from a low to a high state

NOTES

2. 2:1 divider may be used.

3. L1: L2: Matched for equal time delay.

4. VIN = 20 ns.

5. f_{IN} = 1.0 MHz.

6. $t_f = t_f = 1.0 \text{ ns} (20\% - 80\%) \pm 0.1 \text{ ns}.$

NOTES

1. All other outputs are loaded 100 Ω to ground.

2. 2:1 divider may be used.

3. L1: L2: Matched for equal time delay.

4. V_{IN} = 20 ns.

5. f_{IN} = 1.0 MHz.

6. $t_f = t_f = 1.0 \text{ ns} (20\% - 80\%) \pm 0.1 \text{ ns}.$

Figure 2. Test Circuit Waveform

Figure 3. tSET and tHOLD Waveform

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	V _{IH1}	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW								
	E	+ 25	5 °C	+ 12	25 °C	- 55	5 °C		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V								
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subgi	roup 3			```	CC = 0 V	, Output	Load = 1	00 Ω to	– 2.0 V		
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE2	VEE1	Vcc	C _{P1}	P. U. T.
∨он	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 10 - 12					8	1, 16	9, P1	2 - 4 13 - 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v		5 - 7 10 - 12				8	1, 16	9, P1	2 - 4 13 - 15
VOH1	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 10 - 12	5 - 7 10 - 12	5 - 7 10 - 12		8	8	1, 16	9 P1-3	2 - 4 13 - 15
VOL1	Low Output Voltage	- 1.96	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v	5 - 7 10 - 12	5 - 7 10 - 12		5 - 7 10 - 12	8	8	1, 16	9 P1-3	2 - 4 13 - 15
IEE	Power Supply Current	- 112		- 123		- 123		mA						8	1, 16		8
Iн	Input Current High		265		425	1	425	μΑ	5 - 7 10 - 12					8	1, 16		5-7 10-12
hH1	Input Current High		420		670		670	μA	9	•				8	1, 16		9
μL	Input Current Low	0.5		0.3		0.5		μA		5 - 7 9 - 12			8		1, 16		5 - 7 10 - 12

NOTES

1. Hold power during all VOH and VOL tests.

VIH

2. P1) ٧_{IL}

P2)

VIH

MOTOROLA MILITARY MECL DATA 2-138

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94					
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94					
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units	its TEST VOLTAGE APPLIED TO PINS BELOW							
		+ 2	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments							
	Functional Parameters:	Subgr	roup 9	Subgr	oup 10	Subgr	oup 11	-		100 Ω to GN	to GND					
		Min	Max	Min	Max	Min	Max	1 1	VIN	VOUT	Vcc	VEEL	P. U. T.			
^t TLH	Rise Time	0.7	1.8	0.8	1.9	0.8	1.8	ns	5 - 7, 9 - 15	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			
^t THL	Fall Time	0.7	1.8	0.8	1.9	0.8	1.8	ns	5 - 7, 9 - 15	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			
tPLH	Propagation Delay	1.0	2.7	1.0	3.0	1.0	2.9	ns	5 - 7, 9 - 15	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			
^t PHL	Propagation Delay	1.0	2.7	1.0	3.0	1.0	2.9	ns	5 - 7, 9 - 15	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			
tSetup	Setup Time	1.5		1.5		1.5		ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			
tHold	Hold Time	0.8		0.8		0.8		ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			
fToggle	Toggle Frequency	250		250		250		MHz	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15			

4-Bit Arithmetic Logic Unit/Function Generator

ELECTRICALLY TESTED PER: MPG 10H581

The 10H581 is a high speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two 4-bit words. Full internal carry is incorporated for ripple-through operation. Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate (PG) and carry generate (GG) are provided allowing fast operations on very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

When used with the 10579, full-carry look-ahead, as a second order look ahead block, the 10H581 provides high speed arithmetic operations on very long words.

This 10H part is a functional/pinout duplication of the standard MECL 10K family part with 100% improvement in propagation delay and not increase in power supply current.

- Improved Noise Margin, 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PIN AS	SIGNMEN	rs
FUNCTION	DIL	FLATS	BURN-IN
			(CONDITION C)
V _{CC1}	1	7	GND
F0	2	8	51 Ω to V _{TT}
F1	3	9	51 Ω to V _{TT}
GG	4	10	51 Ω to V _{TT}
C _{n + 4}	5	11	51 Ω to V _{TT}
F3	6	12	51 Ω to VTT
F2	7	13	51 Ω to V _{TT}
PG	8	14	51 Ω to V _{TT}
B3	9	15	50 Ω to VEE
A3	10	16	GND
B2	11	17	50 Ω to V _{EE}
VEE	12	18	VEE
S3	13	19	50 Ω to VEE
S0	14	20	GND
S2	15	21	50 Ω to V _{EE}
A2	16	22	GND
S1	17	23	GND
A1	18	24	50 Ω to VEE
B1	19	1	VEE
B0	20	2	50 Ω to VEE
A0	21	3	GND
Cn	22	4	50 Ω to VEE
М	23	5	GND
V _{CC2}	24	6	GND
BURN - IN CON VTT = -2.0 V M VEE = -5.7 V M	1AX/ – 2	.2 V MIN	

Military 10H581

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10H581/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: K CERFLAT: J

The letter "M" appears before the slash on LCC.

ARITHMETIC/LOGIC FUNC

	Function	n Select		Logic Function M is High $C = D. C.$	Arithmetic Operation M is Low C _n is low
S ₃	S ₂	S ₁	s ₀	F	F
L	L	L	L	F = Ā	F = A
L	L	L	н	$F = \overline{A} + \overline{B}$	$F = A plus (A \bullet \overline{B})$
L	L	н	L	$F = \overline{A} + B$	F = A plus (A • B)
L	L	н	н	F = Logical "1"	F = A times 2
L	н	L	L	$F = \overline{A} \bullet B$	F = (A + B) plus 0
L	н	L	н	$F = \overline{B}$	$F = (A + B) plus (A \bullet \overline{B})$
L L	н	н	L	$F = A \Theta B$	F = A plus B
L	н	н	н	$F = A + \overline{B}$	F = A plus (A + B)
н	L	L	L	$F = \overline{A} \bullet B$	$F = (A + \overline{B})$ plus 0
н	L	L	н	$F = A \oplus B$	F = A minus B minus 1
н	L	н	L	F = B	$F = (A + \overline{B}) plus (A \bullet B)$
н	L	н	н	F = A + B	$F = A plus (A + \overline{B})$
Н	н	L	L	F = Logical "0"	F = minus 1 (two's complement)
н	н	L	н	$F = A \bullet \overline{B}$	$F = (A \bullet \overline{B}) \text{ minus } 1$
н	н	н	L	$F = A \bullet B$	F = (A • B) minus 1
н	<u>н</u>	н	н	F = A	F = minus 1

Figure 1. Logic Diagram

Figure 2. Switching Test Circuit and Waveforms

* ELECTRICAL CHARACTERISTICS

Test Temperature		Test Voltage Values (Volts)												
	VIH	VIL	VIHA	VILA	PS1	PS2	V _{EE1}	V _{EE2}						
T _A = 25 °C	-0.78	-1.950	-1.105	-1.475	+1.11	+0.31	-5.46	-4.94						
T _A = 125 °C	-0.65	-1.950	-1.000	-1.400	+1.24	+0.36	-5.46	-4.94						
T _A = -55 °C	-0.88	-1.950	-1.255	-1.510	+1.01	+0.28	-5.46	-4.94						

Symbol	Parameter		Limits							TEST VOLTA	GE APPL	IED TO F	INS BELC	w	
	Functional Parameters:	+ 29 Subgr		+ 12 Subgr			5 °C roup 3		Pinouts r	Pinouts referenced are for DIL package, check Pin Assign V_{CC} = 0 V, Output Load = 100 Ω to – 2.0 V					ents
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	V EE1/2	Vcc	P.U.T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.09	- 0.88	v	9 - 11 16 - 23	13 - 15			12	1, 24	2 - 8
VOL1	Low Output Voltage	1.85	- 1.620	- 1.82	- 1.545	- 1.92	- 1.655	v	9 - 11, 14, 16 18, 19, 21 - 23	9, 10, 13, 15 16, 17, 19, 21			12	1, 24	2, 3, 5 - 8
VOHA	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	9 - 11, 13 16 - 23	13 - 23	16 - 23	13 - 15 22, 23	12	1, 24	2 - 8
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.88	- 1.525	- 1.92	- 1.635	v		9 - 11, 13 - 23	14, 15	9 – 11 16 – 23	12	1, 24	2 - 8
VOL2	Low Output Voltage	- 1.99	- 1.620	- 1.88	- 1.545	- 2.10	- 1.655	v	11, 14, 16, 18 20, 22, 23	9, 10, 13, 15 17, 19, 21	8		12	1, 24	4
IEE	Power Supply Current	- 145		- 160		- 160		mA	9 - 11, 16 18 - 21				12	1, 24	12
1н1	Input Current High		200		340		340	μA	13, 23				12	1, 24	13, 23
^I IH2	Input Current High		220		375		375	μА	10, 16, 18 21				12	1, 24	10, 16, 18 21
Чнз	Input Current High		245		415		415	μA	9, 11 19, 20				12	1, 24	9, 11, 19, 20
^I IH4	Input Current High		265		450		450	μA	14, 15, 17				12	1, 24	14, 15, 17
liH5	Input Current High		290		580		495	μA	22				12	1, 24	22
կլ	Input Current Low	0.5		0.3		0.5		mA	9 - 11 13 - 23				1, 16		9 - 11, 13 - 23

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)												
	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-4.94	-2.94					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-4.94	-2.94					
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units	TE	ST VOLTA	GE APPLI	ED TO PI	NS BELOW			
	Functional Parameters:	+ 25 Subgr	5 °C roup 9	+ 12 Subgre			5 °C oup 11		Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 2.0 V, Output Load = 100 Ω to GND							
	Falameters.	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEE1	PS1	P. U. T.		
ttlh/ tthl	Rise & Fall Time	0.5	2.3	0.764	2.64	0.62	2.4	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7		
^t pd	Propagation Delay C_n to C_{n+4}	0.6	2.2	0.74	2.64	0.74	2.4	ns	"	"	"	"	"	"		
ttlh/ tthl	Rise & Fall Time	0.6	2.2	0.74	2.88	0.7	2.2	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7		
^t pd	Propagation Delay C _n to F	1.0	3.0	1.44	3.96	1.8	3.6	ns	"	<i>"</i>	"	"	"	"		
ttlh/ tthl	Rise & Fall Time	0.6	2.0	0.74	2.64	0.84	2.4	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2-7		
^t pd	Propagation Delay A to F	1.5	3.7	1.92	4.8	1.8	4.44	ns	"	"	"	"	"	"		
ttlh/ tthl	Rise & Fall Time	0.8	2.4	1.08	3.12	1.0	2.88	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2-7		
^t pd	Propagation Delay A to P _G	1.5	3.7	1.92	4.8	1.8	4.44	ns	"	"	"	"	"	"		
ttlh/ tthl	Rise & Fall Time	0.6	2.2	0.74	2.88	0.74	2.764	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7		
^t pd	Propagation Delay A to G _G	1.5	3.7	1.92	4.68	1.8	4.44	ns	"	"	"	"	. "	"		
ttlh/ tthl	Rise & Fall Time	0.6	2.0	0.74	2.64	0.74	2.4	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7		
^t pd	Propagation Delay A to C _{n + 4}	1.5	3.6	1.92	4.68	1.8	4.32	ns	"	"	"	"	"	"		

MOTOROLA MILITARY MECL DATA 2-144

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-4.94	-2.94					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-4.94	-2.94					
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-4.94	-2.94					

Symbol	Parameter		Limits							TEST VO	LTAGE AF	PLIED TO	PINS BELOW		
	Functional Parameters:	+ 25 Subgr		+ 12 Subgro		– 55 Subgr			Pinouts referenced are for DIL package, check Pin Assignmen VCC = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	V _{EE1}	PS1	P. U. T.	
ttlh/ tthl	Rise & Fall Time	0.6	2.3	0.74	3.0	0.74	2.76	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay B to F	2.0	4.5	2.52	5.76	2.2	5.0	ns	"	"	"	"	"	"	
ttlh/ tthl	Rise & Fall Time	0.6	2.2	0.74	2.88	0.74	2.64	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay B to PG	1.5	3.8	1.92	4.8	1.8	4.56	ns	"	"	"	"	"	"	
ttlh/ tthl	Rise & Fall Time	0.6	2.2	0.74	2.88	0.74	2.64	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay B to G _G	1.5	3.7	1.92	4.8	1.8	4.44	ns	"	"	"	"	"	"	
ttlh/ tthl	Rise & Fall Time	0.5	2.0	0.5	2.64	0.5	2.4	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay B to Cn + 4	2.0	4.0	2.52	5.16	2.4	4.8	ns	"	"	"	"	"	"	
ttlh/ tthl	Rise & Fall Time	0.7	2.3	0.86	3.0	0.86	2.76	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay M to F	1.5	4.2	1.92	5.4	1.8	5.04	ns	"	"	"	"	"	"	
ttlh/ tthl	Rise & Fall Time	0.6	2.0	0.74	2.64	0.74	2.4	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay S to F	1.5	4.5	1.92	5.76	1.8	5.4	ns	"	"	"	"	" *	"	

* ELECTRICAL CHARACTERISTICS

Test Temperature		Test Voltage Values (Volts)												
	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-4.94	-2.94					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-4.94	-2.94					
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-4.94	-2.94					

Symbol	Parameter			Lin	nits			Units		TEST V	OLTAGE A	PPLIED T	O PINS BELOW	
	Functional Parameters:		5 °C roup 9		5 °C oup 10		5 °C oup 11	-	Pinouts				ge, check Pin Assignr = 100 Ω to GND	nents
	i uluiletersi	Min	Max	Min	Max	Min	Max		VIN	Vout	Vcc	VEE1	P _{S1}	P. U. T.
ttlh/ tthl	Rise & Fall Time	0.6	2.2	0.74	2.88	0.74	2.4	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14 16, 18, 19, 21 22	2 - 7
^t pd	Propagation Delay S to P_G	1.5	4.0	1.92	5.16	1.8	4.8	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	0.6	2.2	0.74	2.88	0.74	2.64	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14 16, 18, 19, 21 22	2 - 7
^t pd	Propagation Delay S to $C_{n + 4}$	1.5	4.1	1.92	5.28	1.8	4.92	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	0.5	3.2	0.5	4.0	0.5	3.84	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14 16, 18, 19, 21 22	2 - 7
^t pd	Propagation Delay S to G_G	1.3	4.5	1.68	5.76	1.56	5.4	ns	"	"	"	"	"	"

Hex "D" Master-Slave Flip-Flop with Reset

ELECTRICALLY TESTED PER: 5962-8756301

The 10H586 is a hex D type flip-flop with common reset and clock lines. This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in clock toggle frequency and propagation delay and no increase in power supply current.

- Propagation Delay, 1.7 ns Typical
- 660 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
VCC1	1	5	2	GND								
Q ₀	2	6	3	51 Ω to V_{TT}								
Q ₁	з	7	4	51 Ω to VTT								
Q ₂	4	8	5	51 Ω to V_{TT}								
D0	5	9	7	GND								
D ₁	6	10	8	GND								
D ₂	7	11	9	GND								
VEE	8	12	10	VEE								
Clock	9	13	12	CP1								
D3	10	14	13	GND								
D ₄	11	15	14	GND								
D ₅	12	16	15	GND								
Q3	13	1	17	51 Ω to VTT								
Q ₄	14	2	18	51 Ω to VTT								
Q ₅	15	3	19	51 Ω to VTT								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$ $V_{EE} = -5.7 V MAX / -5.2 V MIN$

Military 10H586

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756301 3) 883: 10H586/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

1	Oł	-15	86	
---	----	-----	----	--

C	CLOCKED TRUTH TABLE											
R	C	Q	Q _n + 1									
L	L	Ø	Q _n									
L	н•	L	L									
L	н.	н	н									
н	L	ø	L									

* A clock H is a clock transition from a low to a high state

2

MOTOROLA MILITARY MECL DATA 2-148

Figure 3. fTOGGLE Waveforms

Figure 4. trr Waveforms

MOTOROLA MILITARY MECL DATA 2-150

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)														
Temperature	VIH1	VIL1	VIH2	V _{IL2}	PS1	PS2	V _{EE1}	V _{EE2}	VEEL							
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94							
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94							
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94							

Symbol	Parameter			Lin	nits			Units		Т	EST VOL	TAGE AP	PLIED 1	O PINS	BELOW				
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pi			ed are for DIL package, check Pin Assignments							
	Parameters:	Subgi	roup 1	Subgr	oup 2	Subgr	oup 3				۷ VCC = 0	/, Output	Load =	100 Ω to	– 2.0 V				
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	V _{IH2}	V _{IL2}	V _{EE1}	V _{EE2}	VCC	P. U. T.			
VOH	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 9 - 12	5 - 7 9 - 12			8		16	2 - 4, 13 - 15			
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v	5 - 7 9 - 12	5 - 7 9 - 12			8		16	2 - 4, 13 - 15			
VOH1	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 9 - 12	1, 5 - 7 10 - 12	5 - 7, 10 - 12	1	8	8	16	2 - 4, 13 - 15			
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v	5 - 7 10 - 12	1, 5 - 7 9 - 12	1	5 - 7, 10 - 12	8	8	16	2 - 4, 13 - 15			
IEE	Power Supply Current	- 110		- 121		- 121		mA					8		16	8			
Чн	Input Current High		420		670		670	μA	9				8		16	9			
Чнт	Input Current High		265		430		430	μΑ	5 - 7 10 - 12				8		16	5 - 7, 10 - 12			
liH2	Input Current High		1200		1900		1900	μА	1				8		16	1			
ΙL	Input Current Low	0.5		0.3		0.5		μΑ		1, 5 - 7 9 - 12				8	16	1, 5 - 7, 9 - 12			

NOTES

1. Hold power during all VOH and VOL tests.

L AIH

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)														
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}	VEEL							
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94							
T _A = 125 °C	-0.65	·-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94							
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94	-2.94							

Symbol	Parameter			Lin	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25 Subgr			5 °C oup 10	– 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Parameters:	Min	Max	Min	Max	Min	Max		PS1	V _{IN}	Vout	Vcc	VEEL	P. U. T.	
ttlh	Rise Time	0.7	2.4	0.7	2.6	0.7	2.6	ns		5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
tTHL	Fall Time	0.7	2.4	0.7	2.6	0.7	2.6	ns		5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
^t PLH	Propagation Delay Clk or Reset to Q	0.7	2.7	0.7	3.0	0.7	3.0	ns	5 - 7 10 - 12	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
^t PLH	Propagation Delay Clk or Reset to Q	0.7	2.7	0.7	3.0	0.7	3.0	ns	5 - 7 10 - 12	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
^t SET	Setup Time	1.5		1.5		1.5		ns		5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
tHOLD	Hold Time	1.0		1.0		1.0		ns		5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
tRR	Reset Recovery Time	3.0		3.0		3.0		ns	5 - 7 10 - 12	9	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	
fTOGGLE	Toggle Frequency	250		250		250		MHz		5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	2 - 4, 13 - 15	

Hex Buffer with Enable

ELECTRICALLY TESTED PER: 5962-8750901

The 10H588 is a Hex Buffer with a common Enable input. When Enable is in the high state, all outputs are in the low-state. When Enable is in the low-state, the outputs take the same state as the inputs.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.3 ns Typical
- 250 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voitage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS													
FUNCTION	DIL	FLATS	LCC	BURN-IN									
				(CONDITION C)									
VCC1	1	5	2	GND									
AOUT	2	6	3	51 Ω to V _{TT}									
BOUT	3	7	4	51 Ω to VTT									
COUT	4	8	5	51 Ω to VTT									
AIN	5	9	7	GND									
BIN	6	10	8	GND									
CIN	7	11	9	GND									
VEE	8	12	10	VEE									
Common	9	13	12	OPEN									
DIN	10	14	13	GND									
EIN	11	15	14	GND									
FIN	12	16	15	GND									
DOUT	13	1	17	51 Ω to V _{TT}									
EOUT	14	2	18	51 Ω to V _{TT}									
FOUT	15	з	19	51 Ω to V _{TT}									
V _{CC2}	16	4	20	GND									

DIN ACCIONNENTS

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

TR	TRUTH TABLE										
Inpu	Inputs Output										
×	Y	OUT									
L	L	L									
L	н	н									
н	L	L									
н	н	L									

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8750901 3) 883: 10H588/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

1. Pulse generator must be capable of rise and fall time of 1.0 ns \pm 0.1 ms

2. Unused outputs connected to 100 Ω resistor to ground

3. 2:1 divider may be used

4. L1 = L2: matched for equal time delay

NOTES

Figure 1. Switching Test Circuit and Waveforms

MOTOROLA MILITARY MECL DATA 2-154

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)														
Temperature	VIH1	VIL1	VIH2	V _{IL2}	PS1	PS2	VEE1	V _{EE2}								
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94								
T _A = 125°C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94								
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94								

Symbol	Parameter			Lir	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25	5 °C	+ 12	25 °C	- 5	– 55 °C		Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:	Subgr	roup 1	Subg	roup 2	Subgi	roup 3				VCC =	0 V, Outpi	ut Load	= 100 Ω 1	to – 2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE	V _{EE2}	Vcc	P. U. T.
Vон	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 10 - 12		5 - 7 10 - 12	9	8		1, 16	2 - 4, 13 - 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v				9	8		1, 16	2 - 4, 13 - 15
VOH1	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 10 - 12			5 - 7 9 - 12	8	8	1, 16	2 - 4, 13 - 15
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v	5 - 7 10 - 12		9	5 - 7 10 - 12	8	8	1, 16	2 - 4, 13 - 15
IEE	Power Supply Current	- 42		- 46		- 46		mA					8		1, 16	8
Чн	Input Current High		310		495		495	μA	5 - 7 9 - 12				8		1, 16	5 - 7, 9 - 12
μ	Input Current	0.5		0.3		0.5		μΑ		5 - 7 9 - 12				8	1, 16	5 - 7, 9 - 12

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)														
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE1	V _{EE2}								
T _A = 25 °C	-0.78	-1.95	-1.10	-1.480	+1.11	+0.31	-5.46	-4.94								
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94								
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94								

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments							
	Functional Parameters:	Subgr	oup 1	Subg	roup 2	Subg	roup 3	1		V _{CC} = 0 V,	Output L	oad = 100.	Ω to – 2.0 V		
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	VCC	VEEL	P. U. T.		
^t TLH	Rise Time	0.7	2.2	0.7	2.4	0.7	2.2	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15		
tTHL	Fall Time	0.7	2.2	0.7	2.4	0.7	2.2	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15		
tPHL tPLH	Propagation Delay Data	0.7	1.7	0.7	1.9	0.7	1.7	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15		
tPLH tPHL	Propagation Delay Enable	0.7	2.6	0.7	2.8	0.7	2.5	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2 - 4, 13 - 15		

Hex Inverter with Enable

ELECTRICALLY TESTED PER: 5962-8751001

The 10H589 is a Hex Inverter with a common Enable input. The hex inverting function is provided when Enable is in the low-state. When Enable is in the high-state, all outputs are low.

This MECL 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.3 ns Typical Data-to-Output
- 250 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
AOUT	2	6	3	51 Ω to V _{TT}								
BOUT	3	7	4	51 Ω to VTT								
COUT	4	8	5	51 Ω to V _{TT}								
AIN	5	9	7	GND								
BIN	6	10	8	GND								
CIN	7	11	9	GND								
VEE	8	12	10	VEE								
Common	9	13	12	OPEN								
DIN	10	14	13	GND								
EIN	11	15	14	GND								
FIN	12	16	15	GND								
DOUT	13	1	17	51 Ω to VTT								
EOUT	14	2	18	51 Ω to V _{TT}								
FOUT	15	3	19	51 Ω to V _{TT}								
V _{CC2}	16	4	20	GND								

PIN ASSIGNMENTS

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

۷	F	F	=	-	5.	.7	٧	M	AX	<i>u</i> –	5.2	v	MIN

TRUTH TABLE							
Inpu	Output						
х	Y	OUT					
L	L	н					
L	н	L					
н	L	L					
н	н	L					

Military 10H589

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8751001 3) 883: 10H589/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H589

NOTES

1. Pulse generator must be capable of rise and fall time of 1.0 ns \pm 0.1 ms

2. Unused outputs connected to 100 Ω resistor to ground

3. 2:1 divider may be used

4. L1 = L2: matched for equal time delay

10H589 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Tes	t Voltage	Values (V	olts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	V _{EE2}
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units			TEST VO	LTAGE A	PPLIED	TO PIN	S BELOW	
	Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C		F	Pinouts re			•	•		signments
	Parameters:	Subgr	oup 1	Subgr	oup 2	Subgi	oup 3	1			VCC = 0	V, Outp	ut Load	= 100 Ω	to – 2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	ViL2	VEE1	VEE2	Vcc	P. U. T.
VOH	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v		9			8		1, 16	2 - 4, 13 - 15
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v			5 - 7 10 - 12		8		1, 16	2 - 4, 13 - 15
VOH1	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v				5 - 7 9 - 12	8	8	1, 16	2 - 4, 13 - 15
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v	9				8	8	1, 16	2 - 4, 13 - 15
JEE	Power Supply Current	- 42		- 46		- 46		mA					8		1, 16	8
ίΗ	Input Current High		310		495		495	μΑ	5 - 7 9 - 12				8		1, 16	5 - 7, 9 - 12
μL	Input Current Low	0.5		0.3		0.5		μΑ		5 - 7 9 - 12				8	1, 16	5 - 7, 9 - 12

10H589 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Tes	t Voltage	Values (V	olts)		
Temperature	ViH1	ViL1	V _{IH2}	VIL2	PS1	PS2	VEE1	V _{EE2}
T _A = 25 °C	-0.780	-1.950	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94
T _A = 125 °C	-0.650	-1.950	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94
T _A = -55 °C	-0.840	-1.950	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units		TEST VOLTA	GE APPL	IED TO PI	NS BELOW
	Functional		5 °C		25 °C	ļ	5 °C				ck Pin Assignments V, VFFI = - 2.94 V		
	Parameters:	Subgi			roup 2	· · · · · ·	roup 3						
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.
^t TLH	Rise Time	0.7	2.4	0.7	2.4	0.7	2.2	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2, 3, 4, 13, 14, 15
^t THL	Fall Time	0.7	2.4	0.7	2.4	0.7	2.2	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2, 3, 4, 13, 14, 15
^t PLH	Propagation Delay Data	0.7	1.8	0.7	1.9	0.7	1.9	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2, 3, 4, 13, 14, 15
^t PHL	Propagation Delay Data	0.7	1.8	0.7	1.9	0.7	1.9	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2, 3, 4, 13, 14, 15
^t PHL	Propagation Delay Enable	0.7	2.5	0.7	2.8	0.7	2.2	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2, 3, 4, 13, 14, 15
^t PLH	Propagation Delay Enable	0.7	2.5	0.7	2.8	0.7	2.2	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	1, 16	8	2, 3, 4, 13, 14, 15

Dual 4-5-Input OR/NOR Gate

ELECTRICALLY TESTED PER: 5962-8756901

The 10H609 is a Dual 4-5-input OR/NOR gate.

- Propagation Delay Average, 0.75 ns Typical
- 180 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNM	AENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	51 Ω to V _{TT}
AIN	5	9	7	OPEN
AIN	6	10	8	OPEN
AIN	7	11	9	GND
VEE	8	12	10	VEE
BIN	9	13	12	GND
BIN	10	14	13	GND
BIN	11	15	14	GND
BIN	12	16	15	OPEN
B _{IN}	13	1	17	CP1
BOUT	14	2	18	51 Ω to V _{TT}
BOUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H609

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8756901 3) 883: 10H609/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA 2-161 2

.

MOTOROLA MILITARY MECL DATA 2-162

10H609 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Tes	t Voltage	Values (V	olts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE1	V _{EE2}
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.01	+0.31	-5.46	-4.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+0.28	+0.28	-5.46	-4.94

Symbol	Parameter			Lin	nits			Units			TEST VO	LTAGE A	PPLIED	TO PINS	BELOW	
	Functional	+ 25			5 °C	ļ	5 °C		Piı		erenced a VCC = 0 V				Pin Assi	gnments
	Parameters:	Subgr	roup 1	Subgi	roup 2	Subg	roup 3	J			VCC - 0 V	, output i		00 32 10	- 2.0 V	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	V _{EE1}	VEE2	Vcc	P.U.T.
Vон	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	4 - 7 9 - 13	4 - 7 9 - 13			8		1, 16	2, 3, 14, 159
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v			4 - 7 9 - 13	4 - 7 9 - 13	8		1, 16	2, 3, 14, 15
VOH1	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v			4 - 7 9 - 13	4 - 7 9 - 13	8	8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	- 1.96	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v	4 - 7 9 - 13	4 - 7 9 - 13		5 - 7 10 - 12	8	8	1, 16	2, 3, 14, 15
IEE	Power Supply Current	- 30		- 33		- 33		mA					8		1, 16	8
Чн	Input Current High		350		915		560	μA	4 - 7 9 - 13				8		1, 16	2, 3, 14, 15
ΙL	Input Current Low	0.5		0.3		0.5		μA		4 - 7 9 - 13			8		1, 16	2, 3, 14, 15

10H609 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	V _{EE1}	VEE2							
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94							
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94							
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+1.01	+0.28	-5.46	-4.94							

Symbol	Parameter			Lin	nits			Units		TEST V	OLTAGE	APPLIED	TO PINS BELOW			
	-	+ 25	5 °C	+ 12	5 °C	- 55	5 °C		1			•	ge, check Pin Assignments			
	Functional Parameters:	Subgr	oup 1	Subg	roup 2	Subg	roup 3]	V _{CC} = 2.0 V, Output Load = 100 Ω to - 2.0 V, V _{EEL} = - 2.94 V							
		Min	Max	Min	Max	Min	Max	1	VIN VOUT VCC VEEL P.U.T.							
tτlh	Rise Time	0.4	1.5	0.4	1.6	0.4	1.3	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			
t THL	Fall Time	0.4	1.5	0.4	1.6	0.4	1.3	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			
^t PHL	Propagation Delay Data	0.4	1.4	0.4	1.9	0.4	1.3	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			
^t PLH	Propagation Delay Enable	0.4	1.4	0.4	1.9	0.4	1.3	ns	6, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15			

Dual 3-Input 3-Output "OR" Gate

ELECTRICALLY TESTED PER: 5962-8754101

The 10H610 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the 10H610 particularly useful in clock distribution applications where minimum clock skew is desired.

- Propagation Delay, 1.0 ns Typical
- 230 mW Max/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

	PI	N ASSIGNN	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AOUT	4	8	5	51 Ω to V_{TT}
A _{IN}	5	9	7	OPEN
AIN	6	10	8	GND
A _{IN}	7	11	9	OPEN
VEE	8	12	10	VEE
BIN	9	13	12	OPEN
B _{IN}	10	14	13	OPEN
BIN	11	15	14	GND
BOUT	12	16	15	51 Ω to VTT
BOUT	13	1	17	51 Ω to V_{TT}
BOUT	14	2	18	51 Ω to VTT
V _{CC1}	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10H610

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8754101 3) 883: 10H610/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

2

10H610 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Te	st Voltag	e Value	s (Volts))		
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+0.28	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional		5 °C	+ 12	5 °C	- 5	5 °C		Pir				-		Pin Assig	nments
	Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3			V	CC = 0 V,	Output L	.oad = 10	00 Ω to -	- 2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE1	V _{EE2}	Vcc	P. U. T.
Vон	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v	5 - 7 9 - 11				8		1, 16, 5	2 - 4, 12 - 14
VOL	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v		5 - 7 9 - 11			8		1, 16, 5	2 - 4, 12 - 14
VOL1	Low Output Voltage	- 1.95	- 1.58	- 1.95	- 1.565	- 1.95	- 1.61	v				5 - 7 9 - 11	8	8	1, 16, 5	2 - 4, 12 - 14
VOH1	High Output Voltage	- 1.01	- 0.78	- 0.86	- 0.65	- 1.06	- 0.84	v			5 - 7 9 - 11		8	8	1, 16, 5	2 - 4, 12 - 14
liH1	Input Current High		450		720		720	μΑ	5 - 7 9 - 11				8		1, 16, 5	5 - 7, 9 - 11
IIL1	Input Current Low	0.5		0.3		0.5		μΑ		5 - 7 9 - 11			8		1, 16, 5	5 - 7, 9 - 11
IEE	Power Supply Drain Current	- 38		- 42		- 42		mA					8		1, 16, 5	8

10H610 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Te	st Voltag	e Value	s (Volts)		
Temperature	VIH	۷IL	VIH1	VIL1	PS1	PS2	V _{EE1}	V _{EE2}	VEEL
T _A = 25 °C	-0.78	-1.95	-1.11	-1.480	+1.11	+0.31	-5.46	-4.94	-2.94
T _A = 125 °C	-0.65	-1.95	-0.96	-1.465	+1.24	+0.36	-5.46	-4.94	-2.94
T _A = -55 °C	-0.84	-1.95	-1.16	-1.510	+0.28	+0.28	-5.46	-4.94	-2.94

Symbol	Parameter			Lir	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:	+ 2 Subg	5 °C roup 1		25 °C roup 2		5 °C roup 3	-	F				check Pin Assignments 00 Ω to GND			
		Min	Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VEEL	P. U. T.			
t _{TLH}	Rise Time	0.75	1.8	0.7	1.9	0.65	1.75	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4 , 12 - 14			
^t THL	Fall Time	0.75	1.8	0.7	1.9	0.65	1.75	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4 , 12 - 14			
^t PLH	Propagation Delay	0.8	1.65	0.9	1.9	0.75	1.85	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4 , 12 - 14			
^t PHL	Propagation Delay	0.55	1.7	0.6	1.95	0.5	1.6	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4 , 12 - 14			

ECL to TTL Translator (+ 5.0 Vdc Power Supply)

ELECTRICALLY TESTED PER: MPG 10H750

The 10H750 is a member of Motorola's 10H family of high performance ECL logic. It consists of 4 translator with differential inputs and TTL outputs. The 3-state outputs can be disabled by applying a HIGH TTL logic level on the common OE input.

The 10H750 is designed to be used primarily in systems incorporating both ECL and TTL logic operating off a common power supply. The separate V_{CC} power pins are not connected internally and thus isolate the noisy TTL V_{CC} runs from the relatively quiet ECL V_{CC} runs on the printed circuit board. The differential inputs allow the 10H750 to be used as an inverting or non-inverting translator, a differential line receiver or as a high performance comparator.

- Propagation Delay, 3.5 ns Typical
- MECL 10K-Compatible

	PI	N ASSIGNN	IENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
ECL V _{CC}	1	5	2	VCC
AOUT	2	6	3	GND
A _{IN}	3	7	4	VCC
AIN	4	8	5	GND
BIN	5	9	7	GND
B _{IN}	6	10	8	V _{CC}
BOUT	7	11	9	GND
GND	8	12	10	GND
ŌĒ	9	13	12	GND
DOUT	10	14	13	GND
D _{IN}	11	15	14	V _{CC}
DIN	12	16	15	GND
CIN	13	1	17	GND
C _{IN}	14	2	18	V _{CC}
COUT	15	3	19	GND
TTL V _{CC}	16	4	20	V _{CC}

BURN - IN CONDITIONS: V_{CC} = + 6.0 V MAX/ + 5.0 V MIN

Military 10H750

2

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10H750/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H750

MOTOROLA MILITARY MECL DATA 2-170

10H750 QUIESCENT LIMIT TABLE *

Test Temperature						Те	st Voltag	je Values	(Volts) (VDIFF in	milliVolt	s)					Test C (milliA	
	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	Vcc	V _{CC1}	V _{CC2}	VIHH	VILH	VIHL	VILL	VR	V _{comm.mode}	VDIFF	юн	IOL
T _A = 25 °C	+ 2.0	+ 0.8	+ 4.2	+ 3.15	+4.11	+3.31	+ 5.0	+ 5.5	+ 4.5	+ 5.0	+4.65	+3.15	+ 2.8	+3.71	+ 2.8 - + 5.0	+ 350	- 3.0	+ 20
T _A = 125 °C	+ 2.0	+ 0.8	+ 4.2	+ 3.15	+4.22	+3.345	+ 5.0	+ 5.5	+ 4.5	+ 5.0	+4.65	+3.15	+ 2.8	+3.82	+ 2.8 - + 5.0	+ 350	- 3.0	+ 20
T _A = 55 °C	+ 2.0	+ 0.8	+ 4.2	+ 3.15	+4.03	+3.285	+ 5.0	+ 5.5	+ 4.5	+ 5.0	+4.65	+3.15	+ 2.8	+3.63	+ 2.8 - + 5.0	+ 350	- 3.0	+ 20

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW									
		+ 25	5 °C	+ 12	5 °C	- 5	5 °C			Pinout	s referen	ced are fo	r DIL pac	kage, ch	eck Pin	Assignr	nents	
	Functional Parameters:	Subgr	oup 1	Subg	roup 2	Subgi	roup 3]		VCC1 &	2 = (Pin	1, 16), GN	D = (Pin	8), Outpu	it Load =	: See Fig	gure 1.	
		Min	Max	Min	Max	Min	Max	1	VIH	VIHH	VIHL	VIL	VILL	VILH	VCC2	VCC1	IOH/L	P. U. T.
VOH	High Output Voltage	2.5		2.5		2.5		v	3, 6 11, 14	3, 6 11, 14	3, 6 11, 14	4, 5 12, 13	4, 5 12, 13	4, 5 12, 13	1, 16	1, 16	2, 7 10, 15	2, 7 10, 15
VOL	Low Output Voltage		0.5		0.5		0.5	v	2, 3	2	2	3		3	3	8	4	4, 5 12, 13
IOZH IOZL	Output Disable Current (High/ Low)	+ 50 -50		+ 50 -50		+ 50 -50		mA mA	2, 7 10, 15			2, 7 10, 15				1, 16		2, 7 10, 15
ICC1 ICC2	Power Supply Current (TTL/ ECL)		20 12		20 12		20 12	mA mA		4, 5 12, 13		9		3, 6 11, 14		1, 16		1, 16
lcc	Input Leakage Current		32		32		32	mA		4, 5 12, 13		9		3, 6 11, 14		1, 16		1, 16
los	Short Circuit (**) Current	-60	-150	-60	-150	-60	-150	mA	3, 6 11, 14			4, 5, 9 12, 13				1, 16		2, 7 10, 15
Чн	Input Current		20		20		20	μA	9							1, 16		9
INH	Input Current		50		50		50	μΑ		3-6 11-14				3, 6 11, 14		1, 16		3-6 11-14
μL	Input Current		- 0.6		- 0.6		- 0.6	μA				9				1, 16		9
IINL	Input Current		50		50		50	μΑ		3-6 11-14				3, 6 11, 14		1, 16		3-6 11-14

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts. ** For IOS: Pins 2, 7, 10, 15 = GND

10H750 QUIESCENT LIMIT TABLE *

Test Temperature						Те	st Voltag	je Values	s (Volts) (VDIFF in	milliVolt	s)					Test C (milliA	
	VIH1	VIL1	V _{IH2}	VIL2	PS1	PS2	Vcc	VCC1	VCC2	VIHH	VILH	VIHL	VILL	VR	V _{comm.mode}	VDIFF	юн	IOL
T _A = 25 °C	+ 2.0	+ 0.8	+ 4.2	+ 3.15	+4.11	+3.31	+ 5.0	+ 5.5	+ 4.5	+ 5.0	+4.65	+3.15	+ 2.8	+3.71	+ 2.8 - + 5.0	+ 350	- 3.0	+ 20
T _A = 125 °C	+ 2.0	+ 0.8	+ 4.2	+ 3.15	+4.22	+3.345	+ 5.0	+ 5.5	+ 4.5	+ 5.0	+4.65	+3.15	+ 2.8	+3.82	+ 2.8 - + 5.0	+ 350	- 3.0	+ 20
T _A = - 55 °C	+ 2.0	+ 0.8	+ 4.2	+ 3.15	+4.03	+3.285	+ 5.0	+ 5.5	+ 4.5	+ 5.0	+4.65	+3.15	+ 2.8	+3.63	+ 2.8 - + 5.0	+ 350	- 3.0	+ 20

Symbol	Parameter			Lin	nits			Units			TEST V	OLTAGE	APPLIED T	O PINS BELC	w
	Functional Parameters:		5 °C roup 9		25 °C oup 10		5 °C oup 11			Pinouts re				e, check Pin 100 Ω to GN	Assignments ID
		Min	Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VR	PS1	P _{S2}	P.U.T.
tpd	Propagation Delay Data	1.5	5.0	1.5	5.2	1.5	5.0	ns	3, 4, 5 11 - 13	2, 7 10, 15	1, 16	3, 4, 5 11 - 13	3 - 6, 9 11 - 14	3 - 6, 9 11 - 14	2, 7, 10, 15
^t pdHZ	Outside Disable Time	2.0	6.0	2.0	6.2	2.0	6.0	ns	3, 4, 5 11 - 13	2, 7 10, 15	1, 16	3, 4, 5 11 - 13	3 - 6, 9 11 - 14	3 - 6, 9 11 - 14	2, 7, 10, 15
^t pdHZ	Outside Disable Time	2.0	6.0	2.0	6.2	2.0	6.0	ns	3, 4, 5 11 - 13	2, 7 10, 15	1, 16	3, 4, 5 11 - 13	3 - 6, 9 11 - 14	3 - 6, 9 11 - 14	2, 7, 10, 15
^t pdZL	Output Enable Time	2.0	8.0	2.0	8.2	2.0	8.0	ns	3, 4, 5 11 - 13	2, 7 10, 15	1, 16	3, 4, 5 11 - 13	3 - 6, 9 11 - 14	3 - 6, 9 11 - 14	2, 7, 10, 15
^t pdZH	Output Enable Time	2.0	8.0	2.0	8.2	2.0	8.0	ns	3, 4, 5 11 - 13	2, 7 10, 15	1, 16	3, 4, 5 11 - 13	3 - 6, 9 11 - 14	3 - 6, 9 11 - 14	2, 7, 10, 15

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Note

Subgroups A10 and A11, (AC testing) at -55°C and +125°C guaranteed, but not tested.

MOTOROLA MILITARY MECL DATA 2-172

Advance Information Quad TTL/NMOS to MECL Translator

ELECTRICALLY TESTED PER: MPG 10H751

The 10H751 is a quad translator for interfacing data between a saturated logic section and the MECL section of digital systems when only a + 5.0 Vdc power supply is available. The 10H751 has TTL/NMOS complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input at a low logic level, it forces all true outputs to the MECL low logic state (\approx +3.2 V) and all inverting outputs to the MECL high state (\approx + 4.1 V).

The 10H751 can also used with the 10H750 to transmit and receive TTL/NMOS information differentially via balanced twisted pair lines.

- Single + 5.0 V Power Supply
- All V_{CC} Pins Isolated On Chip
- Differentially Drive Balanced Lines
- t_{pd} = 1.3 ns typical

PIN ASSIGNMENTS

FUNCTION	DIL	BURN-IN
		(CONDITION C)
BOUT	1	GND
BOUT	2	GND
NC	3	Vcc
AOUT	4	GND
AOUT	5	GND
Vcc	6	Vcc
BIN	7	GND
AIN	8	GND
Common Strobe	9	GND
GND	10	GND
TTL VCC	11	VCC
D _{IN}	12	GND
NC	13	GND
CIN	14	Vcc
V _{CC} ²	15	Vcc
DOUT	16	GND
DOUT	17	GND
COUT	18	GND
COUT	19	GND
TTL V _{CC}	20	Vcc

BURN - IN CONDITIONS: V_{TT} = -2.0 V MAX/ -2.2 V MIN V_{EE} = -5.7 V MAX/ -5.2 V MIN

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Military 10H751

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10H751/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10H751

MOTOROLA MILITARY MECL DATA 2-174

10H751 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to –2.0 volts.

Test			Test Volt	age Valu	es (Volt	s)	
Temperature	VIH	VIL	VIHA	VILA	Vcc	VCCL	VCCH
T _A = 25 °C	+2.7	+0.4	+2.0	+0.8	+5.0	+4.75	+5.25
T _A = 125 °C	+2.7	+0.4	+2.0	+0.8	+5.0	+4.75	+5.25
T _A = - 55 °C	+2.7	+0.4	+2.0	+0.8	+5.0	+4.75	+5.25

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE AF	PLIED TO	PINS BE	LOW	
	Functional Parameters:	+ 25 Subgr		+ 12 Subgi	5 °C roup 2	– 55 Subgr				Pinouts re			L packag t Load = 1		Pin Assign 3.0 V	ments
	Farameters.	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	GND	Vcc	VCCL	VCCH	P. U. T.
VOH	High Output Voltage	4.00	4.30	4.08	4.30	3.80	4.20	v	7 - 9, 12, 14		•	10	6, 11, 15, 20			1, 2, 4, 5, 16 - 19
VOL	Low Output Voltage	3.00	3.40	3.05	3.40	3.05	3.37	v		7 - 9, 12, 14		10	6, 11, 15, 20			1, 2, 4, 5, 16 - 19
Vонн	High Output Voltage	4.27	4.50	4.33	4.60	3.90	4.40	·v				10			6, 11, 15, 20	1, 2, 4, 5, 16 - 19
VOLL	Low Output Voltage	3.30	3.80	2.80	3.20	2.80	3.12	v		7 - 9, 12, 14		10		6, 11, 15, 20		1, 2, 4, 5, 16 - 19
VOLH	Low Output Voltage	3.30	3.80	3.30	3.70	3.30	3.62	v				10			6, 11, 15, 20	1, 2, 4, 5, 16 - 19
VOHL	High Output Voltage	3.77	4.20	3.83	4.10	3.50	3.91	v			7 - 9, 12, 14	10		6, 11, 15, 20		1, 2, 4, 5, 16 - 19
lcc	Power Supply Current (ECL)		45		50		50	mA				10	6, 11, 15, 20			20
ICC	Power Supply Current (TTL)		15		20		20	mA				10	6, 11, 15, 20			11
INH1	Input Current High		20		25		25	μΑ	7 - 9, 12, 14	7 - 9, 12, 14		10			6, 11, 15, 20	7, 8, 12, 14
INH2	Input Current High		80		100		100	μA	9	7 - 9, 12, 14		10			6, 11, 15, 20	9
INL1	Input Current Low		- 0.6		- 0.8		- 0.8	μΑ		7 - 9, 12, 14		10	7 - 9, 12, 14		6, 11, 15, 20	7, 8, 12, 14
INL2	Input Current Low		- 2.4		- 3.2		- 3.2	μA		9		10	7, 8, 12, 14		6, 11, 15, 20	9

10H751 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test			Test Volt	age Valu	es (Volt	s)	
Temperature	VIH	VIL	VIHA	VILA	Vcc	VCCL	VCCH
T _A = 25 °C	+2.7	+0.4	+2.0	+0.8	+5.0	+4.75	+5.25
T _A = 125 °C	+2.7	+0.4	+2.0	+0.8	+5.0	+4.75	+5.25
T _A = - 55 °C	+2.7	+0.4	+2.0	+0.8	+5.0	+4.75	+5.25

Symbol	Parameter			Lin	nits			Units	TE	ST VOLTAGE APPLI	ED TO PIN	S BELOW
	Functional Parameters:	+ 25 Subgr	i° C oup 9		5° C oup 10		5° C oup 11			enced are for DIL pa	•	eck Pin Assignments Ω to GND
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	GND	P.U.T.
ttlh/ ttlh	Rise & Fall Time	0.6	1.7	0.9	1.8	0.5	1.7	ns	7, 8, 12, 14	1, 2, 4, 5, 16, 17, 18, 19	10	1, 2, 4, 5, 16, 17, 18, 19
^t pd	Propagation Delay	0.4	2.2	0.3	2.65	0.2	2.2	ns	7, 8, 12, 14	1, 2, 4, 5, 16, 17, 18, 19	10	1, 2, 4, 5, 16, 17, 18, 19

MOTOROLA MILITARY MECL DATA 2-176

MECL 10K 3

MOTOROLA MILITARY MECL DATA 3-1

Quad 2-Input NOR Gate with Strobe

ELECTRICALLY TESTED PER: MPG 10500

The 10500 is a quad 2 input **NOR** gate. Each gate has 3 inputs, two of which are independent and one of which is tied common to all four gates.

- 40 mW Max/Gate (No Load)
- t_{pd} = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
AOUT	2	6	3	51 Ω to VTT								
BOUT	3	7	4	51 Ω to VTT								
AIN	4	8	5	OPEN								
AIN	5	9	7	OPEN								
BIN	6	10	8	OPEN								
B _{IN}	7	11	9	OPEN								
VEE	8	12	10	VEE								
Common Input	9	13	12	OPEN								
C _{IN}	10	14	13	OPEN								
CIN	11	15	14	OPEN								
DIN	12	16	15	OPEN								
D _{IN}	13	1	17	OPEN								
COUT	14	2	18	51 Ω to $V_{T\bar{T}}$								
DOUT	15	3	19	51 Ω to VTT								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10500

AVAILABLE AS 1) JAN: N/A 2) SMD: N/A 3) 883: 10500/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA 3-2 10500

- NOTES 1. Length of $Coax_A$ and $Coax_B$ should be of equal length for equal time delay.
 - 2. Unused outputs should be loaded 100 Ω to ground.
 - 3. 2:1 divider may be used.

- NOTES 1. V_{IN} waveform has the following characteristics:
 - a) Pulse width \geq 20 ns.
 - b) frequency = 1.0 MHz.

10500 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test									
Temperature	VIH1	VIL1	ViH2	VIL2	PS1	PS2	Vcc	VEEL	VEE
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	+2.0	-2.94	-5.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.345	+2.0	-2.94	-5.2
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.03	+0.285	+2.0	-2.94	-5.2

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW:							
	Functional	+ 2	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V						signments	
	Parameters:	Subgi	oup 1	Subgi	Subgroup 2		roup 3		$V_{CC} = 0.0, Output Load = 100.02 to - 2.0 V$							
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	V _{IH2}	VIL2	GND	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v		4, 5, 10, 11				8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.565	- 1.92	- 1.655	v	4 - 7, 9 - 13					8	1, 16	2, 3, 14, 15
Vона	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v				4 - 7, 9 - 13		8	1, 16	2, 3, 14, 15
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.565	- 1.92	- 1.635	v			4 - 7, 9 - 13			8	1, 16	2, 3, 14, 15
IEE	Power Supply Drain Current	- 26	- 3.0	- 29	- 3.0	- 29	- 3.0	mA						8	1, 16	8
ін	Input Current High		245		415		415	μA	4 - 7, 9 - 13					8	1, 16	4 - 7, 10 - 13
JIH1	Input Current High		470		800		800	μA	9					8	1, 16	9
IIL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13				8	1, 16	4 - 7, 10 - 13

MOTOROLA MILITARY MECL DATA 3-4

10500 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	V _{IH2}	V _{IL2}	PS1	PS2	VCC	VEEL	VEE				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	+2.0	-2.94	-5.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.345	+2.0	-2.94	-5.2				
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.03	+0.285	+2.0	-2.94	-5.2				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW:					
	Functional Parameters:	+ 25 Subgr	5 °C roup 9	+ 125 °C Subgroup 10		– 5: Subgr	5 °C oup 11		Pinouts referenced are for DIL package, che V_{CC} = 2.0 V, Output Load = 100 G					
		Min	Мах	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.	
^t TLH	Rise Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	4, 6	2, 3	1, 16	8	2, 3, 14, 15	
^t TLH	Fall Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	4, 6	2, 3	1, 16	8	2, 3, 14, 15	
^t PLH	Propagation Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	10, 13	14, 15	1, 16	8	2, 3, 14	
^t PHL	Propagation Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	10, 13	14, 15	1, 16	8	2, 3, 14	

Quad OR/NOR Gate

ELECTRICALLY TESTED PER: MIL-M-38510/06001

The 10501 is a quad 2-input **OR/NOR** gate with one input from each gate common to pin 12.

- 40 mW Max/Gate (No Load)
- t_{pd} = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS											
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
V _{CC1}	1	5	2	GND							
AOUT	2	6	3	51 Ω to V _{TT}							
BOUT	3	7	4	51 Ω to VTT							
AIN	4	8	5	51 Ω to V_{TT}							
AOUT	5	9	7	51 Ω to VTT							
BOUT	6	10	8	51 Ω to V_{TT}							
B _{IN}	7	11	9	51 Ω to V_{TT}							
VEE	8	12	10	VEE							
DOUT	9	13	12	51 Ω to V_{TT}							
C _{IN}	10	14	13	51 Ω to V _{TT}							
COUT	11	15	14	51 Ω to V _{TT}							
Common Input	12	16	15	OPEN							
D _{IN}	13	1	17	51 Ω to V_{TT}							
COUT	14	2	18	51 Ω to V _{TT}							
DOUT	15	3	19	51 Ω to V_{TT}							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10501

The letter "M" appears before the slash on LCC. $\underline{\ }$

10501

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial
- cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 $\boldsymbol{\Omega}$ resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

ω

10501 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	VEE1	V _{EE2}		
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.2	-3.2		
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.2	-3.2		
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.2	-3.2		

Symbol	Parameter			Lin	nits			Units	T	TES	T VOLTAGE	PPLIED TO I	PINS BEL	.ow	
	Functional		5 °C		5 °C		5 °C		1		enced are for		•		nments
	Parameters:	Subgr	oup 1	Subg	roup 2	Subgroup 3				v	CC = 0 V, Out	put Load = 10	00 Ω to - :	2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VITL	VITH	Vcc	V _{EE1}	P. U. T.
Vон	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v	4, 7, 10 12, 13	4, 7, 10 12, 13			1, 16	8	2, 3, 5, 6, 9, 11 14, 15
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.655	. V	4, 7, 10 12, 13	4, 7, 10 12, 13			1, 16	8	2, 3, 5, 6, 9, 11 14, 15
Vотн	High Output Voltage	-0.96		-0.845		-1.1		v			4, 7, 10 12, 13	4, 7, 10 12, 13	1, 16	8	2, 3, 5, 6, 9, 11 14, 15
VOTL	Low Output Voltage		-1.6		-1.525		-1.636	v			4, 7, 10 12, 13	4, 7, 10 12, 13	1, 16	8	2, 3, 5, 6, 9, 11 14, 15
IEE	Power Supply Current	-26		-29		-29		mA					1, 16	8	8
Чн	Input Current High		265		450		450	μΑ	4, 7, 10, 13				1, 16	8	4, 7, 10, 13
liH1	Input Current High		550		935		935	μΑ	12				1, 16	8	12
Ι _{ΙL}	Input Current Low	0.5		0.3		0.5		μA		4, 7, 10 12, 13			1, 16	8	4, 7, 10, 13

10501 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH1	V _{IL1}	VIH2	V _{IL2}	VITL	VITH	Vcc	VEE1	VEE2			
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-5.2	-3.2			
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-5.2	-3.2			
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-5.2	-3.2			

Symbol	Parameter			Li	mits			Units	Inits TEST VOLTAGE APPLIED TO PINS BELOW:						
	Functional Parameters:		+ 25° C Subgroup 9		+ 125 ° C Subgroup 10		- 55 ° C Subgroup 11		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	T diametero.	Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEE2	P. U. T.		
tτlh	Rise Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	4, 7, 10, 13	2, 3, 5, 6, 9 11, 14, 15	1, 16	8	2, 3, 5, 6, 9, 11, 14, 15		
t⊤HL	Fall Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	4, 7, 10, 13	2, 3, 5, 6, 9 11, 14, 15	1, 16	8	2, 3, 5, 6, 9, 11, 14, 15		
^t PLH	Propaganda Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	4, 7, 10, 13	2, 3, 5, 6, 9 11, 14, 15	1, 16	8	2, 3, 5, 6, 9, 11, 14, 15		
^t PHL	Propaganda Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	4, 7, 10, 13	2, 3, 5, 6, 9 11, 14, 15	1, 16	8	2, 3, 5, 6, 9, 11, 14, 15		

Quad 2-Input NOR Gate

ELECTRICALLY TESTED PER: MIL-M-38510/06002

The 10502 is a quad 2-input **NOR** gate. The 10502 provides one gate with **OR/NOR** outputs.

- 40 mW Max/Gate (No Load)
- tpd = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	,
	'
3	,

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
VCC1	1	5	2	GND								
AOUT	2	6	3	51 Ω to V_{TT}								
BOUT	3	7	4	51 Ω to V _{TT}								
AIN	4	8	5	51 Ω to V _{TT}								
AIN	5	9	7	51 Ω to V_{TT}								
BIN	6	10	8	51 Ω to VTT								
BIN	7	11	9	OPEN								
VEE	8	12	10	VEE								
DOUT	9	13	12	51 Ω to VTT								
CIN	10	14	13	51 Ω to V _{TT}								
C _{IN}	11	15	14	OPEN								
D _{IN}	12	16	15	51 Ω to V _{TT}								
DIN	13	1	17	OPEN								
COUT	14	2	18	51 Ω to V _{TT}								
DOUT	15	3	19	51 Ω to V _{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 10502

LCC: 2

The letter "M" appears before the slash on LCC.

10502

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

10502 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
	VIH1	VIL1	VIH2	V _{IL2}	VITL	VITH	Vcc	VEE1	V _{EE2}						
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.2	-3.2						
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.2	-3.2						

ω

Symbol	Parameter			Lin	nits			Units	.ow						
	Functional Parameters:	+ 25 °C + 125 °C Subgroup 1 Subgroup 2		- 55 °C Subgroup 3			F	Pinouts referenced are for DIL package, check Pin Assignmen V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V							
	Falailleteis.	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITL	VITH	Vcc	VEE1	P. U. T.
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v	12, 13	4 - 7 10 - 13			1, 16	8	2, 3, 9, 14, 15
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.655	v	4 - 7 10 - 13	12, 13			1, 16	8	2, 3, 9, 14, 15
Vотн	High Output Voltage	-0.96		-0.845		-1.1		v			4 - 7 10 - 13	12, 13	1, 16	8	2, 3, 9, 14, 15
VOTL	Low Output Voltage		-1.6		-1.525		-1.636	v			12, 13	4 - 7 10 - 13	1, 16	8	2, 3, 9, 14, 15
IEE	Power Supply Current	-26		-29		-29		mA					1, 16	8	8
ЧΗ	Input Current High		265		450		450	μA	4 - 7 10 - 13				1, 16	8	4 - 7, 10 - 13
Ι _{ΙL}	Input Current Low	0.5		0.3		0.5		μA		4 - 7 10 - 13			1, 16	8	4 - 7, 10 - 13

10502 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	V _{IL2}	VITL	VITH	Vcc	V _{EE1}	V _{EE2}					
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-5.2	-3.2					
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-5.2	-3.2					

Symbol	Parameter		Limits Units TEST VOLTAGE APPLIED TO PINS										BELOW:		
	Functional Parameters:	+ 25° C Subgroup 9		+ 125 ° C Subgroup 10		- 55 ° C Subgroup 11			Pinouts r	Pinouts referenced are for DIL package, check Pin Assignmen $V_{CC} = 2.0$ V, Output Load = 100 Ω to GNDVINVOUTVCCVEE2P. U. T.711132, 3, 911682391415					
		Min	Max	Min	Max	Min	Max	i	VIN	Vout	Vcc	V _{EE2}	P. U. T.		
ttlh	Rise Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	5, 7, 11, 13	2, 3, 9 14, 15	1, 16	8	2, 3, 9, 14, 15		
^t THL	Fall Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	5, 7, 11, 13	2, 3, 9 14, 15	1, 16	8	2, 3, 9, 14, 15		
^t PLH	Propaganda Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	5, 7, 11, 13	2, 3, 9 14, 15	1, 16	8	2, 3, 9, 14, 15		
^t PHL	Propaganda Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	5, 7, 11, 13	2, 3, 9 14, 15	1, 16	8	2, 3, 9, 14, 15		

Quad 2-Input OR Gate

ELECTRICALLY TESTED PER: MPG 10503

The 10503 is a quad 2 input \mathbf{OR} gate. The 10503 provides one gate with \mathbf{OR}/\mathbf{NOR} outputs.

- 40 mW Max/Gate (No Load)
- t_{pd} = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to VTT
BOUT	3	7	4	51 Ω to VTT
AIN	4	8	5	GND
AIN	5	9	7	OPEN
B _{IN}	6	10	8	GND
BIN	7	11	9	OPEN
VEE	8	12	10	VEE
COUT	9	13	12	51 Ω to V_{TT}
D _{IN}	10	14	13	GND
D _{IN}	11	15	14	OPEN
C _{IN}	12	16	15	GND
CIN	13	1	17	OPEN
DOUT	14	2	18	51 Ω to V_{TT}
COUT	15	3	19	51 Ω to VTT
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 10503

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

1

10503

10503 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2 PS1 F 5 -1.475 +1.11 + 0 -1.400 +1.24 +	P _{S2}	Vcc	VEEL	VEE							
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	0	-3.2	-5.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	0	-3.2	-5.2						
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	0	-3.2	-5.2						

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 2	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments					gnments		
	Parameters:	Subgr	roup 1	Subgr	oup 2	Subgr	roup 3			VCC = 0 /	/, Output	Load = 1	00 Ω to -	- 2.0 V		
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE	Vcc	P. U. T.	
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	V	4 - 7, 10 - 13				8	1, 16	2, 3, 9, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	12, 13				8	1, 16	2, 3, 9, 14, 15	
Vона	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.1	- 0.88	v			4 - 7, 10 - 13	12, 13	8	1, 16	2, 3, 9, 14, 15	
VOLA	Low Output Voltage	- 1.85	- 1.6	- 1.82	- 1.525	- 1.92	- 1.635	v			12, 13	4 - 7, 10 - 13	8	1, 16	2, 3, 9, 14, 15	
IEE	Power Supply Drain Current	- 26		- 29		- 29		mA					8	1, 16	8	
Чн	Input Current High		245		415		415	μΑ	4 - 7, 10 - 13				8	1, 16	4 - 7, 10 - 13	
_ IL_	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 10 - 13			8	1, 16	4 - 7, 10 - 13	

10503 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
	VIH1	VIL1	VIH2	VIL2	PS1	PS2	Vcc	VEEL	VEE						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	+2.0	-3.2	-5.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	+2.0	-3.2	-5.2						
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	+2.0	-3.2	-5.2						

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25 °C Subgroup 9				– 55 °C Subgroup 11				Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND					
	Parameters:	Min	Max	Min	Max	Min Max			VIN	VOUT	Vcc	VEEL	P. U. T.		
ţтгн	Rise Time	1.1	3.3	1.1	4.0	1.1	4.0	ns	5, 7 11, 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15		
tтнL	Fall Time	1.1	3.3	1.1	4.0	1.1	4.0	ns	5, 7 11, 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15		
^t PLH	Propagation Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	5, 7 11, 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15		
^t PHL	Propagation Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	5, 7 11, 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15		

Quad 2-Input AND Gate

ELECTRICALLY TESTED PER:

MIL-M-38510/06201

The 10504 is a quad 2 input AND gate. One of the gates has AND/ NAND outputs available.

- 50 mW Max/Gate (No Load)
- tpd = 2.7 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
BOUT	3	7	4	51 Ω to V_{TT}
AIN	4	8	5	GND
AIN	5	9	7	GND
BIN	6	10	8	GND
B _{IN}	7	11	9	GND
VEE	8	12	10	VEE
DOUT	9	13	12	51 Ω to V_{TT}
C _{IN}	10	14	13	GND
CIN	11	15	14	GND
D _{IN}	12	16	15	GND
D _{IN}	13	1	17	GND
COUT	14	2	18	51 Ω to V_{TT}
DOUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10504

10504

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. *(Y) applies to gate 4 only.

Figure 1. Switching Test Circuit and Waveforms

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	V _{EE1}	VEE2				
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.2	-3.2				

Symbol	Parameter		Limits Units TEST VOLTAGE APPLIED TO PINS BELOW						Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional		5 °C		5 °C		5 °C		Pinouts referenced are for DIL package, check Pin Assign V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V						signments	
	Parameters:	Subgr	<u>, </u>		roup 2		roup 3									
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITH	VITL	V _{EE1}	Vcc	P. U. T.	
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4 - 7, 10 - 13				8	1, 16	2, 3, 9, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4 - 7, 10 - 13				8	1, 16	2, 3, 9, 14, 15	
Vотн	High Output Voltage	- 0.95		- 0.845		- 1.1		v	4 - 7, 10 - 13			4 - 7, 10 - 13	8	1, 16	2, 3, 9, 14, 15	
VOTL	Low Output Voltage		- 1.6		- 1.525		- 1.635	v	4 - 7, 10 - 13		4 - 7, 10 - 13		8	1, 16	2, 3, 9, 14, 15	
IEE	Power Supply Drain Current	- 35		- 39		- 39		mA					8	1, 16	8	
liH1	Input Current High		265		450		450	μA	4 - 7, 10 - 13				8	1, 16	4 - 7, 10 - 13	
ιн	Input Current High		220		375		375	μA	5, 6, 11, 12				8	1, 16	5, 6, 11, 12	
ηL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 10 - 13			8	1, 16	4 - 7, 10 - 13	

ω

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2 VITL		VITH	Vcc	V _{EE1}	VEE2				
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	2.0	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	2.0	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	2.0	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional		5 °C		25 °C – 55 °C			Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:	Subg	oup 9	Subgr	oup 10	Subgr	oup 11		V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1	VIH2 VIN VOUT VCC VEE2					P. U. T.	
^t TLH	Rise Time	1.1	3.5	1.0	4.1	1.0	3.8	ns	4 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15	
^t THL	Fall Time	1.1	3.5	1.0	4.1	1.0	3.8	ns	4 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15	
^t PLH	Propagation Delay Low to High	1.0	4.0	1.0	4.7	1.0	4.3	ns	4 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15	
^t PHL	Propagation Delay High to Low	1.0	4.0	1.0	4.7	1.0	4.3	ns	4 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 9, 14, 15	1, 16	8	2, 3, 9, 14, 15	

Triple 2-3-2 OR/NOR Gate

ELECTRICALLY TESTED PER:

MIL-M-38510/06003

The 10505 is a triple 2-3-2 input OR/NOR gate.

- 35 mW Max/Gate (No Load)
- tpd = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	Pit	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	OPEN
AIN	5	9	7	51 Ω to V _{TT}
BOUT	6	10	8	51 Ω to V _{TT}
BOUT	7	11	9	51 Ω to VTT
VEE	8	12	10	VEE
BIN	9	13	12	51 Ω to VTT
BIN	10	14	13	OPEN
BIN	11	15	14	OPEN
CIN	12	16	15	OPEN
CIN	13	1	17	51 Ω to VTT
COUT	14	2	18	51 Ω to VTT
COUT	15	3	19	51 Ω to VTT
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10505

10505

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.

ω

10505 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	V _{IH2}	VIL2	VITL	VITH	Vcc	VEE1	VEE2				
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.2	-3.2				

Symbol	Parameter			Lin	nits		1	Units	ts TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 2! Subgr			25 °C	- 55 °C Subgroup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V								
	Parameters:	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITL	VITH	Vcc	V _{EE1}	P. U. T.	
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v	4, 5, 9 - 13	4, 5, 9 - 13			1, 16	8	2, 3, 6, 7 14, 15	
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.655	v	4, 5, 9 - 13	4, 5, 9 - 13			1, 16	8	2, 3, 6, 7 14, 15	
Vотн	High Output Voltage	-0.95		-0.85		-1.1		v			4, 5, 9 - 13	4, 5, 9 - 13	1, 16	8	2, 3, 6, 7 14, 15	
VOTL	Low Output Voltage		-1.6		-1.525		-1.636	¹ V			4, 5, 9 - 13	4, 5, 9 - 13	1, 16	8	2, 3, 6, 7 14, 15	
IEE	Power Supply Current	-21		-24		-24		mA					1, 16	8	8	
IIH	Input Current High		265		450		450	μA	4, 5, 9 - 13				1, 16	8	4, 5, 9 - 13	
٩L	Input Current Low	0.5		0.3		0.5		μA		4, 5, 9 - 13			1, 16	8	4, 5, 9 - 13	

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
	VIH1	VIL1	V _{IH2}	VIL2	VITL	VITH	Vcc	V _{EE1}	V _{EE2}				
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-5.2	-3.2				

Symbol	Parameter			Liı	mits			Units	TEST VOLTAGE APPLIED TO PINS BELOW:						
	Functional Parameters:	+ 25° C Subgroup 9		+ 125 ° C Subgroup 10		- 55 ° C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	-	VIN	Vout	Vcc	V _{EE2}	P. U. T.		
^t TLH	Rise Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	4, 9, 12	2, 3, 6, 7 14, 15	1, 16	8	2, 3, 6, 7, 14, 15		
^t THL	Fall Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	4, 9, 12	2, 3, 6, 7 14, 15	1, 16	8	2, 3, 6, 7, 14, 15		
^t PLH	Propaganda Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	4, 9, 12	2, 3, 6, 7 14, 15	1, 16	8	2, 3, 6, 7, 14, 15		
^t PHL	Propaganda Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	4, 9, 12	2, 3, 6, 7 14, 15	1, 16	8	2, 3, 6, 7, 14, 15		

Triple 4-3-3 Input NOR Gate

ELECTRICALLY TESTED PER: MIL-M-38510/06004

The 10506 is a triple 4-3-3 input NOR gate.

- 35 mW Max/Gate (No Load)
- tpd = 2.8 ns typ
- t_f, t_f = 2.0 ns typ (20% 80%)

PI	ASSIGNM	ENIS	
DIL	FLATS	LCC	BURN-IN
			(CONDITION C)
1	5	2	GND
2	6	3	51 Ω to V _{TT}
3	7	4	51 Ω to V _{TT}
4	8	5	51 Ω to VTT
5	9	7	OPEN
6	10	8	OPEN
7	11	9	OPEN
8	12	10	VEE
9	13	12	OPEN
10	14	13	51 Ω to V _{TT}
11	15	14	OPEN
12	16	15	OPEN
13	1	17	OPEN
14	2	18	51 Ω to V _{TT}
15	3	19	51 Ω to V _{TT}
16	4	20	GND
	DIL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	DIL FLATS 1 5 2 6 3 7 4 8 5 9 6 10 7 11 8 12 9 13 10 14 11 15 12 16 13 1 14 2 15 3	DIL FLATS LCC 1 5 2 2 6 3 3 7 4 4 8 5 5 9 7 6 10 8 7 11 9 8 12 10 9 13 12 10 14 13 11 15 14 12 16 15 13 1 17 14 2 18 15 3 19

DIN ASSIGNMENTS

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 10506

CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10506

3

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.

MOTOROLA MILITARY MECL DATA 3-27

ω

10506 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	VEE1	VEE2				
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAGE	APPLIED TO P	PINS BEL	ow	
	Functional	+ 25 Subgr	5 °C roup 1		5 °C roup 2		5 °C roup 3		Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V						nents
	Parameters:	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITL	VITH	Vcc	VEE1	P. U. T.
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v		4 - 7, 9 - 14			1, 16	8	2, 3, 15
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.656	v	4 - 7, 9 - 14				1, 16	8	2, 3, 15
Vотн	High Output Voltage	-0.95		-0.845		-1.1		v			4 - 7, 9 - 14		1, 16	8	2, 3, 15
VOTL	Low Output Voltage		-1.6		-1.525		-1.636	v				4 - 7, 9 - 14	1, 16	8	2, 3, 15
IEE	Power Supply Current	-21		-24		-24		mA				-	1, 16	8	8
ЧН	Input Current High		265		450		450	μA	4 - 7, 9 - 14	-			1, 16	8	4 - 7, 9 - 14
۱ _{۱۲}	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 14			1, 16	8	4 - 7, 9 - 14

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test				Test Volt	age Valu	es (Volts)			
Temperature	VIH1	VIL1	VIH2	V _{IL2}	VITL	VITH	Vcc	VEE1	V _{EE2}
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-5.2	-3.2
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-5.2	-3.2

Symbol	Parameter			Limits					Its TEST VOLTAGE APPLIED TO PINS BELOW:					
	Functional		5°C		5 ° C oup 10		5 ° C roup 11	-	Pinouts	referenced are V _{CC} = 2.0 V	•		ck Pin Assignments 2 to GND	
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	V _{EE2}	P. U. T.	
^t TLH	Rise Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	6, 10 12	2, 3, 15	1, 16	8	2, 3, 15	
^t THL	Fall Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	6, 10	2, 3, 15	1, 16	8	2, 3, 15	
^t PLH	Propaganda Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	6, 10	2, 3, 15	1, 16	8	2, 3, 15	
^t PHL	Propaganda Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	6, 10	2, 3, 15	1, 16	8	2, 3, 15	

MOTOROLA MILITARY MECL DATA 3-29

Triple 2 Input Exclusive "OR"/Exclusive "NOR" Gate

ELECTRICALLY TESTED PER: MIL-M-38510/06005

The 10507 is a triple 2 input exclusive OR/NOR gate.

