
Decoding Efficiency & Speed;
Pros & Cons of Table Look-Up

BY H .T. GORDON
College of Agricultural Sciences
University of California
Berkeley, C A 94720

Dear Jim, Received: 78 Jan 15
While some o f your readers may have become as weary as

I am with m y repeated attacks on the 650X legality-by tecount
problem, this is in a way a programming guinea-pig for
working-out optimization principles, relevant to all problems.
Even your non-650X readers may fin d something o f value in
the enclosed MS, as it touches on some universal problems: the
chioce between decoding-logic or table-look-up programs, the
extent to which subroutines should be designed to be non­
destructive and purely-informative, and the uses o f antibug-
ging code. My ultimate goal is to develop scanning-debugging
to a higher level. For this, the basic components o f the
debugger m ust be fast, efficient, and above al bug- free.
Sincerely,
H. T. Gordon

The question of how to optimize a decoding subroutine,
previously touched on in my notes in issues # 1 7 and #19
of DDJ (1977) using decoding of the number of bytes
required by 650X opcodes as an example, is re-opened by 2
new solutions: CNTBYT (written by Jim Butterfield and
reproduced here with his permission) and BYTCNT (my
own response to his challenge). Both optimize coding
efficiency, and it is unlikely that a solution in fewer than
28 bytes exists. Both sort the 151 legal opcodes into the
same 6 groups as my earlier subroutine BYTNUM. However,
CNTBYT classes illegals of type X0B as 3 byte codes while
the others class them as 2 byte codes (which is how the
650X control unit executes them, but this is immaterial
since all routines class illegals of type X2 as 2 byte codes
although most of them are not executable).

The important differences are in structure and timing.
CNTBYT uses an elegant and highly instructive linear sequence
of bit-manipluations that cause each of 5 classes of opcodes
in turn to become zero and exit, while the 6th class exits as
non-zero. BYTCNT emulates BYTNUM by first sorting into
subclasses X(0-7) and X(8-F) by a BIT test of bit 3, then
shifts to destructive logic in each branch to attain higher
code efficiency. Unlike BYTNUM, both new routines destroy
the accumulator.

All routines have different path lengths (measured in
clock cycles from entry to exit, including the 6 cycles for the
main program JSR and 6 cycles for the RTS) for each of the
6 opcode classes. An index of relative speed (not weighted
for difference in opcode usage frequency) is easily calculated
by dividing 2 (N X T) by 2 N, where N is the number of
legal opcodes in a class and T the path length in cycles for
that class. BYTNUM has the fastest index, 30.6 cycles (range
28 to 37). BYTCNT is slower, 32.5 cycles (range 29 to 39).
CNTBYT is slower still, 39.3 cycles (range 23 to 42). The
delay is caused by its having to sort out 3 small classes (con­
taining only 11 of the 151 opcodes) before it can work on the
3 large ones. The lesson to be drawn from this is that linear -
sequence logic is not inherently slower (as I implied in my
previous DDJ notes) and might even be faster if its first
stages could sift out the majority of the items being sorted.

However, the range o f sorting times is necessarily wider.
One additional point: to make the 2 new routines fully equiva­
lent to BYTNUM, one would have' to add a PH A to store and
a PLA to restore the accumulator, at the cost of 2 more bytes
and 7 more cycles. However, the main program might be
able to restore the accumulator more efficiently.

One interesting point about all these “decoding” routines
is that, although their branch instructions subdivide opcodes
into 6 classes, they return with 3 byte-count classes
re-encoded (as 01, 02, and 03) in the X register, so that a
little more decoding logic is required to use this information.
A second point, that I have emphasized before but that
deserves reiteration, is that they all produce additional
information as an incidental effect. E.g., CNTBYT and
BYTCNT cause only 1 byte opcodes to set the Z flag, i.e.,
this type is truly decoded. It would be easy to recode
BYTNUM to have the same effect, by omitting its inner RTS
and relocating its TRICK sequence outside the subroutine.
This would save 1 byte and very slightly reduce its speed.
CNTBYT returns with the carry flag always equal to bit 7
of the opcode, and the sign flag always cleared. BYTCNT
sets the carry flag equal to bit 4 for all 1 byte opcodes; it
clears the carry for opcodes of type (0,1) (0,7) and sets it
for all others. The BIT instruction in BYTCNT and BYTNUM
sets the V flag equal to bit 6 for all opcodes; in BYTNUM it
also causes all 1 -byte opcodes to return with the N flag equal
to bit 7.

