ARTICLES

6502 Hacks

omputers and controllers us-
G ing the 6502 CPU often de-

mand efficient use of both
processing time and memory space.
With an address space of only 64K,
data and code space efficiency can be
critical, Moreover, though advance-
ments in these 6502 systems have al-
lowed the use of high-level lan-
guages, there will always be a need
for fast subroutines and tight
programs.

This article is a result of writing
code for an Atari VCS 2600 game unit
that had only 128 bytes of RAM and 8K
of ROM. Because of the limited graph-
ics hardware, all processing was in
real time with cycles counted. Sever-
al of the hacks and tips presented
here are also transferable to other
microprocessors. Many of the tips
are appropriate to any true real-time
system—that is, any system where
real-time is measured in very small
fractions of a second. My 6502 experi-
ence has been helpful in finding
ways to crunch memory require-
ments and timing on the Intel 8086
and 80286.

In short, this article is a collection
of my favorite hacks for the 6502. A
fair amount of 6502 code is included,
so the next section gives a brief intro-
duction to the 6502. If you've pro-
grammed the 6502 extensively,
you've probably been forced to
memorize the instruction set in hex,
so perhaps you should skip ahead.

The 6502
The 6502 has only five registers. The
instruction pointer (IP) points to the

Mark S. Ackerman, 24 Chatham St., Cam-
bridge, MA 02139. Mark is a computer re-
searcher at the Massachusetts Institute of
Technology, specializing in graphics
environments.

by Mark S. Ackerman

next instruction, as on most comput-
ers, and is not directly setable by the
user. The accumulator (A) is the main
register, and it is the only register
with full arithmetic-logic unit (ALU)
functionality. The two index regis-
ters, X and Y, are used for indexed
addressing. The stack pointer (S)
points to the top of the stack.

The 6502 also has a nonregular in-
struction set. For example, the S reg-
ister can be set only from the X regis-
ter using the TSX (transfer S register
to X register) or TXS (yep—transfer X
to S). Moreover, if you want to trans-
fer a value between the X and Y regis-
ters, you must transfer through the
accumulator or through memory.
For example, a typical sequence

might be:
TXA ;tfr X to accumulator
TAY ;tfraccum to Y

The 6502 also has several flags. The
important ones are

ethe negative flag (or minus flag),
which is set when loading or doing
ALU functions

« the zero flag, which is set in similar
situations

e the carry flag, which is set in arith-
metic operations

e the overflow flag, which is also set
in arithmetic operations

There are also flags for enabling in-
terrupts and for decimal mode.

LDA #0

| Basic Hacks

One of the simplest ways to save code
space is at initialization time. The fol-
lowing code, for example, might be
used to initialize a few variables:

;load accumulator
with 0
STA ;store accum in FIRST
LDA
STA
LDA
STA
LDA
STA
LDA
STA

FIRST
#2
SECOND
#1
THIRD
#0
FOURTH
#5
FIFTH

This requires 20 bytes (2 per instruc-
tion) and a minimum of 25 cycles (2
per load immediate and 3 per store).
The following would be cheaper:

LDX #0 ;X register=0

STX FIRST ;store X in FIRST

STX FOURTH

INX ;inc X by 1 (X now=1)
STX THIRD

INX Xnow=2

STX SECOND

LDX #5 ;Xnow=5

STX FIFTH

This takes two cycles and 4 bytes less;
you save 1 byte each per INX instruc-
tion. An even cheaper result can be
obtained by:

LDA #5 ;accumulator=5
STA FIFTH ;store accum in FIFTH
LSR A ;shift right --
; (acc now=2)
STA SECOND
LSR A ;accnow=1
STA THIRD
LSR A ;acc now =0
STA FIRST
STA FOURTH

24

Dr. Dobb’s Journal, February 1987
97

This last example uses the same num-
ber of cycles, 23, but costs only 15
bytes—a reduction of 25 percent over
the first example. You might object
that this is not “clean code.” Without
adequate documentation, it may be
less than clear, but it does save bytes
and cycles.

This example also demonstrates a
reduction principle: general reduc-
tion algorithms, such as using the in-
dex registers to increment instead of
loading the accumulator with imme-
diate values, can produce significant
savings. The best savings, however,
require a sharp eye for special
situations.