- 40 mW Max/Gate (No Load)
- t_{pd} = 2.8 ns typ
- t_f, t_f = 2.5 ns typ (20% 80%)

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	GND
AIN	5	9	7	OPEN
N.C.	6	10	8	OPEN
BIN	7	11	9	OPEN
VEE	8	12	10	Vcc
BIN	9	13	12	GND
BOUT	10	14	13	51 Ω to V_{TT}
BOUT	11	15	14	51 Ω to V _{TT}
COUT	12	16	15	51 Ω to V_{TT}
COUT	13	1	17	51 Ω to V _{TT}
CIN	14	2	18	GND
CIN	15	3	19	OPEN
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

Military 10507

AVAILABLE AS

1) JAN: JM 38510/06005 2) SMD: N/A 3) 883: 10507/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10507

NOTES

- Perform test in accordance with test table; each output is tested separately.
 All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be ≤ 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test				Test Volt	age Value	es (Volts)			
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	VCC	V _{EE1}	VEE2
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.2	-3.2
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.2	-3.2

Symbol	Parameter	1		Lin	nits			Units		TES	T VOLTAGE	APPLIED TO	PINS BE	LOW	
	Functional		5 °C roup 1		25 °C roup 2		5 °C roup 3		Р		nced are for c = 0 V, Out	• •		•	ments
	Parameters:	Min	Max	Min	Max	Min	Max		VIH1	 VIL1	VITL	VITH	Vcc	V _{EE1}	P. U. T.
∨он	High Output Voltage	-0.93	-0.78	0.825	-0.63	-1.08	0.88	v	All inputs	All Inputs			1, 16	8	2, 3, 10 – 13
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.655	v	All Inputs	All Inputs		•	1, 16	8	2, 3, 10 – 13
VOTH	High Output Voltage	-0.95		-0.845		-1.1		V		4, 9, 14	All Inputs	All Inputs	1, 16	8	2, 3, 10 - 13
VOTL	Low Output Voltage		-1.6		-1.525		-1.635	v	5, 9, 14		All Inputs	All Inputs	1, 16	8	2, 3, 10 – 13
IEE	Power Supply Current	28		-31		-31		mA	4, 7, 15				1, 16	8	8
liH1	Input Current High		265		450		450	μА	4, 9, 14				1, 16	8	4, 9, 14
IIH2	Input Current High		220		375		375	μΑ	5, 7, 15				1, 16	8	5, 7, 15
١	Input Current Low	0.5		0.3		0.5		μА		4, 5, 7, 9, 14,15			1, 16	8	4, 5, 7, 14, 15

MOTOROLA MILITARY MECL DATA 3-32

* ELECTRICAL CHARACTERISTICS

Test				Test Volt	age Valu	es (Volts)			
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	V _{EE1}	V _{EE2}
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-5.2	-3.2
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-5.2	-3.2

Symbol	Parameter		Limits							TEST VOLTA	GE APPL	IED TO P	INS BELOW:			
	Functional Parameters:		i°C roup 9		5 °C oup 10		i °C oup 11		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND							
	Farameters.	Min	Max	Min	Max	Min	Max	1	VIN VOUT VCC VEEL P.U.T.							
ttlh	Rise Time	1.1	3.5	1.0	4.3	1.0	4.3	ns	4, 7, 14	2, 3, 10 – 13	1, 16	8	2, 3, 10 – 13			
t THL	Fall Time	1.1	3.5	1.0	4.3	1.0	4.3	ns	4, 7, 14	2, 3, 10 – 13	1, 16	8	2, 3, 10 13			
^t PLH	Propagation Delay Low to High	1.1	3.7	1.0	4.5	1.0	4.5	ns	4, 7, 14	2, 3, 10 – 13	1, 16	8	2, 3, 10 – 13			
^t PHL	Propagation Delay High to Low	1.1	3.7	1.0	4.5	1.0	4.5	ns	4, 7, 14	2, 3, 10 – 13	1, 16	8	2, 3, 10 – 13			

Dual 4-5 Input "OR/NOR" Gate

ELECTRICALLY TESTED PER: MIL-M-38510/06006

The 10509 is a dual 4-5 input OR/NOR gate.

- 25 mW Max/Gate (No Load)
- t_{pd} = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	51 Ω to V_TT
AIN	5	9	7	GND
AIN	6	10	8	OPEN
AIN	7	11	9	OPEN
VEE	8	12	10	VEE
BIN	9	13	12	OPEN
BIN	10	14	13	OPEN
BIN	11	15	14	OPEN
BIN	12	16	15	GND
BIN	13	1	17	51 Ω to V _{TT}
BOUT	14	2	18	51 Ω to V_{TT}
BOUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10509

AVAILABLE AS

1) JAN: JM 38510/06006 2) SMD: N/A 3) 883: 10509/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E **CERFLAT: F** LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.

Figure 1. Switching Test Circuit and Waveforms

3

* ELECTRICAL CHARACTERISTICS

Test			Tes	t Voltage	Values (V	olts)		
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	VEE1
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	0	-5.2
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	0	-5.2
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	0	-5.2

Symbol	Parameter							Units	T	TES	T VOLTAGE	APPLIED TO P	INS BEL	ow	
	Functional		5 °C		5 °C		5 °C		Р			IL package, cl		-	ents
	Parameters:	Subgr	roup 1	Subg	roup 2	Subg	roup 3		$V_{CC} = 0 V$, Output Load = 100 Ω to - 2.0 V						
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITL	VITH	Vcc	V _{EE1}	P. U. T.
∨он	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.06	-0.88	v	4 - 7, 9 - 13	4 - 7, 9 - 13			1, 16	8	2, 3, 14, 15
VOL	Low Output Voltage	-1.86	-1.62	-1.82	-1.545	-1.92	-1.655	v	4 - 7, 9 - 13	4 - 7, 9 - 13			1, 16	8	2, 3, 14, 15
Vотн	High Output Voltage	-0.96		-0.845		-1.1		v			4 - 7, 9 - 13	4 - 7, 9 - 13	1, 16	8	2, 3, 14, 15
VOTL	Low Output Voltage		-1.6		-1.525		-1.635	v			4 - 7, 9 - 13	4 - 7, 9 - 13	1, 16	8	2, 3, 14, 15
IEE	Power Supply Current	-14		-16		-16		mA					1, 16	8	8
ΙH	Input Current High		265		450		450	μA	4 - 7, 9 - 13				1, 16	8	4 - 7, 9 - 13
Ι _Ι Γ	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13			1, 16	8	4 - 7, 9 - 13

* ELECTRICAL CHARACTERISTICS

Test			Tes	t Voltage	Values (V	olts)		
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	Vcc	VEEL
T _A = 25 °C	-0.78	-1.85	+1.11	+0.31	-1.475	-1.105	+2.0	-3.2
T _A = 125 °C	-0.63	-1.82	+1.24	+0.36	-1.400	-1.000	+2.0	-3.2
T _A = -55 °C	-0.88	-1.92	+1.01	+0.28	-1.510	-1.255	+2.0	-3.2

Symbol Parameter Limits Units TEST VOL										TEST VOLTAG	TAGE APPLIED TO PINS BELOW:				
	Functional Parameters:		5° C roup 9	+ 125 ° C Subgroup 10		- 55 ° C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1 1	VIN	Vout	Vcc	VEEL	P. U. T.		
t _{TLH}	Rise Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	6, 11	2, 3, 14	1, 16	8	2, 3, 14, 15		
t THL	Fall Time	1.1	3.3	1.0	4.0	1.0	4.0	ns	6, 11	2, 3, 14	1, 16	8	2, 3, 14, 15		
^t PLH	Propaganda Delay Low to High	1.0	2.9	1.0	3.7	1.0	3.7	ns	6, 11	2, 3, 14	1, 16	8	2, 3, 14, 15		
^t PHL	Propaganda Delay High to Low	1.0	2.9	1.0	3.7	1.0	3.7	ns	6, 11	2, 3, 14	1, 16	8	2, 3, 14, 15		

Quad Exclusive OR Gate

ELECTRICALLY TESTED PER: 5962-8755801

The 10513 is a Quad Exclusive OR Gate with an enable common to all gates. The outputs may be wire-ORed together to perform a 4-bit comparison function (A = B). The enable is active Low.

- 240 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	з	51 Ω to V _{TT}
BOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	GND
AIN	5	9	7	OPEN
BIN	6	10	8	GND
BIN	7	11	9	OPEN
VEE	8	12	10	VEE
Enable	9	13	12	OPEN
CIN	10	14	13	GND
CIN	11	15	14	OPEN
DIN	12	16	15	GND
DIN	13	1	17	OPEN
COUT	14	2	18	51 Ω to V _{TT}
DOUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

Truth Table

Inj	put	Ē	Output
L	L	Ĺ	L
L	н	L	н
н	L	L	н
н	н	L	L
ø	Ø	н	L

Ø = Don't Care

Military 10513

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8755801 3) 883: 10513/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10513

6. $C_L \leq 5.0 \text{ pF}$ (including test jig).

7. $L_1 = L_2$: Matched for equal time delay. P_W \ge 20 ns.

* ELECTRICAL CHARACTERISTICS

Test Temperature		Test Voltage Values (Volts)													
	VIH1	V _{IL1}	V _{IH2}	VIL2	PS1	PS2	Vcc	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	0	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	0	-5.2	-3.2						
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	0	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units	T	TES		PPLIED TO P	PINS BEL	ow	
	Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C			Pinouts referenced are for DIL package, check Pin Assignments					
	Parameters:	Subgi	roup 1	Subgi	roup 2	Subg	roup 3			۷۵	C = 0 V, Outp	out Load = 10	0 Ω to - 2.	.0 V	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	Vcc	VEE	P. U. T.
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v	4 - 7, 11, 14				1, 16	8	2, 3, 14, 15
VOL	Low Output Voltage	-1.85	-1.62	-1.82	-1.545	-1.92	-1.655	v					1, 16	8	2, 3, 14, 15
VOHA	High Output Voltage	-0.95		-0.845		-1.1		v	4 - 7, 11, 14		4 - 7, 11, 14	4 - 7, 11, 14	1, 16	8	2, 3, 14, 15
VOLA	Low Output Voltage		-1.6		-1.525		-1.635	v	4 - 7, 11, 14		4 - 7, 11, 14	4 - 7, 11, 14	1, 16	8	2, 3, 14, 15
IEE	Power Supply Current	-42		-46		-46		mA					1, 16	8	8
liH1	Input Current High		265		450		450	μA	4 - 7, 10, 13				1, 16	8	4, 7, 10, 13
IIH2	Input Current High		220		375		375	μA	5, 6, 11, 12				1, 16	8	5, 6, 11, 12
IIH3	Input Current High		545		925		925	μΑ	9				1, 16	8	9
ΙL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13			1, 16	8	4 - 7, 9 - 13

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	Vcc	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	+2.0	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	+2.0	-5.2	-3.2						
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	+2.0	-5.2	-3.2						

Symbol	Parameter			Li	mits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW:						
	Functional	+ 25	·····	+ 125 ° C Subgroup 10		- 55 ° C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments						
	Parameters:		roup 9						V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.		
^t TLH	Rise Time	1.1	3.9	1.1	4.4	1.1	4.2	ns	4, 5	2	1, 16	8	3, 14, 15		
t THL	Fall Time	1.1	3.9	1.1	4.4	1.1	4.2	ns	4, 5	2	1, 16	8	3, 14, 15		
^t PLH	Propaganda Delay Low to High (A or B to Out)	1.3	4.5	1.3	5.0	1.1	4.7	ns	4, 5	2	1, 16	8	3, 14, 15		
t₽HL	Propaganda Delay High to Low (A or B to Out)	1.3	4.5	1.3	5.0	1.1	4.7	ns	4, 5	2	1, 16	8	3, 14, 15		
^t PHL	Propagation Delay High to Low (Enable to Out)	1.5	5.0	1.5	5.5	1.3	5.2	ns	4, 5	2	1, 16	8	3, 14, 15		
^t PLH	Propagation Delay Low to High (Enable to Out)	1.5	5.0	1.5	5.5	1.3	5.2	ns	4, 5	2	1, 16	8	3, 14, 15		

Triple Line Receiver

ELECTRICALLY TESTED PER: MPG 10514

The 10514 is a triple line receiver designed for use in sensing differential signals over long lines. An active current source and translated emitter follower inputs provide the line receiver with a common mode noise rejection limit of one volt in either the positive or the negative direction. This allows a large amount of common mode noise immunity for extra long lines.

Another feature of the 10514 is that the OR outputs go to a logic low level whenever the inputs are left floating. The outputs are each capable of driving 50 ohm transmission lines.

This device is useful in high speed central processors, mini-computers, peripheral controllers, digital communication systems, testing and instrumentation systems. The 10514 can also be used for MOS to MECL interfacing and it is ideal as a sense amplifier for MOS RAM's.

A V_{BB} reference is provided which is useful in making the 10514 a Schmitt trigger, allowing single-ended driving of the inputs, or other applications where a stable reference voltage is necessary.

- Pp = 205 mW Max/Pkg (No Load)
- t_{pd} = 2.4 ns typ (Single-ended Input)
- tpd = 2.0 ns typ (Differential Input)
- t_r, t_f = 2.1 ns typ (20% 80%)

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	GND
A _{IN}	5	9	7	VBB
BOUT	6	10	8	51 Ω to V_{TT}
BOUT	7	11	9	51 Ω to V _{TT}
VEE	8	12	10	VEE
BIN	9	13	12	GND
BIN	10	14	13	VBB
V _{BB}	11	15	14	VBB
CIN	12	16	15	GND
C _{IN}	13	1	17	VBB
COUT	14	2	18	51 Ω to V _{TT}
COUT	15	3	19	51 Ω to VTT
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT =	– 2.0 V	' MAX/-	- 2.2 \	/ MIN
11	E 714	B B A 3//	E 0 14	

VEE = - 5.7 V MAX/ - 5.2 V MIN

 V_{BB} = All pins designated for V_{BB} must be tied together, no external voltage applied. NOTES

1. VBB to be used to supply bias to the 10514 only and bypassed (when used) with

0.01 μ F to 0.1 μ F capacitor.

2. When the input pin with the bubble goes positive, the output goes negative.

Military 10514

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

Figure 1. Switching Test Circuit and Waveforms

ω

10514 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)													
	VIH1	VIL1	VIH2	VIL2	VIHT	VILT	VIHL	VILH							
T _A = 25 °C	-0.78	-1.85	+0.22	-2.85	-1.105	-1.475	-1.78	-0.85							
T _A = 125 °C	-0.63	-1.82	+0.37	-2.82	-1.000	-1.400	-1.63	-0.82							
T _A = -55 °C	-0.88	-1.92	+0.12	-2.92	-1.255	-1.510	-1.88	-0.92							

Symbol	Parameter			Lin	nits			Units			TEST V	OLTAGE	APPLIE	D TO PIN	S BELOV	V:	
	Functional Parameters:	+ 25 Subgi			5 °C oup 2		5 °C roup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V, V _{EE} = -5.2 V, V _{EEL} = -3.2 V								
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE	VIHL	VLH	Vcc	P. U. T.
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v	4, 5, 9 10, 12 13	4, 5, 9 10, 12 13	4, 5, 9 10, 12 13		8		4, 5, 9 10, 12 13	1, 16	2, 3, 6, 7 14, 15
VOL	Low Output Voltage	-1.85	-1.62	-1.82	-1.545	-1.92	-1.655	v	4, 5, 9 10, 12 13	4, 5, 9 10, 12 13		4, 5, 9 10, 12 13	8	4, 5, 9 10, 12 13		1, 16	2, 3, 6, 7 14, 15
V _{BB}	Reference Voltage	-1.35	-1.23	-1.24	-1.12	-1.44	-1.32	v					8			1, 16	11
IEE	Power Supply Current	-35		-39		39		mA					8			1, 16	8
ин	Input Current High		45		80		80	μΑ	4, 5, 9 10, 12 13	4, 5, 9 10, 12 13			8			1, 16	4, 5, 9, 10 12, 13
Сво	Input Leakage Current	-1.0		-1.0		-1.5		μA					4, 5, 8 9, 10, 12, 13			1, 16	4, 5, 9, 10 12, 13
									vr	тн	vr	TL	VEE		*	vcc	(PUT) LD1
VOH1	High Output Voltage	-0.95		-0.845		-1.1		v	4, 5, 9, 1	10, 12, 3		10, 12, 3	8	4, 5,	9, 12	1, 16	4, 5, 9, 12
VOL1	Low Output Voltage		-1.6		-1.525		-1.635	v	4, 5, 9, 1	10, 12, 3		10, 12, 3	8	4, 5,	9, 12	1, 16	4, 5, 9, 12

** Connected to pin 11

MOTOROLA MILITARY MECL DATA 3-44

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	V _{IL1}	V _{IH2}	V _{IL2}	VIHT	VILT	VIHL	VILH							
T _A = 25 °C	-0.78	-1.85	+0.22	-2.85	-1.105	-1.475	-1.78	-0.85							
T _A = 125 °C	-0.63	-1.82	+0.37	-2.82	-1.000	-1.400	-1.63	-0.82							
T _A = -55 °C	-0.88	-1.92	+0.12	-2.92	-1.255	-1.510	-1.88	-0.92							

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW										LOW					
		+ 25	5 °C	+ 12	5 °C	- 5	5 °C			Pinouts ref	erenced are for DIL	. package	ckage, check Pin Assignments				
	Functional Parameters:	Subg	roup 1	Subgr	oup 2	Subg	roup 3	1	Vc	;c = 2.0 V, C	Dutput Load = 100 S	2 to GND	V _{EE} = -5.2 V, V _{EEL} = -3.2 V				
		Min	Max	Min	Max	Min	Max	1	**	VIN	VOUT	Vcc	VEEL	P. U. T.			
t TLH	Rise Time	1.5	3.5	1.2	4.1	1.3	3.8	ns	5, 10, 13	4, 9, 12	2, 3, 6, 7, 14, 15	1, 16	8	2, 3, 6, 7, 14, 15			
^t THL	Fall Time	1.5	3.5	1.2	4.1	1.3	3.8	ns	5, 10, 13	4, 9, 12	2, 3, 6, 7, 14, 15	1, 16	8	2, 3, 6, 7, 14, 15			
^t PHL	Propagation Delay High to Low	1.0	4.0	1.0	4.7	1.0	4.3	ns	5, 10, 13	4, 9, 12	2, 3, 6, 7, 14, 15	1, 16	8	2, 3, 6, 7, 14, 15			
^t PLH	Propagation Delay Low to High	1.0	4.0	1.0	4.7	1.0	4.3	ns	5, 10, 13	4, 9, 12	2, 3, 6, 7, 14, 15	1, 16	8	2, 3, 6, 7, 14, 15			

** Connected to pin 11

Quad Line Receiver

ELECTRICALLY TESTED PER: MPG 10515

The 10515 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (VBB) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the 10515 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 9) to prevent upsetting the current source bias network.

- P_D = 150 mW Max/Pkg (No Load)
- t_{pd} = 2.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to VTT
BOUT	3	7	4	51 Ω to VTT
AIN	4	8	5	VBB
A _{IN}	5	9	7	GND
B _{IN}	6	10	8	GND
BIN	7	11	9	VBB
v_{EE}	8	12	10	VEE
V _{BB}	9	13	12	VBB
C _{IN}	10	14	13	VBB
C _{IN}	11	15	14	GND
D _{IN}	12	16	15	GND
DIN	13	1	17	VBB
COUT	14	2	18	51 Ω to V_{TT}
DOUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

 V_{BB} = All pins designated for V_{BB} must be tied together, no external voltage applied.

NOTES

1. V_{BB} to be used to supply bias to the 10515 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor.

2. When the input pin with the bubble goes positive, the output goes negative.

Military 10515

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10515/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10515

3

Figure 1. Switching Test Circuit and Waveforms

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test															
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	VEE	VCB						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-3.2	-5.2	-5.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-3.2	-5.2	-5.2						
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-3.2	-5.2	-5.2						

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW:									
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	°C		1	signment	S							
	Parameters:	Subg	roup 1	Subg	oup 2	Subg	roup 3		V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V									
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE	Vcc	***	P. U. T.		
VOH	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	v	5, 6, 11, 12	4, 7 10, 13			8	1, 16	4 - 7 11 - 13	2, 3, 14, 15		
VOL	Low Output Voltage	-1.85	-1.62	-1.82	-1.545	-1.92	-1.655	v	4, 7, 10, 13	5, 6 11, 12			8	1, 16	4 - 7 11 - 13	2, 3, 14, 15		
VOH1	High Output Voltage	-0.95	-0.78	-0.845	-0.63	-1.10	-0.88	v			5, 6 11, 12	4, 7 10, 13	8	1, 16	4 - 7 11 - 13	2, 3, 14, 15		
VOL1	Low Output Voltage	-1.85	-1.60	-1.82	-1.525	-1.92	-1.635	v			4, 7 10, 13	5, 6 11, 12	8	1, 16	4 - 7 11 - 13	2, 3, 14, 15		
** V _{BB}	Reference Voltage	-1.35	-1.23	-1.24	-1.12	-1.44	-1.32	v					8	1, 16	5, 6 11, 12	9		
IEE	Power Supply Current	-26		-29		-29		mA					8	1, 16	5, 6 11, 12	8		
IJН	Input Current High		95		165		165	μA	4 - 7 10 - 13				8	1, 16		4 - 7 10 - 13		
Ісво	Input Leakage Current	-1.0		-1.0		-1.5		μA					8	1, 16	4 - 7 10 - 13	4 - 7 10 - 13		

** Connected to pin 9. *** Measure voltage on pin 9 while it is connected to other pins.

MOTOROLA MILITARY MECL DATA 3-48

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	V _{IH1}	VIL1	VIH2	VIL2	PS1	PS2	VEEL	VEE	VCB						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-3.2	-5.2	-5.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-3.2	-5.2	-5.2						
T _A = -55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-3.2	-5.2	-5.2						

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW									BELOW					
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	- 55 °C		Pino	Pinouts referenced are for DIL package, check Pin Assignments $V_{CC} = 2.0 V$, Output Load = 100 Ω to GND						
	Parameters:	Subgr	oup 9	Subgroup 10		Subgroup 11]		VCC = 2.0	v, Output	Load = 100				
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	P. U. T.			
^t TLH	Rise Time	1.1	3.3	1.0	4.4	1.0	3.9	ns	4, 7 11, 13	2, 3 14, 15	1, 16	8	2, 3, 14, 15			
THL	Fall Time	1.1	3.3	1.0	4.4	1.0	3.9	ns	4, 7 11, 13	2, 3 14, 15	1, 16	8	2, 3, 14, 15			
^t PHL	Propagation Delay High to Low	1.0	2.9	1.0	4.0	1.0	3.5	ns	4, 7 11, 13	2, 3 14, 15	1, 16	8	2, 3, 14, 15			
^t PLH	Propagation Delay Low to High	1.0	2.9	1.0	4.0	1.0	3.5	ns	4, 7 11, 13	2, 3 14, 15	1, 16	8	2, 3, 14, 15			

MOTOROLA MILITARY MECL DATA 3-49

Triple Line Receiver

ELECTRICALLY TESTED PER: 5962-7800901

The 10516 is a triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (VBB) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the 10516 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to VBB (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to complement outputs of the input logic function.

- P_D = 125 mW Max/Pkg (No Load)
 - t_{pd} = 2.0 ns typ
 - tr. tf = 2.0 ns tvp (20% 80%)

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AIN	4	8	5	GND
AIN	5	9	7	VBB
BOUT	6	10	8	51 Ω to VTT
BOUT	7	11	9	51 Ω to V _{TT}
VEE	8	12	10	VEE
BIN	9	13	12	GND
BIN	10	14	13	VBB
VBB	11	15	14	VBB
CIN	12	16	15	GND
CIN	13	1	17	VBB
COUT	14	2	18	51 Ω to V _{TT}
COUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

 V_{BB}^{--} = All pins designated for V_{BB} must be tied together, no external voltage applied. NOTES

1. VBB to be used to supply bias to the 10516 only and bypassed (when used) with 0.01 µF to 0.1 µF capacitor.

2. When the input pin with the bubble goes positive, the output goes negative.

Military 10516

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-7800901 3) 883: 10516/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10516

2. P_W ≥ 20 ns. 3. P_{RF} = 1.0 MHz.

- 4. R1 = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.
- 5. Unused outputs should be loaded 100 Ω to ground.
- 6. 2:1 divider may be used.
- 7. Length of Coax_A and Coax_B are matched 50 Ω .
- 8. C_L \leq 5.0 pF (including test jig).

9. Length of CoaxA and CoaxB should be matched for equal time delay.

Figure 1. Switching Test Circuit and Waveforms

ω

10516 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)														
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	VEE1								
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 3.2	- 5.2								
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 3.2	- 5.2								
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 3.2	- 5.2								

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAG	E APPLIE	ED TO PI	00 00<				
	Functional	+ 25			5 °C		5 °C						-			-	ts		
	Parameters:	Subgr	oup 1	Subgi	roup 2	Subgi	roup 3			۷C	;C = 0 V, C	Jutput Lo	ad = 100	Ω to - 2.0	• v, v _{BB} =	: -5.2 V			
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE	Vcc	VCB	VBB	P. U. T.		
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13			8	1, 16			2, 3, 6, 7, 14, 15		
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4, 5, 9, 10, 12, 13, 14	4, 5, 9, 10, 12, 13			8	1, 16			2, 3, 6, 7, 14, 15		
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.1	- 0.88	v	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	8	1, 16		10, 12,	2, 3, 6, 7, 14, 15		
V _{OL1}	Low Output Voltage	- 1.85	- 1.6	- 1.82	- 1.525	- 1.92	- 1.635	v	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	8	1, 16		10, 12,	2, 3, 6, 7, 14, 15		
**VBB1	Reference Voltage	- 1.35	- 1.23	- 1.24	- 1.12	- 1.44	- 1.32	v						1, 16			11		
IEE	Power Supply Current	- 21		- 24		- 24 .		mA	4, 9, 12	5, 10, 13			8	1, 16			8		
ηн	Input Current High		95		165		165	μΑ	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13			8	1, 16			4, 5, 9, 10, 12, 13		
Ісво	Input Leakage Current	- 1.0		- 1.0		-1.5		μΑ	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13				1, 16	4, 5, 9, 10, 12, 13		4, 5, 9, 10, 12, 13		

** Connect pins 5, 10, 13 to pin 11

MOTOROLA MILITARY MECL DATA 3-52

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEEL	V _{EE1}							
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 3.2	- 5.2							
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 3.2	- 5.2							
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 3.2	- 5.2							

Symbol	Parameter		Limits Units TEST VOLTAGE APPLIED TO PINS BELOW									V		
	Functional Parameters:		5 °C roup 9	+ 125 °C 9 Subgroup 1		- 55 °C Subgroup 11				uts referenced V _{CC} = 2.0 V, V		• • •		•
	TILL Pise Time		Max	Min	Max	Min	Max		VIN	Vout	Vcc	VBB	VEEL	P. U. T.
^t TLH	Rise Time	1.1	3.3	1.0	4.4	1.0	3.9	ns	4, 9	2, 3	1, 16	5, 10, 13	8	2, 3, 7, 14, 15
^t THL	Fall Time	1.1	3.3	1.0	4.4	1.0	3.9	ns	4, 9	2, 3	1, 16	5, 10, 13	8	2, 3, 7, 14, 15
^t PHL	Propagation Delay High to Low	1.0	2.9	1.0	4.0	1.0	3.5	ns	4, 9	2, 3	1, 16	5, 10	8	2, 3, 7, 14, 15
^t PLH	Propagation Delay Low to High	1.0	2.9	1.0	4.0	1.0	3.5	ns	4, 9	2, 3	1, 16	5, 10	8	2, 3, 7, 14, 15

Dual 2-Wide 2-3 Input "OR-AND/OR-AND-INVERT" Gate

ELECTRICALLY TESTED PER: MPG 10517

The 10517 is a general purpose logic element designed for use in data control, such as digital multiplexing or data distribution. Pin 9 is common to both gates.

- 150 mW Max/Pkg (No Load)
- t_{pd} = 2.3 ns typ
- t_r, t_f = 2.2 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
AOUT	2	6	3	51 Ω to VTT
AOUT	3	7	4	51 Ω to VTT
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	OPEN
A2 _{IN}	6	10	8	OPEN
A2 _{IN}	7	11	9	OPEN
VEE	8	12	10	VEE
A2 _{IN} , B2 _{IN}	9	13	12	OPEN
B2 _{IN}	10	14	13	OPEN
B2IN	11	15	14	OPEN
B1 _{IN}	12	16	15	OPEN
B1 _{IN}	13	1	17	OPEN
BOUT	14	2	18	51 Ω to V_{TT}
BOUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX - 2.2 V MIN$

Military 10517

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

3. 2:1 divider may be used.

4. $t_r = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$ measured at (20% - 80%).

- 5. P_W ≥ 20 ns.
- 6. P_{RF} = 1.0 MHz.

7. $R_1 = 50 \Omega$ resistor in series with 50 Ω coax constituting the 100 Ω load.

Figure 1. Switching Test Circuit and Waveforms

ω

10517 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	V _{IL1}	VIH2	V _{IL2}	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	-1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	-1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	-1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter			Lin	nits	-		Units	Units TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional		25° C	+ 125 ° C		- 55 ° C			Pinouts referenced are for DIL package, check Pin Assignments						
	Parameters:	Subgr	oup 1	Subgr	oup 2	Subgroup 3				V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V					
	ļ	Min	Max	Min	Max	Min	Max		VIH1 VIL1 VIH2		VIH2	VIL2	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4 - 7 9 - 13				8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4 - 7 9 - 13				8	1, 16	2, 3, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4 - 7 9 - 13		4 - 7 9 - 13	4 - 7 9 - 13	8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	4 - 7 9 - 13		4 - 7 9 - 13	4 - 7 9 - 13	8	1, 16	2, 3, 14, 15
IEE	Power Supply Current	- 26		- 29		- 29		mA					8	1, 16	8
ін	Input Current High		245		415		415	μΑ	4, 5 12, 13				8	1, 16	4, 5, 12, 13
liH1	Input Current High		265		450		450	μΑ	6, 7 10, 11				8	1, 16	6, 7, 10, 11
IIH2	Input Current High		350		595		595	μΑ	9				8	1, 16	9
ΙL	Input Current Low	0.5		0.3		0.5		μΑ		4 - 7 9 - 13			8	1, 16	7, 9 - 1

MOTOROLA MILITARY MECL DATA 3-56

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH1	V _{IL1}	VIH2	V _{IL2}	PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	-1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.66	- 1.82	- 1.000	-1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	-1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW:								LOW:						
		+ 25	5 °C	+ 12	5 °C	- 55	°C		Pinouts referenced are for DIL package, check Pin Assignments							
	Functional Parameters:	Subg	oup 9	Subgr	oup 10	Subgr	oup 11]		٧ _C	C = 2.0 V,	Output Lo	oad = 100 Ω to	GND		
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P. U. T.		
^t TLH	Rise Time	1.0	4.0	0.9	4.0	1.0	4.1	ns	4, 6, 11, 12	2, 14, 15	1, 16	8	4, 6, 11, 12	2, 3, 14, 15		
^t THL	Fall Time	1.0	4.0	0.9	4.0	1.0	4.1	ns	4, 6, 11, 12	2, 14, 15	1, 16	8	4, 6, 11, 12	2, 3, 14, 15		
^t PHL	Propagation Delay High to Low	1.4	3.4	1.2	3.5	1.1	3.5	ns	4, 6, 11, 12	2, 14, 15	1, 16	8	4, 6, 11, 12	2, 3, 14, 15		
^t PLH	Propagation Delay Low to High	1.4	3.4	1.2	3.5	1.1	3.5	ns	4, 6, 11, 12	2, 14, 15	1, 16	8	4, 6, 11, 12	2, 3, 14, 15		

Dual 2-Wide 3-Input "OR-AND" Gate

ELECTRICALLY TESTED PER: MPG 10518

The 10518 is a basic logic building block providing the OR/AND function, useful in data control and digital multiplexing applications.

- 150 mW Max/Pkg (No Load)
- t_{pd} = 2.3 ns typ
- t_f, t_f = 2.5 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to VTT
A1 _{IN}	3	7	4	OPEN
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	GND
A2 _{IN}	6	10	8	GND
A2IN	7	11	9	GND
VEE	8	12	10	VEE
A2 _{IN} , B2 _{IN}	9	13	12	GND
B2 _{IN}	10	14	13	GND
B2 _{IN}	11	15	14	OPEN
B1 _{IN}	12	16	15	GND
B1 _{IN}	13	1	17	OPEN
B1 _{IN}	14	2	18	OPEN
BOUT	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10518

2. P_W ≥ 20 ns.

NOTES

- 3. PRF = 1.0 MHz.
- 4. 2:1 divider may be used.
- 5. R₁ = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.
- 6. Unused outputs should be loaded 100 Ω to ground.
- 7. Length of CoaxA and CoaxB should be equal for equal time delay.
- 8. Coax_A and Coax_B are matched 50 Ω.

MOTOROLA MILITARY MECL DATA

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = -55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW:							:
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	5 °C			Pinout			-			signments
	Parameters:	Subgr	oup 1	Subgr	roup 2	Subgroup 3			V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V							
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE	VEEL	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3 - 7 9 - 14				8		1, 16	2, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	10, 13	3 - 7 9 - 14			8		1, 16	2, 15
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.1		v	3 - 7 9 - 14	3 - 7 9 - 14	3 - 7 9 - 14		8	8	1, 16	2, 15
V _{OL1}	Low Output Voltage		- 1.6		- 1.525		- 1.635	v	3-7 9-14	3 - 7 9 - 14		3-7 9-14	8	8	1, 16	2, 15
IEE	Power Supply Current	- 26		- 29		- 29		mA					8		1, 16	8
lιΗ	Input Current High		245		415		415	μA	3 - 5 12 - 14				8		1, 16	3 - 5, 12 - 14
liH1	Input Current High		265		450		450	μA	6, 7 10, 11				8		1, 16	6, 7, 10, 11
IIH2	Input Current High		350		595		595	μA	9				8		1, 16	9
μL	Input Current Low	0.5		0.3		0.5		μA		3-7 9-14			8		1, 16	3 - 7, 9 - 14

MOTOROLA MILITARY MECL DATA 3-60

ω

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	V _{IH1}	VIL1	VIH2	V _{IL2}	PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = -55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Lin	nits			Units								
	Functional Parameters:	+ 25 Subgr	i °C roup 9		+ 125 °C - 55 °C Subgroup 10 Subgroup 11			-	Pino		referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND					
		Min	Max	Min	Max	Min	Max	1	ViN	VOUT	Vcc	VEEL	P _{S1}	P. U. T.		
ttlh	Rise Time	1.3	4.0	1.0	4.0	1.1	4.1	ns	4, 10, 12	2, 15	1, 16	8	3, 5, 6, 9, 10, 12, 14	2, 15		
^t THL	Fall Time	1.3	4.0	1.0	4.0	1.1	4.1	ns	4, 10, 12	2, 15	1, 16	8	3, 5, 6, 9, 10, 12, 14	2, 15		
^t PHL	Propagation Delay High to Low	1.4	3.4	1.2	3.5	1.1	3.5	ns	4, 10, 12	2, 15	1, 16	8	3, 5, 6, 9, 10, 12, 14	2, 15		
^t PLH	Propagation Delay Low to High	1.4	3.4	1.2	3.5	1.1	3.5	ns	4, 10, 12	2, 15	1, 16	8	3, 5, 6, 9, 10, 12, 14	2, 15		

4-Wide 4-3-3-3 Input "OR-AND" Gate

ELECTRICALLY TESTED PER: MPG 10519

The 10519 is a 4-wide 4-3-3-3 input $\ensuremath{\text{OR/AND}}$ gate with one input from two gates common to pin 10.

- 150 mW Max/Pkg (No Load)
- t_{pd} = 2.3 ns typ
- t_r, t_f = 2.5 ns typ (20% 80%)

	Pit	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to VTT
A1 _{IN}	з	7	4	GND
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	OPEN
A1 _{IN}	6	10	8	OPEN
A2 _{IN}	7	11	9	OPEN
VEE	8	12	10	VEE
A2 _{IN}	9	13	12	OPEN
A2 _{IN} , A3 _{IN}	10	14	13	GND
A3 _{IN}	11	15	14	OPEN
A3 _{IN}	12	16	15	OPEN
A4IN	13	1	17	OPEN
A4 _{IN}	14	2	18	OPEN
A4 _{IN}	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

Military 10519

LCC: 2

The letter "M" appears before the slash on LCC.

5. P_W ≥ 20 ns.

6. P_{RF} = 1.0 MHz.

7. R₁ = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.

8. $C_L \le 5.0 \text{ pF}$ (including test jig).

Figure 1. Switching Test Circuit and Waveforms

ω

10519 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	ViH1	VIL1	V _{IH2}	V _{IL2}	PS1	P _{S2}	VEE	VEEL					
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = -55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter							Units		TEST VO	LTAGE APPL	IED TO PINS	BELOV	V	
	Functional	+ 25 Subgr	5 °C	+ 12 Subar	5 °C oup 2		5 °C roup 3		Pinout		are for DIL pa V, Output Loa	- ·		signme	nts
	Parameters:	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE	Vcc	P. U. T.
∨он	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3 - 7, 9 - 15				8	1, 16	2
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3, 7, 10, 11, 13	3 - 7, 9 - 15			8	1, 16	2
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v	3 - 7, 9 - 15	3 - 7, 9 - 15	3 - 7, 9 - 15		8	1, 16	2
VOL1	Low Output Voltage		- 1.600		- 1.525		- 1.635	v	3 - 7, 9 - 15	3 - 7, 9 - 15		3 - 7, 9 - 15	8	1, 16	2
IEE	Power Supply Current	- 26		- 29		- 29		mA					8	1, 16	8
Чн	Input Current High		390		415		415	μΑ	3 - 7, 9, 11 - 15				8	1, 16	3 - 7, 9 - 15
^I IH1	Input Current High		495		525		525	μA	10				8	1, 16	10
μL	Input Current Low	0.5		0.3		0.5		μA		3 - 7, 9 - 15			8	1, 16	3 - 7, 9 - 15

MOTOROLA MILITARY MECL DATA 3-64

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oitage Va	lues (Vol	ts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	VEE	VEEL
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = -55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter			Lin	nits			Units		TEST VC	LTAGE APP	PLIED TO	PINS BELOW	
	Functional		5°C		5 °C				Pinouts				check Pin Assig	gnments
	Parameters:	Subgi	roup 9	Subgr	oup 10	Subgr	oup 11	1		VCC =	2.0 V, Outpi	ut Load = 1	IOO Ω to GND	
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	VCC	VEEL	PS1	P. U. T.
t TLH	Rise Time	1.5	4.0	1.2	4.3	1.3	4.1	ns	4, 7, 12, 14	2	1, 16	8	4, 7, 12, 14	2
^t THL	Fall Time	1.5	4.0	1.2	4.3	1.3	4.1	ns	4, 7, 12, 14	2	1, 16	8	4, 7, 12, 14	2
^t PHL	Propagation Delay High to Low	1.4	3.8	1.2	4.0	1.1	4.1	ns	4, 7, 12, 14	2	1, 16	8	4, 7, 12, 14	2
^t PLH	Propagation Delay Low to High	1.4	3.8	1.2	4.0	1.1	4.1	ns	4, 7, 12, 14	2	1, 16	8	4, 7, 12, 14	2

4-Wide "OR-AND/OR-AND-INVERT" Gate

ELECTRICALLY TESTED PER: 5962-8857701

The 10521 is a basic building block providing the simultaneous OR-AND/OR-AND-INVERT function, useful in data control and digital multiplexing applications.

- 150 mW Max/Pkg (No Load)
- t_{pd} = 2.3 ns typ
- t_r, t_f = 2.5 ns typ (20% 80%)

	PI	N ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	51 Ω to V _{TT}
A1 _{IN}	4	8	5	OPEN
A1 _{IN}	5	9	7	OPEN
A1 _{IN}	6	10	8	OPEN
A2 _{IN}	7	11	9	OPEN
VEE	8	12	10	VEE
A2 _{IN}	9	13	12	OPEN
A2 _{IN} , A3 _{IN}	10	14	13	OPEN
A3 _{IN}	11	15	14	OPEN
A3 _{IN}	12	16	15	OPEN
A4iN	13	1	17	OPEN
A4iN	14	2	18	OPEN
A4IN	15	3	19	OPEN
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX / -2.2 V MIN$ $V_{EE} = -5.7 V MAX / -5.2 V MIN$

Military 10521

AVAILABLE AS 1) JAN: N/A 2) SMD: 5962-8857701 3) 883: 10521/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

5. P_W ≥ 20 ns.

NOTES

6. P_{RF} = 1.0 MHz.

7. $R_1 = 50 \Omega$ resistor in series with 50 Ω coax constituting the 100 Ω load.

8. CL = Jig and stray capacitance ≤ 5.0 pF.

Figure 1. Switching Test Circuit and Waveforms

ω

10521 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts

Test			Test \	oltage Va	lues (Vo	its)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter			Lir				Units		TEST VO	LTAGE APP	LIED TO PIN	S BEL	WC	
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	i °C		Pin	outs referenc					gnments
	Parameters:	Subgi	oup 1	Subgi	roup 2	Subg	roup 3)		VCC	= 0 V, Outpu	t Load = 100	Ω to - :	2.0 V	
	`	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4 - 7, 9 - 15	4 - 7, 9 - 15			8	1, 16	2, 3
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4 - 7, 9 - 13	4 - 7, 9 - 15			8	1, 16	2, 3
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4, 7, 11, 13	4, 7, 11, 13	4 - 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2, 3
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	4, 7, 11, 13		4 - 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2, 3
IEE	Power Supply Current	- 26		- 29		- 29		mA					8	1, 16	8
ЧΗ	Input Current High		245		415		415	μA	4 - 7, 9, 11 - 15				8	1, 16	4 - 7, 9, 11 - 15
liH1	Input Current High		310		525		525	μA	10				8	1, 16	10
١	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 15			8	1, 16	4 - 7, 9 - 15

MOTOROLA MILITARY MECL DATA 3-68

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oltage Va	lues (Vol	ts)		
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = -55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter			Limits						TEST VOI	TAGE APP	LIED TO P	PINS BELOW	
	Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts r				check Pin Assig	gnments
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11			$V_{CC} = 2$.0 V, Output	Load = 1	00 Ω to GND	
		Min	Max	Min	Max	Min	Max	1 1	VIN	VOUT	Vcc	VEEL	P _{S1}	P. U. T.
ţтгн	Rise Time	1.1	4.0	0.9	4.4	1.0	4.5	ns	5, 9, 10 12, 15	3	1, 16	8	5, 9, 12, 15	2, 3
^t THL	Fall Time	1.1	4.0	0.9	4.4	1.0	4.5	ns	5, 9, 10 12, 15	3	1, 16	8	5, 9, 12, 15	2, 3
^t PHL	Propagation Delay High to Low	1.4	3.5	1.1	3.9	1.2	3.8	ns	5, 9, 10 12, 15	3	1, 16	8	5, 9, 12, 15	2, 3
^t PLH	Propagation Delay Low to High	1.4	3.5	1.1	[′] 3.9	1.2	3.8	ns	5, 9, 10 12, 15	3	1, 16	8	5, 9, 12, 15	2, 3

MOTOROLA MILITARY MECL DATA 3-69

Triple 4-3-3 Input Bus Driver

ELECTRICALLY TESTED PER: MPG 10523

The 10523 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with V_{OL} = - 2.1 Vdc so that the bus may be terminated to - 2.0 Vdc. The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the 10523 are "turned-off". This eliminates discontinuities in the characteristic impedance of the bus.

The V_{OH} level is specified when driving a 25-ohm load terminated to - 2.0 Vdc, the equivalent of a 50-ohm bus terminated at both ends. Although 25 ohms is the lowest characteristic impedance that can be driven by the 10523, higher impedance values may be used with this part. A typical 50-ohm bus is shown in Figure 2.

- 435 mW Max/Pkg (No Load)
- tpd = 3.0 ns typ (1.5 Vdc in to 50% out)
- t_r, t_f = 2.5 ns typ (20% 80%)

	PIN	I ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION C)
V _{CC1}	1	5	2	GND
BOUT	2	6	3	51 Ω to V _{TT}
AOUT	3	7	4	50 Ω to VTT
AIN	4	8	5	OPEN
AIN	5	9	7	OPEN
AIN	6	10	8	OPEN
AIN	7	11	9	OPEN
VEE	8	12	10	VEE
BIN	9	13	12	OPEN
BIN	10	14	13	OPEN
BIN	11	15	14	OPEN
C _{IN}	12	16	15	OPEN
C _{IN}	13	1	17	OPEN
C _{IN}	14	2	18	OPEN
COUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10523

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10523/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

- 5. P_W ≥ 20 ns.
- 6. PBF = 1.0 MHz.
- 7. $R_1 = 50 \Omega$ resistor in series with 50 Ω coax constituting the 100 Ω load.
- 8. CL = Jig and stray capacitance \leq 5.0 pF.

Figure 1. Switching Test Circuit and Waveforms

ω

10523 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oltage Va	lues (Vo	lts)		
Temperature	VIH1	VIL1	VIL2	V _{IH2}	PS1	PS2	VEE	VEEL
T _A = 25 °C	- 0.78	- 1.85	- 1.475	- 1.105	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.63	- 1.82	- 1.400	- 1.000	+ 1.32	+ 0.445	- 5.2	- 3.2
T _A = - 55 °C	- 0.88	- 1.89	- 1.510	- 1.255	+ 1.30	+ 0.385	- 5.2	- 3.2

Symbol	Parameter			Li	mits			Units		TEST	VOLTAGE AF	PLIED TO P	INS BELO	w	
	Functional	+ 25 Subgr			5 °C roup 2		5 °C roup 3		Pinc		ced are for D = 0 V, Outpu	• • •		-	ents
	Parameters:	Min	Max	Min	Max	Min	Max	-	VIH1	VIL1	VIH2	VIL2	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v					8	1, 16	2, 3, 15
VOL	Low Output Voltage	- 2.15	- 2.03	- 2.15	- 2.03	- 2.15	- 2.03	v	4 - 7, 9 - 15		•		8	1, 16	2, 3, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	-			4 - 7, 9 - 15	8	1, 16	2, 3, 15
VOL1	Low Output Voltage	- 2.15	- 1.60	- 2.15	- 1.525	- 2.15	- 1.635	v	4, 9, 12		4 - 7, 9 - 15		8	1, 16	2, 3, 15
JEE	Power Supply Current	- 75		- 83		- 83		mA	4 - 7, 9 - 15				8	1, 16	8
μн	Input Current High		220		373		373	μA	4 - 7, 9 - 15				8	1, 16	4 - 7, 9 - 15
ΙĮL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 15			8	1, 16	4 - 7, 9 - 15

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test			Test V	/oltage Va	lues (Vo	lts)		
Temperature	VIH1	V _{IL1}	VIL2	VIH2	PS1	PS2	VEE	VEEL
T _A = 25 °C	- 0.78	- 1.85	- 1.475	- 1.105	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.63	- 1.82	- 1.400	- 1.000	+ 1.32	+ 0.445	- 5.2	- 3.2
T _A = - 55 °C	- 0.88	- 1.89	- 1.510	- 1.255	+ 1.30	+ 0.385	- 5.2	- 3.2

Symbol	Parameter			Lin	nits			Units	т	EST VOLTAGE AP	PLIED TO PINS	BELOW
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	°C		Pinouts ref	erenced are for D	IL package, che	ck Pin Assignments
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11			V _{CC} = + 2.0 V, Ou	tput Load = 100	Ω to GND
		Min	Max	Min	Max	Min	Max		VIN	VOUT	VEEL	P. U. T.
t TLH	Rise Time	1.0	3.5	1.0	3.5	1.0	3.5	ns	4 - 7, 9 - 14	2, 3, 15	8	2, 3, 15
THL	Fall Time	1.0	3.5	1.0	3.5	1.0	3.5	ns	4 - 7, 9 - 14	2, 3, 15	8	2, 3, 15
^t PHL	Propagation Delay High to Low	1.2	4.4	1.2	6.0	1.2	4.4	ns	4 - 7, 9 - 14	2, 3, 15	8	2, 3, 15
^t PLH	Propagation Delay Low to High	1.2	4.4	1.2	6.0	1.2	4.4	ns	4 - 7, 9 - 14	2, 3, 15	8	2, 3, 15

MOTOROLA MILITARY MECL DATA 3-73

Quad TTL-to-MECL Translator

ELECTRICALLY TESTED PER: MIL-M-38510/06301

The 10524 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The MECL 10524 has TTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the logic low level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

Power supply requirements are ground, +5.0 Volts, and -5.2 Volts. Propagation delay of the 10524 is typically 3.5 ns. The dc levels are standard or Schottky TTL in, MECL 10,000 out.

An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by the 10515 or 10516 differential receivers. The 10524 is useful in computers, instrumentation, peripheral controllers, test equipment, and digital communication systems.

- 205 mW Max/Pkg (No Load)
- t_{pd} = 3.5 ns typ (1.5 Vdc in to 50% out)
- t_r, t_f = 2.5 ns typ (20% 80%)

	PIN	ASSIGNMI	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION C)
BOUT	1	5	2	50 Ω to V _{TT}
AOUT	2	6	3	51 Ω to V _{TT}
BOUT	3	7	4	50 Ω to V_{TT}
AOUT	4	8	5	50 Ω to VTT
AIN	5	9	7	Vcc
Common Strobe	6	10	8	Vcc
B _{IN}	7 `	^k 11	9	VCC
VEE	8	12	10	VEE
Vcc	9	13	12	Vcc
CIN	10	14	13	Vcc
D _{IN}	11	15	14	VCC
COUT	12	16	15	51 Ω to V_{TT}
DOUT	13	1	17	51 Ω to VTT
DOUT	14	2	18	51 Ω to VTT
COUT	15	3	19	GND
GND	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10524

AVAILABLE AS

1) JAN: JM 38510/06301 2) SMD: N/A 3) 883: 10524/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

- 1. 50 Ω termination to ground located in each scope channel input.
- All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be < 1/4 inch from TPIN to input pin and TPOUT to output pin.

3

ω

10524 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oltage Va	lues (Vo	ts)		
Temperature	V _{IH1}	VIL1	VITL	VITH	VCCH	VGG	VEE	VEEL
T _A = 25 °C	+ 2.4	+ 0.4	+ 1.10	+ 1.80	+ 7.0	+ 2.0	- 5.2	- 3.2
T _A = 125 °C	+ 2.4	+ 0.4	+ 0.80	+ 1.80	+ 7.0	+ 2.0	- 5.2	- 3.2
T _A = - 55 °C	+ 2.4	+ 0.4	+ 1.10	+ 2.00	+ 7.0	+ 2.0	- 5.2	- 3.2

Symbol	Parameter			Liı	nits			Units		т	EST VOLT	AGE APPL	IED TO	PINS BE	LOW		
	Functional	+ 25			5 °C		5 °C		I	Pinouts ref		e for DIL p 10 mA, Oi	• •			•	S
	Parameters:	Subgr Min	Max	Min	oup 2 Max	Min	roup 3 Max		VIH1	VIL1	VITH	VITL	I IN	GND	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.76	- 0.825	- 0.63	- 1.08	- 0.88	v	5, 6, 7, 10, 11	6	*118	-112	111	16	8	9	1 - 4, 12 - 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	5, 6, 7, 10, 11	6				16	8	9	1 - 4, 12 - 15
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v	5, 6, 7, 10, 11		5, 6, 7, 10, 11	5, 6, 7, 10, 11		16	8	9	1 - 4, 12 - 15
VOL1	Low Output Voltage		- 1.60		- 1.525		- 1.635	v	5, 6, 7, 10, 11		5, 6, 7, 10, 11	5, 6, 7, 10, 11		16	8	9	1 - 4, 12 - 15
IEE	Power Supply Current	- 66		- 73		- 73		mA						16	8	9	8
liH1	Input Current High		50		85		85	μΑ	5, 7, 10, 11					6, 16	8	9	5, 7, 10, 11
^I IL1	Input Current Low	- 3.2		- 5.5		- 3.2		mA	6	5, 7, 10, 11				16	8	9	5, 7, 10, 11
IIH2	Input Current High		200		340		340	μΑ	6					5, 7, 10, 11, 16	8	9	6
IIL2	Input Current Low	- 12.8		- 22		- 12.8		mA		6				16	8	9	6
VIC	Input Clamp Voltage	- 1.5						v					5 - 7 10, 11	16	8	9	5 - 7 10, 11

MOTOROLA MILITARY MECL DATA 3-76

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oltage Va	lues (Vo	its)		
Temperature	V _{IH1}	VIL1	VITL	VITH	VCCH	V _{GG}	VEE	VEEL
T _A = 25 °C	+ 2.4	+ 0.4	+ 1.10	+ 1.80	+ 7.0	+ 2.0	- 5.2	- 3.2
T _A = 125 °C	+ 2.4	+ 0.4	+ 0.80	+ 1.80	+ 7.0	+ 2.0	- 5.2	- 3.2
T _A = - 55 °C	+ 2.4	+ 0.4	+ 1.10	+ 2.00	+ 7.0	+ 2.0	- 5.2	- 3.2

Symbol	Parameter			Lin	nits			Units		ד	EST VOLT	AGE APP	LIED TO	PINS B	ELOW		
	Functional Parameters:	+ 25 Subgr		+ 12 Subgr	5 °C roup 2	- 55 Subgi	i °C roup 3		F	Pinouts ref V _{CC} =	erenced a 5.0 V, I _{IN} =					-	ts
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VITH	VITL	IIN	GND	VEE	Vcc	P. U. T.
ICCL ICCH	Positive Power Supply Current Drain		25 16		28 18		28 18	mA mA						5, 7, 10, 11, 16	8	5 - 7, 9, 10, 11	9
BVIN	Input Break- down Voltage	5.5		5.5		5.5		V		6			5 - 7 10, 11	16	8	9	5 - 7 10, 11

Symbol	Parameter			Lin	nits			Units		TE	ST VOLTAG	E APPLI	ED TO PINS B	ELOW	
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	5 °C						ackage, check	-	
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11	1	Vcc	; = 5.0 V, I	IN = - 10 m/	4 or - 20	mA Output Lo	ad = 100 Ω	to GND
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	VCCH	VEEL	VGG	+ 6.0 V	P. U. T.
^t TLH	Rise Time	1.1	3.9	1.0	5.0	1.0	5.0	ns	5, 7, 10, 11	1 - 4 12 - 15	9	8	16	6	1 - 4 12 - 15
^t THL	Fall Time	1.1	3.9	1.0	5.0	1.0	5.0	ns	5, 7, 10, 11	1 - 4 12 - 15	9	8	16	6	1 - 4 12 - 15
tPHL	Propagation Delay High to Low	1.0	6.0	1.0	8.0	1.0	8.0	ns	5, 7	1 - 4 10, 11	9, 12 - 15	8	16	6	1 - 4 12 - 15
^t PLH	Propagation Delay Low to High	1.0	6.0	1.0	8.0	1.0	8.0	ns	5, 7	1 - 4 10, 11	9, 12 - 15	8	16	6	1 - 4 12 - 15

Quad MECL-to-TTL Translator

ELECTRICALLY TESTED PER: MIL-M-38510/06302

The 10525 is a quad translator for interfacing data and control signals between the MECL section and saturated logic section of digital systems. The 10525 incorporates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as a differential line receiver. The VBB reference voltage is available on pin 1 for use in single-ended input biasing. The outputs of the 10525 go to a low logic level whenever the inputs are left floating.

Power supply requirements are ground, + 5.0 Volts and – 5.2 Volts. Propagation delay of the 10525 is typically 4.5 ns. The 10525 has fanout of 10 TTL loads. The dc levels are MECL 10,000 in and Schottky TTL, or TTL out. This device has an input common mode noise rejection of \pm 1.0 volt.

An advantage of this device is that MECL level information can be received, via balanced twisted pair lines, in the TTL equipment. This isolates the MECL logic from the noisy TTL environment. This device is useful in computers, instrumentation, peripheral controllers, test equipment and digital communications systems.

- 230 mW Max/Pkg (No Load)
- t_{pd} = 4.5 ns typ (50% to 1.5 Vdc out)
- t_r, t_f = 2.5 ns typ (1.0 V to 2.0V)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
)		(CONDITION C)
V _{BB}	1	5 🧹	2	VBB
AIN	2	6	3	2 K Ω to V_{EE}
AIN	3	7	4	VBB
AOUT	4	8	5	360 Ω to V _{CC}
BOUT	5	9	7	360 Ω to $V_{\mbox{\scriptsize EE}}$
BIN	6	10	8	2 K Ω to VEE
BIN	7	11	9	VBB
VEE	8	12	10	VEE
VCC	9	13	12	Vcc
CIN	10	14	13	VBB
CIN	11	15	14	2 K Ω to V_{EE}
COUT	12	16	15	360 Ω to $V_{\mbox{\scriptsize EE}}$
DOUT	13	1	17	360 Ω to VCC
DIN	14	2	18	VBB
DIN	15	3	19	2 K Ω to GND
GND	16	4	20	GND

BURN - IN CONDITIONS: V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

* V_{BB} to be used to supply bias to the 10525 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor.

When the input pin with the bubble goes positive, the output goes negative.

Military 10525

AVAILABLE AS

1) JAN: JM 38510/06302 2) SMD: N/A 3) 883: 10525/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cable. Wire length should be < 0.250 inch (6.35 mm) from TPIN to input pin and TPOUT to output pin.
- 3. All diodes are 1N3064 or equivalent.

ω

10525 QUIESCENT LIMIT TABLE *

Test						Test V	oltage Va	lues (Vo	its)						Test Curre (milliA	
Temperature	VIH	VIL	VITH	VITL	VCB	VEE	VIHH	VILH	VIHL	VILL	VCC	VBB	VIHS	VILS	юн	lol
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	- 5.2	- 5.2	+ 0.22	- 0.85	- 1.78	- 2.85	+ 5.0	Pin 1	- 0.89	- 1.69	- 2.0	+ 12.0
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	- 5.2	- 5.2	+ 0.37	- 0.82	- 1.63	- 2.82	+ 5.0	Pin 1	- 0.76	- 1.64	- 2.0	+ 12.0
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	- 5.2	- 5.2	+ 0.12	- 0.92	- 1.88	- 2.92	+ 5.0	Pin 1	- 0.99	- 1.72	- 2.0	+ 12.0

Symbol	Parameter			Li	mits			Units			1	FEST VO	LTAGE	APPLIE	TO PIN	S BELO	W		
		+ 25	5 °C	+ 12	5 °C	- 5	5 °C				Pinouts	s referen	ced are	for DIL	oackage,	check F	in Assig	nments	s
	Functional Parameters:	Subgr	oup 1	Subg	roup 2	Subg	roup 3					G	iND = Pi	n 16, Ou	tput Loa	id = - 2.0	V		
		Min	Max	Min	Max	Min	Max	1	VIH	VIHH	VIHL	VIL	IOL	ЮН	VILL	VILH	VEE	Vcc	P. U. T.
VOH	High Output Voltage	2.5		2.5		2.5		v	3, 7, 11, 15	3, 7, 11, 15	3, 7, 11, 15	2, 3, 6, 7, 10, 11, 15		4, 5, 12, 13	2, 6, 10, 11, 14	2, 3, 6, 7, 10, 11, 14	8	9	4, 5, 12, 13
VOL	Low Output Voltage		0.5		0.5		0.5	v	2, 3	2	2	3	4, 5, 12, 13		3	3	8	9	4, 5, 12, 13
VOLS	Output Voltage		0.5		0.5		0.5	v					4, 5, 12, 13				2, 3, 6, 7, 8, 10, 11, 14	9	4, 5, 12, 13

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature						Test V	oltage Va	lues (Vo	lts)						Test Curre (milli#	
remperature	VIH	VIL	VITH	VITL	VCB	VEE	VIHH	VILH	VIHL	VILL	Vcc	VBB	VIHS	VILS	ЮН	IOL
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	- 5.2	- 5.2	+ 0.22	- 0.85	- 1.78	- 2.85	+ 5.0	Pin 1	- 0.89	- 1.69	- 2.0	+ 12.0
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	- 5.2	- 5.2	+ 0.37	- 0.82	- 1.63	- 2.82	+ 5.0	Pin 1	- 0.76	- 1.64	- 2.0	+ 12.0
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	- 5.2	- 5.2	+ 0.12	- 0.92	- 1.88	- 2.92	+ 5.0	Pin 1	- 0.99	- 1.72	- 2.0	+ 12.0

Symbol	Parameter			Lir	mits			Units			TEST V	OLTAGE	APPLIE	D TO PIN	IS BELO	W	
		+ 25	5 °C	+ 12	5 °C	- 55	5 °C			Pinouts	reference					ssignme	nts
	Functional Parameters:	Subgi	roup 1	Subg	roup 2	Subg	roup 3	1			۷c	C = Pin 9,	Output	Load =	- 2.0 V		
		Min	Max	Min	Max	Min	Max	1	VITH	VIL	VITL	VBB	VEE	GND	IOL	юн	P. U. T.
VOTH	High Output Voltage	2.5		2.5		2.5		v		2, 6, 10, 14	2, 6, 10, 14	1, 3, 7, 11, 15	8	16		4, 5, 12, 13	4, 5, 12, 13
VOTL	Low Output Voltage		0.5		0.5		0.5	v	2, 6, 10, 14	2, 6, 10, 14		1, 3, 7, 11, 15	8	16	4, 5, 12, 13		4, 5, 12, 13
V _{BB}	Reference Voltage	- 1.35	- 1.23	- 1.22	- 1.10	- 1.44	- 1.32	v				1, 3, 7, 11, 15	8	16			1
IEE	Power Supply Current	- 40		- 44		- 40		mA				1, 3, 7, 11, 15	8	16			8
ICCL	Positive Power Supply Drain Current		39		39		39	mA				1, 3, 7, 11, 15	8	16	-		9

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

ω

Test Voltage Values (Volts)													Test Current Values (milliAmps)			
remperature	VIH	VIL	VITH	VITL	VCB	VEE	VIHH	VILH	VIHL	VILL	Vcc	VBB	VIHS	VILS	юн	IOL
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	- 5.2	- 5.2	+ 0.22	- 0.85	- 1.78	- 2.85	+ 5.0	Pin 1	- 0.89	- 1.69	- 2.0	+ 12.0
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	- 5.2	- 5.2	+ 0.37	- 0.82	- 1.63	- 2.82	+ 5.0	Pin 1	- 0.76	- 1.64	- 2.0	+ 12.0
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	- 5.2	- 5.2	+ 0.12	- 0.92	- 1.88	- 2.92	+ 5.0	Pin 1	- 0.99	- 1.72	- 2.0	+ 12.0

Symbol	Parameter			Liı	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
		+ 2	5 °C	+ 12	5 °C	- 55	5 °C		Pin				ck Pin Assignments			
	Functional Parameters:	Subgi	roup 1	Subgi	oup 2	Subgroup 3				VC	:C = Pin 9, Ou	tput Load = -	2.0 V			
		Min	Max	Min	Max	Min	Max	1	VIH	VBB	VEE	GND	P. U. T.			
IССН	Positive Power Supply Drain Current		52		52		52	mA	2, 6, 10, 14	1, 3, 7, 11, 15	8	16	9			
ICBO	Input Leakage Current	- 1.0		- 1.0		- 1.5		μА		1 - 3, 6, 7, 10, 11, 14, 15	2, 3, 6 - 8, 10, 11, 14, 15	16	2, 3, 6, 7, 10, 11, 14, 15			
los	Short Circuit Current	- 40	- 100	- 35	- 100	- 40	- 100	mA		1, 3, 7, 11, 15	8	4, 5, 12, 13	4, 5, 12, 13			
ÚН1	Input Current High		115		196		196	μА	2, 3, 6, 7, 10, 11, 14, 15	1, 2, 3, 7, 10, 11, 14, 15		8, 16	2, 3, 6, 7, 10, 11, 14, 15			

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)														Test Current Values (milliAmps)	
Temperature	VIH	VIL	VITH	VITL	VCB	VEE	VIHH	VILH	VIHL	VILL	Vcc	VBB	VIHS	VILS	юң	IOL	
T _A = 25 °C	- 0.78	⁻ - 1.85	- 1.105	- 1.475	- 5.2	- 5.2	+ 0.22	- 0.85	- 1.78	- 2.85	+ 5.0	Pin 1	- 0.89	- 1.69	- 2.0	+ 12.0	
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	- 5.2	- 5.2	+ 0.37	- 0.82	- 1.63	- 2.82	+ 5.0	Pin 1	- 0.76	- 1.64	- 2.0	+ 12.0	
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	- 5.2	- 5.2	+ 0.12	- 0.92	- 1.88	- 2.92	+ 5.0	Pin 1	- 0.99	- 1.72	- 2.0	+ 12.0	

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
		+ 2	5 °C	+ 125 °C Subgroup 10		- 55	5 °C		Pinouts referenced are for DIL package, check Pin Assignments							
	Functional Parameters:	Subg	roup 9			Subgroup 11		1	V _{CC} = Pin 9, GND = Pin 16, Output Load = See Figure 1.							
		Min	Max	Min	Max	Min	Max	۱ ۱	VIN	VOUT	VBB	PS2	VEE	VILS	P. U. T.	
ΫΤLΗ	Rise Time		3.3		5.3		4.5	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7, 11, 15	10	8	2, 6, 10, 14	4, 5, 12, 13	
^t THL	Fall Time		3.3		5.3		4.5	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7, 11, 15	10	8	2, 6, 10, 14	4, 5, 12, 1	
^t PHL	Propagation Delay High to Low	1.0	6.0	1.0	7.0	1.0	6.5	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7, 11, 15	10	8	2, 6, 10, 14	4, 5, 12, 1	
^t PLH	Propagation Delay Low to High	1.0	6.0	1.0	7.0	1.0	6.5	ns	2, 6, 10, 14	4, 5, 12, 13	1, 3, 7, 11, 15	10	8	2, 6, 10, 14	4, 5, 12, 1	

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Dual Latch

ELECTRICALLY TESTED PER: MPG 10530

The 10530 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the enable inputs for the clocking function. If the common clock is to be used to clock the latch, the Clock Enable (\overline{C}_E) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (\overline{C}).

Any change at the D input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in information present at the data inputs will not affect the output information.

The set and reset inputs do not override the clock and D inputs. They are effective only when either \overline{C} or $\overline{C}_{\overline{E}}$ or both are high.

- 205 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ
- t_r, t_f = 2.7 ns typ (20% 80%)

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
Q ₁	2	6	3	51 Ω TO V_{TT}								
$\overline{Q_1}$	3	7	4	51 Ω TO V _{TT}								
R ₁	4	8	5	OPEN								
S ₁	5	9	7	OPEN								
C _{E1}	6	10	8	OPEN								
D ₁	7	11	9	OPEN								
VEE	8	12	10	VEE								
C	9	13	12	OPEN								
D ₂	10	14	13	OPEN								
C _{E2}	11	15	14	OPEN								
S ₂	12	16	15	OPEN								
R ₂	, 13	1	17	OPEN								
$\overline{Q_2}$	14	2	18	51 Ω to V _{TT}								
Q ₂	15	3	19	51 Ω TO V_{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10530

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10530/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

	TRUTH TABLE											
D	Ē	CE	Q _{n + 1}									
L	L	L	L									
Н	L	L	н									
ø	L	н	Qn									
ø	н	L	Qn									
Ø L H Q _n Ø H L Q _n Ø H H Q _n												
Ø = Don'	t Care											

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be ≤ 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. 2:1 divider may be used.
- 5. R_L = 50 Ω resistor in series with a 50 Ω coax constitute the 100 Ω load.
- 6. $Z_{OUT} = 50 \Omega$ (20% to 80%).

t_{setup} is the minimum time before the positive transition of the clock pulse (C) that information must be present at the data input (D). thold is the minimum time before the positive transition of the clock pulse (C) that information must remain unchanged at the data input (D).

Figure 1. Switching Test Circuit and Set/Reset Waveforms

3

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test \	lues (Volts)					
Temperature	VIH1	VIL1	V _{IH2}	VIL2	PS1	P _{S2}	VEE	VEEL	
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2	
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2	
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2	

Symbol	Parameter			Liı	mits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
		+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pinouts referenced are for DIL package, check Pin Assignme						nents
	Functional Parameters:	Subgr	roup 1	Subgi	roup 2	Subgroup 3				V _{CC} = 0	V, Output Lo	$ad = 100 \Omega tc$	- 2.0 \	/	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VIH2	VIL2	V_{EE}	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4 - 7, 9 - 13	4 - 7, 9 - 13			8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4 - 7, 9 - 13	4 - 7, 9 - 13			8	1, 16	2, 3, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4, 5, 12, 13	4, 7, 9 - 13	4 - 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	4, 7, 10, 13	4 - 7, 9 - 13	4 - 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15
IEE	Power Supply Current	- 35		- 39		- 39		mA	9				8	1, 16	8
Чн	Input Current High		220		375		375	μA	6, 11				8	1, 16	6, 11
Чн1	Input Current High		265		450		450	μΑ	9				8	1, 16	9
IH2	Input Current High		285		485		485	μΑ	4 - 7, 10 - 13				8	1, 16	4 - 7, 10 - 13
μL	Input Current Low	0.5		0.3		0.5		μΑ		4 - 7, 9 - 13			8	1, 16	4 - 7, 9 - 13

ω

10530 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL						
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2						
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2						
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2						

Symbol	Parameter			Lin	Limits Units TEST VOLTAGE APPLIED TO PINS B							PINS BELC	W		
	Functional	+ 25	5 °C	+ 125 °C Subgroup 10		- 55	5 °C		Pinouts referenced are for DIL package, check Pin Assignments						
	Parameters:	Subgi	roup 9			Subgroup 11			V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1 1	VIN	VOUT	Vcc	VEEL	P. U. T.		
TLH	Rise Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
THL	Fall Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t pđ	Propagation Delay Data to Output	1.0	3.5	1.0	4.1	1.0	3.9	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t pd	Propagation Delay S/R to Output	1.0	3.5	1.0	4.1	1.0	3.9	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t pd	Propagation Delay Clock to Output	1.0	4.0	1.0	4.7	1.0	4.3	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t set	Setup Time	2.5		2.5		2.5		ns	6, 7, 10, 11	2, 15	1, 16	8	2, 15		
thold	Hold Time	1.5		1.5		1.5	1	ns	6, 7, 10, 11	2, 15	1, 16	8	2, 15		

MOTOROLA MILITARY MECL DATA 3-88

Dual D Type Master Slave Flip-Flop

ELECTRICALLY TESTED PER: MIL-M-38510/06101

The 10531 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock (C_C) and Clock Enable (C_E) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

- 325 mW Max/Pkg (No Load)
- ftog = 125 MHz typ
- t_{pd} = 3.0 ns typ
- t_r, t_f = 2.5 ns typ (20% 80%)

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
Q ₁	2	6	3	51 Ω TO V_{TT}								
$\overline{Q_1}$	3	7	4	51 Ω TO V_TT								
R ₁	4	8	5	51 Ω TO V _{TT}								
S ₁	5	9	7	GND								
C _{E1}	6	10	8	OPEN								
D ₁	7	11	9	OPEN								
VEE	8	12	10	VEE								
сc	9	13	12	OPEN								
D ₂	10	14	13	OPEN								
C _{E2}	11	15	14	OPEN								
S ₂	12	16	15	GND								
R ₂	13	1	17	51 Ω TO V_{TT}								
Q ₂	14	2	18	51 Ω TO V_TT								
Q ₂	15	3	19	51 Ω TO V_TT								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: V_{TT} = - 2.0 V MAX/ - 2.2 V MIN V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

Military 10531

AVAILABLE AS

1) JAN: JM 38510/06101 2) SMD: N/A 3) 883: 10531/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

R-S TRUTH TABLE

R	S	Q _n + 1
L	L	Qn
L	н	Н
Н	L	L L
н	н	N. D.

N. D. = Not Defined

A clock H is a clock transition from a Low to a High state

С	D	Q _n + 1
L	Ø	Qn
н	L	L
н	н	н
Ø = Dor	n't Care	

 $C = C_E + C_C$

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be \leq 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. $t_r = t_f = 2.0 \text{ ns} (20\% 80\%).$
- 7. Scope Input = 50 Ω GND.
- 8. C_L (test Jig) ≤ 5.0 pF.

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be ≤ 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. ZOUT = 50 Ω.
- 7. tp (Set & Reset) = 40 ns.
- 8. PRR = 1.0 MHz.
- 9. Scope Input = 50 Ω to GND.
- 10. CL (test Jig) \leq 5.0 pF.

Figure 2. Set and Reset Switching Test Circuit

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be \leq 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. ZOUT = 50 Ω.
- 7. tpD(Data) = 150 ns, tpC (Clock) = 40 ns.
- 8. PRR = 1.0 MHz.
- 9. Scope Input = 50 Ω to GND.
- 10. CL (test Jig) ≤ 5.0 pF.

Figure 3. Synchronous Switching Test Circuit and Waveform

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	VEE	V _{EE1}					
T _A = 25 °C	- 0.780	- 1.850	+ 1.11	+ 0.31	- 1.475	- 1.105	- 5.2	- 3.2					
T _A = 125 °C	- 0.630	- 1.820	+ 1.24	+ 0.36	- 1.400	- 1.000	- 5.2	- 3.2					
T _A = - 55 °C	- 0.880	- 1.920	+ 1.01	+ 0.28	- 1.510	- 1.255	- 5.2	- 3.2					

Symbol	Parameter			Lir	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional		5 °C	<u> </u>	5 °C		5 °C		Pinou	ts referenced		ackage, chec bad = 100 Ω to		-	nents	
	Parameters:	Subgr			roup 2		roup 3						r			
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITH	VITL	VEE	Vcc	P. U. T.	
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 12, 13	4 - 7, 9 - 13			8	1, 16	2, 3, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4, 5, 12, 13	4 - 7, 9 - 13			8	1, 16	2, 3, 14, 15	
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v	4, 5, 12, 13	4, 7, 9 - 13	4, 5, 12, 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15	
VOL1	Low Output Voltage		- 1.60		- 1.525		- 1.635	v	4, 5, 12, 13	4 - 7, 9 - 13	4, 5, 12, 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15	
IEE	Power Supply Current	- 56		- 62		- 62		mA					8	1, 16	8	
Чн	Input Current High		265		450		450	μА	9				8	1, 16	9	
ин1	Input Current High		220		375		375	μA	6, 11				8	1, 16	6, 11	
¹ 1H2	Input Current High		330		565		565	μA	4, 5, 12, 13				8	1, 16	4, 5, 12, 13	
ЧНЗ	Input Current High		245		420		420	μΑ	7, 10				8	1, 16	7, 10	
ЧL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13			8	1, 16	4 - 7, 9 - 13	

ω

10531 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	VEE	V _{EE1}					
T _A = 25 °C	- 0.780	- 1.850	+ 1.11	+ 0.31	- 1.475	- 1.105	- 5.2	- 3.2					
T _A = 125 °C	- 0.630	- 1.820	+ 1.24	+ 0.36	- 1.400	- 1.000	- 5.2	- 3.2					
T _A = - 55 °C	- 0.880	- 1.920	+ 1.01	+ 0.28	- 1.510	- 1.255	- 5.2	- 3.2					

Symbol	Parameter			Lin	nits			Units	its TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10			5 °C oup 11		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Parameters:	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.		
tтlн	Rise Time	1.1	4.5	1.1	4.9	1.0	4.6	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
tτнL	Fall Time	1.1	4.5	1.1	4.9	1.0	4.6	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PLH1	Propagation Delay	1.2	4.3	1.2	4.9	1.1	4.5	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PLH2	Propagation Delay	1.5	4.5	1.5	5.0	1.4	4.6	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
tPHL1	Propagation Delay	1.2	4.3	1.2	4.9	1.1	4.5	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PHL2	Propagation Delay	1.5	4.5	1.5	5.0	1.4	4.6	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^f tog	Toggle Frequency (max)	125		125		105		MHz	6, 11	2, 15	1, 16	8	2, 3, 14, 15		

Quad Latch

ELECTRICALLY TESTED PER: MPG 10533

The 10533 is a high speed, low power, quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on the negative going transition of the clock.

The outputs are gated when the output enable (\overline{G}) is low. All four latches may be clocked at one time with the common clock (CC), or each half may be clocked separately with its clock enable (CE).

