8-Bit Microprocessor

SY6500

Synertek INCORPORATED

MICROPROCESSOR PRODUCTS

APRIL 1979

- Single 5 V ±5% power supply
- N channel, silicon gate, depletion load technology

Family

- Eight bit parallel processing
- 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- Use with any type or speed memory
- Bi-directional Data Bus

- Instruction decoding and control
- Addressable memory range of up to 65 K bytes
- "Ready" input
- Direct memory access capability
- Bus compatible with MC6800
- Choice of external or on-board clocks
- 1 MHz, 2 MHz, and 3 MHz operation
- On-chip clock options
- * External single clock input * Crystal time base input
- 40 and 28 pin package versions
- Pipeline architecture

The SY6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the SY6500 family are software compatible within the group and are bus compatible with the MC6800 product offering.

The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs or crystals provide the time base. The external clock versions are geared for the multi-processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz, 2 MHz, and 3 MHz maximum operating frequencies.

PART N	UMBERS		51010	120			
Plastic	Ceramic	CLOCKS	PINS	IRQ	NMI	RDY	ADDRESSING
SYP6502	SYC6502	On-Chip	40	\checkmark	\checkmark	\checkmark	16 (64 K)
SYP6503	SYC6503	"	28	\checkmark	\checkmark		12 (4 K)
SYP6504	SYC6504	"	28	\checkmark			13 (8 K)
SYP6505	SYC6505	"	28	\checkmark		\checkmark	12 (4 K)
SYP6506	SYC6506	"	28	\checkmark			ј 12 (4 K)
SYP6507	SYC6507	"	28			\checkmark	13 (8 K)
SYP6512	SYC6512	External	40	\checkmark	\checkmark	\checkmark	16 (64 K)
SYP6513	SYC6513	"	28	\checkmark	\checkmark		12 (4 K)
SYP6514	SYC6514	"	28	\sim		1	13 (8 K)
SYP6515	SYC6515	"	28	$\sqrt{10}$	a di seconda di s	\checkmark	12 (4 K)

MEMBERS OF THE FAMILY

B-15K-4/79

COMMENTS ON THE DATA SHEET

The data sheet is constructed to review first the basic "Common Characteristics" - those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

SY6500 INTERNAL ARCHITECTURE

NOTE:

1. CLOCK GENERATOR IS NOT INCLUDED ON SY651X. 2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH EACH OF THE SY6500 PRODUCTS.

D.C. CHARACTERISTICS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V _{cc}	-0.3 to +7.0	V
Input Voltage	Vin	-0.3 to +7.0	V
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{STG}	-55 to +150	°C

COMMENT

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0V \pm 5%, T_A = 0-70°C)

(\emptyset_1, \emptyset_2 applies to SY651X, $\emptyset_{o(in)}$ applies to SY650X)

Symbol	Characteristic	Min.	Max.	Unit
V _{IH}	Input High Voltage Logic, Ø _{o (in)} (650X) Ø ₁ , Ø ₂ (651X)	+2.4 V _{cc} – 0.5	V _{cc} V _{cc} + 0.25	V
V	Input Low Voltage (651X)	V _{CC} = 0.5	V _{CC} + 0.25	v
VIL	Logic, $\emptyset_{o (in)}$ (650X) \emptyset_1, \emptyset_2 (651X)	-0.3 -0.3	+0.4 +0.2	V
I _{IĽ}	Input Loading ($V_{in} = 0 V, V_{cc} = 5.25 V$) RDY, S.O.	-10	-300	μΑ
l _{in}	Input Leakage Current ($V_{in} = 0 \text{ to } 5.25 \text{ V}, V_{CC} = 0$)			
27	Logic (Excl. RDY, S.O.)		2.5	μΑ
	Ø ₁ , Ø ₂ (651X) Ø _{o (in)} (650X)		100 10.0	μΑ μΑ
I _{TSI}	Three-State (Off State) Input Current ($V_{in} = 0.4$ to 2.4 V, $V_{cc} = 5.25$ V) DB0-DB7		10	μΑ
V _{он}	Output High Voltage ($I_{LOAD} = -100\mu Adc, V_{CC} = 4.75 V$) SYNC, DB0-DB7, A0-A15, R/W	2.4	_	V
V _{OL}	Output Low Voltage (I _{LOAD} = 1.6mAdc, V _{CC} = 4.75 V) SYNC, DB0-DB7, A0-A15, R/W	_	0.4	V
P _D	Power Dissipation 1 MHz and 2 MHz 3 MHz		700 800	mW mW
С	Capacitance			
	$(V_{in} = 0, T_A = 25^{\circ}C, f = 1 MHz)$			
Cin	RES, NMI, RDY, IRQ, S.O., DBE		10	
	DB0-DB7	-	15	
C _{out}	A0-A15, R/W, SYNC		12	pF
C _{Øo(in)}	Ø _{o (in)} (650X)	-	15	
C _{Ø1}	Ø ₁ (651X)	-	50	
C _{Ø2}	Ø ₂ (651X)	-	80	