I still prefer and recommend BYTNUM, although in my
KIM system it takes 32 bytes (that would be 31 in the minor
revision suggested above). In a well designed system, every
one of the 256 possible bit patterns would be present in
ROM (for use as numerical constants, BIT masks, etc.) and
BYTNUM could be coded in 30 (or 29) bytes, a small price
to pay for non-destructive logic and higher speed.
Unfortunately (as I showed in a recent note in Kim User Notes)
the KIM-ROM omits 81 of the possible patterns, including
39 of the 151 legal opcodes.

In the letter in which Jim Butterfield sent me his CNTBYT
program, he also pointed out that a table-look-up operation
would optimize timing. One way to do this is to move the
opcode into an index register to get the content of a unique
location in a 256 byte table. A content of 00 would identify
an illegal (setting the Z flag), while contents o f 01, 02, or 03
would give the byte-count of a legal. A 7 byte program insert
(XINFOA, cf. listing) would do the work of both BYTNUM
and OPLEGL at a cost of (7+M) main program bytes and
(10+N) cycles. The values of M and N depend on whether the
opcode needs to be restored in the accumulator (if not, both
are zero) and on the kind of coding the main program is using
to pick up a sequence of opcode bytes (most likely the LDA
(INDIRECT), Y instruction with M = 2 and N = 5). Since
the existing (not optimized) decoding logic version of
OPLEGL needs 66 subroutine bytes and has a speed index of
37 cycles (range 24 to 63), the XINFOA insert would run
more than 4 times faster than the OPLEGL + BYTNUM
combination. To anyone enamored of speed (as I am) this
is very attractive. An added superiority is that the main
program can decide what to do with an illegal. If a program
BREAK is desired, the branch offset ILLEG can be directed
to the nearest 00 operand, otherwise to an illegality handling
routine. One of several flaws in OPLEGL is that it forces a

Number 22 Or. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 5

BREAK for illegals. A well designed subroutine should return
information and not make decisions.

Nothing comes free, and the price of the XINFOA speed
is a very long table, with every opcode a unique class,
vulnerable to bugs if located in RAM. Ideally an info table
like TAB256 should be in ROM, but it uses only the 2 low-
order bits and one hesitates to waste 75% of the bits in an
expensive ROM. The solution would be to encode other
information in the high-order bits, and AND them out to
retrieve the legality/bytecount data. The dilemma is: what
other information?

I briefly explored another approach, fully packing the
infobit pairs of TAB256 into a 64 byte table. Retrieval needs
a 36 byte program, too long for a main progarm insert, and
with a speed index of 63 cycles when made into a subroutine.
This is not good enough to be worth presenting here.

A more promising use of info tabling is my new legality -
testing subroutine, HYLEGL, that has many advantages
when compared with OPLEGL. It needs only 64 bytes, saves
and restores the accumulator, and returns with the carry
flag set by illegals and cleared by legals. Its speed index is
44 cycles (range 36 to 71). A revision of OPLEGL to make
it fully equal to HYLEGL would be about 10 bytes longer
and 2 cycles slower.

HYLEGL is a “hybrid” operation that retains the decoding
logic of OPLEGL for the 128 “odd-number” opcodes because
this is both fast and efficient. For the 128 “evens” it encodes
legality as single infobits packed in a 16 byte table, INFTAB, a
1 bit meaning illegal and a 0 bit legal. A table-addressing index
from 0 to F is generated by ANDing bits 4321 of the opcode,
bit 0 (always 0 for evens) having been right-shifted out. The
16 infobytes correspond to the original opcode sequence:
X00, X02 ,X0E, X ^XjE. Since 7 of the infobytes
contain no 1 bits, legality is proved by the setting of the Z
flag at the load into the accumulator, so no retrieval is needed.
For the remaining 9, the correct infobit is moved into the
carry flag by a sequence of from 1 to 8 ASLs, controlled by
analyzing the status of bits 765 of the original opcode (stored
in the temporary zero-page location COPY).