- 435 mW Max/Pkg (No Load)
- t_{pd} = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Q ₀	2	6	3	51 Ω TO V _{TT}
D0	3	7	4	GND
CE	4	8	5	OPEN
G0	5	9	7	OPEN
Q1	6	10	8	OPEN
D1	7	11	9	GND
VEE	8	12	10	VEE
D	9	13	12	GND
<u>G1</u>	10	14	13	OPEN
Q2	11	15	14	51 Ω TO V _{TT}
CE	12	16	15	OPEN
с _с	13	1	17	GND
D3	14	2	18	GND
Q3	15	3	19	51 Ω TO V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

Ĝ	С	D	Q _{n + 1}
н	ø	Ø	L
L	L	ø	Qn
L	н	L	L
L	н	н	н
Ø = Don C = CC			

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10533/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. 2:1 divider may be used.

NOTES

- 3. $L_1 = L_2$: Matched for equal time delays.
- 4. VIN = has the following characteristics:
 - a) pulse width \geq 20 ns.
 - b) frequency = 1.0 MHz.
 - c) t_r and $t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$.
- 5. Unused outputs should be loaded 100Ω to Gnd.

Figure 1. Switching Test Circuit and Set/Reset Waveforms

SWITCHING WAVEFORMS

NOTES

- 1. VIN has the following characteristics:
 - a) Pulse width ≥ 40 ns.
 - b) frequency = 1.0 MHz.
 - c) t_{f} and t_{f} = 2.0 ns \pm 0.2 ns (20% to 80%)

ω

10533 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL					
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter	[Lir	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
		+ 25	5 °C	+ 12	5 °C	- 58	5°C		Pinouts referenced are for DIL package, check Pin Assignments							
	Functional Parameters:	Subgr	oup 1	Subgr	roup 2	Subgroup 3				V _{CC} = 0	V, Output Lo	pad = 100Ω to	o - 2.0 \	/		
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIH1	VIL1	VEE	VCC	P. U. T.	
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3, 7, 9, 12 - 14				8	1, 16	2, 6, 11, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3, 4, 5, 7, 9, 10, 12 - 14				8	1, 16	2, 6, 11, 15	
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	3, 4, 7, 9, 12, 14		5, 10	3, 7, 13, 14	8	1, 16	2, 6, 11, 15	
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	3, 4, 7, 9, 12, 14	3, 4, 7, 9, 12, 14	3, 4, 7, 9, 12, 14		8	1, 16	2, 6, 11, 15	
liH1	Input Current High		350		595		595	μA	5, 10				8	1, 16	5, 10	
liH2	Input Current High		245		415		415	μΑ	7, 9, 14				8	1, 16	7, 9, 14	
lнз	Input Current High		265		450		450	μA	4, 12				8	1, 16	4, 12	
liH4	Input Current High		350		595		595	μA	13				8	1, 16	13	
ΙIL	Input Current Low	0.5		0.3		0.5		μA		3 - 5, 7, 9, 10, 12 - 14			8	1, 16	3 - 5, 7, 9, 10, 12 - 14	
IEE	Power Supply Current	- 75	-7	- 83	-8	- 83	-8	mA		13			8	1, 16	8	

MOTOROLA MILITARY MECL DATA 3-98

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature	Test Voltage Values (Volts)													
	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL						
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2						
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2						
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2						

ω

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW								
	Functional	+ 25			5 °C		5 °C	-	Pinou				• •		eck Pin Assignments Ω to GND		
	Parameters:		oup 9	Subgroup 10		Subgroup 11		4	$V_{CC} = 2.0 V$, Output Load = 100 Ω to GND								
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.		
τιн	Rise Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15		
tτhl	Fall Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15		
^t PLH/ ^t PHL	Propagation Delay Clock to Output	1.0	5.4	1.0	6.3	1.0	5.8	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15		
tPLH/ tPHL	Propagation Delay Data to Output	1.0	5.4	1.0	6.3	1.0	5.8	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15		
tPLH/ tPHL	Propagation Delay Gate to Output	1.0	3.1	1.0	3.6	1.0	3.3	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15		
tset	Setup Time	2.5		2.5		2.5		ns	3, 4, 7, 9, 12, 14	2, 6, 11	1, 16	8			2, 6, 11, 15		
^t hold	Hold Time	1.5		1.5		1.5		ns	3, 4, 7, 9, 12, 14	2, 6, 11	1, 16	8			2, 6, 11, 15		

Dual J-K Master Slave Flip-Flop

ELECTRICALLY TESTED PER: MIL-M-38510/06104

The 10535 is a dual master-slave dc coupled J-K flip-flop. Asynchronous Set (S) and Reset (R) are provided. The set and reset inputs override the clock.

A common clock is provided with separate \overline{J} - \overline{K} inputs. When the clock is static, the \overline{J} - \overline{K} inputs do not effect the output.

The output states of the flip-flop change on the positive transition of the clock.

- 390 mW Max/Pkg (No Load)
- f_{tog} = 120 MHz typ
- t_{pd} = 3.0 ns typ
- t_f, t_f = 2.5 ns typ (20% 80%)

	PIN	I ASSIGNMI	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q ₁	2	6	3	51 Ω TO V _{TT}
$\overline{Q_1}$	3	7	4	51 Ω to V _{TT}
R ₁	4	8	5	51 Ω TO V_TT
S ₁	5	9	7	GND
K1	6	10	8	OPEN
J1	7	11	9	OPEN
VEE	8	12	10	VEE
С	9	13	12	OPEN
J2	10	14	13	OPEN
K ₂	11	15	14	OPEN
S ₂	12	16	15	GND
R ₂	13	1	17	51 Ω TO V_TT
$\overline{Q_2}$	14	2	18	51 Ω TO V_TT
Q ₂	15	3	19	51 Ω TO V_TT
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10535

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

R-S TRUTH TABLE

R	S	Q _n + 1
L	L	Qn
L	н	н
н	L	L
н	н	N. D.

N. D. = Not Defined

A clock H is a clock transition from a Low to a High state

CLOCKED TRUTH TABLE *

J	ĸ	Q _n + 1
L	L	Qn
н	L	L
L	L H H	н
н	н	Qn

 * Output states change on positive transition of clock for $\overline{\text{J-K}}$ input condition preset

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cables.
- Wire length should be \leq 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. $t_r = t_f = 2.0 \text{ ns} (20\% 80\%).$
- 7. Scope Input = 50 Ω GND.
- 8. C_L (test Jig) ≤ 5.0 pF.

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be ≤ 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \ \Omega \pm 5.0\%$.
- 6. $Z_{OUT} = 50 \Omega$.
- 7. tp (Set & Reset) = 40 ns.
- 8. PRR = 1.0 MHz.
- 9. t_r = t_f = 2.0 ns (20% 80%).
- 10. Scope Input = 50 Ω to GND.
- 11. C_L (test Jig) ≤ 5.0 pF.

Figure 2. Preset and Clear Switching Test Circuit

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be \leq 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. $Z_{OUT} = 50 \Omega$.
- 7. t_p (Clock) = 40 ns.
- 8. PRR = 1.0 MHz.
- 9. $t_r = t_f = 2.0 \text{ ns} (20\% 80\%).$
- 10. Scope Input = 50 Ω to GND.
- 11. C_L (test Jig) \leq 5.0 pF.

Figure 3. Synchronous Switching Test Circuit and Waveform

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be ≤ 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \ \Omega \pm 5.0\%$.
- 6. Z_{OUT} = 50 Ω.
- 7. t_{THL} = t_{TLH} = 2.0 ns (20% 80%).
- 8. Scope Input = 50 Ω to GND.
- 9. CL (test Jig) \leq 5.0 pF.
- * 10. For information only; not tested: $t_{setup} \ge 1.0 \text{ ns}$, $t_{hold} \ge 0.75 \text{ ns}$.

Figure 4. Setup and Hold Test Circuit and Waveform

MOTOROLA MILITARY MECL DATA 3-104

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	V _{IH2}	V _{IL2}	VITL	VITH	VEE	V _{EE1}			
T _A = 25 °C	- 0.780	- 1.850	+ 1.11	+ 0.31	- 1.475	- 1.105	- 5.2	- 3.2			
T _A = 125 °C	- 0.630	- 1.820	+ 1.24	+ 0.36	- 1.400	- 1.000	- 5.2	- 3.2			
T _A = - 55 °C	- 0.880	- 1.920	+ 1.01	+ 0.28	- 1.510	- 1.255	- 5.2	- 3.2			

Symbol	Parameter			Lir	mits			Units		TEST VO	LTAGE APPL	IED TO PINS	BELO	W		
	Functional	+ 25 °C + 125 °C			5 °C	- 55 °C			Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:	Subgi	roup 1	Subgi	roup 2	Subg	Subgroup 3		V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V							
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITH	VITL	VEE	Vcc	P. U. T.	
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 12, 13				8	1, 16	2, 3, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4, 5, 12, 13				8	1, 16	2, 3, 14, 15	
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v	4, 5, 12, 13	4, 7, 9 - 13	4, 5, 12, 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15	
VOL1	Low Output Voltage		- 1.60		- 1.525		- 1.635	v	4, 5, 12, 13	4 - 7, 9 - 13	4, 5, 12, 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15	
IEE	Power Supply Current	- 66		- 75		- 75		mA					8	1, 16	8	
μн	Input Current High		265		450		450	μA	6, 7, 9 - 11				8	1, 16	6, 7, 9 - 11	
^I IH1	Input Current High		390		665		665	μA	4, 5, 12, 13				8	1, 16	4, 5, 12, 13	
^I IL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13			8	1, 16	4 - 7, 9 - 13	

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test	Values (Vo	olts)				
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	VEE	V _{EE1}	
T _A = 25 °C	- 0.780	- 1.850	+ 1.11	+ 0.31	- 1.475	- 1.105	- 5.2	- 3.2	
T _A = 125 °C	- 0.630	- 1.820	+ 1.24	+ 0.36	- 1.400	- 1.000	- 5.2	- 3.2	
T _A = - 55 °C	- 0.880	- 1.920	+ 1.01	+ 0.28	- 1.510	- 1.255	- 5.2	- 3.2	

Symbol	Parameter			Lin	nits			Units		TE	ST VOLTAGE A	PPLIED TO P	PINS BELO	w
	Functional		5 °C		5 °C		°C		Pinouts referenced are for DIL package, check Pin A					-
	Parameters:	Subgr	roup 9	Subgr	oup 10	Subgr	oup 11		$V_{CC} = 2.0 V$, Output Load = 100 Ω to GND				U	
		Min	Max	Min	Max	Min	Max		VIH2	VIN	Vout	Vcc	VEEL	P. U. T.
tтLH1 tтнL1	Rise Time 1 or Fall Time 1	1.1	4.5	1.0	5.3	1.0	4.8	ns	6, 7	4, 5, 10, 11, 12, 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
ttlh1 tthl1	Rise Time 2 or Fall Time 2	1.1	4.5	1.0	5.3	1.0	4.8	ns		9	2, 3, 14, 15	1, 16	8	2, 3, 14, 15, 10 - 13
^t PLH1	Propagation Delay 1	1.01	5.0	1.0	5.9	1.0	5.4	ns	6, 7, 10, 11	4, 5, 12, 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
^t PHL1	Propagation Delay 1	1.01	5.0 ⁻	1.0	5.9	1.0	5.4	ns	6, 7, 10, 11	4, 5, 12, 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
^t PLH2	Propagation Delay 2	1.0	4.5	1.0	5.3	1.0	4.8	ns	6, 7, 10, 11	4, 5, 12, 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
^t PHL2	Propagation Delay 2	1.0	4.5	1.0	5.3	1.0	4.8	ns	6, 7, 10, 11	4, 5, 12, 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
ftog	Toggle Frequency	125		115		105		MHz		9	2, 15	1, 16	8	2, 15

ω

Universal Hexadecimal Counter

ELECTRICALLY TESTED PER: 5962-8774501

The 10536 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. The flexibility of this device allows the designer to use one basic counter for most applications, and the synchronous count feature makes the 10536 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the count- er. Carry Out goes low on the terminal count, or when the counter is being preset.

This device is not designed for use with gated clocks, Control is via S1 and S2.

- 720 mW Typ/Pkg (No Load)
- fCOUNT = 120 MHz typ
- t_{pd} = 3.3 ns typ (C Q)
- = 7.0 ns typ (C COUT)
 - = 5.0 ns typ (CIN COUT)

PIN ASSIGNMENT	2

FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Q ₂	2	6	3	51 Ω to V _{TT}
Q ₃	3	7	4	51 Ω TO V _{TT}
COUT	4	8	5	51 Ω TO V _{TT}
D ₃	5	9	7	GND
D ₂	6	10	8	GND
S2	7	11	9	OPEN
VEE	8	12	10	VEE
S1	9	13	12	OPEN
CIN	10	14	13	OPEN
D1	11	15	14	GND
D ₀	12	16	15	GND
CLK	13	1	17	CP1
Q ₀	14	2	18	51 Ω TO V_TT
Q1	15	3	19	51 Ω TO V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX / -2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10536

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8774501 3) 883: 10536/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

	F	UNCTION	SELECT TABLE
CIN	S ₁	S ₂	OPERATING MODE
Ø	L	L	Preset (Program)
L	L	н	Increment (Count Up)
н	L	н	Hold Count
L	н	L	Decrement (Count Down)
Н	н	L	Hold Count
Ø	н	н	Hold (Stop Count)

	SEQUENTIAL TRUTH TABLE •													
S ₁	S ₂	D ₀	D ₁	D ₂	D ₃	Carry IN	Clock ••	Q ₀	Q1	Q2	Q3	Carry OUT		
L	L	L	L	н	н	Ø	н	L	L	н	н	L		
L	н	Ø	Ø	Ø	Ø	L	н	н	L	н	н	н		
L	н	Ø	Ø	Ø	Ø	L	н	L	н	н	н	н		
L	н	ø	Ø	Ø	Ø	L	н	н	н	н	н	L		
L	н	Ø	Ø	Ø	Ø	н	L	н	Н	н	н	н		
L	н	ø	ø	ø	Ø	н	н	н	н	н	н	н		
н	н	ø	Ø	Ø	Ø	Ø	н	н	н	н	н	н		
L	L	н	н	L	L	Ø	н	н	н	L	L	L		
Н	L	Ø	Ø	Ø	Ø	L	н	L	н	L	L	н		
н	L	Ø	Ø	Ø	Ø	L L	н	н	L	L	L	н		
н	L	ø	ø	ø	Ø	L	н	L	L	L	L	L		
н	L	ø	ø	ø	Ø	L	н	н	н	н	н	н		

Ø = Don't Care

• Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.

•• A clock H is defined as a clock input transition from a low to a high logic level.

NOTE:

FLIP FLOPS WILL TOGGLE WHEN ALL \overline{T} INPUTS ARE LOW.

Figure 1. Logic Diagram

3

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	P _{S2}	VEE	VEEL			
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2			
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2			
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2			

Symbol	Parameter			Lir	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW							
	-	+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pinout		are for DIL p	• ·		-	ients
	Functional Parameters:	Subgr	oup 1	Subgr	Subgroup 2		Subgroup 3			V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V					
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH2	VIL2	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7, 9, 11 - 13	13			8	1, 16	2, 3, 4, 14, 15
VOL	Low Output Voltage	- 1.93	- 1.62	- 1.90	- 1.545	- 2.00	- 1.655	v	13				8	1, 16	2, 3, 4, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v					8	1, 16	2, 3, 4, 14, 15
VOL1	Low Output Voltage	- 1.93	- 1.60	- 1.90	- 1.525	- 2.00	- 1.635	v					8	1, 16	2, 3, 4, 14, 15
¹ EE	Power Supply Current	- 125		- 138		- 138		mA					8	1, 16	8
Iн	Input Current High		220		375		375	μA	5, 6, 11, 12				8	1, 16	5, 6, 11, 12
liH1	Input Current High		245		415		415	μA	9, 10				8	1, 16	9, 10
IIH2	Input Current High		265		450		450	μA	7				8	1, 16	7
Iнз	Input Current High		290		495		495	μA	13				8	1, 16	13
ΙL	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 10 - 13			8	1, 16	5 - 7, 10 - 13

MOTOROLA MILITARY MECL DATA 3-110

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL							
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2							
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2							
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2							

Symbol	Parameter			Lin	nits			Units		TEST	VOLTA	GE APPL	IED TO	PINS BELOW		
	Functional		5 °C	+ 12			5 °C		Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:	Subgroup 9		Subgroup 10		Subgroup 11			V _{CC} = 2.0 V, Output Load = 100 Ω to GND							
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.	
^t TLH	Rise Time	1.1	3.3	1.2	3.7	0.9	3.3	ns	12, 13	4	1, 16	8	7	5, 6, 9 - 12	2, 3, 14, 15	
^t THL	Fall Time	1.1	3.3	1.2	3.7	0.9	3.3	ns	12, 13	4	1, 16	8	7	5, 6, 9 - 12	2, 3, 14, 15	
^t pd	Propagation Delay CLK to Q <u>CLK to Carry Out</u> Carry In to Carry Out	1.0 2.5 1.6	4.5 10.5 6.9	1.4 2.4 1.9	5.2 12.6 7.6	0.8 2.0 1.6	4.6 11.0 7.1	ns ns ns	12, 13 12, 13 12, 13	4, 14 4, 14 4, 14	1, 16 1, 16 1, 16	8 8 8	6, 7 6, 7 6, 7	5 - 7, 9 - 11 5 - 7, 9 - 11 5 - 7, 9 - 11 5 - 7, 9 - 11	2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15	
^t set	$\begin{array}{l} \text{Setup Time} \\ \text{Data } (D_0 \text{ to C}) \\ \underline{\text{Select }} (S \text{ to C}) \\ \hline \text{Carry In } (\overline{\text{C}}_{\text{IN}} \text{ to C}) \\ (\text{C to } \overline{\text{C}}_{\text{IN}}) \end{array}$	3.5 7.5 2.5 0		3.5 7.5 2.5 0		3.5 7.5 2.5 0		ns ns ns ns	10, 13 10, 13 10, 13 10, 13 10, 13	14 14 14 14	1, 16 1, 16 1, 16 1, 16 1, 16	8 8 8 8	7 7 7 7 7	5, 6, 9, 11, 12 5, 6, 9, 11, 12 5, 6, 9, 11, 12 5, 6, 9, 11, 12 5, 6, 9, 11, 12	2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15	
^t hold	$\begin{array}{c} \mbox{Hold Time} \\ \mbox{Data } (D_0 \mbox{ to } C) \\ \mbox{Select } (S \mbox{ to } C) \\ \mbox{Carry In } (C_{IN} \mbox{ to } C) \\ \mbox{(C to } C_{IN}) \end{array}$	0 - 1.0 0 1.5		10 - 1.0 0 1.5		0 - 1.0 0 1.5		ns ns ps ns	10, 13 10, 13 10, 13 10, 13 10, 13	14 14 14 14	1, 16 1, 16 1, 16 1, 16 1, 16	8 8 8 8	7 7 7 7	5, 6, 9, 11, 12 5, 6, 9, 11, 12 5, 6, 9, 11, 12 5, 6, 9, 11, 12 5, 6, 9, 11, 12	2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15 2, 3, 14, 15	
ftog	Toggle Frequency	125		115		115		MHz	13	14	1, 16	8	9	5, 6, 9 - 12	2, 3, 14, 15	

Universal Decade Counter

ELECTRICALLY TESTED PER: MPG 10537

The 10537 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. The flexibility of this device allows the designer to use one basic counter for most applications. The synchronous count feature makes the 10537 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter.

Carry out goes low on the terminal count. The Carry Out on the 10537 is partially decoded from Q1 and Q2 directly, so in the preset mode the condition of the Carry Out after Clock's positive excursion will depend on the condition of Q1 and/ or Q2. The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.

- 860 mW Typ/Pkg (No Load)
- fCOUNT = 150 MHz typ
- t_{pd} = 3.3 ns typ (C Q)
 - = 7.0 ns typ (C COUT) = 5.0 ns typ ($\overline{C_{IN}} - \overline{C_{OUT}}$)

PIN ASSIGNMENTS											
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
V _{CC1}	1	5	2	GND							
Q ₂	2	6	3	51 Ω TO V_TT							
Q ₃	3	7	4	51 Ω TO V_TT							
COUT	4	8	5	51 Ω TO VTT							
D ₃	5	9	7	GND							
D ₂	6	10	8	GND							
S2	7	11	9	OPEN							
VEE	8	12	10	VEE							
S1	9	13	12	OPEN							
CIN	10	14	13	OPEN							
D ₁	11	15	14	GND							
D ₀	12	16	15	GND							
CLK	13	1	17	CP1							
Q ₀	14	2	18	51 Ω TO V_{TT}							
Q ₁	15	3	19	51 Ω TO V_{TT}							
V _{CC2}	16	4	20	GND							
BURN - IN COND $V\tau\tau = -2.0 V MA$											

VTT = - 2.0 V MAX/ - 2.2 V MIN VFF = - 5.7 V MAX/ - 5.2 V MIN

Military 10537

AVAILABLE AS
1) JAN: N/A
2) SMD: N/A
3) 883: 10537/BXAJC
X = CASE OUTLINE AS FOLLOWS:
PACKAGE: CERDIP: E
CERFLAT: F

LCC: 2

The letter "M" appears before the slash on LCC.

STATE DIAGRAMS

	FUNCTION SELECT TABLE										
S ₁											
L	L	Preset (Program)									
L	н	Increment (Count Up)									
н	L	Decrement (Count Down)									
н	H H Hold (Stop Count)										

	SEQUENTIAL TRUTH TABLE •												
S ₁	S ₂	D ₀	D1	D ₂	D3	Carry IN	Clock ••	Q	Q1	Q ₂	Q3	Carry OUT	
L	L	н	н	н	L	Ø	н	н	н	н	L	н	
L	н	Ø	Ø	ø	Ø	L	н	L	L	L	н	н	
L	н	ø	Ø	Ø	Ø	L	н	н	L	L	н	L	
L	н	Ø	Ø	Ø	Ø	L	н	L	L	L	L	н	
L	н	Ø	Ø	Ø	Ø	L	н	н	L	L	L	н	
L	н	Ø	Ø	Ø	Ø	н	L	н	L	L	L	н	
L	н	Ø	Ø	Ø	Ø	н	н	н	L	L	L	н	
н	н	Ø	Ø	Ø	Ø	ø	н	н	L	L	L	н	
L	L	н	н	L	L	Ø	н	н	н	L	L	н	
н	L	Ø	Ø	Ø	Ø	L	н	L	н	L	L	н	
н	L	Ø	Ø	Ø	Ø	L	н	н	L	L	L	н	
н	L	Ø	Ø	Ø	Ø	L	н	L	L	L	L	Ł	

Ø = Don't Care

• Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.

•• A clock H is defined as a clock input transition from a low to a high logic level.

FLIP FLOPS WILL TOGGLE WHEN ALL T INPUTS ARE LOW.

NOTE

Figure 1. Logic Diagram

Switching Time Test Circuit

Counter Frequency Test Circuit

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be 1/4 inch from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Unused outputs are connected to a 100 Ω resistor to ground.
- 3. 50 Ω termination located in each scope channel input.
- 4. PW ≥ 20 ns.

5. PRR = 1.0 MHz.

6. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$ (20% to 80%).

a) is the minimum time to wait after the counter has been enabled to clock it.

b) is the minimum time before the counter has been disabled that it may be clocked.

c) is the minimum time before the counter is enabled that a clock pulse may be applied with no effect on the state of the counter. d) is the minimum time to wait after the counter is disabled that a clock pulse may be applied with no effect in the state of the counter.

(b) and (c) may be negative numbers. (b) and (c) may be negative numbers.

Isetup is the minimum time before the positive transition of the clock pulse (C) that information must be present at the input D or S. thold is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the input D or S.

Figure 2. Test Circuits and Waveforms

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL							
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2							
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2							
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2							

Symbol	Parameter		. <u> </u>	Liı	nits			Units	TE	ST VOLTAGE APPL	IED TO P	NS BELOV	v
		+ 25	5 °C	+ 12	5 °C	- 58	5 °C		Pinouts refer	enced are for DIL p	ackage, cl	neck Pin As	ssignments
	Functional Parameters:	Subgi	roup 1	Subg	roup 2	Subg	roup 3	1	V	CC = 0 V, Output Lo	ad = 100 s	Ω to - 2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7, 9, 11 - 13	13	8	1, 16	2, 3, 4, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	13	13	8	1, 16	2, 3, 4, 14, 15
VOH1	High Output Voltage**	- 0.95		- 0.845		- 1.10		v			8	1, 16	2, 3, 4, 14, 15
VOL1	Low Output Voltage**		- 1.60		- 1.525		- 1.635	v			8	1, 16	2, 3, 4, 14, 15
IEE	Power Supply Current	- 150		- 165		- 165		mA			8	1, 16	8
^ј ін	Input Current High		220		375		375	μΑ	5, 6, 11, 12		8	1, 16	5, 6, 11, 12
liH1	Input Current High		245		415		415	μA	9, 10		8	1, 16	9, 10
liH2	Input Current High		265		450		450	μΑ	7		8	1, 16	7
Інз	Input Current High		290		495		495	μΑ	13		8	1, 16	13
ίιL	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 10 - 14	8	1, 16	5 - 7, 10 - 14

** See Figure 3

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH1	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL							
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2							
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2							
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2							

Symbol	Parameter	Limits						Units		TEST	VOLTA	GE APPI	IED TO PI	NS BELOV	V		
	Functional	+ 25 Subar		+ 12 Subar			- 55 °C Subgroup 11		1	Pinouts referenced are for DIL package, ch V _{CC} = 2.0 V, Output Load = 100					-		
	Parameters:	Subgroup 9 Min Max		Subgroup 10 Min Max		Min Max		-	CLK							P. U. T.	
tтLH	Rise Time	1.1	3.3	1.2	3.7	0.9	3.3	ns		7, 10, 12, 13	4, 14	1, 16	8, 11, 12	5 - 7, 13	9, 10	4, 14	
t THL	Fall Time	1.1	3.3	1.2	3.7	0.9	3.3	ns		7, 10, 12, 13	4, 14	1, 16	8, 11, 12	5 - 7, 13	9, 10	4, 14	
^t pd	Propagation Delay CLK to Q CLK to Carry Out Carry In to Carry Out	1.0 2.5 1.6	4.5 10.5 6.9	1.4 2.4 1.9	5.2 12.6 7.6	0.8 2.0 1.6	4.6 11.0 7.1	ns ns ns		7, 10, 12, 13 7, 10, 12, 13 7, 10, 12, 13 7, 10, 12, 13	4, 14 4, 14 4, 14	1, 16 1, 16 1, 16	8, 11, 12 8, 11, 12 8, 11, 12 8, 11, 12	5 - 7, 13	9, 10 9, 10 9, 10	4, 14 4, 14 4, 14	
^t set	Setup Time Data Inputs Select Inputs Carry In Input	3.5 7.5 7.5 3.7 -1.0		3.5 7.5 7.5 4.5 -1.0		3.5 7.5 7.5 4.5 -1.0		ns ns ns ns ns	13 13 13 13 13 13	7, 10, 12, 13 7, 10, 12, 13	14 14 14 14 14	1, 16 1, 16 1, 16 1, 16 1, 16 1, 16	8 8 8 8 8	7 7 7 7 7	7, 10 7, 10 7, 10 7, 10 7, 10 7, 10	14 14 14 14 14 14	
thold	Hold Time Data Inputs <u>Select In</u> puts Carry In Inputs	0.0 - 2.5 - 1.6 3.1		0.0 - 2.5 - 1.6 4.0		0.0 - 2.5 - 1.6 4.0		ns ns ps ns	13 13 13 13	7, 10, 12, 13 7, 10, 12, 13 7, 10, 12, 13 7, 10, 12, 13 7, 10, 12, 13	14 14 14 14	1, 16 1, 16 1, 16 1, 16 1, 16	8 8 8 8	7 7 7 7 7	7, 10 7, 10 7, 10 7, 10 7, 10	14 14 14 14	
fcount	Counting Frequency	125		115		115		MHz		13	14	1, 16	8	7, 9		14	

MOTOROLA MILITARY MECL DATA 3-118 ω

Bi-Quinary Counter

ELECTRICALLY TESTED PER: MPG 10538

The 10538 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set-reset master-slave flip-flops. Clock inputs trigger on the positive going edge of the clock pulse.

Set or Reset input override the clock, allowing asynchronous "set" or "clear". Individual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits.

- 610 mW Max/Pkg (No Load)
- ftog = 150 MHz typ
- t_{pd} = 2.5 ns typ (20% 80%)

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q ₃	2	6	3	51 Ω to V _{TT}
$\overline{Q_3}$	3	7	4	51 Ω to VTT
Q ₂	4	8	5	51 Ω to V _{TT}
S3	5	9	7	GND
S ₂	6	10	8	GND
C ₂	7	11	9	OPEN
VEE	8	12	10	VEE
Reset	9	13	12	OPEN
s ₁	10	14	13	GND
S ₀	11	15	14	GND
C ₁	12	16	15	OPEN
Q ₁	13	1	17	51 Ω to V _{TT}
Q ₀	14	2	18	51 Ω to V _{TT}
$\overline{Q_0}$	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.2 V MIN/ - 2.0 V MAX

VEE = - 5.7 V MAX/ - 5.2 V MIN

LOGIC DIAGRAM

Military 10538

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10538/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

BI-QUINARY

(Clock connected to C2 and Q3 connected to C1)

COUNT	Q1	Q2	Q3	Q ₀
0	L	L	L	L
1	н	L	L	L
2	L	н	L	L
3	н	н	L	L
4	L	L	н	L
5	L	L	L	н
6	н	L	L	н
7	L	н	L	н
8	н	н	L	н
9	L	L	н	н

(Clock connected to C1 and Q0 Connected to C2)

COUNT	Q ₀	Q1	Q2	Q ₀
			L	-0
0	L	L	Ľ	L
1	н	L	L	L
2	L	н	L	L
3	н	н	L	L
4	L	L	н	L
5	н	L	н	L
6	L	н	н	L
7	н	н	н	L
8	L	L	L	н
9	н	L	L	н

Figure 2. Test Circuit

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be 1/4 inch from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Unused outputs are connected to a 100 Ω resistor to ground.
- 3. 50 Ω termination located in each scope channel input.
- 4. PW ≥ 20 ns.
- 5. PRR ≈ 1.0 MHz.
- 6. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$ (20% to 80%).
- 7. Duty Cycle = 50%
- 8. 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.

Figure 3. Switching Test Circuit Waveforms

ω

10538 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	V _{IH1}	VIL1	VIH2	VIL2	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units	ts TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:		5 °C roup 1		5 °C roup 2		5 °C roup 3		Pinc	inouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V					
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	P1, 2, 3	VEE	Vcc	P. U. T.	
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5, 6, 9 - 11			8	1, 16	2, 3, 4, 13, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	5, 6, 9 - 11			8	1, 16	2, 3, 4, 13, 15	
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v		5 - 7, 9 - 12	5 - 7, 9 - 12	8	1, 16	2, 3, 4, 13, 15	
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v		5 - 7, 9 - 12	5 - 7, 9 - 12	8	1, 16	2, 3, 4, 13, 15	
IEE	Power Supply Drain Current	- 88		- 97		- 97		mA				8	1, 16	8	
ЧН	Input Current High		220		375		375	μA	12			8	1, 16	12	
Чнт	Input Current High	1	245		415		415	μA	5, 6, 10, 11			8	1, 16	5, 6, 10, 11	
IIH2	Input Current High		290		495		495	μA	7			8	1, 16	7	
Чнз	Input Current High		410		700		700	μA	9			8	1, 16	9	
կլ	Input Current Low	0.5		0.3		0.5		μА		5 - 7, 9 - 12		8	1, 16	5 - 7, 9 - 12	

MOTOROLA MILITARY MECL DATA 3-122

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test Temperature	Test Voltage Values (Volts)											
	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Limits Units TEST VOLTAGE APPLIED TO PINS BE							ELOW				
	Functional		5 °C		5 °C		5 °C		Pinc	outs reference		DIL packag tput Load		-	nments
	Parameters:	Min	roup 9 Max	Min	oup 10 Max	Subgr Min	Max	-	VIN	VOUT	V _{CC}	VEEL	PS1	P _{S2}	P. U. T.
tr	Rise Time	1.1	4.5	1.1	5.0	1.1	4.7	ns	5, 7, 9, 10	2 - 4, 13 -15	1, 16	8	6, 10	9, 10	2 - 4, 13 -15
tf	Fall Time	1.1	4.5	1.1	5.0	1.1	4.7	ns	5, 7, 9, 10	2 - 4, 13 -15	1, 16	8	6, 10	9, 10	2 - 4, 13 -15
^t PHL	Propagation Delay C to $Q_1, Q_2, \overline{Q_3}$	1.5	5.0	1.5	6.2	1.4	6.2	ns	5, 7, 9, 10	2 - 4, 13 -15	1, 16	8	6, 10	9, 10	2 - 4, 13 -15
^t PLH	Propagation Delay C to $Q_0, \overline{Q_0}$	1.5	4.8	1.5	5.5	1.4	5.5	ns	5, 7, 9, 10	2 - 4, 13 -15	1, 16	8	6, 10	9, 10	2 - 4, 13 -15
^t PHL	Propagation Delay S to Q	1.5	5.0	1.5	6.2	1.4	5.2	ns	5, 7, 9, 10	2 - 4, 13 -15	1, 16	8	6, 10	9, 10	2 - 4, 13 -15
^t PLH	Propagation Delay R to Q	1.5	5.0	1.5	6.2	1.4	5.5	ns	5, 7, 9, 10	2 - 4, 13 -15	1, 16	8	6, 10	9, 10	2 - 4, 13 -15
f _{Tog}	Toggle Frequency	125		125		125		MHz	7, 12	2, 14	1, 16	8		6, 7, 9 - 12	2, 14

NOTES:

P1)

MOTOROLA MILITARY MECL DATA 3-123

VIH1 Vil

P2)

VIL1

P3)

Four Bit Universal Shift Register

ELECTRICALLY TESTED PER: 5962-8855701

The 10541 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Input S_1 and S_2 control the four possible operations of the register without external gating of the clock.

The flip-flops shift information on the positive edge of the dock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR).

585 mW Max/Pkg (No Load)

• fShift = 200 MHz typ

• t_r, t_f = 1.5 ns typ (20% - 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q ₂	2	6	3	51 Ω to V_TT
Q ₃	3	7	4	51 Ω to V_{TT}
С	4	8	5	CP1
DR	5	9	7	OPEN
D ₃	6	10	8	GND
S ₂	7	11	9	OPEN
VEE	8	12	10	VEE
D ₂	9	13	12	GND
S ₁	10	14	13	OPEN
D ₁	11	15	14	GND
D ₀	12	16	15	GND
DL	13	1	17	OPEN
Q ₀	14	2	18	51 Ω to V _{TT}
Q ₁	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10541

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8855701 3) 883: 10541/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

SE	LECT			OUTI								
S ₁	S ₂	OPERATING MODE	Q _{0n+1}	Q _{1n+1}	Q _{2n+1}	Q _{3n+1}						
L	L	Parallel Entry	D ₀	D1	D ₂	D ₃						
L	н	Shift Right *	Q1n	Q2n	Q3n	DR						
н	L	Shift Left *	DL	Q0n	Q1n	Q2n						
н	н	Stop Shift	Q0n	Q1n	Q2n	Q3n						

TRUTH TABLE

* Outputs as exist after pulse at "C" input conditions as shown, (Pulse = Positive transition of the clock input.).

NOTES

NOTES

V_{IN} has the following characteristics:

 a) pulse width ≥ 20 ns.
 b) frequency = 2.0 MHz.
 c) t_r and t_f = 2.0 ns ± 0.2 ns.

Figure 2. Switching Test Circuit Waveforms

* ELECTRICAL CHARACTERISTICS

Test								
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter			Lir	nits			Units	nits TEST VOLTAGE APPLIED TO PINS BELOW						
		+ 25	5 °C	+ 12	5 °C	- 58	5 °C		Pir	outs refere	nced are fo	r DIL packa	ge, check	Pin Assig	nments
	Functional Parameters:	Subgr	roup 1	Subgr	roup 2	Subgroup 3		1		۷C	C = 0 V, Ou	tput Load =	100 Ω to -	2.0 V	
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 9, 11, 12	4			8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4	4, 5, 9, 11, 12			8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	4 - 7, 9 - 13	4 - 7, 9 - 13	4 - 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2 - 4, 13 - 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4 - 7, 9 - 13	4 - 7, 9 - 13	4 - 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2 - 4, 13 - 15
^I IH1	Input Current High		220		375		375	μΑ	5, 6, 9, 11 - 13				8	1, 16	5, 6, 9, 11 - 13
IIH2	Input Current High		245		415		415	μA	7, 10				8	1, 16	7, 10
^I IH3	Input Current High		265		450		450	μA	4				8	1, 16	4
ΊιL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13			8	1, 16	4 - 7, 9 - 13
IEE	Power Supply Drain Current	- 102		- 112		- 112		mA					8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Test			Test V	Test Voltage Values (Volts)								
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional Parameters:	+ 25 °C Subgroup 9		+ 12 Subgro			i °C oup 11		Pinouts referenced are for DIL package, check Pin As V_{CC} = 2.0 V, Output Load = 100 Ω to GND			-		
	Falameters.	Min	Max	Min	Max	Min	Max	1	VIN	VIN VOUT		VEEL	P. U. T.	
tτ∟н	Rise Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t THL	Fall Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t PHL	Propagation Delay	1.8	3.8	2.0	4.5	1.7	4.1	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t PLH	Propagation Delay	1.8	3.8	2.0	4.5	1.7	4.1	ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
tSetup	Setup Time Data Input	2.5		3.0		3.0		ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
^t hold	Hold Time Data Input	1.5		1.5		1.5		ns	4, 6, 9, 11, 12	2, 3, 14, 15	1, 16	8	2, 3, 14, 15	
tSetup	Setup Time Select Inputs	5.0		7.0		7.0		ns	4, 6, 9, 11, 12	3, 14	1, 16	8	2, 3, 14, 15	
^t hold	Hold Time Select Input	1.5		1.5		1.5		'ns	4, 6, 9, 11, 12	3, 14	1, 16	8	2, 3, 14, 15	
ftog	Toggle Frequency	150		150		150		MHz	4, 6, 9, 11, 12	3, 14	1, 16	8	14	
^f shift	Shift Frequency	150		150		150		MHz	4, 6, 9, 11, 12	3, 14	1, 16	8	14	

Quad Latch

ELECTRICALLY TESTED PER: MPG 10553

The 10553 is a high speed, low power, MECL quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs. Open emitters allow a large number of outputs to be wire-ORed together. Latch outputs are gated, allowing direct wiring to a bus. When the clock is low, outputs will follow D inputs. Information is latched on the positive going transition of the Clock. The 10553 provides the same logic function as the 10533, except for inversion of the clock.

- 435 mW Max/Pkg (No Load)
- tpd = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Q ₀	2	6	3	51 Ω to VTT
DO	3	7	4	GND
CE	4	8	5	OPEN
$\overline{G_0}$	5	9	7	OPEN
Q1	6	10	8	51 Ω to VTT
D ₁	7	11	9	GND
VEE	8	12	10	VEE
D ₂	9	13	12	GND
G ₁	10	14	13	OPEN
Q ₂	11	15	14	51 Ω to V _{TT}
CE	12	16	15	OPEN
с _С	13	1	17	OPEN
D ₃	14	2	18	GND
Q3	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.2 V MIN/ - 2.0 V MAX

 $V_{EE} = -5.7 V MAX - 5.2 V MIN$

TRUTH TABLE

Ğ	С	D	Q _{n + 1}
н	Ø	Ø	L
L	н	ø	Qn
L	L	L	L
L	L	н	н

 $\emptyset = \text{Don't Care}$ C = C_C + $\overline{\text{CE}}$

Military 10553

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10553/BXAJC X = CASE OUTLINE AS FOLLOWS:

LCC: 2

PACKAGE: CERDIP: E CERFLAT: F

NOTES

- 1. VIN waveform has the following characteristics:
 - a) Pulse width ≥ 20 ns.
 - b) frequency = 1.0 MHz.
 - c) t_f and $t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$.

Figure 4. tSetup and tHold Waveforms

ω

10553 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 2 Subgr	5 °C		5 °C roup 2		5 °C roup 3		Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 0 V, Output Load = 100 Ω to – 2.0 V						
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3, 7, 9, 13, 14				8	1, 16	2, 6, 11, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3, 5, 7, 9, 10, 14				8	1, 16	2, 6, 11, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	3, 7, 9, 14		5, 10	5, 9, 14	8	1, 16	2, 6, 11, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	۷.	3, 7, 9, 14		3, 7, 9, 14	5, 10	8	1, 16	2, 6, 11, 15
4H1	Input Current High		290		495		495	μA	13				8	1, 16	13
4н2	Input Current High		245		420		420	μA	3, 4, 7, 9, 12, 14				8	1, 16	3, 4, 7, 9, 12, 14
інз	Input Current High	1	350		595		595	μA	5, 10				8	1, 16	5, 10
ίιL	Input Current Low	0.5		0.3		0.5		μA		3 - 5, 7, 9, 10, 12 - 14			8	1, 16	3 - 5, 7, 9, 10, 12 - 14
IEE	Power Supply Drain Current	- 75		- 83		- 83		mA					8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25 Subgr			5 °C oup 10	– 55 Subgr			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
•	Parameters:	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.
^t TLH	Rise Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15
tthr	Fall Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15
tPHL/ tPLH	Propagation Delay Clock to Output	1.0	5.6	1.0	6.6	1.0	6.1	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15
tPHL/ tPLH	Propagation Delay Data to Output	1.0	5.4	1.0	6.3	1.0	5.8	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15
tPHL/ tPLH	Propagation Delay Gate to Output	1.0	3.1	1.0	3.6	1.0	3.4	ns	3 - 5, 7, 9, 10, 12, 14	2, 6, 11, 15	1, 16	8	3, 9, 14	5, 10, 13	2, 6, 11, 15
ts	Setup Time	2.5		2.5		2.5		ns	3, 7, 9, 11, 14	2, 6, 11, 15	1, 16	8			2, 6, 11, 15
ţН	Hold Time	1.5		1.5		1.5		ns	3, 4, 7, 9, 14	2, 6, 11, 15	1, 16	8			2, 6, 11, 15

MOTOROLA

Quad 2-Input Multiplexer (Non-Inverting)

ELECTRICALLY TESTED PER: 5962-8779201

The 10558 is a quad two channel multiplexer. A common select input determines which data inputs are enabled. A high (H) level enables data inputs D00, D10, D20, and D30 and a low (L) level enables data inputs D01, D11, D12, and D31.

- 280 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ (Data to Q)
 = 3.2 ns typ (Select to Q)
- t_r, t_f = 2.5 ns typ (20% 80%)

	PIN ASSIGNMENTS										
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
Q0	1	5	2	51 Ω to V _{TT}							
Q1	2	6	3	51 Ω to V _{TT}							
D11	3	7	4	51 Ω to V _{TT}							
D10	4	8	5	OPEN							
D01	5	9	7	GND							
D00	6	10	8	OPEN							
NC	7	11	9	OPEN							
VEE	8	12	10	VEE							
Select	9	13	12	OPEN							
D31	10	14	13	GND							
D30	11	15	14	OPEN							
D21	12	16	15	GND							
D20	13	1	17	OPEN							
Q3	14	2	18	51 Ω to V _{TT}							
Q2	15	3	19	51 Ω to V _{TT}							
Vcc	16	4	20	GND							

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE										
Select	Do	D1	Q							
L	Ø	L	L							
L	Ø	н	н							
н	L	Ø	L							
н	н	Ø	н							

Ø = Don't Care

Military 10558

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

Figure 1. Switching Test Circuit

NOTES

 $V_{\mbox{\rm IN}}$ has the following characteristics:

1. P_W ≥ 20 ns.

2. P_{RF} = 1.0 MHz.

3. $t_r = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$ measured at (20% - 80%).

ω

10558 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Limits				Units		TEST VOL	TAGE APP	PLIED TO I	PINS BE	LOW		
	Functional		+ 25 °C Subgroup 1		+ 125 °C Subgroup 2		– 55 °C Subgroup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V							
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.	
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	ν	3, 5, 10, 12				8	16	1, 2, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	V					8.	16	1, 2, 14, 15	
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	ν	3 - 6, 9 - 13			3 - 6, 9 - 13	8	16	1, 2, 14, 15	
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	ν	3 - 6, 9 - 13		3 - 6, 9 - 13		8	16	1, 2, 14, 15	
liH1	Input Current High		225		385		385	μA	9				8	16	9	
IIH2	Input Current High		250		425		425	μA	3 - 6, 10 - 13				8	16	4, 5, 6, 10 - 13	
μ	Input Current Low	0.5		0.3		0.5		μA		3 - 6, 9 - 13			8	16	3 - 6, 9 - 13	
IEE	Power Supply Drain Current	- 48		- 53		- 53		mA					8	16	8	

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)										
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units		TEST VOLTAG	E APPLI	ED TO PI	S BELOW	
	Functional	+ 25		+ 12			5 °C		Pinouts r	eferenced are fo V _{CC} = 2.0 V, 0	-			signments
	Parameters:	Subgr			oup 10		oup 11				·	,		
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P. U. T.
^t TLH	Rise Time	1.5	3.3	1.6	3.5	1.6	3.5	ns	3 - 6, 9 - 13	1, 2, 14, 15	16	8	3 - 6, 9 - 13	1, 2, 14, 15
ţτης	Fall Time	1.5	3.3	1.6	3.5	1.6	3.5	ns	3 - 6, 9 - 13	1, 2, 14, 15	16	8	3 - 6, 9 - 13	1, 2, 14, 15
tPHL/ tPLH	Propagation Delay Data to Output	1.2	3.0	1.5	3.5	1.5	3.5	ns	3 - 6, 9 - 13	1, 2, 14, 15	16	8	3 - 6, 9 - 13	1, 2, 14, 15
^t PHL/ ^t PLH	Propagation Delay Select to Output	2.4	4.5	2.5	5.0	2.5	5.0	ns	3 - 6, 9 - 13	1, 2, 14, 15	16	8	3 - 6, 9 - 13	1, 2, 14, 15

12-Bit Parity Generator-Checker

ELECTRICALLY TESTED PER: MPG 10560

The 10560 consists of nine **EXCLUSIVE-OR** gates in a single package, internally connected to provide odd parity checking or generation. Output goes high when an odd number of inputs are high. Unconnected inputs are pulled to low logic levels allowing parity detection and generation for less than 12 bits.

- 450 mW Max/Pkg (No Load)
- t_{pd} = 5.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS									
FUNCTION	DIL	FLATS	LCC	BURN-IN					
				(CONDITION C)					
V _{CC1}	1	5	2	GND					
Out	2	6	3	51 Ω to VTT					
IN ₁	3	7	4	GND					
IN ₂	4	8	5	OPEN					
IN ₃	5	9	7	OPEN					
IN ₄	6	10	8	OPEN					
IN5	7	11	9	OPEN					
VEE	8	12	10	VEE					
IN ₆	9	13	12	OPEN					
IN ₇	10	14	13	GND					
IN ₈	11	15	14	OPEN					
INg	12	16	15	OPEN					
IN ₁₀	13	1	17	OPEN					
IN11	14	2	18	OPEN					
IN ₁₂	15	3	19	GND					
V _{CC2}	16	4	20	GND					

BURN - IN CONDITIONS: $V_{TT} = -2.2 V MIN/ - 2.0 V MAX$ $V_{EE} = -5.7 V MAX/ - 5.2 V MIN$

Input	Output
Sum of High Level Inputs	Pin 2
Even	Low
Odd	High

Military 10560

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

Figure 1. Switching Test Circuit and Waveforms

ω

10560 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter		Limits							TEST VOL	AGE APPLIED	TO PIN	S BELOV	v
	Functional Parameters:	+ 25 °C Subgroup 1			+ 125 °C Subgroup 2		– 55 °C Subgroup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V					
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3 - 7 9 - 15	3 - 7 9 - 15		8	1, 16	2
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3 - 7 9 - 15	3 - 7 9 - 15		8	1, 16	2
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	3 - 7 9 - 14	4 - 7 9 - 15	4, 7, 9 11, 13, 15	8	1, 16	2
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	3 - 7, 9 - 11, 13	4 - 7 9 - 15	3, 5, 7, 10, 12, 14	8	1, 16	2
Чнт	Input Current High		265		450		450	μA	4, 5, 9, 12, 13, 14			8	1, 16	4, 5, 9, 10, 13, 14
liH2	Input Current High		220		375		375	μA	3, 6, 7, 11, 12, 15			8	1, 16	3, 6, 7, 11, 12, 15
ΊL	Input Current Low	0.5		0.3		0.5		μA		3 - 7 9 - 15		8	1, 16	3 - 7, 9 - 15
IEE	Power Supply Drain Current	- 78		- 86		86		mA				8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)										
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	Limits						TEST VC	LTAGE A	PPLIED TO P	PINS BELOW	
	Functional Parameters:	+ 25 Subgr		+ 12 Subgr	5 °C oup 10	– 59 Subgr				Pinouts re			• • •	check Pin As 00 Ω to GND	signments
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P _{S2}	P. U. T.
ţтгн	Rise Time	1.1	3.3	0.9	3.4	1.0	3.4	ns	3 - 7 9 - 15	2	1, 16	8	3 - 7 9 - 15	3 - 7 9 - 15	2
^t THL	Fall Time	1.1	3.3	0.9	3.4	1.0	3.4	ns	3 - 7 9 - 15	2	1, 16	8	3 - 7 9 - 15	3 - 7 9 - 15	2
^t PLH	Propagation Delay	2.0	7.5	1.4	7.9	1.6	8.1	ns	3 - 7 9 - 15	2	1, 16	8	3 - 7 9 - 15	3 - 7 9 - 15	2
^t PHL	Propagation Delay	2.0	7.5	1.4	7.9	1.6	8.1	ns	3 - 7 9 - 15	2	1, 16	8	3 - 7 9 - 15	3 - 7 9 - 15	2

Binary to 1-8 Decoder (Low)

ELECTRICALLY TESTED PER: MPG 10561

The 10561 is designed to decode a three bit input word to a one of eight line output. The selected output will be low while all other outputs will be high. The enable inputs, when either or both are high, force all outputs high.

The 10561 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. This design provides the identical 4.0 ns delay from any address or enable input to any output.

A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the 10536 control counters, has the capability of incrementing, decrementing or holding data channels. When both S0 and S1 are low, the index counters reset, thus initializing both the mux and demux units. The four binary outputs of the counter are buffered by the 10501s to send twisted-pair select data to the multiplexer/demultiplexer units.

- 440 mW Max/Pkg (No Load)
- t_{pd} = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS									
FUNCTION	DIL	FLATS	LCC	BURN-IN					
				(CONDITION C)					
V _{CC1}	1	5	2	GND					
E ₀	2	6	3	GND					
Q3	з	7	4	51 Ω to VTT					
Q2	4	8	5	51 Ω to V _{TT}					
Q1	5	9	7	51 Ω to V _{TT}					
Q ₀	6	10	8	51 Ω to V _{TT}					
Α	7	11	9	OPEN					
VEE	8	12	10	VEE					
в	9	13	12	OPEN					
Q7	10	14	13	51 Ω to V _{TT}					
Q ₆	11	15	14	51 Ω to V _{TT}					
Q5	12	16	15	51 Ω to V _{TT}					
Q4	13	1	17	51 Ω to V _{TT}					
С	14	2	18	GND					
Ē1	15	3	19	GND					
V _{CC2}	16	4	20	GND					

BURN - IN CONDITIONS: VTT = - 2.2 V MIN/ - 2.0 V MAX VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10561

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10561/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

TRUTH	TABLE
-------	-------

ENA INP			INPUTS					OUTI	PUTS			
E1	E ₀	С	В	A	Q ₀	Q1	Q2	Q3	Q4	Q5	Q ₆	Q7
L	L	L	L	L	L	н	н	н	н	н	н	н
L	L	L	L	н	н	L	н	н	н	н	н	н
L	L	L	н	L	н	н	L	н	н	н	н	н
L	L	L	н	н	н	н	н	L	н	н	н	н
L	L	н	L	L	н	н	н	н	L	н	н	н
L L	L	н	L	н	н	н	н	н	н	L	н	н
L	L	н	н	L	н	н	н	н	н	н	L	н
L	L	н	н	н	н	н	н	н	н	н	н	L
н	ø	ø	ø	ø	н	н	н	н	н	н	н	н
ø	н	ø	ø	ø	н	н	н	н	н	н	н	н

3

NOTES

- 1. The Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns
- 2. Length of Coax_A and Coax_B should be of equal lengths for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_f = t_f = 2.0 \text{ ns} (20\% 80\%) + 0.2 \text{ ns}.$
- 5. $R_L = 50 \Omega$ resistor in series with 50 Ω coax constituting 100 Ω load.
- 6. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit

NOTES

1. $V_{\mbox{\rm IN}}$ waveform has the following characteristics:

a) Pulse width \ge 20 ns.

b) frequency = 1.0 MHz. c) t_f and t_f = 2.0 ns ± 0.2 ns.

* ELECTRICAL CHARACTERISTICS

Test			Test	Voltage	Values (V	olts)		
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAG	E APPLIED	D TO PINS	BELOW	
	Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C		Pir			-			signments
	Parameters:	Subgr	oup 1	Subgr	oup 2	Subgi	roup 3			Ve	CC = 0 V, O	utput Load	l = 100 Ω	to – 2.0 V	
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
Voн	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	2				8	1, 16	3 - 6, 10 - 13
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	V	7, 9, 14				8	1, 16	3 - 6, 10 - 13
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	7, 9, 14		7, 9, 14	2, 7, 9, 14	8	1, 16	3 - 6, 10 - 13
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	7, 9, 14		7, 9, 15	7, 9	8	1, 16	3 - 6, 10 - 13
^I IH1	Input Current High		220		375		375	μA	2, 7, 9, 14, 15				8	1, 16	2, 7, 9, 14, 15
μ	Input Current Low	0.5		0.3		0.5		μА		2, 7, 9 14, 15			8	1, 16	2, 7, 9, 14, 15
IEE	Power Supply Drain Current	- 76		- 84		- 84		mA					8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test	Voltage	Values (V	olts)		
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW		V					
	_	+ 25	5 °C	+ 12	5 °C	- 5	5 °C	Pinouts referenced are for DIL package, check			eck Pin A	ssignments			
	Functional Parameters:	Subgr	roup 9	Subgr	oup 10	Subgr	oup 11	1		Vcc	; = 2.0 V, (Output Lo	ad = 100	Ω to GNE)
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P _{S2}	P. U. T.
tτLH	Rise Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7, 9, 14	3, 4, 5, 10 - 13	1, 16	8	7, 9, 14	7, 9	3 - 6, 10 - 13
^t THL	Fall Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7, 9, 14	3, 4, 5, 10 - 13	1, 16	8	7, 9, 14	7, 9	3 - 6, 10 - 13
^t PLH	Propagation Delay	1.5	6.0	1.3	7.0	1.2	6.5	ns	2, 7, 9, 14	3, 4, 5, 10 - 13	1, 16	8	7, 9, 14	7, 9	3 - 6, 10 - 13
^t PHL	Propagation Delay	1.5	6.0	1.3	7.0	1.2	6.5	ns	2, 7, 9, 14	3, 4, 5, 10 - 13	1, 16	8	7, 9, 14	7, 9	3 - 6, 10 - 13

ω

Binary to 1-8 Decoder (High)

ELECTRICALLY TESTED PER: MPG 10562

The 10562 is designed to convert three lines of input data to a one of eight output. The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low.

The 10562 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. This device is ideally suited for demultiplexer applications. One of the two enable inputs is used as the data input, while the other is used as a data enable input.

A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the 10536 control counters, has the capability of incrementing, decrementing or holding data channels. When both S₀ and S₁ are low, the index counters reset, thus initializing both the mux and demux units. The four binary outputs of the counter are buffered by the 10501s to send twisted-pair select data to the multiplexer/demultiplexer units.

- 440 mW Max/Gate (No Load)
- t_{pd} = 4.0 ns typ
- t_f, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Ē0	2	6	3	OPEN
Q ₃	3	7	4	51 Ω to V _{TT}
Q ₂	4	8	5	51 Ω to V_{TT}
Q ₁	5	9	7	51 Ω to V _{TT}
Q ₀	6	10	8	51 Ω to V_{TT}
Α	7	11	9	GND
VEE	8	12	10	VEE
В	9	13	12	OPEN
Q ₇	10	14	13	51 Ω to V _{TT}
Q ₆	11	15	14	51 Ω to V_{TT}
Q ₅	12	16	15	51 Ω to V_{TT}
Q ₄	13	1	17	51 Ω to V_{TT}
С	14	2	18	OPEN
Ē1	15	3	19	OPEN
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/- 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10562

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10562/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

Enable	Inputs		Inputs					Out	puts			
E1	EO	C	B	A	Q ₀	Q1	Q2	Q3	Q4	Q5	Q ₆	Q7
L	L	L	L	L	н	L	L	L	L	L	L	L
L	L	L	L	н	L	н	L	L	L	L	L	L
L	L	L	н	L	L	L	н∘	L	L	L	L	L
L	L	L	н	н	L	L	L	н	L	L	L	L
L	L	н	L	L	L	L	L	L	н	Ľ	L	L
L	L	н	L	н	L	L	L	L	L	н	L	L
L	L	н	н	L	L	L	L	L	L	L	н	L
L	L	н	н	н	L	L	L	L	L	L	L	н
н	ø	ø	ø	ø	L	L	L	L	L	L	L	L
ø	н	ø	ø	ø	L	L	L	L	L	L	L	L

TRUTH TABLE

ø

Ø = Don't Care

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. Length of CoaxA and CoaxB should be equal for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns} (20\% 80\%).$
- 5. RL = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.
- 6. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit

NOTES

VIN has the following characteristics:

- 1. P_W = 20 ns.
- 2. $f_{IN} = 1.0$ MHz.
- 3. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}.$

Figure 2. Switching Test Circuit Waveforms

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test	Voltage	Values (V	olts)		
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAG	E APPLIED	TO PIN	S BELOW	1
	Functional Parameters:	+ 25 Subgr			5 °C roup 2		5 °C roup 3		Pi			for DIL pack	•		ssignments /
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	7, 9, 14				8	1, 16	3 - 6, 10 - 13
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	٧	2, 15				8	1, 16	3 - 6, 10 - 13
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	7, 9, 14		2, 7, 9, 14, 15	7, 9, 14	8	1, 16	3 - 6, 10 - 13
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	ν	7, 9, 14		7, 9, 14	2, 7, 9 14, 15	8	1, 16	3 - 6, 10 - 13
^I IH1	Input Current High		220		375		375	μA	2, 7, 9 14, 15				8	1, 16	2, 7, 9, 14, 15
Ι _{ΙL}	Input Current Low	0.5		0.3		0.5		μA		2, 7, 9 14, 15			8	1, 16	2, 7, 9, 14, 15
IEE	Power Supply Drain Current	- 76		- 84		- 84		mA					8	1, 16	8

ω

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test			Test	Voltage	Values (V	'olts)		
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAG	E APPLIE	D TO PINS	BELOW	
	Functional Parameters:	+ 2 Subgi	5 °C roup 9	+ 12 Subgr	5 °C oup 10	– 5: Subgr			Pinouts referenced are for DIL package, check Pin Assignmen V_{CC} = 2.0 V, Output Load = 100 Ω to GND						signments
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.
^t TLH	Rise Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7 9, 14	3 - 6, 10 -13	1, 16	8	7, 9, 14, 15	7, 9, 14, 15	3 - 6, 10 - 13
^t THL	Fall Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7 9, 14	3 - 6, 10 - 13	1, 16	8	7, 9, 14, 15	7, 9, 14, 15	3 - 6, 10 - 13
^t PLH	Propagation Delay	1.5	6.0	1.3	7.0	1.2	6.5	ns	2, 7 9, 14	3 - 6, 10 - 13	1, 16	8	7, 9, 14, 15	7, 9, 14, 15	3 - 6, 10 - 13
^t PHL	Propagation Delay	1.5	6.0	1.3	7.0	1.2	6.5	ns	2, 7 9, 14	3 - 6, 10 - 13	1, 16	8	7, 9, 14, 15	7, 9, 14, 15	3 - 6, 10 - 13

Error Detection-Correction Circuit

ELECTRICALLY TESTED PER: MPG 10563

The 10563 is an error detection and correction circuit. It is a building block designed for use with memory systems. The 10563 offers economy in the design of the error detection/correction subsystems for mainframe and add-on memory systems.

For example, using eight 10563s together with eight 12-bit parity checkers (10560), single bit error detection/correction and double-bit error detection can be done on a word of 64-bit length. Only eight check bits (B_0 - B_7) need be added to the word.

- 720 mW Max/Pkg (No Load)
- t_{pd} = 5.0 ns typ

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
P0B	2	6	3	51 Ω to V_{TT}
P ₃	3	7	4	51 Ω to VTT
B ₅	4	8	5	OPEN
В ₆	5	9	7	OPEN
B ₂	6	10	8	GND
B ₁	7	11	9	GND
VEE	8	12	10	VEE
B ₀	9	13	12	OPEN
B ₃	10	14	13	GND
B ₇	11	15	14	GND
B4	12	16	15	OPEN
P ₂	13	1	17	51 Ω to V_{TT}
P ₁	14	2	18	51 Ω to V_{TT}
P0 _A	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/- 2.2 V MIN VEE = - 5.7 V MAX/- 5.2 V MIN

Military 10563

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. Length of CoaxA and CoaxB should be equal for equal time delay.
- 3. 2:1 divider may be used.

NOTES

- 4. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns} (20\% \text{ to } 80\%)$
- 5. $R_L = 50 \Omega$ resistor in series with 50 Ω coax constituting the 100 Ω load.
- 6. VIN has the following characteristics:
 - a) pulse width ≥ 20 ns. b) frequency = 1.0 MHz.
- 7. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit and Waveforms

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units	Its TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25			5 °C		5 °C							- 1		
	Parameters:	Subgr	oup 1	Subgi	oup 2		roup 3									
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.	
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 11				8	1, 16	2, 3, 13 - 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v		1			8	1, 16	2, 3, 13 - 15	
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v				4 - 7, 9 - 12	8	1, 16	2, 3, 13 - 15	
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v			4 - 7, 9 - 12		8	1, 16	2, 3, 13 - 15	
ін	Input Current High		220		375		375	μA	4, 6, 10				8	1, 16	4, 6, 10	
liH1	Input Current High		265		450		450	μA	5, 7, 9, 11, 12				8	16	5, 7, 9, 11 12	
μL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 12			8	16	2, 7, 9, 14 15	
IEE	Power Supply Drain Current	- 125		- 138		- 138		mA					8	1, 16	8	

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW					BELOW	
	Functional	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		– 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignme V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Parameters:	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P. U. T.	
ţтгн	Rise Time	1.1	3.9	1.1	4.5	1.1	4.4	ns	4 - 7, 9 - 12	2, 3 13 -15	1, 16	8	7, 9, 14	2, 3, 13 - 15	
^t THL	Fall Time	1.1	3.9	1.1	4.5	1.1	4.4	ns	4 - 7, 9 - 12	2, 3 13 - 15	1, 16	8	7, 9, 14	2, 3, 13 - 15	
^t PLH	Propagation Delay	1.5	6.5	1.5	7.5	1.3	7.0	ns	4 - 7, 9 - 12	2, 3 13 - 15	1, 16	8	7, 9, 14	2, 3, 13 - 16	
^t PHL	Propagation Delay	1.5	6.5	1.5	7.5	1.3	7.0	ns	4 - 7, 9 - 12	2, 3 13 - 15	1, 16	8	7, 9, 14	2, 3, 13 - 15	

8-Line Multiplexer

ELECTRICALLY TESTED PER: 5962-8852701

The 10564 is high speed, low power eight-channel data selector which routes data preset at one-of-eight inputs to the output. The data is routed according to the three bit code present on the address inputs. An enable input is provided for easy bit expansion.

- 435 mW Max/Pkg (No Load)
- t_{pd} = 3.0 ns typ
- tr,tf = 2.0 ns typ (20% 80%.)

	PIN ASSIGNMENTS										
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
VCC1	1	5	2	GND							
Enable	2	6	3	OPEN							
X ₃	3	7	4	OPEN							
X2	4	8	5	OPEN							
X ₁	5	9	7	OPEN							
x ₀	6	10	8	GND							
Α	7	11	9	OPEN							
VEE	8	12	10	VEE							
в	9	13	12	OPEN							
С	10	14	13	OPEN							
X4	11	15	14	OPEN							
Х ₅	12	16	15	OPEN							
х _б	13	1	17	OPEN							
Х ₇	14	2	18	OPEN							
z	15	3	19	51 Ω to V _{TT}							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS: VTT = -2.0 V MAX/-2.2 V MIN

						_	
٧	FF	=	- 5.7	٧	MAX/	- 5.2	V MIN

Truth Table

Address input											
Enable	С	в	A	Z							
L	L	L	L	x ₀							
L	L	L	н	X1							
L	L	н	L	X2							
L	L	н	н	X3							
L	н	L	L	X4							
L	н	L	н	X5							
L	н	н	L	X ₆							
L	н	н	н	X7							
н	Ø	Ø	ø	L							

Ø = Don't Care

Military 10564

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8852701 3) 883: 10564/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

± 0.005 V

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. Length of Coax_A and Coax_B should be equal for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_{f} = t_{f} = 2.0 \text{ ns} \pm 0.2 \text{ ns} (20\% \text{ to } 80\%)$
- 5. R_{L} = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.

Figure 1. Switching Test Circuit and Waveforms

ω

10564 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units	S TEST VOLTAGE APPLIED TO PINS BELOW					IS BELOV	v	
	Functional		5 °C	+ 12			5 °C	Pinouts referenced are for DIL package, cheo V _{CC} = 0 V, Output Load = 100 Ω to						- 1		
	Parameters:	Subgr Min	Max	Min	roup 2 Max	Min	roup 3 Max		VIH VIL VIH1 VIL1 VEE VCC P.U							
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4 - 7, 9 - 14	2, 7, 9, 10			8	1, 16	15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	2, 7, 9 - 14	2, 7, 9 - 14			8	1, 16	15	
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	7, 9	2, 7, 10, 14	2, 9, 10	3, 5, 6, 11 - 14	8	1, 16	15	
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	3 - 7, 9 - 13	2, 7, 9, 10	7, 9, 15	3 - 7, 9 - 14	8	1, 16	15	
liH1	Input Current High		265		450		450	μΑ	2 - 7, 9 - 11				8	1, 16	2 - 7, 9 - 11	
կլ	Input Current Low	0.5		0.3		0.5		μA		2 - 7, 9 - 14			8	1, 16	2, 7, 9, 14, 15	
IEE	Power Supply Drain Current	- 75		- 83		- 83		mA					8	1, 16	8	

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	ViH1	VIL1	PS1	PS2	٧ _{EE}	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED T					ED TO PINS BE	TO PINS BELOW				
	Functional Parameters:	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10			5 °C oup 11		Pinouts	Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND								
	T urumeterer	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.			
t _{TLH}	Rise Time	1.1	3.3	0.9	3.4	0.9	3.3	ns	2 - 5, 7, 9, 10	15	1, 16	8	2 - 7, 9 - 14	2 - 7, 9 - 14	15			
t _{THL}	Fall Time	1.1	3.3	0.9	3.4	0.9	3.3	ns	2 - 5, 7, 9, 10	15	1, 16	8	2 - 7, 9 - 14	2 - 7, 9 - 14	15			
^t PLH	Propagation Delay Enable to Output	1.0	3.1	0.9	3.1	0.9	3.2	ns	2 - 5, 7, 9, 10	15	1, 16	8	2 - 7, 9 - 14	2 - 7, 9 - 14	15			
^t PLH	Propagation Delay A, B, C to Output	2.0	6.2	1.9	6.2	1.8	6.3	ns	2 - 5, 7, 9, 10	15	1, 16	8	2 - 7, 9 - 14	2 - 7, 9 - 14	15			
^t PHL	Propagation Delay Data to Output	1.5	4.7	1.2	4.7	1.3	4.8	ns	2 - 5, 7, 9, 10	15	1, 16	8	2 - 7, 9 - 14	2 - 7, 9 - 14	15			

ω

8-Input Priority Decoder

ELECTRICALLY TESTED PER: 5962-9056101

The 10565 is a device designed to encode eight inputs to a binary coded output. The output code is that of the highest order input. Any input of lower priority is ignored. Each output incorporates a latch allowing synchronous operation. When the clock is low the outputs follow the inputs and latch when the dock goes high. This device is very useful for a variety of applications in checking system status in control processors, peripheral controllers, and testing systems.

The input is active when high, (e.g., the three binary outputs are low when input DO is high). The Q3 output is high when any input is high. This allows direct extension into another priority encoder when more than eight inputs are necessary. The 10565 can also be used to develop binary codes from random logic inputs, for addressing ROMs, RAMs, or for multiplexing data.

- 750 mW Max/Pkg (No Load)
- tpd = 4.5 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS LCC		BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
Q1	2	6	3	51 Ω to V _{TT}
Q ₀	3	7	4	51 Ω to V _{TT}
Clock	4	8	5	OPEN
D ₀	5	9	7	OPEN
D7	6	10	8	GND
D1	7	11	9	OPEN
VEE	8	12	10	VEE
D ₆	9	13	12	OPEN
D3	10	14	13	OPEN
D4	11	15	14	OPEN
D5	12	16	15	OPEN
D ₂	13	1	17	OPEN
Q3	14	2	18	51 Ω to V _{TT}
Q ₂	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.2 V MIN/ - 2.0 V MAX VEE = - 5.7 V MAX/ - 5.2 V MIN

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-9056101 3) 883: 10565/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

TRUTH TABLE

DATA INPUTS								OUTPUTS			
D ₀	D ₁	D ₂	D ₃	D4	D ₅	D ₆	D7	Q3	Q ₂	Q1	Q ₀
н	Ø	ø	ø	ø	ø	ø	ø	н	L	L	L
L	н	ø	ø	ø	ø	ø	ø	н	L	L	н
L	L	н	ø	ø	ø	ø	ø	н	L	н	L
L	L	L	н	ø	ø	ø	ø	н	L	н	н
L	L	L	L	н	ø	ø	ø	н	н	L	L
L	L	L	L	L	н	ø	ø	н	н	L	н
L	L	L	L	L	L	н	ø	н	н	н	L
L	L	L	L	L	L	L	н	н	н	н	н
L	L	L	L	L	L	L	<u> </u>	<u> </u>	L	L	L

 $\emptyset = \text{Don't Care}$

NOTES

- 1. The Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns
- 2. Length of Coax_A and Coax_B should be of equal lengths for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_f = t_f = 2.0 \text{ ns} (20\% 80\%) \pm 0.2 \text{ ns}.$
- 5. RL = 50 Ω resistor in series with 50 Ω coax constituting 100 Ω load.
- 6. Unused outputs should be loaded 100 $\boldsymbol{\Omega}$ to ground.

Figure 1. Switching Test Circuit

3

NOTES

- 1. VIN waveform has the following characteristics:
 - a) Pulse width ≥ 20 ns.
 - b) frequency = 1.0 MHz.
 - c) $t_{\rm f}$ and $t_{\rm f}$ = 2.0 ns \pm 0.2 ns.

```
Figure 2. Switching Test Circuit Waveforms
```

MOTOROLA MILITARY MECL DATA 3-162

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	ViH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25 °C + 125 °C - 55 °C			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V										
	Parameters:		Subgroup 1		Subgroup 2		Subgroup 3								
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
∨он	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	6				8	1, 16	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	6				8	1, 16	2, 3, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	6	4, 6	4, 5, 7, 9 - 13	4 - 7, 9 - 13	8	1, 16	2, 3, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v		4, 6	4 - 7, 9 - 13		8	1, 16	2, 3, 14, 15
Чн	Input Current High		220		375		375	μA	5 - 7, 9 - 13				8	1, 16	2, 3, 14, 15
IH1	Input Current High		245		415		415	μA	4				8	1, 16	4
ijĽ	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 13			8	1, 16	4 - 7, 9 - 13
IEE	Power Supply Drain Current	- 131		- 144		- 144		mA					8	1, 16	8

10565 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lir	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 2	5 °C	+ 12	25 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments						
	Parameters:	Subg	roup 9	Subgroup 10		Subgroup 11			V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
			Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VEEL	P. U. T.		
t TLH	Rise Time	1.1	3.3	1.1	4.5	1.1	3.8	ns	4 - 7, 9 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
t THL	Fall Time	1.1	3.3	1.1	4.5	1.1	3.8	ns	4 - 7, 9 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PLH [/] ^t PHL	Propagation Delay Data to Output	2.0	7.0	2.0	8.5	2.0	7.5	ns	4 - 7, 9 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
tphl/ tplH	Propagation Delay Clock to Output	1.5	4.0	1.5	5.5	1.5	5.0	ns	4 - 7, 9 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t SET	Setup Time	6.0		6.0		6.0		ns	4 - 7, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
tHOLD	Hold Time	1.0		1.0		1.0		ns	4 - 7, 11	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		

5-Bit Magnitude Comparator

ELECTRICALLY TESTED PER: MPG 10566

The 10566 is a high speed expandable 5-bit comparator for comparing the magnitude of two binary words. Two outputs are provided: A < B and A > B. A = B can be obtained by NORing the two outputs with an additional gate. A high level on the enable function forces both outputs low. Multiple 10566s may be used for larger word comparisons.

- 610 mW Max/Pkg (No Load)
- tpd = Data to Output 6.0 ns typ E to Output 2.5 ns typ

Military 10566

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10566/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

PIN ASSIGNMENTS									
FUNCTION	DIL	FLATS	LCC	BURN-IN					
				(CONDITION C)					
V _{CC1}	1	5	2	GND					
A > B	2	6	3	51 Ω to VTT					
A < B	3	7	4	51 Ω to V _{TT}					
B ₀	4	8	5	OPEN					
A ₀	5	9	7	OPEN					
A1	6	10	8	OPEN					
B ₁	7	11	9	OPEN					
VEE	8	12	10	VEE					
A4	9	13	12	OPEN					
B ₄	10	14	13	GND					
B ₃	11	15	14	OPEN					
A ₃	12	16	15	OPEN					

BURN - IN CONDITIONS:

A₂

B₂

Ē

VCC2

VTT = - 2.2 V MIN/ - 2.0 V MAX VEE = - 5.7 V MAX/ - 5.2 V MIN

13

14

15

16

1

2

3

Δ

17

18

19

20

OPEN

OPEN

GND

GND

TRUTH TABLE

	Inputs		Outputs				
Ē	A	в	A < B	A > B			
н	х	х	L	L			
L	Word A =	Word B	L	L			
L	Word A >	Word B	L	н			
L	Word A <	Word B	н	L			

- 1. The Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns
- 2. Length of Coax_A and Coax_B should be of equal lengths for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_f = t_f = 2.0 \text{ ns} (20\% 80\%) \pm 0.2 \text{ ns}.$
- 5. R_L = 50 Ω resistor in series with 50 Ω coax constituting 100 Ω load.
- 6. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit

MOTOROLA MILITARY MECL DATA 3-166

NOTES

1. $V_{\mbox{\rm IN}}$ waveform has the following characteristics:

a) Pulse width ≥ 20 ns.

b) frequency = 1.0 MHz.

c) t_f and $t_f = 2.0$ ns ± 0.2 ns.