Note: $\overline{\text{IRQ}}$ and $\overline{\text{NMI}}$ require 3 K pull-up resistors.

SY6500

DYNAMIC OPERATING CHARACTERISTICS

 $(V_{CC} = 5.0 \pm 5\%, T_A = 0^{\circ} \text{ to } 70^{\circ}\text{C})$

5

Device				1 N	ЛНz	21	/Hz (6)	3 1		
Туре	Parameter	Note	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
	Cycle Time		Тсус	1.00	40	0.50	40	0.33	40	μs
	Ø ₁ Pulse Width		T _{PWHØ1}	430	-	215	_	150	_	ns
651X	Ø2 Pulse Width		T _{PWHØ2}	470	-	235	-	160	-	ns
	Delay Between \emptyset_1 and \emptyset_2	-	TD	0	_	0		0	-	ns
	\emptyset_1 and \emptyset_2 Rise and Fall Times	1	T _R , T _F	0	25	0	20	0	15	ns
	Cycle Time		тсус	1.00	40	0.50	40	0.33	40	μs
12.5	Ø _{o(IN)} Low Time	2	TLØo	480	-	240	-	160	_	ns
	Ø _{o(IN)} High Time	2	THØO	460		240	-	160	_	ns
1	\emptyset_0 Neg to \emptyset_1 Pos Delay	5	T ₀₁₊	10	70	10	70	10	70	ns
	\emptyset_0 Neg to \emptyset_2 Neg Delay	5	T ₀₂ –	5	65	5	65	5	65	ns
650X	\emptyset_0 Pos to \emptyset_1 Neg Delay	2 5 5 5	т ₀₁	5	65	5	65	5	65	ns
	\emptyset_0 Pos to \emptyset_2 Pos Delay	5	T ₀₂₊	15	75	15	75	15	75	ns
	Ø _{o(IN)} Rise and Fall Time	1	TRO, TFO	0	10	0	10	0	10	ns
	Ø _{1 (OUT)} Pulse Width		TPWHØ1	Τ _{LØo} -20	TLØ ₀ TLØ ₀ -10	TLØ0-20	⊤LØo	T _{LØo} -20	TLØo	ns
	Ø2(OUT) Pulse Width		T _{PWHØ2}	TL00-40	TLO-10	TL00-40	TL00-10	T _{LØ0} -40	T _{LØ0} -10	ns
	Delay Between \emptyset_1 and \emptyset_2		T _D	5	-	5	-	5	-	ns
	\emptyset_1 and \emptyset_2 Rise and Fall Times	13	T _R , T _F	-	25	-	25	-	15	ns
	R/W Setup Time		TRWS		225	- 1	140	-	110	ns
	R/W Hold Time		TRWH	30	-	30	-	15	-	ns
	Address Setup Time		TADS		225	-	140		110	ns
	Address Hold Time	1.1	TADH	30	-	30	-	15	-	ns
	Read Access Time	- N	TACC	—	<mark>6</mark> 50	1.1	310	-	170	ns
650X	Read Data Setup Time		TDSU	100	-	50	11 - 11	50	L	ns
651X	Read Data Hold Time	~	THR	10	-	10	-	10		ns
	Write Data Setup Time		T _{MDS}	-	175	-	100		75	ns
	Write Data Hold Time		т _{нw}	60	-	60	-	30		ns
	Sync Setup Time		TSYS	-	350		175	-	100	ns
	Sync Hold Time		T _{SYH}	30		30	-	15	-	ns
	RDY Setup Time	4	TRS	200	_	200	-	150	-	ns

NOTES:

- 1 Measured between 10% and 90% points on waveform.
- 2 3 Measured at 50% points.
- Load = 1 TTL load +30 pF.
- RDY must never switch states within T_{RS} to end of \emptyset_2 . (4

r)	Load =	100	-
51	$I \cap ad =$	100	nr
5)	Loud	100	P

 $\overline{7}$

5 6 The 2 MHz devices are identified by an "A" suffix.