Since INFTAB contains 128 unique classes, it is as
vulnerable to bugs as any other table in RAM. Since it is short,
it is much easier t o ,check and also more likely to get itself
fitted into a ROM. Decoding logic in RAM is of course not
immune to bugs, but when a large class is involved the bug
will show up very quickly. In a unique class, rarely use-tested
(such as the illegals individually weeded out by OPLEGL)
a bit-error bug may lurk for a long time before inflicting
damage. Worse, the damage may be neither suspected nor
detected; the output will look right but be wrong, and may
even create a new hidden bug in other programs.

HYLEGL highlights some “gray areas” of subroutine
design, where programming philosophies differ. The X
register is used in its table look-up segment, but the pre-call
X content is saved and restored at a cost of 4 bytes and 6
cycles. Its operations destroy the pre-call content o f the
accumulator, but this is saved and restored at a cost of 3 bytes
and 7 cycles. It can be argued that only the main program
really knows what needs to be saved and how and where to
save it and when to restore it. By omitting the saves, HYLEGL
would need only 57 bytes and 34 cycles, but greater pre­
caution would be needed in the writing of the main program
(perhaps not an evil). Should subroutines try to leave no
traces of their work, other than the intended ones? Despite
its saves, HYLEGL does leave traces, in the zero-page
locations STORX and COPY and as incidental effects on the
N, Z, and V flags. However, the PLP and PHP instructions
of the 650X make status saving especially easy for the main
program, and low zero-page locations are commonly viewed

as temporary scratchpad area. My current view is that sub­
routines should be written to save on-chip registers, since it
is easy for a user to remove any save instructions he does
not want.

In order to make the high speed o f the XINFOA/TAB256
approach immediately available, I am adding to the package
subroutine MKTABL, that uses HYLEGL and BYTNUM to
construct a temporary TAB256 in a RAM page. MKTABL
is long (52 bytes) because it has an unusually high content of
antibugging code and also serves as a testing/debugging
program for the legality/bytecount subroutines. A large table
in RAM is not only insecure but hazardous to generate. The
data generating routines may be yielding some incorrect
values. The write operation may be overwriting a RAM page
other than the intended one, or trying to write in nonexistent
RAM (that in systems not fully address-decoded may prove
to be existent RAM with valuable stuff in it) or in write-
protected RAM or in ROM.

Before calling MKTABL, a main program is expected to
write into location BASEHI the number of the RAM page into
which the table will be written. MKTABL compares this to
the unique page number in its own coding; only if they are the
same will table writing be permitted. It also sets the low base
address for the table to 00, to ensure that the table will lie
within the bounds of the one RAM page. This is part of the
initial zeroing of 5 adjacent zero-page locations, that will
contain useful information when MKTABL exits. The lowest
one, COPY, is used by HYLEGL and will contain $FF at a
correct exit; each run of HYLEGL stores the opcode it has
worked on, unaltered except for the 72 “evens” that require
infobit retrieval (that causes one ASL of COPY).

The next higher location (LEGCNT) contains S97 at a
correct exit, since this counter is incremented before each
call to BYTNUM, o f which there will be 151 if HYLEGL is
working properly. The next location (CHKLO) is a 1 byte
checksum that contains $41 at a correct exit. The next
location (TABGEN) indirectly counts the number of table-
writes, containing either 00 (if no table was written) or $FF.
This is a bit trickier than a simple count. After each write,
the current value of the opcode is moved from the Y index
into the accumulator, destroying the infobyte content so that
the subsequent reloading of the infobyte from the table
location is a test that the correct value was indeed stored
there. The actual content o f TABGEN is the current opcode
value, from Y, that if all is well is also the count of writes.

Finally, the content of BASELO should always be 00,
and BASEHI should contain the number of the unique permis­
sible RAM page if the main program commanded a table-
write, and some other number if not. A simple way to imple­
ment a no-table command would be an LDY #$06 followed
by a JSR SETEX to bypass the first MKTABL instruction,
since SETEX would zero BASEHI.