Figure 2. Switching Test Circuit Waveforms

10566 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAG	E APPLIEI	D TO PINS	BELOW	
	Functional Parameters:	+ 25 °C Subgroup 1 S			+ 125 °C Subgroup 2		– 55 °C Subgroup 3		Pir	Pinouts referenced are for DIL package, check Pin As V_{CC} = 0 V, Output Load = 100 Ω to – 2.0 V					-
	r arameters.	Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5				8	1, 16	2, 3
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	ν	4, 5, 15				8	1, 16	2, 3
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	4, 5		15	4 - 7, 9 - 14	8	1, 16	2, 3
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4, 5		4 - 7, 9 - 14		8	1, 16	2, 3
ин	Input Current High		220		375		375	μA	4 - 7, 9 - 15				8	1, 16	4 - 7, 9 - 15
μL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 9 - 15			8	1, 16	4 - 7, 9 - 15
IEE	Power Supply Drain Current	- 106		- 117		- 117		mA					8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	ViH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol Parameter				Lin	nits			Units	S TEST VOLTAGE APPLIED TO PINS BELOW					
Functional Parameters:	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		– 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.		
^t TLH	Rise Time	1.1	3.5	1.1	4.1	1.1	3.8	ns	2 - 5, 7, 9, 10	2, 3	1, 16	8	2, 3	
tTHL	Fall Time	1.1	3.5	1.1	4.1	1.1	3.8	ns	2 - 5, 7, 9, 10	2, 3	1, 16	8	2, 3	
tPLH/ tPHL	Propagation Delay Data to Output	1.0	3.6	1.0	4.2	1.0	3.9	ns	2 - 5, 7, 9, 10	2, 3	1, 16	8	2, 3	
^t PHL/ ^t PLH	Propagation Delay Clock to Output	1.0	7.6	1.0	8.9	1.0	8.2	ns	2 - 5, 7, 9, 10	2, 3	1, 16	8	2, 3	

Quad Latch

ELECTRICALLY TESTED PER: MPG 10568

The 10568 is a Quad Latch with common clocking to all four latches. Separate output enabling gates are provided for each latch, allowing direct wiring to a bus. When the clock is high, outputs will follow the D inputs. Information is latched on the negative-going transition of the clock.

- 435 mW Max/Pkg (No Load)
- $t_{pd} = \overline{G}$ to Q = 2.0 ns typ
 - = D to Q = 3.0 ns typ= C to Q = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN ASSIGNMENTS									
FUNCTION	DIL	FLATS	LCC	BURN-IN						
				(CONDITION C)						
V _{CC1}	1	5	2	GND						
Q ₀	2	6	3	51 Ω to V _{TT}						
D ₀	3	7	4	GND						
Gi	4	8	5	OPEN						
G ₀	5	9	7	OPEN						
Q1	6	10	8	51 Ω to V _{TT}						
D1	7	11	9	GND						
VEE	8	12	10	VEE						
D ₂	9	13	12	GND						
G ₃	10	14	13	OPEN						
Q2	11	15	14	51 Ω to VTT						
G ₂	12	16	15	OPEN						
сc	13	1	17	GND						
D ₃	14	2	18	GND						
Q ₃	15	3	19	51 Ω to V _{TT}						
V _{CC2}	16	4	20	GND						

BURN - IN CONDITIONS: V_{TT} = - 2.2 V MIN/ - 2.0 V MAX V_{EE} = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

G	С	D	Q _{n + 1}
н	Ø	Ø	L
L	L	Ø	Qn
L	н	L	L
L	н	н	н

Ø = Don't Care

Military 10568

1) JAN: N/A 2) SMD: N/A 3) 883: 10568/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

6. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit

NOTES

1: VIN waveform has the following characteristics:

a) Pulse width ≥ 20 ns.

b) frequency = 1.0 MHz.

c) t_f and t_f = 2.0 ns \pm 0.2 ns.

Figure 2. Switching Test Circuit Waveform

MOTOROLA MILITARY MECL DATA 3-171

Ţ

4

10568 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter			Lin	nits		Units TEST VOLTAGE APPLIED TO PINS BELOW										
	Functional	+ 25	5 °C	+ 12	5 °C	– 55 °C			Pinouts referenced are for DIL package, check Pin Assignments								
	Parameters:	Subgi	oup 1	Subgi	roup 2	Subgroup 3			V_{CC} = 0 V, Output Load = 100 Ω to – 2.0 V								
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.		
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	V	3, 7, 9, 13, 14				8	1, 16	2, 6, 11, 15		
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3 - 5, 7, 9, 10, 12 - 14				8	1, 16	2, 6, 11, 15		
VOL1	Low Output Voltage		- 1.60		- 1.525		- 1.635	v	3, 7, 9, 13, 14		4, 5, 10, 12	3, 7, 9, 14	8	1, 16	2, 6, 11, 15		
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v	3, 7, 9, 13, 14		3, 7, 9, 14	4, 5, 10, 12	8	1, 16	2, 6, 11, 15		
liH1	Input Current High		290		495		495	μA	13				8	1, 16	13		
IIH2	Input Current High		245		415		415	μA	3, 7, 9, 14				8	1, 16	3, 7, 9, 14		
Чнз	Input Current High		265		450		450	μΑ	4, 5, 10, 12				8	1, 16	4, 5, 10, 12		
۱L	Input Current Low	0.5		0.3		0.5		μA		3 - 5, 7, 9, 10, 12 - 14			8	1, 16	3 - 5, 7, 9, 10, 12 - 14		
IEE	Power Supply Drain Current	- 75		- 83		- 83		mA					8	1, 16	8		

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter	Limits						Units	TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts	s referenced a			-		gnments	
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11	}		V _{CC} = 2.	0 V, Out	put Loa	d = 100 Ω	to GND	D	
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.	
tтLH	Rise Time	1.1	3.5	1.0	4.0	1.0	3.9	ns	3 - 5, 7, 9, 10, 12 - 14	2, 6, 11, 15	1, 16	8			2, 6, 11, 15	
^t THL	Fall Time	1.1	3.5	1.0	4.0	1.0	3.9	ns	3 - 5, 7, 9, 10, 12 - 14	2, 6, 11, 15	1, 16	8			2, 6, 11, 15	
tphl/ tplh	Propagation Delay Clock to Output	1.0	5.6	1.0	6.6	1.0	6.1	ns	3 - 5, 7, 9, 10, 12 - 14	2, 6, 11, 15	1, 16	8		5, 10, 13	2, 6, 11, 15	
^t PHL/ ^t PLH	Propagation Delay Data to Output	1.0	5.4	1.0	6.3	1.0	5.8	ns	3 - 5, 7, 9, 10, 12 - 14	2, 6, 11, 15	1, 16	8		5, 10, 13	2, 6, 11, 15	
^t PHL/ ^t PLH	Propagation Delay Gate to Output	1.0	3.1	1.0	3.6	1.0	3.4	ns	3 - 5, 7, 9, 10, 12 - 14	2, 6, 11, 15	1, 16	8	7, 9, 14		2, 6, 11, 15	
ts	Setup Time	2.5		2.5		2.5		ns	3, 7, 9, 11, 14	2, 6, 11, 15	1, 16	8			2, 6, 11, 15	
tн	Hold Time	1.0		1.0		1.0		ns	3, 7, 9, 11, 14	2, 6, 11, 15	1, 16	8			2, 6, 11, 15	

9 + 2-Bit Parity Generator-Checker

ELECTRICALLY TESTED PER: MPG 10570

The 10570 is a 11-bit parity circuit, which is segmented into 9 data bits and 2 control bits. Output A generates odd parity on 9-bits; that is, Output A goes high for an odd number of high logic levels on the bit inputs in only 2 gate delays.

The control inputs can be used to expand parity to larger numbers of bits with minimal delay or can be used to generate even parity. To expand parity to larger words, the 10570 can be used with the 10560 or other 10570's. The 10570 can generate both even and odd parity.

- 410 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ (Control Inputs to B Output)
 = 4.0 ns typ (Data Inputs to A Output)
 = 6.0 ns typ (Data Inputs to B Output)
- tr, tf = 2.0 ns typ (20% 80%)

	Pit	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
А	2	6	3	51 Ω to VTT
D ₀	3	7	4	GND
D ₁	4	8	5	OPEN
D ₂	5	9	7	OPEN
D ₃	6	10	8	OPEN
D ₄	7	11	9	OPEN
VEE	8	12	10	VEE
D5	9	13	12	OPEN
D ₆	10	14	13	OPEN
D ₇	11	15	14	OPEN
D ₈	12	16	15	OPEN
High	13	1	17	OPEN
Low	14	2	18	OPEN
в	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$ $V_{EE} = -5.7 V MAX / -5.2 V MIN$

Truth Table

Inputs	Out	puts
Sum of D Inputs	Odd Parity Output	Even Parity Output
at High Level	A	B
Even	Low	High
Odd	High	Low

Military 10570

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10570/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

Figure 1. Switching Test Circuit and Waveforms

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. 2:1 divider may be used.
- 3. Length of CoaxA and CoaxB should be equal for equal time delay.
- 4. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$ (20% to 80%)
- 5. R_L = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.
- 6. Unused outputs should be loaded 100 Ω to ground
- 7. PW ≥ 20 ns.
- 8. f_{IN} = 1.0 MHz.

Figure 2

10570 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2						
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2						
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2						

Symbol	Parameter			Lir	nits			Units		т	EST VOLT	AGE APPL	IED TO P	INS BELOW	/			
		+ 25	5 °C	+ 12	5 °C	- 55 °C				Pinouts ref	erenced ar	renced are for DIL package, check Pin Assignments						
	Functional Parameters:	Subgr	roup 1	Subgr	oup 2	Subg	roup 3				VCC = 0 V	, Output Lo	tput Load = 100 Ω to - 2.0 V					
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	VCC .	P. U. T.			
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3 - 7, 9 - 14				8	1, 16	2, 15			
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3 - 7, 9 - 14				8.	1, 16	2, 15			
V _{OH1}	High Output Voltage	- 0.95	- 0.78	- 0.845	- 1.63	- 1.10	- 0.88	v			3 - 7, 9 - 14		8	1, 16	2, 15			
VOL1	Low Output Voltage	- 1.85	- 1.60	- 0.82	- 1.525	- 1.92	- 1.635	v				3 - 7, 9 - 14	8	1, 16	2, 15			
IEE	Power Supply Drain Current	- 71		- 78		- 78		mA					8	1, 16	8			
ιн	Input Current High	-	220		375		375	μΑ	3 - 7, 9 - 14				8	1, 16	3 - 7, 9 - 14			
μL	Input Current Low	0.5		0.3		0.5		μA		3 - 7, 9 - 14			8	1, 16	3 - 7, 9 - 14			

* ELECTRICAL CHARACTERISTICS

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2						
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2						
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2						

Symbol	Parameter			Lin	nits			Units		PINS BE	LOW					
	Functional	+ 25		+ 125 °C			i °C		Pinouts r	Pinouts referenced are for DIL package, check Pin V _{CC} = 2.0 V, Output Load = 100 Ω to GN						
	Parameters:	Subgr Min	Max	Subgr Min	oup 10 Max	Subgr Min	oup 11 Max	-	VIN	VOUT						
ttlh	Rise Time	1.5	3.9	1.5	4.8	1.5	4.5	ns	3, 7, 11, 13	2, 15	1, 16	8	16	2, 15		
t THL	Fall Time	1.5	3.9	1.5	4.8	1.5	4.5	ns	3, 7, 11, 13	2, 15	1, 16	8	16	2, 15		
tPLH/	Propagation Delay Carry Input to B	1.5	4.0	1.5	4.8	1.5	4.6	ns	3, 7, 11, 13	2, 15	1, 16	8	16	2, 15		
tPHL/ tPLH	Propagation Delay Other Inputs to A	2.0	6.0	2.0	8.0	2.0	7.5	ns	3, 7, 11, 13	2, 15	1, 16	8	16	2, 15		
^t pd ^{/t} pd	Propagation Delay Other Inputs to B	2.0	8.8	4.0	10.5	4.0	10.0	ns	3, 7, 11, 13	2, 15	1, 16	8	16	2, 15		

Dual Binary to 1-4 Decoder (Low)

ELECTRICALLY TESTED PER: MPG 10571

The 10571 is a binary coded 2 line to dual 4 line decoder with selected outputs low. With either $\overline{E0}$ or $\overline{E1}$ high, the corresponding selected 4 outputs are high. The common enable \overline{E} , when high, forces all outputs high.

- 445 mW Max/Pkg (No Load)
- t_{pd} = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PI	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
E ₁	2	6	3	GND
Q13	3	7	4	51 Ω to V_{TT}
Q12	4	8	5	51 Ω to V_{TT}
Q11	5	9	7	51 Ω to V_{TT}
Q10	6	10	8	51 Ω to V _{TT}
В	7	11	9	OPEN
VEE	8	12	10	VEE
Α	9	13	12	OPEN
Q03	10	14	13	51 Ω to V _{TT}
Q02	11	15	14	51 Ω to V_{TT}
Q01	12	16	15	51 Ω to V_{TT}
Q00	13	1	17	51 Ω to VTT
E ₀	14	2	18	GND
Ē	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

 $V_{TT} = -2.0 V MAX / -2.2 V MIN$

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10571

CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

Ena	able Inpu	its	Inp	Inputs Outputs								
Ē	E ₀	E1	A	В	Q ₁₀	Q ₁₁	Q ₁₂	Q ₁₃	Q ₀₀	Q ₀₁	Q ₀₂	Q ₀₃
L	L	L	L	L	L	н	н	н	L	н	н	н
L	L	L	L	н	ίн	L	(н	н	н	L	н	н
L	L	L	н	L	н	н	L	н	н	н	L	н
L	L	L	н	н	н	н	н	L	н	н	н	L
L	L	н	L	L	н	н	н	н	L	н	н	н
L	н	L	L	L	L	н	н	н	н	н	н	н
н	ø	ø	ø	ø	н	н	н	н	н	н	н	н

TRUTH TABLE

Ø = Don't Care

Figure 1. Switching Test Circuit

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. 2:1 divider may be used.
- 3. Length of $Coax_A$ and $Coax_B$ should be equal for equal time delay.
- 4. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns} (20\% \text{ to } 80\%)$
- 5. RL = 50 $\Omega\,$ resistor in series with 50 $\Omega\,$ coax constituting the 100 $\Omega\,$ load.
- 6. Unused outputs should be loaded 100 Ω to ground

NOTES

VIN has the following characteristics:

- a) PW ≥ 20 ns.
- b) f_{IN} = 1.0 MHz.
- c) t_f and $t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns.} (20\% 80\%)$

Figure 2. Switching Test Circuit Waveforms

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Ļir	nits			Units		TEST VOLTAGE APPLIED TO PINS BELOW					/			
	Functional Parameters:	+ 25 Subgr		+ 12 Subgi	5 °C roup 2		5 °C roup 3		Pinouts referenced are for DIL pa VCC = 0 V, Output Lo									
	i arametera.	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.			
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	15				8	1, 16	3 - 6, 10 - 13			
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	7, 9				8	1, 16	3 - 6, 10 - 13			
VOH1	High Output Voltage		- 1.60		- 1.525		- 1.635	v	7, 9			4 - 7, 14, 15	8	1, 16	3 - 6, 10 - 13			
VOL1	Low Output Voltage	- 0.95		- 0.845		- 1.10		v	7, 9		4 - 7, 14, 15		8	1, 16	3 - 6, 10 - 13			
liH1	Input Current High		220		375		375	μA	2, 7, 9, 14, 15				8	1, 16	2, 7, 9, 14, 15			
μL	Input Current Low	0.5		0.3		0.5		μА		2, 7, 9, 14, 15	3 - 7, 9 - 13		8	1, 16	2, 7, 9, 14, 15			
IEE	Power Supply Drain Current	- 77		- 85		- 85		mA					8	1, 16	8			

10571 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter		Limits							TEST VOLTA	GE APP	LIED TO	PINS BELOV	V	
	Functional Parameters:	+ 25 Subgr	i °C oup 9	+ 12 Subgro			- 55 °C Subgroup 11		Pinouts referenced are for DIL package, check Pin Assignme V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.	
^t TLH	Rise Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	1, 2, 14, 15	
^t THL	Fall Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	1, 2, 14, 15	
^t PLH	Propagation Delay	1.5	6.0	1.2	7.0	1.3	6.5	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	1, 2, 14, 15	
^t PHL	Propagation Delay	1.5	6.0	1.2	7.0	1.3	6.5	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	1, 2, 14, 15	

MOTOROLA MILITARY MECL DATA 3-182

Dual Binary to 1-4 Decoder (High)

ELECTRICALLY TESTED PER: MPG 10572

The 10572 is a binary coded 2 line to dual 4 line decoder with selected outputs high. With either \overline{E}_0 or \overline{E}_1 low, the corresponding selected 4 outputs are low. The common enable \overline{E} , when high, forces all outputs low.

- 445 mW Max/Pkg (No Load)
- t_{pd} = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS										
FUNCTION	DIL	FLATS	LCC	BURN-IN						
				(CONDITION C)						
V _{CC1}	1	5	2	GND						
E ₁	2	6	3	GND						
Q13	3	7	4	51 Ω to VTT						
Q12	4	8	5	51 Ω to V _{TT}						
Q11	5	9	7	51 Ω to V_{TT}						
Q10	6	10	8	51 Ω to V _{TT}						
В	7	11	9	OPEN						
VEE	8	12	10	VEE						
А	9	13	12	OPEN						
Q03	10	14	13	51 Ω to V_{TT}						
Q02	11	15	14	51 Ω to V_{TT}						
Q01	12	16	15	51 Ω to V_{TT}						
Q00	13	1	17	51 Ω to VTT						
E ₀	14	2	18	GND						
Ē	15	3	19	OPEN						
V _{CC2}	16	4	20	GND						

BURN - IN CONDITIONS:

V_{TT} = -2.0 V MAX/-2.2 V MIN V_{EE} = -5.7 V MAX/-5.2 V MIN

Military 10572

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10572/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

Ty 10572

MOTOROLA MILITARY MECL DATA 3-183

En	able Inpu	ıts	Inp	uts			Outputs					
Ē	E ₀	E1	A	В	Q10	Q ₁₁	Q12	Q ₁₃	Q ₀₀	Q ₀₁	Q ₀₂	Q ₀₃
L	н	н	L	L	н	L	L	L	н	L	L	L
L	H	н	L	н	L	н	L	L	L	н	L	L
L	н	н	н	L	L	L	н	L.	L	L	н	L L
L	н	н	н	н	L	L	L	н	L	L) L	н
L	L	н	L	L	L	L	L	L	н	L	L	L
L	н	L	L	L	н	L	L	L	L	L	L	L
н	ø	ø	ø	ø	L	L	L	L	L	L	L	L

TRUTH TABLE

Ø = Don't Care

Figure 1. Switching Test Circuit

NOTES

- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. 2:1 divider may be used.
- 3. Length of $Coax_A$ and $Coax_B$ should be equal for equal time delay.
- 4. $t_r = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns} (20\% \text{ to } 80\%)$
- 5. R_{L} = 50 $\Omega\,$ resistor in series with 50 $\Omega\,$ coax constituting the 100 $\Omega\,$ load.
- 6. Unused outputs should be loaded 100 Ω to ground

NOTES

VIN has the following characteristics:

- a) PW ≥ 20 ns.
- b) f_{IN} = 1.0 MHz.
- c) t_f and $t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$. (20% 80%)

Figure 2. Switching Test Circuit Waveforms

10572 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2						
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2						
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2						

Symbol	Parameter			Lir	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW					v	
	Functional Parameters:	+ 25 °C + 125 °C Subgroup 1 Subgroup 2			- 55 °C Subgroup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V								
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	2, 7, 9, 14				8	1, 16	3 - 6, 10 - 13
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.635	v	15				8	1, 16	3 - 6, 10 - 13
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	2, 7, 9, 14		2, 7, 9, 14		8	1, 16	3 - 6, 10 - 13
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	2, 7, 9, 14		2, 7, 9, 14	7, 15	8	1, 16	3 - 6, 10 - 13
hH1	Input Current High		220		375		375	μA	2, 7, 9, 14, 15				8	1, 16	2, 7, 9, 14, 15
١ _{١L}	Input Current Low	0.5		0.3		0.5		μΑ		2, 7, 9, 14, 15			8	1, 16	2, 7, 9, 14, 15
IEE	Power Supply Drain Current	- 77		- 85		- 85		mA					8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter		Limits							PINS BELOV	v			
	Functional	Functional Parameters: Subgrou				- 55 °C Subgroup 11			Pinout	ssignments				
	Parameters.	Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.
t⊥LH	Rise Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13
tTHL	Fall Time	1.1	3.3	1.0	3.9	1.0	3.6	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13
^t PLH	Propagation Delay	1.5	6.0	1.2	7.0	1.3	6.5	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13
^t PHL	Propagation Delay	1.5	6.0	1.2	7.0	1.3	6.5	ns	2, 7, 9, 14, 15	3 - 6, 10 - 13	1, 16	8	2, 7, 9, 14	3 - 6, 10 - 13

Quad 2-Input Multiplexer/Latch

ELECTRICALLY TESTED PER: MPG 10573

The 10573 is a quad two channel multiplexer with latch. It incorporates common clock and common data select inputs. The select input determines which data input is enabled. A high (H) level enables data inputs D00, D20, and D30 and a low (L) level enables data inputs D01, D11, D21, and D31. Any change on the data input will be reflected at the outputs while the clock is low.

The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not effect the output information.

- 380 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ (All Output Loaded)
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS									
FUNCTION	DIL	FLATS	LCC	BURN-IN					
				(CONDITION C)					
Q0	1	5	2	51 Ω to V_{TT}					
Q1	2	6	3	51 Ω to V _{TT}					
D11	3	7	4	GND					
D10	4	8	5	OPEN					
D01	5	9	7	GND					
D00	6	10	8	OPEN					
Clock	7	11	9	OPEN					
VEE	8	12	10	VEE					
Select	9	13	12	OPEN					
D31	10	14	13	GND					
D30	11	15	14	OPEN					
D21	12	16	15	GND					
D20	13	1	17	OPEN					
Q3	14	2	18	51 Ω to V _{TT}					
Q2	15	3	19	51 Ω to V _{TT}					
VCC	16	4	20	GND					

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

Inp	uts	Output
Select	Clock	Q0 _{n + 1}
н	L	D00
L	L	D01
ø	L	Q0 _n

Ø = Don't Care

Military 10573

AVAILABLE AS
1) JAN: N/A 2) SMD: N/A 3) 883: 10573/BXAJC
X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E **CERFLAT: F** LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

VIN has the following characteristics:

- a) PW ≥ 20 ns.
- b) f_{IN} = 1.0 MHz.

c) t_{f} and t_{f} = 1.0 ns ± 0.1 ns. (20% - 80%)

ယ

10573 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	۷IL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter			Liı	mits			Units TEST VOLTAGE APPLIED TO PINS BELOW						V	
	Functional		5 °C + 125 °C roup 1 Subgroup 2		- 55 °C Subgroup 3		-	F	Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V						
	Parameters:	Subgr Min	Max	Min	Max	Min	Max	}	VIH	VIL	VIH1	VIL1	V _{EE}	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3, 5, 10, 12				8	16	1, 2, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3 - 7, 9 - 13	3, 5, 10, 12	7, 9	3 - 7, 9 - 13	8	16	1, 2, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	3 - 7, 9 - 13	3, 5, 7, 10 - 13	3 - 7, 9 - 13	7, 9	8	16	1, 2, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v					8	16	1, 2, 14, 15
^I EE	Power Supply Drain Current	- 66		- 73		- 73		mA					8	16	8
Чн	Input Current High		250		425		425	μΑ	7, 9				8	16	7, 9
liH1	Input Current High		295		500		500	μA	3 - 6, 10 - 13				8	16	3 - 7, 10 - 13
ΙL	Input Current Low	0.5		0.3		0.5		μA			3 - 7, 9 - 13		8	16	3 - 7, 10 - 13

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIH1	V _{IL1}	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:	+ 25 °C + 125 °C Subgroup 9 Subgroup ⁻		-	- 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND								
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	VIH	VIL	P. U. T.
^t TLH	Rise Time	1.5	3.5	1.4	7.5	1.0	4.2	ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8	3, 5, 10, 12			1, 2, 14, 15
^t THL	Fall Time	1.5	3.5	1.4	7.5	1.0	4.2	ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8	3, 5, 10, 12			1, 2, 14, 15
^t pd	Propagation Delay Select to Q	1.3	5.7	1.2	7.0	1.0	6.5	ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8	3, 5, 10, 12			1, 2, 14, 15
^t pd	Propagation Delay Data to Q	1.0	3.5	1.1	5.5	0.8	3.9	ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8	3, 5, 10, 12			1, 2, 14, 15
^t pd	Propagation Delay Clock to Q	1.6	6.8	1.4	7.5	1.6	7.5	ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8	3, 5, 10, 12			1, 2, 14, 15
tset	Setup Time Select to Q	3.0		3.0		4.0		ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8		9	9	1
tset	Setup Time Data to Q	2.0		2.0		2.0		ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8		5, 6	5, 6	1
^t hold	Hold Time Data Input	2.5		2.5		2.5		ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8		9	9	1
thold	Hold Time Select Input	1.5		1.5		1.5		ns	3 - 7, 9 - 13	1, 2, 14, 15	16	8		5,6	5,6	1

Dual 4 to 1 Multiplexer

ELECTRICALLY TESTED PER: MPG 10574

The 10574 is a high speed dual channel multiplexer with output enable capability. The select inputs determine one of four active data inputs for each multiplexer. An output enable forces both outputs low when in the high state.

- 420 mW Max/Pkg (No Load)
- t_{pd} = 3.5 ns typ (Data to Output)
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS											
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
VCC1	1	5	2	GND							
Q ₀	2	6	3	51 Ω to VTT							
D00	3	7	4	OPEN							
D02	4	8	5	OPEN							
D01	5	9	7	GND							
D03	6	10	8	GND							
А	7	11	9	GND							
VEE	8	12	10	VEE							
в	9	13	12	GND							
D13	- 10	14	13	GND							
D11	11	15	14	OPEN							
D12	12	16	15	GND							
D10	13	1	17	OPEN							
Enable	14	2	18	OPEN							
Q1	15	3	19	51 Ω to V _{TT}							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS:

VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

Enable	Addres	s inputs	Outp	outs
Ē	в	Α	QO	Q1
н	Ø	ø	L	L
L	L	L	D00	D10
L	L	н	D01	D11
L	н	L	D02	D12
L	н	н	D03	D13
	-			

ø = Don't Care

Military 10574

coaxial cable. Wire length should be

NOTES

< 1/4 inch from TPIN to input pin and TPOUT to output pin.

Figure 2. Switching Test Circuit Waveforms

10574 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW									BELOW						
	Functional	+ 2	5 °C	+ 12	25 °C − 55 °C			Pinouts referenced are for DIL package, check Pin Assig									
	Parameters:		Subgroup 1		Subgroup 2		roup 3		$V_{CC} = 0 V$, Output Load = 100 Ω to - 2.0 V								
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.		
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	3 - 7, 9 - 13	7, 9, 14			8	1, 16	2, 15		
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	3, 7, 9, 14	3 - 7	14	9 - 13	8	1, 16	2, 15		
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	3 - 7		3 - 7, 9 - 13	7, 9	8, 14	1, 16	2, 15		
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	7, 9		7, 9, 14	3 - 7, 9 - 13	8	1, 16	2, 15		
Чнт	Input Current High		220		375		375	μА	3 - 7, 9 - 13				8	1, 16	3 - 7, 9 - 13		
IIH2	Input Current High		330		565		565	μΑ	14				8	1, 16	14		
ΪĮĽ	Input Current Low	0.5		0.3		0.5		μΑ		4 - 7, 9 - 14			8	1, 16	3 - 7, 9 - 14		
IEE	Power Supply Drain Current	- 73		- 80		- 80		mA					8	1, 16	8		

* ELECTRICAL CHARACTERISTICS

Test	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter	T		Lin	nits			Units	Jnits TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25 °C + 125 °C Subgroup 9 Subgroup 10		– 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 2.0 V, Output Load = 100 Ω to GND								
1	Parameters:	Min	Max	Min	Max	Min	Max	-	VIN			VEEL	PS1	P. U. T.	
tTLH	Rise Time	1.1	3.3	0.9	3.4	0.9	3.3	ns	3 - 7, 9 - 13	2, 15	Vcc 1, 16	8	3, 4, 5, 7, 9, 11, 12, 13	2, 15	
tthL	Fall Time	1.1	3.3	0.9	3.4	0.9	3.3	ns	3 - 7, 9 - 13	2, 15	1, 16	8	3, 4, 5, 7, 9, 11, 12, 13	2, 15	
^t PLH [/] tPHL	Propagation Delay Address (Pin 7)	2.0	6.2	1.9	6.2	1.8	6.3	ns	3 - 7, 9 - 13	2, 15	1, 16	8	3, 4, 5, 7, 9, 11, 12, 13	2, 15	
^t PHL/ ^t PLH	Propagation Delay Enable (Pin 14)	1.0	3.1	0.9	3.1	0.9	3.2	ns	3 - 7, 9 - 13	2, 15	1, 16	8	3, 4, 5, 7, 9, 11, 12, 13	2, 15	
^t PLH [/] ^t PHL	Propagation Delay	1.5	4.7	1.2	4.7	1.3	4.8	ns	3 - 7, 9 - 13	2, 15	1, 16	8	3, 4, 5, 7, 9, 11, 12, 13	2, 15	

Quint Latch

ELECTRICALLY TESTED PER: MPG 10575

The 10575 is a high speed, low power quint latch. It features five D type latches with common reset and a common two-input clock. Data is transferred on the negative edge of the clock and latched on the positive edge. The two clock inputs are "OR"ed together.

Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not effect the output information. The reset input is enabled only when the clock is in the high state.

- 560 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS												
FUNCTION	DIL	FLATS	LCC	BURN-IN								
				(CONDITION C)								
V _{CC1}	1	5	2	GND								
Q ₂	2	6	3	51 Ω to VTT								
Q ₃	3	7	4	51 Ω to V _{TT}								
Q4	4	8	5	51 Ω to V _{TT}								
D4	5	9	7	GND								
D4 C0 C1	6	10	8	OPEN								
C1	7	11	9	OPEN								
VEE	8	12	10	VEE								
D3	9	13	12	GND								
D ₀	10	14	13	GND								
Reset	11	15	14	OPEN								
D ₁	12	16	15	GND								
D2	13	1	17	GND								
Q ₀	14	2	18	51 Ω to V _{TT}								
Q1	15	3	19	51 Ω to V _{TT}								
V _{CC2}	16	4	20	GND								

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

C ₀	C1	Reset	Q _{n + 1}
L	L	ø	L
L	L	ø	н
н	ø	L	Qn
ø	н	L	Qn
н	ø	н	L
Ø	н	н	L
	L L M H	LL LL HØ H HØ	LLØ LLØ HØL ØHL HØH

Ø = Don't Care

Military 10575

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10575/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

ω

10575 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:	+ 2 Subgr	5 °C roup 1	+ 125 °C Subgroup 2			5 °C roup 3		Pinouts referenced are for DIL package, chec V _{CC} = 0 V, Output Load = 100 Ω to					-	
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5, 9, 10, 12, 13				8	1, 16	2 - 4, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	V					8	1, 16	2 - 4, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	5, 6, 9, 10, 11, 13	5, 9 - 13	11	5 - 7, 9, 10, 11, 13	8	.1, 16	2 - 4, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.62	- 1.10	- 0.88	v	5, 6, 9, 10, 11, 13	5, 6, 9, 10 - 13	5 - 7, 9, 10, 11, 13	11	8	1, 16	2 - 4, 14, 15
liH1	Input Current High		290		495		495	μA	5, 9, 10, 12, 13				8	1, 16	5, 9, 10, 12, 13
IIH2	Input Current High		650		1100		1100	μA	11				8	1, 16	11
liH3	Input Current High		290		495		495	μA	6, 7				8	1, 16	6, 7
ίιL	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 9 - 13			8	1, 16	5 - 7, 9 - 13
IEE	Power Supply Drain Current	- 97		- 107		- 107		mA					8	1, 16	8

MOTOROLA MILITARY MECL DATA 3-198

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	V _{IL1}	PS1	P _{S2}	VEE	VEEL				
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25		+ 12		- 55					DIL package, check Pin Assignments				
	Parameters:	Subgr	·	Subgr	· · · · · · · · · · · · · · · · · · ·	Subgr	·		V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max		VIN	Vout	Vcc	VEEL	P. U. T.		
^t TLH	Rise Time	1.1	3.5	1.0	4.1	1.0	3.8	ns	5, 6, 9 - 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		
^t THL	Fall Time	1.1	3.5	1.0	4.1	1.0	3.8	ns	5, 6, 9 - 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		
^t pd	Propagation Delay Reset to Q	1.0	3.9	1.0	4.6	1.0	4.2	ns	5, 6, 9 - 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		
^t pd	Propagation Delay Data to Q	1.0	3.5	1.0	4.1	1.0	3.8	ns	5, 6, 9 - 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		
^t pd	Propagation Delay Clock to Q	1.0	4.3	1.0	5.0	1.0	4.6	ns	5, 6, 9 - 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		
^t SET	Setup Time	2.5		2.5		2.5		ns	6, 10, 12, 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		
^t HOLD	Hold Time	1.5		1.5		1.5		ns	6, 10, 12, 13	2 - 4, 14, 15	1, 16	8	2 - 4, 14, 15		

Hex "D" Master-Slave Flip-Flop

ELECTRICALLY TESTED PER: JM 38510/06103

The 10576 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.

- 630 mW Max/Pkg (No Load)
- ftoggle = 150 MHz (typ)
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN ASSIGNMENTS										
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
VCC1	1	5	2	GND							
Q ₀	2	6	3	51 Ω to V_TT							
Q ₁	3	7	4	51 Ω to V _{TT}							
Q ₂	4	8	5	51 Ω to V _{TT}							
D0	5	9	7	GND							
D ₁	6	10	8	GND							
D ₂	7	11	9	GND							
VEE	8	12	10	VEE							
Clock	9	13	12	CP1							
D ₃	10	14	13	GND							
D ₄	11	15	14	GND							
D ₅	12	16	15	GND							
Q ₃	13	1	17	51 Ω to V _{TT}							
Q ₄	14	2	18	51 Ω to V_{TT}							
Q ₅	15	3	19	51 Ω to V _{TT}							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

С	D	Q _{n + 1}
L	Ø	Qn
*н	L	L
*н	н	н

ø = Don't Care

* A clock H is a clock transition from a Low to a High state

Military 10576

The letter "M" appears before the slash on LCC.

 $-3.2 \text{ V} \pm 0.005 \text{ V}$

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.25 inch (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Output not under test connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. Scope input = 50 Ω to ground.
- 7. CL (test jig) ≤ 5.0 pF.
- 8. $Z_{OUT} = 50 \Omega$.

Figure 1. Synchronous Switching Test Circuit

NOTES

- 1. Note that observed pulse amplitude is attenuated by one half.
- 2. tp(data) = 150 ns.
- 3. tP(clock) = 40 ns.
- 4. PRR = 1.0 MHz.
- 5. t_{THL} = t_{TLH} = 2.0 ns (20% to 80%).

Figure 2. Synchronous Switching Test Circuit Waveforms

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cable. Wire length should be \leq 0.25 inch (6.35 mm) from TP_{IN} to input pin and TPOUT to otuput pin.
- 3. Output not under test connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_1/2 = 50 \Omega \pm 5.0\%$.
- 6. Scope input = 50 Ω to ground.
- 7. CL (test jig) ≤ 5.0 pF.
- 8. $Z_{OUT} = 50 \Omega$.

NOTES

- 1. Note that observed pulse amplitude is attenuated by one half.
- 2. tp(data) = 40 ns.
- 3. tp(clock) = 40 ns.
- 4. PRR = 1.0 MHz.
- 5. t_{THL} = t_{TLH} = 2.0 ns (20% to 80%).

Figure 4. tSETUP and tHOLD Waveforms

MOTOROLA MILITARY MECL DATA 3-202

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VITH	VITL	VIH1	VIL1	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAC	GE APPLI	ED TO PI	NS BELC	w		
	Functional Parameters:	+ 25 Subgr			5 °C oup 2	l	5 °C roup 3	Pinouts referenced are for DIL pa V _{CC} = 0 V, Output Lo				-	•				
	Falameters.	Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITH	VITL	Clk	VEE	Vcc	P. U. T.	
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7, 10 - 12				9	8	16	2 - 4, 13 - 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v		5 - 7, 10 - 12				8	16	2 - 4, 13 - 15	
VOTL	Low Output Voltage		- 1.60		- 1.525		- 1.635	v	6, 7, 10 - 12	6, 7, 10 - 12	6, 7, 10 - 12	5 - 7, 10 - 12	9	8	16	2 - 4, 13 - 15	
Vотн	High Output Voltage	- 0.95		- 0.845		- 1.10		v	5 - 7, 10 - 12	5 - 7, 10 - 12		5 - 7, 10 - 12	9	8	16	2 - 4, 13 - 15	
UH1	Input Current High		220		375		375	μΑ	5 - 7, 10 - 12					8	16	5 - 7, 10 - 12	
IIH2	Input Current High		310		527		527	μA	9					8	16	9	
ι.	Input Current Low	0.5		0.3		0.5		μΑ		5 - 7, 10 - 12				8	16	5 - 7, 10 - 12	
IEE	Power Supply Drain Current	- 110		- 121		- 121		mA						8	16	8	

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VITH	VITL	VIH1	VIL1	VEE	VEEL						
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2						
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2						
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
		+ 2	+ 25 °C		+ 125 °C		5 °C		Pinouts referenced are for DIL package, check Pin Assignments						
	Functional Parameters:	Subgi	oup 9	Subgr	oup 10	Subgr	oup 11	1	V _{CC} = 2.0 V, Output Load = 100 Ω to GND				ND		
		Min	Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VEEL	P. U. T.		
ttlH	Rise Time	1.1	4.0	1.0	4.5	1.0	4.3	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12		
^t THL	Fall Time	1.1	4.0	1.0	4.5	1.0	4.3	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12		
^t PLH	Propagation Delay	1.5	4.5	1.3	5.3	1.2	4.9	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12		
^t PLH	Propagation Delay	1.5	4.5	1.3	5.3	1.2	4.9	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12		
fToggle	Toggle Frequency	125		125		115		MHz	5 - 7, 10 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12		

Binary Counter

ELECTRICALLY TESTED PER: MPG 10578

The 10578 is a four-bit counter capable of divide-by-two, divide-by-four, divideby-eight or a divide-by-sixteen function. Clock inputs trigger on the positive going edge of the clock pulse. Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

- 505 mW Max/Pkg (No Load)
- f_{toggle} = 150 MHz (typ)
- t_r, t_f = 2.7 ns typ (20% 80%)

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Q3	2	6	3	51 Ω to V _{TT}
Q3	3	7	4	51 Ω to VTT
Q2	4	8	5	51 Ω to V _{TT}
S3	5	9	7	GND
S2	6	10	8	GND
S1	7	11	9	GND
VEE	8	12	10	VEE
Reset	9	13	12	OPEN
Clock 2	10	14	13	OPEN
S0	11	15	14	GND
Clock 1	12	16	15	OPEN
Q1	13	1	17	51 Ω to V _{TT}
Q0	14	2	18	51 Ω to V _{TT}
Q0	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS:

VTT = - 2.2 V MIN/ - 2.0 V MAX VEE = - 5.7 V MAX/ - 5.2 V MIN

LOGIC DIAGRAM

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10578/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA 3-205

1	0	5	7	8

			INPUTS				OUT	OUTS		
R	S ₀	S ₁	S ₂	S ₃	C ₂	QO	Q1	Q2	Q ₃	
н	L	L	L	L	φ	φ	L	L	L	L
L	н	н	н	н	φ	φ	н	н	н	н
L	L	L	L	L	н	φ		No C	Count	
L	L	L	L	L	φ	н		No C	Count	
L	L	L	L	L	••	••	L	L	L	L
L	L	L	L	L	••	••	н	L	L	L
L	L	L	L	L	••	••	L	н	L	L
L	L	L	L	L	••	••	н	н	L	L
L	L	L	L	L	••	••	L	L	н	L
L	L	L	L	L	••	••	н	L	н	L
L	L	L	L	L	••	••	L	н	н	L
L	L	L	L	L	••	••	н	н	н	L
L	L	L	L	L	••	••	L	L	L	н
L	L	L	L	L	••	••	н	L	L	н
L	L	L	L	L	••	••	L	н	L	н
L	L	L	L	L	••	••	н	н	L	н
L	L	L	L	L	••	••	L	L	н	н
L	L	L	L	L	••	••	н	÷ L	н	н
L	L	L	L	L	••	••	L	н	н	н
L	L	L	L	L	••	••	н	н	н	н
	on't Care									
••		VII-	ł							

Clock transition from VIL to VIH may be applied to C1 or C2 or both for same effect.

6. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit

MOTOROLA MILITARY MECL DATA 3-206

NOTES

1. VIN waveform has the following characteristics:

a) Pulse width ≥ 20 ns.

b) frequency = 1.0 MHz.

c) t_f and $t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$.

3

ω

10578 **QUIESCENT LIMIT TABLE ***

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)											
	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units		TEST VC	LTAGE AP	PLIED TO	PINS BE	LOW
	Functional		5 °C		25 °C		5 °C		Pinouts					n Assignments
	Parameters:	Subgr	roup 1	Subg	Subgroup 2		Subgroup 3			V_{CC} = 0 V, Output Load = 100 Ω to - 2.0				.0 V
		Min	Max	Min	Max	Min	Max		VIH	VIL	P ₁ , 2, 3	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7, 9, 11			8	1, 16	2, 3, 4, 13, 14
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	5 - 7, 9, 11		-	8	1, 16	2, 3, 4, 13, 14
V _{OL1}	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v		5 - 7, 9 - 12	5 - 7, 9 - 12	8	1, 16	2, 3, 4, 13 - 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v		5 - 7, 9 - 12		8	1, 16	2, 3, 4, 13 - 15
ін	Input Current High		245		415		415	μA	10, 12			8	1, 16	10, 12
liH1	Input Current High		220		375		375	μA	5 - 7, 11			8	1, 16	5 - 7, 11
IH2	Input Current High		410		700		700	μA	9			8	1, 16	9
ΊL	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 9 - 12		8	1, 16	5 - 7, 9 - 12
IEE	Power Supply Drain Current	- 88	- 10	- 97	- 10	- 97	- 10	mA				8	1, 16	8

NOTES

MOTOROLA MILITARY MECL DATA 3-208

P1)

P2)

VIH1

٧ı

P3)

VIL

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test Temperature		Test Voltage Values (Volts)											
	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2					
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2					
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE	APPLIE	D TO PI	NS BEL	ow	
	Functional	+ 2			5 °C		5 °C		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND							ments
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11									
		Min	Max	Min	Max	Min	Max]	VIN	VOUT	PS1	PS2	fmax	Vcc	VEEL	P. U. T.
t tlh	Rise Time	1.1	4.5	1.1	5.3	1.1	4.9	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
THL	Fall Time	1.1	4.5	1.1	5.3	1.1	4.9	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
^t pd	Propagation Delay Clock to Q_0, \overline{Q}_0	1.5	4.8	1.5	5.6	1.4	5.0	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
^t pd	Propagation Delay Clock to Q ₁	2.0	9.2	2.0	10.8	1.9	9.9	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
^t pd	Propagation Delay Clock to Q ₂	3.0	12	3.0	14	2.9	13	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
^t pd	Propagation <u>Del</u> ay Clock to Q ₃ , Q ₃	4.0	14.5	4.0	17	3.9	16	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
t _{set/} reset	Set/Rest Input	1.5	5.0	1.5	6.1	1.4	5.6	ns	5 - 7, 9, 11	2 - 4, 13 - 15	6, 7, 11			1, 16	8	2 - 4, 13 - 15
fTog	Toggle Frequency	125		125		125		MHz		14, 15		6, 7, 9, 11	10, 12	1, 16	8	14, 15

Look-Ahead Carry Block

ELECTRICALLY TESTED PER: 5962-8774601

The 10579 is a high speed, low power, standard MECL complex function that is designed to perform the look-ahead carry function. This device can be used with the 10581 4-bit ALU directly, or with the 10580 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.

When used with the 10581, the 10579 performs a second order or higher lookahead. Second order carry is valuable for longer binary words. As an example, addition of two 32-bit words is improved from 30 nanoseconds with ripple-carry techniques. The 10579 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables.

- 415 mW Max/Pkg (No Load)
- t_{pd} = 3.0 ns typ (Carry, Propagate)
 4.0 ns typ (Generate)
- t_r, t_f = 2.3 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
GG	2	6	3	51 Ω to V _{TT}
C _{n + 4}	3	7	4	51 Ω to V _{TT}
G0	4	8	5	OPEN
G3	5	9	7	GND
C _{n + 2}	6	10	8	51 Ω to VTT
G1	7	11	9	GND
VEE	8	12	10	VEE
G2	9	13	12	OPEN
P1	10	14	13	GND
Cn	11	15	14	OPEN
P2	12	16	15	OPEN
Р3	13	1	17	GND
P0	14	2	18	OPEN
PG	15	3	19	51 Ω to V_{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX / -2.2 V MIN$ $V_{EE} = -5.7 V MAX / -5.2 V MIN$

Military 10579

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8774601 3) 883: 10579/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

- 1. All input and output cables to the scope are equal lengths of coaxial cable. Wire length should be \leq 1/4 inch from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Length of CoaxA and CoaxB should be equal for equal time delay.
- 3. 50 Ω termination to ground located in each scope channel input.
- 4. $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}$ (20% to 80%)
- 5. Unused outputs should be loaded 100 Ω to ground.
- 6. Frequency = 1.0 MHz.

 $V_{\mbox{EEL}} = - \ 3.2 \ \mbox{V} \pm 0.005 \ \mbox{V}$

Figure 1. Switching Test Circuit and Waveforms

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature		Test Voltage Values (Volts)											
	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.780	- 1.950	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.650	- 1.950	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter	eter Limits Units TEST VOLTAGE APPLIED TO PINS BELOW													
	Functional	+ 25	5 °C	+ 12	5 °C		5 °C		Pinou	ts referenced	-	•		-	ents
	Parameters:	Subgr	roup 1	Subgi	roup 2	Subg	roup 3			VCC = 0	V, Output Lo	ad = 100 Ω	to - 2.0	v	
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.09	- 0.88	v	4, 5, 7, 9, 14				8	1, 16	2, 3, 6, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v		4, 5, 7, 9, 14			8	1, 16	2, 3, 6, 15
V _{OL1}	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	5, 7, 9, 10, 12, 13, 14	5, 7, 9 - 14			8	1, 16	2, 3, 6, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4, 5, 7, 9, 10, 12 - 14		4, 5, 10 - 13		8	1, 16	2, 3, 6, 15
liH1	Input Current High		225		380		380	μА	5, 9				8	1, 16	5, 9
liH2	Input Current High		270		460		460	μА	4, 7, 11				8	1, 16	4, 7, 11
IIH3 、	Input Current High		355		600		600	μA	14				8	1, 16	14
I _{IH4}	Input Current High		395		670		670	μA	12				8	1, 16	12
liH5	Input Current High		440		750		750	μА	10, 13				8	1, 16	10, 13
կլ	Input Current Low	0.5		0.3		0.5		μΑ		4, 7, 9, 14			8	1, 16	4, 7, 9, 14
IEE	Power Supply Current	- 72		- 79		- 79		mA					8	1, 16	8

ω

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test Temperature	Test Voltage Values (Volts)											
	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL				
T _A = 25 °C	- 0.780	- 1.950	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.650	- 1.950	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW												
		+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pinouts	referenced	are for DIL	package,	check Pin Assig	nments
	Functional Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11		V_{CC} = 2.0 V, Output Load = 100 Ω to GND					
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.
^t ΤLΗ	Rise Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	5, 9, 10 11, 13	2, 3, 6, 15	1, 16	8	4, 5, 7, 9, 10, 12, 13	2, 3, 6, 15
^t THL	Fall Time	1.1	3.5	1.0	4.1	1.0	3.9	ns	5, 9, 10 11, 13	2, 3, 6, 15	1, 16	8	4, 5, 7, 9, 10, 12, 13	2, 3, 6, 15
^t pd	Propagation Delay G or C to Carry Out	1.0	5.5	1.0	6.4	1.0	5.9	ns	5, 9, 10 11, 13	2, 3, 6, 15	1, 16	8	4, 5, 7, 9, 10, 12, 13	2, 3, 6, 15
^t pd	Propagation Delay G to G _G	1.0	5.5	1.0	6.4	1.0	5.9	ns	5, 9, 10 11, 13	2, 3, 6, 15	1, 16	8	4, 5, 7, 9, 10, 12, 13	2, 3, 6, 15
^t pd	Propagation Delay P to PG	1.0	3.5	1.0	4.1	1.0	3.9	ns	5, 9, 10 11, 13	2, 3, 6, 15	1, 16	8	4, 5, 7, 9, 10, 12, 13	2, 3, 6, 15
^t pd	Propagation Delay P ro G _G	1.0	5.5	1.0	6.4	1.0	5.9	ns	5, 9, 10 11, 13	2, 3, 6, 15	1, 16	8	4, 5, 7, 9, 10, 12, 13	2, 3, 6, 15

Dual 2-Bit Adder/Subtractor

ELECTRICALLY TESTED PER: MPG 10580

The 10580 is a high speed, low power general-purpose adder/subtractor. It is designed to be used in special purpose adders/subtractors or in high speed multiplier arrays. The 10580 can be used in any piece of equipment where these operations are necessary.

Inputs for each adder are Carry-in, operand A, and operand B; outputs are Sum, Sum, and Carry-out. The common Select inputs serve as a control line to invert A for subtract, and a control line to invert B.

- 495 mW Max/Pkg (No Load)
- CIN to COUT = 2.0 ns
- A₀ to S₀ = 4.5 ns
- A₀ to C_{OUT} = 4.5 ns
- t_r, t_f = 2.4 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
S ₁	1	5	2	51 Ω to VTT
S 0	2	6	3	51 Ω to VTT
COUT	3	7	4	51 Ω to VTT
CIN	4	8	5	OPEN
A ₀	5	9	. 7	OPEN
B ₀	6	10	8	OPEN
SelA	7	11	9	OPEN
VEE	8	12	10	VEE
SelB	9	13	12	OPEN
B ₁	10	14	13	OPEN
A ₁	11	15	14	OPEN
C _{IN}	12	16	15	OPEN
COUT	13	1	17	51 Ω to V_{TT}
S ₁	14	2	18	51 Ω to V_{TT}
S ₀	15	3	19	51 Ω to V_{TT}
V _{CC}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10580

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10580/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

			IROII	<u> </u>				
Function			Inputs					
	SelA	SelB	A ₀	B ₀	CIN	SO	s _o	соит
ADD	н	н	L	L	L	L	н	L
	н	н	L	L	н	н	L	L
	н	н	L	н	L	н	L	L
	н	н	L	н	н	L	н	н
	н	н	н	L	L	н	L	L
	н	н	н	L	н	L	н	н
	н	н	н	н	L	L	н	н
	н	н	н	н	н	н	L	н
SUBTRACT	н	L	L	L	L	н	L	L
	н	L	L	L	н	L	н	н
	н	L	L	н	L	L	н	L
	н	L	L	н	н	н	L	L
	н	L	н	L	L	L	н	н
	н	L	н	L	н	н	L	н
	н	L	н	н	L	н	L	L
	н	L	н	н	н	L	н	н
REVERSE SUBTRACT	L	н	L	L	L	н	L	L
	L	н	L	L	н	L	н	н
)	L	н	L	н	L	L	н	н
	L	н	L	н	н	н	L	н
	L	н	н	L	L	L	н	L
	L	н	н	L	н	н	L	L
	L	н	н	н	L	н	L	L
	L	н	н	н	н	L	н	н
	L	L	L	L	L	L	н	н
	L	L	L	L	н	н	L	н
	L	L	L	н	L	н	L	L
	L	L	L	н	н	L	н	Н
	L	L	н	L	L	н	L	L
	L	L	н	L	н	L	н	н
	L	L	н	н	L	L	н	L
	L	L	н	н	н	н	L	L

TRUTH TABLE

FUNCTION SELECT TABLE

SelA	SelB	Function
Н	Н	S = A plus B
н	L	S = A minus B
L	н	S = B minus A
L	L	S = 0 minus A minus B

POSITIVE LOGIC ONLY

 $\begin{array}{l} A' = \overline{A \oplus Sel_A} &= A \textcircled{O}Sel_A \\ B' = \overline{B \oplus Sel_B} = B \textcircled{O}Sel_B \\ S = \overline{C}_{IN} (\overline{A'B'} + A'\overline{B'}) + C_{IN} (A'B' + \overline{A'B'}) \\ C_{OUT} = C_{IN}A' + C_{IN}B' + A'B' \end{array}$

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	V _{IH1}	VIL1	PS1	PS2	VEE	VEEL						
T _A = 25 °C	- 0.78	- 1.85	- 1.105	-1.475	+ 1.11	+ 0.31	- 5.2	- 3.2						
T _A = 125 °C	- 0.63	- 1.82	- 1.000	-1.400	+ 1.24	+ 0.36	- 5.2	- 3.2						
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	-1.510	+ 1.01	+ 0.28	- 5.2	- 3.2						

Symbol	Parameter			Lin	nits			Units			TEST VO	OLTAGE /	APPLIED	TO PINS	BELOW
	Functional	+ 2	25° C	+ 12	25 ° C	- 5	5°C			Pinouts I			•	•	k Pin Assignments
	Parameters:	Subgr	roup 1	Subgr	roup 2	Subg	roup 3		V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V						o - 2.0 V
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 9, 11, 12				8	16	1 - 3, 13 - 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	5, 11				8	16	1 - 3, 13 - 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	4, 7, 9, 12		4 - 7 9 - 12	4 - 7 9 - 12	8	16	1 - 3, 13 - 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	4, 7, 9, 12		4 - 7 9 - 12	4 - 7 9 - 12	8	16	1 - 3, 13 - 15
^I IH1	Input Current High		370		630		630	μΑ	4, 12				8	16	4, 12
IIH2	Input Current High		290		495		495	μА	7, 9				8	16	7, 9
Інз	Input Current High		220		375		375	μΑ	5, 6, 10, 11				8	16	5, 6, 10, 11
ЧL	Input Current Low	0.5		0.3		0.5		μА		4 - 7 9 - 12			8	16	4 - 7 , 9 - 12
IEE	Power Supply Current	- 86		- 95		- 95		mA					8	16	8

ω

10580 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL							
T _A = 25 °C	- 0.78	- 1.85	- 1.105	-1.475	+ 1.11	+ 0.31	- 5.2	- 3.2							
T _A = 125 °C	- 0.66	- 1.82	- 1.000	-1.400	+ 1.24	+ 0.36	- 5.2	- 3.2							
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	-1.510	+ 1.01	+ 0.28	- 5.2	- 3.2							

Symbol	Parameter			Lin	nits			Units		TEST	VOLTAGE	APPLIE	TO PIN	S BELO	N:
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	°C		Pi		Assignments				
	Functional Parameters:	Subgr	oup 9	Subgr	oup 10	Subgroup 11]	V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.
ţlh	Rise Time	1.1	3.7	1.0	4.3	1.0	4.0	ns	4 - 7, 9 - 12	1 - 3, 13 - 15	16	8	4 - 7, 9 - 12	4 - 7, 9 - 12	2, 3, 15
ΫΤΗL	Fall Time	1.1	3.7	1.0	4.3	1.0	4.0	ns	4 - 7, 9 - 12	1 - 3, 13 - 15	16	8	4 - 7, 9 - 12	4 - 7, 9 - 12	2, 3, 15
^t PHL/ ^t PLH	Propagation Delay Select Input	1.3	5.4	1.0	6.3	1.0	5.8	ns	4 - 7, 9 - 12	1 - 3, 13 - 15	16	8	4 - 7, 9 - 12	4 - 7, 9 - 12	2, 3, 15
^t PHL/ ^t PLH	Propagation Delay Carry Input	1.0	3.3	1.0	3.9	1.0	3.6	ns	4 - 7, 9 - 12	1 - 3, 13 - 15	16	8	4 - 7, 9 - 12	4 - 7, 9 - 12	2, 3, 15

MOTOROLA MILITARY MECL DATA 3-218 MOTOROLA

4-Bit Arithmetic Logic Unit/Function Generator

ELECTRICALLY TESTED PER: MPG 10581

The 10581 is a high speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two 4-bit words. Full internal carry is incorporated for ripple-through operation. Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate (PG) and carry generate (GG) are provided to allow fast operations on very long words using a second order look-ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

When used with the 10579, full-carry look-ahead, as a second order look ahead block, the 10581 provides high speed arithmetic operations on very long words.

- 600 mW typ/pkg (No load)
- t_{pd} (typ): A1 to F = 6.5 ns
 - C_n to $C_{n+4} = 3.1$ ns A1 to PG = 5.0 ns A1 to $G_{G} = 4.5$ ns A1 to $C_{n+4} = 5.0$ ns

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C
V _{CC1}	1	7	2	GND
F0	2	8	3	51 Ω to V _{TT}
F1	з	9	4	51 Ω to VTT
GG	4	10	5	51 Ω to V _{TT}
C _{n + 4}	5	11	6	51 Ω to VTT
F3	6	12	7	51 Ω to VTT
F2	7	13	9	51 Ω to V _{TT}
PG	8	14	10	51 Ω to V _{TT}
B3	9	15	11	50 Ω to VEE
A3	10	16	12	GND
B2	11	17	13	50 Ω to V _{EE}
VEE	12	18	14	VEE
S3	13	19	16	50 Ω to VEE
S0	14	20	17	GND
S2	15	21	18	50 Ω to V _{EE}
A2	16	22	19	GND
S1	17	23	20	GND
A1	18	24	21	50 Ω to V _{EE}
B1	19	1	23	VEE
B0	20	2	24	50 Ω to VEE
A0	21	3	25	GND
Cn	22	4	26	50 Ω to VEE
м	23	5	27	GND
V _{CC2}	24	6	28	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883C: 10581/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: K CERFLAT: J LCC: 3

The letter "M" appears before the slash on LCC.

C)

	Arithm	etic/Lo	gic Fun	ctions
--	--------	---------	---------	--------

				Antannononeogio i anonono	
	Functio	n Select		Logic Function M is High C = D. C.	Arithmetic Operation M is Low Cn is low
S3	S ₂	s ₁	S ₀	F	F
L	L	L	L	F = Ā	F = A
L	L	L	н	$F = \overline{A} + \overline{B}$	$F = A plus (A \bullet \overline{B})$
L	L	н	L	$F = \overline{A} + B$	$F = A plus (A \bullet B)$
L	L	н	н	F = Logical "1"	F = A times 2
L	н	L	L	F = Ā ∙ B	F = (A + B) plus 0
L	н	L	н	F = B	$F = (A + B) plus (A \bullet \overline{B})$
L	н	н	L	F = A⊗B	F = A plus B
L	н	н	н	$F = A + \overline{B}$	F = A plus (A + B)
н	L	L	L	F = Ā ∙ B	$F = (A + \overline{B}) plus 0$
н	L	L	н	F = A ⊕ B	F = A minus B minus 1
Н	L	н	L	F = B	$F = (A + \overline{B}) plus (A \bullet B)$
н	L	н	н	F = A + B	$F = A plus (A + \overline{B})$
н	н	L	L	F = Logical "0"	F = minus 1 (two's complement)
н	н	L	н	$F = A \bullet \overline{B}$	$F = (A \bullet \overline{B}) \text{ minus } 1$
н	н	н	L	F=A∙B	F = (A • B) minus 1
н	н	н	н	F = A	F = minus 1

Logic Diagram

Figure 1. Switching Test Circuit and Waveforms

ω

10581 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	VEE	VEEL							
T _A = 25 °C	-0.78	-1.850	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2							
T _A = 125 °C	-0.63	-1.820	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2							
T _A = -55 °C	-0.88	-1.920	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2							

Symbol	Parameter			Lin	nits			Units		TEST VOLTA	GE APPL	IED TO PI	NS BEL	.ow	
	Functional Parameters:		5 °C roup 1	+ 12 Subgi	5 °C roup 2	– 55 Subgi	5 °C roup 3		Pinouts referenced are for DIL package, check Pin Assignmer V _{CC} = 0 V, Output Load = 100 Ω to – 2.0 V					nents	
	, and the second	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA	VILA	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	9 - 11 16 - 23	13 - 15			12	1, 24	2 - 8
VOL1	Low Output Voltage	- 1.85	- 1.620	- 1.82	- 1.545	- 1.92	- 1.655	v	9 - 11, 14, 16 18, 19, 21 - 23	9, 10, 13, 15 16, 17, 19, 21			12	1, 24	2, 3, 5 - 8
VOLA	Low Output Voltage	- 1.98	- 1.60	- 1.88	- 1.525	- 2.10	- 1.635	v		9 - 11, 13 - 23	14, 15	9 – 11 16 – 23	12	1, 24	2 - 8
VOHA	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	9 - 11, 13 16 - 23	13 - 23	16 - 23	13 - 15 22, 23	12	1, 24	2 - 8
V _{OL2}	Low Output Voltage	- 1.99	- 1.620	- 1.88	- 1.545	- 2.10	- 1.655	v	11, 14, 16, 18 20, 22, 23	9, 10, 13, 15 17, 19, 21			12	1, 24	4
liH1	Input Current High		200		340		340	μA	13, 23				12	1, 24	13, 23
liH2	Input Current High		220		375		375	μA	10, 16, 18 21				12	1, 24	10, 16, 18 21
Iнз	Input Current High		245		415		415	μA	9, 11 19, 20				12	1, 24	9, 11, 19, 20
liH4	Input Current High		265		450		450	μА	14, 15, 17				12	1, 24	14, 15, 17
IIH5	Input Current High		290		495		495	μA	22				12	1, 24	22
١ _{١L}	Input Current Low	0.5		0.3		0.5		μΑ		9 - 11 13 - 23			12	1, 24	9 - 11 , 13 - 23
IEE	Power Supply Current	- 145		- 160		- 160		mA	9 - 11, 16 18 - 21				12	1, 24	12

MOTOROLA MILITARY MECL DATA 3-222

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test		Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	VEE	VEEL							
T _A = 25 °C	-0.78	-1.850	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2							
T _A = 125 °C	-0.63	-1.820	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2							
T _A = -55 °C	-0.88	-1.920	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2							

Symbol	Parameter	Limits						Units	TE	ST VOLTA	GE APPLI	ED TO PI	NS BELOW	
	Functional Parameters:	+ 25 Subgr		+ 12 Subgro		– 55 Subgre					or DIL pac Output Lo	• •	ck Pin Assignment	S
	raianeters.	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P _{S1}	P. U. T.
ttlh/ tthl	Rise & Fall Time	1.0	3.0	0.8	3.1	0.9	3.1	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
^t pd	$\frac{\text{Propagation Delay}}{C_{n} \text{ to } C_{n} + 4}$	1.1	5.0	0.9	5.1	1.0	5.1	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.3	1.0	5.2	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
^t pd	$\frac{\text{Propagation Delay}}{C_{n}} \text{ to } \overline{F}$	2.0	7.0	2.0	7.1	1.9	7.1	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.2	1.0	5.2	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
t _{pd}	Propagation Delay	3.0	10	2.8	10.2	2.9	10.1	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	3.5	1.0	3.6	0.9	3.5	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2-7
^t pd	$\frac{Propagation}{A} \text{ to } \overline{P_{G}}$	2.0	6.5	1.8	6.5	1.8	6.6	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.2	1.0	5.2	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2-7
^t pd	$\frac{\text{Propagation Delay}}{\overline{A} \text{ to } \overline{G_G}}$	2.0	7.0	2.0	7.1	1.9	7.1	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.0	3.0	0.9	3.1	0.9	3.0	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2-7
^t pd	Propagation Delay \overline{A} to $\overline{C_n}_{+4}$	2.0	7.0	1.9	7.5	2.0	7.1	ns	"	"	"	"	"	"

MOTOROLA MILITARY MECL DATA 3-223

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.850	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.820	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.920	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units	nits TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional Parameters:	+ 2! Subgi		+ 12 Subgre		– 55 Subgr			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND					s
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS1	P. U. T.
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.2	1.0	5.2	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
^t pd	Propagation Delay \overline{B} to \overline{F}	3.0	11	2.7	11.2	2.9	11.1	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	3.5	0.9	3.5	1.0	3.5	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2-7
^t pd	$\frac{Propagation}{B} \text{ to } \overline{P_G}$	2.0	7.5	1.6	7.6	1.8	7.6	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.0	1.0	5.0	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
tpd	$\frac{\text{Propagation Delay}}{\overline{B} \text{ to } \overline{G_G}}$	2.0	8.0	2.0	8.1	1.9	8.1	ns	"	"	"	"	"	"
tтlн/ tтнl	Rise & Fall Time	1.0	3.0	0.9	3.0	0.9	3.0	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
^t pd	Propagation Delay \overline{B} to $\overline{C_n} + 4$	2.0	8.0	1.9	8.5	1.9	8.1	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.2	1.0	5.2	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
^t pd	Propagation Delay	3.0	10	2.8	10.2	2.3	10.3	ns	"	"	"	"	"	"
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.2	1.0	5.2	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14, 16, 18, 19, 21 22	2 - 7
^t pd	$\frac{Propagation}{\overline{S}} \text{ to } \overline{F}$	3.0	10	2.6	10.2	2.7	10.2	ns	"	"	"	"	"	"

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIHA	VILA	PS1	PS2	VEE	VEEL				
T _A = 25 °C	-0.78	-1.850	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2				
T _A = 125 °C	-0.63	-1.820	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2				
T _A = -55 °C	-0.88	-1.920	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units	ts TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:	+ 25 Subgr	5 °C roup 9		5 °C oup 10		5 °C oup 11		Pinouts r				e, check Pin Assignme 100 Ω to GND	ents	
		Min	Max	Min	Max	Min	Max	ĺ	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.	
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.1	1.0	5.1	ns	9 - 11, 13 - 23	2 - 7	1, 24	12	9 - 11, 13, 14 16, 18, 19, 21 22	2 - 7	
^t pd	$\frac{\text{Propagation Delay}}{\overline{S} \text{ to } \overline{P_G}}$	2.0	8.0	1.8	8.1	1.9	8.1	ns	"	"	"	"	"	"	
ttlh/ tthl	Rise & Fall Time	1.1	5.0	1.0	5.1	1.0	5.1	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14 16, 18, 19, 21 22	2 - 7	
^t pd	Propagation Delay \overline{S} to \overline{C}_{n+4}	2.0	9.0	1.8	9.1	1.9	9.1	ns	"	"	"	"	"	"	
ttlh/ tthr	Rise & Fall Time	0.8	6.0	0.8	6.2	0.8	6.2	ns	9 - 11, 13 - 23	2-7	1, 24	12	9 - 11, 13, 14 16, 18, 19, 21 22	2 - 7	
^t pd	$\frac{\text{Propagation Delay}}{\text{S to } \overline{\text{G}_{G}}}$	2.0	9.0	1.7	9.1	1.7	9.2	ns	"	"	"	"	"	"	

2-Bit Arithmetic Logic Unit/Function Generator

ELECTRICALLY TESTED PER: MPG 10582

The 10582 is a high speed arithmetic logic unit capable of performing 4 logic operations and 4 arithmetic operations on two 2-bit words. Full internal carry is incorporated for arithmetic operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 and S1) as indicated in the tables of arithmetic/logic functions. Group carry propagate (P_G) and carry generate (G_G) are provided for a second order look ahead carry using the 10579. The internal carry is enabled by applying a low level voltage to the mode control input (M).

The 10582 provides an alternate to the 10581 four-bit ALU for applications not requiring the extended functions of the 10581 or for applications requiring a 16-pin package. The 10582 also differs from the 10581 in that Word A and Word B are treated equally for addition and subtraction (A plus B, A minus B, B minus A).

- 795 mW Max/Pkg (No Load)
- t_{pd} (typ): A₁ to F = 7.5 ns C_n to C_{n + 2} = 2.7 ns
 - A_1 to $P_G = 6.5$ ns A_1 to $G_G = 5.5$ ns
 - A1 to $C_{n+2} = 2.7$ ns
- tr, tf = 2.4 ns typ (20% 80%)

PIN ASSIGNMENTS										
FUNCTION	DIL	FLATS	LCC	BURN-IN						
				(CONDITION C)						
VCC1	1	5	2	GND						
C _{n + 2}	2	6	3	51 Ω to V TT						
GG	3	7	4	51 Ω to V TT						
F0	4	8	5	51 Ω to V TT						
A0	5	9	7	OPEN						
B0	6	10	8	OPEN						
М	7	11	9	GND						
VEE	8	12	10	VEE						
S1	9	13	12	OPEN						
S0	10	14	13	OPEN						
B1	11	15	14	GND						
A1	12	16	15	GND						
Cn	13	1	17	OPEN						
F1	14	2	18	51 Ω to V TT						
FG	15	3	19	51 Ω to V TT						
V _{CC2}	16	4	20	GND						

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

MPO

Military 10582

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10582/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA

3-226

		POSITIVE LOGIC							
Functio	n Select	Logic Function M is High	Arithmetic Operation M is Low						
S1	S0	F	F						
L	L	F = A ⊗ B	F = A plus B plus Carry						
L	н	F = A ⊕ B	$F = \overline{A}$ plus B plus Carry						
н	L	F = A • B	$F = A plus \overline{B} plus Carry$						
н	н	F = A + B	F = A times 2						

ARITHMETIC/LOGIC FUNCTIONS

Figure 1. Switching Test Circuit and Waveform

ယ

10582 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	V _{IL1}	PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	-1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	-1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	-1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Lin	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW					BELOW
	Functional	+ 2	25° C	+ 12	25 ° C	- 5	5°C		Pino	uts reference	ed are for D	IL packag	e, check	Pin Assignments
	Parameters:	Subgi	oup 1	Subgr	oup 2	Subg	roup 3			VCC =	= 0 V, Outpu	t Load = '	100 Ω to -	2.0 V
		Min	Max	Min	Max	Min	Max]	v _{IH}	VIL	VIH1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5, 6, 11 - 13			8	1, 16	2 - 4, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	7, 9, 10			8	1, 16	2 - 4, 14, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	5 - 7, 9 - 13	5 . 7, 9 - 13		8	1, 16	2 - 4, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	5 - 7, 9 - 13		5 - 7, 9 - 13	8	1, 16	2 - 4, 14, 15
Инт	Input Current High		220		375		375	μA	7, 9, 10			8	1, 16	7, 9, 10
liH2	Input Current High		390		660		660	μA	5, 12			8	1, 16	5, 12
^I IНЗ	Input Current High		290		495		495	μА	6, 11			8	1, 16	6, 11
liH4	Input Current High		350		595		595	μА	13			8	1, 16	13
կլ	Input Current Low	0.5		0.3		0.5		μА		5 - 7, 9 - 13		8	1, 16	5 - 7, 9 - 13
IEE	Power Supply Current	- 138		- 152		- 152		mA				8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	-1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.66	- 1.82	- 1.000	-1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	-1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW:					W:
	Functional	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		- 55 °C Subgroup 11		-	Pi			•	kage, check Pin A ad = 100 Ω to GN	-
	Parameters:	Min	Max	Min	Max	Min	Max		VIN		Vcc	VEEL	PS1	P. U. T.
ţтгн	Rise Time	1.5	4.5	1.6	5.3	1.5	4.9	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
t _{THL}	Fall Time	1.5	4.5	1.6	5.3	1.5	4.9	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	Propagation Delay C_n to C_{n+2} or F	1.5	5.6	1.6	6.6	1.5	6.1	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	Propagation Delay A0 or B0 to F	2.3	10.0	2.4	11.7	2.3	10.8	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	Propagation Delay A1 or B1 to F ₁	2.3	10.0	2.4	11.7	2.3	10.8	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	Propagation Delay A0, B0, A1 to C_{n+2}	2.3	10.0	2.4	11.7	2.3	10.8	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	Propagation Delay B1 to Cn + 2	2.8	12.0	2.9	14.0	2.8	13.0	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	$\begin{array}{c} \text{Propagation Delay} \\ \text{A or B to } P_G \text{ or } G_G \end{array}$	2.3	10.0	2.4	11.7	2.3	10.8	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15
^t pd	Propagation Delay M or S to F	2.3	10.0	2.4	11.7	2.3	10.8	ns	5 - 7, 9 - 13	2 - 4, 14, 15	1, 16	8	5 - 7, 9 - 13	2 - 4, 14, 15

Hex "D" Master-Slave Flip-Flop with Reset

ELECTRICALLY TESTED PER: 5962-8779301

The 10586 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device. A common Reset is included in this circuit. Reset only functions when clock is low.

- 630 mW Max/Pkg (No Load)
- f_{Tog} = 150 MHz typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	•••			
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
Reset	1	5	2	OPEN
Q ₀	2	6	3	51 Ω to V _{TT}
Q1	3	7	4	51 Ω to V _{TT}
Q ₂	4	8	5	51 Ω to V _{TT}
D0	5	9	7	GND
D1	6	10	8	GND
D ₂	7	11	9	GND
VEE	8	12	10	VEE
Clock	9	13	12	CP1
D ₃	10	14	13	GND
D ₄	11	15	14	GND
D5	12	16	15	GND
Q ₃	13	1	17	51 Ω to VTT
Q4	14	2	18	51 Ω to V _{TT}
Q5	15	3	19	51 Ω to V _{TT}
VCC	16	4	20	GND

PIN ASSIGNMENTS

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

TRUTH TABLE

R	с	D	Q _{n + 1}
L	L	Ø	Qn
L	н	L	L
L	н	н	н
н	L	Ø	L

Ø = Don't Care

* A clock H is a clock transition from a Low to a High state

Military 10586

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8779301 3) 883: 10586/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

NOTES

- 1. Unused outputs connected to 100 Ω resistor to ground
- 2. 2:1 divider may be used
- 3. L1 = L2: matched for equal time delay

a) PW ≥ 40 ns (50% to 50%) b) f = 1.0 MHz.

