

DESCRIPTION

The 8-bit R6500 microprocessor devices are produced with N-channel, silicon gate technology. Performance speeds are enhanced by advanced system architecture. This innovative architecture results in smaller chips---the semiconductor threshold is cost-effectivity. System cost-effectivity is further enhanced by providing a family of 10 software-compatible microprocessor (CPU) devices, described in this document. Rockwell also provides single chip microcomputers, memory and peripheral devices—as well as low-cost design aids and documentation.

FEATURES

- N-channel, silicon gate, depletion load technology.
- 8-bit parallel processing

Ten CPU devices are available. All are software-compatible. They provide options of addressable memory, interrupt input, on-chip clock oscillators and drivers. All are bus-compatible with earlier generation microprocessors like the M6800 devices.

The R650X and R651X family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for multiprocessor system applications where maximum timing control is mandatory. All R6500 microprocessors are also available in a variety of packaging (ceramic and plastic), operating frequency (1 MHz, 2 MHz and 3 MHz) and temperature (commercial and industrial) versions.

- 56 instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt request
- Non-maskable interrupt
- Use with any type of speed memory.
- 8-bit bidirectional data bus
- Addressable memory range of up to 64K bytes
- "Ready" input
- Direct Memory Access capability
- Bus compatible with M6800
- 1 MHz, 2 MHz, and 3 MHz versions
- Choice of external or on-chip clocks.
- On-chip clock options

ORDERING INFORMATION

Part Number: R65XX	
	Temperature Range: No letter = 0° C to + 70°C E = -40°C to + 85°C
	Package:
	C = Ceramic DIP
	P = Plastic DIP
	Frequency Range:
	No letter = 1 MHz
	A = 2 MHz
	B = 3 MHz

- -External single clock input
- --- Crystal time base input
- Commercial and industrial temperature versions
- Pipeline architecture
- Single +5V supply

R6500 CPU FAMILY MEMBERS

Microprocessors with Internal Two Phase Clock Generator												
Model	No. Pins	Addressable Memory										
R6502	40	64K Bytes										
R6503	28	4K Bytes										
R6504	28	8K Bytes										
R6505	28	4K Bytes										
R6506	28	4K Bytes										
R6507	28	8K Bytes										

Model Designator: $XX = 02, 03, 04, \dots 15$

Microprocessors with External Two Phase Clock Input

Model	No. Pins	Addressable Memory
R6512	40	64K Bytes
R6513	28	4K Bytes
R6514	28	8K Bytes
R6515	28	4K Bytes

Document No. 29000D39

Data Sheet

Order No. D39 Rev. 8, June 1987

INTERFACE SIGNAL DESCRIPTIONS

CLOCKS (Ø1, Ø2)

The R651X requires a two phase non-overlapping clock that runs at the V_{CC} voltage level. The R650X clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled.

ADDRESS BUS (A0-A15)

The address line outputs access data in memory device locations or cells, access data in I/O device registers and/or effect logical operations in I/O or controller devices depending on system design. The addressing range is determined by the number of address lines available on the particular CPU device. The R6502 and R6512 can address 64K bytes with a 16-bit address bus (A0-A15); the R6504, R6507, and the R6514 can address 8K bytes with a 13-bit address bus (A0-A12); and the R6503, R6505, R6506, R6513, and R6515 can address 4K bytes with a 12-bit address bus (A0-A11). These outputs are TTL-compatible and are capable of driving one standard TTL load and 130 pF. are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts can occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A 3KΩ external resistor should be used for proper wire-OR operation.

NON-MASKABLE INTERRUPT (NMI)

A negative going edge on the NMI input requests that a nonmaskable interrupt sequence be generated within the microprocessor.

NMI is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for IRQ will be performed, regardless of the state interrupt mask flag. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory.