The 3 MHz devices are identified by a "B" suffix.

PIN FUNCTIONS

Clocks $(\emptyset_1, \emptyset_2)$

The SY651X requires a two phase non-overlapping clock that runs at the $\rm V_{\rm cc}$ voltage level.

The SY650X clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled. Clock generator circuits are shown elsewhere in this data sheet.

Address Bus (A_0-A_{15}) (See sections on each micro for respective address lines on those devices.)

These outputs are TTL compatible, capable of driving one standard TTL load and 130 pF.

Data Bus (DB₀-DB₇)

Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are three-state buffers, capable of driving one standard TTL load and 130 pF.

Data Bus Enable (DBE)

This TTL compatible input allows external control of the three-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two (\emptyset_2) clock, thus allowing data output from microprocessor only during \emptyset_2 . During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low. This signal is available on the SY6512, only.

Ready (RDY)

This input signal allows the user to halt the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one (\emptyset_1) will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two (\emptyset_2) in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If ready is low during a write cycle, it is ignored until the following read operation. Ready transitions must not be permitted during \emptyset_2 time.

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A $3K\Omega$ external resistor should be used for proper wire-OR operation.

Non-Maskable Interrupt (NMI)

A negative going transition on this input requests that a non-maskable interrupt sequence be generated within the microprocessor.

 $\overline{\rm NMI}$ is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for $\overline{\rm IRQ}$ will be performed, regardless of the state interrupt mask flag. The vestor address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory.

 $\overline{\text{NMI}}$ also requires an external $3K\Omega$ resistor to V_{CC} for proper wire-OR operations.

Inputs $\overline{\text{IRQ}}$ and $\overline{\text{NMI}}$ are hardware interrupts lines that are sampled during \emptyset_2 (phase 2) and will begin the appropriate interrupt routine on the \emptyset_1 (phase 1) following the completion of the current instruction.

Set Overflow Flag (S.O.)

A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of \emptyset_1 .

SYNC

This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during \emptyset_1 of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the \emptyset_1 clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

Reset (RES)

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After V_{CC} reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W and SYNC signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

Read/Write (R/W)

This output signal is used to control the direction of data transfers between the processor and other circuits on the data bus. A high level on R/W signifies data into the processor; a low is for data transfer out of the processor.