ယ

10586 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)						
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2

Symbol	Parameter			Lin	nits			Units		TEST VOL	TAGE APP	PLIED TO P	PINS BE	LOW	
	Functional		5 °C		5 °C		5 °C		Pinout	ts referenced		• • •			gnments
	Parameters:	Subg	roup 1	Subgr	oup 2	Subg	roup 3			vCC = 0	v, Output	Load = 100	J 12 to -	2.0 V	
		Min	Max	Min	Max	Min	Max		VIH	٧IL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	V	5 - 7, 9 - 12	5 - 7, 9 - 12			8	16	2 - 4, 13 - 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	V	5 - 7, 9 - 12	5 - 7, 9 - 12			8	16	2 - 4, 13 - 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	5 - 7, 9 - 12	1, 5 - 7, 10 - 12	5 - 7, 10 - 12	1	8	16	2 - 4, 13 - 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	5 - 7, 10 - 12	1, 5 - 7, 9 - 12	1	5 - 7, 10 - 12	8	16	2 - 4, 13 - 15
IEE	Power Supply Drain Current	- 110		- 121		- 121		mA					8	16	8
liH1	Input Current High		220		375		375	μA	5 - 7, 10 - 12				8	16	5 - 7, 10 - 12
¹ IH2	Input Current High		310		525		525	μA	9				8	16	9
Інз	Input Current High		575		975		975	μA	1				. 8	16	1
ΊL	Input Current Low	0.5		0.3		0.5		μΑ		1, 5 - 7, 9 - 12			8	16	1, 5 - 7, 9 - 12

MOTOROLA MILITARY MECL DATA 3-234

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)							
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL	
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2	
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2	
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2	

Symbol	Parameter	1		Lin	nits			Units	its TEST VOLTAGE APPLIED TO PINS BELOW					
		+ 2	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments					signments
	Functional Parameters:	Subg	roup 9	Subgr	Subgroup 10		oup 11		V _{CC} = 2.0 V, Output Load = 100 Ω to GND					
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.
ttlh	Rise Time	1.1	4.0	1.0	4.7	1.0	4.3	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8		2 - 4, 13 - 15
^t THL	Fall Time	1.1	4.0	1.0	4.7	1.0	4.3	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8		2 - 4, 13 - 15
^t PLH	Propagation Delay Clk or Reset to Out	1.6	4.5	1.6	5.3	1.6	4.9	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12	2 - 4, 13 - 15
^t PLH	Propagation Delay Clk or Reset to Out	1.6	4.5	1.6	5.3	1.6	4.9	ns	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8	5 - 7, 10 - 12	2 - 4, 13 - 15
^t SET	Setup Time	2.5		2.5		2.5		ns	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8		2 - 4, 13 - 15
^t HOLD	Hold Time	1.5		1.5		1.5		ns	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8		2 - 4, 13 - 15
fToggle	Toggle Frequency	125		125		125		MHz	5 - 7, 9 - 12	2 - 4, 13 - 15	16	8		2 - 4, 13 - 15

Quad MST to MECL 10K Translator

ELECTRICALLY TESTED PER: MPG 10590

The 10590 is a quad translator for interfacing from IBM MST-type logic signals to standard MECL 10K logic levels. This circuit features differential inputs for high noise environments or may be used with single ended lines by tieing one of the inputs to ground.

Since the 10590 is designed to accept signals centered around ground, it is a useful interface element for many communication systems. When pin 9 is connected to V_{CC} the circuit becomes a line receiver for MECL signals. The outputs go to a low level whenever the inputs are left floating.

- · 300 mW Max/Pkg (No Load)
- tpd = 2.5 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PI	N ASSIGNMI	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω V _{TT}
BOUT	3	7	4	51 ΩV _{TT}
AIN	4	8	5	51 Ω V _{TT}
A _{IN}	5	9	7	GND
BIN	6	10	8	GND
Bin	7	11	9	51 Ω to V _{TT}
VEE	8	12	10	VEE
V _{SS} or V _{CC}	9	13	12	GND
CIN	10	14	13	51 Ω to V _{TT}
CIN	11	15	14	GND
D _{IN}	12	16	16	GND
DIN	13	1	17	51 Ω to V_{TT}
COUT	14	2	18	51 Ω to V_{TT}
DOUT	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10590

1) JAN: N/A 2) SMD: N/A 3) 883: 10590/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10590

Figure 1. Switching Test Circuit and Waveforms

Test Temperature		Test Voltage Values (Volts)											
Temperature	VIH	VIL	V _{IH2}	VIL2	VSS	VIHM	VILM	VIHH	VILH	VILL	VIHL	VEE	VEEL
T _A = 25 °C	- 0.780	- 1.850	- 1.105	- 1.475	+1.25	+0.44	-0.49	+0.186	-0.85	-2.53	-1.486	- 5.2	- 3.2
T _A = 125 °C	- 0.630	- 1.820	- 1.000	- 1.400	+1.25	+0.62	-0.43	+0.186	-0.85	-2.53	-1.486	- 5.2	- 3.2
T _A = - 55 °C	- 0.880	- 1.920	- 1.255	- 1.510	+1.25	+0.344	-0.538	+0.186	-0.85	-2.53	-1.486	- 5.2	- 3.2

Symbol	Parameter			Liı	nits			Units			TEST VOLTAGE	APPLIED		BELO	W		
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	5 °C			Pinoute	s referenced are fo	•			-	ments	3
	Parameters:	Subgr	oup 1	Subg	roup 2	Subg	roup 3				V _{CC} = 0 V, Oı	utput Load	= 100 (2 to - 2.0	o v		
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHH/VIHL/VIHM	VILH/VIL	LVILM	VEE	Vcc	Vss	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5, 6, 11, 12	4, 7, 10, 13	5, 6, 11, 12	4, 7, 10), 13	8	1, 9, 16	9	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4, 7, 10, 13	5, 6, 11, 12	4, 7, 10, 13	5, 6, 11	, 12	8	1, 9, 16	9	2, 3, 14, 15
[VIH	VIL	VIH1	V _{IL1}	VSS	VEE	GNE		P. U. T.
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	-1.635	v			4, 7, 10, 13	5, 6, 11, 12		8	1, 9, 16	2,	3, 14, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	-0.88	v			5, 6, 11, 12	4, 7, 10, 13		8	1, 9, 16	2,	3, 14, 15
liH1	Input Current High		45		80		80	μA	4 - 7 10 - 13	4 - 7 10 - 13			9	8	1, 16		4 - 7 10 - 13
IСВО	Reverse Leak- age Current	- 1.0		- 1.0		- 1.5		μA					9	4 - 8 10 - 1			4 - 7 10 - 13
IEE	Power Supply Current	- 52		- 57		- 57		mA	4, 6 10, 12	5, 7 11, 1	13		9		1, 16	;	8
ICC	Power Supply Drain Current		27		27		27	mA	4, 6 10, 12	5, 7 11, 1	13		9		1, 16	5	9

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)							
Temperature	V _{SS1}	VRB	PS1	P _{S2}	PS1	PS2	VEE	VEEL	
T _A = 25 °C	+ 3.25	+ 0.71	+ 2.40	+ 1.60	+ 1.11	+ 0.31	- 5.2	- 3.2	
T _A = 125 °C	+ 3.25	+ 0.71	+ 2.64	+ 1.85	+ 1.24	+ 0.36	- 5.2	- 3.2	
T _A = -55 °C	+ 3.25	+ 0.71	+ 2.30	+ 1.44	+ 1.01	+ 0.28	- 5.2	- 3.2	

Symbol	Parameter			Limits Units TEST VOLTAGE APPLIED TO PINS BEL							ELOW				
		+ 25	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pi		Pin Assig	in Assignments			
	Functional Parameters:	Subgi	roup 9	Subgr	oup 10	Subgr	oup 11	1	V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1	VIN1	VIN2	VOUT	Vcc	VEEL	V _{SS1}	P. U. T.
^t TLH	Rise Time	1.5	4.3	1.1	5.0	1.1	4.6	ns	5 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 14, 15	1, 4 - 7, 9 - 13	8	7, 9	2, 3, 14, 15
^t THL	Fall Time	1.5	4.3	1.1	5.0	1.1	4.6	ns	5 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 14, 15	1, 4 - 7, 9 - 13	8	7, 9	2, 3, 14, 15
^t PHL	Propagation Delay Input to Output	1.0	3.7	1.0	4.3	1.0	4.0	ns	5 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 14, 15	1, 4 - 7, 9 - 13	8	7, 9	2, 3, 14, 15
^t PLH	Propagation Delay Input to Output	1.0	3.7	1.0	4.3	1.0	4.0	ns	5 - 7, 10 - 13	4 - 7, 10 - 13	2, 3, 14, 15	1, 4 - 7, 9 - 13	8	7, 9	2, 3, 14, 15

Hex MECL 10K to MST Translator

ELECTRICALLY TESTED PER: MPG 10591

The 10591 is a hex MECL to IBM MST type logic translator. A common enable (active low) is provided for gating. Open emitter outputs are provided for gating. Open emitter outputs are provided to permit direct transmission line driving. The 10591 is useful for interfacing to both MST-II and MST-IV systems.

- 300 mW Max/Pkg (No Load)
- t_{pd} = 2.5 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	Vcc
AOUT	2	6	3	51 Ω to V _{TT}
BOUT	3	7	4	51 Ω to V _{TT}
COUT	4	8	5	51 Ω to V _{TT}
C _{IN}	5	9	7	OPEN
BIN	6	10	8	OPEN
AIN	7	11	9	OPEN
VEE	8	12	10	VEE
Common	9	13	12	OPEN
D _{IN}	10	14	13	OPEN
EIN	11	15	14	OPEN
FIN	12	16	15	OPEN
FOUT	13	1	17	51 Ω to V _{TT}
EOUT	14	2	18	51 Ω to V_{TT}
DOUT	15	3	19	51 Ω to VTT
GND	16	4	20	GND

BURN - IN CONDITIONS:

- $V_{CC} = 1.25 \text{ VMIN}/1.50 \text{ V MAX}.$ $V_{TT} = -2.0 \text{ V MAX}/-2.2 \text{ V MIN}$
- VEE = 5.7 V MAX/ 5.2 V MIN

TRUTH TABLE

Data	Common	Output
L	L	L
L	н	L
н	L	н
н	н	L

Military 10591

AVAILABLE AS
1) JAN: N/A 2) SMD: N/A 3) 883: 10591/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10591

Figure 1. Switching Test Circuit and Waveforms

MOTOROLA MILITARY MECL DATA 3-241

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

Test		Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE						
T _A = 25 °C	- 0.780	- 1.85	- 1.105	- 1.475	- 0.89	- 1.69	- 5.2						
T _A = 125 °C	- 0.630	- 1.82	- 1.000	- 1.400	- 0.76	- 1.64	- 5.2						
T _A = - 55 °C	- 0.880	- 1.92	- 1.255	- 1.510	- 0.99	- 1.72	- 5.2						

Symbol	Parameter			Lir	nits			Units		TE	ST VOLTAG	E APPLIED	PLIED TO PINS BELOW					
	Frankland	+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Р	inouts refer		-			-	ments		
	Functional Parameters:	Subgr	roup 1	Subgr	oup 2	Subg	roup 3			VC	_C = 1.25 V, C	utput Load	= 845 9	2 to - 5.	2 V			
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	ViH1	VIL1	VEE	Vcc	GND	P. U. T.		
Vон	High Output Voltage	+ 0.255	+ 0.44	+ 0.375	+ 0.62	+ 0.111	+ 0.344	v	5 - 7, 10 - 12				8	1	16	2 - 4, 13 - 15		
VOL	Low Output Voltage	- 0.49	- 0.29	- 0.43	- 0.23	- 0.538	- 0.338	v		9			8	1	16	2 - 4, 13 - 15		
VOH1	High Output Voltage	- 0.49	- 0.27	- 0.43	- 0.21	- 0.538	- 0.318	v	5 - 7, 10 - 12	9		5 - 7, 10 - 12	8	1	16	2 - 4, 13 - 15		
VOL1	Low Output Voltage	+ 0.235	+ 0.44	+ 0.355	+ 0.62	+ 0.091	+ 0.344	v	5 - 7, 10 - 12	9	5 - 7, 10 - 12	9	8	1	16	2 - 4, 13 - 15		
Чнт	Input Current High		245		415		415	μA	5 - 7, 10 - 12				8	1	16	2 - 4, 13 - 15		
IIH2	Input Current High		265		450		450	μΑ	9				8	1	16	9		
١Ľ	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 10 - 12			8	1	16	2 - 4, 13 - 15		
IEE	Power Supply Current	- 35	- 10	- 39	- 10	- 39	- 10	mA	9				8	1	16	8		
Icc	Power Supply Drain Current		23		23		23	μA	9				8	1	16	1		

MOTOROLA MILITARY MECL DATA 3-242

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

Test			Test Volta	ige Values	/alues (Volts)										
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE								
T _A = 25 °C	- 0.780	- 1.85	- 1.105	- 1.475	- 0.89	- 1.69	- 5.2								
T _A = 125 °C	- 0.630	- 1.82	- 1.000	- 1.400	- 0.76	- 1.64	- 5.2								
T _A = - 55 °C	- 0.880	- 1.92	- 1.255	- 1.510	- 0.99	- 1.72	- 5.2								

Symbol	Parameter			Lin	nits			Units		TES	ST VOLT	AGE AP	PLIED TO	PINS B	ELOW	
		+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pino	uts refere	enced ar	e for Dil	_ package	e, check	Pin Ass	ignments
	Functional Parameters:	Subgi	roup 9	Subgr	oup 10	Subgr	oup 11	1		۷c	C = 1.25	5 V, Outp	out Load :	= 91 Ω to	GND	
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEE	PS1	PS2	GND	P. U. T.
^t TLH	Rise Time	1.1	4.3	1.0	5.0	1.0	4.6	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	1	8	5 - 7, 10 - 12	7, 9	16	2, 3, 14, 15
^t THL	Fall Time	1.1	4.3	1.0	5.0	1.0	4.6	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	1	8	5 - 7, 10 - 12	7, 9	16	2, 3, 14, 15
^t PLH ^t PHL	Propagation Delay Data Input to Output	1.0	3.4	1.0	4.0	1.0	3.7	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	1	8	5 - 7, 10 - 12	7, 9	16	2, 3, 14, 15
tPLH tPHL	Propagation Delay Enable Input to Output	1.0	4.5	1.0	5.3	1.0	4.9	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	1	8	5 - 7, 10 - 12	7, 9	16	2, 3, 14, 15

Quad Bus Driver

ELECTRICALLY TESTED PER: MPG 10592

The 10592 contains four line drivers with complementary outputs. Each driver has a Data (D) input and shares an Enable (\overline{E}) input with another driver. The two driver outputs are the uncommitted collectors of a pair of NPN transistors operating as a current switch. Each driver accepts 10K MECL input signals and provides a nominal signal swing of 800 mV across a 50 Ω load at each output collector.

Outputs can drive higher values of load resistance, provided that the combination of I_R drop and load return voltage V_{LR} does not cause an output collector to go more negative than -2.4 V with respect to V_{CC}. To avoid output transistor breakdown, the load return voltage should not be more positive than +5.5 V with respect to V_{CC}.

When the \overline{E} input is high, both output transistors of a driver are nonconducting. When not used, the \overline{E} inputs, as well as the D inputs, may be left open.

- Open Collector Outputs Drive Terminated Lines or Transformers
- 50 kΩ Input Pull-down Resistors on All Inputs (Unused Inputs May be left Open)
- 805 mW typ/pkg (No Load)
- Propagation Delay = 3.5 ns typ (\overline{E} -Output)
 - = 3.0 ns typ (D-Output)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
Z ₂	1	5	2	GND
$\overline{Z_2}$	2	6	3	GND
z ₁	3	7	4	GND
Z ₁	4	8	5	GND
D ₁	5	9	7	OPEN
D ₂	6	10	8	OPEN
Ē1	7	11	9	OPEN
VEE	8	12	10	VEE
E ₂	9	13	12	OPEN
D ₃	10	14	13	OPEN
D ₄	11	15	14	OPEN
$\overline{Z_4}$	12	16	15	GND
Z4	13	1	17	GND
$\overline{Z_3}$	14	2	18	GND
Z ₃	15	3	19	GND
Vcc	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10592

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 10592/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10592

MOTOROLA MILITARY MECL DATA 3-245

Test						Test Vo	ltage Values	(Volts)				
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE (MIN)	VEE (MAX)	VEE (Nom)	Bvo	VLK	VOLS
T _A = 25 °C	- 0.780	- 1.85	- 1.105	- 1.475	- 0.89	- 1.69	- 5.72	- 4.68	- 5.2	+ 5.095	- 1.850	- 2.4
T _A = 125 °C	- 0.630	- 1.82	- 1.000	- 1.400	- 0.78	- 1.655	- 5.72	- 4.68	- 5.2	+ 4.960	- 1.825	- 2.4
T _A = - 55 °C	- 0.880	- 1.92	- 1.255	- 1.510	- 0.97	- 1.715	- 5.72	- 4.68	- 5.2	+ 4.960	- 1.89	- 2.4

Symbol	Parameter			Liı	nits			Units			TEST VOI	TAGE AP	PLIED TO	PINS BE	LOW		
	Functional	+ 28 Subgi	5 °C		5 °C roup 2		i °C roup 3		1	inouts ref			•	-		-	1
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIH1	VIL1	VLR	VOLS	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.10	+ 0.10	- 0.10	+ 0.10	- 0.15	+ 0.05	v	5, 6, 10, 11	5, 6, 10, 11					8	16	1 - 4, 12 - 15
VOL	Low Output Voltage	- 0.90	- 0.70	- 0.95	- 0.70	- 0.85	- 0.60	v	5, 6, 10, 11	5, 6, 10, 11					8	16	1 - 4, 12 - 15
VOLC	Low Output Voltage	- 0.90	- 0.70	- 0.95	- 0.70	- 0.85	- 0.60	v			5, 6, 10, 11	5, 6, 10, 11			8	16	1 - 4, 12 - 15
Vонс	High Output Voltage	- 0.10	+ 0.10	- 0.10	- 0.10	- 0.15	+ 0.05	v			5, 6, 10, 11	5, 6, 10, 11			8	16	1 - 4, 12 - 15
liH1	Input Current High		220		350		350	μA	5 - 7, 9 - 11						8	16	5 - 7, 9 - 11
١	Input Current Low	0.5		0.3		0.5		μA		5 - 7, 9 - 11					8	16	5 - 7, 9 - 11
lov	Short Circuit Current (No Output Voltage)		104.4		102.2		102.2	mA	7, 9				1 - 4, 12 - 15		8	16	1 - 4, 12 - 15
los	Output Short Circuit Current	34.1		34.7		- 34.7		mA	-	5, 6, 10, 11				1 - 4, 12 - 15	8	16	1 - 4, 12 - 15
IQOFF	Open Collector Input Current		500		500		500	μA		2, 7, 9, 14, 15					8	16	2, 7, 9, 14, 15
IEE	Power Supply Drain Current	- 140		- 154		- 154		mA							8	16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to Gnd.

Test						Test Vo	Itage Values	(Volts)				
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE (MIN)	VEE (MAX)	VEE (Nom)	Bvo	VLK	VOLS
T _A = 25 °C	- 0.780	- 1.85	- 1.105	- 1.475	- 0.89	- 1.69	- 5.72	- 4.68	- 5.2	+ 5.095	- 1.850	- 2.4
T _A = 125 °C	- 0.630	- 1.82	- 1.000	- 1.400	- 0.78	- 1.655	- 5.72	- 4.68	- 5.2	+ 4.960	- 1.825	- 2.4
T _A = - 55 °C	- 0.880	- 1.92	- 1.255	- 1.510	- 0.97	- 1.715	- 5.72	- 4.68	- 5.2	+ 4.960	- 1.89	- 2.4

Symbol	Parameter	Limits Units TEST VOLTAGE APPLIED TO PINS BELOW									ow			
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pinouts					n Assignments
	Parameters:	Subgi	oup 9	Subgr	oup 10	Subgr	oup 11]		VCC ≃	GND, Out	put Load =	= 50 Ω to GI	ND
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.
^t TLH	Rise Time	0.5	3.3	0.5	4.7	0.5	3.8	ns	6, 9, 10, 11	1 - 4, 12 - 15	16	8	10, 11	1 - 4, 12 - 15
tTHL	Fall Time	0.5	3.3	0.5	4.7	0.5	3.8	ns	6, 9, 10, 11	1 - 4, 12 - 15	16	8	10, 11	1 - 4, 12 - 15
^t PLH ^t PHL	Propagation Delay Data	1.5	4.5	1.5	5.6	1.5	5.3	ns	6, 9, 10, 11	1 - 4, 12 - 15	16	8	10, 11	1 - 4, 12 - 15
^t PLH ^t PHL	Propagation Delay Enable	2.0	6.0	1.0	9.0	1.0	6.0	ns	6, 9, 10, 11	1 - 4, 12 - 15	16	8	10, 11	1 - 4, 12 - 15

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to Gnd.

Hex Inverter/Buffer

ELECTRICALLY TESTED PER: MPG 10595

The 10595 is a Hex Buffer Inverter which is built using EXCLUSIVE NOR gates. There is a common input to these gates which when placed low or left open allows them to act as inverters.

With the common input connected to a high logic level the 10595 is a hex buffer, useful for high fanout clock driving and reducing stub lengths on long bus lines.

- 285 mW Max/Pkg (No Load)
- t_{pd} = 4.0 ns typ
- t_{pd} = 4.0 ns typ
- t_r, t_f = 2.0 ns typ (20% 80%)

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
VCC1	1	5	2	GND
Q ₁	2	6	3	51 Ω to V_{TT}
Q ₂	3	7	4	51 Ω to V _{TT}
Q ₃	4	8	5	51 Ω to VTT
B ₁	5	9	7	OPEN
B ₂	6	10	8	OPEN
B ₃	7	11	9	OPEN
VEE	8	12	10	VEE
Α	9	13	12	OPEN
B ₄	10	14	13	OPEN
В ₅	11	15	14	OPEN
В ₆	12	16	15	OPEN
Q ₄	13	1	17	51 Ω to V _{TT}
Q5	14	2	18	51 Ω to V_{TT}
Q ₆	15	3	19	51 Ω to V _{TT}
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX/ - 2.2 V MIN$ $V_{EE} = -5.7 V MAX/ - 5.2 V MIN$

TRUTH TABLE

Inp	uts	Output
Α	в	Q
L	L	н
L	н	L
н	L	L
н	н	н

Military 10595

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

Figure 1. Switching Test Circuit and Waveforms

MOTOROLA MILITARY MECL DATA 3-249

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to -2.0 volts.

Test			Test \	oltage Va	alues (Vo	its)		
Temperature	VIH	VIIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = -55 °C	- 0.88	- 1.92	- 1.170	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter		Limits					Units		TEST	VOLTAGE A	PPLIED TO F	PINS BEI	OW	
	-	+ 25	5 °C	+ 12	5 °C	- 5	5 °C	}	Pinouts referenced are for DIL package, check Pin Assignments						
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3	up 3		Vcc	= 0 V, Outpu	t Load = 100	Ω to - 2 .	0 V	
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIH1	VIH2	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	9				8	1, 16	2 - 4, 13 - 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v					8	1, 16	2 - 4, 13 - 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	-1.635	v			5 - 7 10 - 12		8	1, 16	2 - 4, 13 - 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	-0.88	v				5 - 7 10 - 12	8	1, 16	2 - 4, 13 - 15
liH1	Input Current High		265		450		450	μΑ	5 - 7 10 - 12				8	1, 16	5 - 7 10 - 12
IIH2	Input Current High		290		495		495	μΑ	9				8	1, 16	9
١	Input Current Low	0.5		0.3		0.5		μA		5 - 7 10 - 12			8	1, 16	2 - 4, 13 - 15
IEE	Power Supply Drain Current	- 49		- 54		- 54		mA					8	1, 16	8

MOTOROLA MILITARY MECL DATA 3-250

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIILL	ViH1	VIL1	PS1	P _{S2}	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = -55 °C	- 0.88	- 1.92	- 1.170	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

ω

Symbol	Parameter		Limits					Units	TEST VOLTAGE APPLIED TO PINS BELOW						
		+ 25	5 °C	+ 12	5 °C	- 5	5 °C		Pinouts referenced are for DIL package, check Pin Assignments						
	Functional Parameters:	Subgroup 9		Subgroup 10		Subgroup 11		1	V_{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	PS1	P. U. T.	
ŧτιμ	Rise Time	1.1	4.5	1.0	5.3	1.0	4.9	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	1, 16	8		2 - 4, 13 - 15	
ťτης	Fall Time	1.1	4.5	1.0	5.3	1.0	4.9	ns	5 - 7, 10 - 12	2 - 4, 13 - 15	1, 16	8		2 - 4, 13 - 15	
	Propagation Delay B Inputs	1.1	4.0	1.0	4.7	1.0	4.3	ns	5 - 7, 11 - 13	2 - 4, 13 - 15	1, 16	8	9	2 - 4, 13 - 15	
^t PLH ^t PHL	Propagation Delay A Inputs	1.1	5.0	1.0	5.9	1.0	5.4	ns	5 - 7, 11 - 13	2 - 4, 13 - 15	1, 16	8	9	2 - 4, 13 - 15	

Hex "AND" Gate

ELECTRICALLY TESTED PER: MIL-M-38510/06202

The 10597 provides a high speed hex AND function with strobe capability.

- 285 mW Max/Pkg (No Load)
- t_{pd} = 2.8 ns typ (B Q)
- t_{pd} = 3.8 ns typ (A Q)

3

• tr, tr = 2.0 ns typ (20% - 80%)

PIN ASSIGNMENTS									
FUNCTION	DIL	FLATS	LCC	BURN-IN					
				(CONDITION C)					
V _{CC1}	1	5	2	GND					
AOUT	2	6	3	51 Ω to VTT					
BOUT	3	7	4	51 Ω to VTT					
COUT	4	8	5	51 Ω to VTT					
AIN	5	9	7	GND					
BIN	6	10	8	GND					
CIN	7	11	9	GND					
VEE	8	12	10	VEE					
Common	9	13	12	GND					
DIN	10	14	13	GND					
EIN	11	15	14	GND					
FIN	12	16	15	GND					
DOUT	13	1	17	51 Ω to V _{TT}					
EOUT	14	2	18	51 Ω to V _{TT}					
FOUT	15	3	19	51 Ω to V _{TT}					
V _{CC2}	16	4	20	GND					

BURN - IN CONDITIONS:

VTT = -2.0 V MAX/-2.2 V MIN VEE = -5.7 V MAX/-5.2 V MIN

TRUTH TABLE

uts	Output
в	Q
L	L
н	L
L	L
н	н
	B L H L

Military 10597

AVAILABLE AS:

1) JAN: JM 38510/06202 2) SMD: N/A 3) 883C: 10597/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10597

NOTES

- 1. Perform test in accordance with test table; each output is tested separately.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.
- Wire length should be \ge 0.250 (6.35 mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. (*) applies to gate 4 only.
- 5. t_p = 40 ns ± 1.0 ns.
- Ż_{OUT} ≈ 50 Ω.
- 7. t_{THL} = t_{TLH} = 2.0 ns (200% 80%) ± 0.2 ns.
- 8. $PRR = 1.0 \text{ MHz} \pm 0.05 \text{ MHz}.$
- 9. Scope input = 50 Ω to ground.
- 10. CL = 5.0 pF (including test jig).
- 11. $R_{L}/2 = 50 \Omega \pm 5.0\%$

ω

10597 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	VITH	VITL	VIH2	V _{EE1}	V _{EE2}				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	- 5.2	- 3.2				
T _A = -55 °C	- 0.88	- 1.82	- 1.170	- 1.510	+ 1.01	- 5.2	- 3.2				

Symbol	Parameter		Limits							TEST	VOLTAGE A	PPLIED TO	PINS BE	LOW	
	Functional	+ 25	5 °C	+ 12	5 °C	- 55	5 °C		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V						
	Parameters:	Subgr	oup 1	Subg	roup 2	Subg	roup 3			VCC	= 0 V, Outpu	t Load = 10	0 Ω to - 2	.0 V	
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	VITH	VITL	VEE1	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7 9 - 12				8	1, 16	2 - 4, 13 - 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v					8	1, 16	2 - 4, 13 - 15
V _{OL1}	Low Output Voltage		- 1.60		- 1.525		-1.635	v	5 - 7 9 - 12			5 - 7 9 - 12	8	1, 16	2 - 4, 13 - 15
V _{OH1}	High Output Voltage	- 0.95		- 0.845		- 1.10		v	5 - 7 9 - 12		5 - 7 9 - 12		8	1, 16	2 - 4, 13 - 15
¹ інт	Input Current High		265		450		450	μA	5 - 7 10 - 12				8	1, 16	7 - 9, 10 - 12
IIH2	Input Current High		290		495		495	μA	9				8	1, 16	9
Ι _{ΙL}	Input Current Low	0.5		0.3		0.5		μΑ		5 - 7 9 - 12			8	1, 16	7 - 9, 10 - 12
IEE	Power Supply Drain Current	- 49		- 54		- 54		mA					8	1, 16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)										
Temperature	VIH1	VIL1	VITH	VITL	V _{IH2}	V _{EE1}	V _{EE2}				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	- 5.2	- 3.2				
T _A = -55 °C	- 0.88	- 1.82	- 1.170	- 1.510	+ 1.01	- 5.2	- 3.2				

Symbol	Parameter		Limits					Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25		+ 12		- 55			Pinouts			package, ch t Load = 100		ssignments	
	Parameters:	Subgr Min	Max	Subgro Min	Max	Subgr	Max		VIN	VOUT	VIH2	Vcc	VEE2	P. U. T.	
t _{TLH}	Rise Time	1.1	4.5	1.0	5.3	1.0	4.9	ns	5 - 7, 9 - 12	2 - 4, 13 - 15		1, 16	8	2 - 4, 13 - 15	
^t THL	Fall Time	1.1	4.5	1.0	5.3	1.0	4.9	ns	5 - 7, 9 - 12	2 - 4, 13 - 15		1, 16	8	2 - 4, 13 - 15	
^t PLH1	Propagation Delay	1.1	4.0	1.0	4.7	1.0	4.3	ns	5 - 7, 9 - 12	2 - 4, 13 - 15		1, 16	8	2 - 4, 13 - 15	
^t PLH2	Propagation Delay	1.1	5.0	1.0	5.9	1.0	5.4	ns		2 - 4, 13 - 15	5 - 7, 9 - 12	1, 16	8	2 - 4, 13 - 15	
^t PHL1	Propagation Delay	1.1	4.0	1.0	4.7	1.0	4.3	ns	5 - 7, 9 - 12	2 - 4, 13 - 15		1, 16	8	2 - 4, 13 - 15	
^t PHL2	Propagation Delay	1.1	5.0	1.0	5.9	1.0	5.4	ns		2 - 4, 13 - 15	5 - 7, 9 - 12	1, 16	8	2 - 4, 13 - 15	

Monostable Multivibrator

ELECTRICALLY TESTED PER: 5962-8777301

The 10598 is a retriggerable monostable multivibrator. Two enable inputs permit triggering on any combination of positive or negative edges as shown in the accompanying table. The trigger input is buffered by Schmitt triggers making it insensitive to input rise and fall times.

The pulse width is controlled by external capacitor and resistor. The resistor sets a current which is the linear discharge rate of the capacitor. Also, the pulse width can be controlled by the external current source or voltage

For high-speed response with minimum delay, a hi-speed input is also provided. This input bypasses the internal Schmitt triggers and the output responds within 2.0 nanoseconds typically. Output logic and threshold levels are standard MECL 10.000. Test conditions are per table 2. Each "Precondition" referred to in table 2 is per the sequence of table 1.

580 mW Max/Pkg (No Load)

- t_{pd} = 4.0 ns typ Trigger Input to Q
 - = 2.0 ns typ Hi-Speed Input to Q

Min Timing Pulse Width	PWQmin	10 ns typ ¹
Max Timing Pulse Width	PWQmax	>10 ns typ ²
Min Trigger Pulse Width	PWT	2.0 ns typ
Min Hi-Speed	PWHS	3.0 ns typ
Trigger Pulse Width Enable Setup Time Enable Hold Time	^t set ^t hold	1.0 ns typ 1.0 ns typ

¹ C_{Ext} = 0 (Pin 4 open), R_{Ext} = 0 (Pin 6 to V_{EE}) $^{2}C_{Ext} = 10 \,\mu\text{F}, R_{Ext} = 2.7 \,k\Omega$

PIN ASSIGNMENTS										
FUNCTION	DIL	FLATS	LCC	BURN-IN						
				(CONDITION C)						
V _{CC1}	1	5	2	GND						
ā	2	6	3	51 Ω to V _{TT}						
Q	3	7	4	51 Ω to V _{TT}						
CEXT	4	8	5	OPEN						
EPos.	5	9	7	OPEN						
REXT	6	10	8	VEE						
Ext. Pulse Width Control	7	11	9	OPEN						
VEE	8	12	10	VEE						
N.C.	9	13	12	OPEN						
ENeg.	10	14	13	OPEN						
N.C.	11	15	14	OPEN						
N.C.	12	16	15	OPEN						
Trigger Input	13	1	17	OPEN						
N.C.	14	2	18	OPEN						
Hi-Speed Input	15	3	19	OPEN						
V _{CC2}	16	4	20	GND						
BURN - IN CONDITIONS: VTT = - 2.2 V MIN/ - 2.0 V MAX										

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10598

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8777301 3) 883: 10598/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

TRUTH TABLE

Inp	uts	Output
Epos	Eneg	
L	L	Triggers on both positive and negative input slopes
L	н	Triggers on the positive input slope
н	L	Triggers on the negative input slope
н	н	Trigger disabled

Block Diagram

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be \geq 0.250 inch (6.35) mm) from TP_{IN} to input pin and TP_{OUT} to output pin.
- 2. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 3. $t_{THL} = t_{TLH} = 2.0 \pm ns (20\% 80\%).$

4. 50 Ω termination to ground located in each scope probe.

Figure 1. Switching Test Circuit

High Speed Trigger

The output stays high so no voltage difference is measured on the scope. All zone markers are at the same level.

Figure 2. Switching Test Circuit Waveforms

Table 1. Precondition Sequence

1. Att=0	a) Apply V _{IHmax} to Pin 5 and 10. b) Apply V _{ILmin} to Pin 15. c) Ground Pin 4.
2 4++ > 10 pc	a) Open Pin 1.

 At t ≥ 10 ns i) Op b) Apply - 3.0 Vdc to Pin 4. Hold these conditions for \geq 10 ns.

3. Return Pin 4 to Ground and preform test as indicated in Table 2.

Table 2. Conditions for Testing Output Levels

		Pin Co	ondition				Pin Con	dition	
Test P.U.T	5	10	13	15	Test P.U.T	5	10	13	15
Precondition					Precondition				
V _{OH} 2			VILmin		V _{OHA} 2		VIHAmin	P1	
V _{ОН} 3			P1		V _{OHA} 3		VILAmax	P1	
Precondition					Precondition				
V _{OL} 3			VILmin		V _{OLA} 3				VILAmax
V _{OL} 2			P1		V _{OLA} 2				VIHAmin
Precondition					Precondition				
V _{OHA} 2				VILAmax	V _{OLA} 2			VILmin	
V _{OHA} 3				VIHAmin	V _{OLA} 3			VILmin	
Precondition					Precondition				
V _{OHA} 2			VILmin		V _{OLA} 3			P2	
V _{OHA} 3			P3		V _{OLA} 2			P3	
Precondition					Precondition				
V _{OHA} 2			P2		VOLA 3		VIHmax	P2	
V _{OHA} З			P3		V _{OLA} 2		VIHmax	P3	
Precondition					Precondition				
V _{OHA} 2		VIHmax	P2		V _{OLA} 3	VIHAmin	VIHmax	P1	
V _{ОНА} З		VIHmax	P3		V _{OLA} 2	VILAmax	VIHmax	P1	
Precondition					Precondition				
V _{OHA} 2		VIHmax	P1		V _{OLA} 3	V _{IHmax}	VIHAmin	P1	
V _{OHA} 3		VIHmax	P1		VOLA 2	VIHmax	VILAmax	P1	

ယ

10598 QUIESCENT LIMIT TABLE *

Test					Test Volt	age Value	es (Volts))			
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	¥EE	VEEL	Vcc	VT1	V _{T2}
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2	+2.0	-2.45	-3.0
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2	+2.0	-2.35	-2.9
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2	+2.0	-2.55	-3.09

Symbol	Parameter			Lin	nits			Units			TES	T VOLT	AGE A	PPLIED TO	O PINS E	BELOW		
	Functional		5 °C roup 1		5 °C roup 2		5 °C roup 3			Pinout				L packag t Load = 1	-		ignmer	its
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	VEE	Vcc	P1-3		GND	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v		13			6, 8	1, 4, 16	13		4	2, 3
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.665	v		13			6, 8	1, 4, 16	13		4	2, 3
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	10	13	10	10	6, 8	1, 4, 16	13	4	4	2, 3
VOHA	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	10	13	10	10	6, 8	1, 4, 16	13	4	4	2, 3
Чнт	Input Current High		220		375		375	μA	13				6, 8	1, 4, 16			4	13
¹ IH2	Input Current High		260		450		450	μA	5, 10				6, 8	1, 4, 16			4	5, 10
IIH3	Input Current High		350		595		595	μA	15				6, 8	1, 4, 16			4	15
١	Input Current Low	0.5		0.3		0.5		μA		5, 10, 13, 15			6, 8	1, 4, 16			4	5, 10, 13, 15
V _{R4}	Bias Voltage	-4.16	-3.4	-4.16	-3.4	-4.16	-3.4	V					6, 8	1, 4, 16			4	7
IEE	Power Supply Drain Current	- 100		- 111		- 111		mA					6, 8	1, 4, 16			4	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test						Test	Voltage '	Values (V	olts)					
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL	VCC	V _{T1}	V _{T2}	PS11	PS12	PS13
T _A = 25 °C	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-5.2	-3.2	+2.0	-2.45	-3.0	0.0	0.0	-3.2
T _A = 125 °C	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-5.2	-3.2	+2.0	-2.35	-2.9	0.0	0.0	-3.2
T _A = - 55 °C	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-5.2	-3.2	+2.0	-2.55	-3.09	0.0	0.0	-3.2

Symbol	Parameter			Lin	nits			Units		TES	T VOLTA	E APPLI	ED TO PI	S BELOV	V
	Functional		5 °C roup 9		5 °C oup 10		5 °C oup 11		Pino			•	oad = 100		Assignments D
	Parameters:	L	· · · · · · · · · · · · · · · · · · ·	· · · ·	······		·	4				· · · · · · · · · · · · · · · · · · ·			P. U. T.
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	PS11	PS12	P. U. I.
tTLH/tT HL	Rise Time/Fall Time High Speed Trigger Delay to Output	1.5	3.5	1.0	4.5	1.0	4.5	ns	13, 15	2, 3	1, 16	8	7		2, 3, 13, 15
tPHL/tP LH	Propagation Delay High Speed Trigger Delay to Output	1.5	2.8	1.0	4.0	1.0	4.0	ns	13, 15	2, 3	1, 16	8	7		2, 3, 13, 15
tpHL/tp LH	Propagation Delay Trigger Delay to Output	2.5	5.5	2.0	7.0	2.0	7.0	ns	13, 15	2, 3	1, 16	8	7		2, 3, 13, 15
^t Setup (E)	Enable Setup Time	3.5						ns	5, 13	3	1, 16	8	7		5, 13
t _{Hold} (E)	Enable Hold Time	3.5						ns	5, 13	3	1, 16	8	7		5, 13
R _{Trig}	Retrigger	-50	50					ns	5, 13	3	1, 16	8		7	3
R _{Trig}	Retrigger	0.15	1.0					ns	5, 13	3	1, 16	8		7	3

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to 0.0 volts.

Dual 3-Input 3-Output "OR" Gate

ELECTRICALLY TESTED PER: MPG 10610

The 10610 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the 10610 particularly useful in clock distribution applications where minimum clock skew is desired.

- 220 mW Max/Pkg (No Load)
- t_{pd} = 1.5 ns typ (All Output Loaded)
- t_r, t_f = 1.5 ns typ (20% 80%)

	PIN	ASSIGNMI	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN
				(CONDITION C)
V _{CC1}	1	5	2	GND
AOUT	2	6	3	51 Ω to V_{TT}
AOUT	3	7	4	51 Ω to V _{TT}
AOUT	4	8	5	51 Ω to V _{TT}
A _{IN}	5	9	7	OPEN
A _{IN}	6	10	8	GND
AIN	7	11	9	OPEN
VEE	8	12	10	VEE
BIN	9	13	12	OPEN
B _{IN}	10	14	13	OPEN
BIN	11	15	14	GND
BOUT	12	16	15	51 Ω to VTT
BOUT	13	1	17	51 Ω to V_{TT}
BOUT	14	2	18	51 Ω to VTT
V _{CC1}	15	3	19	GND
V _{CC2}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

 $V_{EE} = -5.7 \text{ V MAX} / -5.2 \text{ V MIN}$

Military 10610

AVAILABLE AS:

1) JAN: N/A 2) SMD: N/A 3) 883: 10610/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10610

Figure 1. Switching Test Circuit and Waveforms

ω

10610 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oltage Va	lues (Vo	lts)		
Temperature	VIH	VIL	VIH1	VIL1	PS1	P _{S2}	VEE	VEEL
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter			Liı	mits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW					· · · · · · · · · · · · · · · · · · ·	
	Functional	+ 25	5 °C roup 1		5 °C roup 2		5 °C roup 3		P				-	heck Pin As Ω to - 2.0 V	signments
	Parameters:	Min	Max	Min	Max	Min	Max	-	V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V V _{IH} V _{IL} V _{IH1} V _{IL1} VEE V _{CC} P. L				P. U. T.		
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7 9 - 11				8	1, 15, 16	2 - 4, 12 - 14
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v		5 - 7 9 - 11			8	1, 15, 16	2 - 4, 12 - 14
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v				5 - 7 9 - 11	8	1, 15, 16	2 - 4, 12 - 14
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v			5 - 7 9 - 11		8	1, 15, 16	2 - 4, 12 - 14
liH1	Input Current High		410		700		700	μΑ	5 - 7 9 - 11				8	1, 15, 16	5 - 7 9 - 11
μL	Input Current Low	0.5		0.3		0.5		μA		5 - 7 9 - 11			8	1, 15, 16	5 - 7 9 - 11
IEE	Power Supply Drain Current	- 38		- 42		- 42		mA					8	1, 15, 16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	oltage Va	lues (Vo	lts)		
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2

Symbol	Parameter			Lin	nits			Units TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional Parameters:		5 °C roup 9		5 °C oup 10		- 55 °C Subgroup 11		Pinouts referenced are for DIL package, check Pin Assignm V_{CC} = 2.0 V, Output Load = 100 Ω to GND				-
	Falameters.	Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.
tτlh	Rise Time	1.0	2.5	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14
t THL	Fall Time	1.0	2.5	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14
^t PHL	Propagation Delay	1.0	2.9	1.0	3.4	1.0	3.3	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14
^t PLH	Propagation Delay	1.0	2.9	1.0	3.4	1.0	3.3	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14

Dual 3-Input 3-Output "NOR" Gate

ELECTRICALLY TESTED PER: MPG 10611

The 10611 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the 10611 particularly useful in clock distribution applications where minimum clock skew is desired.

- 220 mW Max/Pkg (No Load)
- tpd = 1.5 ns typ (All Output Loaded)
- t_f, t_f = 1.5 ns typ (20% 80%)

PIN ASSIGNMENTS													
FUNCTION	DIL	FLATS	LCC	BURN-IN									
				(CONDITION C)									
V _{CC1}	1	5	2	GND									
AOUT	2	6	3	51 Ω to V_{TT}									
AOUT	3	7	4	51 Ω to V_{TT}									
AOUT	4	8	5	51 Ω to V_{TT}									
AIN	5	9	7	OPEN									
AIN	6	10	8	OPEN									
AIN	7	11	9	OPEN									
VEE	8	12	10	VEE									
BIN	9	13	12	OPEN									
BIN	10	14	13	OPEN									
B _{IN}	11	15	14	OPEN									
BOUT	12	16	15	51 Ω to V_{TT}									
BOUT	13	1	17	51 Ω to VTT									
BOUT	14	2	18	51 Ω to V _{TT}									
V _{CC1}	15	3	19	GND									
V _{CC2}	16	4	20	GND									

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10611

AVAILABLE AS:

1) JAN: N/A 2) SMD: N/A 3) 883: 10611/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

10611

b) frequency = 1.0 MHz.

7. Unused outputs should be loaded 100 Ω to ground.

Figure 1. Switching Test Circuit and Waveforms

ω

10611 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter	Limits							TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:	+ 25 °C Subgroup 1		+ 125 °C Subgroup 2		- 55 °C Subgroup 3			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0 V, Output Load = 100 Ω to - 2.0 V						
		Min	Max	Min	Max	Min	Max		VIH	VIL	ViH1	VIL1	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v		5 - 7 9 - 11			8	1, 15, 16	2 - 4, 12 - 14
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	5 - 7 9 - 11				8	1, 15, 16	2 - 4, 12 - 14
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v			5 - 7 9 - 11		8	1, 15, 16	2 - 4, 12 - 14
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v				5 - 7 9 - 11	8	1, 15, 16	2 - 4, 12 - 14
^I IH1	Input Current High		410		700		700	μA	5 - 7 9 - 11				8	1, 15, 16	5 - 7 9 - 11
ΙL	Input Current Low	0.5		0.3		0.5		μA		5-7 9-11			8	1, 15, 16	5 - 7 9 - 11
IEE	Power Supply Drain Current	- 38		- 42		- 42		mA					8	1, 15, 16	8

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	v _{iL}	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter	Limits								PINS BELOW			
	Functional Parameters:	+ 25 °C Subgroup 9		+ 125 °C - 55 °C Subgroup 10 Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
		Min	Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VEEL	P. U. T.
ttlh	Rise Time	1.0	2.5	1.0	3.0	1.0	2.9	ns	7,9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14
^t THL	Fall Time	1.0	2.5	1.0	3.0	1.0	2.9	ns	7,9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14
^t PHL	Propagation Delay	1.0	2.9	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14
^t PLH	Propagation Delay	1.0	2.9	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 14

MOTOROLA MILITARY MECL DATA 3-269

High Speed Dual 3-Input 3-Output OR/NOR Gate

ELECTRICALLY TESTED PER: 5962-8775001

The 10611 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the 10611 particularly useful in clock distribution applications where minimum clock skew is desired.

- 220 mW Max/Pkg (No Load)
- tpd = 1.5 ns typ (All Output Loaded)
- t_r, t_f = 1.5 ns typ (20% 80%)

PIN ASSIGNMENTS											
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
V _{CC1}	1	5	2	GND							
AOUT	2	6	3	51 Ω to V_{TT}							
AOUT	3	7	4	51 Ω to V_{TT}							
AOUT	4	8	5	51 Ω to V_{TT}							
A _{IN}	5	9	7	OPEN							
AIN	6	10	8	OPEN							
AIN	7	11	9	OPEN							
VEE	8	12	10	VEE							
B _{IN}	9	13	12	OPEN							
B _{IN}	10	14	13	OPEN							
B _{IN}	11	15	14	OPEN							
BOUT	12	16	15	51 Ω to V_{TT}							
BOUT	13	1	17	51 Ω to V_{TT}							
BOUT	14	2	18	51 Ω to V_{TT}							
V _{CC1}	15	3	19	GND							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN

VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10612

AVAILABLE AS:

1) JAN: N/A 2) SMD: 5962-8775001 3) 883: 10612/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

Figure 1. Switching Test Circuit and Waveforms

ω

10612 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test			Test V	Test Voltage Values (Volts)									
Temperature	VIH	ViL	VIH1	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter			Lii	nits			Units	Units TEST VOLTAGE APPLIED TO PINS BELOW						1
	Functional	+ 25 °C + 125 °C Subgroup 1 Subgroup 2				- 55 °C Subgroup 3		Pinouts referenced are for DIL package, check Pin Assignments V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V							
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH1	VIL1	VIH1	V _{IL1}	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5 - 7 9 - 11	5 - 7 9 - 11			8	1, 15, 16	2 - 4, 12 - 14
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	5 - 7 9 - 11	5 - 7 9 - 11			8	1, 15, 16	2 - 4, 12 - 14
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v			5 - 7 9 - 11	5 - 7 9 - 11	8	1, 15, 16	2 - 4, 12 - 14
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v			5 - 7 9 - 11	5 - 7 9 - 11	8	1, 15, 16	2 - 4, 12 - 14
Чнт	Input Current High		410		700		700	μA	5 - 7 9 - 11				8	1, 15, 16	5 - 7 9 - 11
١ _{IL}	Input Current Low	0.5		0.3		0.5		μA		5-7 9-11			8	1, 15, 16	5 - 7 9 - 11
IEE	Power Supply Drain Current	- 38		- 42		- 42		mA					8	1, 15, 16	8

10612 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	VIL	V _{IH1}	VIL1	PS1	PS2	VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter		Limits							TEST VO	LTAGE APP	LIED TO	PINS BELOW				
	Functional	+ 25					- 55 °C Subgroup 11				Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 2.0 V, Output Load = 100 Ω to GND						
	Parameters:	Subgr			· · · · · · · · · · · · · · · · · · ·		·						· · · · · · · · · · · · · · · · · · ·				
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEL	P. U. T.				
^t TLH	Rise Time	1.0	2.5	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 15				
^t THL	Fall Time	1.0	2.5	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 15				
^t PHL	Propagation Delay	1.0	2.5	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 15				
^t PLH	Propagation Delay	1.0	2.5	1.0	3.0	1.0	2.9	ns	7, 9	2 - 4, 12 - 14	1, 15, 16	8	2 - 4, 12 - 15				

MOTOROLA MILITARY MECL DATA 3-273

Triple Line Receiver (High Speed)

ELECTRICALLY TESTED PER: MPG 10616

The 10616 is a high speed triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (VBB) is made available at pin 11 make the device useful as a Schmitt trigger, or in other application where a stable reference voltage is necessary.

Active current sources provide the 10616 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

150 mW Max/Pkg (No Load)

- tpd = 2.0 ns typ (All Output Loaded)
- t_r, t_f = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS											
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
V _{CC1}	1	5	2	GND							
AOUT	2	6	3	51 Ω to V _{TT}							
AOUT	3	7	4	51 Ω to V _{TT}							
AIN	4	8	5	GND							
AIN	5	9	7	VBB							
BOUT	6	10	8	51 Ω to V_{TT}							
BOUT	7	11	9	51 Ω to V _{TT}							
VEE	8	12	10	VEE							
BIN	9	13	12	GND							
BIN	10	14	13	VBB							
V _{BB}	11	15	14	VBB							
CIN	12	16	15	GND							
CIN	13	1	17	VBB							
COUT	14	2	18	51 Ω to V_TT							
COUT	15	3	19	51 Ω to VTT							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS:

VTT =		2.0	۷	'MAX/ - 2.2 V MIN
VEE =	-	5.7	۷	MAX/ - 5.2 V MIN

NOTES:

1. V_{BB} to be used to supply bias to the 10616 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor.

2. When the input pin with the bubble goes positive, the output goes positive.

Military 10616

AVAILABLE AS:

1) JAN: N/A 2) SMD: N/A 3) 883: 10616/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA 3-275

ω

10616 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	ViH	ViL	VIH1	VIL1	PS1	PS2	VCB/VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	• 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter			Lir	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						·		
		+ 25	5 °C	+ 12	5 °C	- 58	5 °C			Pinouts	reference	d are for	DIL pack	age, che	ck Pin As	ssignme	nts
	Functional Parameters:	Subgi	roup 1	Subgi	oup 2	Subg	roup 3]		VBB	to pin 11	, V _{CC} = 0	V, Outpu	it Load =	100 Ω to	- 2.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIH1	VIL1	VBB	VCB	VEE	Vcc	P. U. T.
Vон	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 9, 12, 13	4, 5, 9, 12, 13					8	1, 16	2, 3, 6, 7, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4, 5, 9, 12, 13	4, 5, 9, 12, 13					8	1, 16	2, 3, 6, 7, 14, 15
V _{OL1}	Low Output Voltage		- 1.60		- 1.525		- 1.635	v			4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 9, 13, 14		8	1, 16	2, 3, 6, 7, 14, 15
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v			4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13	4, 9, 13, 14		8	1, 16	2, 3, 6, 7, 14, 15
VBB	Reference Bias Supply Voltage	- 1.35	- 1.23	- 1.24	- 1.12	- 1.44	- 1.32	v	4, 9, 12	5, 10, 13					8	1, 16	11
ICBO	Open Collector Input Current	- 1.0		- 1.0		- 1.5		μA	4, 7, 9, 12, 14					5, 10, 13	8.	1, 16	4, 5, 9, 10, 12, 13
ін	Input Current High		115		195		195	μΑ	4, 5, 9, 10, 12, 13	4, 5, 9, 10, 12, 13					8	1, 16	4, 5, 9, 10, 12, 13
IEE	Power Supply Drain Current	- 25		- 28		- 28		mA		5, 10, 13					8	1, 16	8

MOTOROLA MILITARY MECL DATA 3-276

10616 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)												
Temperature	VIH	٧IL	V _{IH1}	VIL1	PS1	PS2	VCB/VEE	VEEL					
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2					

Symbol	Parameter		Limits						TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional Parameters:		5 °C roup 9		+ 125 °C - 55 °C			Pinc		nced are for c = 2.0 V, O	•	•	Pin Assignments o GND	
	Farameters.	Min	Max	Min	Max	Min	Max	1	VIN	VOUT	VBB	Vcc	VEEL	P. U. T.
^t TLH	Rise Time	1.0	2.5	1.0	2.9	1.0	2.7	ns	4, 9, 12	2, 14	5, 10, 13	1, 16	8	2, 3, 6, 7, 14, 15
^t THL	Fall Time	1.0	2.5	1.0	2.9	1.0	2.7	ns	4, 9, 12	2, 14	5, 10, 13	1, 16	8	2, 3, 6, 7, 14, 15
^t PHL	Propagation Delay	1.0	2.5	1.0	2.9	1.0	2.7	ns	4, 9, 12	2, 14	5, 10, 13	1, 16	8	2, 3, 6, 7, 14, 15
^t PLH	Propagation Delay	1.0	2.5	1.0	2.9	1.0	2.7	ns	4, 9, 12	2, 14	5, 10, 13	1, 16	8	2, 3, 6, 7, 14, 15

High Speed Dual D Type Master Slave Flip-Flop

ELECTRICALLY TESTED PER: MIL-M-38510/06102

The 10631 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock (C_C) and Clock Enable (C_E) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

- 375 mW Max/Pkg (No Load)
- fTog = 225 MHz typ
- t_{pd} = 2.0 ns typ (All Output Loaded)
- tr, tf = 2.0 ns typ (20% 80%)

PIN ASSIGNMENTS											
FUNCTION	DIL	FLATS	LCC	BURN-IN							
				(CONDITION C)							
V _{CC1}	1	5	2	GND							
Q ₁	2	6	3	51 Ω to V_{TT}							
<u>Q</u> 1	3	7	4	51 Ω to V_{TT}							
R ₁	4	8	5	51 Ω to VTT							
S ₁	5	9	7	GND							
C _{E1}	6	10	8	OPEN							
D ₁	7	11	9	OPEN							
VEE	8	12	10	VEE							
сc	9	13	12	OPEN							
D ₂	10	14	13	OPEN							
C _{E2}	11	15	14	OPEN							
S ₂	12	16	15	GND							
R ₂	13	1	17	51 Ω to V_{TT}							
$\overline{Q_2}$	14	2	18	51 Ω to V _{TT}							
Q ₂	15	3	19	51 Ω to V_{TT}							
V _{CC2}	16	4	20	GND							

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10631

AVAILABLE AS:

1) JAN: JM 38510/06102 2) SMD: N/A 3) 883: 10631/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

R-S TRUTH TABLE

R	S	Q _n + 1
L	L	Qn
L	н	н
н	L	L
н	н	N. D.

A clock H is a clock transition from a Low to a High state

N.D. = Not Defined

CLOCKED TRUTH TABLE

С	D	Q _n + 1
L	ø	Q _n
н	L	L
н	н	н

 \emptyset = Don't Care C = CE + CC

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be ≤ 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. t_r = t_f = 2.0 ns (20% 80%).
- 7. Scope Input = 50 Ω GND.
- 8. CL (test Jig) ≤ 5.0 pF.

Figure 1. FMAX Test Circuit and Clock Input Sinewave

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be \leq 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. $Z_{OUT} = 50 \Omega$.
- 7. tREC (Set & Reset) = 40 ns.
- 8. PRR = 1.0 MHz.
- 9. Scope Input = 50 Ω to GND.
- 10. C_L (test Jig) ≤ 5.0 pF.

Figure 2. Set and Reset Switching Test Circuit

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be ≤ 0.250 (6.35 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 Ω resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \ \Omega \pm 5.0\%$.
- 6. $Z_{OUT} = 50 \Omega$.
- 7. $t_{pD}(Data) = 150 \text{ ns}, t_{pC} (Clock) = 40 \text{ ns}.$
- 8. PRR = 1.0 MHz.
- 9. Scope Input = 50 Ω to GND.
- 10. CL (test Jig) \leq 5.0 pF.

Figure 3. Synchronous Switching Test Circuit and Waveform

NOTES

- 1. Perform test in accordance with test table: each output is tested separately.
- 2. All input and output cables are equal lengths of 50 Ω coaxial cables. Wire length should be \leq 0.250 (6.36 mm) from tp in to input pin and tp out to output pin.
- 3. Outputs not under test should be connected to a 100 $\boldsymbol{\Omega}$ resistor to ground.
- 4. Note that observed pulse amplitude is attenuated by one half.
- 5. $R_L/2 = 50 \Omega \pm 5.0\%$.
- 6. Z_{OUT} = 50 Ω.
- 7. $t_p(Data \& Clock) = 40 ns.$
- 8. Scope Input = 50 Ω to GND.
- 9. CL (test Jig) \leq 5.0 pF.
- * 10. For information only; not tested: $t_{setup} \ge 1.0 \text{ ns}$, $t_{hold} \ge 0.75 \text{ ns}$.

Figure 4. Setup and Hold Test Circuit and Waveform

MOTOROLA MILITARY MECL DATA 3-282

10631 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test		Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIL2	VITL	VITH	VEE	VEE1					
T _A = 25 °C	- 0.78	- 1.85	+ 1.11	+ 0.31	- 1.105	- 1.475	- 5.2	- 3.2					
T _A = 125 °C	- 0.63	- 1.82	+ 1.24	+ 0.36	- 1.000	- 1.400	- 5.2	- 3.2					
T _A = - 55 °C	- 0.88	- 1.92	+ 1.01	+ 0.28	- 1.255	- 1.510	- 5.2	- 3.2					

Symbol	Parameter			Liı	nits			Units		т	EST VOLT	TEST VOLTAGE APPLIED TO PINS BELOW					
		+ 25	5 °C	+ 12	5 °C	- 58	5 °C		Pinouts referenced are for DIL package, check Pin Assignments								
	Functional Parameters:	Subgr	roup 1	Subgi	roup 2	Subg	roup 3	1		v	CC = 0 V, C	Output Loa	d = 100 Ω	to - 2.0 V			
		Min	Max	Min	Max	Min	Max		VIH1	VIL1	V _{IH2}	VIL2	VEE	Vcc	P. U. T.		
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	4, 5, 12, 13	4 - 7 9 - 13			8	1, 16	2, 3, 14, 15		
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v	4, 5, 12, 13	4 - 7 9 - 13			8	1, 16	2, 3, 14, 15		
VOH1	High Output Voltage	- 0.95		- 0.845		- 1.10		v	4, 5, 12, 13	4 - 7 9 - 13	4 - 7 9 - 13	4 - 7 9 - 13	8	1, 16	2, 3, 14, 15		
VOL1	Low Output Voltage		- 1.60		- 1.525		- 1.635	v	4, 5, 12, 13	4 - 7 9 - 13	4 - 7 9 - 13	4 - 7 9 - 13	8	1, 16	2, 3, 14, 15		
IEE	Power Supply Drain Current	- 65		- 72		- 72		mA					8	1, 16	8		
Чн	Input Current High		220		375		375	μA	6, 11				8	1, 16	6, 11		
ИН1	Input Current High		410		700		700	μA	4, 5, 12, 13				8	1, 16	4, 5, 12, 13		
IIH2	Input Current High		220		375		375	μA	7, 10				8	1, 16	7, 10		
Інз	Input Current High		290		495		495	μΑ	9				8	1, 16	9		
ήL	Input Current Low	0.5		0.3		0.5		μA		4 - 7 9 - 13			8	1, 16	4 - 7, 9 - 13		

10631 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH1	VIL1	VIH2	VIH2 VIL2		VITH	VEE	VEE1				
T _A = 25 °C	- 0.78	- 1.85	+ 1.11	+ 0.31	- 1.105	- 1.475	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	+ 1.24	+ 0.36	- 1.000	- 1.400	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	+ 1.01	+ 0.28	- 1.255	- 1.510	- 5.2	- 3.2				

Symbol	Parameter	1		Lin	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		- 55 °C Subgroup 11			Pinouts re	Pinouts referenced are for DIL package, check Pin V _{CC} = 2.0 V, Output Load = 100 Ω to GN					
	Parameters.	Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEE1	P. U. T.		
ttlh	Rise Time	1.0	3.1	1.1	3.6	0.9	3.4	ns	4 - 7, 10 - 13	2, 3, 14, 15	1,6	8	2, 3, 14, 15		
t THL	Fall Time	1.0	3.1	1.1	3.6	0.9	3.4	ns	4 - 7, 10 - 13	2, 3, 14, 15	1,6	8	2, 3, 14, 15		
^t PLH1	Propagation Delay	1.1	3.3	1.0	3.9	1.0	3.7	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PLH2	Propagation Delay	1.5	3.3	1.2	3.9	1.3	3.7	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PHL1	Propagation Delay	1.1	3.3	1.0	3.9	1.0	3.7	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
^t PHL2	Propagation Delay	1.5	3.3	1.2	3.9	1.3	3.7	ns	4 - 7, 10 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15		
f(max)	Toggle Frequency (max)	200		200		200		MHz	`6, 11	2, 15	1, 16	8	2, 3, 14, 15		

High Speed 2 x 1 Bit Array Multiplier Block

ELECTRICALLY TESTED PER: MPG 10687

The 10687 is a dual high speed interactive multiplier. It is designed for use as an array multiplier block. Each device is a modified full adder/subtractor that forms a single-bit binary product at each operand input of the adder. Internal carry lookahead is employed for high speed operation.

An addition or subtraction is selected by mode controls (M_0 , M_1). The mode controls are buffered such that they can be grounded or taken to a standard high logic level to accomplish subtraction. When left open or taken to a low logic level, M_0 and M_1 cause addition.

• 555 mW Max/Pkg (No Load)

• tpd : (Outputs Loaded 1.0 kΩ to VEE)

 C_0 to $C_2 = 1.7$ ns typ a₀ to $C_2 = 2.8$ ns

añ	to	S	=	2.	7	ns	
-		S					
		S1					
-		2					

 b_0 to $S_1 = 4.4$ ns

vi0	ιο	51	=	0.7	ns

	PIN	ASSIGNM	ENTS	
FUNCTION	DIL	FLATS	LCC	BURN-IN (CONDITION C)
s ₁	1	5	2	51 Ω to V _{TT}
S ₀	2	6	3	51 Ω to V _{TT}
MO	3	7	4	OPEN
b0	4	8	5	GND
b0	5	9	7	OPEN
ao	6	10	8	GND
ao	7	11	9	OPEN
VEE	8	12	10	VEE
C ₀	9	13	12	GND
a ₁	10	14	13	OPEN
a ₁	11	15	14	GND
b1	12	16	15	OPEN
b1	13	1	17	GND
M1	14	2	18	51 Ω to V_{TT}
C ₂	15	3	19	51 Ω to VTT
V _{CC}	16	4	20	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10687

AVAILABLE AS:

- 1) JAN: N/A 2) SMD: N/A
- 2) SMD: N/A
- 3) 883: 10687/BXAJC X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA 3-286

10687 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIH1	VIL1	PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Liı	nits			Units		TE	ST VOLTA	GE APPLI	ED TO PI	IS BELOW	
	Functional	+ 25		+ 125 °C Subgroup 2			- 55 °C Subgroup 3		Pi	Pinouts referenced are for DIL package, check Pin Assi V_{CC} = 0 V, Output Load = 100 Ω to - 2.0 V					signments
	Parameters:	Subgr Min	Max	Min	Max	Min	Max	{	VIH	VIL	VIH1	VIL1	VEE	Vcc	P. U. T.
VOH	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	v	5, 6, 9, 10				8	16	1, 2, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	v					8	16	1, 2, 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	v	6, 7, 9 - 11			4 - 7 9 - 14	8	16	1, 2, 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	v	6, 7, 9 - 11		4 - 7 9 - 13		8	16	1, 2, 15
4н1	Input Current High		200		340		340	μA	3, 14				8	16	3, 14
IIH2	Input Current High		220		375		375	μА	4, 5, 12, 13				8	16	4, 5, 12, 13
lih3	Input Current High		265		450		450	μA	6, 7, 10, 11				8	16	6, 7, 10, 11
liH4	Input Current High		410		700		700	μΑ	9				8	16	9
Ι _Ι	Input Current Low	0.5		0.3		0.5		μA		3 - 7 9 - 14			8	16	3 - 7 9 - 14
IEE	Power Supply Drain Current	- 96		- 106		- 106		mA					8	16	8

ω

10687 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

Test	Test Voltage Values (Volts)											
Temperature	VIH VIL		VIH1 VIL1		PS1	PS2	VEE	VEEL				
T _A = 25 °C	- 0.78	- 1.85	- 1.105	- 1.475	+ 1.11	+ 0.31	- 5.2	- 3.2				
T _A = 125 °C	- 0.63	- 1.82	- 1.000	- 1.400	+ 1.24	+ 0.36	- 5.2	- 3.2				
T _A = - 55 °C	- 0.88	- 1.92	- 1.255	- 1.510	+ 1.01	+ 0.28	- 5.2	- 3.2				

Symbol	Parameter			Lin	nits			Units		TEST VOI	TAGE APP	PLIED TO	PINS BE	LOW	
	Functional	+ 25		+ 12			5°C		Pinc	outs referenced					jnments
	Parameters:	Subgr	oup 9	Subgr	oup 10	Subgr	oup 11			VCC = 2	.0 V, Outpu	it Load =	100 12 10	GND	
		Min	Max	Min	Max	Min	Max	1	V _{IN} .	VOUT	Vcc	VEEL	PS1	PS2	P. U. T.
tτlh	Rise Time	1.1	3.1	1.0	3.6	1.1	3.4	ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15
^t THL	Fall Time	1.1	3.1	1.0	3.6	1.1	3.4	ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15
^t PHL/ ^t PLH	$\begin{array}{c} \text{Propagation Delay} \\ \text{C}_0 \text{ to } \text{C}_2 \text{ or } \text{S}_0 \\ \text{C}_0 \text{ to } \text{S}_1 \end{array}$	1.1 1.1	3.4 4.5	1.1 1.1	4.2 4.9	1.1 1.1	4.0 4.9	ns ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15
^t PHL/ ^t PLH	$\begin{array}{c} \text{Propagation Delay} \\ \text{A}_0 \text{ to } \text{C}_2 \text{ or } \text{S}_0 \\ \text{A}_0 \text{ to } \text{S}_1 \end{array}$	1.1 1.4	4.7 5.8	1.1 2.0	7.0 6.6	1.1 2.0	5.0 6.2	ns ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15
^t PHL/ ^t PLH	$\begin{array}{c} Propagation \ Delay\\ B_0 \ to \ C_2 \ or \ S_0\\ B_0 \ to \ S_1 \end{array}$	1.1 1.4	4.7 5.8	1.1 2.0	7.0 6.6	1.1 2.0	5.0 6.2	ns ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15
tPHL/ tPLH	$\begin{array}{c} \text{Propagation Delay} \\ \text{A}_1 \text{ or } \text{B}_1 \text{ to } \text{S}_1 \text{ or } \text{C}_2 \end{array}$	1.1	4.5	1.5	5.2	1.1	4.5	ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15
^t PHL/ ^t PLH	$\begin{array}{l} \mbox{Propagation Delay} \\ \mbox{M}_0 \mbox{ to } S_1 \mbox{ or } M_1 \mbox{ to } C_2 \\ \mbox{M}_0 \mbox{ to } C_2 \end{array}$	3.0 3.0	12.5 12.5	3.0 2.5	14.5 14.5	3.0 2.5	14 14	ns ns	3 - 7, 9 - 14	1, 2, 15	1, 16	8	3 - 7, 9 - 14	3 - 7, 9 - 14	1, 2, 15

MOTOROLA MILITARY MECL DATA 3-288

MECL III 4

Voltage Controlled Oscillator

ELECTRICALLY TESTED PER: MPG 1648M

The 1648M requires an external parallel tank circuit consisting of the inductor (L) capacitor (C).

A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). This device may be used in many applications requiring a fixed or variable frequency clock source of the high spectral purity. (See Test Circuit).

The 1648M may be operated from a + 5.0 Vdc supply or a - 5.2 Vdc supply, depending upon system requirements.

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	Vcc	- 8.0	0	Vdc
Input Voltage @ ($V_{EE} = -5.2 \text{ Vdc}$)	V _{IN5} VIN12	- 5.2 0	– 3.4 V _{EE}	Vdc Vdc
Output Source Current	ю		< 40	mAdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _A	- 55	+ 125	°C

PIN ASSIGNMENTS FUNCTION DIL FLATS LCC **BURN-IN** Case Case Case (CONDITION C) 692 717 756A GND Vcc 1 1 2 N.C. 2 2 3 OPEN Output з з 4 51 Ω to V_{TT} N.C. 4 4 6 OPEN AGC 5 5 8 OPEN N.C. 6 6 9 OPEN 7 7 10 VEE VEE VEE 8 8 12 VEE N.C. 9 9 13 OPEN Bias Point 10 10 14 OPEN N.C. 11 11 16 OPEN Tank 12 12 18 51 Ω to VTT N.C. 13 13 19 OPEN 14 Vcc 14 20 GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 1648M

The letter "M" appears before the slash on LCC.

1648M

Figure 2. Test Circuit Waveforms

Figure 3. Circuit Schematic

1648M QUIESCENT LIMIT TABLE

Test Temperature		Test \	/oitage V	alues (Vo	olts)		Test Current Values (mA)
remperature	VIHA	VILA	VIHB	VILB	VEE	Vcc	ίL
T _A = 25 °C	-3.35	-3.85	+1.85	+1.35	-5.2	+5.0	-5.0
T _A = 125 °C	-3.60	-4.10	+1.60	+1.10	-5.2	+5.0	-5.0
T _A = -55 °C	-3.13	-3.63	+2.07	+1.57	-5.2	+5.0	-5.0

Symbol	Parameter			Lin	nits			Units			TEST V	OLTAGE	APPLIED	TO PINS	BELO	W	
	Functional	+ 25 °C + 125 °C Subgroup 1 Subgroup 2					5 °C		Pinouts referenced are for DIL package, check Pin Assignments								S
	Parameters:				·		roup 3	ļ			1						
		Min	Max	Min	Max	Min	Max		VIHA	VILA	VIHB	VILB	Vcc	VEE	۱ <u>۲</u>	GND	P.U.T.
VTHA	High Internal Threshold Voltage	- 3.75	- 3.45	- 4.0	- 3.7	- 3.53	- 3.23	v		12				7, 8		1, 14	5, 10
VOHA	High Output Voltage	- 0.96	- 0.75	- 0.84	- 0.60	- 1.08	- 0.87	V		12				7, 8	3	1, 14	3
VOLA	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.54	- 1.92	- 1.67	V	12					7, 8	3	1, 14	3
VTHB	High Internal Threshold Voltage	1.45	1.75	1.2	1.5	1.67	1.97	v				12	1, 14			7, 8	5, 10
VOHB	High Output Voltage	4.04	4.25	4.16	4.4	3.92	4.13	V				12	1, 14		3	7, 8	3
VOLB	Low Output Voltage	3.2	3.43	3.23	3.51	3.13	3.38	V			12		1, 14		3	7, 8	3
lcc	Power Supply Current Off		40					mA								7, 8	1, 14
IEE	Power Supply Drain Current	- 41						mA						7, 8		1, 14	7, 8

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPL	IED TO PINS BELOW				
	Functional Parameters:	+ 25 Subgr			s °C oup 10	- 55 Subgre			Pinouts referenced are for DIL pack Output Load = 50	•				
		Min	Max	Min	Max	Min	Max		V _{CC} GND					
* fMax	Oscillation Frequency	200		200		190		MHz	1, 14 7, 8					

* Frequency variations over temperature is a direct function of the $\Delta C/\Delta$ Temperature and $\Delta L/\Delta$ Temperature.

Dual A/D Converter

ELECTRICALLY TESTED PER: MPG 1650 (- 30°C to + 85°C)

The 1650 is a very high speed comparator utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The 1650 provides high impedance Darlington inputs, while the 1651 is a lower impedance option, with higher input slew rate and higher speed capability.

The clock inputs (\overline{C}_a and \overline{C}_b) operate from MECL III or MECL 10,000 digital levels. When \overline{C}_a is at a logic high level, Q_0 will be at a logic high level provided that $V_1 > V_2$ (V_1 is more positive than V_2). \overline{Q}_0 is the logic complement of Q_0 . When the clock input goes to a low logic level, the outputs are latched in their present state.

