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Dear Jim, Received: 78 Jan 15
While some o f  your readers may have become as weary as 

I  am with m y repeated attacks on the 650X  legality-by tecount 
problem, this is in a way a programming guinea-pig for  
working-out optimization principles, relevant to  all problems. 
Even your non-650X  readers may fin d  something o f  value in 
the enclosed MS, as it touches on some universal problems: the 
chioce between decoding-logic or table-look-up programs, the 
extent to which subroutines should be designed to be non­
destructive and purely-informative, and the uses o f  antibug- 
ging code. My ultimate goal is to develop scanning-debugging 
to a higher level. For this, the basic components o f  the 
debugger m ust be fast, efficient, and above al bug- free. 
Sincerely,
H. T. Gordon

The question of how to optimize a decoding subroutine, 
previously touched on in my notes in issues # 1 7  and #19  
of DDJ (1977) using decoding of the number of bytes 
required by 650X opcodes as an example, is re-opened by 2 
new solutions: CNTBYT (written by Jim Butterfield and 
reproduced here with his permission) and BYTCNT (my 
own response to his challenge). Both optimize coding 
efficiency, and it is unlikely that a solution in fewer than 
28 bytes exists. Both sort the 151 legal opcodes into the 
same 6 groups as my earlier subroutine BYTNUM. However, 
CNTBYT classes illegals of type X0B as 3 byte codes while 
the others class them as 2 byte codes (which is how the 
650X control unit executes them, but this is immaterial 
since all routines class illegals of type X2 as 2 byte codes 
although most of them are not executable).

The important differences are in structure and timing. 
CNTBYT uses an elegant and highly instructive linear sequence 
of bit-manipluations that cause each of 5 classes of opcodes 
in turn to become zero and exit, while the 6th class exits as 
non-zero. BYTCNT emulates BYTNUM by first sorting into 
subclasses X(0-7) and X(8-F) by a BIT test of bit 3, then 
shifts to destructive logic in each branch to attain higher 
code efficiency. Unlike BYTNUM, both new routines destroy 
the accumulator.

All routines have different path lengths (measured in 
clock cycles from entry to exit, including the 6 cycles for the 
main program JSR and 6 cycles for the RTS) for each of the 
6 opcode classes. An index of relative speed (not weighted 
for difference in opcode usage frequency) is easily calculated 
by dividing 2  (N X T) by 2  N, where N is the number of 
legal opcodes in a class and T the path length in cycles for 
that class. BYTNUM has the fastest index, 30.6 cycles (range 
28 to  37). BYTCNT is slower, 32.5 cycles (range 29 to 39). 
CNTBYT is slower still, 39.3 cycles (range 23 to 42). The 
delay is caused by its having to sort out 3 small classes (con­
taining only 11 of the 151 opcodes) before it can work on the 
3 large ones. The lesson to be drawn from this is that linear - 
sequence logic is not inherently slower (as I implied in my 
previous DDJ notes) and might even be faster if its first 
stages could sift out the majority of the items being sorted.

However, the range o f sorting times is necessarily wider. 
One additional point: to make the 2 new routines fully equiva­
lent to BYTNUM, one would have' to add a PH A to store and 
a PLA to restore the accumulator, at the cost of 2 more bytes 
and 7 more cycles. However, the main program might be 
able to  restore the accumulator more efficiently.

One interesting point about all these “decoding” routines 
is that, although their branch instructions subdivide opcodes 
into 6 classes, they return with 3 byte-count classes 
re-encoded (as 01, 02, and 03) in the X register, so that a 
little more decoding logic is required to use this information. 
A second point, that I have emphasized before but that 
deserves reiteration, is that they all produce additional 
information as an incidental effect. E.g., CNTBYT and 
BYTCNT cause only 1 byte opcodes to set the Z flag, i.e., 
this type is truly decoded. It would be easy to recode 
BYTNUM to have the same effect, by omitting its inner RTS 
and relocating its TRICK sequence outside the subroutine. 
This would save 1 byte and very slightly reduce its speed. 
CNTBYT returns with the carry flag always equal to bit 7 
of the opcode, and the sign flag always cleared. BYTCNT 
sets the carry flag equal to bit 4 for all 1 byte opcodes; it 
clears the carry for opcodes of type (0,1) (0,7) and sets it 
for all others. The BIT instruction in BYTCNT and BYTNUM 
sets the V flag equal to bit 6 for all opcodes; in BYTNUM it 
also causes all 1 -byte opcodes to return with the N flag equal 
to bit 7.