PROGRAMMING CHARACTERISTICS INSTRUCTION SET – ALPHABETIC SEQUENCE

Add Memory to Accumulator with Carry	DEC	Decrement Memory by One	РНА	Push Accumulator on Stack
"AND" Memory with Accumulator	DEX	Decrement Index X by One	PHP	Push Processor Status on Stack
Shift left One Bit (Memory or Accumulator)	DEY	Decrement Index Y by One	PLA	Pull Accumulator from Stack
			PLP	Pull Processor Status from Stack
Branch on Carry Clear	EOR	"Exclusive-or" Memory with Accumulator		
Branch on Carry Set			ROL	Rotate One Bit Left (Memory or Accumulator)
Branch on Result Zero	INC	Increment Memory by One	ROR	Rotate One Bit Right (Memory or Accumulator)
Test Bits in Memory with Accumulator	INX	Increment Index X by One	BTI	Return from Interrupt
Branch on Result Minus	INY			Return from Subroutine
Branch on Result not Zero				
Branch on Result Plus	JMP	Jump to New Location	SBC	Subtract Memory from Accumulator with Borrow
Force Break	JSR			Set Carry Flag
Branch on Overflow Clear				Set Decimal Mode
Branch on Overflow Set	LDA	Load Accumulator with Memory		Set Interupt Disable Status
				Store Accumulator in Memory
Clear Carry Flag				Store Index X in Memory
Clear Decimal Mode				Store Index Y in Memory
Clear Interrupt Disable Bit		entre entre entright (mentery of Accumulatory	011	Store maex + m Memory
	NOP	No Operation	ΤΔΧ	Transfer Accumulator to Index X
				Transfer Accumulator to Index Y
	ORA	"OB" Memory with Accumulator		Transfer Stack Pointer to Index X
	2101	en instantation		Transfer Index X to Accumulator
				Transfer Index X to Stack Pointer
				Transfer Index Y to Accumulator
	"AND" Memory with Accumulator Shift left One Bit (Memory or Accumulator) Branch on Carry Clear Branch on Carry Set Branch on Result Zero Test Bits in Memory with Accumulator Branch on Result Minus Branch on Result Ninus Branch on Result Plus Force Break Branch on Overflow Clear Branch on Overflow Set Clear Carry Flag	"AND" Memory with Accumulator DEX Shift left One Bit (Memory or Accumulator) DEY Branch on Carry Clear EOR Branch on Carry Set Branch on Carry Set Branch on Result Zero INC Test Bits in Memory with Accumulator INX Branch on Result Minus INY Branch on Result Ninus INY Branch on Result Plus JMP Force Break JSR Branch on Overflow Clear Branch on Overflow Set LDA LDX Clear Carry Flag LDY Clear During Mode LSR Clear Overflow Flag NOP Compare Memory and Accumulator Compare Memory and Accumulator	"AND" Memory with Accumulator DEX Decrement Index X by One Shift left One Bit (Memory or Accumulator) DEY Decrement Index X by One Branch on Carry Clear EOR "Exclusive-or" Memory with Accumulator Branch on Carry Set INC Increment Index X by One Branch on Result Zero INC Increment Index X by One Branch on Result Zero INC Increment Index X by One Branch on Result Ninus INY Increment Index X by One Branch on Result Ninus INY Increment Index X by One Branch on Result Ninus INY Increment Index X by One Branch on Result Ninus INY Increment Index X by One Branch on Result Ninus INY Increment Index X by One Branch on Result Not Zero JUMP to New Location Force Break JSR Jump to New Location Branch on Overflow Clear Branch on Overflow Clear Branch on Overflow Set LDA Load Accumulator with Memory Clear Carry Flag LDY Load Index X with Memory Clear Overflow Flag NOP No Operation Cempare Memory and Accumulator ORA "OR" Memory with Accumulator	"AND" Memory with Accumulator DEX Decrement Index X by One PHP Shift left One Bit (Memory or Accumulator) DEY Decrement Index Y by One PLA Branch on Carry Clear EOR "Exclusive-or" Memory with Accumulator PL Branch on Carry Set ROL ROL ROL Branch on Result Zero INC Increment Index X by One ROL Branch on Result Ninus INY Increment Index X by One RTI Branch on Result Ninus INY Increment Index X by One RTI Branch on Result Ninus INY Increment Index Y by One RTS Branch on Result Ninus JMP Jump to New Location SEC Branch on Overflow Clear SED SED SED Branch on Overflow Clear LDX Load Accumulator with Memory SEI Branch on Overflow Set LDX Load Index X with Memory STX Clear Carry Flag LDY Load Index X with Memory or Accumulator) STY Clear Overflow Flag NOP No Operation TAX Compare Memory and Accumulator CM2 TAY Compare Memory and Accumulator ORA "OR" Memory with Accumulator TSX

ADDRESSING MODES

Accumulator Addressing

This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

Immediate Addressing

In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

Absolute Addressing

In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65K bytes of addressable memory.

Zero Page Addressing

The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.

Indexed Zero Page Addressing - (X, Y indexing)

This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X" or "Zero Page, Y." The effective address is calcuated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.

Indexed Absolute Addressing - (X, Y indexing)

This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y." The effective address is formed by adding the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

Implied Addressing

In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

Relative Addressing

Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.

Indexed Indirect Addressing

In indexed indirect addressing (referred to as (Indirect,X)), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.

Indirect Indexed Addressing

In indirect indexed addressing (referred to as (Indirect),Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.