- PD = 330 mW typ/pkg (No Load)
- t_{pd} = 3.5 ns typ
- Input Slew Rate = 350 V/μs
- Differential Input Voltage Range: 5.0 V (- 30°C to 85°C)
- Common Mode Range: 2.5 V to + 3.0 V (- 30°C to 85°C)
- Resolution: ≤ 20 mV (- 30°C to 85°C)
- Drives 50 Ω lines

	PIN ASS	IGNMENT	S
FUNCTION	DIL	FLATS	BURN-IN
			(CONDITION C)
GND	1	5	GND
Q ₀	2	6	51 Ω to VTT
$\overline{Q_0}$	3	7	51 Ω to VTT
$\overline{C_a}$	4	8	GND
v _{2a}	5	9	VTT
V _{1a}	6	10	GND
Vcc	7	11	Vcc
VEE	8	12	VEE
N.C.	9	13	OPEN
VCC	10	14	Vcc
V _{2b}	11	15	VTT
V _{1b}	12	16	GND
<u>Ģ</u> b	13	1	GND
Q ₁	14	2	51 Ω to VTT
Q1	15	3	51 Ω to V_{TT}
GND	16	4	GND

BURN - IN CONDITIONS: VTT = - 1.8 V MAX/- 2.2 V MIN VEE = - 5.7 V MAX/- 4.7 V MIN VCC = + 5.0 V MAX/+ 4.5 V MIN

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1650/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage	V _{CC} V _{EE}		+ 6.0 - 6.0	Vdc Vdc
Analog Input Voltage	VIN		- 3.0 to + 3.0	Vdc
Gate Input Voltage	VIN		0 to VEE	Vdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	TA	- 30	+ 85	°C

	TRUTH T	ABLE	
Ē	V _{1,} V ₂	Q0 _{n + 1}	Q0 _{n + 1}
н	V ₁ > V ₂	н	L
н	V ₁ < V ₂	L	Н
L	φφ	Q0 _n	Q0 _n

φ = Don't Care

Figure 2. Test Circuit Waveforms

Figure 3. Clock Enable Time Test Circuit

4

1650 QUIESCENT LIMIT TABLE

Test					Test V	oltage	Values (V	/olts)				
Temperature	VIH	VIL	VIHA	VILA	VEE	VCC	V _{A1}	V _{A2}	V _{A3}	VA4	V _{A5}	VA6
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	+5.0	+0.02	-0.02	+3.0	+2.98	-2.5	-2.48
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	+5.0	+0.02	-0.02	+3.0	+2.98	-2.5	-2.48
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	+5.0	+0.02	-0.02	+3.0	+2.98	-2.5	-2.48

Symbol	Parameter			Lin	nits			Units			TEST	VOLTA	GE APP	LIED TO	PINS BE	LOW	
	Functional Parameters:	+ 25 Subgr		+ 85 Subgr	5 °C roup 2) °C roup 3		Р	inouts rè		d are for Output L				Assignment	s
	raianeters.	Min	Max	Min	Max	Min	Max		VIH VIL VIHA VILA VCC VEE VA1-6 GND								P.U.T.
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	4, 13				7, 10	8	5, 6, 11, 12	1, 5, 6, 16	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	4, 13				7, 10	8	5, 6, 11, 12	1, 5, 6, 16	2, 3, 14, 15
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v		4, 6, 12, 13	4, 13	4, 13	7, 10	8	6, 12	1, 5, 6, 16	2, 3, 14, 15
VOLA	Low Output Voltage	- 1.85	- 1.6	- 1.83	- 1.555	- 1.89	- 1.63	v		4, 6, 12, 13	4, 13	4, 13	7, 10	8	6, 12	1, 5, 6, 16	2, 3, 14, 15
lin	Input Current		10					μΑ	4, 13	4, 13			7, 10	8	5, 6, 11, 12	1, 5, 6, 11, 12, 16	5, 6, 11, 12
INH	Input Current High		350					μΑ	4, 13	4, 13			7, 10	8	5, 11	1, 6, 12, 16	4, 13
۱L	Leakage Current	- 7.0						μΑ	4, 13	4, 13			7, 10	8	5, 6, 11, 12	1, 5, 6, 11, 12, 16	5, 6, 11, 12

1650 QUIESCENT LIMIT TABLE

Test					Test V	oltage '	Values (V	/olts)				
Temperature	VIH	VIL	VIHA	VILA	VEE	Vcc	V _{A1}	V _{A2}	V _{A3}	V _{A4}	V _{A5}	V _{A6}
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	+5.0	+0.02	-0.02	+3.0	+2.98	-2.5	-2.48
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	+5.0	+0.02	-0.02	+3.0	+2.98	-2.5	-2.48
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	+5.0	+0.02	-0.02	+3.0	+2.98	-2.5	-2.48

Symbol	Parameter			Lir	nits			Units	s TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional	+ 25 °C + 85 °C - 30 °C Subgroup 1 Subgroup 2 Subgroup 3							Pino	uts referend		•	÷ ·	Pin Assignments		
	Parameters:	Subgr	oup 1	Subg	roup 2	2 Subgroup 3 Output Load = 50 Ω to - 2.0 V										
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	Vcc	VEE	VA1-6	GND	P.U.T.	
INL	Leakage Current Low	0.5						μΑ	4, 13	4, 13	7, 10	8	5, 11	1, 6, 12, 16	4, 13	
IEE	Power Supply Drain Current	- 55						mA	4, 13		7, 10	8	6, 12	1, 5, 11, 16	8	
* Icc	Power Supply Drain Off		+25					mA		4, 13	7, 10	8	6, 12	1, 5, 11, 16	7, 10	

* I_{CC} = Total current to pin 7 and 10 tied together.

MOTOROLA MILITARY MECL DATA 4-10

1650 QUIESCENT LIMIT TABLE

Test		T	est Volta	age Value	es (Volta	5)	<u> </u>	Test	Test Voltage Values (Volts)				
Temperature	٧H	٧ _G	V _{B1}	V _{B2}	V _{B3}	VCCA	VEEA	Parameter	P1	P ₂	P3		
T _A = 25 °C	+1.11	+2.0	-0.4	+2.0	+4.9	+7.0	-3.2	VIH	+2.10	+5.0	-0.30		
T _A = 85 °C	+1.19	+2.0	-0.4	+2.0	+4.9	+7.0	-3.2	VR	+2.0	+4.9	-0.40		
T _A = -30 °C	+1.04	+2.0	-0.4	+2.0	+4.9	+7.0	-3.2	VIL	+1.9	+4.8	-0.50		

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAG	E APPL	IED TO P	INS BELO	DW WC	
	Functional	+ 2 Subgi		+ 85 Subar	5 °C oup 10) °C oup 11		Pinouts referenced are for DIL package, check Pin Assignments Output Load = 50 Ω to GND								nts	
	Parameters:	Min	Max	Min	Max	Min	Max		VH	٧ _G	V _{B1}	V _{B2}	V _{B3}	VCCA	VEEA	P ₁₋₃	P.U.T./VOUT
tтlн	Rise Time	1.0	3.7	1.0	3.9	1.0	3.5	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
tthr.	Fall Time	1.0	3.0	1.0	3.3	1.0	3.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(1)	Propagation Delay	2.0	5.0	2.0	5.7	2.0	5.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(1)	Propagation Delay	2.0	5.0	2.0	5.7	2.0	5.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(2)	Propagation Delay	2.0	5.2	2.0	6.2	2.0	5.2	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(2)	Propagation Delay	2.0	5.2	2.0	6.2	2.0	5.2	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t setup	Setup Time	2.5		2.5		2.5		ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15

Dual A/D Converter

ELECTRICALLY TESTED PER: MPG 1651 (- 30°C to + 85°C)

The 1651 is a very high speed comparator utilizing differential inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The 1651 is a lower impedance option to the 1650, with higher input slew rate and higher speed capability.

The clock inputs (\overline{C}_a and \overline{C}_b) operate from MECL III or MECL 10,000 digital levels. When \overline{C}_a is at a logic high level, Q_0 will be at a logic high level provided that $V_1 > V_2$ (V_1 is more positive than V_2). \overline{Q}_0 is the logic complement of Q_0 . When the clock input goes to a low level, the outputs are latched in their present state.

- PD = 330 mW typ/pkg (No Load)
- t_{pd} = 3.5 ns typ
- Input Slew Rate = 500 V/μs
- Differential Input Voltage Range: 5.0 V (- 30°C to 85°C)
- Common Mode Range: 3.0 V to + 2.5 V (- 30°C to 85°C)
- Resolution: ≤ 20 mV (- 30°C to 85°C)
- Drives 51Ω lines

	PIN ASS	IGNMENT	5
FUNCTION	DIL	FLATS	BURN-IN
			(CONDITION C)
GND	1	5	GND
Q ₀	2	6	51 Ω to VTT
$\overline{Q_0}$	3	7	51 Ω to V _{TT}
Ca	4	8	GND
v _{2a}	5	9	VTT
V _{1a}	6	10	GND
Vcc	7	11	Vcc
VEE	8	12	VEE
N.C.	9	13	OPEN
Vcc	10	14	Vcc
V _{2b}	11	15	VTT
V _{1b}	12	16	GND
Cb	13	1	GND
Q ₁	14	2	51 Ω to VTT
<u>Q</u> 1	15	3	51 Ω to V _{TT}
GND	16	4	GND

BURN - IN CONDITIONS: VTT = - 1.8 V MAX/- 2.2 V MIN VEE = - 5.7 V MAX/- 4.7 V MIN VCC = + 5.0 V MAX/+ 4.5 V MIN MPO

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1651/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

Military 1651

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage	V _{CC} V _{EE}		+ 6.0 - 8.0	Vdc Vdc
Analog Input Voltage	VIN		- 3.0 to + 3.0	Vdc
Gate Input Voltage	VIN		0 to V _{EE}	Vdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	TA	- 30	+ 85	°C

	TRUTH TABLE												
Ē	`V ₁ , V ₂	Q0 _{n + 1}	Q0 _{n + 1}										
н	V ₁ > V ₂	Н	L										
н	V ₁ < V ₂	L	н										
L	φφ	Q0 _n	Q0 _n										

 $\phi = \text{Don't Care}$

Figure 3. Clock Enable Time Test Circuit

4

MOTOROLA MILITARY MECL DATA 4-15

1651 QUIESCENT LIMIT TABLE

Test					Test V	oltage	Values (V	/olts)	Test Voltage Values (Volts)														
Temperature	VIH	٧IL	VIHA	VILA	VEE	Vcc	V _{A1}	V _{A2}	V _{A3}	V _{A4}	V _{A5}	V _{A6}											
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	+5.0	+0.02	-0.02	+2.5	+2.48	-3.0	-2.98											
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	+5.0	+0.02	-0.02	+2.5	+2.48	-3.0	-2.98											
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	+5.0	+0.02	-0.02	+2.5	+2.48	-3.0	-2.98											

Symbol	Parameter			Lin	nits			Units			TEST	VOLTA	GE APP	LIED TO	PINS BE	LOW		
	Functional	+ 2 Subgi	5 °C	+ 85 °C		- 30 °C Subgroup 3			Pinouts referenced are for DIL package, check Pin Assignments Output Load = 50 Ω to - 2.0 V									
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	Vcc	VEE	VA1-6	GND	P.U.T.	
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	4, 13				7, 10	8	5, 6, 11, 12	1, 5, 6, 16	2, 3, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	4, 13				7, 10	8	5, 6, 11, 12	1, 5, 6, 16	2, 3, 14, 15	
VOHA	High Output Voltage	- 0.98	- 0.825	- 0.91	- 0.715	- 1.065	- 0.89	v		4, 6, 12, 13	4, 13	4, 13	7, 10	8	6, 12	1, 5, 6, 16	2, 3, 14, 15	
VOLA	Low Output Voltage	- 1.83	- 1.60	- 1.80	- 1.555	- 1.83	- 1.60	v		4, 6, 12, 13	4, 13	4, 13	7, 10	8	6, 12	1, 5, 6, 16	2, 3, 14, 15	
INH	Input Current High		350					μΑ	4, 13	4, 13			7, 10	8	5, 11	1, 6, 12, 16	4, 13	
١L	Leakage Current	- 10						μA	4, 13	4, 13			7, 10	8	5, 6, 11, 12	1, 6, 12, 16	5, 6, 11, 12	

1651 QUIESCENT LIMIT TABLE

Test		Test Voltage Values (Volts)														
Temperature	VIH	VIL	VIHA	VILA	VEE	Vcc	V _{A1}	V _{A2}	V _{A3}	V _{A4}	V _{A5}	VA6				
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	+5.0	+0.02	-0.02	+2.5	+2.48	-3.0	-2.98				
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	+5.0	+0.02	-0.02	+2.5	+2.48	-3.0	-2.98				
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	+5.0	+0.02	-0.02	+2.5	+2.48	-3.0	-2.98				

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW								
		+ 2	5 °C	+ 8	5 °C	- 30) °C		Pino	uts reference	ed are for I	DIL packa	age, check Pin Assignments				
	Functional Parameters:	Subgroup 1		Subgroup 2		Subgroup 3		1	Output Load = 50 Ω to - 2.0 V								
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	Vcc	VEE	VA1-6	GND	P.U.T.		
INL	Leakage Current Low	0.5						μА	4, 13	4, 13	7, 10	8	5, 6, 11, 12	1, 5, 6, 12, 16	5, 6, 11, 12		
^I EE	Power Supply Drain Current	- 55						mA	4, 13		7, 10	8	5, 6, 11, 12	1, 5, 6, 12, 16	8		
* ICC	Power Supply Drain Off		+25					mA		4, 13	7, 10	8	5, 6, 11, 12	1, 5, 6, 12, 16	7, 10		

* I_{CC} = Total current to pin 7 and 10 tied together.
4

Test		1	est Volta	ige Value	es (Volta	Test	Test Voltage Values (Volts)				
Temperature	٧H	٧ _G	V _{B1}	V _{B2}	V _{B3}	VCCA	VEEA	Parameter	P1	P ₂	P3
T _A = 25 °C	+1.11	+2.0	-0.9	+2.0	+4.4	+7.0	-3.2	VIH	+2.10	+4.5	-0.80
T _A = 85 °C	+1.19	+2.0	-0.9	+2.0	+4.4	+7.0	-3.2	VR	+2.0	+4.4	-0.90
T _A = -30 °C	+1.04	+2.0	-0.9	+2.0	+4.4	+7.0	-3.2	VIL	+1.9	+4.3	-1.0

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAC	E APPL	IED TO P	INS BELC	W	
	Functional	L	+ 25 °C + 85 °C Subgroup 9 Subgroup)°C oup 11		Pinouts referenced are for DIL package, check Pin Assign Output Load = 50 Ω to GND						ignment	5
	Parameters:	Min	Max	Min	Max	Min	Max	-	VH	VG	V _{B1}	V _{B2}	V _{B3}	VCCA	VEEA	P1-3	P.U.T./VOUT
ţтгн	Rise Time	1.0	3.5	1.0	3.8	1.0	3.5	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
ţтнг	Fall Time	1.0	3.0	1.0	3.3	1.0	3.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(1)	Propagation Delay	2.0	5.0	2.0	5.7	2.0	5.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(1)	Propagation Delay	2.0	5.0	2.0	5.7	2.0	5.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(2)	Propagation Delay	2.0	5.0	2.0	5.2	2.0	5.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t pd(2)	Propagation Delay	2.0	5.0	2.0	5.2	2.0	5.0	ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15
^t setup	Setup Time	2.5		2.5		2.5		ns	4, 13	1, 16	5, 12	5, 12	5, 12	7, 10	8	4, 6, 11, 13	2, 3, 14, 15

Binary Counter

ELECTRICALLY TESTED PER: MPG 1654 (- 30°C to + 85°C)

The 1654 is a 4-bit counter capable of divide-by-two, divide-by-four, divide-byeight, or divide-by-16 functions. Clock inputs trigger on the positive going edge of the clock pulse.

Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all levels.

- Power Dissipation = 750 mW typ
- f_{Tog} = 325 MHz typ

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Мах	Unit
Power Supply Voltage ($V_{CC} = 0$)	Vcc	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	TA	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	BURN-IN
		(CONDITION C)
VCC1	1	GND
Clock 2	2	OPEN
S ₀	3	GND
Q ₀	4	51 Ω to VTT
Q ₀	5	51 Ω to VTT
Q ₁	6	51 Ω to VTT
S ₁	7	GND
VEE	8	VEE
S ₂	9	GND
Reset	10	OPEN
Q ₂	11	51 Ω to V _{TT}
Q3	12	51 Ω to VTT
$\overline{Q_3}$	13	51 Ω to VTT
S ₃	14	GND
Clock 1	15	OPEN
V _{CC2}	16	GND

BURN - IN CONDITIONS: VTT = - 1.8 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 4.7 V MIN

AVAILABLE AS

- 1) JAN: N/A 2) SMD: N/A
- 3) 883: N/A
- 4) 1654/BXA *
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E

* 883 Processing (Non-Compliant)

$\begin{array}{c} V_{CC1} & 1 \\ \hline \\ Clock 2 & 2 \\ S_0 & 3 \\ \hline \\ \hline \\ Q_0 & 4 \\ Q_0 & 5 \\ \hline \\ Q_1 & 6 \\ \hline \\ Q_1 & 6 \\ \hline \end{array}$	16 VCC2 15 Clock 1 14 S ₃ 13 Q ₃ 12 Q ₃ 11 Q ₂

LOGIC DIAGRAM

			Inputs				Outputs					
R	S ₀	S ₁	S ₂	S ₃	C ₁	C ₂	Q ₀	Q1	Q ₂	Q3		
1	0	0	0	0	¢	¢	0	0	0	0		
0	1	1	1	1	¢	φ	1	1	1	1		
0	0	0	0	0	1	¢		No Co	ount			
0	0	0	0	0	¢	1		No Co	ount			
0	0	0	0	0	**	**	0	0	0	0		
0	0	0	0	0	**	**	1	0	0	0		
0	0	0	0	0	**	**	0	1	0	0		
0	0	0	0	0	**	**	1	1	0	0		
0	0	0	0	0	**	**	0	0	1	0		
0	0	0	0	0	**	**	1	0	1	0		
0	0	0	0	0	**	**	0	1	1	0		
0	0	0	0	0	**	**	1	1	1	0		
0	0	0	0	0	**	**	0	0	0	1		
0	0	0	0	0	**	**	1	0	0	1		
0	0	0	0	0	**	**	0	1	0	1		
0	0	0	0	0	**	**	1	1	0	1		
0	0	0	0	0	**	**	0	0	1	1		
0	0	0	0	0	**	**	1	0	1	1		
0	0	0	0	0	**	**	0	1	1	1		
0	0	0	0	0	**	**	1	1	1	1		

TRUTH TABLE

 $\phi = Don't Care$ $** = V_{IH} Clock transition from V_{IL} to V_{IH}$ $V_{IL} may be applied to C_1 or C_2 or both for same effect$

Figure 1. Test Circuit

MOTOROLA MILITARY MECL DATA 4-20

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
VIHH	1.11 V	1.185 V	1.041 V
PIN	1.0 MHz	1.0 MHz	1.0 MHz
t _r , t _f	1.5 ns	1.5 ns	1.5 ns

Figure 3. Toggle Test Circuit

Figure 4. Toggle Waveform

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
VIHH	1.11 V	1.185 V	1.041 V
PIN	300 MHz	260 MHz	260 MHz

Test		Test Voltage Values (Volts)												
Temperature	VIH	٧ _{IL}	VIHA	VILA	VEE	VEEA								
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2								
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2								
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2								

Symbol	Parameter			Lin	nits			Units	1	TE	ST VOLTA	SE APPLIE	D TO PINS	BELOW			
	Functional	+ 25 °C			5 °C		D°C		Pinou			• •		heck Pin Assignments			
	Parameters:		bgroup 1 Subgroup 2		Subgroup 3		ļ	V_{CC} = 0.0 V, Output Load = 50 Ω to - 2.0 V									
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	Vcc	VEE	P.U.T.		
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	3, 7, 9, 10, 14				1, 16	8	4 - 6, 11 - 13		
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	V	3, 10, 14				1, 16	8	4 - 6, 11 - 13		
Vона	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v			3, 7, 9, 10, 14		1, 16	8	4 - 6, 11 - 13		
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v	3, 7, 9, 10, 14			3, 7, 9, 10, 14	1, 16	8	4 - 6, 11 - 13		
IEE	Power Supply Drain Current	- 200						mA	2, 3, 7, 9, 10, 14, 15				1, 16	8	8		
INH1	Input Current High		600					μA	2, 3, 7, 14, 15				1, 16	8	2, 3, 7, 14, 15		
INH2	Input Current High		1.0					mA	10				1, 16	8	10		
INL	Input Current Low	0.5						μА		2, 3, 7, 9, 10, 14, 15			1, 16	8	2, 3, 7, 9, 10, 14, 15		

4

Test	Test Voltage Values (Volts)													
Temperature	VIH	٧IL	VIHA	VILA	VEE	VEEA	Vcc							
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+5.0							
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+5.0							
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+5.0							

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW								
		+ 2	5 °C	+ 8	5 °C	- 30) °C		Pinout	signment	s						
	Functional Parameters:	Subg	roup 9	Subgr	oup 10	Subgroup 11			Output Load = 50 Ω to GND								
		Min	Max	Min	Max	Min	Max	1	VILL	VIN	VOUT	Vcc	VEEA	Cp1-3	P.U.T.		
ţтгн	Rise Time (Pins 4 - 6, 11 - 13)		2.7		3.1		2.9	ns	2, 3, 7, 9, 14	2, 3, 10	4 - 6, 6 - 13	1, 16	8		4 - 6, 6 - 13		
ťтнL	Fall Time (Pins 4 - 6, 11 - 13)		2.6		3.0		2.8	ns	2, 3, 7, 9, 14	2, 3, 10	4 - 6, 6 - 13	1, 16	8		4 - 6, 6 - 13		
^t pd	Propagation Delay Clock (t2+5+, t2+4+) Reset		3.3 4.9		3.7 4.9		2.9 5.1	ns ns	2, 3, 7, 9, 14 2, 3, 7, 9, 14	2, 3, 10 2, 3, 10	4 - 6, 6 - 13 4 - 6, 6 - 13	1, 16 1, 16	8 8		4 - 6, 6 - 13 4 - 6, 6 - 13		
fTog	Toggle Frequency	260		260		260		MHz			4 - 6, 6 - 13	1, 16	8	15	4 - 6, 6 - 13		

Dual 4-Input OR/NOR Gate

ELECTRICALLY TESTED PER: MPG 1660 (- 30°C to + 85°C)

- P_D = 120 mW typ/pkg
- t_{pd} = 0.9 ns typ (510 ohm load)
 = 1.1 ns typ (50 ohm load)
- Full Load Current, IL = 25 mAdc max

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	VCC	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	T _{stg}	- 55	+ 175	°C
Operating Temperature Range	Τ _Α	- 30	+ 85	°C

PIN ASSIGNMENTS

DIL	FLATS	BURN-IN (CONDITION C)
1	5	GND
2	6	51 Ω to VTT
3	7	51 Ω to V _{TT}
4	8	OPEN
5	9	OPEN
6	10	OPEN
7	11	OPEN
8	12	VEE
9	13	OPEN
10	14	OPEN
11	15	GND
12	16	OPEN
13	1	GND
14	2	51 Ω to VTT
15	3	51 Ω to V _{TT}
16	4	GND
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 5 2 6 3 7 4 8 5 9 6 10 7 11 8 12 9 13 10 14 11 15 12 16 13 1 14 2 15 3

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 1660

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1660/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

Figure 1. Test Circuit

4.

DC level = 0.71 V.

NOTES

- 1. Pulse Amp. = 0.8 V.
- 2. $t_r = t_f = 1.5 \text{ ns} + 0.2 \text{ ns}$ (measured between 10% and 90%).
- 3. PRR = 20 MHz, 50% duty cycle.

5. Unused outputs connected to a 100 Ω resistor to ground.

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
VIHH	1.11 V	1.185 V	1.04 1V

Figure 2. Test Circuit Waveforms

MOTOROLA MILITARY MECL DATA 4-26

.

Test		Test	Voltage	Values (V	olts)	
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional	+ 25 °C + 85 °C - 30 °C Subgroup 1 Subgroup 2 Subgroup 3						Pinouts		ackage, che 50 Ω to - 2.0	eck Pin Assignments				
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL		VILA	Vcc	VEE	P.U.T.
∨он	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	4 - 7, 10 - 13	4 - 7, 10 - 13			1, 16	8	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	4 - 7, 10 - 13	4 - 7, 10 - 13			1, 16	8	2, 3, 14, 15
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v		4 - 7, 10 - 13	4 - 7, 10 - 13	4 - 7, 10 - 13	1, 16	8	2, 3, 14, 15
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v		4 - 7, 10 - 13	4 - 7, 10 - 13	4 - 7, 10 - 13	1, 16	8	2, 3, 14, 15
1EE	Power Supply Drain Current	-28		-28		-28		mA					1, 16	8	8
Чин	Input Current High		350		350		350	μΑ	4 - 7, 10 - 13	4 - 7, 10 - 13			1, 16	8	4 - 7, 10 - 13
INL	Input Current Low	0.5		0.3		0.5		μА	4 - 7, 10 - 13	4 - 7, 10 - 13			1, 16	8	4 - 7, 10 - 13

4

Test	Test Voltage Values (Volts)											
Temperature	VIH	٧IL	VIHA VILA		VEE	VEEA	Vcc					
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0					
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0					
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0					

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional	Functional		+ 25 °C + 85			0°C		Pinouts referenced are for DIL package, check Pin Assignments Output Load = 50 Ω to GND					
	Parameters:	Subg	roup 9	Subgroup 10		Subgroup 11		JL			au = 50 12 10 C			
		Min	Max	Min	Max	Min	Max	1 1	VIN	VOUT	Vcc	VEE	P.U.T.	
t _{TLH}	Rise Time		2.1		2.3		2.2	ns	4, 11	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
t _{THL}	Fall Time		2.1		2.3		2.2	ns	4, 11	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
^t PHL	Propagation Delay High to Low (NOR)		1.9		2.1		2.0	ns	4, 11	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
^t PLH	Propagation Delay Low to High (NOR)		1.8		2.0		1.9	ns	4, 11	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
^t PHL	Propagation Delay High to Low (OR)		1.7		1.9		1.8	ns	4, 11	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
^t PLH	Propagation Delay Low to High (OR)		1.8		2.0		1.9	ns	4, 11	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	

Quad 2-Input NOR Gate

ELECTRICALLY TESTED PER: MPG 1662 (- 30°C to + 85°C)

- P_D = 240 mW typ/pkg
- t_{pd} = 0.9 ns typ (510 ohm load)
 = 1.1 ns typ (50 ohm load)
- Full Load Current, IL = 25 mAdc max

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	VCC	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	0	VEE	Vdc
Output Source Current Continuous	lo		< 40	mAdc
Storage Temperature Range	⊤ _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _Α	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN (CONDITION C)
V _{CC1}	1	5	GND
AOUT	2	6	51 Ω to VTT
BOUT	3	7	51 Ω to V _{TT}
AIN1	4	8	OPEN
AIN2	5	9	OPEN
BIN1	6	10	OPEN
B _{IN2}	7	11	OPEN
VEE	8	12	VEE
N.C.	9	13	OPEN
CIN1	10	14	OPEN
CIN2	11	15	GND
DIN1	12	16	OPEN
D _{IN2}	13	1	GND
COUT	14	2	51 Ω to V_{TT}
DOUT	15	3	51 Ω to V_{TT}
V _{CC2}	16	4	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ $V_{EE} = -5.7 V MAX - 5.2 V MIN$

Military 1662

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1662/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

Figure 1. Test Circuit

NOTES

- 1. Coaxial cables (Equal lengths, typ 2 places) to scope.
- 2. $t_r = t_f = 1.5 \text{ ns} \pm 0.2 \text{ ns}.$

- 3. PRR = 20 MHz, 50% duty cycle.
- 4. Unused outputs connected to a 50 Ω resistor to ground.

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.34 V	0.28 V
⊻інн	1.11 V	1.19 V	1.04 V

MOTOROLA MILITARY MECL DATA 4-30

Test Temperature	Test Voltage Values (Volts)										
Temperature	VíH	VIL	VIHA	VILA	VEE	VEEL					
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2					
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2					
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2					

Symbol	Parameter		Limits Units TEST VOLTAGE APPLIED TO PINS BELOW												
	Functional	+ 25 °C + 85 °C - 30 °C hal Subgroup 1 Subgroup 2 Subgroup 3					Pinouts referenced are for DIL package, check Pin Assignments $V_{CC} = 0.0 V$, Output Load = 50 Ω to - 2.0 V								
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	Vcc	VEE	P.U.T.
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v		4 - 7, 10 - 13			1, 16	8	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	V	4 - 7, 10 - 13				1, 16	8	2, 3, 14, 15
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v				4 - 7, 10 - 13	1, 16	8	2, 3, 14, 15
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v			4 - 7, 10 - 13		1, 16	8	2, 3, 14, 15
IEE	Power Supply Drain Current	-56		-56		-56		mA					1, 16	8	8
INH	Input Current High		350		350		350	μA	4 - 7, 10 - 13				1, 16	8	4 - 7, 10 - 13
INL	Input Current Low	0.5		0.3		0.5		μA		4 - 7, 10 - 13			1, 16	8	4 - 7, 10 - 13

Test	Test Voltage Values (Volts)									
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEL	Vcc			
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0			
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0			
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0			

Symbol	Parameter	ameter Limits								TEST VOLTAGE APPLIED TO PINS BELOW				
	-	+ 2	5 °C	+ 8	5 °C	- 30	D∘C		Pinouts	referenced are for D	• •		signments	
	Functional Parameters:	Subgroup 9		Subgroup 10		Subgroup 11]		Output Load = 50 Ω to GND				
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEL	P.U.T.	
t _{TLH}	Rise Time		2.1		2.3		2.2	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
tthr.	Fall Time		2.1		2.3		2.2	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
^t PHL	Propagation Delay High to Low A, B and D		1.9		2.1		2.0	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
^t PLH	Propagation Delay Low to High A, B and D		2.1		2.1		2.1	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
tPHL	Propagation Delay High to Low C		2.0		2.2		2.1	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	
tPLH	Propagation Delay Low to High C		2.1		2.1		2.1	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15	

Quad 2-Input OR Gate

ELECTRICALLY TESTED PER: MPG 1664 (- 30°C to + 85°C)

- PD = 240 mW typ/pkg
- t_{pd} = 0.9 ns typ (510 ohm load)
 = 1.1 ns typ (50 ohm load)
- Full Load Current, IL = 25 mAdc max

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage (V _{CC} = 0)	VCC	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	Ð	VEĖ	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _Α	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN
			(CONDITION C)
V _{CC1}	1	5	GND
AOUT	2	6	51 Ω to V _{TT}
BOUT	3	7	51 Ω to V _{TT}
AIN1	4	8	GND
AIN2	5	9	OPEN
BIN1	6	10	GND
BIN2	7	11	OPEN
VEE	8	12	VEE
N.C.	9	13	OPEN
CIN1	10	14	GND
CIN2	11	15	OPEN
DIN1	12	16	GND
D _{IN2}	13	1	OPEN
COUT	14	2	51 Ω to VTT
DOUT	15	3	51 Ω to VTT
V _{CC2}	16	4	GND

BURN - IN CONDITIONS: VTT = -2.0 V MAX/-2.2 V MIN VEE = -5.7 V MAX/-5.2 V MIN

Military 1664

AVAILABLE AS

- 1) JAN: N/A 2) SMD: N/A
- 3) 883: N/A 4) 1664/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

Figure 1. Test Circuit

NOTES

- 1. Coaxial cables (Equal lengths, typ 2 places) to scope.
- 2. $t_r = t_f = 1.5 \text{ ns} \pm 0.2 \text{ ns}.$

- 3. PRR = 20 MHz, 50% duty cycle.
- 4. Unused outputs connected to a 50 Ω resistor to ground.

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
∨інн	1.11 V	1.185 V	1.041 V

MOTOROLA MILITARY MECL DATA 4-34

Δ

Test	Test Voltage Values (Volts)									
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA				
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2				
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2				
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2				

Symbol	Parameter	1		Lin	nits			Units		TEST	OLTAGE A	PPLIED TO P	PINS BEI	.ow	
	Functional	+ 25 °C + 85 °C Subgroup 1 Subgroup 2			- 30 °C Subgroup 3			Pinouts		ackage, che Load = 50 Ω		-	ents		
Parameters:	Min	Max	Min	Max	Min	Max	{	VIH	VIL	VIHA	VILA	Vcc	VEE	P.U.T.	
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	4 - 7, 10 - 13				1, 16	8	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v		4 - 7, 10 - 13			1, 16	8	2, 3, 14, 15
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v			4 - 7, 10 - 13		1, 16	8	2, 3, 14, 15
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v				4 - 7, 10 - 13	1, 16	8	2, 3, 14, 15
^I EE	Power Supply Drain Current	-56						mA					1, 16	8	8
INH	Input Current High		350					μA	4 - 7, 10 - 13				1, 16	8	4 - 7, 10 - 13
INL	Input Current Low	0.5						μA		4 - 7, 10 - 13			1, 16	8	4 - 7, 10 - 13

1664 QUIESCENT LIMIT TABLE

Test	Test Voltage Values (Volts)									
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEL	Vcc			
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0			
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0			
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0			

Symbol	Parameter	Limits						Units	TEST VOLTAGE APPLIED TO PINS BELOW				
		+ 25 °C + 85 °		5 °C	- 30 °C			Pinouts referenced are for DIL package, check Pin Assignments					
Functional Parameters:	Subgroup 9		Subgroup 10		Subgroup 11		1		Output Loa	ad = 50 Ω to G	AND		
	Min	Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VEEA	P.U.T.	
t _{TLH}	Rise Time		2.1		2.3		2.2	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15
tTHL.	Fall Time		2.1		2.3		2.2	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15
^t PHL	Propagation Delay High to Low	0.6	1.7	0.6	1.9	0.6	1.8	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15
tPLH	Propagation Delay Low to High	0.6	1.5	0.6	1.7	0.6	1.6	ns	5, 6 11, 12	2, 3, 14, 16	1, 16	8	2, 3, 14, 15

Dual Clocked Latch

ELECTRICALLY TESTED PER: MPG 1668 (- 30°C to + 85°C)

- PD = 220 mW typ/pkg
- t_{pd} = 1.6 ns typ (510 ohm load)
 = 1.8 ns typ (50 ohm load)

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	Vcc	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	т _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _A	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN (CONDITION C)
VCC1	1	5	GND
Q ₁	2	6	51 Ω to VTT
Q1	3	7	51 Ω to V _{TT}
R ₁	4	8	OPEN
S ₁	5	9	GND
D ₁	6	10	OPEN
C ₁	7	11	OPEN
VEE	8	12	VEE
C ₂	9	13	OPEN
N.C.	10	14	OPEN
D ₂	11	15	OPEN
S2	12	16	GND
R ₂	13	1	OPEN
\overline{Q}_2	14	2	51 Ω to VTT
Q ₂	15	3	51 Ω to V _{TT}
V _{CC2}	16	4	GND

BURN - IN CONDITIONS:

VTT = -2.0 V MAX/-2.2 V MIN VEE = -5.7 V MAX/-5.2 V MIN

NOTICE: END OF LIFE — FINAL ORDERS MUST BE PLACED BY DECEMBER 31, 1991

Military 1668

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1668/BXA *

4) 1668/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

S	R	D	С	Q _{n + 1}
0	0	¢	0	Qn
1	0	¢	0	1
0	1	•	0	0
1	1	¢	0	
φ	φ	o	1	0
¢	¢	1	1	1

 $\phi = \text{Don't Care}$

TRUTH TABLE

** Output state not defined

Figure 1. Set and Reset Switching Test Circuit

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
VIHH	1.11 V	1.185 V	1.041 V

NOTES

1. Input Pulse Characteristics:

a) Frequency A, B, D = 1.0 MHz.

b) Frequency C = 2.0 MHz.
 c) Duty Cycle = 50%.
 2. t_f = t_f = 2.0 ns (20% - 80%).

1668 QUIESCENT LIMIT TABLE

Test		Test Voltage Values (Volts)								
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA				
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2				
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2				
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2				

Symbol	Parameter			Lin	nits			Units		TEST	OLTAGE A	PPLIED TO P	PINS BEL	.OW	
I	Functional	+ 2 Subgr	5 °C		5 °C roup 2) °C roup 3		Pinoute	referenced Vcc = 0.	are for DIL p 0 V, Output I	• •		-	ents
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	Vcc	VEE	P.U.T.
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	4 - 7, 9, 11 - 13	4 - 7, 9, 11 - 13			1, 16	8	2, 3, 14, 15
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	4 - 7, 9, 11 - 13	4 - 7, 9, 11 - 13			1, 16	8	2, 3, 14, 15
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v		4 - 7, 9, 11 - 13	4 - 7, 9, 11 - 13	4 - 7, 9, 11 - 13	1, 16	8	2, 3, 14, 15
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v		4 - 7, 9, 11 - 13	4, 5, 7, 12, 13	4 - 7, 9, 11 - 13	1, 16	8	2, 3, 14, 15
IEE	Power Supply Drain Current	-55	-6					mA	7, 9				1, 16	8	8
INH1	Input Current High		370					μA	4 - 7, 9, 11 - 13				1, 16	8	4 - 6, 11 - 13
INH2	Input Current High		225					μА	7, 9	1			1, 16	8	7, 9
INL	Input Current Low	0.5						μА		4 - 7, 9, 11 - 13			1, 16	8	4 - 7, 9, 11 - 13

MOTOROLA MILITARY MECL DATA 4-40

Test		Т	Test Voltage Values (Volts)								
Temperature	VIH	٧IL	VIHA	VILA	VEE	VEEL	Vcc				
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0				
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0				
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0				

Symbol	Parameter			Lin	nits			Units		TEST VOLTAGE	APPLIED TO	PINS BELO	W
	Functional Parameters:	+ 2 Subgi	5 °C roup 9		5 °C oup 10	- 30 Subgr) °C oup 11	-	Pinouts	referenced are for DI Output Loa	IL package, c ad = 50 Ω to (ignments
		Min	Max	Min	Max	Min	Max	1	VIN	Vout	Vcc	VEEA	P.U.T.
tτ∟н	Rise Time	0.8	2.5	0.9	2.9	0.8	2.8	ns	4 - 7, 9, 11 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
^t THL	Fall Time	0.5	2.2.	0.5	2.6	0.5	2.4	ns	4 - 7, 9, 11 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
^t pd	Propagation Delay Clock to Output	1.0	2.5	1.1	2.8	1.0	2.7	ns	4 - 7, 9, 11 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15
^t pd	Propagation Delay S/R to Output	1.0	2.3	1.1	2.7	1.0	2.5	ns	4 - 7, 9, 11 - 13	2, 3, 14, 15	1, 16	8	2, 3, 14, 15

ELECTRICALLY TESTED PER: MPG 1670 (- 30°C to + 85°C)

Master slave construction renders the 1670 relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output.

When both clock inputs (C1 and C2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when dock input (C1 "OR" C2) are taken from a low to a high level. In other words, the output state of the flip-flop changes on the positive transition of the clock pulse.

While either C1 "OR" C2 is in the high state, the "Master" (and data input) is disabled. Asynchronous Set (S) and Reset (R) override Clock (C) and Data (D) Inputs.

- P_D = 220 mW typ/pkg (No Load)
- fTOG = 350 MHz typ

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	VCC	- 8.0	0	Vdc
Base Input Voltage (V _{CC} = 0)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	т _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _Α	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN (CONDITION C)
V _{CC1}	1	5	GND
Q	2	6	51 Ω to V _{TT}
Q	3	7	51 Ω to V _{TT}
Reset	4	8	OPEN
Set	5	9	GND
N.C.	6	10	OPEN
Clock 1	7	11	OPEN
VEE	8	12	VEE
Clock 2	9	13	OPEN
N.C.	10	14	OPEN
Data	11	15	OPEN
N.C.	12	16	GND
N.C.	13	1	OPEN
N.C.	14	2	51 Ω to VTT
N.C.	15	3	51 Ω to VTT
V _{CC2}	16	4	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX/ - 2.2 V MIN$ $V_{EE} = -5.7 V MAX/ - 5.2 V MIN$

Military 1670

* 883 Processing (Non-Compliant)

TRUTH TABLE

R	S	D	С	Q _{n + 1}
L	н	¢	¢	н
н	L	¢	φ	L
н	н	¢	φ	N.D.
L	L	L	L	Qn
<u>ι</u>	L	L	2	L
L	L	L	н	Q _n Q _n
L	L	н	L	Qn
L	L	н	2	н
L	L	н	н	Qn
ND = N	ot Define	d		

N.D. = Not Defined

φ = Don't Care

NOTE

1. All input and output cables to the scope are equal lengths of 50 ohm coaxial cable

Figure 1. Switching Test Circuit

Figure 3. Switching Waveforms

Temp.	25°C	85°C	– 30°C
VIHH	1.11 V	1.185 V	1.041 V
VILL	0.31 V	0.337 V	0.285 V

MOTOROLA MILITARY MECL DATA 4-44

4

NOTE

All input and output cables to the scope are equal lengths of 50 ohm coaxial cable

Figure 4. Toggle Frequency Test Circuit

NOTES

- 1. The maximum toggle frequency of the device has been exceed when either:
 - a) The output peak to peak voltage swing falls below 600 mV, or
 - b) The device ceases to toggle (devide by two).

Temp.	25°C	85°C	– 30°C
VIHH	1.11 V	1.185 V	1.041 V
VILL	0.31 V	0.337 V	0.285 V
VBias	0.71 V	0.761 V	0.663 V

NOTES

1. All input and output cables to the scope are equal lengths of 50 ohm coaxial cable 2. $t_r = t_f = 1.5 \text{ ns} \pm 0.2 \text{ ns} (10\% \text{ to } 90\%).$

NOTES

1. Set up time is the minimum time before the positive transition of the clock pulse (C) that information must be present at the data (D) input. 2. Hold time is the minimum time after the positive transition of the clock pulse (C) that the information must remain unchanged at the data (D) input.

Temp.	25°C	85°C	– 30°C
VIHH	1.11 V	1.185 V	1.041 V
VILL	0.31 V	0.337 V	0.285 V

Figure 7. Setup Time and Hold Waveforms

MOTOROLA MILITARY MECL DATA 4-46

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA	Vcc							
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0							
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0							
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0							

Symbol	Parameter			Lin	nits			Units		Т	EST VOL	TAGE APPL	IED TO P	NS BEL	ow	
j	Functional	+ 25 Subgr		+ 85 °C Subgroup 2		- 30 °C Subgroup 3			Pin	Pinouts referenced are for DIL package, check Pin Assignme Output Load = 50 Ω to - 2.0 V					nts	
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	P1-3	Vcc	VEE	P.U.T.
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v		4, 5, 7, 9, 11			4, 5	1, 16	8	2, 3
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v		4, 5, 7, 9, 11			4, 5	1, 16	8	2, 3
VOHA	High Output Voltage	- 0.98	- 0.826	- 0.91	- 0.713	- 1.065	- 0.892	v	11	11	11	4, 5, 7, 9, 11	4, 5, 7, 9	1, 16	8	2, 3
VOLA	Low Output Voltage	- 1.828	- 1.60	- 1.808	- 1.555	- 1.867	- 1.63	v			7, 11	4, 5, 7, 9, 11	4, 5, 7, 9	1, 16	8	2, 3
IEE	Power Supply Drain Current	-48						mA	7, 9					1, 16	8	8
INH1	Input Current High		550					μA	4, 5					1, 16	8	4, 5
INH2	Input Current High		250					μA	7, 9					1, 16	8	7, 9
INH3	Input Current High		270					μA	11					1, 16	8	11
INL	Input Current Low	0.5						μA	7, 11	4, 5, 7, 9, 11				1, 16	8	4, 5, 7, 9, 11

4

MOTOROLA MILITARY MECL DATA 4-47

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEL	Vcc							
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0							
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0							
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0							

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
		+ 25 °C + 85 °C		- 30	0 °C		Pinouts referenced are for DIL package, check Pin Assignments								
	Functional Parameters:	Subg	Subgroup 9		Subgroup 10		Subgroup 11		Output Load = 50 Ω to GND						
		Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEA	Data	P.U.T.	
^t TLH	Rise Time	0.6	2.5	0.6	2.9	0.5	2.7	ns	4, 5, 9, 11	2, 3	1, 16	8		2, 3	
tTHL	Fall Time	0.6	1.9	0.6	2.3	0.5	2.1	ns	4, 5, 9, 11	2, 3	1, 16	8		2, 3	
^t pd	Propagation Delay High to Low	1.1	2.5	1.1	2.9	1.0	2.7	ns	4, 5, 9, 11	2, 3	1, 16	8		2, 3	
^t pd	Propagation Delay Low to High	1.1	2.5	1.1	2.9	1.0	2.7	ns	4, 5, 9, 11	2, 3	1, 16	8		2, 3	
fTog	Toggle Frequency	300		270		270		MHz	3	2	1, 16	8	11	2	
ts	Set-Up Time ^t s"1" ^t s"0"		0.4 0.5					ns ns	6 6	2	1, 16 1, 16	8 8	11 11	2 2	
^t h	Hold Time t _{s"1} " t _{s"0"}		0.6 0.5					ns ns	6 6	2 2	1, 16 1, 16	8 8	11 11	2 2	
tReset	Reset	1.1	3.0	1.1	3.4	1.0	3.2	ns	6	2	1, 16	.8	11	2	

* Temperature Limits are guaranteed but not tested.

MOTOROLA MILITARY MECL DATA 4-48

Triple 2-Input Exclusive-OR Gate

ELECTRICALLY TESTED PER: MPG 1672 (- 30°C to + 85°C)

- PD = 220 mW typ/pkg
- t_{pd} = 1.1 ns typ (510 ohm load) = 1.3 ns typ (50 ohm load)
- Full Load Current, IL = 25 mAdc max

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	Vcc	- 8.0	0	Vdc
Base Input Voltage (V _{CC} = 0)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40 ·	mAdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _Α	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN (CONDITION C)
V _{CC1}	1	5	GND
AOUT	2	6	51 Ω to V _{TT}
AIN1	з	7	GND
N.C.	4	8	OPEN
AIN2	5	9	OPEN
BIN2	6	10	OPEN
CIN2	7	11	OPEN
VEE	8	12	VEE
N.C.	9	13	OPEN
N.C.	10	14	OPEN
C _{IN1}	11	15	GND
N.C.	12	16	OPEN
B _{IN1}	13	1	GND
BOUT	14	2	51 Ω to V_{TT}
COUT	15	3	51 Ω to VTT
V _{CC2}	16	4	GND

BURN - IN CONDITIONS:
$V_{TT} = -2.0 V MAX - 2.2 V MIN$
VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 1672

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1672/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

Figure 1. Test Circuit

NOTES

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.
- 2. $t_{f} = t_{f} = 1.5$ ns (measured between 10% and 90%).
- 3. Frequency = 20 MHz.

4. 50% duty cycle.

- 5. For VOUT,1 apply VIN to input A and VILL to input B.
- 6. For VOUT,2 apply VIN to input A and VIHH to input B.
- 7. Unused outputs connected to a 50 Ω resistor to ground.

Figure 2. Test Circuit Waveforms

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
VIHH	1.11 V	1.185 V	1.041 V

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA						
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2						
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2						
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units		TEST	OLTAGE A	PPLIED TO I	PINS BEI	ow	
	Functional Parameters:	+ 25 °C Subgroup 1		+ 85 °C Subgroup 2		- 30 °C Subgroup 3			Pinouts	Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0.0 V, Output Load = 50 Ω to - 2.0 V					
	raiameters.	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA	VILA	Vcc	VEE	P.U.T.
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	8 - 11, 14, 16	8 - 11, 14, 16			1, 16	8	2, 3, 6
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	8 - 11, 14, 16	8 - 11, 14, 16			1, 16	8	2, 3, 6
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v			8 - 11, 14, 16	8 - 11, 14, 16	1, 16	8	2, 3, 6
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v			8 - 11, 14, 16	8 - 11, 14, 16	1, 16	8	2, 3, 6
IEE	Power Supply Drain Current	-55		-61		-61		mA	8 - 11, 14, 16				1, 16	8	2
INH1	Input Current High		350		590		590	μA	8, 14, 16				1, 16	8	8, 14, 16
IINH2	Input Current High		270		460		460	μA	10, 11				1, 16	8	10, 11
INL	Input Current Low	0.5		0.3		0.5		μА		8 - 11, 14, 16			1, 16	8	8 - 11, 14, 16

NOTE This table is for DIL only.

1672 QUIESCENT LIMIT TABLE

Test		Test Voltage Values (Volts)												
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEL	Vcc							
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0							
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0							
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0							

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE AP	PLIED TO	PINS BEL	ow	
	Functional Parameters:		5 °C roup 9	+ 85 °C Subgroup 10		- 30 °C Subgroup 11			Pin	Pinouts referenced are for DIL package, check Pin Assignments Output Load = 50 Ω to GND						
		Min	Max	Min	Max	Min	Max		VIN	VOUT	Vcc	VEEA	VIHC	VILC	P.U.T.	
^t pd	Propagation Delay (t3+2+), (t3+2-), (t13+14+)		1.9		2.4		2.1	ns	3, 13	2, 14	1, 16	8	5	5, 6	2, 14	
^t pd	Propagation Delay (t3+2+), (t3+2-), t13-14-)(t11+15+) (t11+t15-)		2.0		2.5		2.2	ns	3, 11, 13	2, 14, 15	1, 16	8	5, 6, 7	5, 6, 7	2, 14, 15	
^t pd	Pròpagation Delay (t5+2+)(t5+2-) (t16+14+)(t16+14-) (t11-15+)(t7+15+) (t7+15-)		2.3		2.8		2.5	ns	5, 6, 7, 11	2, 14, 15	1, 16	8	3, 7, 11, 13	3, 11, 13	2, 14, 15	
^t pd	Propagation Delay (t5-2+)		2.5		3.0		2.7	ns	5	2	1, 16	8	3		2	
^t pd	Propagation Delay (t5-2-)(t6-14+)(t7-15-)		2.6		3.1		2.8	ns	5, 6, 7	2, 14, 15	1, 16	8	13	3, 11	2, 14, 15	
^t pd	Propagation Delay (t13-14+)(t11-15-)		2.1		2.6		2.3	ns	11, 13	14, 15	1, 16	8	6	7	14, 15	
^t pd	Propagation Delay (t6-14-)		2.7		3.2		2.9	ns	6	14	1, 16	8		13	14	
^t pd	Propagation Delay (t7-15-)		2.6		3.1		2.7	ns	7	15	1, 16	8	11		15	

NOTE This table is for DIL only.

Bi-Quinary Counter

ELECTRICALLY TESTED PER: MPG 1678 (- 30°C to + 85°C)

The 1678 is a 4-bit counter capable of divide-by-two, divide-by-five, or divide-by-10 function. When used independently, the divide-by-two section will toggle at 350 MHz typically, while the divide-by-five section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the clock pulse.

Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

 DC Input Factor 	R	2.40
	Clk	0.77
	C2	1.23
	S	1.00

- Power Dissipation = 750 mW typ
- fTog = 350 MHz typ

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	VCC	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	0	VEE	Vdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	Τ _A	- 30	+ 85	°C

PIN	ASSIGNMENTS
	ACCIDICITION

, in Additional and a					
FUNCTION	DIL	BURN-IN			
		(CONDITION C)			
V _{CC1}	1	GND			
C2	2	OPEN			
S ₂	3	GND			
Q ₂	4	51 Ω to VTT			
$\overline{Q_3}$	5	51 Ω to V _{TT}			
Q ₃	6	51 Ω to VTT			
S ₃	7	GND			
VEE	8	VEE			
Reset	9	OPEN			
s ₁	10	GND			
Q ₁	11	51 Ω to VTT			
Q ₀	12	51 Ω to VTT			
$\overline{Q_0}$	13	51 Ω to VTT			
s ₀	14	GND			
Clock	15	OPEN			
V _{CC2}	16	GND			

BURN - IN CONDITIONS:

VTT = -2.0 V MAX/-2.2 V MIN VEE = -5.7 V MAX/-5.2 V MIN

VEE = -5.7 V MAX - 5.2 V MIN

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: N/A 4) 1678/BXA * X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E

* 883 Processing (Non-Compliant)

LOGIC DIAGRAM

1678

TOUTU TADI C

TRUTH TABLE										
D	с	s	R	Q	ā					
0	0	0	0	Q _{n + 1}	<u>Q</u> n + 1					
0	0	0	1	0	1					
0	0	1	0	1	0					
0	0	1	1	•	•					
0	1	0	0	1	0					
0	1	0	1	0	1					
0	1	1	0	1	0					
o	1	1	1	•	•					
1	0	0	0	Q _{n + 1}	Qn + 1					
1	0	0	1	0	1					
1	0	1	0	1	0					
1	0	1	1	•	•					
1	1	0	0	0	1					
1	1	0	1	0	1					
1	1	1	0	1	0					
1	1	1	1	•	•					

Output State Undefined

Figure 1. State Diagram

4

+ 2.0 V 卞

Scope B

NOTES

- 1. Sine Wave generator AC coupled HP3200B or equivalent.
- 2. V_OUT = 600 mV min. peak to peak. Output at scope will be $1\!\!\!/_2$ actual at V_IN. 3. CP = Sine Wave

Figure 2. Toggle Frequency Test Circuit

Temp.	25°C	85°C	– 30°C
VOUT 13	150	135	135
VOUT 6	55	50	50

All in MHz min.

Clock input

Temp.	25°C	85°C	– 30°C
VIHH	1.11 V	1.185 V	1.041 V
VILL	0.31 V	0.337 V	0.285 V
VBIAS	0.70 V	0.76 V	0.65 V

1678

Figure 4. Switching Test Circuit

NOTES

1. $t_{f} = t_{f} = 1.5 \text{ ns} \pm 0.2 \text{ ns}.$

2. f_{req} = 25 MHz.

Figure 5. Setup and Hold Waveforms

Temp.	Temp. 25°C		– 30°C
VIHH	1.11 V	1.185 V	1.04 1V
VILL	0.31 V	0.337 V	0.285 V

MOTOROLA MILITARY MECL DATA 4-56

1678 QUIESCENT LIMIT TABLE

Test Temperature	Test Voltage Values (Volts)								
	VIH	VIL	VIHA	VILA	VEE	VEEA			
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2			
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2			
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2			

Symbol	Parameter		Limits						Inits TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:	+ 25 Subgr			5 °C roup 2) °C roup 3		Pinouts referenced are for DIL package, check Pin Assignments V _{CC} = 0.0 V, Output Load = 50 Ω to - 2.0 V			nents				
	Falaneteis.	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA	VILA	٧ _R	Vcc	VEE	P.U.T.
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	3, 7, 9, 10, 14				4 - 6, 11 - 13	1, 16	8	4 - 6, 11 - 13
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	7, 9, 10, 14				4 - 6, 11 - 13	1, 16	8	4 - 6, 11 - 13
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	· - 0.7	- 1.065	- 0.875	v	10		3, 7, 9, 10, 14	7, 9, 14	4 - 6, 11 - 13	1, 16	8	4 - 6, 11 - 13
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v	10		7, 9, 14	3, 7, 9, 10, 14	4 - 6	1, 16	8	4 - 6
IEE	Power Supply Drain Current	- 200						mA	2, 3, 7, 9, 10, 14, 15					1, 16	8	8
linh1	Input Current High		450					μА	3, 7, 10, 14, 15					1, 16	8	3, 7, 9, 10, 14, 15
INH2	Input Current High		700					μA	2					1, 16	8	2
Іілнз	Input Current High		1.0					mA	9					1, 16	8	9
INL	Input Current Low	0.5						μA		2, 3, 7, 9, 10, 14, 15				1, 16	8	2, 3, 7, 9, 10, 14, 15

CAUTION: This device dissipates 750 to 900 mW of power. Use heat sink if operating over 50 seconds at $T_A \ge 25^{\circ}C$.

1678 QUIESCENT LIMIT TABLE

Test	Test Voltage Values (Volts)									
Temperature	VIH	VIL	VIL VIHA VILA V		VEE	VEEA	Vcc			
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+5.0			
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+5.0			
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+5.0			

Symbol	Parameter	Limits						Units	TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional	+ 25 °C + 85 °C		- 30	- 30 °C		Pinouts referenced are for DIL package, check Pin Assignments							
	Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11	1	Output Load = 50 Ω to GND					
	Min	Max	Min	Max	Min	Max	1	VIN	VOUT	Vcc	VEEA	C _{P1-2}	P.U.T.	
^t TLH	Rise Time		2.7		3.1		2.9	ns	14	12, 13	1, 16	8		12, 13
t THL	Fall Time		2.6		3.0		2.8	ns	14	12, 13	1, 16	8		12, 13
^t pd	Propagation Delay C1 Limits		2.7		3.1		2.9	ns	14	12, 13	1, 16	8		12, 13
^t pd	Propagation Delay C2 Limits		3.0		3.4		3.2	ns	2	4, 5, 6, 11	1, 16	8		4, 5, 6, 11
tSet	Set Limits		3.7		4.1		3.9	ns	3, 7, 9, 10, 14	4 - 6, 6 - 13	1, 16	8		4 - 6, 6 - 13
tReset	Reset Limits		4.5		4.9		3.9	ns	3, 7, 9, 10, 14	4 - 6, 6 - 13	1, 16	8		4 - 6, 6 - 13
f _{Tog1}	Toggle Frequency +by 2	300		270		260		MHz			1, 16	8	15	
f _{Tog2}	Toggle Frequency +by 5	275		250		250		MHz			1, 16	8	3	

* Temperature limits are guaranteed but not tested.

UHF Prescaler **Type D Flip-Flop**

ELECTRICALLY TESTED PER: MPG 1690 (- 30°C to + 85°C)

• PD = 220 mW typ/pkg (No Load)

• fTog = 500 MHz min.

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	Vcc	- 8.0	0	Vdc
Base Input Voltage (V _{CC} = 0)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	T _{stg}	- 55	+ 125	°C
Operating Temperature Range	TA	- 30	+ 85	°C

PIN ASSIGNMENTS

	T III AOC		
FUNCTION	DIL	FLATS	BURN-IN (CONDITION C)
V _{CC1}	1	5	GND
Q	2	6	51 Ω to V_{TT}
Q	3	7	51 Ω to V _{TT}
NC	4	8	OPEN
NC	5	9	OPEN
NC	6	10	OPEN
C ₁	7	11	OPEN
VEE	8	12	VEE
C ₂	9	13	OPEN
NC	10	14	OPEN
D ₁	11	15	OPEN
D ₂	12	16	OPEN
NC	13	1	OPEN
NC	14	2	OPEN
NC	15	3	OPEN
V _{CC2}	16	4	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX/ - 2.2 V MIN$ VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 1690

AVAILABLE AS

- 1) JAN: N/A 2) SMD: N/A
- 3) 883: N/A 4) 1690/BXA *
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CERFLAT: F

* 883 Processing (Non-Compliant)

TRUTH TABLE

С	D	Q _{n + 1}
L	¢	Q _n
н	¢	Qn
L	L	L
Г	н	н

C = C1 + C2

D = D1 + D2

 $\phi = \text{Don't Care}$

NOTES

1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.

2. 50 Ω termination to ground located in each scope channel.

Temp.	25°C	85°C	– 30°C
VILL	0.31 V	0.337 V	0.285 V
VIHH	1.11 V	1.185 V	1.041 V

1690

NOTES

1. The maximum toggle frequency of the device has be exceeded when either:

- a) The output peak to peak voltage swing falls below 600 mV, or
- b) The device ceases to toggle (divide by two).

Figure 2. Toggle Frequency Waveforms

1690 QUIESCENT LIMIT TABLE

Test	Test Voltage Values (Volts)										
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA					
T _A = 25 °C	-0.81	-1.95	-1.13	-1.48	-5.2	-3.2					
T _A = 85 °C	-0.70	-1.95	-1.07	-1.44	-5.2	-3.2					
T _A = -30 °C	-0.875	-1.95	-1.17	-1.515	-5.2	-3.2					

Symbol	Parameter			Lin	nits			Units		TEST VOL	TAGE AF	PLIED TO	PINS BE	LOW	
	Functional	+ 25	5 °C	+ 8	5 °C	- 30)°C		Pinouts referenced are for DIL package, check Pin Assignment					ents	
	Functional Parameters:	Subgr	proup 1 Subgroup 2 Subgroup 3 $V_{CC} = 0.0 V$, Output Load = 50 Ω to - 2.0 V							v					
		Min	Max	Min	Max	Min	Max		VIH	VIL	PA	P1-8	Vcc	VEE	P.U.T.
VOH	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	V	7, 11	12	7		1, 16	8	2, 3
VOL	Low Output Voltage	- 1.95	- 1.63	- 1.95	- 1.60	- 1.95	- 1.63	V	9, 12	12	9		1, 16	8	2, 3
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	V	11	11		7, 11	1, 16	8	2, 3
VOLA	Low Output Voltage	- 1.95	- 1.63	- 1.95	- 1.60	- 1.95	- 1.63	V	12	12		9, 12	1, 16	8	2, 3
IEE	Power Supply Drain Current	-59		-65		-65		mA	7, 9, 11, 12				1, 16	8	8
linH1	Input Current High		260		400		400	μА	7, 9				1, 16	8	7, 9
INH2	Input Current High		280		435		435	μA	11, 12				1, 16	8	11, 12
INL	Input Current Low	0.5		0.3		0.5		μΑ		7, 9, 11, 12			1, 16	8	7, 9, 11, 12

* For P1 - P8 refer to figure 3.

MOTOROLA MILITARY MECL DATA 4-62

1690 QUIESCENT LIMIT TABLE

Test	Test Voltage Values (Volts)										
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEA					
T _A = 25 °C	-0.81	-1.95	-1.13	-1.48	-5.2	-3.2					
T _A = 85 °C	-0.70	-1.95	-1.07	-1.44	-5.2	-3.2					
T _A = -30 °C	-0.875	-1.95	-1.17	-1.515	-5.2	-3.2					

Symbol	Parameter	Limits							TEST VOLTAGE APPLIED TO PINS BELOW						
		+ 2	+ 25 °C		+ 85 °C		+ 85 °C		- 30 °C		Pinouts referenced are for DIL package, check Pin Assignment				
1	Functional Parameters:	Parameters: Subgroup 9 Subgroup 10 Subgroup 11 Outp					utput Load =	t Load = 50 Ω to GND							
		Min	Max	Min	Max	Min	Max	1 1	VIN	VOUT	Vcc	VEEA	P.U.T.		
ttlh	Rise Time		1.3					ns	7, 11	2	1, 16	8	2		
^t THL	Fall Time		1.3					ns	7, 11	2	1, 16	8	2		
tpd	Propagation Delay		1.5					ns	7, 11	2	1, 16	8	2		
tsetup	Setup Time		0.3					ns	7, 11	2	1, 16	8	2		
tHold	Hold Time		0.3					ns	7, 11	2	1, 16	8	2		
fTog	Toggle Frequency	500		500		500		MHz	7, 11	2	1, 16	8	2		

Quad Line Receiver with Bias Driver

ELECTRICALLY TESTED PER: MPG 1692 (- 30°C to + 85°C)

- PD = 220 mW typ/pkg
- t_{pd} = 0.9 ns typ (510 ohm load)
 = 1.1 ns typ (50 ohm load)
- Full Load Current, I_L = 25 mAdc max

ABSOLUTE MAXIMUM RATINGS:	Symbol	Min	Max	Unit
Power Supply Voltage ($V_{CC} = 0$)	Vcc	- 8.0	0	Vdc
Base Input Voltage ($V_{CC} = 0$)	VIN	0	VEE	Vdc
Output Source Current Continuous	ю		< 40	mAdc
Storage Temperature Range	T _{stg}	- 65	+ 165	°C
Operating Temperature Range	Τ _Α	- 30	+ 85	°C

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN (CONDITION C)
V _{CC1}	1	5	GND
AOUT	2	6	51 Ω to V_{TT}
BOUT	3	7	51 Ω to V _{TT}
AIN1	4	8	VBB
AIN2	5	9	GND
BIN2	6	10	GND
BIN1	7	11	VBB
VEE	8	12	VEE
V _{BB}	9	13	VBB
CIN1	10	14	VBB
CIN2	11	15	GND
DIN2	12	16	GND
DIN1	13	1	VBB
COUT	14	2	51 Ω to V_{TT}
DOUT	15	3	51 Ω to V_{TT}
V _{CC2}	16	4	GND

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 1692

Figure 1. Test Circuit and Waveforms

Temp.	25°C	85°C	– 30°C		
VILL	0.31 V	0.337 V	0.285 V		
VIHH	1.11 V	1.185 V	1.041 V		

4

1692 QUIESCENT LIMIT TABLE

Test Temperature	Test Voltage Values (Volts)											
	VIH	VIL	VIHA	VILA .	VEE	VEEA						
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2						
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2						
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2						

Symbol	Parameter			Lin	nits			Units		TES	ST VOLTA	GE APPL	GE APPLIED TO PINS BELOW				
	Functional	+ 25 Subgr		+ 85 °C Subgroup 2		- 30 °C Subgroup 3			Pinouts	Pinouts referenced are for DIL package, check Pin As V_{CC} = 0.0 V, Output Load = 50 Ω to - 2.0 V					-		
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA	VILA	VBB	Vcc	VEE	P.U.T.	
VOH	High Output Voltage	- 0.96	- 0.81	- 0.89	- 0.7	- 1.045	- 0.875	v	4, 7, 10, 13	4, 7, 10, 13			5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
VOL	Low Output Voltage	- 1.85	- 1.62	- 1.83	- 1.575	- 1.89	- 1.65	v	4, 7, 10, 13	4, 7, 10, 13			5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
VOHA	High Output Voltage	- 0.98	- 0.81	- 0.91	- 0.7	- 1.065	- 0.875	v		4, 7, 10, 13		4, 7, 10, 13	5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
VOLA	Low Output Voltage	- 1.85	- 1.60	- 1.83	- 1.555	- 1.89	- 1.63	v		4, 7, 10, 13	4, 7, 10, 13		5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
V _{BB1}	Reference Voltage	- 1.35	- 1.25	- 1.295	- 1.95	- 1.4	- 1.3	v					5, 6, 11, 12	1, 16	8	9	
IEE	Power Supply Drain Current	- 50						mA		4, 7, 10, 13			5, 6, 11, 12	1, 16	8	8	
liN	Input Current High		250					μA	4, 7, 10, 13	4, 7, 10, 13			4 - 7, 10 - 13	1, 16	8	4 - 7, 10 - 13	
I _R	Input Current High	- 100	100					μΑ		4, 7, 10, 13			4 - 7, 10 - 13	1, 16	8	4 - 7, 10 - 13	

MOTOROLA MILITARY MECL DATA 4-66

1692 QUIESCENT LIMIT TABLE

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIHA	VILA	VEE	VEEL	Vcc					
T _A = 25 °C	-0.81	-1.85	-1.095	-1.485	-5.2	-3.2	+2.0					
T _A = 85 °C	-0.70	-1.83	-1.025	-1.440	-5.2	-3.2	+2.0					
T _A = -30 °C	-0.875	-1.89	-1.180	-1.515	-5.2	-3.2	+2.0					

Symbol	Parameter			Lin	nits			Units		TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional	+ 25			5 °C)°C		Pinouts re	uts referenced are for DIL package, check Pin Assignments Output Load = 50 Ω to GND					
	Parameters:	Subgr			oup 10		oup 11			·					
		Min	Max	Min	Max	Min	Max		VIN	Vout	V _{BB}	Vcc	VEEL	P.U.T.	
ttlh	Rise Time	0.6	2.1	0.6	2.3	0.6	2.2	ns	4 - 7, 10, 13	2, 3, 14, 15	5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
t THL	Fall Time	0.6	2.1	0.6	2.3	0.6	2.2	ns	4 - 7, 10, 13	2, 3, 14, 15	5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
^t pd	Propagation Delay High to Low	0.6	1.7	0.6	1.9	0.6	1.8	ns	4 - 7, 10, 13	2, 3, 14, 15	5, 6, 11, 12	1, 16	8	2, 3, 14, 15	
^t pd	Propagation Delay Low to High	0.6	1.5	0.6	1.7	0.6	1.6	ns	4 - 7, 10, 13	2, 3, 14, 15	5, 6, 11, 12	1, 16	8	2, 3, 14, 15	

MOTOROLA MILITARY MECL DATA 4-67 4

ECLinPS

5

MOTOROLA MILITARY MECL DATA 5-1

8-Bit Synchronous Binary Up Counter

Product Preview ELECTRICALLY TESTED PER: 10E416

The 10E416 is a high-speed synchronous, presettable, cascadable 8-bit binary counter. Architecture and operation are the same as the 10H416 in the MECL 10H family, extended to 8-bits, as shown in the logic diagram.

The counter features internal feedback of \overline{TC} , gated by the TCLD (terminal count load) pin. When TCLD is LOW (or left open, in which case it is pulled LOW by the internal pull-downs), the \overline{TC} feedback is disabled, and counting proceeds continuously, with TC going LOW to indicate an all-one state. When TCLD is HIGH, the \overline{TC} feedback causes the counter to automatically reload upon $\overline{TC} = LOW$, thus functioning as a programmable counter.

- 700 MHz Min. Count Frequency
- 1000 ps CLK to Q, TC
- Internal TC Feedback (Gated)
- 8-Bit
- Fully Synchronous Counting and TC Generation
- Asynchronous Master Reset
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
P0 - P7	Parallel Data (Preset) Data
Q ₀ - Q ₇	Data Outputs
CE	Count Enable Control Input
PE	Parallel Load Enable Control Input
MR	Master Reset
CLK	Clock
TC	Terminal Count Output
TCLD	TC - Load Control Input

FUNCTION TABLE

CE	PE	TCLD	MR	CLK	Function
х	L	х	L	_ر	Load Parallel (Pn to Qn)
L	н	L	L	۔	Continuous Count
Ĺ	н	н	L	J	Count: Load Parallel on \overline{TC} = LOW
н	н	х	L	٦	Hold
х	Х	х	L	~_	Master Respond, Slaves Hold
х	Х	х	н	Ъ	Reset (Q _n : = LOW, TC: = HIGH)
= cl	ock pul	se (low to	high)		

→ = clock pulse (high to low)

Military 10E416

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: F

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter		Limits										
		+ 2	5° C	+ 125° C		- 5							
		Min	Max	Min	Max	Min	Max	1					
Voн	Output HIGH Voltage	-980	-810	TE	3A	Т	3A	mV					
VOL	Output LOW Voltage	-1950	-1630	TE	3A	TI	ЗA	mV					
VIH	Input HIGH Voltage	-1130	-810	TE	3A	T	ЗА	mV					
VIL	Input LOW Voltage	-1950	-1480	TBA		TI	ЗА	mV					
μL	Input LOW Current	0.5		TE	ЗА	ТІ	ЗА	μΑ					

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional	+ 2	+ 25° C		+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
ЧН	Input Current High		150		150		150	μΑ	
IEE	Power Supply Current		181		181		181	mA	

10E416

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 59	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
fcount	Maximum Count Frequency	700		700		700		MHz	
^t PLH	Propagation Delay to Output								
^t PHL	CLK to Q	600	1000	600	1000	600	1000	ps	
	MR to Q	600	1000	600	1000	600	1000	ps	
	CLK to TC (Q's loaded)	550	1050	550	1050	550	1050	ps	(Note 1)
	CLK to TC (Q's unloaded)	550	900	550	900	550	900	ps	(Note 1)
	MR to TC	625	1000	625	1000	625	1000	ps	
ts	Setup Time								
	Pn	150		150		150		ps	
	CE	600		600		600		ps	
	PE	600		600		600		ps	
	TCLD	500		500		500		ps	
tH	Hold Time				<u>`</u>				
	Pn	250		250		250		ps	
	CE	0	{	0		0		ps	
	PE	0		0		0		ps	
	TCLD	100		100		100		ps	
^t RR	Reset Recovery Time	900		900		900		ps	
^t PW	Minimum Pulse Width								
	CLK, MR	400		400		400		ps	
t _r t _f	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

1. CLK to TC propagation delay is dependent on the loading of the Q outputs. With all of the Q outputs loaded the noise generated in going from a IIII IIII state to a 0000 0000 state causes the CLK to TC+ delay to increase.

4-Input Quad OR/NOR Gate

Product Preview ELECTRICALLY TESTED PER: 10E501

The 10E501 is a quad 4-Input OR/NOR gate.

- 500 ps Max. Propagation Delay
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D _{0a} - D _{3d}	Data Inputs
Q ₀ - Q ₃	True Outputs
$\overline{Q_0} - \overline{Q_3}$	Inverting Outputs

000/

11 12

13

14

15

16

17

18

818

Q₀ [

Q1 [

VCC E

Q2 [

4

3

2

1

28

27

26

25

D1c

D1d

D2a

VEE

D2b

D2c

D2d

98765

19 20 21 22 23 24

10

Military 10E501

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter		Limits										
		+ 2	5° C	+ 12	25° C	- 5							
		Min	Max	Min	Max	Min	Max	1					
VOH	Output HIGH Voltage	-980	-810	TI	BA	Т	ЗА	mV					
VOL	Output LOW Voltage	-1950	-1630	TI	BA	TI	ЗА	mV					
VIH	Input HIGH Voltage	-1130	-810	ТІ	BA	ТІ	ЗА	mV					
VIL	Input LOW Voltage	-1950	-1480	ТВА		ТІ	ЗА	mV					
١L	Input LOW Current	· 0.5		ТВА		TBA		μA					

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
ήн	Input Current High D		150		150		150	μΑ	•
IEE	Power Supply Current		36		36		36	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter		Limits					Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
^t PLH ^t PHL	Propagation Delay to Output								
	D to Q	200	500	200	500	200	500	ps	
tSkew	Within-device Skew	5	0	5	0	5	0	ps	(Note 1)
tSkew	Within-Gate Skew	2	5	2	5	2	5	ps	(Note 2)
tr tf	Rise/Fall Times 20 - 80%	300	575	300	575	300	575	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Within-gate skew is defined as the variation in propagation delays of a gate when driven from its different inputs.

Quint 2-Input AND/NAND Gate

Product Preview ELECTRICALLY TESTED PER: 10E504

The 10E504 is a quint 2-input **AND/NAND** gate. The function output F is the OR of all five AND gate outputs, while \overline{F} is the NOR. The Q outputs need not be terminated if only the F outputs are to be used.