Incidentally, if you use a loop dur-
ing initialization, remember that the
counter register contains —1 or 0 at
the end of the loop. You can use this
by-product for further savings:

LDA #$CO
LDX #7
LPSTA TABLEZ2,X ;putacc at TABLE2

; plus offset in X

DEX ;decrement X

BPL LP ;loop while X is
; positive (i.e., > 0)

INX ;at end of loop,
; increment X

STX ZERO ;store X (=0) in ZERO

Zero-Page Savings

The 6502’s first 256 bytes of memory,
zero page, have a unique property.
Reads from and writes to zero page,
including indexed I/0 using only the
X register, save a cycle and a byte.
Frequently used variables, or memo-
ry registers, should be kept in this
portion of RAM.

It is critical when addressing this
memory to use the X register. Using
the Y register for indexed addressing
such as this:

LDA ZEROPAGEY

is actually an absolute addressed in-
struction—that is, the 6502 ignores
whether the ZEROPAGE location is in
zero page or not. The Y-indexed in-
struction uses an additional cycle for
the fetch and a byte for the page
address.

Using Left-Over Registers

Use all the registers. The index regis-
ters should be used for intermediate
results. The following nonsense ex-

ample assumes that the stack is at
$FF:

LDX LOOP_COUNT

LOOP TXS ;store loop ct,
; freeing X
LDA WHATEVER
LSR A
TAX ;store acc/2
LSR A
LSR A
AND #07 ;getlow 3 bits
TAY ;get offset of TABLE
TXA ,restore acc
LDX TABLE)Y ;new index for X
ORA $80 ;OR $80 to low 3 bits
STA STOREX ;put at STORE plus
; offset from TABLE+Y

TSX ;restore loop counter
DEX ;dec loop counter
BPL LOOP ;loop if counter >=0
TXS ;restore stack ptr

Note that the TXS instruction can be
used only if interrupts have been dis-
abled. A temporary zero-page vari-
able could have been used to replace
the TXS and TSX at a cost of two cycles
per loop execution and 1 byte.

Stack-Related Savings

It is often cheaper to place values
onto the stack than to store them to
temporary variables. A push (PHA)
and pull (PLA) take seven cycles and 2
bytes. A store to zero-page memory
with a following load takes six cycles
and 4 bytes; a store to other memory
takes eight cycles and 6 bytes.

When doing a substantial amount
of 1I/0 to temporary variables, it may
make sense to actually reposition the
stack pointer. This works only with
page 1 variables.

Flags and the Bit Instruction

Careful use of bit flags can also save
bytes and cycles substantially. The
BIT instruction does a nondestructive
test of a byte in memory. Bit 7 (the

high-order bit) of the byte is placed in
the negative flag, and bit 6 is placed in
the overflow flag. No registers are af-
fected.

For this reason, if RAM is limited,
the two high-order bits of a byte are
extremely valuable for Booleans. In
fact, bit7 is valuable because it also
sets the negative flag upon loading:

LDA WORD ;load acc with WORD
BPL NOT_SET ;80 if + (bit7=0)

IS_SET AND #$0F
TAX

In addition, the carry flag, which is
set or cleared in shift operations, can |
be used to store a flag value tempo-
rarily. In this case, bits 7 and 0 are the
most valuable.

If RAM is not limited, then a single
Boolean in bit0 allows the use of the
zero flag upon loading. The BIT in-
struction still cannot be used profit-
ably unless the Boolean is in bit 7 or 6,
however.

More Advanced Hacking
There are two ways to depend on
preexisting conditions. The first is to
assume that the carry bit is either set
or not set as needed. In the 6502, the
carry bit signifies just that: a bit is be-
ing set to indicate the carry. To add
two 16-bit numbers, then:

CLC
LDA
ADC
LDA
ADC

FIRST_VAR_FIRST_8
SECOND_VAR_FIRST_8
FIRST_VAR_SECOND_8
SECOND_VAR_SECOND_8

If you know the condition of the car-
ry, such as in the following sequence
of instructions:

LDA FIRST

CMP #$18 ;comp acc to $18

BCS BRANCH1 ;goif acc>= $18
LDA VARI1

ADC VAR2

then a CLC can be omitted. Why? Be-
cause the branch was on a carry set
condition, the only way into the addi-
tion would be if the carry were clear.
In a similar manner, you can assume
that there is no carry from a previous
addition. For example, if VAR3 never
exceeded 16 and VAR4 never exceed-
ed 5, then the carry will never set. So
the sequence:

CLC
LDA
ADC
STA
LDA
ADC

VAR3
VAR4
TEMP1
NEW1
NEW2

can be used. The CLC for the second
addition can be omitted because the
carry will not be set. This, however,
reduces the robustness of the code.