DATA BUS (DO-D7)

The data lines (D0-D7) form an 8-bit bidirectional data bus which transfers data between the CPU and memory or peripheral devices. The outputs are tri-state buffers capable of driving one standard TTL load and 130 pF.

DATA BUS EMABLE (DBE, R6512 ONLY)

The TTL-compatible DBE input allows external control of the tristate data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE is driven by the phase two (\emptyset 2) clock, thus allowing data output from microprocessor only during \emptyset 2. During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low. $\overline{\text{NMI}}$ also requires an external $3K\Omega$ register to V_{CC} for proper wire-OR operations.

Inputs IRQ and NMI are hardware interrupts lines that are sampled during Ø2 (phase 2) and will begin the appropriate interrupt routine on the Ø1 (phase 1) following the completion of the current instruction.

SET OVERFLOW FLAG (SO)

A negative going edge on the SO input sets the overflow bit in the Processor Status Register. This signal is sampled on the trailing edge of $\emptyset1$ and must be externally synchronized.

READY (RDY)

The Ready input signal allows the user to halt or single cycle the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one $(\emptyset 1)$ will halt the microprocessor with the output address lines reflecting the current address being fetched. If Ready is low during a write cycle, it is ignored until the following read operation. This condition will remain through a subsequent phase two $(\emptyset 2)$ in which the Ready signal is low. This feature allows microprocessor interfacing with the low speed PROMs as well as Direct Memory Access (DMA).

INTERRUPT REQUEST (IRQ)

SYNC

The SYNC output line identifies those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during Ø1 of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the Ø1 clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

RESET (RES)

2

The active low RES resets, or starts, the microprocessor from a power down or restart condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

The TTL level active-low IRQ input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Processor Status Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register

After a system initialization time of six clock cycles, the mask interrupt flag is set and the microprocessor loads the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After V_{CC} reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W and SYNC signals become valid.

Deenn EEATHDEO

R6502 FEATURES		V S S (*	_ _	40 BES
 64K addressable bytes of memory 	ry (AO-A15)	ΑDY C Φι (ουτις	2 2 3	39 0 \$7 10UTE 38 50 50
 On-chip clock TTL-level single phase input RC time base input crystal time base input 		N.C C NMI C SYNC C VCC C	- 5 - 6 - 7	37 0 0 (1N) 36 N.C. 35 N C 35 N C 34 R/W 33 D 0 37 D 0 37 D 0
 Two phase output clock for timin IRQ interrupt NMI interrupt RDY signal SYNC signal (can be used for single instruction) 40-pin DIP 		A? [] A3 [] A4 [] A5 [] A5 [] A5 [] A8 [] A9 [] A10 []	11 12 13 14 15 16 17 18 19	31 07 30 03 29 04 28 05 27 06 26 07 25 A15 24 A14 23 A13 22 A12 21 VSS
R6503 FEATURES • 4K addressable bytes of memory • On-chip clock	(AO-A11)			28 28 29 27 27 00 10 11 27 00 10 11 27 00 10 10 11 27 00 10 10 10 10 10 10 10 10 10

- IRQ interrupt
- NMI interrupt
- 28-pin DIP

R6506 FEATURES

- 4K addressable bytes of memory (A0-A11)
- On-chip clock
- Two phase output clock for timing of support chips
- IRQ interrupt
- 28-pin DIP

	-			
RES			28	$\exists \phi_2(\text{OUT})$
VSS			27	$\exists \phi_0 (IN)$
φ1 (ουτ	1 3		26	⊐R/₩
IRQ	4		25	
VCC	5		24	D1
AO	 6		23	D 2
A1		R6506	22	🗂 D3
A2	СВ		21	D 4
A3	1 9		20	🛄 D5
A4)	19	D6
A5		;	18	D7
A6		2	17	A11
A7	1:	3	16	🗂 A10
AB	14	L .	15	🗂 A9

R6507 FEATURES

- 8K addressable bytes of memory (A0-A12)
- On-chip clock
- RDY signal
- 28-pin DIP