I still prefer and recommend BYTNUM, although in my 
KIM system it takes 32 bytes (that would be 31 in the minor 
revision suggested above). In a well designed system, every 
one of the 256 possible bit patterns would be present in 
ROM (for use as numerical constants, BIT masks, etc.) and 
BYTNUM could be coded in 30 (or 29) bytes, a small price 
to pay for non-destructive logic and higher speed. 
Unfortunately (as I showed in a recent note in Kim User Notes) 
the KIM-ROM omits 81 of the possible patterns, including 
39 of the 151 legal opcodes.

In the letter in which Jim Butterfield sent me his CNTBYT 
program, he also pointed out that a table-look-up operation 
would optimize timing. One way to do this is to move the 
opcode into an index register to get the content of a unique 
location in a 256 byte table. A content of 00 would identify 
an illegal (setting the Z flag), while contents o f 01, 02, or 03 
would give the byte-count of a legal. A 7 byte program insert 
(XINFOA, cf. listing) would do the work of both  BYTNUM 
and OPLEGL at a cost of (7+M) main program bytes and 
(10+N) cycles. The values of M and N depend on whether the 
opcode needs to be restored in the accumulator (if not, both 
are zero) and on the kind of coding the main program is using 
to pick up a sequence of opcode bytes (most likely the LDA 
(INDIRECT), Y instruction with M = 2 and N = 5). Since 
the existing (not optimized) decoding logic version of 
OPLEGL needs 66 subroutine bytes and has a speed index of 
37 cycles (range 24 to 63), the XINFOA insert would run 
more than 4 times faster than the OPLEGL + BYTNUM 
combination. To anyone enamored of speed (as I am) this 
is very attractive. An added superiority is that the main 
program can decide what to do with an illegal. If a program 
BREAK is desired, the branch offset ILLEG can be directed 
to the nearest 00 operand, otherwise to an illegality handling 
routine. One of several flaws in OPLEGL is that it forces a
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BREAK for illegals. A well designed subroutine should return 
information and not make decisions.

Nothing comes free, and the price of the XINFOA speed 
is a very long table, with every opcode a unique class, 
vulnerable to bugs if located in RAM. Ideally an info table 
like TAB256 should be in ROM, but it uses only the 2 low- 
order bits and one hesitates to waste 75% of the bits in an 
expensive ROM. The solution would be to encode other 
information in the high-order bits, and AND them out to 
retrieve the legality/bytecount data. The dilemma is: what 
other information?

I briefly explored another approach, fully packing the 
infobit pairs of TAB256 into a 64 byte table. Retrieval needs 
a 36 byte program, too long for a main progarm insert, and 
with a speed index of 63 cycles when made into a subroutine. 
This is not good enough to be worth presenting here.

A more promising use of info tabling is my new legality - 
testing subroutine, HYLEGL, that has many advantages 
when compared with OPLEGL. It needs only 64 bytes, saves 
and restores the accumulator, and returns with the carry 
flag set by illegals and cleared by legals. Its speed index is 
44 cycles (range 36 to 71). A revision of OPLEGL to make 
it fully equal to HYLEGL would be about 10 bytes longer 
and 2 cycles slower.

HYLEGL is a “hybrid” operation that retains the decoding 
logic of OPLEGL for the 128 “odd-number” opcodes because 
this is both fast and efficient. For the 128 “evens” it encodes 
legality as single infobits packed in a 16 byte table, INFTAB, a 
1 bit meaning illegal and a 0 bit legal. A table-addressing index 
from 0 to  F is generated by ANDing bits 4321 of the opcode, 
bit 0 (always 0 for evens) having been right-shifted out. The 
16 infobytes correspond to the original opcode sequence: 
X00, X02 , . . .  .X0E, X ^ . . .  .XjE.  Since 7 of the infobytes 
contain no 1 bits, legality is proved by the setting of the Z 
flag at the load into the accumulator, so no retrieval is needed. 
For the remaining 9, the correct infobit is moved into the 
carry flag by a sequence of from 1 to  8 ASLs, controlled by 
analyzing the status of bits 765 of the original opcode (stored 
in the temporary zero-page location COPY).