Absolute Indirect

The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

INSTRUCTION SET - OP CODES, EXECUTION TIME, MEMORY REQUIREMENTS

5

FMONIC	INSTRUCTIONS	MME	DIATE	ABS	50LUT	re	ZERO	PAG	E	ACCU	M	IMPL	IED	(1	ND, X		(IND)	۲	Z, PA	GEN	1	ABS, X		A	IS, Y	R	ELAT	IVE	IND	IRECT	7	Z, PA	NGE.	۲	CO	NDITION COD
Emonic I	OPERATION	OPI	N #	OP	N	#	OPN	V I	# OF	N	# (DP N	#	OP	N	# 01	N	# (OP I	N #	# OF	N	#	OP	N	≠ OF	N	#	OP	N	# (OP	N	#	N Z	2 C I D
DC	A + M + C → A (4) (1)	69 3	2 2	6D	4	3	65 3	3 2	2	T	H		П	61	6	2 71	5	2	75 4	1 2	70	4	3	79	4 3						T			1	1 1	1
ND		29						3 2								2 31			35 4		30		3		4 3										, ,	
SL	C < 7 0 < 0		- -				06 5			2	1								16 6		16		3												, ,	1
cc	BRANCH ON C=Ø (2)									-																90	2	2								
cs	BRANCH ON C=1 (2)																									B		2								
-				+	++	+	-+-	+	+	+-+	++	+	+			+	+	+	-	+	+	+		-	+	F		2		+	+		+	+	_	
ΕQ	BRANCH ON Z=1 (2)																									1.0	12	2								_
IT	AAM			2C	4	3	24 3	3 2	1																									ľ	м, л	1.7.7
MI	BRANCH ON N=1 (2)																									30		2								
NE	BRANCH ON Z=Ø (2)																									DØ		2								
PL	BRANCH ON N=Ø (2)				-									1												10	2	2								
RK	(See Fig. 1)			1				1	1		1	00 7	1													T					T					· - <mark>-</mark> -
vc	BRANCH ON V=0 (2)																									50	2	2								
vs	BRANCH ON V=1 (2)																										2	2								
												18 2														11	12	-								٥
LC	0 – C																																			
LD	0 - D		-	-		-	-	-	+			2 80				+	-	-	-	-	-			-	-	-	-				-		-	-		
	0-1.											58 2																								- 0 -
LV	$\emptyset \rightarrow \vee$											B8 2	1																							
MP	A-M (1)	C9	2 2	CD	4	3	C5 3	3 2	2					C1	6	2 D	1 5	21	25	4 2	DO	4	3	D9	4 :	3									1 1	1
PX	X-M						E4 3										1				1														11	1
PY	Y-M			cc			C4 3																												11	1
EC	M-1 → M	1-1	- 14				C6 5			+		+	+			+	+	1	76			7	3	-	-	+	+				+	+	+	+	1 1	
				1ºE	U I	1	~	1	1				1					ľ		1	100	1													, ,	
EX	X-1 → X											CA 2																							~ /	
EY	Y-1 → Y			1				1			1	38 2	1																						1 1	
OR	$A \lor M \rightarrow A$ (1)	49	2 2	40			45							41	6	2 5	5				2 50			59	4 :	3									1 1	
1C	M + 1 → M			EE	6	3	E6 5	5 2	2										F6 (5 2	FE	7	3												1 1	
X	X + 1 → X			1	\square				T			E8 2	1		1																				1 1	
Y	$Y + 1 \rightarrow Y$											08 2																							1	
				100	3	2																							6C	5	3					
A P	JUMP TO NEW LOC					3																							ou	2	3					
SR	(See Fig. 2) JUMP SUB					3			1																											
DA	M → A (1)	A9	2 2	2 AD	4	3	A5 3	3 2	2					A1	6	2 B	1 5	2	B5 4	4 2	BC	4	3	B9	4 3	3									1 1	
MONIC	$\frac{\text{OPERATION}}{M \rightarrow X}$ (1)	OP A2					OP P		_	PN	#	OP N	1 #	OP	N	#0	PN	#	OP	N	# OF	N	\rightarrow	OP BE		# Of	N	#	OP	N	_	OP B6		#	NZ	
DX							A4		2										B4	4	2 во		3		- I '	1							1	1		
DY) AØ	2							A 2	1.1								56		2 58		3												0.	
SR	Ø→70→C			46	ь	3	46	5	2 4/	12		_ _					-		20	• •	2 30	= '	3		-										6	/ / – ·
OP	NO OPERATION								1	1		EA 2	2 1						4																	
RA	A V M → A	09	2 2	2 0D	4	3	05	3	2					Ø1	6	2 1	1 5	2	15	4 :	2 10	04	3	19	4	3									1.	/ ·
HA	$A \rightarrow Ms$ $S-1 \rightarrow S$											48 3																								
HP	$P \rightarrow Ms$ S-1 \rightarrow S											08 3	3 1									-														
LA	$S + 1 \rightarrow S$ $Ms \rightarrow A$									1		68 4	1 1									1													v .	1
LP	$S + 1 \rightarrow S$ Ms $\rightarrow P$											28 4					1					-													(F	RESTORE
				100	6		20	-													1 20		2													/ /
OL				1			26												26	6 .			3	-	-	+	+	+	-	++	+	-	-			
0.5				Les	10		CC I						-	-	++	+	-		36				1 2				1									/ / _ ·
				6E	6	3	66	5	2 6,	A 2						+	99		36 76		2 1	E 7	3							1					F	