- 600 ps Max. Propagation Delay
- OR/NOR Function Outputs
- 75 kΩ Input Pulldown Resistors

PIN NAME

Function
Data Inputs
AND Outputs
NAND Outputs
OR Output
NOR Output

FUNCTION OUTPUTS

 $\mathsf{F} = (\mathsf{D}_{0a} \bullet \mathsf{D}_{0b}) + (\mathsf{D}_{1a} \bullet \mathsf{D}_{1b}) + (\mathsf{D}_{2a} \bullet \mathsf{D}_{2b}) + (\mathsf{D}_{3a} \bullet \mathsf{D}_{3b}) + (\mathsf{D}_{4a} \bullet \mathsf{D}_{4b})$

Military 10E504

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A 3) 883: Planned
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter	Limits										
		+ 2	5° C	+ 12	5° C	- 5						
-		Min	Max	Min	Max	Min	Max	1				
VOH	Output HIGH Voltage	-980	-810	Т	BA	TI	BA	mV				
VOL	Output LOW Voltage	-1950	-1630	Т	BA	Т	BA	mV				
VIH	Input HIGH Voltage	-1130	-810	Т	BA	TI	BA	mV				
VIL	Input LOW Voltage	-1950	-1480	TI	BA	TI	BA	mV				
կլ	Input LOW Current	0.5		т	ВА	ТІ	ВА	μA				

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 V \pm 5\%$; $V_{CC} = V_{CCO} = GND^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25 Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional	+ 2	+ 25° C		+ 125° C		5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
ĺН	Input High Current		200		200		200	μA	
IEE	Power Supply Current		46		46		46	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
^t PLH ^t PHL	Propagation Delay to Output								
	D to Q	225	600	225	600	225	600	ps	
	D to F	500	1000	500	1000	500	1000	ps	
^t Skew	Within-device Skew								
	D to Q	7	5	7	5	7	5	ps	(Note 1)
tr tf	Rise/Fall Times 20 - 80%								
	Q	275	700	275	700	275	700	ps	
	F	300	700	300	700	300	700	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

Quint 2-Input XOR/XNOR Gate

Product Preview ELECTRICALLY TESTED PER: 10E507

The 10E507 is a quint 2-input **XOR/XNOR** gate. The function output F is the OR of all five XOR outputs, while \vec{F} is the NOR. The Q outputs need not be terminated if only the F outputs are to be used.

- 600 ps Max. Propagation Delay
- OR/NOR Function Outputs
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D _{0a} - D _{4b}	Data Inputs
Q ₀ - Q ₄	XOR Outputs
$\overline{Q_0} - \overline{Q_4}$	XNOR Outputs
F	OR Output
F	NOR Output

FUNCTION OUTPUTS

 $\mathsf{F} = (\mathsf{D}_{0a} \oplus \mathsf{D}_{0b}) + (\mathsf{D}_{1a} \oplus \mathsf{D}_{1b}) + (\mathsf{D}_{2a} \oplus \mathsf{D}_{2b}) + (\mathsf{D}_{3a} \oplus \mathsf{D}_{3b}) + (\mathsf{D}_{4a} \oplus \mathsf{D}_{4b})$

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

LOGIC DIAGRAM

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter			Lin	Units			
		+ 2	+ 25° C		5° C	- 55		
		Min	Max	Min	Max	Min Max		1
Voн	Output HIGH Voltage	-980	-810	TI	ЗА	TE	BA	mV
VOL	Output LOW Voltage	-1950	-1950 -1630 TBA		TE	BA	mV	
VIH	Input HIGH Voltage	-1130	-810	Т	ЗA	TBA		mV
VIL	Input LOW Voltage	-1950	-1480 TBA		TBA		mV	
ι _{IL}	Input LOW Current	0.5		TI	TBA		BA	μA

10E Series DC CHARACTERISTICS: V_{EE} = -5.2 V ± 5%; V_{CC} = V_{CCO} = GND¹

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 2	+ 25° C + 125° C				– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
ЧΗ	Input High Current		200		200		200	μA	
¹ EE	Power Supply Current		50		50		50	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 125° C		– 55° C			
	Parameters:	Min	Min Max		Max	Min	Max	1	
tPLH tPHL	Propagation Delay to Output								
	D to Q	250	600	250	600	250	600	ps	
	D to F	500	1000	500	1000	500	1000	ps	
tSkew	Within-device Skew								
	D to Q	7	5	7	5	7	5	ps	(Note 1)
tr tf	Rise/Fall Times 20 - 80%								
	Q	275	700	275	700	275	700	ps	
	F	300	700	300	700	300	700	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

1:9 Differential Clock Driver

Product Preview ELECTRICALLY TESTED PER: 10E511

The 10E511 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. It accepts one signal input, which can be either differential or else single-ended if the V_{BB} output is used. The signal is fanned out to 9 identical differential outputs. An enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all \overline{Q} outputs HIGH.

The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into 50Ω , even if only one side is being used. In most applications, all nine differential pairs will be used and therefore terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i. e. sharing the same V_{CCO}) as the pairs(s) being used on the same side, in order to maintain minimum skew. Failure to do this will result in small degradation of propagation delay (on the order of 10-20 ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The VBB output is intended for use as a reference voltage for single-ended reception of ECL signals to that device only. When used for this purpose, it is recommended that VBB is decoupled to V_{CC} via a 0.01 μ F capacitor.

- · Low Skew
- Guaranteed Skew Spec
- Differential Design
- VBB output
- Enable
- 75 kΩ Input Pulldown Resistors

PIN NAME

 Pin
 Function

 IN, ĪN
 Differential Input Pair

 En
 Enable

 Q0, Q0 - Q8, Q8
 Differential Outputs

 VBB
 VBB Outputs

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Military 10E511

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

LOGIC DIAGRAM

PACKAGE: NON-Compliant QFP: F

5

Symbol	Parameter	Limits										
		+ 2	5° C	+ 12	5° C	- 58						
			Max	Min Max		Min	Min Max					
VOH	Output HIGH Voltage	-980	-810	ТВА		TBA		mV				
VOL	Output LOW Voltage	-1950	-1630	TI	TBA		ЗА	mV				
VIH	Input HIGH Voltage	-1130	-810	TI	ЗА	TI	ЗА	mV				
VIL	Input LOW Voltage	-1950	-1480	ТВА		ТІ	ЗА	mV				
ίιL	Input LOW Current	0.5		T	ЗА	ТВА		μA				

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 V \pm 5\%$; $V_{CC} = V_{CCO} = GND^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25 Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:		
	Functional	+ 2	5° C	+ 12	+ 125° C		125° C		– 55° C		
	Parameters:	Min	Max	Min	Max Min Max		1				
V _{BB}	Output Reference Voltage	-1.35	-1.25	-1.31	-1.19	-1.38 -1.27		v	V _{IL} = Open, V _{IH} = Open, R _L = 50Ω to - 2.0 V.		
^I IH	Input Current High		150		150	150		μΑ	$V_{IL} = -1.810 \text{ V}, V_{IH} = -0.880 \text{ V}, R_{L} = 50\Omega$ to $-2.0 \text{ V}.$		
IEE	Power Supply Current		60		60		60		V_{EE} (MAX), V_{IL} = - 1.810 V, V_{IH} = - 0.880 V, R_L = 50 Ω to - 2.0 V.		

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 2	5° C	+ 12	5° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^t PLH	Propagation Delay to Output								
^t PHL	IN (differential)	430	630	430	630	430	630	ps	(Note 1)
	IN (Single-ended)	330	730	330	730	330	730	ps	(Note 2)
	Enable	450	850	450	850	450	850	ps	(Note 3)
	Disable	450	850	450	850	450	850	ps	(Note 3)
^t Skew	Within-Device Skew		50		50		50	ps	(Note 4)
ts	Setup Time En to IN	200		200		200		ps	(Note 5)
tн	Hold Time IN to En	0		0		0		ps	(Note 6)
^t R	Release Time En to IN	300		300		300		ps	(Note 7)
VPP	Minimum Input Swing	250		250		250		mV	(Note 8)
VCMR	Common Mode Range	-1.6	-0.4	-1.6	-0.4	-1.6	-0.4	v	(Note 9)
tr tf	Rise/Fall Times 20 - 80%	275	600	275	600	275	600	ps	

See Notes on following page.

10E511

Figure 1. Setup Time

Notes

1. The differential propagation is defined as the delay from the crossing points of the differential input signals to the crossing point of differential output signals. (See *Definitions and testing ECLinPS AC Parameters* in Section 1.)

 The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. (See *Definitions and testing ECLinPS AC Parameters* in Section 1.)

3. Enable is defined as the propagation delay from 50% point of the **negative** transition \overline{EN} to the 50% point of the **positive** transition on Q (or a negative transition on \overline{Q}). Disable is defined as the propagation delay from 50% point of the **positive** transition on \overline{EN} to the 50% point of the **negative** transition on Q (or a negative transition on \overline{Q}).

4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

5. The setup time is the minimum time that \overline{EN} must be asserted prior to the next transition of IN/ \overline{IN} to prevent an output response greater than ± 75 mV to that IN/ \overline{IN} transition (see Figure 1).

6. The hold time is the minimum time that \overline{EN} must remain asserted after a negative going IN or a positive going \overline{IN} to prevent an output response greater than \pm 75 mV to that IN/ \overline{IN} transition (see Figure 2).

7. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (see Figure 3).

8. Vpp (min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The Vpp (min) is AC limited for the E511, a differential input as low as 50 mV will still produce full ECL levels at the output. 9. V_{CMR} is defined as the range within which the V_{IH} level may vary, with the device still meeting the propagation delay specification. The V_{IL} level must be such that the peak to peak voltage is less than 1.0 V and greater than or equal to V_{PP} (min). Measured output voltages must fall within the specified limits of V_{OH} and V_{OL} (V_{OH} = -0.880 V max, -1.810 V min).

Product Preview ELECTRICALLY TESTED PER: 10E512

The 10E512 is a quad driver with two pairs of OR/NOR outputs form each gate, and a common, buffered enable input. Using the data inputs the device can serve as an ECL memory address fan-out driver. Using just the enable input, the device serves as a clock driver, although the 10E511 is designed specifically for this purpose, and offers lower skew than the E512.

- 600 ps Max. Propagation Delay
- · Common Enable Input
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₃	Data Inputs
EN	Enable Inputs
Q _{na} - Qnb	True Outputs
Qna - Qnb	Inverting Outputs

Military 10E512

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

g

Symbol	Parameter		Limits						
		+ 2	+ 25° C		5° C	- 55			
		Min	Max	Min	Min Max		Min Max		
VOH	Output HIGH Voltage	-980	-810	TE	TBA		ЗA	mV	
VOL	Output LOW Voltage	-1950	-1630	TE	3A	TE	3A	mV	
VIH	Input HIGH Voltage	-1130	-1130 -810		ТВА		3A	mV	
VIL	Input LOW Voltage	-1950	-1480	-1480 TBA		TE	3A	mV	
կլ	Input LOW Current	0.5	0.5 TBA		ТВА		μA		

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: $V_{EE} \approx V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 2	+ 25° C +		+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Min Max		Min Max		
ηн	Input High Current								
	D		200		200		200	μΑ	
	EN		150		150		150	μA	
^I EE	Power Supply Current		56		56		56	mA	

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^t PLH ^t PHL	Propagation Delay to Output								
	D	200	600	200	600	200	600	ps	
	ĒN	275	675	275	675	275	675	ps	
tSkew	Within-device Skew				.				
	Dn to Qn, Qn	8	0	8	0	8	0	ps	(Note 1)
	Dna to Qnb	4	0	4	0	4	0	ps	(Note 2)
t _r tf	Rise/Fall Times 20 - 80%	275	700	275	700	275	700	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Skew defined between common OR or common NOR outputs of a single gate.

Quint Differential Line Receiver

Product Preview ELECTRICALLY TESTED PER: 10E516

The 10E516 is a quint differential line receiver with emitter-follower outputs. An internally generated reference supply (VBB) is available for single-ended reception.

Active current sources plus a deep collector feature of the MOSAIC III process provide the receivers with excellent common-mode noise rejection. Each receiver has a dedicated V_{CCO} supply lead, providing optimum symmetry and stability.

The receiver design features clamp circuity to cause a defined state if both the inverting and non-inverting inputs are left open; in this case the Q output goes LOW, while the \overline{Q} output goes HIGH. This feature makes the device ideal for twisted pair applications.

If both inverting and non-inverting inputs are at equal potential > -2.5 V, the receiver does not go to a defined state, but rather current-shares in normal differential amplifier fashion, producing output voltage levels midway between HIGH and LOW, or the device may even oscillate.

The device V_{BB} output is intended for use as a reference voltage for singleended reception of ECL signals to that device only. When using for this purpose, it is recommended that V_{BB} is decoupled to V_{CC} via a 0.01µF capacitor.

The 10E516 features input pull-down resistors, as does the rest of the ECLinPS family.

- 500 ps Max. Propagation Delay
- VBB Supply Output

5

- Dedicated V_{CCO} Pin for Each Receiver
- 75 kΩ Input Pulldown Resistors

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Military 10E516

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

Symbol	Parameter			Lin	Limits						
		+ 25	+ 25° C + 125° C Min Max Min Max		5° C	- 5					
		Min			Min Max		1				
Vон	Output HIGH Voltage	-980	-980 -810 TBA		TI	TBA					
VOL	Output LOW Voltage	-1950	-1630	TI	ЗА	TBA		mV			
VIH	Input HIGH Voltage	-1130	-810	TI	3A	TBA		mV			
VIL	Input LOW Voltage	-1950	-1480	TBA		TI	ЗA	mV			
ΙL	Input LOW Current	0.5		ТВА		ТВА		μA			

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: V_{EE} = V_{EE}(min) to V_{EE}(max), V_{CC} = V_{CCO} = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional Parameters:	+ 25° C		+ 125° C		– 55° C			
		Min	Max	Min	Max	Min	Max		
V _{BB}	Output Reference Voltage	-1.35	-1.25	-1.31	-1.19	-1.38	-1.27	v	
ήн	Input High Current		200		200		200	μA	
IEE	Power Supply Current		35		35		35	mA	
V _{PP} (DC)	Input Seneitivity	150		150		150		mV	(Note 1)
VCMR	Common Mode Range	-2.0	-0.6	-2.0	-0.6	-2.0	-0.6	v	(Note 2)

1. Vpp is the minimum differential input voltage required to assure full ECL levels are present at the outputs.

2. V_{CMR} is referenced to the most positive side of the differential input signal. Normal operation is obtained when the "HIGH" input is within the V_{CMR} range and the input swing is greater than V_{PPMIN} and < 1.0 V.

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter	Limits							TEST CONDITION APPLIED:
	Functional Parameters:	+ 25° C		+ 125° C		– 55° C			
		Min	Max	Min	Max	Min	Max	1	
^t PLH ^t PHL	Propagation Delay to Output								
	D	200	450	200	450	200	450	ps	
	D (SE)	150	500	150	500	150	500	ps	
V _{PP} (AC)	Minimum Input Swing	150		150		150		mV	(Note 1)
tSkew	Within-device Skew								
	Dn to Qn, Qn	5	0	5	0	5	ο.	ps	(Note 2)
tSkew	Duty Cycle Skew								
	tPLH - tPHL	±	10	± 10		± 10		ps	(Note 3)
t _r t _f	Rise/Fall Times 20 - 80%	275	575	275	575	275	575	ps	

1. Minimum input swing for which AC parameters are guaranteed.

2. Within-device skew is defined as identical transitions on similar paths through a device.

3. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross points of the outputs.

Product Preview

Product Preview ELECTRICALLY TESTED PER: 10E531

The 10E531 is a quad master-slave D-type flip-flop with differential outputs. Each flip-flop may be clocked separately by holding Common Clock (C_C) LOW and using the Clock Enable (CE) inputs for clocking. Common clocking is achieved by holding the \overline{CE} inputs LOW and using C_C to clock all four flip-flops. In this case, the \overline{CE} inputs perform the function of controlling the common clock, to each flip-flop.

Individual asynchronous resets are provided (R). Asynchronous set controls (S) are ganged together in pairs, with the pairing chosen to reflect physical chip symmetry.

Data enters the master when both C_C and \overline{CE} are LOW, and transfers to the slave when either C_C or \overline{CE} (or both) go HIGH.

- 1100 MHz Min. Toggle Frequency
- Differential Outputs
- Individual and Common Clocks
- Individual Resets (asynchronous)
- · Paired Sets (asynchronous)
- 75 kΩ Input Pulldown Resistors

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Ro

MOTOROLA MILITARY MECL DATA 5-18

Military 10E531

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

Q3

 $\overline{Q_3}$

Q2

Q2

Qi

01

Qn

Qn

PACKAGE: NON-Compliant QFP: X

Symbol	Parameter	Limits								
		+ 25	5° C	+ 12	5° C	- 58				
		Min	Max	Min	Max	Min	Мах	1		
Vон	Output HIGH Voltage	-980	-810	TBA		TBA		mV		
VOL	Output LOW Voltage	-1950	-1630	TI	ЗА	TI	ЗА	mV		
VIH	Input HIGH Voltage	-1130	-810	ТВА ТВ		ЗА	mV			
VIL	Input LOW Voltage	-1950	-1480	TI	ЗА	TI	ЗА	mV		
μL	Input LOW Current	0.5	тва тва		ЗА	μA				

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits					Units	TEST CONDITION APPLIED:
	Functional	+ 25	+ 25° C		+ 125° C		5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
ĺН	Input High Current							μA	
	CC		350		350		350		
	S		450		450		450		
	R		300		300		300		
	CE		300		300		300		
	D		150		150		150		
IEE	Power Supply Current		70		70		70	mA .	

10E531

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
,	Functional Parameters:	+ 25° C		+ 125° C		– 55° C			
		Min	Max	Min	Max	Min	Max		
fMAX	Max. Toggle Frequen- cy	1100		1100		1100		MHz	
^t PLH ^t PHL	Propagation Delay to Output								
	CE	360	700	360	700	360	700	ps	
	CC	325	675	325	675	325	675	ps	
	R	350	725	350	725	350	725	ps	
	s	350	725	350	725	350	725	ps	
ts	Setup Time								
	D	150		150		150		ps	(Note 2)
tH	Hold Time								
	D	175		175		175		ps	(Note 2)
^t RR	Reset Recovery Time	400		400		400		ps	
tSkew	Within-device Skew	6	0	60		60		ps	(Note 1)
tpw	Minimum Pulse Width								
	Clk, S, R	400		400		400		ps	
t _r t _f	Rise/Fall Times 20 - 80%	300	675	300	675	300	675	ps	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

5

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Setup/hold time guaranteed for both C_C & \overline{CE} .

8-Bit Shift Register

Product Preview **ELECTRICALLY TESTED PER:** 10E541

The 10E541 is an 8-bit full-function shift register. The 10E541 performs serial/ parallel in and serial/parallel out, shifting in either direction. The eight inputs D₀-D₇ accept parallel input data, while DL/DR accept serial input data for left/right shiftina.

The select pins, SEL0 and SEL1, select one of four modes of operation: Load, Hold, Shift Left, Shift Right, according to the Function Table.

Input data is accepted a set-up time before the positive clock edge. A HIGH on the Master Reset (MR) pin asynchronously resets all the registers to zero.

- 700 MHz Min. Shift Frequency
- 8-Bits

D₀ C SEL1 SEL0 CLK MR

- · Full-Function, Bi-directional
- · Asynchronous Master Reset
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₇	Parallel Data Inputs
DL, DR	Serial Data Inputs
SEL0, SEL1	Mode Select Inputs
CLK	Clock
Q ₀ - Q ₇	Data Outputs
MB	Master Reset

Military 10E541

Symbol	Parameter	Limits								
		+ 2	5° C	+ 12	5° C	- 58				
		Min	Max	Min	Max	Min	Max			
VOH	Output HIGH Voltage	-980	-810	TBA		ТВА		mV		
VOL	Output LOW Voltage	-1950	-1630	TI	TBA		ЗА	mV		
VIH	Input HIGH Voltage	-1130	-810	TI	TBA		ТВА			
VIL	Input LOW Voltage	-1950	-1480	ТВА		ТВА		mV		
μL	Input LOW Current	0.5		ТВА		Т	ЗА	μA		

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 V \pm 5\%$; $V_{CC} = V_{CCO} = GND^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

	Function Table									
SEL0	SEL1	Function								
L	L	Load								
L	н	Shift Right (Dn to Dn + 1)								
н	L	Shift Left (Dn to D _{n - 1})								
н	н	Hold								

	Expanded Function Table													
Function	DL	DR	SEL0	SEL1	MR	CLK	QO	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Load	X	x	L	L	L	Z	D0	D1	D2	D3	D4	D5	D6	D7
Shift Right	X	L	L	н	L	z	Ļ	QO	Q1	Q2	Q3	Q4	Q5	Q6
	x	н	L	н	L	z	н	L	QO	Q1	Q2	Q3	Q4	Q5
Shift Left	L	X	н	L	L	z	L	QO	Q1	Q2	Q3	Q4	Q5	L
	н	x	н	L	L	z	QO	Q1	Q2	Q3	Q4	- Q5	L	н
Hold	X	X	н	н	L	z	Q0	Q1	Q2	Q3	Q4	Q5	L	н
	x	x	н	н	L	z	QO	Q1	Q2	Q3	Q4	Q5	L	н
Reset	X	X	X	x	н	x	L	L	L	L	L	L	L	L

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 2	5° C	+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max	1	
μн	Input High Current		150		150		150	μΑ	
IEE	Power Supply Current		157		157		157	mA	

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits		·····	Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	+ 125° C		5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
^f Shift	Max. Shift Frequency	700		700		700		MHz	
tplh tphl	Propagation Delay to Output								
	Clk	625	975	625	975	625	975	ps	
	MR	600	975	600	975	600	975	ps	
ts	Setup Time								
	D	175		175		175		ps	
	SEL0	350		350		350		ps	
	SEL1	300	5	300		300		ps	
tн	Hold Time								
	D	200		200		/200		ps	
	SEL0	100		100		100		ps	
	SEL1	100		100		100		ps	
tRR	Reset Recovery Time	900		900		900		ps	
tPW	Minimum Pulse Width								
	Clk, MR	400		400		400		ps	
tSkew	Within-device Skew	6	0	6	0	6	0	ps	(Note 1)
tr tf	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

Product Preview ELECTRICALLY TESTED PER: 10E542

The 10E542 is a 9-bit shift register, designed with byte-parity applications in mind. The 10E542 performs serial/parallel in and serial/parallel out, shifting in one direction. The nine inputs D₀-D₈ accept parallel input data, while S-IN accepts serial input data.

The SEL (Select) input pin is used to switch between the two modes of operation –SHIFT and LOAD. The shift direction is from bit 0 to bit 8. Input data is accepted by the registers a set-up time before the positive going edge of CLK1 or CLK2; shifting is also accomplished on the positive clock edge. A HIGH on the Master Reset pin (MR) asynchronously resets all the registers to zero.

- 700 MHz Min. Shift Frequency
- 9-Bit for Byte-Parity Applications
- Asynchronous Master Reset
- Dual Clocks
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₈	Parallel Data Inputs
S-IN	Serial Data Input
SEL	Mode Select Input
CLK1, CLK2	Clock Inputs
MR	Master Reset
Q0 - Q8	Data Outputs

Function Table

SEL	Mode
SEL	Mode

H SHIFT

SEL CLK1 CLK2

MR

Military 10E542

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter		Limits								
		+ 2	5° C	+ 12	25° C	- 5					
		Min	Max	Min	Max	Min	Max	1			
VOH	Output HIGH Voltage	-980	-810	ТІ	ТВА		TBA				
VOL	Output LOW Voltage	-1950	-1630	ті	ТВА		ЗА	mV			
VIH	Input HIGH Voltage	-1130	-810	Т	TBA		TBA				
VIL	Input LOW Voltage	-1950	-1480	ТВА		ТВА		mV			
μL	Input LOW Current	0.5		Т	ВА	TI	ЗА	μA			

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max]	
ін	Input High Current		150		150		150	μA	
IEE	Power Supply Current		145		145		145	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter	Limits							TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 12	+ 125° C		5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
fSHIFT	Max. Shift Frequency	700		700		700		MHz	
^t PLH ^t PHL	Propagation Delay to Output								
	Clk	600	1000	600	1000	600	1000	ps	
	MR	600	1000	600	1000	600	1000	ps	
ts	Setup Time								
	D	50		50		50		ps	
	SEL	300		300		300		ps	
tH	Hold Time								
	D	300		300		300		ps	
	SEL	75		75		75		ps	
tRR	Reset Recovery Time	900		900		900		ps	
tPW	Minimum Pulse Width								
	Clk, MR	400		400		400		ps	
^t Skew	Within-device Skew	7	5	75		75		ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

Product Preview ELECTRICALLY TESTED PER: 10E543

The 10E543 is a 9-bit holding register, designed with byte-parity applications in mind. The 10E543 holds current data or loads new data, with the nine inputs D_0 - D_8 accepting parallel input data.

The SEL (Select) input pin is used to switch between the two modes of operation –HOLD and LOAD. Input data is accepted by the registers a set-up time before the positive going edge of CLK1 or CLK2. A HIGH on the Master Reset pin (MR) asynchronously resets all the registers to zero.

- 700 MHz Min. Operating Frequency
- 9-Bit for Byte-Parity Applications
- Asynchronous Master Reset
- Dual Clocks
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₈	Parallel Data Inputs
SEL	Mode Select Input
CLK1, CLK2	Clock Inputs
MR	Master Reset
Q ₀ - Q ₈	Data Outputs
NC	No Connection

Function Table

SEL Mode

- L LOAD
- H HOLD

SEL CLK1

CLK2

MR

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter			Lin	nits			Units
		+ 25	+ 25° C		5° C	- 58		
		Min	Max	Min	Max	Min	Max	
VOH	Output HIGH Voltage	-980	-810	TBA		TBA		mV
VOL	Output LOW Voltage	-1950	-1630	TI	ТВА		TBA	
VIH	Input HIGH Voltage	-1130	-810	TI	ТВА		TBA	
VIL	Input LOW Voltage	-1950	-1480	TBA		TBA		mV
١	Input LOW Current	0.5	0.5 TBA		TBA		μA	

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
Чн	Input High Current		150		150		150	μΑ	
IEE	Power Supply Current		145		145		145	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 55	i° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
fSHIFT	Max. Toggle Frequency	700		700		700		MHz	
tPLH tPHL	Propagation Delay to Output								
	Clk	600	1000	600	1000	600	1000	ps	
	MR	600	1000	600	1000	600	1000	ps	
tS	Setup Time								
	D	50		50		50		ps	
	SEL	300		300		300		ps	
tн	Hold Time								
	D	300		300		300		ps	
	SEL	75		75		75		ps	
tRR	Reset Recovery Time	900		900		900		ps	
tPW	Minimum Pulse Width								
	Clk, MR	400		400		400		ps	
tSkew	Within-device Skew	7	5	7	5	7	5	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

D Register

Product Preview ELECTRICALLY TESTED PER: 10E551

The 10E551 contains 6 D-type, edge-triggered, master-slave flip-flops with differential outputs. Data enters the master when both Clk1 and Clk2 are Low, and is transferred to the slave when Clk1 or Clk2 (or both) go High. The asynchronous Master Reset (MR) makes Q outputs go Low.

- 1100 MHz Min. Toggle Frequency
- Differential Outputs
- Asynchronous Master Reset
- Dual Clocks
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₅	Data Inputs
Clk1, Clk2	Clock Inputs
MR	Master Reset
Q ₀ - Q ₅	True Outputs
\overline{Q}_0 - \overline{Q}_5	Inverted Outputs

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MR Clk1 Clk2

Military 10E551

Symbol	Parameter		Limits								
		+ 2	5° C	+ 12	5° C	- 55					
		Min	Max	Min	Max	Min	Max	1			
VOH	Output HIGH Voltage	-980	-810	TBA		ТВА		mV			
VOL	Output LOW Voltage	-1950	-1630	TI	TBA		TBA				
VIH	Input HIGH Voltage	-1130	-810	ТВА		ТВА		mV			
VIL	Input LOW Voltage	-1950	-1480	TBA		ТВА		mV			
μL	Input LOW Current	0.5 TBA		TE	BA	μA					

10E Series DC CHARACTERISTICS: VFF = -5.2 V ± 5%; VCC = VCCO = GND¹

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25 Ω .

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
Чн	Input High Current		150		150		150	μA	$V_{IL} = -1.810 \text{ V}, V_{IH} = -0.880 \text{ V}, \text{ R}_{L} = 50\Omega$ to - 2.0 V.
IEE	Power Supply Current		78		78		78	mA	V_{EE} (MAX), $V_{IL} = -1.810$ V, $V_{IH} = -0.880$ V, $R_L = 50\Omega$ to -2.0 V.

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
fmax	Maximum Toggle Frequency	1100		1100		1100		MHz	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
^t PLH	Propagation Delay to Output								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
^t PHL	MR	475	800	475	800	475	800	ps	
	CLK	475	850	475	850	475	850	ps	
ts	Setup Time, D	0		0		0		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
ţН	Hold Time, D	350		350		350		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
^t RR	Reset Recovery Time	750		750		750		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
^t PW	Minimum Pulse Width								
	CLK, MR	400		400		400		ps	
tSkew	Within-device Skew	6	5	6	65		65		(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	300	700	300	700	300	700	ps	

Product Preview ELECTRICALLY TESTED PER: 10E556

The 10E556 contains three 4:1 multiplexers followed by transparent latches with differential outputs. When both latch Enables (LEN1, LEN2) are Low, the latch is transparent, and output data is controlled by the multiplexer select controls (SEL0, SEL1). A logic High on either LEN1 or LEN2 (or both) latches the outputs. The Master Reset (MR) overrides all other controls to set the Q outputs Low.

- 950 ps Max. D to Output
- · 850 ps Max. LEN to Output
- Differential Outputs
- · Asynchronous Master Slave
- Dual Latch-Enable
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ x- D ₃ x	Input Data
SEL0, SEL1	Select Inputs
LEN1, LEN2	Latch Enable
MR	Master Reset
Q ₀ - Q ₅	True Outputs
<u>a</u> o - a ₅	Inverted Outputs

Military 10E556

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MOTOROLA MILITARY MECL DATA 5-30

Symbol	Parameter		Limits								
		+ 2	5° C	+ 12	5° C	- 58					
		Min	Max	Min	Max	Min	Max	1			
VOH	Output HIGH Voltage	-980	-810	ТВА		ТВА		mV			
VOL	Output LOW Voltage	-1950	-1630	TI	TBA		TBA				
VIH	Input HIGH Voltage	-1130	-810	TI	TBA		ТВА				
VIL	Input LOW Voltage	-1950	-1480	TBA		TBA		mV			
կլ	Input LOW Current	0.5		TBA		ТВА		μA			

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 V \pm 5\%$; $V_{CC} = V_{CCO} = GND^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max	1	
ЧΗ	Input Current High		150		150		150	μA	$V_{IL} = -1.810 \text{ V}, V_{IH} = -0.880 \text{ V}, \text{ R}_{L} = 50\Omega$ to $-2.0 \text{ V}.$
IEE	Power Supply Current		90		90		90	mA	V _{EE} (MAX), V _{IL} = - 1.810 V, V _{IH} = - 0.880 V, R _L = 50Ω to - 2.0 V.

FUNCTION TABLE									
SEL0	SEL1	Data							
L	L	а							
н	L	b							
L	Н	С							
н	н	d							

FUN	FUNCTION TABLE									
LEN1	LEN2	Latch								
L	L	Transp.								
н	Х	Latch								
Х	н	Latch								

10E556

AC CHARACTERISTICS:	VEE = VEE(min) to VEE(max), VCC = VCCO = GND
---------------------	--

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
^t PLH tPHL	Propagation Delay to Output								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
	D	400	900	400	900	400	900	ps	
	SEL0	550	1050	550	1050	550	1050	ps	
	SEL1	450	900	450	900	450	900	ps	
	LEN	350	800	350	900	350	800	ps	
	MR	350	825	350	825	` 350	825	ps	
ts	Setup Time								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
	D	400		400		400		ps	
	SEL0	700		700		700		ps	
	SEL1	600		600		600		ps	
tΗ	Hold Time								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
	D	300		300		300		ps	
	SELO	100		100		100		ps	
	SEL1	200		200		200		ps	
^t RR	Reset Recovery Time	800		800		800		ps	
^t PW	Minimum Pulse Width MR	400		400		400		ps	
^t Skew	Within-device Skew	5	0	5	0	5	0	ps	(Note 1)
tr tf	Rise/Fall Times 20 - 80%	275	700	275	700	275	700	ps	

5-Bit 2:1 Multiplexer

Product Preview ELECTRICALLY TESTED PER: 10E558

The 10E558 contains five 2:1 multiplexers with differential outputs. The output data are controlled by the Select input (SEL).

- · 600 ps Max. D to Output
- · 800 ps Max. SEL to Output
- Differential Outputs
- One V_{CCO} Pin Per Output Pair
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ a - D ₄ a	Inputs Data a
D ₀ b - D ₄ b	Inputs Data b
SEL	Select Input
Q ₀ - Q ₄	True Outputs
$\overline{Q_0} - \overline{Q_4}$	Inverted Outputs

Function Table

SEL	Data
н	а
L	b

Military 10E558

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:
- PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

Symbol	Parameter		Limits								
		+ 2	5° C	+ 12	5° C	- 55					
		Min	Max	Min	Max	Min	Max	1			
VOH	Output HIGH Voltage	-980	-810	TI	BA	TE	3A	mV			
VOL	Output LOW Voltage	-1950	-1630	T	3A	TE	3A	mV			
VIH	Input HIGH Voltage	-1130	-810	TI	3A	TE	ЗА	mV			
VIL	Input LOW Voltage	-1950	-1480	ТІ	3A	TE	ЗА	mV			
ηΓ	Input LOW Current	0.5		ΤI	3A	TE	ЗА	μA			

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25Ω .

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Symbol Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		- 58	5° C		
Parameters:	Min	Max	Min	Max	Min	Max	1		
ЧΗ	Input High Current							μA	
	D		200		200		200		
	SEL		150		150		150		
IEE	Power Supply Current		40		40		40	mA	

5

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter		Limits					Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 12	+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
tPLH tPHL	Propagation Delay to Output				·				
	D	225	550	225	550	225	550	ps	
	SEL	400	775	400	775	400	775	ps	
^t Skew	Within-device Skew	6	0	6	0	6	0	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	275	650	275	650	275	650	ps	

6-Bit D Register Differential Data And Clock

Product Preview ELECTRICALLY TESTED PER: 10E851

The 10E851 contains 6 D-type flip-flops with single-ended outputs and differential data inputs. The common clock input is also differential. The registers are triggered by a positive transition of the positive clock (CIk) input.

A High on the Master Reset (MR) input resets all Q outputs to Low. The V_{BB} output is intended for use as a reference voltage for single-ended reception of ECL signals to that device only. When used for this purpose, it is recommended that V_{BB} is decoupled to V_{CC} via a 0.01 μ F capacitor.

- Differential Inputs: Data and Clock
- VBB Outputs
- 1100 MHz Min. Toggle Frequency
- Asynchronous Master Reset
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₅	+ Data Inputs
D ₀ - D ₅	- Data Inputs
CLK	+ Clock Inputs
CLK	- Clock Inputs
MR	Master Reset
V _{BB}	VBB Output
Q ₀ - Q ₅	Data Outputs

Military 10E851

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter		Limits								
		+ 2	5° C	+ 12	5° C	- 58					
		Min	Max	Min	Max	Min	Max	1			
VOH	Output HIGH Voltage	-980	-810	T	ЗА	TE	3A	mV			
VOL	Output LOW Voltage	-1950	-1630	TI	ЗА	TE	3A	mV			
VIH	Input HIGH Voltage	-1130	-810	ΤI	ЗА	TE	3A	mV			
VIL	Input LOW Voltage	-1950	-1480	TI	3A	TE	3A	mV			
μL	Input LOW Current	0.5		TI	ЗА	TE	3A	μA			

10E Series DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = V_{CCO} = \text{GND}^1$

1. 10E series circuits are designed to meet the dc specifications shown in the table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 volts, except bus outputs where specified, are terminated into 25 Ω .

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter		Limits					Units	TEST CONDITION APPLIED:
	Functional Parameters:	+ 25	5° C	+ 12	5° C	- 58	5° C		
		Min	Max	Min	Max	Min	Max	1	
VBB	Output Reference Voltage	-1.35	-1.25	-1.31	-1.19	-1.38	-1.27	v	VIL = Open, VIH = Open, RL = 50Ω to - 2.0 V.
lιΗ	Input Current High		150		150		150	μA	V_{IL} = $-$ 1.810 V, V_{IH} = $-$ 0.880 V, R_L = 50 Ω to $-$ 2.0 V.
IEE	Power Supply Current		101		101		101	mA	
VCMR	Common Mode Range	-2.0	-0.4	-2.0	-0.4	-2.0	-0.4	v	(Note 1)

1. V_{CMR} is referenced to the most positive side of the differential input signal. Normal operations obtained when the "HIGH" input is within the V_{CMR} range and the input swing is greater than V_{PPMIN} and < 1.0 V.

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 2!	5° C	+ 12	25° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
fmax	Maximum Toggle Frequency	1100		1100		1100		MHz	$\frac{V_{IL}}{CIk} = 0.295 \text{ V}, V_{IH} = 1.045 \text{ V}, \text{ Dn} = 0.670 \text{ V}, \\ \overline{CIk} = 0.670 \text{ V}, \text{ R}_L = 50 \Omega \text{ to Gnd}.$
tPLH tPHL	Propagation Delay to Output								$\label{eq:VIL} \begin{array}{l} V_{IL} = 0.295 \; \text{V}, \; \text{V}_{IH} = 1,045 \; \text{V}, \; \text{Dn} = 0.670 \; \text{V}, \\ \hline C\text{Ik} = 0.670 \; \text{V}, \; \text{R}_L = 50\Omega \; \text{to Gnd}. \end{array}$
	CLK (Diff)	475	800	475	800	475	800	ps	
	CLK (SE)	425	850	425	850	425	850	ps	
	MR	425	850	425	850	425	850	ps	
ts	Setup Time, D	150		150		150		ps	$\label{eq:VIL} \begin{array}{l} V_{IL} = 0.295 \; \text{V}, \; V_{IH} = 1.045 \; \text{V}, \; \text{Dn} = 0.670 \; \text{V}, \\ \hline Cik = 0.670 \; \text{V}, \; \text{R}_L = 50 \Omega \; \text{to Gnd}. \end{array}$
ţн	Hold Time, D	250		250		250		ps	$\label{eq:VIL} \begin{array}{l} V_{IL} = 0.295 \; \text{V}, \mbox{V}_{IH} = 1.045 \; \text{V}, \mbox{Dn} = 0.670 \; \text{V}, \\ \hline Clk = 0.670 \; \text{V}, \; \mbox{R}_L = 50 \Omega \; \mbox{to Gnd}. \end{array}$
V _{PP} (AC)	Minimum Input Swing	150		150		150		mV	(Note 1)
^t RR	Reset Recovery Time	750		750		750		ps	
^t PW	Minimum Pulse Width CLK, MR	400		400		400		ps	
^t Skew	Within-device Skew	10	00	10	00	10	00	ps	(Note 2)
t _r tf	Rise/Fall Times 20 - 80%	275	800	275	800	275	800	ps	

ł

.

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

1. Minimum input voltage for AC parameters are guaranteed.

2. Within-device skew is defined as identical transitions on similar paths through a device.

5

8-Bit Synchronous Binary Up Counter

Product Preview ELECTRICALLY TESTED PER: 100E416

The 100E416 is a high-speed synchronous, presettable, cascadable 8-bit binary counter. Architecture and operation are the same as the 10H416 in the MECL 10H family, extended to 8-bits, as shown in the logic diagram.

The counter features internal feedback of \overline{TC} , gated by the TCLD (terminal count load) pin. When TCLD is LOW (or left open, in which case it is pulled LOW by the internal pull-downs), the \overline{TC} feedback is disabled, and counting proceeds continuously, with TC going LOW to indicate an all-one state. When TCLD is HIGH, the TC feedback causes the counter to automatically re-load upon $\overline{TC} =$ LOW, thus functioning as a programmable counter

- 700 MHz Min. Count Frequency
- 1000 ps CLK to Q, TC
- Internal TC Feedback (Gated)
- 8-Bit
- Fully Synchronous Counting and TC Generation
- Asynchronous Master Reset
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
P0 - P7	Parallel Data (Preset) Data
Q ₀ - Q ₇	Data Outputs
CE	Count Enable Control Input
PE	Parallel Load Enable Control Input
MR	Master Reset
CLK	Clock
TC	Terminal Count Output
TCLD	TC - Load Control Input

FUNCTION TABLE

CE	PE	TCLD	MR	CLK	Function
х	L	х	L	Ъ	Load Parallel (P _n to Q _n)
L	н	L	L	Ъ	Continuous Count
L	н	н	L	Ъ	Count: Load Parallel on \overline{TC} = LOW
н	н	х	L	٦	Hold
х	х	х	L	٦.	Master Respond, Slaves Hold
х	х	х	н	Т	Reset (Q _n : = LOW, TC: = HIGH)
- = cl	ock pul	se (low to	high)		

^{- =} clock pulse (high to low)

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Military 100E416

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: F

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:			
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with		
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs		
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW S	Signal for All Inputs		
ιL	Input LOW Current	0.5		μA	V _{IN} = V	IL(min)		

100E Series DC CHARACTERISTICS: $V_{EE} = -4.2 \text{ V to} - 5.46 \text{ V}, V_{CC} = V_{CCO} = \text{GND}; -55^{\circ}\text{C to} + 125^{\circ}\text{C}$

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter	1		Lir	nits			Units	TEST CONDITION APPLIED:
	Functional		+ 25° C		+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
ſн	Input Current High		150		150		150	μΑ	
IEE	Power Supply Current		181		208		181	mA	

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 2!	5° C	+ 12	5° C	- 58	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
fcount	Maximum Count Frequency	700		700		700		MHz	
^t PLH	Propagation Delay to Output								
^t PHL	CLK to Q	600	1000	600	1000	600	1000	ps	
	MR to Q	600	1000	600	1000	600	1000	ps	
	CLK to TC (Q's loaded)	550	1050	550	1050	550	1050	ps	(Note 1)
	CLK to TC (Q's unloaded)	550	900	550	900	550	900	ps	(Note 1)
	MR to TC	625	1000	625	1000	625	1000	ps	
ts	Setup Time								
	Pn	150		150		150		ps	
	CE	600		600		600		ps	
	PE	600		600		600		ps	
	TCLD	500		500		500		ps	
tн	Hold Time								
	Pn	250		250		250		ps	
	CE	0		0		0		ps	
	PE	0		0		0		ps	
	TCLD	100		100		100		ps	
tRR	Reset Recovery Time	900		900		900		ps	
^t PW	Minimum Pulse Width								
	CLK, MR	400		400		400		ps	
tr tf	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

1. CLK to TC propagation delay is dependent on the loading of the Q outputs. With all of the Q outputs loaded the noise generated in going from a IIII IIII state to a 0000 0000 state causes the CLK to TC+ delay to increase.

4-Input Quad OR/NOR Gate

Product Preview ELECTRICALLY TESTED PER: 100E501

The 100E501 is a quad 4-Input OR/NOR gate.

- 500 ps Max. Propagation Delay
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D _{0a} - D _{3d}	Data Inputs
Q ₀ - Q ₃	True Outputs
$\overline{Q_0} - \overline{Q_3}$	Inverting Outputs

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

D_{3d}

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:		
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with	
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V	
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with	
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V	
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW S	Signal for All Inputs	
ίĮ	Input LOW Current	0.5		μA	V _{IN} = V	IL(min)	

100E Series DC CHARACTERISTICS: VEE = -4.2 V to - 5.46 V, VCC = VCCO = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter	T		Lin	nits			Units	TEST CONDITION APPLIED:
	Functional Parameters:		+ 25° C		+ 125° C		– 55° C		
			Max	Min	Max	Min	Max	1	
Чн	Input Current High		150		150		150	μA	
IEE	Power Supply Current		36		42		36	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max	1	
tPLH tPHL	Propagation Delay to Output								
	D to Q	200	500	200	500	200	500	ps	
tSkew	Within-device Skew	5	0	5	0	5	0	ps	(Note 1)
^t Skew	Within-gate Skew	2	5	2	5	2	5	ps	(Note 2)
t _r t _f	Rise/Fall Times 20 - 80%	300	575	300	575	300	575	ps	

1. Within-device skew is defined as identical transitions on similar paths trough a device.

2. Within-gate skew is defined as the variation in propagation delays of a gate when driven from its different inputs.

Quint 2-Input AND/NAND Gate

Product Preview ELECTRICALLY TESTED PER: 100E504

The 100E504 is a quint 2-input **AND/NAND** gate. The function output F is the OR of all five AND gate outputs, while \vec{F} is the NOR. The Q outputs need not be terminated if only the F outputs are to be used.

- 600 ps Max. Propagation Delay
- OR/NOR Function Outputs
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Function
Data Inputs
AND Outputs
NAND Outputs
OR Output
NOR Output

FUNCTION OUTPUTS

$\mathsf{F} = (\mathsf{D}_{0a} \bullet \mathsf{D}_{0b}) + (\mathsf{D}_{1a} \bullet \mathsf{D}_{1b}) + (\mathsf{D}_{2a} \bullet \mathsf{D}_{2b}) + (\mathsf{D}_{3a} \bullet \mathsf{D}_{3b}) + (\mathsf{D}_{4a} \bullet \mathsf{D}_{4b})$

AVAILABLE AS

- 2) SMD: N/A
- 3) 883: Planned
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

LOGIC DIAGRAM

Ê

Military 100E504

Symbol	Parameter	Min	Max	Units	TEST CONDIT	ION APPLIED:
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW S	Signal for All Inputs
Ι _{ΙL}	Input LOW Current	0.5		μA	V _{IN} = V	IL(min)

100E Series DC CHARACTERISTICS: $V_{EE} = -4.2 \text{ V}$ to - 5.46 V, $V_{CC} = V_{CCO} = \text{GND}$; -55°C to + 125°C

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional		+ 25° C		+ 125° C		– 55° C		
	Parameters:	: Min I		Min	Max	Min	Max		
łн	Input High Current		200		200		200	μA	
^I EE	Power Supply Current		46		53		46	mA	

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 12	5° C	– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
^t PLH ^t PHL	Propagation Delay to Output								
	D to Q	225	600	225	600	225	600	ps	
	D to F	500	1000	500	1000	500	1000	ps	
tSkew	Within-device Skew								
	D to Q	7	5	7	5	7	5	ps	(Note 1)
t _r tf	Rise/Fall Times 20 - 80%								
	Q	275	700	275	700	275	700	ps	
	F	300	700	300	700	300	700	ps	

W MOTOROLA Quint 2-Input XOR/XNOR Gate

Product Preview ELECTRICALLY TESTED PER: 100E507

The 100E507 is a quint 2-input **XOR/XNOR** gate. The function output F is the OR of all five XOR outputs, while \overline{F} is the NOR. The Q outputs need not be terminated if only the F outputs are to be used.

- 600 ps Max. Propagation Delay
- OR/NOR Function Outputs
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D _{0a} - D _{4b}	Data Inputs
Q ₀ - Q ₄	XOR Outputs
$\overline{Q_0} - \overline{Q_4}$	XNOR Outputs
F	OR Output
F	NOR Output

FUNCTION OUTPUTS

$F = (D_{0a} \oplus D_{0b}) + (D_{1a} \oplus D_{1b}) + (D_{2a} \oplus D_{2b}) + (D_{3a} \oplus D_{3b}) + (D_{4a} \oplus D_{4b})$

Military 100E507

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

LOGIC DIAGRAM

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED		
VOH	Output HIGH Voltage	-1025	-880	mV	VIN = VIH(max)	Loading with	
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V	
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with	
VOLA	Output LOW Voltage		-1610	mV	or VIN = VIL(max)	50Ω to -2.0 V	
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Input		
١L	Input LOW Current	0.5		μA	VIN = VIL(min)		

100E Series DC CHARACTERISTICS: VEE = -4.2 V to - 5.46 V, VCC = VCCO = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lir	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C +		+ 12	125° C -		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
ЧН	Input High Current		200		200		200	μΑ	
^I EE	Power Supply Current		50		58		50	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^t PLH ^t PHL	Propagation Delay to Output								
	D to Q	250	600	250	600	250	600	ps	
	D to F	500	1000	500	1000	500	1000	ps	
tSkew	Within-device Skew								
	D to Q	7	5	7	5	7	5	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%								
	Q	275	700	275	700	275	700	ps	
	F	300	700	300	700	300	700	ps	

1:9 Differential **Clock Driver**

Product Preview **ELECTRICALLY TESTED PER:** 100E511

The 100E511 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. It accepts one signal input, which can be either differential or else single-ended if the VBB output is used. The signal is fanned out to 9 identical differential outputs. An enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all Q outputs HIGH.

The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within device, and empirical modeling is used to determine process control limits that ensure consistent tod distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into 50Ω , even if only one side is being used. In most applications, all nine differential pairs will be used and therefore terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i. e. sharing the same V_{CCO} as the pairs(s) being used on the same side, in order to maintain minimum skew. Failure to do this will result in small degradation of propagation delay (on the order of 10-20 ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The VBB output is intended for use as a reference voltage for single-ended reception of ECL signals to that device only. When used for this purpose, it is recommended that VBB is decoupled to VCC via a 0.01 µF capacitor.

- Low Skew
- Guaranteed Skew Spec ٠
- **Differential Design**
- VBB output
- Enable
- Extended 100E V_{EE} Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN		Q_5 12 Q_5 13	4 NC 3 VBB	
Pin	Function	Q4 14	2 ĪN	
IN, ĪN	Differential Input Pair	V _{CCO} 15 Q ₄ 16	1 VCC 28 N N	
En	Enable	Q ₃ 17	27 EN	
Q ₀ , <u>Q</u> 0 - Q ₈ , <u>Q</u> 8	Differential Outputs	Q3 [18	22 23 24 25	
V _{BB}	V _{BB} Outputs			
		laala	89 a 19 g	V _{BB}
			5	66

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

10 9 8 6 5

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A

IN

- 3) 883: Planned
- X = CASE OUTLINE AS FOLLOWS:

LOGIC DIAGRAM

PACKAGE: NON-Compliant OFP: F

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:	
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Input	
μL	Input LOW Current	0.5		μA	VIN = VIL(min)	

100E Series DC CHARACTERISTICS: $V_{EE} = -4.2 \text{ V to} - 5.46 \text{ V}, V_{CC} = V_{CCO} = \text{GND}; -55^{\circ}\text{C to} + 125^{\circ}\text{C}$

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 5	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
V _{BB}	Output Reference Voltage	-1.38	-1.26	-1.38	-1.26	-1.38	-1.26	v	V_{IL} = Open, V_{IH} = Open, R _L = 50 Ω to - 2.0 V.
ін	Input Current High		150		150		150	μΑ	$V_{IL} = -1.810$ V, $V_{IH} = -0.880$ V, $R_L = 50\Omega$ to -2.0 V.
IEE	Power Supply Current		60		69		60	mA	

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	+ 25° C		5° C	- 58	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^t PLH	Propagation Delay to Output								
^t PHL	IN (Differential)	430	630	430	630	430	630	ps	(Note 1)
	IN (Single-ended)	330	730	330	730	330 -	730	ps	(Note 2)
	Enable	450	850	450	850	450	850	ps	(Note 3)
	Disable	450	850	450	850	450	850	ps	(Note 3)
^t Skew	Within-Device Skew		50		50		50	ps	(Note 4)
ts	Setup Time En to IN	200		200		200		ps	(Note 5)
ţН	Hold Time IN to En	0		0		0		ps	(Note 6)
^t R	Release Time En to IN	300		300		300		ps	(Note 7)
VPP	Minimum Input Swing	250		250		250		mV	(Note 8)
VCMR	Common Mode Range	-1.6	-0.4	-1.6	-0.4	-1.6	-0.4	v	(Note 9)
tr tf	Rise/Fall Times 20 - 80%	275	600	275	600	275	600	ps	

See Notes on the following page.

100E511

Figure 1. Setup Time

Figure 2. Hold Time

Notes

1. The differential propagation is defined as the delay from the crossing points of the differential input signals to the crossing point of differential output signals. (See *Definitions and testing ECLinPS AC Parameters* in Section 1.)

2. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. (See *Definitions and testing ECLinPS AC Parameters* in Section 1.)

3. Enable is defined as the propagation delay from 50% point of the **negative** transition \overline{EN} to the 50% point of the **positive** transition on Q (or a negative transition on \overline{Q}). Disable is defined as the propagation delay from 50% point of the **positive** transition on \overline{EN} to the 50% point of the **negative** transition on Q (or a negative transition on \overline{Q}).

4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

5. The setup time is the minimum time that $\overline{\text{EN}}$ must be asserted prior to the next transition of IN/IN to prevent an output response greater than \pm 75 mV to that IN/IN transition (see Figure 1).

6. The hold time is the minimum time that \overline{EN} must remain asserted after a negative going IN or a positive going \overline{IN} to prevent an output response greater than ± 75 mV to that IN/ \overline{IN} transition (see Figure 2).

7. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (see Figure 3).

8. Vpp (min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The Vpp (min) is AC limited for the E511, a differential input as low as 50 mV will still produce full ECL levels at the output. 9. V_{CMR} is defined as the range within which the V_{IH} level may vary, with the device still meeting the propagation delay specification. The V_{IL} level must be such that the peak to peak voltage is less than 1.0 V and greater than or equal to Vpp (min). Measured output voltages must fall within the specified limits of V_{OH} and V_{OL} (V_{OH} = -0.880 V max, -1.090 V min, V_{OL} = -1.580 V max, -1.810 V min).

Quad Driver

Product Preview ELECTRICALLY TESTED PER: 100E512

The 100E512 is a quad driver with two pairs of OR/NOR outputs form each gate, and a common, buffered enable input. Using the data inputs the device can serve as an ECL memory address fan-out driver. Using just the enable input, the device serves as a clock driver, although the 100E511 is designed specifically for this purpose, and offers lower skew than the E512.

- · 600 ps Max. Propagation Delay
- Common Enable Input
- Extended 100E V_{EE} Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Function
Data Inputs
Enable Inputs
True Outputs
Inverting Outputs

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MOTOROLA MILITARY MECL DATA 5-50

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:		
VOH	Output HIGH Voltage	-1025	-880	mV	VIN = VIH(max)	Loading with	
VOL	Output LOW Voltage	-1810	-1620	mV	or V _{IN} = V _{IL(min)}	50Ω to -2.0 V	
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with	
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V	
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs		
١L	Input LOW Current	0.5		μA	V _{IN} = V _{IL(min)}		

100E Series DC CHARACTERISTICS: V_{EE} = -4.2 V to - 5.46 V, V_{CC} = V_{CCO} = GND; -55°C to + 125°C

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter	1		Lin	nits			Units	TEST CONDITION APPLIED:
	Functional Parameters:	Functional + 25°		° C + 125° C		– 55° C			
		Min	Max	Min	Max	Min	Max	1	
ĺн	Input High Current							μΑ	
	D		200		200		200		
	EN	[150		150		150		
IEE	Power Supply Current	47	56	54	65	47	56	mA	

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
^t PLH ^t PHL	Propagation Delay to Output								
	D	200	600	200	600	200	600	ps	
	ĒN	275	675	275	675	275	675	ps	
^t Skew	Within-device Skew		•						
	Dn to Qn, Qn	8	0	8	0	8	0	ps	(Note 1)
	Dna to Qnb	4	0	4	0	4	0	ps	(Note 2)
t _r t _f	Rise/Fall Times 20 - 80%	275	700	275	700	275	700	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Skew defined between common OR or common NOR outputs of a single gate.

) **motorola**

Quint Differential Line Receiver

Product Preview ELECTRICALLY TESTED PER: 100E516

The 100E516 is a quint differential line receiver with emitter-follower outputs. An internally generated reference supply (V_BB) is available for single-ended reception.

Active current sources plus a deep collector feature of the MOSAIC III process provide the receivers with excellent common-mode noise rejection. Each receiver has a dedicated V_{CCO} supply lead, providing optimum symmetry and stability.

The receiver design features clamp circuity to cause a defined state if both the inverting and non-inverting inputs are left open; in this case the Q output goes LOW, while the \overline{Q} output goes HIGH. This feature makes the device ideal for twisted pair applications.

If both inverting and non-inverting inputs are at equal potential > -2.5 V, the receiver does not go to a defined state, but rather current-shares in normal differential amplifier fashion, producing output voltage levels midway between HIGH and LOW, or the device may even oscillate.

The device V_{BB} output is intended for use as a reference voltage for singleended reception of ECL signals to that device only. When using for this purpose, it is recommended that V_{BB} is decoupled to V_{CC} via a 0.01μ F capacitor.

The 100E516 features input pull-down resistors, as does the rest of the ECLinPS family.

- 500 ps Max. Propagation Delay
- VBB Supply Output
- Dedicated V_{CCO} Pin for Each Receiver
- Extended 100E VFF Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Military 100E516

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

LOGIC DIAGRAM

PACKAGE: NON-Compliant QFP: X

Do

MOTOROLA MILITARY MECL DATA 5-52

	E							
Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:			
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH}(max)$	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with		
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs			
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
١L	Input LOW Current	0.5		μA	VIN = VIL(min)			

100E Series DC CHARACTERISTICS: V_{EE} = -4.2 V to - 5.46 V, V_{CC} = V_{CCO} = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
V _{BB}	Output Reference Voltage	-1.38	-1.26	-1.38	-1.26	-1.38	-1.26	v	
Ιн	Input High Current		200		200		200	μA	
IEE	Power Supply Current	29	35	33	40	29	35	mA	
VPP(DC)	Input Seneitivity	150		150		150		mV	(Note 1)
VCMR	Common Mode Range	-2.0	-0.6	-2.0	-0.6	-2.0	-0.6	v	(Note 2)

1. Vpp is the minimum differential input voltage required to assure full ECL levels are present at the outputs.

2. V_{CMR} is referenced to the most positive side of the differential input signal. Normal operation is obtained when the "HIGH" input is within the V_{CMR} range and the input swing is greater than V_{PMIN} and < 1.0 V.

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 55	i° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
^t PLH ^t PHL	Propagation Delay to Output								
	D	200	450	200	450	200	450	ps	
	D (SE)	150	500	150	500	150	500	ps	
VPP(AC)	Minimum Input Swing	150		150		150		mV	(Note 1)
tSkew	Within-device Skew								
	Dn to Qn, Qn	5	0	5	0	5	0	ps	(Note 2)
tSkew	Duty Cycle Skew								
	^t PLH - ^t PHL	±	10	± 10		±	10	ps	(Note 3)
t _r t _f	Rise/Fall Times 20 - 80%	275	575	275	575	275	575	ps	

1. Minimum input swing for which AC parameters are guaranteed.

2. Within-device skew is defined as identical transitions on similar paths through a device.

3. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross points of the outputs.

4-Bit D Flip-Flop

Product Preview **ELECTRICALLY TESTED PER:** 100E531

The 100E531 is a guad master-slave D-type flip-flop with differential outputs. Each flip-flop may be clocked separately by holding Common Clock (Cc) LOW and using the Clock Enable (CE) inputs for clocking. Common clocking is achieved by holding the \overline{CE} inputs LOW and using C_{C} to clock all four flip-flops. In this case, the CE inputs perform the function of controlling the common clock, to each flip-flop.

Individual asynchronous resets are provided (R). Asynchronous set controls (S) are ganged together in pairs, with the pairing chosen to reflect physical chip symmetry.

Data enters the master when both CC and CE are LOW, and transfers to the slave when either C_C or \overline{CE} (or both) go HIGH.

- 1100 MHz Min. Toggle Frequency
- Differential Outputs
- Individual and Common Clocks
- Individual Resets (asynchronous)
- Paired Sets (asynchronous)
- Extended 100E VFF Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

Military 100E531

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Ro

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:			
VOH	Output HIGH Voltage	-1025	-880	mV	VIN = VIH(max) Loading with			
VOL	Output LOW Voltage	-1810	-1620	mV	or $V_{IN} = V_{IL(min)}$ 50 Ω to -2.0 V			
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min) Loading with			
VOLA	Output LOW Voltage		-1610	mV	or VIN = VIL(max)	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs			
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
կլ	Input LOW Current	0.5		μA	V _{IN} = V _{IL(min)}			

100E Series DC CHARACTERISTICS: $V_{EE} = -4.2 \text{ V}$ to - 5.46 V, $V_{CC} = V_{CCO} = \text{GND}$; -55°C to + 125°C

DC CHARACTERISTICS: V_{EE} = V_{EE}(min) to V_{EE}(max), V_{CC} = V_{CCO} = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 58	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
ίн	Input High Current							μA	
	CC		350		350		350		
	s		450		450		450		
	R		300		300		300		
	CE		300		300		300		
	D		150		150		150		
IEE	Power Supply Current		70		81		70	mA	

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max	1	
fMAX	Max. Toggle Frequency	1100		1100		1100		MHz	
^t PLH ^t PHL	Propagation Delay to Output								
	CE	360	700	360	700	360	700	ps	
	CC	325	675	325	675	325	675	ps	
	R	350	725	350	725	3 ⁵⁰	725	ps	
	s	350	725	350	725	350	725	ps	
ts	Setup Time								
	D	150		150		150		ps	(Note 2)
tH	Hold Time								
	D	175		175		175		ps	(Note 2)
^t RR	Reset Recovery Time	400		400		400		ps	
tSkew	Within-device Skew	6	0	6	0	6	0	ps	(Note 1)
tPW	Minimum Pulse Width								
	Cik, S, R	400		400		400		ps	
tr tf	Rise/Fall Times 20 - 80%	300	675	300	675	300	675	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Setup/hold time guaranteed for both C_C & $\overline{\text{CE}}$.

Product Preview ELECTRICALLY TESTED PER: 100E541

The 100E541 is an 8-bit full-function shift register. The 100E541 performs serial/parallel in and serial/parallel out, shifting in either direction. The eight inputs D₀-D₇ accept parallel input data, while DL/DR accept serial input data for left/right shifting.

The select pins, SEL0 and SEL1, select one of four modes of operation: Load, Hold, Shift Left, Shift Right, according to the Function Table.

Input data is accepted a set-up time before the positive clock edge. A HIGH on the Master Reset (MR) pin asynchronously resets all the registers to zero.

- 700 MHz Min. Shift Frequency
- 8-Bits

MR

- Full-Function, Bi-directional
- Asynchronous Master Reset
- Extended 100E VFF Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₇	Parallel Data Inputs
DL, DR	Serial Data Inputs
SEL0, SEL1	Mode Select Inputs
CLK	Clock
Q ₀ - Q ₇	Data Outputs
MB	Master Reset

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Military 100E541

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

100E541

					00 000			
Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:			
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or V _{IN} = V _{IL(min)}	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mν	VIN = VIH(min) Loading wi			
VOLA	Output LOW Voltage		-1610	mV	or $V_{IN} = V_{IL(max)}$ 50 Ω to -2.0			
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH S	Signal for All Inputs		
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
ίL	Input LOW Current	0.5		μA	VIN = VIL(min)			

100E Series DC CHARACTERISTICS: $V_{EE} = -4.2 \text{ V}$ to - 5.46 V, $V_{CC} = V_{CCO} = \text{GND}$; -55°C to + 125°C

	Function Table										
SEL0	SEL1	Function									
L	L	Load									
L	Н	Shift Right (Dn to Dn + 1)									
н	L	Shift Left (Dn to Dn - 1)									
Н	н	Hold									

	Expanded Function Table													
Function	DL	DR	SEL0	SEL1	MR	CLK	QO	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Load	x	X	L	L	L	z	D0	D1	D2	D3	D4	D5	D6	D7
Shift Right	x	L	L	н	L	z	L	QO	Q1	Q2	Q3	Q4	Q5	Q6
	х	н	L	н	L	z	н	L	QO	Q1	Q2	Q3	Q4	Q5
Shift Left	L	X	н	L	L	Z	L	QO	Q1	Q2	Q3	Q4	Q5	L
	н	x	н	L	L	z	QO	Q1	Q2	Q3	Q4	Q5	L	н
Hold	х	X	н	н	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	н
	x	×	н	н	L	z	QO	Q1	Q2	Q3	Q4	Q5	L	н
Reset	х	X	X	x	н	х	L	L	L	L	L	L	L	L
100E541

DC CHARACTERISTICS: V_{EE} = V_{EE}(min) to V_{EE}(max), V_{CC} = V_{CCO} = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional Parameters:	+ 2	+ 25° C		+ 125° C		– 55° C		
		Min	Max	Min	Max	Min	Max		
ίн	Input High Current		150		150		150	μΑ	
IEE	Power Supply Current		157		181		157	mA	

AC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter	Limits						Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^f Shift	Max. Shift Frequency	700		700		700		MHz	
^t PLH ^t PHL	Propagation Delay to Output								
	Clk	625	975	625	975	625	975	ps	
	MR	600	975	600	975	600	975	ps	
ts	Setup Time								
	D	175		175		175		ps	
	SEL0	350		350		350		ps	
	SEL1	300		300		300		ps	
tH	Hold Time								
	D	200		200		200		ps	
	SEL0	100		100		100		ps	
	SEL1	100		100		100		ps	
^t RR	Reset Recovery Time	900		900		900		ps	
tPW	Minimum Pulse Width								
	Cik, MR	400		400		400		ps	
tSkew	Within-device Skew	6	0	6	0	6	0	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

MOTOROLA

9-Bit Shift Register

Product Preview ELECTRICALLY TESTED PER: 100E542

The 100E542 is a 9-bit shift register, designed with byte-parity applications in mind. The 100E542 performs serial/parallel in and serial/parallel out, shifting in one direction. The nine inputs D₀-D₈ accept parallel input data, while S-IN accepts serial input data.

The SEL (Select) input pin is used to switch between the two modes of operation -SHIFT and LOAD. The shift direction is from bit 0 to bit 8. Input data is accepted by the registers a set-up time before the positive going edge of CLK1 or CLK2: shifting is also accomplished on the positive clock edge. A HIGH on the Master Reset pin (MR) asynchronously resets all the registers to zero.

- 700 MHz Min. Shift Frequency
- 9-Bit for Byte-Parity Applications
- Asynchronous Master Reset
- Dual Clocks
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₈	Parallel Data Inputs
S-IN	Serial Data Input
SEL	Mode Select Input
CLK1, CLK2	Clock Inputs
MR	Master Reset
Q ₀ - Q ₈	Data Outputs

Function Table

SEL	Mode
L	LOAD
н	SHIFT

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

D1

D0

S-IN

VEE

CLK2

CLK1

] MR

Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:			
VOH	Output HIGH Voltage	-1025	-880	mV	VIN = VIH(max)	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with		
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Input			
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
μL	Input LOW Current	0.5		μA	VIN = VIL(min)			

100E Series DC CHARACTERISTICS: VEE = -4.2 V to - 5.46 V, VCC = VCCO = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter		Limits						TEST CONDITION APPLIED:
	Functional		+ 25° C		+ 125° C		– 55° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
ηн	Input High Current		150		150		150	μA	
IEE	Power Supply Current		145		165		145	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
fSHIFT	Max. Shift Frequency	700		700		700		MHz	
^t PLH ^t PHL	Propagation Delay to Output								
	Clk	600	1000	600	1000	600	1000	ps	
	MR	600	1000	600	1000	600	1000	ps	
ts	Setup Time								
	D	50		50		50		ps	
	SEL	300		300		300		ps	
tH	Hold Time								
	D	300		300		300		ps	
	SEL	75		75		75		ps	
tRR	Reset Recovery Time	900		900		900		ps	
tPW	Minimum Pulse Width								
	Clk, MR	400		400		400		ps	
tSkew	Within-device Skew	7	5	7	5	7	5	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

9-Bit Hold Register

Product Preview ELECTRICALLY TESTED PER: 100E543

The 100E543 is a 9-bit holding register, designed with byte-parity applications in mind. The 100E543 holds current data or loads new data, with the nine inputs D_0 - D_8 accepting parallel input data.

The SEL (Select) input pin is used to switch between the two modes of operation –HOLD and LOAD. Input data is accepted by the registers a set-up time before the positive going edge of CLK1 or CLK2. A HIGH on the Master Reset pin (MR) asynchronously resets all the registers to zero.

- 700 MHz Min. Operating Frequency
- 9-Bit for Byte-Parity Applications
- Asynchronous Master Reset
- Dual Clocks
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₈	Parallel Data Inputs
SEL	Mode Select Input
CLK1, CLK2	Clock Inputs
MR	Master Reset
Q ₀ - Q ₈	Data Outputs
NC	No Connection

Function Table

H HOLD

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

QFP: X

1) JAN: N/A 2) SMD: N/A

3) 883: Planned

AVAILABLE AS

X = CASE OUTLINE AS FOLLOWS:

					00 000			
Symbol	Parameter	Min	Max	Units	TEST CONDITION APPLIED:			
Vон	Output HIGH Voltage	-1025	-880	mV	VIN = VIH(max)	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with		
VOLA	Output LOW Voltage		-1610	mV	or VIN = VIL(max)	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs			
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
hΓ	Input LOW Current	0.5		μA	VIN = VIL(min)			

100E Series DC CHARACTERISTICS: VEE = -4.2 V to - 5.46 V, VCC = VCCO = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	ol Parameter Limits						Units	TEST CONDITION APPLIED:	
	Functional Parameters:	+ 25° C		+ 125° C		– 55° C			
		Min	Max	Min	Max	Min	Max	1	
ЧΗ	Input High Current		150		150		150	μA	
IEE	Power Supply Current		145		165		145	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	+ 125° C		5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
fSHIFT	Max. Toggle Frequency	700		700		700		MHz	
^t PLH ^t PHL	Propagation Delay to Output								
	Clk	600	1000	600	1000	600	1000	ps	
	MR	600	1000	600	1000	600	1000	ps	
ts	Setup Time								
	D	50		50		50		ps	
	SEL	300		300		300		ps	
tH	Hold Time								
	D	300		300		300		ps	
	SEL	75		75		75		ps	
tRR	Reset Recovery Time	900	_	900		900		ps	
tPW	Minimum Pulse Width								
	Clk, MR	400		400		400		ps	
tSkew	Within-device Skew	7	5	7	5	7	5	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	300	800	300	800	300	800	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

6-Bit D Register

Product Preview ELECTRICALLY TESTED PER: 100E551

The 100E551 contains 6 D-type, edge-triggered, master-slave flip-flops with differential outputs. Data enters the master when both Clk1 and Clk2 are Low, and is transferred to the slave when Clk1 or Clk2 (or both) go High. The asynchronous Master Reset (MR) makes Q outputs go Low.

- 1100 MHz Min. Toggle Frequency
- Differential Outputs
- Asynchronous Master Reset
- Dual Clocks
- Extended 100E VFF Range of 4.2 V to 5.46V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ - D ₅	Data Inputs
Clk1, Clk2	Clock Inputs
MR	Master Reset
Q ₀ - Q ₅	True Outputs
Q ₀ - Q ₅	Inverted Outputs

Military 100E551

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MR Cik1 Cik2

Symbol	Parameter	Min	Max	Units	TEST CONDIT	ION APPLIED:
VOH	Output HIGH Voltage	-1025	-880	mV	VIN = VIH(max)	Loading with
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW S	Signal for All Inputs
կլ	Input LOW Current	0.5		μΑ	V _{IN} = V	IL(min)

100E Series DC CHARACTERISTICS: $V_{EE} = -4.2 \text{ V}$ to -5.46 V, $V_{CC} = V_{CCO} = \text{GND}$; -55°C to $+125^{\circ}\text{C}$

DC CHARACTERISTICS: $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$, $V_{CC} = V_{CCO} = GND$

Symbol	Parameter		Limits					Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 5	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
ін	Input High Current		150 <u>,</u>		150		150	μA	$V_{IL} = -1.810 \text{ V}, V_{IH} = -0.880 \text{ V}, \text{ R}_{L} = 50\Omega$ to $-2.0 \text{ V}.$
IEE	Power Supply Current		78		90		78	mA	V_{EE} (MAX), V_{IL} = - 1.810 V, V_{IH} = - 0.880 V, R_L = 50Ω to - 2.0 V.

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25° C		+ 12	+ 125° C		5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
fmax	Maximum Toggle Frequency	1100		1100		1100		MHz	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
^t PLH	Propagation Delay to Output								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
^t PHL	MR	475	800	475	800	475	800	ps	
	CLK	475	850	475	850	475	850	ps	
ts	Setup Time, D	0		0		0		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
ţН	Hold Time, D	350		350		350		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
tRR	Reset Recovery Time	750		750		750		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
tPW	Minimum Pulse Width								
	CLK, MR	400		400		400		ps	
tSkew	Within-device Skew	6	5	6	5	6	5	ps	(Note 1)
tr tf	Rise/Fall Times 20 - 80%	300	700	300	700	300	700	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

3-Bit 4:1 Mux-Latch

Product Preview ELECTRICALLY TESTED PER: 100E556

The 100E556 contains three 4:1 multiplexers followed by transparent latches with differential outputs. When both latch Enables (LEN1, LEN2) are Low, the latch is transparent, and output data is controlled by the multiplexer select controls (SEL0, SEL1). A logic High on either LEN1 or LEN2 (or both) latches the outputs. The Master Reset (MR) overrides all other controls to set the Q outputs Low.

- · 950 ps Max. D to Output
- · 850 ps Max. LEN to Output
- Differential Outputs
- · Asynchronous Master Slave
- Dual Latch-Enable
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ x- D ₃ x	Input Data
SEL0, SEL1	Select Inputs
LEN1, LEN2	Latch Enable
MR	Master Reset
Q ₀ - Q ₅	True Outputs
\overline{Q}_0 - \overline{Q}_5	Inverted Outputs

Military 100E556

AVAILABLE AS

- 1) JAN: N/A
- 2) SMD: N/A
- 3) 883: Planned
- X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Symbol	Parameter	Min	Max	Units	TEST CONDIT	ION APPLIED:
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50 Ω to -2.0 V
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW S	Signal for All Inputs
կլ	Input LOW Current	0.5		μΑ	V _{IN} = V	IL(min)

100E Series DC CHARACTERISTICS: V_{EE} = -4.2 V to - 5.46 V, V_{CC} = V_{CCO} = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter		Limits				Units	TEST CONDITION APPLIED:	
	Functional	+ 25	i° C	+ 12	5° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max		
ін	Input Current High		150		150		150	μA	$V_{IL} = -1.810$ V, $V_{IH} = -0.880$ V, $R_L = 50\Omega$ to -2.0 V.
IEE	Power Supply Current		90		103		90	mA	V_{EE} (MAX), $V_{IL} = -1.810$ V, $V_{IH} = -0.880$ V, R _L = 50Ω to - 2.0 V.

FUNCTION TABLE							
SEL0	SEL0 SEL1 Data						
L	L	а					
н	L	b					
L	н	С					
н	н	d					

FUNCTION TABLE							
LEN1	Latch						
L	L	Transp.					
Н	Х	Latch					
Х	Н	Latch					

100E556

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 55	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^t PLH ^t PHL	Propagation Delay to Output								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
	D	400	900	400	900	400	900	ps	
	SEL0	550	1050	550	1050	550	1050	ps	
	SEL1	450	900	450	900	450	900	ps	
	LEN	350	800	350	900	350	800	ps	
	MR	350	825	350	825	350	825	ps	
ts	Setup Time								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
	D	400		400		400		ps	
	SELO	700		700		700		ps	
	SEL1	600		600		600		ps	
ţН	Hold Time								V_{IL} = 0.295 V, V_{IH} = 1.045 V, R_L = 50 Ω to Gnd.
	D	300		300		300		ps	
	SEL0	100		100		100		ps	
	SEL1	200		200		200		ps	
^t RR	Reset Recovery Time	800		800		800		ps	
^t PW	Minimum Pulse Width MR	400		400		400		ps	
tSkew	Within-device Skew	5	0	5	0	5	0	ps	(Note 1)
t _r t _f	Rise/Fall Times 20 - 80%	275	700	275	700	275	700	ps	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

1. Within-device skew is defined as identical transitions on similar paths through a device.

.