Since INFTAB contains 128 unique classes, it is as 
vulnerable to bugs as any other table in RAM. Since it is short, 
it is much easier t o ,check and also more likely to get itself 
fitted into a ROM. Decoding logic in RAM is of course not 
immune to bugs, but when a large class is involved the bug 
will show up very quickly. In a unique class, rarely use-tested 
(such as the illegals individually weeded out by OPLEGL) 
a bit-error bug may lurk for a long time before inflicting 
damage. Worse, the damage may be neither suspected nor 
detected; the output will look right but be wrong, and may 
even create a new  hidden bug in other programs.

HYLEGL highlights some “gray areas” of subroutine 
design, where programming philosophies differ. The X 
register is used in its table look-up segment, but the pre-call 
X content is saved and restored at a cost of 4 bytes and 6 
cycles. Its operations destroy the pre-call content o f the 
accumulator, but this is saved and restored at a cost of 3 bytes 
and 7 cycles. It can be argued that only the main program 
really knows what needs to be saved and how and where to 
save it and when to restore it. By omitting the saves, HYLEGL 
would need only 57 bytes and 34 cycles, but greater pre­
caution would be needed in the writing of the main program 
(perhaps not an evil). Should subroutines try to leave no 
traces of their work, other than the intended ones? Despite 
its saves, HYLEGL does leave traces, in the zero-page 
locations STORX and COPY and as incidental effects on the 
N, Z, and V flags. However, the PLP and PHP instructions 
of the 650X make status saving especially easy for the main 
program, and low zero-page locations are commonly viewed

as temporary scratchpad area. My current view is that sub­
routines should be written to save on-chip registers, since it 
is easy for a user to  remove any save instructions he does 
not want.

In order to make the high speed o f the XINFOA/TAB256 
approach immediately available, I am adding to the package 
subroutine MKTABL, that uses HYLEGL and BYTNUM to 
construct a temporary TAB256 in a RAM page. MKTABL 
is long (52 bytes) because it has an unusually high content of 
antibugging code and also serves as a testing/debugging 
program for the legality/bytecount subroutines. A large table 
in RAM is not only insecure but hazardous to generate. The 
data generating routines may be yielding some incorrect 
values. The write operation may be overwriting a RAM page 
other than the intended one, or trying to write in nonexistent 
RAM (that in systems not fully address-decoded may prove 
to be existent RAM with valuable stuff in it) or in write- 
protected RAM or in ROM.

Before calling MKTABL, a main program is expected to 
write into location BASEHI the number of the RAM page into 
which the table will be written. MKTABL compares this to 
the unique page number in its own coding; only if they are the 
same will table writing be permitted. It also sets the low base 
address for the table to 00, to ensure that the table will lie 
within the bounds of the one RAM page. This is part of the 
initial zeroing of 5 adjacent zero-page locations, that will 
contain useful information when MKTABL exits. The lowest 
one, COPY, is used by HYLEGL and will contain $FF at a 
correct exit; each run of HYLEGL stores the opcode it has 
worked on, unaltered except for the 72 “evens” that require 
infobit retrieval (that causes one ASL of COPY).

The next higher location (LEGCNT) contains S97 at a 
correct exit, since this counter is incremented before each 
call to BYTNUM, o f which there will be 151 if HYLEGL is 
working properly. The next location (CHKLO) is a 1 byte 
checksum that contains $41 at a correct exit. The next 
location (TABGEN) indirectly counts the number of table- 
writes, containing either 00 (if no table was written) or $FF. 
This is a bit trickier than a simple count. After each write, 
the current value of the opcode is moved from the Y index 
into the accumulator, destroying the infobyte content so that 
the subsequent reloading of the infobyte from the table 
location is a test that the correct value was indeed stored
there. The actual content o f  TABGEN is the current opcode 
value, from Y, that if all is well is also the count of writes.

Finally, the content of BASELO should always be 00, 
and BASEHI should contain the number of the unique permis­
sible RAM page if the main program commanded a table- 
write, and some other number if  not. A simple way to imple­
ment a no-table command would be an LDY #$06 followed 
by a JSR SETEX to bypass the first MKTABL instruction, 
since SETEX would zero BASEHI.