τı	(See Fig. 1) RTRN INT.			6E	6	3	66	5	2 6,	A 2		40 6				+	2					E 7	3										1			ESTORE
τı	(See Fig. 1) RTRN INT. (See Fig. 2) RTRN SUB	1							1	A 2		40 e					2		76	6 :																
T I T S	(See Fig. 2) RTRN SUB) E9	2 2						2 6/	A 2				E1	6	2 F	1 5		76	6 :				F9	4	3										IESTORE / (3)
TI TS BC	(See Fig. 2) RTRN SUB A-M-C→A (1)) E9	2						1	A 2			5 1	E1	6	2 F	1 5		76	6 :				F9	4	3										
TI TS BC EC	(See Fig. 2) RTRN SUB A-M-C→ A (1) 1→C) E9	2						1 43	A 2		6ø 6	5 1 2 1	E1	6	2 F	1 5		76	6 :				F9	4 :	3									- · ·	
TI TS BC EC ED	(See Fig. 2) RTRN SUB A-M-C→A (1) 1 → C 1 → D) E9	2						1 43	A 2		60 6 38 2 F8 2	5 1 2 1 2 1	E1	6	2 F	1 5		76	6 :				F9	4 :	3									 	
TI TS BC EC ED	(See Fig. 2) RTRN SUB A-M-C → A (1) 1 → C 1 → D 1 → I) E9	2 :	2 E C	0 4	3	E5	3	2	A 2		6ø 6	5 1 2 1 2 1	01.68		1		2	76 F5	4 :	2 F(D 4	3												- · ·	
TI TS BC EC ED EI TA	(See Fig. 2) RTRN SUB $A-M-\overline{C} \rightarrow A$ (1) $1 \rightarrow C$ $1 \rightarrow D$ $1 \rightarrow I$ $A \rightarrow M$) E9	2 :	2 EC	0 4	3	E5 85	3	2	A 2		60 6 38 2 F8 2	5 1 2 1 2 1	01.68		2 F 2 9		2	76 F5	4 :		D 4	3	F9 99		3									√ · 	
TI TS BC EC ED EI TA TX	(See Fig. 2) RTRN SUB $A-M-\overline{C} \rightarrow A$ (1) $1 \rightarrow C$ $1 \rightarrow D$ $1 \rightarrow I$ $A \rightarrow M$ $X \rightarrow M$) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2	5 1 2 1 2 1	01.68		1		2 2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2	✓ · ·	
TI TS BC EC ED EI TA TX	(See Fig. 2) RTRN SUB $A-M-\overline{C} \rightarrow A$ (1) $1 \rightarrow C$ $1 \rightarrow D$ $1 \rightarrow I$ $A \rightarrow M$) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85	3	2	A 2		60 6 38 2 F8 2	5 1 2 1 2 1	01.68		1		2 2	76 F5 95	4	2 F (D 4	3									96	4	2		
TI TS BC EC ED EI TA TX TY	(See Fig. 2) RTRN SUB $A-M-\overline{C} \rightarrow A$ (1) $1 \rightarrow C$ $1 \rightarrow D$ $1 \rightarrow I$ $A \rightarrow M$ $X \rightarrow M$) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2	5 1 2 1 2 1 2 1	01.68		1		2 2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		
TI TS BC ED EI TA TX TY AX) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2 78 2	5 1 2 1 2 1 2 1 2 1 2 1	01.68		1		2 2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		
TI TS EC ED EI TA TX TY AX) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2 78 2 AA 2 AB 2	5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	81		1		2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		
TI TS BC EC ED EI TA TX TY AX AY SX	(See Fig. 2) ATTAN SUB A-M-C - A (1) 1 - C 1 - D 1 - I A - M Y - M A - X A - Y S - X) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 7 78 7 78 7 8 4 8 8 8	5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	81		1		2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		
TI TS BC EC EC TA TX TX TX AX AY SX XA	$ \begin{array}{l} (See Fig. 2) \mbox{ ATEN SUB} \\ A-M-$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2 78 2 78 2 78 2 8 AA 2 8 AA 2 8 A 2 8 A 2	5 1 2 1 2 1 2 1 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	81		1		2 2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		
TI TS BC ED EI TA TX TY AX AY SX AY SX XS	(See Fig. 2) ATTAN SUB A-M-C - A (1) 1 - C (1) 1 - I A - M X - M Y - M A - Y S - X X - A X - S) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2 78 2 78 2 AA 2 AB 2 BA 2 BA 2 BA 2 SA 2 SA 2 SA 2 SA 2 SA 2 SA 2 SA 2 S	5 1 2	81		1		2 2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		/ (3)
O R T I T S B C E C E D E I T A T X T Y A X A Y S X X A X S Y A	$ \begin{array}{l} (See Fig. 2) \mbox{ ATEN SUB} \\ A-M-$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$) E9	2 :	2 E C 8 C 8 E	0 4	3 3 3 3	E5 85 86	3	2 2 2 2	A 2		60 6 38 2 F8 2 78 2 78 2 78 2 8 AA 2 8 AA 2 8 A 2 8 A 2	5 1 2	81		1		2 2	76 F5 95	4	2 F(2 9(D 4	3									96	4	2		/ (3)