Product Preview ELECTRICALLY TESTED PER: 100E558

The 100E558 contains five 2:1 multiplexers with differential outputs. The output data are controlled by the Select input (SEL).

- 600 ps Max. D to Output
- 800 ps Max. SEL to Output
- Differential Outputs
- One V_{CCO} Pin Per Output Pair
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

PIN NAME

Pin	Function
D ₀ a - D ₄ a	Inputs Data a
D ₀ b - D ₄ b	Inputs Data b
SEL	Select Input
Q ₀ - Q ₄	True Outputs
$\overline{Q_0} - \overline{Q_4}$	Inverted Outputs

Function Table

SEL Data

- н а
- L b

Military 100E558

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MOTOROLA MILITARY MECL DATA 5-68

100E558

Symbol	Parameter	Min	Max	Units	TEST CONDIT	ION APPLIED:		
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with		
VOLA	Output LOW Voltage		-1610	mV	or VIN = VIL(max)	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs		
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
ΙL	Input LOW Current	0.5		μA	VIN = VIL(min)			

100E Series DC CHARACTERISTICS: V_{EE} = -4.2 V to - 5.46 V, V_{CC} = V_{CCO} = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
ЧH	Input High Current							μΑ	
	D		200		200		200		
	SEL		150		150		150		
IEE	Power Supply Current		40		46		40	mA	

AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 125° C		– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max	1	
^t PLH ^t PHL	Propagation Delay to Output								
	D	225	225 550		550	225	550	ps	
	SEL	400	400 775		400 775		775	ps	
tSkew	Within-device Skew	60		60		6	0	ps	(Note 1)
tr tf	Rise/Fall Times 20 - 80%	275	650	275	275 650		650	ps	

1. Within-device skew is defined as identical transitions on similar paths through a device.

MOTOROLA 6-Bit D Register **Differential Data & Clock**

Product Preview **ELECTRICALLY TESTED PER:** 100E851

The 100E851 contains 6 D-type flip-flops with single-ended outputs and differential data inputs. The common clock input is also differential. The registers are triggered by a positive transition of the positive clock (Clk) input.

A High on the Master Reset (MR) input resets all Q outputs to Low. The VBR output is intended for use as a reference voltage for single-ended reception of ECL signals to that device only. When used for this purpose, it is recommended that VBB is decoupled to VCC via a 0.01 µF capacitor.

- · Differential Inputs: Data and Clock
- VBB Outputs

Pin

- 1100 MHz Min. Toggle Frequency
- Asynchronous Master Reset
- Extended 100E VFF Range of 4.2 V to 5.46 V

Function

75 kΩ Input Pulldown Resistors

PIN NAME

Military 100E851

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: Planned X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant QFP: X

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MF

MOTOROLA MILITARY MECL DATA 5-70

Symbol	Parameter	Min	Max	Units	TEST CONDITI	ON APPLIED:		
VOH	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	Loading with		
VOL	Output LOW Voltage	-1810	-1620	mV	or VIN = VIL(min)	50Ω to -2.0 V		
VOHA	Output HIGH Voltage	-1035		mV	VIN = VIH(min)	Loading with		
VOLA	Output LOW Voltage		-1610	mV	or V _{IN} = V _{IL(max)}	50Ω to -2.0 V		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH	Signal for All Inputs		
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs			
կլ	Input LOW Current	0.5		μA	VIN = VIL(min)			

100E Series DC CHARACTERISTICS: VEE = -4.2 V to - 5.46 V, VCC = VCCO = GND; -55°C to + 125°C

DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

Symbol	Parameter			Lin	nits			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	– 55° C			
	Parameters:	Min	Max	Min	Max	Min	Max		
VBB	Output Reference Voltage	-1.38	-1.26	-1.38	-1.26	-1.38	-1.26	v	V _{IL} = Open, V _{IH} = Open, R _L = 50Ω to – 2.0 V.
Чн	Input Current High		150		150		150	μA	$V_{IL} = -1.810 \text{ V}, V_{IH} = -0.880 \text{ V}, \text{ R}_{L} = 50\Omega \text{ to} -2.0 \text{ V}.$
IEE	Power Supply Current		101		116		101	mA	V_{EE} (MAX), V_{IL} = - 1.810 V, V_{IH} = - 0.880 V, R _L = 50Ω to - 2.0 V.
VCMR	Common Mode Range	-2.0	-0.4	-2.0	-0.4	-2.0	-0.4	v	(Note 1)

1. V_{CMR} is referenced to the most positive side of the differential input signal. Normal operations obtained when the "HIGH" input is within the V_{CMR} range and the input swing is greater than V_{PPMIN} and < 1.0 V.

100E851

	ACTERISTICS: V _{EE}	- • <u>E E ((</u>				•000		Units	TEST CONDITION ADDI ISD.
Symbol	Parameter			Lin	1115			Units	TEST CONDITION APPLIED:
	Functional	+ 25	5° C	+ 12	5° C	- 58	5° C		
	Parameters:	Min	Max	Min	Max	Min	Max	1	
fmax	Maximum Toggle Frequency	1100		1100		1100		MHz	$\frac{V_{IL}}{CIk} = 0.295 \text{ V}, V_{IH} = 1.045 \text{ V}, \text{ Dn} = 0.670 \text{ V}, \\ \frac{V_{IL}}{CIk} = 0.670 \text{ V}, \text{ R}_{L} = 50\Omega \text{ to Gnd}.$
^t PLH ^t PHL	Propagation Delay to Output								V_{IL} = 0.295 V, V_{IH} = 1.045 V, Dn = 0.670 V, Cik = 0.670 V, RL = 50 Ω to Gnd.
	CLK (Diff)	475	800	475	800	475	800	ps	
	CLK (SE)	425	850	425	850	425	850	ps	
	MR	425	850	425	850	425	850	ps	
ts	Setup Time, D	150		150		150		ps	V_{IL} = 0.295 V, V_{IH} = 1.045 V, Dn = 0.670 V, \overline{Cik} = 0.670 V, R_L = 50 Ω to Gnd.
ţΗ	Hold Time, D	250		250		250		ps	$\frac{V_{IL}}{Cik} = 0.295 \text{ V, } V_{IH} = 1.045 \text{ V, } Dn = 0.670 \text{ V,}$ $\frac{Cik}{Cik} = 0.670 \text{ V, } R_L = 50\Omega \text{ to Gnd.}$
V _{PP} (AC)	Minimum Input Swing	150		159		150		mV	(Note 1)
^t RR	Reset Recovery Time	750		750		750		ps	
^t PW	Minimum Pulse Width CLK, MR	400		400		400		ps	
^t Skew	Within-device Skew	10	00	1(00	10	00	ps	(Note 2)
t _r t _f	Rise/Fall Times 20 - 80%	275	800	275	800	275	800	ps	

Minimum input voltage for AC parameters are guaranteed.
Within-device skew is defined as identical transitions on similar paths through a device.

Phase-Locked Loop 6

Analog Mixer

ELECTRICALLY TESTED PER: MPG 12502

The 12502 is a double balanced analog mixer, including an input amplifier feeding the mixer carrier port and a temperature compensated bias regulator. The input circuits for both the amplifier and mixer are differential amplifier circuits. The on-chip regulator provides all of the required biasing.

This circuit is designed for use as a balanced mixer in high-frequency wideband circuits. Other typical applications include suppressed carrier and amplitude modulation, synchronous AM detection, FM detection, phase detection, and frequency doubling, at frequencies up to UHF.

PIN	ASSIGN	IENTS
FUNCTION	DIL	BURN-IN
		(CONDITION C)
Reg. Bypass	1	VCC
Local Osc. In	2	OPEN
Local Osc. In	3	OPEN
Alt. Sig. In	4	OPEN
Null Adjust	5	OPEN
Null Adjust	6	OPEN
VEE	7	OPEN
Mixer Sig. In	8	GND
Mixer Sig. In	9	GND
Reg. Bypass	10	VCC
Data Out	11	VCC
Data Out	12	OPEN
Resistor Load	13	OPEN
Vcc	14	OPEN

BURN - IN CONDITIONS: V_{CC} = +6.0 V MAX/ +5.0 V MIN

Military 12502

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 12502/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: C

LOGIC DIAGRAM

6-2

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Supply Voltage	Vcc		+ 7.0	Vdc
Output Voltage	VOUT	ĺ	+ 5.5	Vdc
Input Voltage	VIN		+ 5.5	Vdc
Operating Temperature Range	TA	- 55	+ 125	°C
Storage Temperature Range	T _{stg}	- 65	+ 175	°C

NOTES

- 1. V_{IL} = 3.0 V on pin 3 when pin 8 is under test.
- $V_{IL} = -3.0$ V on pin 9 when pin 2 is under test.
- 2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.
- 3. All unused cables to the scope must be terminated with a 50 $\Omega\pm$ 1.0% resistor.
- 4. f = 100 MHz.
- 5. Signal A = 30 mVp-p. Signal B = 300 mVp-p.

Figure 1. Test Circuit

6

Figure 2. Frequency Diagram

Test	Т	est Volta	ge Value	s (Volts)
Temperature	VIH	VIL	VILX	Vcc	VEE
T _A = 25 °C	+ 2.9	+ 2.0	-3.0	+ 5.0	-5.0
T _A = 125 °C	+ 2.9	+ 2.0		+ 5.0	
T _A = -55 °C	+ 2.9	+ 2.0		+ 5.0	

Symbol	Parameter			Lin	nits			Units		TEST VOL	TAGE APPLIED	VEE P.U.T. 5-7 1 5-7 4 5-7 5 5-7 6 5-7 10 5-7 11, 12			
	Functional Parameters:	+ 25 Subgr			5 °C oup 2		5 °C roup 3		Pinouts r		for DIL package ut Load = 50 Ω f		gnments		
	Parameters:	Min	Max	Min	Max	Min	Max	1	VIH	VIL	Vcc	VEE	P.U.T.		
VBias 1	Bias Voltage	2.32	2.52	2.29	2.49	2.34	2.54	V			11, 12, 14	5-7	1		
VBias 4	Bias Voltage	400	600	420	620	390	590	mV			11, 12, 14	5-7	4		
VBias 5	Bias Voltage	285	425	305	445	275	415	mV			11, 12, 14	5-7	5		
V _{Bias 6}	Bias Voltage	285	425	305	445	275	415	mV			11, 12, 14	5-7	6		
V _{Bias} 10	Bias Voltage	1.185	1.385	1.05	1.25	1.3	1.5	v			11, 12, 14	5 - 7	10		
ICC1	Power Supply Drain Current	0.7	1.3					mA			11, 12, 14	5 - 7	11, 12		
∆ICC1	Differential Current	- 50	50					μΑ			11, 12, 14	5 - 7	11, 12		
ICC2	Power Supply Drain Current	2.1	3.9					mA			11, 12, 14	5 - 7	11, 12		
∆ICC2	Differential Current	- 100	100					μΑ			11, 12, 14	5-7	11, 12		
ICC3	Power Supply Drain Current		16.0					mA			11, 12, 14	5 - 7	14		
INH	Input Current High		0.75					mA	2, 3, 8, 9		11, 12, 14	5-7	2, 3, 8, 9		
IINL	Input Current Low	- 0.7						mA		2, 3, 8, 9	11, 12, 14	5-7	2, 3, 8, 9		
Ιουτ	Output Current	4.2	7.8					mA	2, 3, 8, 9		11, 12, 14	2, 3, 8, 9	11, 12		

MOTOROLA MILITARY MECL DATA 6-5 6

12502 QUIESCENT LIMIT TABLE

Test	T	est Volta	ge Value	s (Volts)
Temperature	VIH	VIL	VILX	Vcc	VEE
T _A = 25 °C	+ 2.9	+ 2.0	-3.0	+ 5.0	-5.0
T _A = 125 °C	+ 2.9	+ 2.0		+ 5.0	
T _A = -55 °C	+ 2.9	+ 2.0		+ 5.0	

Symbol	Parameter			Lin	nits			Units	Jnits TEST VOLTAGE APPLIED TO PINS BELOW								
	Functional Parameters:	+ 2 Subgi	5 °C roup 9		25 °C oup 10		5 °C oup 11		Pinouts i		e for DIL package put Load = 50 Ω		Assignme	nts			
		Min	Max	Min	Max	Min	Max	1 [VILX	VIN	Vout	Vcc	VEE	P.U.T.			
Av1	AC Gain	180						mV	9	2	11, 12	14	7	11, 12			
Av2	AC Gain	100						mV	3	8	11, 12	14	7	11, 12			

NOTE: AC Gain is a function of the collecter impedance.

Two Modulus Prescaler

ELECTRICALLY TESTED PER: 5962-8774801

The 12509 is a two-modulus prescaler which will divide by 5 and 6. A MECL-to-MTTL translator is provided to interface with the 12514 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- 600 MHz (Typ) Toggle Frequency
- 12509 (÷ 5/6)
- · MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- + 5.0 or 5.2 V Operation *
- Buffered Clock Input Series-Input RC Typ, 20 Ohms and 4.0 pF
- VBB Reference Voltage
- 460 mW Max/Pkg (No Load)

PIN ASSIGNMENTS

FUNCTION	DIL	BURN-IN (CONDITION C)
Vcco	1	GND GND
Q	2	51 Ω to VTT
Q	3	51 Ω to V _{TT}
(-)	4	51 Ω to V _{TT}
(+)	5	GND
MTTL VCC	6	GND
MTTL Output	7	51 Ω to VTT
VEE	8	VEE
E5 MTTL	9	GND
E4 MTTL	10	GND
E3 MECL	11	51 Ω to VTT
E2 MECL	12	51 Ω to VTT
E1 MECL	13	51 Ω to VTT
V _{BB}	14	OPEN
Clock	15	51 Ω to VTT
VCC	16	GND

BURN - IN CONDITIONS: $V_{TT} = -2.0 V MAX - 2.2 V MIN$ VEE = - 5.7 V MAX/ - 5.2 V MIN

* When using a + 5.0 V supply, apply + 5.0 V to Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), Pin 16 (V_{CC}), and ground Pin 8 (V_{EE}). When using -5.2 V supply, ground Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), and Pin 16 (V_{CC}) and apply 5.2 V to Pin 8 (V_{EE}). If the translator is not required, Pin 6 may be left open to conserve dc power drain.

Military 12509

AVAILABLE AS

1) JAN: N/A 2) SMD: 5962-8774801 3) 883: 12509/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E

E2

o

Y MECL

E1

12	2509
----	------

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Supply Voltage	Vcc		+ 7.0	Vdc
Output Voltage	VOUT		+ 5.5	Vdc
Input Voltage	VIN		+ 5.5	Vdc
Operating Temperature Range	TA	- 55	+ 125	°C
Storage Temperature Range	T _{stg}	- 65	+ 165	°C

NOTES

1. All resistors are ± 1.0%.

2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.

3. The 1950 Ω resistor at pin 7 and the scope termination impedance constitute a 40:1 attenuator probe.

- 4. All unused outputs must be terminated with 100 Ω to ground.
- 5. Pulse generator 1, 2, and 4 have the following characteristics:
 - a) PRF = 10 MHz.
 - b) PW = 50% duty cycle.
 - c) $t_f = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}.$
- 6. Pulse generator 3 has the following characteristics:
 - a) PRF = 2.0 MHz.
 - b) PW = 50% duty cycle.
 - c) $t_{\rm f} = t_{\rm f} = 5.0 \text{ ns } \pm 0.5 \text{ ns}.$

Figure 1. Switching Test Circuit and Waveforms

12509

6

12509

Sequence Table 1

		ENA	ABLE INP	UTS		
TTL 9	TTL 10	ECL 10	ECL 12	ECL 13	EC 1	
VIL	VIL	VILB	VILB	VILB	C _{P1}	+6
VIH	VIL	VILB	VILB	VILB	C _{P1}	+5
VIL	VIH	VILB	VILB	VILB	C _{P1}	+5
VIL	VIL	VIHB	VILB	VILB	CP1	+5
Vi∟	Vı∟	VILB	VIHB	VILB	C _{P1}	+5
VIL	VIL	VILB	VILB	VIHB	C _{P1}	+5

(Use with VOH1, VOL1, VOHA, VOLA tests)

Sequence Table 2

(Use with VOH1, VOL1, VOHA, VOLA tests)

		EN	ABLE INP	UTS		
TTL 9	TTL 10	ECL 11	ECL 12	ECL 13	EC 1	
VILT	VIL	VILB	VILB	VILB	CP1	6
VIL	VILT	VILB	VILB	VILB	C _{P1}	6
ViL	VIL	VILA	VILB	VILB	CP1	6
VIL	VIL	VILB	VILA	VILB	C _{P1}	6
VIL	VIL	VILB	VILB	VILA	C _{P1}	6
VIHT	VIL	VILB	VILB	VILB	C _{P1}	5
VIL	∨інт	VILB	VILB	VILB	CP1	5
VIL	VIL	VIHA	VILB	VILB	CP1	5
VIL	VIL	VILB	VIHA	VILB	CP1	5
VIL	VIL	VILB	VILB	VIHA	CP1	5

State Diagram

6

Enable = 0	Q1	Q2	Q3	Enable = 1
~	1	1	1	} ⊷
	0	1	1	1
	0	0	1	
	0	0	0	
	1	0	0	ļl
	1	1	0	

NOTE:The state of the enable is important <u>only</u> for the positive clock transition when the counter is in the state 110.

Test						Те	st Voltag	ge Values	s (Volts))						Test Cu	rrent Valu	es (mA)
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	١L	IOL	юн
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

Symbol	Parameter			Lin	nits			Units			TEST V	OLTAGE A	PPLIED	TO PI	NS BEL	.ow			
	Functional Parameters:	+ 2 Subg	5 °C roup 1	+ 12 Subgi	5 °C roup 2		5 °C roup 3		Pi	nouts ref		are for DIL put Load				ssignmen	ssignments		
	Falameters.	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA/B	VILA/B	Vcc	VEE	C _{P1}	IOH/OL	P.U.T.		
VOH1	Output Voltage High	4.03	4.22	4.135	4.37	3.88	4.12	v	9, 10	' 9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 2)		
VOH2	Output Voltage High	2.70	4.22	3.00	4.37	2.40	4.12	v			5	4	6	8		7 ^І ОН	7		
VOL1	Output Voltage Low	3.11	3.44	3.14	3.515	3.04	3.405	v	9, 10	9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 2)		
VOL2	Output Voltage Low	0.10	0.80	0.10	0.66	0.10	1.00	v			4	5	6	8		7 IOL	7		
Vона	Output Voltage High	4.01	4.22	4.115	4.37	3.86	4.12	v		9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 3)		
VOLA	Output Voltage Low	3.11	3.46	3.14	3.535	3.04	3.425	v		9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 3)		
V _{BB1}	Reference Bias Supply Voltage	3.67	3.87					v					1, 16	8		14	14		
los	Output Short Circuit Current	- 65	- 20	- 65	- 20	- 65	- 20	mA		7	5	5	6	8			7		
ICC1	Power Supply Cur- rent	- 80	- 10	- 80	- 10	- 88	- 10	mA					1, 16	8			8		
ICC2	Power Supply Cur- rent	0.5	5.2	0.5	5.2	0.5	5.2	mA			4	4	6	8			6		

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested.

2. See sequence table 1.

3. See sequence table 2.

Test						Те	st Voltag	ge Values	s (Volts))						Test Cu	rrent Valu	es (mA)
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	١L	lol	юн
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE APP	LIED TO	PINS BELOW			
		+ 2	5 °C	+ 12	25 °C	- 55	5 °C		Pi	nouts ref	erenced are	for DIL pa	ckage, ch	eck Pin Assignn	nents		
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subgroup 3		1	Output Load = 100 Ω to + 3.0 V								
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA/B	VILA/B	Vcc	VEE	P.U.T.		
INH1	Input Current High		250		400		400	μA		9, 10	11 - 13, 15		1, 16	8	11, 12, 13, 15		
INH2	Input Current High	2.0	6.0	2.0	6.4	1.7	6.0	mA			4, 5	4, 5	6	8	4, 5		
Іілнз	Input Current High	1.0	3.0	1.0	3.6	0.7	3.0	mA			5	5	6	8	5		
INH4	Input Current High		100		100		100	μA	9, 10				1, 16	8	9, 10		
I _{INI1}	Input Current Low	- 10		- 10		- 10		μΑ					1, 16	8, 15, 11 - 13	11, 12, 13, 15		
liNi1	Input Current Low	- 1.6		- 1.6		- 1.6		mA		9, 10	- p*-44		1, 16	8	9, 10		

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested. * ELECTRICAL CHARACTERISTICS: This device is designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 100 Ω resistor to + 3.0 V.

6

Test						Te	st Voltag	je Value	s (Volts))						Test Cu	rrent Valu	ies (mA)
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	۱L	IOL	юн
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE APPLIED TO	O PINS BEL	_ow	
	Frankland	+ 2	5 °C	+ 12	25 °C	- 55	5 °C		Pin	outs refere	enced are f	for DIL package, c	heck Pin A	ssignmer	nts
	Functional Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11]			Output	Load = 100 Ω to +	- 0.0 V		
		Min	Max	Min	Max	Min	Max	1	VILL	VILX	VIN	Vout	VCCA	VEEL	P.U.T.
^t PLH	Propagation Delay	4.8	8.1		9.4		8.1	ns	9, 10	11 - 13	15	2, 3	1, 16	8	2, 3
^t PHL	Propagation Delay	4.8	7.5		8.7		7.5	ns	9, 10	11 - 13	15	2, 3	1, 16	8	2, 3
^t PLH	Propagation Delay	3.4	8.1		9.4		8.1	ns	9, 10	11 - 13	15	2, 3	1, 16	8	7
^t PHL	Propagation Delay	3.0	6.5		7.6		6.5	ns	9, 10	11 - 13	15	2, 3	1, 16	8	7
		Min	Тур	Min	Max	Min	Max	1	VILL	VILX	VIN	VOUT	VCCA	VEEL	P.U.T.
tSetup 1	Setup Time MECL	5.0	2.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tSetup 2	Setup Time MTTL	5.0	3.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 1	Release Time MECL	5.0	2.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 2	Release Time MTTL	5.0	3.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
		Min	Тур	Min	Тур	Min	Тур	1	VILL	VILX	VIN	Vout	VCCA	VEEL	P.U.T.
fmax ÷ 6	Toggle Frequency	480	520	420	440	420	500	MHz			15	2	1, 6, 16	8 - 13	2

Two Modulus Prescaler

ELECTRICALLY TESTED PER: MPG 12511

The 12511 is a two-modulus prescaler which will divide by 8 and 9. A MECL-to-MTTL translator is provided to interface with the 12514 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- 600 MHz (Typ) Toggle Frequency
- 12511 (+ 8/9)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- + 5.0 or 5.2 V Operation *
- Buffered Clock Input Series Input RC Typ, 20 Ohms and 4.0 pF
- VBB Reference Voltage
- 460 mW Max/Pkg (No Load)

PIN ASSIGNMENTS

FUNCTION	DIL	FLATS	BURN-IN
			(CONDITION C)
Vcco	1	1	GND
Q	2	2	51 Ω to V_{TT}
ā	3	3	51 Ω to V_{TT}
()	4	4	51 Ω to V_{TT}
(+)	5	5	GND
MTTL VCC	6	6	GND
MTTL Output	7	7	51 Ω to V_{TT}
VEE	8	8	VEE
E5 MTTL	9	9	GND
E4 MTTL	10	10	GND
E3 MECL	11	11	51 Ω to V_{TT}
E2 MECL	12	12	51 Ω to V_{TT}
E1 MECL	13	13	51 Ω to V_{TT}
V _{BB}	14	14	OPEN
Clock	15	15	51 Ω to V_{TT}
VCC	16	16	GND

BURN - IN CONDITIONS: VTT = -2.0 V MAX/-2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

* When using a + 5.0 V supply, apply + 5.0 V to Pin 1 (V_{CCO}), Pin 6 (MTTL VCC), Pin 16 (VCC), and ground Pin 8 (VEE). When using -5.2V supply, ground Pin 1 (VCCO), Pin 6 (MTTL VCC), and Pin 16 (V_{CC}) and apply 5.2 V to Pin 8 (V_{EE}). If the translator is not required, Pin 6 may be left open to conserve dc power drain.

Military 12511

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 12511/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E **CERFLAT: F**

LOGIC DIAGRAM

MECL MECL MTTL MTTL

Q

Y

E1

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Supply Voltage	Vcc		+ 7.0	Vdc
Output Voltage	VOUT		+ 5.5	Vdc
Input Voltage	VIN		+ 5.5	Vdc
Operating Temperature Range	TA	- 55	+ 125	°C
Storage Temperature Range	T _{stg}	- 65	+ 175	°C

NOTES

1. All resistors are 1.0%.

2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.

3. The 1950 Ω resistor at pin 7 and the scope termination impedance constitute a 40:1 attenuator probe.

- 4. All unused outputs must be terminated with 100 Ω to ground.
- 5. Pulse generator 1, 2, and 4 have the following characteristics:

a) PRF = 10 MHz.

b) PW = 50% duty cycle.

c) $t_r = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}.$

6. Pulse generator 3 has the following characteristics:

a) PRF = 2.0 MHz.

- b) PW = 50% duty cycle.
- c) $t_r = t_f = 5.0 \text{ ns } \pm 0.5 \text{ ns.}$

6

MOTOROLA MILITARY MECL DATA 6-16 .

(Use with VOH1, VOL1, VOHA, VOLA tests)													
	ENABLE INPUTS												
TTL 9													
VIL	VIL VIL VILB VILB CP1												
VIH	VIL	VILB	VILB	VILB	C _{P1}								
VIL	VIH	VILB	VILB	VILB	C _{P1}								
VIL	VIL	VIHB	VILB	VILB	C _{P1}								
VIL	VIL VIL VILB VIHB VILB CP1												
VIL	VIL VIL VILB VILB VIHB CP1												

Sequence Table 1 (Use with VOH1, VOL1, VOHA, VOLA tests)

Sequence Table 2 (Use with VOH1, VOL1, VOHA, VOLA tests)

TTL 9	11L 10	ECL 11	ECL 12	ECL 13	ECL 15									
VILT	VIL	VILB	VILB	VILB	C _{P1}									
VIL	VILT	VILB	VILB	VILB	C _{P1}									
VIL	VIL	VILA	VILB	VILB	C _{P1}									
VIL	VIL	VILB	VILA	VILB	C _{P1}									
VIL	VIL	VILB	VILB	VILA	C _{P1}									
VIHT	VIL	VILB	VILB	VILB	C _{P1}									
VIL	VIHT	VILB	VILB	VILB	C _{P1}									
VIL	VIL	VIHA	VILB	VILB	C _{P1}									
VIL	VIL	VILB	VIHA	VILB	C _{P1}									
VIL	VIL	VILB	VILB	VIHA	CP1									

State Diagram

Enable = 0

NOTE: The state of the enable is important <u>only</u> for the positive clock transition when the counter is in the state 1100.

6

Test						Te	st Voltag	je Values	s (Volts))						Test Current Values (mA)			
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	۱L	^I OL	ЮН	
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
T _A = 125 °C	+ 2.4	÷ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	

Symbol	Parameter			Lin	nits			Units			TEST V	OLTAGE A	PPLIED	TO PI	NS BEL	ow	
	Functional Parameters:		5 °C roup 1		5 °C roup 2		5 °C roup 3	-	Pin	outs refe		e for DIL p ut Load =				signments	3
	r arameters.	Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA/B	VILA/B	Vcc	VEE	CP1	OH/OL	P.U.T.
VOH1	Output Voltage High	4.03	4.22	4.135	4.37	3.88	4.12	v	9, 10	9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 2)
V _{OH2}	Output Voltage High	2.70	4.22	3.00	4.37	2.40	4.12	v			4	5	6	8		7 ^І ОН	7
VOL1	Output Voltage Low	3.11	3.44	3.14	3.515	3.04	3.405	v	9, 10	9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 2)
V _{OL2}	Output Voltage Low	0.10	0.80	0.10	0.66	0.10	1.00	v			4	5	6	8		7 IOL	7
VOHA	Output Voltage High	4.01	4.22	4.115	4.37	3.86	4.12	v		9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 3)
VOLA	Output Voltage Low	3.11	3.46	3.14	3.535	3.04	3.425	v		9, 10	11 - 13	11 - 13	1, 16	8	15		2, 3 (Note 3)
V _{BB1}	Reference Bias Supply Voltage	3.67	3.87					v					1, 16	8		14	14
los	Output Short Circuit Current	- 65	- 20	- 65	- 20	- 65	- 20	mA		7	5	4	6	8			7
ICC1	Power Supply Current	- 80		- 80		- 88		mA					1, 16	8			8
ICC2	Power Supply Current		5.2		5.2		5.2	mA			4	5	6	8			6

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested.

2. See sequence table 1.

3. See sequence table 2.

MOTOROLA MILITARY MECL DATA 6-18

Test						Te	st Voltag	Test Voltage Values (Volts)													
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	١L	IOL	ЮН			
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4			
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4			
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4			

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE APP	PLIED TO	PINS BELOW	
		+ 2	5°C	+ 12	5 °C	- 55	5 °C		Pi	nouts ref	erenced are	for DIL pa	ckage, ch	eck Pin Assignn	nents
	Functional Parameters:	, Subgi	roup 1	Subgi	roup 2	Subgi	roup 3	1			Output	Load = 1	00 Ω to +	3.0 V	
		Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA/B	VILA/B	Vcc	VEE	P.U.T.
INH1	Input Current High		250		400		400	μA		9, 10	11 - 13, 15		1, 16	8	11, 12, 13, 15
INH2	Input Current High	2.0	6.0	2.0	6.4	1.7	6.0	mA			4, 5	4, 5	6	8	4, 5
Ілнз	Input Current High	1.0	3.0	1.0	3.6	0.7	3.0	mA			4	5	6	8	5
INH4	Input Current High		100		100		100	μA	9, 10				1, 16	8	9, 10
liNi1	Input Current Low	- 10		- 10		- 10		μA					1, 16	8, 15, 11 - 13	11, 12, 13, 15
INI1	Input Current Low	- 1.6		- 1.6		- 1.6		mA		9, 10			1, 16	8	9, 10

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested.

6

* ELECTRICAL CHARACTERISTICS: This device is designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 100Ω resistor to + 3.0 V.

6

12511 QUIESCENT LIMIT TABLE

Test						Te	st Voltag	ge Values	s (Volts)							Test Current Values (mA)			
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	١L	IOL	юн	
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE AP	PLIED T	O PINS BE	LOW	
	Functional	+ 25	5°C	+ 12	5 °C	- 55	5 °C	Pinouts referenced are for DIL package, check Pin Assignme Output Load = 100 Ω to 0.0 V								ents
	Parameters:	Subgr	roup 9	Subgr	oup 10	Subgr	oup 11				Outpu	it Load =	100 Ω to	0.0 V		
		Min	Max	Min	Max	Min	Max	1	VILL	VILX	ViN	VOUT	*	VCCA	VEEL	P.U.T.
^t PHH	Propagation Delay (15+ 2+)	4.8	8.1		9.4		8.1	ns	9, 10	11 - 13	15	2, 3	4, 5	1, 6, 16	8	2, 3
^t PHH	Propagation Delay (5+ 7+)	3.4	8.1		9.4		8.1	ns	9, 10	11 - 13	15	2, 3	4, 5	1, 6, 16	8	2, 3
tPLL	Propagation Delay (15+ 2-)	4.8	7.5		8.7		7.5	ns	9, 10	11 - 13	15	2, 3	4, 5	1, 6, 16	8	7
^t PLL	Propagation Delay (5- 7-)	3.0	6.5		7.6		6.5	ns	9, 10	11 - 13	15	2, 3	4, 5	1, 6, 16	8	7
		Min	Тур	Min	Max	Min	Max	1	VILL	VILX	VIN	٧o	UT	VCCA	VEEL	P.U.T.
tSetup 1	Setup Time MECL	5.0	2.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13			1, 6, 16	8	9 - 13
tSetup 2	Setup Time MTTL	5.0	3.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13			1, 6, 16	8	9 - 13
tRel 1	Release Time MECL	5.0	2.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13			1, 6, 16	8	9 - 13
tRel 2	Release Time MTTL	5.0	3.0	5.0		5.0		ns	9, 10	11 - 13	9 - 13			1, 6, 16	8	9 - 13
1		Min	Тур	Min	Тур	Min	Тур	1	VILL	VILX	VIN	Vo	UT	VCCA	VEEL	P.U.T.
f _{max} +9	Toggle Frequency	500	550	500	550	500	550	MHz			15	2	2	1, 6, 16	8 - 13	2

* See Figure 2.

MOTOROLA MILITARY MECL DATA 6-20

Two Modulus Prescaler

ELECTRICALLY TESTED PER: MPG 12513

The 12513 is a two-modulus prescaler which will divide by 10 and 11. A MECLto-MTTL translator is provided to interface with the 12514 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- 600 MHz (Typ) Toggle Frequency
- 12513 (+ 10/11)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- + 5.0 or 5.2 V Operation *
- · Buffered Clock Input Series Input RC Typ, 20 Ohms and 4.0 pF
- VBB Reference Voltage
- 460 mW Max/Pkg (No Load)

PIN ASSIGNMENTS

DIL	FLATS	BURN-IN
		(CONDITION C)
1	1	GND
2	2	51 Ω to V_{TT}
3	3	51 Ω to V_{TT}
4	4	51 Ω to V _{TT}
5	5	GND
6	6	GND
7	7	51 Ω to V_{TT}
8	8	VEE
9	9	GND
10	10	GND
11	11	51 Ω to V_{TT}
12	12	51 Ω to V_{TT}
13	13	51 Ω to V_{TT}
14	14	OPEN
15	15	51 Ω to V_{TT}
16	16	GND
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15

BURN - IN CONDITIONS: VTT = - 2.0 V MAX/ - 2.2 V MIN VEE = - 5.7 V MAX/ - 5.2 V MIN

* When using a + 5.0 V supply, apply + 5.0 V to Pin 1 (V_{CCO}), Pin 6 (MTTL VCC), Pin 16 (VCC), and ground Pin 8 (VEE). When using -5.2 V supply, ground Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), and Pin 16 (V_{CC}) and apply 5.2 V to Pin 8 (V_{EE}). If the translator is not required, Pin 6 may be left open to conserve dc power drain.

Military 12513

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 12513/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E CEBFLAT: F

LOGIC DIAGRAM

γ

E1
1	251	3
---	-----	---

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Supply Voltage	Vcc		+ 7.0	Vdc
Output Voltage	VOUT		+ 5.5	Vdc
Input Voltage	VIN		+ 5.5	Vdc
Operating Temperature Range	TA	- 55	+ 125	°C
Storage Temperature Range	T _{stg}	- 65	+ 175	°C

NOTES

1. All resistors are 1.0%.

2. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.

3. The 1950 Ω resistor at pin 7 and the scope termination impedance constitute a 40:1 attenuator probe.

- 4. All unused outputs must be terminated with 100 Ω to ground.
- 5. Pulse generator 1, 2, and 4 have the following characteristics:
 - a) PRF = 10 MHz.
 - b) PW = 50% duty cycle.

c) $t_r = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns}.$

- 6. Pulse generator 3 has the following characteristics:
 - a) PRF = 2.0 MHz.
 - b) PW = 50% duty cycle.
 - c) $t_r = t_f = 5.0 \text{ ns } \pm 0.5 \text{ ns.}$

VOUT to Scope V_{CCA} = + 2.0 V o 01 16Ĭ E1 50 Ω VEEL 2 13 E2 \cap ... VIN to Scope 12 E3 11 E4 10 50 Ω 3 0.1 µF E5 ā Sine Wave 9 **≹** 100 Ω പ 46 С Input 1.0 kΩ VBB 14 0.1 μF 8 V_{EEL} = - 3.0 V ^{0.1μF}立

Figure 2. Switching Test Circuit and Waveforms

Sequence Table 1

(Use with VOH1, VOL1, VOHA, VOLA tests)

		ENAB	LE INPUT	S	
TTL 9	TTL 10	ECL 11	ECL 12	ECL 13	ECL 15
VIL	VIL	VILB	VILB	VILB	C _{P1}
VIH	VIL	VILB	VILB	VILB	C _{P1}
VIL	⊻н	VILB	VILB	VILB	C _{P1}
VIL 1	VIL	VIHB	VILB	VILB	C _{P1}
VIL	VIL	VILB	VIHB	VILB	C _{P1}
VIL	VIL	VILB	VILB	VIHB	C _{P1}

Sequence Table 2

(Use with VOH1, VOL1, VOHA, VOLA tests)

		EN	ABLE INP	UTS	
TTL 9	TTL 10	ECL 11	ECL 12	ECL 13	ECL 15
VILT	VIL	VILB	VILB	VILB	CP1
VIL	VILT	VILB	VILB	VILB	CP1
VIL	· VIL	VILA	VILB	VILB	C _{P1}
VIL	VIL	VILB	VILA	VILB	CP1
VIL	VIL	VILB	VILB	VILA	C _{P1}
VIHT	VIL	VILB	VILB	VILB	C _{P1}
VIL	⊻інт	VILB	VILB	VILB	C _{P1}
VIL	VIL	VILA	VILB	VILB	C _{P1}
VIL	VIL	VILB	VILA	VILB	C _{P1}
VIL	VIL	VILB	VILB	VILA	C _{P1}

6

Test						Te	st Voltag	ge Values	s (Volts))						Test Cu	rrent Valu	es (mA)
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	١L	IOL	юн
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

Symbol	Parameter			Lin	nits			Units			TES	T VOLTA	GE APP	LIED TO	PINS	BELOW		
	Functional Parameters:	+ 2! Subgr		+ 12 Subgr	5 °C roup 2		5 °C roup 3		1	Pinouts		ed are for Output Lo		• •		in Assigni	ments	
	i di di li li cici ci ci	Min	Max	Min	Max	Min	Max		VIH	VIL	VIHA/B	V _{ILA/B}	Vcc	VEE	C _{P1}	IOH/OL	ιL	P.U.T.
VOH1	Output Voltage High	4.03	4.22	4.135	4.37	3.88	4.12	v	9, 10	9, 10	11 - 13	11 - 13	1, 16	8	15			2, 3 (Note 2)
V _{OH2}	Output Voltage High	2.70	4.5	3.00	4.5	2.40	4.5	v			5	4	6	8		7 ^І ОН		7
VOL1	Output Voltage Low	3.11	3.44	3.14	3.515	3.04	3.405	v	9, 10	9, 10	11 - 13	11 - 13	1, 16	8	15			2, 3 (Note 2)
VOL2	Output Voltage Low	0.10	0.80	0.10	0.66	0.10	1.00	v			4	5	6	8		7 IOL		7
VOHA	Output Voltage High	4.01	4.5	4.115	4.5	3.86	4.5	v		9, 10	11 - 13	11 - 13	1, 16	8	15			2, 3 (Note 3)
VOLA	Output Voltage Low	3.11	3.46	3.14	3.535	3.04	3.425	v		9, 10	11 - 13	11 - 13	1, 16	8	15			2, 3 (Note 3)
V _{BB1}	Reference Bias Supply Voltage	3.67	3.87					v					1, 16	8			14	14
los	Output Short Circuit Current	- 65	- 20	- 65	- 20	- 65	- 20	mA		7	5	4	6	8				7
ICC1	Power Supply Current	- 80		- 80		- 88		mA					1, 16	8				8
ICC2	Power Supply Current		5.2		5.2		5.2	mA			4	5	6	8				6

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested.

2. See Sequence Table 1.

3. See Sequence Table 2.

Test						Te	st Voltag	ge Values	s (Volts))						Test Cu	rrent Valu	es (mA)
Temperature	VIH	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	լ	IOL	ЮН
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

Symbol	Parameter			Lin	nits			Units			TEST VOL	TAGE APP	PLIED TO	PINS BELOW	
		+ 2	5 °C	+ 12	25 °C	- 55	5 °C		Pin	outs refe	erenced are f	or DIL pac	kage, che	eck Pin Assignm	ents
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3	1			Output	Load = 10	0Ωto+3	3.0 V	
		Min	Max	Min	Max	Min	Max	1	VIH	VIL	VIHA/B	VILA/B	Vcc	VEE	P.U.T.
INH1	Input Current High		250		400		400	μA		9, 10	11 - 13, 15		1, 16	8	11, 12, 13, 15
INH2	Input Current High	2.0	6.0	2.0	6.4	1.7	6.0	mA			4, 5	4, 5	6	8	4, 5
INH3	Input Current High	1.0	3.0	1.0	3.6	0.7	3.0	mA			4	5	6	8	5
INH4	Input Current High		100		100		100	μA	9, 10				1, 16	8	9, 10
I _{INI1}	Input Current Low	- 10		- 10		- 10		μA					1, 16	8, 15, 11 - 13	11, 12, 13, 15
INI1	Input Current Low	- 1.6		- 1.6		- 1.6		mA		9, 10			1, 16	8	9, 10

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested. * ELECTRICAL CHARACTERISTICS: This device is designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 100 Ω resistor to + 3.0 V.

Test						Те	st Voltag	ge Values	s (Volts)							Test Current Values (mA)			
	VIH	٧ _{IL}	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIHX	VILX	VILL	VEEL	VCCA	۱L	IOL	юн	
T _A = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
T _A = 125 °C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	

Symbol	Parameter			Ĺin	nits			Units		TE	ST VOLTAG	GE APPLIE	D TO PINS	BELOW	
	Functional		5 °C		5 °C		i °C		Pinc	outs referen				n Assignm	ents
	Parameters:	Subg	oup 9	Subgr	oup 10	Subgr	oup 11				Output Loa	au = 100 12	10 + 3.0 V		
		Min	Max	Min	Max	Min	Max	1	VILL	VILX	VIN	VOUT	VCCA	VEEL	P.U.T.
^t PHH	Propagation Delay (15+2+)		8.1		9.4		8.1	ns	9, 10	11 - 13	15	2, 3	1, 6, 16	8	2, 3
^t РНН	Propagation Delay (5+ 7+)		8.1		9.4		8.1	ns	9, 10	11 - 13	15	2, 3	1, 6, 16	8	2, 3
^t PLL	Propagation Delay (15+ 2-)		7.5		8.7		7.5	ns	9, 10	11 - 13	15	2, 3	1, 6, 16	8	7
^t PLL	Propagation Delay (5- 7-)		6.5		7.6		6.5	ns	9, 10	11 - 13	15	2, 3	1, 6, 16	8	7
		Min	Тур	Min	Max	Min	Max		VILL	VILX	VIN	VOUT	VCCA	VEEL	P.U.T.
^t Setup 1	Setup Time MECL	5.0		5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tSetup 2	Setup Time MTTL	5.0		5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 1	Release Time MECL	5.0		5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 2	Release Time MTTL	5.0		5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
		Min	Тур	Min	Тур	Min	Тур	1	VILL	VILX	VIN	VOUT	VCCA	VEEL	P.U.T.
^f max ÷11	Toggle Frequency	550	600	500	540	500	600	MHz			15	2	1, 6, 16	8 - 13	2

6

Counter Control Logic

ELECTRICALLY TESTED PER: MPG 12514

The 12514 monolithic counter control logic unit is designed for use with the 12513 Two Modulus Prescaler and the 4016 Programmable Counter to accomplish direct high-frequency programming. The 12514 consists of a zero detector which controls the modulus of the 12513, and an early decode function which controls the 4016. The early decode feature also increases the useful frequency range of the 4016 from 8.0 MHz to 25 MHz.

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units	
Supply Voltage	Vcc		+7.0	V _{dc}	
Output Voltage	Vout		+5.5	V _{dc}	
Input Voltage	VIN		+5.5	V _{dc}	
Operating Temperature Range	TA	-55	+125	°C	
Storage Temperature Range	т _{stg}	-65	+175	°C	

Military 12514

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 12514/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E

BURN - IN CONDITIONS: V_{CC} = 6.0 V MAX/ 5.0 V MIN

Figure 1. Switching Test Circuit

NOTES

1. Two pulse generators are required and must be slaved together to provide the waveforms shown.

2. CT = 15.0 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances.

 The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-070-50 or equivalent.
A load is connected to each output during testing.

PRF = 1.0 MHz double pulsed for waveform A; 1.0 MHz for waveform B.

 $t_r = t_f = 5.0$ ns (10% to 90% points).

Figure 2. Setup and Hold Times

6

12514 QUIESCENT LIMIT TABLE *

* ELECTRICAL CHARACTERISTICS:

Test procedures are shown for the f_{IN}, $\overline{Z_O}$, B₁ and P₁ inputs. All other inputs are tested in the same manner as the $\overline{Z_O}$ input.

Test		т	est Vol	tage Val	ues (Vo	olts)		Test Current Values (mA)			
Temperature	VIH	٧IL	VRH	VIHH	Vcc	VCCL	VCCH	IOL	юн	lic.	
T _A = 25 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10	
T _A = 125 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10	
T _A = -55 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10	

Symbol	Parameter			Lin	nits			Units			TEST	VOLTAG	E APPLIED	TO PINS	BELOW		
	Functional	+ 25 Subgr			5 °C roup 2		5 °C roup 3			Pinouts r			DIL package ad = 100 Ω		•	nments	
	Parameters:	Min	Max	Min	Max	Min	Max		VIH	VIL	V _{RH}	VIHH	VCC/L/H	GND	C _{P1/2}	IOH/IOL/	P.U.T.
Vон	High Voltage Output	2.4		2.4		2.4		v		2 - 5	6, 11 - 13		16 (V _{CCL})	8	1 (C _{P1})	7, 9 (^I OH)	7, 9
VOL	Low Voltage Output		0.5		0.5		0.5	v		11 - 13	2 - 5, 10, 14		16 (V _{CCL})	8	1 (C _{P2})	7, 9 (I _{OL})	7,9
VIC	Input Clamping Voltage		- 1.2		- 1.2		- 1.2	v					16 (V _{CCL})	8		1 - 6, 10 - 14 (I _{IC})	1 - 6, 10 - 14
** ^I INH1	Input Current High		40		40		80	μA	2 - 6, 10 - 14				16 (V _{CCH})	1, 6, 8, 11 - 13			2 - 6, 10 - 14
INH2	Input Current High		160		160		420	μA					16 (VCCH)	8, 10			1
INHЗ	Input Current High		1.0		1.0		1.0	mA				1 - 6, 10 - 14	16 (VCCH)	1, 6, 8, 10 - 13			1 - 6, 10 - 14
** ^I INL1	Input Current Low		- 1.6		- 1.6		- 1.6	mA		2 - 5, 10 - 14			16 (VCCH)	1, 6, 8, 10 - 13			2 - 6, 10 - 14
INL	Input Current Low		- 6.4		- 6.4		- 6.4	mA		1	6, 11 - 13		16 (VCCH)	8, 10			1
l _{os}	Short Circuit Current	- 20	- 65	- 20	- 65	- 20	- 65	μA		2 - 5			16 (V _{CC})	7, 8, 9	1 (CP2)		7, 9
*** ^I CC	Power Supply Drain Current		35		35		35	mA					16 (V _{CC})	6, 8, 10			16

** Momentary Gnd to pin 7 prior to test.

*** Measure current after CP1 applied to pin 1.

MOTOROLA MILITARY MECL DATA 6-30

* ELECTRICAL CHARACTERISTICS:

Test procedures are shown for the f_{IN} , $\overline{Z_O}$, B_1 and P_1 inputs. All other inputs are tested in the same manner as the $\overline{Z_O}$ input.

Test		т	est Voli	tage Val	ues (Vo	oits)			st Curr lues (m	
Temperature	VIH	VIL	VRH	VIHH	Vcc	VCCL	VCCH	lol	юн	lic
T _A = 25 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10
T _A = 125 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10
T _A = -55 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10

Symbol	Parameter			Lin	nits			Units		TES	T VOLTAGE	APPLIED	TO PINS I	BELOW	
·····		+ 25	5°C	+ 12	5 °C	- 55	5 °C		Pin	outs reference	d are for DII	nackade	check Pi	n Assiann	ients
	Functional Parameters:	Subgr	roup 9	Subgr	oup 10	Subgr	oup 11]				puonage	, 011001011	n Abolgini	lento
		Min	Max	Min	Max	Min	Max		VOUT	VIL	VIN	VIH	Vcc	VEE	P.U.T.
tPLH1	Propagation Delay		15		19		16	ns	9	11 - 13	1, 10	14	16	8	9
^t PHL1	Propagation Delay		16		18		17	ns	9	11 - 13	1, 10	14	16	8	9
^t PLH2	Propagation Delay		12		17		12	ns	7	2 - 5, 11 - 13	1 - 6	10, 14	16	8	7
^t PHL2	Propagation Delay		16		19		17	ns	7	2 - 5, 11 - 13	1 - 6	10, 14	16	8	7
^t PLH3	Propagation Delay		16		20		17	ns	7	2 - 5, 11 - 13	1, 6	10, 14	16	8	7
^t Set1	Setup Time (Pins 10, 14)		2.0					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14
^t Set1	Setup Time (Pins 11 - 13)		12					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14
^t Set0	Setup Time (Pins 10, 14)		8.0					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14
tSet0	Setup Time (Pins 11 - 13)		9.0					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14

MOTOROLA MILITARY MECL DATA 6-31

CP1

V_{IH} V_{IL}

CP2

— V_{IH} - — V_{IL} 6

12514 QUIESCENT LIMIT TABLE

* ELECTRICAL CHARACTERISTICS:

Test procedures are shown for the f_{IN} , $\overline{Z_O}$, B_1 and P_1 inputs. All other inputs are tested in the same manner as the $\overline{Z_O}$ input.

Test		٦	est Vol	tage Val	ues (Vo	lts)			st Curr lues (n	
Temperature	VIH	٧IL	V _{RH}	VIHH	Vcc	VCCL	VCCH	10L	юн	liC I
T _A = 25 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10
T _A = 125 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10
T _A = -55 °C	+2.4	+0.5	+4.5	+5.0	+5.0	+4.5	+5.5	+16	-0.4	-10

Symbol	Parameter			Lir	nits			Units		TES	ST VOLTAGE	APPLIED	TO PINS	BELOW	
		+ 2	5 °C	+ 12	25 °C	- 5	5 °C		Din	oute referenc	ed are for DIL	nackada	check Pi		ente
	Functional Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	roup 11	1		outs reference		package	, check i i	n Assigni	ento
		Min	Max	Min	Max	Min	Max	1	VOUT	VIL	VIN	VIH	Vcc	VEE	P.U.T.
^t Hold1	Hold Time (Pins 10, 14)		8.0					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14
tHold1	Hold Time (Pins 11 - 13)		10					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14
^t Hold0	Hold Time (Pins 10, 14)		2.0					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14
^t Hold0	Hold Time (Pins 11 - 13)		14					ns	9	11 - 13	1, 10 - 14	10, 14	16	8	10 - 14

Low-Power Two Modulus Prescaler

ELECTRICALLY TESTED PER: MPG 12515

The 12515 is a two-modulus prescaler which will divide by 32 and 33. An internal regulator is provided to allow this device to be used over a wide range of power-supply voltages. This device may be operated by applying a supply voltage of 5.0 Vdc \pm 10% at pin 7 or by applying an unregulated voltage from 5.5 Vdc to 9.5 Vdc to pin 8.

- 225 MHz Toggle Frequency
- Low-Power 7.5 mA Max at 6.8 V
- Control Input and Output are Compatible with Standard CMOS
- Connecting Pins 2 and 3 Allows Driving One TTL Load
- Supply Voltage 4.5 V to 9.5 V

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Regulated Voltage, Pin 7	VREG		+8.0	Vdc
Power Supply Voltage, Pin 8	Vcc		+10	Vdc
Input Voltage	VIN		+2.0	Vdc
Operating Temperature Range	TA	-55	+125	°C
Storage Temperature Range	T _{stg}	-65	+175	°C

Military 12515

AVAILABLE AS

1) JAN: N/A 2) SMD: N/A 3) 883: 12515/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: P

6

FUNCTION DIL **BURN-IN** (CONDITION C) Control Input 1 Vcc Active Pullup 2 3.01 kΩ to VCC з Output 3.01 k Ω to V_{CC} Gnd 4 GND Signal Input 5 6.19 k Ω to V_{CC} Signal Gnd 6 OPEN VREG 7 OPEN Vcc 8 Vcc

PIN ASSIGNMENTS

BURN - IN CONDITIONS: V_{CC} = 6.5 V MAX/ 5.5 V MIN

LOGIC DIAGRAM

Figure 1. Minimum/Maximum Amp., Maximum/Minimum Frequency

Figure 2. Setup and Hold Control Modulus, Clock to Output Delay (Information Only)

12515

:

P1 = 400 mV above and below * point (for static testing only). Rise and Fall times of test waveforms must be less than 20 ns. * Device internal bias point.

P1 = 400 mV above and below * point (for static testing only). Rise and Fall times of test waveforms must be less than 20 ns. * Device internal bias point.

Figure 4. Test Waveforms

Test Temperature				Test \	/oltage Value	es (Volts)				Test C Valu			de by ction
remperature	VIH	VIL	VIR	VLL	VCH/СМ1	VIM/CM2	VCL	Vcc	GND	IOL	ІСН	÷N	+N + 1
T _A = 25 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 µA	+32	+33
T _A = 125 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33
T _A = -55 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 µA	+32	+33

Symbol	Parameter			Lin	nits			Units			TEST VC	LTAGE A	PPLIED .	TO PINS	BELOW		-
		+ 2	5 °C	+ 12	5 °C	- 55	5 °C			Pinouts	referenced a	are for DI	L packag	e, checl	k Pin Assig	nments	
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3	1			P1 per fig	ure 4, Ou	tput Load	l = 0.1 μ	F to Gnd		
		Min	Max	Min	Max	Min	Max	1	VIH	VCH	VIM/CM2	VCL	C1	P1	IOH/IOL	GND	P.U.T.
** VOH	High Voltage Output	2.5		2.5		2.5		v	1			7	6	5	2, 3 (I _{OH})	4	2, 3
* VOL	Low Voltage Output		0.5		0.5		0.5	v	1			7	6	5	2, 3 (I _{OL})	4	2, 3
** ISC	Short Circuit Current	-5.0	-16.5	-5.0	-16.5	-5.0	-16.5	mA	1	7			6	5		2, 3, 4	2, 3
* ^I IM	Input Current High		0.1		0.1		0.1	mA			1	7, 8	6	5		4	1
* ^I CH	Power Supply Current		7.2		7.2		7.2	mA	1	7			6	5		4	7
* ICM	Power Supply Current		7.8		7.8		7.8	mA	1		8 (V _{CM2})		6	5		4	8

* Precondition Low, Pins 2 and 3 wired together. ** Precondition High, Pins 2 and 3 wired together.

6

Test				Test \	/oltage Value	es (Volts)				Test C Valu			de by ction
Temperature	VIH	VIL	VIR	VLL	VCH/СМ1	VIM/CM2	VCL	Vcc	GND	lo∟	ІСН	÷N	+N + 1
T _A = 25 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33
T _A = 125 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33
T _A = -55 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33

Symbol	Parameter			Lin	nits			Units			TEST VO	DLTAGE /	APPLIED 1	TO PINS I	BELOW		
		+ 2	5 °C	+ 12	5 °C	- 5	5 °C		Pir	nouts refe	erenced are	e for DIL	package,	check Pir	n Assign	ments	
	Functional Parameters:	Subg	roup 1	Subg	roup 2	Subg	roup 3	1		Р	1 per figur	e 4, Outp	ut Load =	0.1 μF to	Gnd		
		Min	Max	Min	Max	Min	Max	1	٧R	V _{R2}	VCH	VIR	VILL	C1	P1	GND	P.U.T.
VR	High Voltage Output	3.5	4.5	3.5	4.5	4.0	5.0	v	7		8 (V _{CH1})						7
V _{R2}	Low Voltage Output	4.0	4.5	3.3	4.5	4.0	5.0	v		7	8 (V _{CH2})						7
* IR	Short Circuit Current	-5.0	-16.5	-5.0	-16.5	-5.0	-16.5	mA			7.8	1		6	5	4	1
* IIL	Input Current High		0.1		0.1		0.1	mA			7,8		1	6	5	4	1

* Precondition Low, Pins 2 and 3 wired together.

۰.

6

Test Temperature				Test	Voltage Value	es (Volts)				Test C Valu			de by ction
remperature	VIH	VIL	VIR	VLL	VCH/CM1	VIM/CM2	VCL	Vcc	GND	IOL	ІСН	÷Ν	+N + 1
T _A = 25 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33
T _A = 125 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33
T _A = -55 °C	+2.0	+0.8	+2.7	+0.4	+5.5	+9.5	+4.5	+5.0	0	+2.0 mA	-100 μA	+32	+33

۰.

Symbol	Parameter			Lin	nits			Units		TEST VOLT	AGE APPLIED	TO PINS BELO	w			
		+ 2	5 °C	+ 12	!5 °C	- 55	5 °C		Pinouts	referenced are fo	r Dil nackade	check Pin Ass	ianmente			
	Functional Parameters:	Subg	roup 9	Subgr	oup 10	Subgr	oup 11]	1 mouto		i Die puokuge,	CHECK I III ASS	igninenta			
		Min	Max	Min	Max	Min	Max	1 [VOUT	VIN	Vcc	VEEL	P.U.T.			
^t pd	Propagation Delay (Note 1)		50		50		50	ns			(See Figure 1	- 4)				
* Clk1 (min)	Clock Input 1 (Note 2)	400	800	400	800	400	800	mVp-p	p-p (See Figure 1 - 4)							
* Clk2 (min)	Clock Input 2 (Note 2)	200	800	200	800	200	800	mVp-p	p-p (See Figure 1 - 4)							
* Clk (max)	Clock Maximum (Note 2)	200	800	200	800	200	800	mVp-p	··		(See Figure 1	- 4)				
^t SET0	Setup Time (Note 1)		6.0		6.0		6.0	• ns			(See Figure 1	- 4)				
^t SET1	Setup Time (Note 1)		6.0		6.0		6.0	ns								
fmax	Toggle Frequency (Note 3)	225		225	_	225		MHz	MHz (See Figure 1 - 4)							
f _{min}	Toggle Frequency		35		35		35	MHz			(See Figure 1	- 4)				

1. These parameters guaranteed by those marked with a single asterisk *, therefore are not tested. 2. Measure Clock 1 (min) at 35 MHz, Clock 2 (min) at 50 MHz, and Clock (max) at f_{MAX}.

3. 275 MHz for 12515A.

Phase-Frequency Detector

ELECTRICALLY TESTED PER: 5962-8775201

The 12540 is a phase-frequency detector intended for use in systems requiring zero phase and frequency difference at lock. In combination with a voltage controlled oscillator (such as the 1648), it is useful in a broad range of phase-locked loop applications. Operation of this device is identical to that of the Phase Detector #1 of the 4044.

Operating Frequency = 80 MHz typical

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Supply Voltage	Vcc		+7.0	V _{dc}
Output Voltage	VOUT		+5.5	V _{dc}
Input Voltage	VIN		+5.5	Vdc
Operating Temperature Range	TA	-55	+125	°C
Storage Temperature Range	T _{stg}	-65	+175	°C

PIN ASSIGNMENTS

FUNCTION	DIL.	BURN-IN
		(CONDITION C)
V _{CC1}	1	GND
NC	2	OPEN
ប	3	51 Ω to V_{TT}
U	4	51 Ω to V _{TT}
NC	5	OPEN
R	6	2 k Ω to VTT
VEE	7	Vcc
NC	8	OPEN
v	9	2 k Ω to VTT
NC	10	OPEN
D	11	51 Ω to V _{TT} f
D	12	51 Ω to V _{TT}
NC	13	OPEN
V _{CC2}	14	GND

BURN - IN CONDITIONS: V_{CC} = 6.0 V MAX/ 5.0 V MIN

Military 12540

Figure	1.	Switching	Test	Circuit
inguic	•••	omitorining	1001	onoun

INPUT			OUTPUT		
fA	fB	f _A > f _B	f _B > f _A	f _A > f _B	f _B > f _A
0	0	х	x	x	x
0	1	х	х	X	x
1	1	х	x	x	x
0	1	х	х	x	x
1	1	1	0	0	1
0	1	1	0	0	1
1	1	1	0	0	1
1	0	1	1 0 0		1
1	1	0	0	1	1
1	0	0	0	1	1
1	1	0	1	1	0
1	0	0	1	1	0
1	1	0	1	1	0
0	1	0	1	1	0
1	1	0	0	1	1

Functional Truth Table

X = DON'T CARE

Test	Test Voltage Values (Volts)											
Temperature	VIH	VIL	VIHA	VILA	VCC	VEE						
T _A = 25 °C	+ 4.22	+3.21	+3.895	+3.525	+5.0	0						
T _A = 125 °C	+ 4.37	+3.24	+4.000	+3.600	+5.0	0						
T _A = -55 °C	+4.12	+3.14	+3.745	+3.490	+5.0	0						

Symbol	Parameter	Limits							TEST VOLTAGE APPLIED TO PINS BELOW					
	Functional Parameters:	+ 25 °C Subgroup 1		+ 125 °C - 55 °C Subgroup 2 Subgroup 3			Pinouts referenced are for DIL package, check Pin Assignments Output Load = 100 k Ω to + 3.0 V							
		Min	Max	Min	Max	Min	Max	1	VIH	R-1	VEE	*	Vcc	P.U.T.
VOH	High Voltage Output	4.07	4.22	4.175	4.37	3.92	4.12	V		3, 4, 11, 12	7	6, 9	1, 14	3, 4, 11, 12
VOL	Low Voltage Output	3.21	3.44	3.24	3.515	3.14	3.405	V		3, 4, 11, 12	7	7, 9	1, 14	3, 4, 11, 12
VOHA	Threshold Voltage High	4.05	4.22	4.155	4.37	3.90	4.12	v		3, 4, 11, 12	7	7, 9	1, 14	3, 4, 11, 12
VOLA	Threshold Voltage Low	3.21	3.46	3.24	3.535	3.14	3.425	v	1	3, 4, 11, 12	7	7, 9	1, 14	3, 4, 11, 12
INH	Input Current High		350					μA	6, 9		7		1, 14	6, 9
ΙE	Total Power Supply Current	-115	-60					μА			7		1, 14	7

NOTE: (This device will meet standard MECL logic levels using $V_{EE} = -5.2$ Vdc and $V_{CC} = 0$ V). 1. The outputs of the device must be tested by sequencing through the truth table for V_{OH}, V_{OL} tests.

2. The outputs of the device must be tested by sequencing through the truth table for VOHA, VOLA tests.

All input, power supply, and ground voltages must be maintained between tests.

3. Preconditioning for AC tests is accomplished by applying P1 for a minimum of two pulses prior to P2.

* = Per truth table.

6

12540 QUIESCENT LIMIT TABLE

Test	Test Voltage Values (Volts)										
Temperature	VIH	VIL	VIHA	VILA	VÇC	VEEL					
T _A = 25 °C	+ 4.22	+ 3.21	+ 3.895	+ 3.525	+ 2.0	-3.0 or -3.2					
T _A = 125 °C	+ 4.37	+ 3.24	+ 4.000	+ 3.600	+ 2.0	-3.0 or -3.2					
T _A = -55 °C	+ 4.12	+ 3.14	+ 3.745	+ 3.490	+ 2.0	-3.0 or -3.2					

MOTOROLA MILITARY MECL DATA 6-44

Symbol	Parameter			Lin	nits			Units		TEST VO	OLTAGE APPL	IED TO PINS	BELOW			
	Functional Parameters:		5 °C roup 9	· · · · · ·	25 °C oup 10		5 °C oup 11		Pinouts r		e for DIL pack ut Load = 100	•	ge, check Pin Assignments Ω to 0.0 V			
	Falameters.	Min	Max	Min	Max	Min	Max	1	VOUT	VCCA	P1	P ₂	VEEL	P.U.T.		
tr	Rise Time	1	3.4		3.8		3.4	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
tf	Fall Time		3.4		3.8		3.4	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t6+4+)	0	4.6	0	5.0	0	4.6	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	. 7	3, 4, 11, 12		
^t pd	Propagation Delay (t6+12+)	0	6.0	0	6.6	0	6.0	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t6+3-)	0	4.5	0	4.9	0	4.5	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t6+11-)	0	6.4	0	7.0	0	6.4	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t9+11+)	0	4.6	0	5.0	0	4.6	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t9+3+)	0	6.0	0	6.6	0	6.0	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t9+12-)	0	4.5	0	4.9	0	4.5	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		
^t pd	Propagation Delay (t9+4+)	0	6.4	0	7.0	0	6.4	ns	3, 4, 11, 12	1, 14	8, 9	8, 9	7	3, 4, 11, 12		

Crystal Oscillator

ELECTRICALLY TESTED PER: MPG 12561

The 12561 is for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and TTL outputs.

- Frequency Range = 2.0 MHz to 20 MHz
- Single Supply Operation: + 5.0 Vdc or 5.2 Vdc
- Three Outputs Available:
 - 1. Complementary Sine Wave (600 mVp-p)
 - 2. Complementary MECL
 - 3. Single Ended TTL

ABSOLUTE MAXIMUM RATINGS	Symbol	Min.	Max.	Units
Supply Voltage	Vcc		+7.0	V _{dc}
Output Voltage	VOUT		+5.5	V _{dc}
Input Voltage	VIN		+5.5	V _{dc}
Operating Temperature Range	Т _А	-55	+125	°C
Storage Temperature Range	T _{stg}	-65	+150	°C

PIN ASSIGNMENTS

FUNCTION	DIL	BURN-IN
		(CONDITION C)
VCC	1	Vcc
Sine Wave Out -	2	OPEN
Sine Wave Out +	3	OPEN
VCC	4	OPEN
Crystal	5	OPEN
Crystal	6	OPEN
VCC	7	OPEN
VEE	8	GND
VEE	9	GND
TTL Out	10	Vcc
Vcc	11	Vcc
ECL Out	12	OPEN
ECL Out	13	OPEN
(-)	14	OPEN
(+)	15	V _{CC}
VCC	16	Vcc
RUBN - IN CONDI	TIONS	•

BURN - IN CONDITIONS:

Military 12561

AVAILABLE AS

- 1) JAN: N/A 2) SMD: N/A 3) 883: 12561/BXAJC
- 3) 883: 12561/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: CERDIP: E

VCC	⊡	•	16	VCC
Out (+)	2		15	(+)
- Out (-)	3		14	(-)
VCC	4		13	ECL Out
Crystal	5		12	ECL Out
Crystal	6		11	VCC
Vcc	7		10	TTL Out
VEE	8		9	VEE

LOGIC DIAGRAM

6. EH model 137 pulse generator or equivalent.

Figure 2. AC Test Circuit Waveforms

Figure 3. Test Circuit #2

NOTES

1. Crystal: Reeves Hoffman series mode, A element f = 10.0 MHz; $R_E = 5 \Omega$,

Series R minimum at Fundamental

2. $R_s = 150 \ k\Omega$

3. The purpose of the series resistor, R_S, in the test circuit is to guarantee oscillation using crystals having an R_E as large as 155 Ω .

4. All output cables to the scope are equal lengths of 50 Ω coaxial cables. All unused cables must be terminated with a 50 $\Omega \pm 1.0\%$ resistor. A 50 Ω termination to ground is located in each channel input. The 450 Ω series resistor in conjunction with the 50 Ω termination constitutes a 10:1 attenuator.

6

12561 QUIESCENT LIMIT TABLE

Test Temperature			Test Current Values (mA)											
	VIHA	VILA	VIHB	VILB	Vcc	VCCL	VCCH	VCCA	VEEL	VEE	VTH	IOL	ЮН	١L
T _A = 25 °C	+3.90	+3.52	+4.19	+3.21	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5
T _A = 125 °C	+4.03	+3.60	+4.37	+3.25	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5
T _A = -55 °C	+3.78	+3.49	+4.07	+3.18	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5

Symbol	Parameter			Lin	nits			Units	Inits TEST VOLTAGE APPLIED TO PINS BELOW								
	Functional	+ 25 °C Subgroup 1		+ 125 °C Subgroup 2		- 55 °C Subgroup 3				Pinouts referenced are for DIL package, check Pin Assignments Output Load = 0.1 µF from Pins 4, 7 to Vcc							
	Parameters:	Min	Max	Min	Max	Min	Max		VIHA/B	VILA/B	VTH	Vcc	VCCH	VEE	VCCL		P.U.T.
VOH1	High Voltage Output	4.03	4.22	3.16	4.37	3.91	4.17	V	14, 15	14, 15		16		8		12, 13 (lL)	12, 13
V _{OH2}	High Voltage Output	2.4	4.22	2.39	4.0	2.39	4.0	V	15	14				8, 9	11, 16	10 (IOH)	10
VOL1	Low Voltage Output	3.0	3.44	3.04	3.5	2.97	3.39	V	14, 15	14, 15		16		8		12, 13 (IL)	12, 13
VOL2	Low Voltage Output	0.0	0.5	0.0	0.5	0.0	0.5	V	14, 15	14, 15			11, 16	8, 9	11, 16	10 (I _{OL})	10
VOHA	Threshold Voltage High	4.01	4.22	4.14	4.37	3.89	4.17	v	14, 15	14, 15		16		8		12, 13 (IL)	12, 13
VOLA	Threshold Voltage Low	3.0	3.46	3.04	3.52	2.97	3.41	v	14, 15	14, 15		16		8		12, 13 (IL)	12, 13
Δ٧	Differential Offset Voltage (4 - 7)	40	325					mV			5, 6	1		8			4 - 7
ΔV	Differential Offset Voltage (2 - 3)	-150	150					mV			4	1, 11, 16		8, 9			2 - 3
INH	Input Current High		250					μA	14, 15	14, 15		16		8			14, 15
linl	Input Current Low		-1.0					μA	14, 15			16		8, 14, 15			14, 15

NOTE: This device will meet standard MECL logic levels using V_{EE} = - 5.2 Vdc and V_{CC} = 0 V.

Test Temperature			Test Current Values (mA)											
	VIHA	VILA	VIHB	VILB	Vcc	VCCL	VCCH	VCCA	VEEL	VEE	Vтн	IOL	ЮН	۱ <u>۱</u>
T _A = 25 °C	+3.90	+3.52	+4.19	+3.21	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5
T _A = 125 °C	+4.03	+3.60	+4.37	+3.25	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5
T _A = -55 °C	+3.78	+3.49	+4.07	+3.18	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW						
	Functional Parameters:	+ 25 °C Subgroup 1		+ 125 °C Subgroup 2			- 55 °C		Pinouts referenced are for DIL package, check Pin Assignments Output Load = 0.1 μF from Pins 4, 7 to VCC						
						Subgroup 3									
		Min	Max	Min	Max	Min	Max		VIHA/B	VILA/B	Vcc	VEE	VCCL	P.U.T.	
los	Short Circuit Current	-20	-60	-20	-60	-20	-60	mA	15	14		8, 9, 10	11, 16	10	
ICC1	Power Supply Drain Current	18.0	28.0					mA	<u> </u>		1	8		1	
ICC2	Power Supply Drain Current		4.0					mA	14	15		8, 9	11, 16	11	
ICC3	Power Supply Drain Current	13.0	19.0	-				mA			16	8		16	

6

12561 QUIESCENT LIMIT TABLE

Test Temperature			Test Current Values (mA)											
	VIHA	VILA	VIHB	VILB	Vcc	VCCL	VCCH	VCCA	VEEL	VEE	VTH	IOL	ЮН	١L
T _A = 25 °C	+3.90	+3.52	+4.19	+3.21	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5
T _A = 125 °C	+4.03	+3.60	+4.37	+3.25	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5
T _A = -55 °C	+3.78	+3.49	+4.07	+3.18	+5.0	+4.5	+5.5	+2.0	-3.0	0	+4.0	+16	-0.4	-2.5

Symbol	Parameter			Lin	nits			Units	TEST VOLTAGE APPLIED TO PINS BELOW							
	Functional Parameters:	+ 25 °C Subgroup 9		+ 125 °C Subgroup 10		- 55 °C Subgroup 11			Pinouts referenced are for DIL package, check Pin Assignments Output Load = 0.1 μ F from Pins 4, 7 to V _{CC}							
	Falameters.	Min	Max	Min	Max	Min	Max		VOUT	VCCA	VIN	XTAL	VEEL	GND	P.U.T.	
tr	Rise Time	1.1	4.0	1.1	4.5	1.1	3.8	ns	12, 13	11, 16	15	1	9, 10	14	12, 13	
tf	Fall Time	1.1	4.0	1.1	5.0	1.1	3.8	ns	12, 13	11, 16	15		9, 10	14	12, 13	
^t pd	Propagation Delay (t15+10+)	1.1	25	1.1	30	1.1	30	ns	10	11, 16	15		9, 10	14	10	
^t pd	Propagation Delay (t15-10-)	1.1	18	1.1	22	1.1	22	ns	10	11, 16	15		9, 10	14	10	
^t pd	Propagation Delay (t15+:12-)	1.1	5.5	1.1	6.0	1.1	5.0	ns	12	11, 16	15		9, 10	14	2	
^t pd	Propagation Delay (t15+12+)	1.1	5.2	1.1	5.5	1.1	4.8	ns	12	11, 16	15		9, 10	14	12	
^t pd	Propagation Delay (t15+13+)	1.1	5.0	1.1	5.4	1.1	4.6	ns	13	11, 16	15		9, 10	14	12	
^t pd	Propagation Delay (t15-13-)	1.1	5.0	1.1	5.2	1.1	5.0	ns	13	11, 16	15		9, 10	14	13	
V _{S2}	Sine Wave Amplitude	700						mV	2	1		5,6	8, 9		2	
V _{S3}	Sine Wave Amplitude	700						mV	3	1		5, 6	8, 9		3	

Dual-In-Line (DIL) Packages

Dual-In-Line (DIL) Packages

7

Dual-In-Line (DIL) Packages

Flat Pack (FP)

Flat Pack (FP)

Flat Pack (FP)

Leadless Ceramic Chip Carrier (LCCC) Package

7

MOTOROLA MILITARY MECL DATA 7-8

1	General Information
2	MECL 10H
3	MECL 10K
4	MECL III
5	ECLinPS
6	Phase-Locked Loop
7	Package Outlines and Mechanical Data

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.