Dr. Dobb’s Journal, February 1987
98

25

6502 HACKS
(continued from page 25)

Removing clear carries or set car-
ries—used for subtractions—can
save many bytes. You may need to
use some ingenuity. If the carry is set,
for example:

LDA TEMP
SEC #$FF ;subtract —1

you may want to add 1 to TEMP by
subtracting —1.

Cheaper Branching

The second way to use preexisting
conditions is with branching. If you
know that a flag will be in a certain
condition, the appropriate branch in-
struction can be used for an uncondi-
tional jump. This will save a byte but
no cycles in the 6502; the uncondi-
tional JMP instruction takes 3 bytes
whereas a conditional branch takes 2
bytes. Both take three cycles when
the branch is made. (A conditional
branch in which no branch is execut-
ed takes only two cycles.) For exam-
ple, if the carry is set (perhaps from a
BIT instruction as below or from a
subtraction), then the code:

BCC JUMP_LOC
NEXT_LOC

forces an unconditional branch for
the savings of a byte over a JMP.

Interestingly, the instruction se-
quence for a Boolean in bit0:

LDA YOUR_FLAG

AND #1 ;get bit0
BNE TRUE_SETTING ;branch on 1
FALSE_SETTING

can be replaced by:

LDA YOUR_FLAG

LSR A ;shift bit0 into carry
BCS TRUE_SETTING ;80 if set
FALSE_SETTING

at a savings of a byte. This is especial-
ly useful for testing several bit flags in
a single byte. It also nicely sets the
carry bit for unconditional branch-
ing for both branches of an if . . . else
structure.

LDA YOUR_FLAG
LSR A

BCS TRUE_SETTING
FALSE_SETTING

some code

BCC END_IF
TRUE_SETTING

some code
END_IF

;carry is clear

Table-Driven Code

You can make very large savings if
you can replace code with preset
data tables. Instead of attempting to
compute divide-by-17s or sines, for
example, it may be possible to have a
table of the results for all expected
values. For example, instead of com-
puting MOD?, if the variable will nev-
er exceed 32, it will be far, far cheap-
er to have a table:

MOD7 DS0,1,2,3,4,5,6
DS0,1,2,3 ... etc.

Because many of these tables can be
compressed or merged with other ta-
bles (as discussed later), the cost in
bytes is reasonable. This method is
certainly faster.

In a similar manner, decision ta-
bles, game-play paths, or timing deci-
sions can often be decided prior to
compilation rather than during exe-
cution. In games, it is often best to
store the delta xs and delta ys instead
of trying to compute sine wave pat-
terns on the fly.

In manv cases. von can use tables to
speed up operations that are repeat-
ed often. If, for example, it is neces-
sary to increment only the bottom
nybble of a word, a normal addition
cannot be used because the carry will
ruin the top nybble. You could write:

LDA WORD

AND #$F0 ;get high nybble

STA TEMP ;store temporarily

LDA WORD

AND #$0F ;get the low nybble
CLC ;assume worst: clr carry
ADC #1 ;add 1

AND #$0F ;watch for wrap

ORA TEMP ;OR in high nybble
STA WORD ;store back out

This costs 24 cycles and 19 bytes. If
you had a table:

NEXTINC DS 1,1,1,1,1,1,1,1
DS 1,1,1,1,1,1,1,—15

the cost could be reduced to 19 cycles

and 13 bytes:

LDA WORD

AND #$0F ;get current low nybble

TAY ;index into NEXTINC

LDA WORD

CLC ;might not be needed

ADC NEXTINC,Y ;add, indexed
; by current value

STA WORD

If this calculation were done in
many locations in the program, the ta-
ble would quickly become much
cheaper than the calculation. Inciden-
tally, the add instruction could be re-
placed with a subtract (or even a logi-
cal OR) instruction. Your choice of
which instruction to use might de-
pend on what table you had lying
around!