SY6502 – 40 Pin Package

			the state of the s	
	V _{ss} [1	40	RES
	RDY	2	39	
ø ₁	(OUT)	3	38	s .o.
	IRO	4	37	□ø ₀ (IN)
	N.C.	5	36] N.C.
		6	35] N.C.
	SYNC	7	34	🗆 R/W 🛥
	V _{cc} [8	33	DB0
	АВО	9	32	DB1
	AB1	10	31	DB2
	AB2	11	30	DB3
	АВЗ 🗌	12	29	DB4
	АВ4	13	28	DB5
	AB5	14	27	DB6
		15	26	DB7
	AB7	16	25	AB15
	AB8	17	24	AB14
	АВ9	18	23	AB13 -
	AB10	19	22	AB12
	AB11	20	21	□ v _{ss}
	· . ·			

Features

- 65K Addressable Bytes of Memory
- IRQ Interrupt
 NMI Interrupt
- On-the-chip Clock
 - √ TTL Level Single Phase Input
 - √ Crystal Time Base Input
- SYNC Signal (can be used for single instruction execution)
 RDY Signal

(can be used for single cycle execution)

• Two Phase Output Clock for Timing of Support Chips

SY6503 – 28 Pin Package

	and the second se	Statement of the local division in which the local division in the	
RES	1	28	_ ø₂ (о∪т)
V _{ss} [2	27]ø ₀ (IN)
IRQ [3	26	R/W
	4	25	DB0
V _{cc} [5	24	DB1
AB0	6	23	DB2
AB1	7	22	DB3
AB2	8	21	DB4
АВЗ 🗌	9	20	DB5
АВ4	10	19	DB6
AB5	11	18	DB7
AB6	12	17	AB11
AB7	13	16	AB10
AB8	14	15	AB9

Features

• 4K Addressable Bytes of Memory (AB00-AB11)

- On-the-chip Clock
- IRQ Interrupt
- NMI Interrupt
- 8 Bit Bi-Directional Data Bus

SY6504 & SY6507 - 28 Pin Package

RES		28	_ø₂ (о∪т)
V _{ss}	2	27	⊐ø _o (IN)
*IRQ or RDY	3	26	□ R/W
V _{cc} [4	25	DB0
АВО	5	24	DB1
AB1	6	23	DB2
AB2	7	22	DB3
АВЗ 🗌	8	21	DB4
AB4	9	20	DB5
AB5	10	19	DB6
AB6	11	18	DB7
AB7	12	17	AB12
AB8	13	16	AB11
АВ9	14	15	AB10
		and the second second	

Features

- IRC Interrupt (6504 only)
- RDY Signal (6507 only)
- 8K Addressable Bytes of Memory (AB00-AB12)
- On-the-chip Clock
- 8 Bit Bi-Directional Data Bus

SY6505 - 28 Pin Package

RES	1	28	□Ø ₂ (OUT)
V _{ss} [2	27	Ø₀ (IN)
RDY	3	26	R/W
IRQ	4	25	DB0
V _{cc} □	5	24	DB1
АВО	6	23	DB2
AB1	7	22	DB3
AB2	8	21	DB4
АВЗ 🗖	9	20	DB5
AB4	10	19	DB6
AB5	11	18	DB7
AB6	12	17	AB11
AB7	13	16	AB10
AB8	14	15	AB9
	Street work in succession in the succession in the	Contraction of the local division of the loc	

Features

• 4K Addressable Bytes of Memory (AB00-AB11)