The terminal instructions of MKTABL control the 2 flags 
that will tell the main program what has happened. The BIT 
sets the V flag if a table has been written (TABGEN = $FF), 
and clears it if not. The crucial instructions compare the 
checksum in CHKLO with the correct value $41, setting the 
Z flag if all is well, clearing it if not. A great variety of errors, 
either in MKTABL itself or in the subroutines it calls, can 
cause a wrong checksum. Much information on the kind of 
error can be derived from the content of the 6 zero-page 
locations, of the accumulator (should be $41) and of the 
X and Y registers (both should be 00). If a table was written, 
very detailed information on operation will be found in the 
infobyte sequence.

The antibugging logic in MKTABL, although far from a 
total bugproofing, is clearly costly in memory and time. 
Programs that aim to optimize timing, such as the XINFOA/
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TAB256 combination, can tolerate little or none. (An example 
of very light antibugging would be addition of an AND #$03, 
at a cost of 2 bytes and 2 cycles, to erase the 6 high-order 
bits of the infobyte.) The major insurace against error for 
such programs is a thorough testing by an antibug test 
program, both before and after each use. In service programs 
resident in RAM, like MKTABL, error-proofing can be given 
priority. It may be desirable to trade off more memory to 
attain higher speed, but one should never trade off reliability! 
On this subject, the chapters on antibugging, testing, and 
debugging in E. Yourdon’s Techniques o f  Program Structure 
and Design (Prentice-Hall, 1975) make interesting reading.

To sum up, tables can indeed play useful roles beyond 
their classic one of defining arbitrary relations and rules 
(such as the metalogical ASCII decision that $41 represents 
the letter A). These other roles have been obscured by the fact 
that it is simpler to implement a de novo calculation of a math 
function than a look-up in a gigantic table. With tables of 
more modest size, table look-up can (as Jim Butterfield 
suggested) maximize speed, at an acceptable (though relatively 
high) memory cost. When decoding logic proves to be very 
intricate (many small or unique classes) the use of tables may 
also be more code-efficient. Furthermore, programs may be 
easier to write because similar retrieval logic may be applicable 
to a variety of tables. There is probably some trade-off point 
(more that 35 bytes of decoding logic, more than 10 classes 
decoded?) where the entabling of pre-decoded information 
becomes an optimal solution of the dimensions of the table 
can be kept within reasonable bounds (no more than 32 
bytes?).

(coding f or C N T B Y T  and BYTCNT)

X I N F O A  TA X
LDA T A B 2 5 6 ,  X
BEQ ILLEG
TAX

0 2 6 E k 8 H Y L E C L PHA (save o p c o d e  in stack)
F 85 10 STA C O P Y  (store w o r k - c o p y )

0271 i+A L S R A  (bit 0 to carry)
2 90 0A BCC T A B L O P  (do e v e n s / t a b l e )

k LSR A  (bit 1 to carry)
5 B0 05 BCS I L L E X  (all X (3»7»B , F ) )
7 C9 22 CMP # $ 2 2  (LSRed $09)
9 F0 01 BEQ I L L E X  ($89 illegal)
B 18 CLC ( l e gals clear carry)
C 68 ILLEX PLA (restore opcode in A)
D R T S
E 66 0 F TABL O P STX S T O R X  (save X  r egister)

0280 29 0 F A N D  # $ 0 F  (bits 7, 6 , 5  out)
2 A A T A X (l(.321 to X  index)
3 BD 9 E  02 LDA I N F T A B , X  (load infobyte)
6 F0 12 B E Q E X I T  (all 0 bits, legal)
8 06 10 A S L C O P Y  (bit 7 to carry)
A B0 0U BCS S T E P A  (bit 7 = 1 )
C 0A A S L A  (l e f t s h i f t  infobyte)
D 0A A S L A
E 0A A S L A
F 0A A S L A

0 290 2k 10 STEPA BIT C O P Y  (bits 6 , 5  to N,V)
2 30 02 BMI S T E P B  (bit 6 = 1 )
1+ 0A A S L A
5 0A A S L A
6 70 01 S T E P B BVS S T E P C  (bit 5 = 1 )
8 0A A S L A
9 0A STEPC A S L A  (i n f o b i t  to carry)
A a 6 0 F E XIT LDX S T O R X  (restore X)
C 68 PLA ( restore opcode)