RES CT1	28 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$
	$27 \Box \phi_0(1N)$
RDYC 3	26 R/W
VCC 4	25 00
	24 01
A1 C6	23 02
A2 7 R6507	22 03
A3 🗖 B	21 04
A4 - 9	20 05
A5 10	19 06
A6 C 11	18 07
A7 112	17 A12
A8 1 13	16 A11
A9 - 14	15 A10

R6512 FEATURES

- 64K addressable bytes of memory (A0-A15)
- Two phase clock input
- IRQ interrupt
- NMI interrupt
- RDY signal
- SYNC signal
- Data Bus Enable
- 40-pin DIP

	1					
VSS		7		40		RES
RDY		2		39		φ2 (OUT)+
ϕ_1 (IN)		3		1		ŝõ
IRO		4		1	·	φ ₂ (IN)+
VSS		5		36		DBE
NMI		6		35		N.C.
SYNC		7		34	Ь	R/Ŵ
vcc		8		33		00
AD		9	R6512	32		D1
A1		10		31		D2
A2		11		30		D3
A3		12		29		D4
A4		13		28		05
A 5		14		27		D6
A 6		15		26		D7
A7		16		25		A15
AS		17		24		A14
70		10				

4

*Pins 37 and 39 are connected internally

R6500 Microprocessors (CPU)

R6513 FEATURES

- 4K addressable bytes of memory (A0-A11)
- Two phase clock input
- IRQ interrupt

- NMI interrupt
- 28-pin DIP

R6514 FEATURES

• 8K addressable bytes of memory (AO-A12)

- Two phase clock ir put
- IRQ interrupt
- 28-pin DIP

A3 21 D4 **2**8 20 05 A4 A5 19 D6 **10** A6 18 07 17 A12 A7 16 A11 A8 **1**13 15 A10 A9 14

R6515 FEATURES

4K addressable bytes of memory (A0-A11)

- Two phase clock input
- IRQ interrupt
- RDY signal
- 28-pin DIP

A1 7 R6515 22 03 21 04 A2 **28** 20 05 A3 **1**9 19 D6 A4 10 18 07 A5 A6 17 A11 16 A10 A7 **A8** 15 A9 14

FUNCTIONAL DESCRIPTION

The internal organization of all R6500 CPUs is identical except for some variations in clock interface, the number of address output lines, and some unique input/output lines between versions.

CLOCK GENERATOR

The clock generator develops all internal clock signals, and (where applicable) external clock signals, associated with the device. It is the clock generator that drives the timing control unit and the external timing for slave mode operations.

TIMING CONTROL

The timing control unit keeps track of the instruction cycle being monitored. The unit is set to zero each time an instruction letch is executed and is advanced at the beginning of each phase one clock pulse for as many cycles as is required to complete the instruction. Each data transfer which takes place between the registers depends upon decoding the contents of both the instruction register and the timing control unit.

ARITHMETIC AND LOGIC UNIT (ALU)

All arithmetic and logic operations take place in the ALU including Incrementing and decrementing internal registers (except the program counter). The ALU has no internal memory and is used only to perform logical and transient numerical operations.

ACCUMULATOR

The accumulator is a general purpose 8-bit register that stores the results of most arithmetic and logic operations, and in addition, the accumulator usually contains one of the two data words used in these operations.

INDEX REGISTERS

There are two 8-bit index registers (X and Y), which may be used to count program steps or to provide an index value to be used in generating an effective address.

PROGRAM COUNTER

The 16-bit program counter provides the addresses which step the microprocessor through sequential instructions in a program.

Each time the microprocessor fetches an instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order bits of the address bus and the higher byte of the program counter (PCH) is placed on the high-order 8 bits. The counter is incremented each time an instruction or data is fetched fromprogram memory.

INSTRUCTION REGISTER AND DECODE

When executing an instruction which specifies indexed addressing. the CPU fetches the op code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation. Pre- or post-indexing of indirect addresses is possible (see addressing modes).