The terminal instructions of MKTABL control the 2 flags
that will tell the main program what has happened. The BIT
sets the V flag if a table has been written (TABGEN = $FF),
and clears it if not. The crucial instructions compare the
checksum in CHKLO with the correct value $41, setting the
Z flag if all is well, clearing it if not. A great variety of errors,
either in MKTABL itself or in the subroutines it calls, can
cause a wrong checksum. Much information on the kind of
error can be derived from the content of the 6 zero-page
locations, of the accumulator (should be $41) and of the
X and Y registers (both should be 00). If a table was written,
very detailed information on operation will be found in the
infobyte sequence.

The antibugging logic in MKTABL, although far from a
total bugproofing, is clearly costly in memory and time.
Programs that aim to optimize timing, such as the XINFOA/

Page 6 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E , Menlo Park, CA 94025 Number 22

TAB256 combination, can tolerate little or none. (An example
of very light antibugging would be addition of an AND #$03,
at a cost of 2 bytes and 2 cycles, to erase the 6 high-order
bits of the infobyte.) The major insurace against error for
such programs is a thorough testing by an antibug test
program, both before and after each use. In service programs
resident in RAM, like MKTABL, error-proofing can be given
priority. It may be desirable to trade off more memory to
attain higher speed, but one should never trade off reliability!
On this subject, the chapters on antibugging, testing, and
debugging in E. Yourdon’s Techniques o f Program Structure
and Design (Prentice-Hall, 1975) make interesting reading.

To sum up, tables can indeed play useful roles beyond
their classic one of defining arbitrary relations and rules
(such as the metalogical ASCII decision that $41 represents
the letter A). These other roles have been obscured by the fact
that it is simpler to implement a de novo calculation of a math
function than a look-up in a gigantic table. With tables of
more modest size, table look-up can (as Jim Butterfield
suggested) maximize speed, at an acceptable (though relatively
high) memory cost. When decoding logic proves to be very
intricate (many small or unique classes) the use of tables may
also be more code-efficient. Furthermore, programs may be
easier to write because similar retrieval logic may be applicable
to a variety of tables. There is probably some trade-off point
(more that 35 bytes of decoding logic, more than 10 classes
decoded?) where the entabling of pre-decoded information
becomes an optimal solution of the dimensions of the table
can be kept within reasonable bounds (no more than 32
bytes?).

(coding f or C N T B Y T and BYTCNT)

X I N F O A TA X
LDA T A B 2 5 6 , X
BEQ ILLEG
TAX

0 2 6 E k 8 H Y L E C L PHA (save o p c o d e in stack)
F 85 10 STA C O P Y (store w o r k - c o p y)

0271 i+A L S R A (bit 0 to carry)
2 90 0A BCC T A B L O P (do e v e n s / t a b l e)

k LSR A (bit 1 to carry)
5 B0 05 BCS I L L E X (all X (3»7»B , F))
7 C9 22 CMP # $ 2 2 (LSRed $09)
9 F0 01 BEQ I L L E X ($89 illegal)
B 18 CLC (l e gals clear carry)
C 68 ILLEX PLA (restore opcode in A)
D R T S
E 66 0 F TABL O P STX S T O R X (save X r egister)

0280 29 0 F A N D # $ 0 F (bits 7, 6 , 5 out)
2 A A T A X (l(.321 to X index)
3 BD 9 E 02 LDA I N F T A B , X (load infobyte)
6 F0 12 B E Q E X I T (all 0 bits, legal)
8 06 10 A S L C O P Y (bit 7 to carry)
A B0 0U BCS S T E P A (bit 7 = 1)
C 0A A S L A (l e f t s h i f t infobyte)
D 0A A S L A
E 0A A S L A
F 0A A S L A

0 290 2k 10 STEPA BIT C O P Y (bits 6 , 5 to N,V)
2 30 02 BMI S T E P B (bit 6 = 1)
1+ 0A A S L A
5 0A A S L A
6 70 01 S T E P B BVS S T E P C (bit 5 = 1)
8 0A A S L A
9 0A STEPC A S L A (i n f o b i t to carry)
A a 6 0 F E XIT LDX S T O R X (restore X)
C 68 PLA (restore opcode)