0 29D 60 RT S

I N F T A B  table f o r  e v e n  o p c odes

0 2 3 0 A2 01 CNT B Y T
2

i

lj.9 20 
F0 13
29 9F

8 F0 11
A 0A
B 1+9 12
D F0 0B
F 29 1A

02l(.l U 9  02
3 F0 06

5 29 10

7 D0 01
9 E8 TH R E E
A E8 TW O

02i*B 60 O N E

E OR
B E Q
A N D
B E Q
A S L
EO R
B EQ
AN D
E O R
B E Q
A N D

BN E
IN X
INX
R T S

# $ 0 1  ( i n i t i a l i z e  X) 
# $ 2 0  (flip bi t  5) 
T H R E E  (only $20)
# $ 9 F  (bits 5 , 6  out) 
ONE (only (0,1*.,6)0) 
A (shift bi t  7 out)

0 2 9 E  10 D F  0D 00 00 00 01 00
02A6 00 F F  CF 00 00 C F  D F  10

# $ 1 2  (flip b i t s  3 , 0 ) *  
T W O  (only X Q 9)
# $ 1 A  (bits 1+,1 o u t ) *  
# $ 0 2  (flip bi t  0 ) *
ONE ( X ( 8 , A ) )
# $ 1 0  (all bu t  f l i p p e d  

b i t  3 o u t ) #  
T W O  (resid. X ( 0 - 7 ) )  

(resid. X ( 9 - F ))

■» c o m m e n t  refers to o r i g i n a l  opcode b its 
b e f o r e  l e f t - s h i f t  at 023A

L D X  #$01
BIT B Y T C N T + 6  (test bit 3) 
BN E  H A L F O P  (all X ( 8 - F ) )  
C M P  # $20
B E Q  T H R E E  (only $20)
A N D  # $ 9 F  (bits 5, 6  out) 
BN E  TW O  (all e x c e p t  

( 0 A , 6 ) 0 )
A N D  # $ 1 5  (retains o nly

bits 0,2 ,14.)

0 2 3 0 A2 01 B Y T C N T
2 2C 36 02
5 D0 00
7 C9 20
9 F0 0E
B 29 9F
D D0 0B

P 29 15 H A L F O P

02l|.l C9 01
3 F0 05
5 29 05
7 F0 02

9 E 8 T H R E E
A E 8 T W O

02I4.B 60 ONE

CMP
BEQ
AND
BEQ

#$01
TW O

#$05
ONE

(X0 (9,B)) 
(bit I4. out) 
(X(8,A) and 
(0,U,6)0) 

(resid. X ( 9 - F ) )

(coding for MKTABL)

0 2 A F A 0  05 M K T A B L  L D Y  #$05 (zero 5 loci)
0 2B1 A 2  00 S E T E X  L D X  # $ 0 0  (notable entry)

3 96 0F ZER O I T  STX COFY-J., Y

5 88 D E Y
6 D 0  F B BNE ZERO I T
8 D 0 CLD (clear d e c i m a l  mode)

9 98 0 P B Y T E  T YA (opcode f r o m  Y  to A)
A 2 0  6E  02 JS R H Y L B G L  (test legal i t y )
D A 2  00 L D X  # $ 0 0  ( r e z e r o e s  X)
F B0 05 BCS M O V X A  (il l e g a l  bypass)

02C1 E 6 11 INC L E G C N T  (count legals)

3 20 10 02 JS R B Y T N U M  (b y t e c o u n t  to X)
6 8a M O V X A  TX A ( b y t ecount f r o m  X  to A)

7 A 2  XX L D X  # $ X X  (RAM table page #)

9 El* 15 CPX BASE H I  (compare p age #
set b y  program)

B D 0  07 BNE N O T A B L  ( n owrite if ? )
D 91 I k STA (B A S E L O ) ,Y (write)
F 98 TYA (opcode f r o m  Y  to A)

0 2D0 85 13 STA T A B G E N  (count w r i t e s )
2 B1 1k LDA (BASE L O ) , Y  (read table)

k 18 N O T A B L  CLC (clear c a r r y  f o r  add)

5 65 12 ADC C H K L O  ( b y t e c o u n t  sum)
7 85 12 STA C H K L O  (store checksum)

9 C8 I N Y (next opc o d e  )
A D0 D D BNE O P B Y T E
C 21+ 13 E X I T  BIT T A B G E N  (sets V if table

E A 9  I4.I LD A  #$l|.l (valid c h e c k s u m )
0 2 E 0 c5 12 CMP C H K L O  (compare actual)
0 2 E 2 60 RT S
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