STACK POINTER

The stack pointer is an 8-bit register used to control the addressing of the variable-length stack on page one. The stack pointer is automatically incremented and decremented under control of the micro-processor to perform stack manipulations under direction of either the program or interrupts (NMI) and IRQ). The stack allows simple implementation of nested subroutines and multiple level interrupts. The stack pointer should be initialized before any interrupts or stack operations occur.

Instructions fetched from memory are gated onto the internal data bus. These instructions are latched into the instruction register, then decoded, along with timing and interrupt signals, to generate control signals for the various registers.

PROCESSOR STATUS REGISTER

The 8-bit processor status register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU.

NOTE

- 1. CLOCK GENERATOR IS NOT INCLUDED ON R6512, R6513, R6514 AND R6515.
- 2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH EACH OF THE CPUs.
- 3. R6502, R6503, R6504, R6505, R6506 AND R6507.
- 4. R6512, R6513, R6514 AND R6515.

5. R6512 ONLY. 6. R6502 AND R6506.

R650X and R651X Internal Architecture

R6500 Microprocessors (CPU)

INSTRUCTION SET

The R6500 CPU has 56 instruction types which are enhanced by up to 13 addressing modes for each instruction. The

Accumulator, index registers, Program Counter, Stack Pointer and Processor Status Register are illustrated below.

Alphabetic Listing of Instruction Set

Mnemonic	Function	Mnemonic	Function
ADC AND ASL	Add Memory to Accumulator with Carry "AND" Memory with Accumulator Shift Left One Bit (Memory or Accumulator)	JMP JSR	Jump to New Location Jump to New Location Saving Return Address

1		11	
		LDA	Load Accumulator with Memory
BCC	Branch on Carry Clear	LDX	Load Index X with Memory
BCS	Branch on Carry Set	LDY	Load Index Y with Memory
BEQ	Branch on Result Zero	LSR	Shift One Bit Right (Memory or Accumu
BIT	Test Bits in Memory with Accumulator		
BMI	Branch on Result Minus	NOP	No Operation
BNE	Branch on Result not Zero		
BPL	Branch on Result Plus	ORA	"OR" Memory with Accumulator
BRK	Force Break		
BVC	Branch on Overflow Clear	PHA	Push Accumulator on Stack
BVS	Branch on Overflow Set	РНР	Push Processor Status on Stack
		PLA	Pull Accumulator from Stack
CLC	Clear Carry Flag	PLP	Pull Processor Status from Stack
CLD	Clear Decimal Mode		
CLI	Clear Interrupt Disable Bit	ROL	Rotate One Bit Left (Memory or Accumi
CLV	Clear Overflow Flag	ROR	Rotate One Bit Right (Memory or Accur
CMP	Compare Memory and Accumulator	BTI	Return from Interrupt
СРХ	Compare Memory and Index X	RTS	Return from Subroutine
CPY	Compare Memory and Index Y		
		SBC	Subtract Memory from Accumulator with
DEC	Decrement Memory by One	SEC	Set Carry Flag
DEX	Decrement Index X by One	SED	Set Decimal Mode
DEY	Decrement Index Y by One	SEI	Set Interrupt Disable Status
		STA	Store Accumulator in Memory
EOR	"Exclusive-OR" Memory with Accumulator	STX	Store Index X in Memory
		STY	Store Index Y in Memory
INC	Increment Memory by One		
INX	Increment Index X by One	TAX	Transfer Accumulator to Index X
INY	Increment Index Y by One	TAY	Transfer Accumulator to Index Y
		TSX	Transfer Stack Pointer to Index X
		TXA	Transfer Index X to Accumulator
		TXS	Transfer Index X to Stack Register
		TYA	Transfer Index Y to Accumulator
		ويرجعه ومحمد المراجل والمترجع والتركي والمترك والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتح	