0 29D 60 RT S

I N F T A B table f o r e v e n o p c odes

0 2 3 0 A2 01 CNT B Y T
2

i

lj.9 20
F0 13
29 9F

8 F0 11
A 0A
B 1+9 12
D F0 0B
F 29 1A

02l(.l U 9 02
3 F0 06

5 29 10

7 D0 01
9 E8 TH R E E
A E8 TW O

02i*B 60 O N E

E OR
B E Q
A N D
B E Q
A S L
EO R
B EQ
AN D
E O R
B E Q
A N D

BN E
IN X
INX
R T S

$ 0 1 (i n i t i a l i z e X)
$ 2 0 (flip bi t 5)
T H R E E (only $20)
$ 9 F (bits 5 , 6 out)
ONE (only (0,1*.,6)0)
A (shift bi t 7 out)

0 2 9 E 10 D F 0D 00 00 00 01 00
02A6 00 F F CF 00 00 C F D F 10

$ 1 2 (flip b i t s 3 , 0) *
T W O (only X Q 9)
$ 1 A (bits 1+,1 o u t) *
$ 0 2 (flip bi t 0) *
ONE (X (8 , A))
$ 1 0 (all bu t f l i p p e d

b i t 3 o u t) #
T W O (resid. X (0 - 7))

(resid. X (9 - F))

■» c o m m e n t refers to o r i g i n a l opcode b its
b e f o r e l e f t - s h i f t at 023A

L D X #$01
BIT B Y T C N T + 6 (test bit 3)
BN E H A L F O P (all X (8 - F))
C M P # $20
B E Q T H R E E (only $20)
A N D # $ 9 F (bits 5, 6 out)
BN E TW O (all e x c e p t

(0 A , 6) 0)
A N D # $ 1 5 (retains o nly

bits 0,2 ,14.)

0 2 3 0 A2 01 B Y T C N T
2 2C 36 02
5 D0 00
7 C9 20
9 F0 0E
B 29 9F
D D0 0B

P 29 15 H A L F O P

02l|.l C9 01
3 F0 05
5 29 05
7 F0 02

9 E 8 T H R E E
A E 8 T W O

02I4.B 60 ONE

CMP
BEQ
AND
BEQ

#$01
TW O

#$05
ONE

(X0 (9,B))
(bit I4. out)
(X(8,A) and
(0,U,6)0)

(resid. X (9 - F))

(coding for MKTABL)

0 2 A F A 0 05 M K T A B L L D Y #$05 (zero 5 loci)
0 2B1 A 2 00 S E T E X L D X # $ 0 0 (notable entry)

3 96 0F ZER O I T STX COFY-J., Y

5 88 D E Y
6 D 0 F B BNE ZERO I T
8 D 0 CLD (clear d e c i m a l mode)

9 98 0 P B Y T E T YA (opcode f r o m Y to A)
A 2 0 6E 02 JS R H Y L B G L (test legal i t y)
D A 2 00 L D X # $ 0 0 (r e z e r o e s X)
F B0 05 BCS M O V X A (il l e g a l bypass)

02C1 E 6 11 INC L E G C N T (count legals)

3 20 10 02 JS R B Y T N U M (b y t e c o u n t to X)
6 8a M O V X A TX A (b y t ecount f r o m X to A)

7 A 2 XX L D X # $ X X (RAM table page #)

9 El* 15 CPX BASE H I (compare p age #
set b y program)

B D 0 07 BNE N O T A B L (n owrite if ?)
D 91 I k STA (B A S E L O) ,Y (write)
F 98 TYA (opcode f r o m Y to A)

0 2D0 85 13 STA T A B G E N (count w r i t e s)
2 B1 1k LDA (BASE L O) , Y (read table)

k 18 N O T A B L CLC (clear c a r r y f o r add)

5 65 12 ADC C H K L O (b y t e c o u n t sum)
7 85 12 STA C H K L O (store checksum)

9 C8 I N Y (next opc o d e)
A D0 D D BNE O P B Y T E
C 21+ 13 E X I T BIT T A B G E N (sets V if table

E A 9 I4.I LD A #$l|.l (valid c h e c k s u m)
0 2 E 0 c5 12 CMP C H K L O (compare actual)
0 2 E 2 60 RT S

Number 22 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 7

63