- On-the-chip Clock
- IRQ Interrupt
- RDY Signal
- 8 Bit Bi-Directional Data Bus

SY6506 - 28 Pin Package

	The second se		
	1	28	_ø₂ (о∪т)
V _{ss} [2	27	ם¢ ₀ (וא)
Ø ₁ (OUT)	3	26]R/W
IRQ	4	25	DB0
V _{cc} [5	24	DB1
AB0	6	23	DB2
АВ1	7	22	DB3
AB2	8	21	DB4
АВЗ 🗌	9	20	DB5
АВ4 🗌	10	19	DB6
AB5	11	18	DB7
AB6	12	17	_AB11
AB7 🗌	13	16]AB10
AB8	14	15	AB9

Features

- 4K Addressable Bytes of Memory (AB00-AB11)
- On-the-chip Clock
- IRQ Interrupt
- Two phases off
- 8 Bit Bi-Directional Data Bus

SY6512 - 40 Pin Package

		-	and the second second	
∨ _{ss} ⊏	1	\bigcirc	40	RES
RDY [2		39	_ø₂ (о∪т)
Ø1	3		38	s .o.
IRQ [4		37	0 ₂
∨ _{ss} ⊑	5		36	DBE
	6		35] N.C.
SYNC [7		34	R/W
V _{cc}	8		33	
AB0	9		32	DB1
AB1	10		31	DB2
AB2 🗌	11		30	DB3
АВЗ 🗌	12		29	DB4
АВ4 🗌	13		28	DB5
AB5	14		27	DB6
АВ6 🗆	15		26	DB7
АВ7 🗌	16		25	_ AB15
АВ8 🗌	17		24	AB14
АВ9 🗌	18		23	_ AB13
AB10	19		22	AB12
АВ11	20		21	□ v _{ss}
	Contract of Contractor	and the second second second	STREET, STREET	

Features

- 65K Addressable Bytes of Memory
- IRQ Interrupt
- NMI Interrupt
- RDY Signal
- 8 Bit Bi-Directional Data Bus
- SYNC Signal
- Two phase input
- Data Bus Enable

SY6513 - 28 Pin Package

5

		-	
V _{SS} [1	28	RES
Ø1	2	27	□ø ₂
IRQ	3	26	R/W
NMI C	4	25	DB0
V _{cc} [5	24	DB1
АВО 🗌	6	23	DB2
AB1	7	22	DB3
AB2	8	21	DB4
АВЗ 🗌	9	20	DB5
АВ4	10	19	DB6
	11	18	DB7
AB6	12	17	AB11
	13	16	AB10
	14	15	
		and the second division of	

Features

- 4K Addressable Bytes of Memory (AB00-AB11)
- Two phase clock input
- IRQ Interrupt
- NMI Interrupt
- 8 Bit Bi-Directional Data Bus

SY6514 – 28 Pin Package

		_		
v _{ss} ∟	1	0-	28	RES
ø ₁ 🗆	2		27	□Ø ₂
IRQ	3		26	R/W
V _{cc} [4		25	DB0
АВО 🗌	5		24	DB1
	6		23	DB2
АВ2	7		22	DB3
АВЗ 🗌	8		21	DB4
АВ4 🗌	9		20	DB5
АВ5 🗖	10		19	
АВ6 🗌	11		18	DB7
AB7	12		17	AB12
AB8	13		16	
АВ9	14		15	AB10

Features

- 8K Addressable Bytes of Memory (AB00-AB12)
- Two phase clock input
- IRQ Interrupt
- 8 Bit Bi-Directional Data Bus

SY6515 – 28 Pin Package

1		28	RES
2	:	27	□ø₂
3		26	BR/W
4	:	25	DB0
5	:	24	DB1
6	1	23	DB2
7	- :	22	DB3
8		21	DB4
9	:	20	DB5
10	2	19	DB6
11		18	DB7
12		17	AB11
13		16	AB10
14	1	15	ав9
	3 4 5 6 7 8 9 10 11 12 13	2 3 3 4 5 5 7 8 9 2 10 7 11 7 12 7 13 7	3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13 16

Features

- 4K Addressable Bytes of Memory (AB00-AB11)
- Two phase clock input
- IRQ Interrupt
- 8 Bit Bi-Directional Data Bus

CLOCK GENERATION CIRCUITS

120

「風いいか

CRYSTAL	OUTPUT FREQUENCY		
FREQUENCY	÷2	÷4	
3.579545 MHz	1.7897 MHz	0.894886 MHz	
4.194304 MHz	2.097152 MHz	1.048576 MHz	