Unrolling Loops

One large trade-off between time
and space is in unrolling loops. The
loop:

LDA #1

LDX #4
LOOP STA LOC,X

DEX

BPL LOOP

;outside the loop

can be changed to:

LDA #1

STA LOC
STA LOC+1
STA LOC+2
STA LOC+3
STA LOC+4

This is more costly in terms of bytes
(12 bytes vs. 9 bytes), but it is far faster
(17 cycles vs. 48 cycles). (The loop over-
head takes 4+2+3) + 1«(2+2).) It is of-
ten surprising how much time can be
saved by unrolling simple loops.

It is also possible to combine loops,
even of different sizes, saving the
costly loop overhead:

LDA PICKUP+7
:move PICKUP's contents to TABLE
STA TABLE+7
LDA PICKUP+6
STA TABLE+6
LDX #5
LDY #$80
LOOP2 LDA PICKUP,X ;continue the
; move with loop

STA TABLEX

26

Dr. Dobb’s Journal, February 1987
99

6502 HACKS
(continued from page 26)

STY TAB2ZX
DEX
BPL LOOP2

;set TAB2 to $80

Chaining Subroutines

One of the simplest ways to save
bytes is to use subroutines for com-
mon code. This requires the time cost
of the JSR (six cycles) and the RTS (six
cycles), however.

One way to save in subroutines is to
create multiple-entry subroutines.
That is, if two subroutines share a
common ending, do not put that com-
mon ending in another subroutine.
Instead, create a single subroutine. In
a “pure’ multiple-entry subroutine,
you fall through all sections of code
until the return statement. You can
also jump around the noncommon
code:

FIRST_ENTRY

first section of code

JMP END_SUB

; or the like

SECOND_ENTRY

second section of code
END_SUB

final processing

RTS

;also try BCC

The calling routines can call either
FIRST_ENTRY or SECOND_ENTRY with
their different processing. Both sub-
routine sections will exit from the
same RTS, however.

Finding the Extra
Microprocesser Cycle

Sometimes, in coding for real-time
processing, you may need to kill an
extra cycle or two. The 6502 has a
two-cycle NOP (no operation) instruc-
tion. What about a single cycle? The
6502 has no single cycle NOP.

Of course, sometimes a single cycle
isn't needed—only an odd number of
cycles. You can get seven cycles by a
combination of push and pull stack
operations; five cycles can be bought
by doing a NOP and a load from zero-
page memory.

Single cycles can be gained only
through other operations. One such
operation is the absolute addressed
load using an index register. Normally
this instruction (LDA ADDRESS, X or LDA
ADDRESS,Y) takes four cycles. If there

is a page boundary crossing (say that
ADDRESS is at COF0 and the X register
is 18), however, then the instruction
takes five cycles. To gain the extra
cycle, the table can be placed to force
a page boundary crossing.

Occasionally you can use hardware
memory mapping to the same effect.
In the Atari VCs, for example, page 1
memory and page 0 memory were
mapped together. Therefore, if ZER-
OADD were at 0065, it could also be
found at 0165. A zero-page fetch costs
three cycles, but the same fetch from
page 1 memory costs four cycles.

It is also possible to branch to the
next instruction depending on a flag.
This kills either two cycles (for a non-
executed branch) or three cycles (for
a branch taken). This is occasionally
useful for synchronizing if. .. then
... else code.

Savings by Stepping Back

Perhaps the greatest savings can be
had by proper planning. Putting two
flags in bits 7 and 6 or in bits 0 and 1
makes more sense than putting them
in bits 3 and 5. Often it is necessary to

make simple changes in the midst of
programming in order to crunch
code. This type of planning comes
with experience.

Stepping back from the actual pro-
gramming always helps. For exam-
ple, you may have converted one
data structure to another through
easily understandable transforma-
tions, perhaps with intermediate
data structures. If you are used to
high-level languages in which this is
encouraged, your assembler code
will reflect it. Unfortunately, this
type of elegance often turns out to be
costly. The type of elegance that will
benefit you in crunching will be the
elegance of simple algorithms—al-
most always single-pass algorithms—
that do not require special cases. Spe-
cial cases cost.

Another type of planning that is of-
ten helpful is determining when pro-
gram actions will occur. It may not be
necessary to have all program func-
tionality present at the same time. In
a game, where time is critical, the x,y
positions, for example, do not need to
be updated every 1/60 second be-

Dr. Dobb’s Journal, February 1987
100

29

6502 HACKS
(continued from page 29)

cause the human eye does not de-
mand that. In business software,
where space is more critical, you can
overlay code.

Is It Really Necessary?

In addition, there is always a time to
ask yourself, is that feature really
necessary?

In a time-sharing scheme I was
working on, for example, it was nec-
essary to determine three-way time
sharing. The ideal would have been
to have a scheduling sequence such

as:
123 123 123 123

and so on, with each of the three ac-
tions (placing a graphics sprite on the
display) getting one-third of the time.
This order was needed rarely, how-
ever, the usual case being either two-
way time sharing or no time sharing.
Divides-by-3 are extremely expensive
on the 6502, so I came up with this
alternative:

1231 1232 1233 123x

where x was a skipped slice. It turned

30

out that the result was not significant-
ly distinguishable, which saved many
bytes and much time. (This could be
implemented by ANDing a timer with
$07 and using a lookup from a table.)
This approach transformed a difficult
computation into a divide-by-4
problem.

All of this is not to say that design
can be separated from coding. The in-
spired moment of coding often finds
the necessary time and bytes when all
the planning weeks (or even months)
ago failed. It takes patience and skill to
notice that TABLEZ can be created by
taking the TABLE1 entry, exclusive OR-
ing $7F, and adding 5. It takes the same
patience and skill to rip out a section
of code and rearrange it to get the
same overt behavior.

Killer Hacks

When all else fails, there are always a
few tricks left. The following hacks
are not for novices, though. These
methods squeeze the final cycles and
bytes from your program. They
make debugging your code nearly
impossible, and you might as well
forget about maintaining the code

_ later.

Please don your safety goggles.

Chaining Branches

One ugly way to reduce the number
of bytes of code is to chain branches.
As mentioned earlier, the 6502 uses 2
bytes for a relative branch instruc-
tion and 3 bytes for an absolute jump
instruction. Unfortunately, the rela-
tive byte instruction can address a
space of only 127 bytes forward or
backward. Therefore, the uncondi-
tional JMP instruction is often used,
even for implementing if ... then
... else structures. It is possible to
convert these JMPs to conditional
branches, saving bytes.

If a condition is known, such as the
carry bit being set or the overflow
flag being clear, it is possible to
branch to another branch. By chain-
ing branches, it is possible to have
conditional branching of more than
127 bytes distance. This is recom-
mended only when it is important to
conserve space at the cost of execu-
tion time—two branches have to be
executed—and maintainability.

Self-Modifying Code

Self-modifying code can be used

Dr. Dobb’s Journal, February 1987
101

profitably in critically real-time rou-
tines when literally every cycle
counts. Instead of loading a loop
counter or some such from a zero-
page variable, you can just change
the LDX immediate instruction on the
fly. This saves a cycle.

In addition, instead of performing
a load or store indirect indexed,
which uses 2 bytes of zero-page RAM:

LDA (INDIRECT)Y

you can modify the destination ad-
dress on the fly and perform an in-
dexed absolute load or store to save a
cycle:

LDA ADDRESS,Y

This, of course, will have you barred
permanently from any MIS employ-
ment for the rest of your life. Actual-
ly, I could not use this on the VCS be-
cause of the lack of RAM, so I am not
familiar with its difficulties. I have
been told, however, that with ade-
quate documentation, this sort of
treachery can be maintained.

Use of the NMI Interrupt

Another nasty trick to save bytesis the
use of the break (perform interrupt)
instruction. The JSR (call subroutine)
instruction requires 3 bytes per call,
whereas the BRK instruction requires
only a single byte. This method, how-
ever, requires that you not be expect-
ing nonmaskable interrupts.

To use this method, you must set
the NMI vector to the address of the
most frequently used subroutine. The
BEK instruction can then be used to
call the routine. BRK, however, not
only places the return address onto
the stack but also pushes the flag byte
onto the stack. If you do not return
information in the flags, you can re-
turn from the interrupt with an RTI. If
you need the flags that were set in the
subroutine, however, return with:

PLA
RTS

;pop caller’s flags
;return normally

Unfortunately, the BRK instruction
takes seven cycles instead of the JSR's
six. If a PLA is needed, that will also
add four cycles. After you set the NM7
vector (at a cost of 2 bytes), however,
each call will save 2 bytes.

Overlapping Code and Data

You can squeeze data table space in
two ways. The first sounds more dif-
ficult to maintain but actually turns
out to be easier in practice. This is to
find the appropriate data table values
in your code space. For example, you
might need the following flag table:

TABLE $80,00

If you will be testing only bit7, howev-
er, the following table would also do:

TABLE $A9,00

This just happens to be a LDA #0 (load

immediate of 0) instruction. Finding
the appropriate code in your
program:

TABLE LDA #0

also eliminates the 2 bytes from your
data space. Although you might want
to comment this table extensively to
remind yourself of what you did, the
only real problem you will have is to
find the table again. Note that this
technique generally works only with
small tables.

The second method is much more
effective in finding bytes. If you have
four data tables:

Dr. Dobb’s Journal, February 1987
102

31

6502 HACKS
(continued from page 31)

TABLE1 DS 0,1,2,3,0,0,0
DS $80,3,2,1,0
TABLE2 DS 3,2,1,0
TABLE3 DS 0,0,0
TABLE4 DS 1,0,6

they can be profitably reorganized
as:

TABLE1 DS 0,1,2,3
TABLE3 DS 0,0,0
DS $80
TABLE2 DS 3,2
TABLE4 DS 1,0,6

Confused? TABLE3 and TABLEZ2 are
now completely contained in TA-
BLE1. TABLE1 also extends throughout
most (but not all) of TABLE4. Note that
this has saved 9 bytes from the origi-
nal 22 bytes.

Often the program can be altered
slightly to increase this type of sav-
ings. Using the nybble-increment ex-
ample from the section on table-driv-
en code, the choice of instruction
used might also depend on what ta-
bles are available for merging. It is
also possible to find the table back-
ward within another table: your in-
dexing must then proceed backward
also, decrementing instead of

32

incrementing.

Similarly huge savings are almost
always possible. If you have a bug
and one of the tables must be
changed, however, it will be ex-
tremely difficult to separate the origi-
nal data tables without adequate doc-
umentation. I have always used this
technique last.

Code as Data

There are particular instances—es-
pecially when there is absolutely no
room left—when code can substitute
completely for data tables. This is es-
pecially effective for simulating ran-
dom movements, such as for a self-
play mode (called the attract mode in
games). Code for the 6502 tends to be
somewhat heavy toward having bit7
set, but otherwise it can create effec-
tive random tables. It is often neces-
sary to try many code sections, how-
ever, for the desired effect in the
software action.

The Endless Trade-Off

The crunching process revolves
around the standard trade-off of time
vs. space. Even a simple change, such
as removing redundant code, re-
quires this trade-off. Subroutines
have extra overhead and slow pro-
cessing down. In-line code, as with
macros, can greatly speed up critical
processing but at the cost of an enor-
mous code space.

Many of the hacks described here
require this trade-off. Most are tricks
that sacrifice one for the other. The
other hacks all have the added cost of
reduced maintainability or increased
programmer effort.

When is it worth using these
hacks? If you're writing Pascal code
on the Macintosh or C code on the PC,
they cannot help much in removing
30K from your 200K program. But if
you're in a situation in which you
need a fast interrupt routine, these
techniques can help on any machine.
They can also be useful if you need to
reduce the code space for a desk ac-
cessory or a similar routine or if
you're just the sort of person who
gets excited by realizing that a flag
can be reused.

I'd like to thank the folks at General
Computer for all their help.

DDJ

Vote for your favorite feature/article.
Circle Reader Service No. 3.

Dr. Dobb’s Journal, February 1987
103