Load Accumulator with Memory Load Index X with Memory Load Index Y with Memory Shift One Bit Right (Memory or Accumulator)
No Operation
"OR" Memory with Accumulator
Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack
Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt
Return from Subroutine
Subtract Memory from Accumulator with Borrow Set Carry Flag

Programming Model

R6500 Microprocessor (CPU)

ADDRESSING MODES

The R6500 CPU family has 13 addressing modes. In the following discussion of these addressing modes, a bracketed expression follows the title of the mode. This expression is the term used in the Instruction Set Op Code Matrix table (later in this product description) to make it easier to identify the actual addressing mode used by the instruction.

ACCUMULATOR ADDRESSING [Accum]—This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

address. This type of indexing allows referencing of any location and the index may modify multiple fields, resulting in reduced coding and execution time.

IMPLIED ADDRESSING [Implied]—In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING [Relative] --- Relative addressing

IMMEDIATE ADDRESS [IMM]—In immediate addressing, the second byte of the instruction contains the operand, with no further memory addressing required.

ABSOLUTE ADDRESSING [Absolute]—In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 64K bytes of addressable memory.

ZERO PAGE ADDRESSING [ZP]—The zero page instructions allow for shorter code and execution times by fetching only the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING [ZP, X or Y]—This

is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction is an operand. This operand is an offset which is added to the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes.

INDEXED INDIRECT ADDRESSING [(IND, X)]—In indexed indirect addressing (referred to as (Indirect, X)), the second byte of the instruction is added to the contents of index register X discarding the carry. The result of this addition points to a memory location on page zero which contains the low order byte of the effective address. The next memory location in page zero contains the high order byte of the effective address. Both memory locations specifying the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING [(IND), Y)]--In

form of addressing is used with the index register and is referred to as "Zero Page, X" or "Zero Page, Y". The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order eight bits of memory and crossing of page boundaries does not occur.

INDEXED ABSOLUTE ADDRESSING [ABS, X or Y]— This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X" and "Absolute, Y." The effective address is formed by adding the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base indirect indexed addressing (referred to as (Indirect), Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location are added to the contents of index register Y. The result is the low order byte of the effective address. The carry from this addition is added to the contents of the next page zero memory location, to form the high order byte of the effective address.

ABSOLUTE INDIRECT [Indirect]—The second byte of the instruction contains the low order byte of a memory location. The high order eight bits of that memory location are contained in the third byte of the instruction. The contents of the fully specified memory location are the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter. (JMP (IND) only)

INSTRUCTION SET OP CODE MATRIX

The following matrix shows the Op Codes associated with the R6500 family of CPU devices. The matrix identifies the hexadecimal code, the mnemonic code, the addressing mode, the

number of instruction bytes, and the number of machine cycles associated with each Op Code. Also, refer to the instruction set summary for additional information on these Op Codes.

	5 D 0	1	2	3	4	5	6		8	9	A		<u>с</u>	D	Е 	
20 8 2 1	BAK	ORA				ORA	ASL		рнр	ORA	ASL			ORA	ASL	
0	Implied	(IND, X)		1 		ZP	ZP		Implied	IMM	Accum			ABS	ABS	
	17	26				23	25		1 3	22	12			34	36	
	8PL	ORA				ORA	ASL		CLC	ORA				ORA	ASL	
1	Relative	i i				ZP, X	ZP, X		Implied	ABS, Y				ABS, X	ABS, X	
	2 2**	2 5*				24	26		1 2	3 4*				3 4*	37	
	JSR	AND		1	817	AND	ROL		PLP	AND	ROL		BIT	AND	ROL	
2	Absolute				ZP	ZP	ZP		Implied	IMM	Accum		ABS	ABS	ABS	
-	3 6	2 6			2 3	2 3	25		1 4	2 2	12		34	34	36	
					+				000	4410				4340	ROL	
	BMI	AND				AND	ROL		SEC	AND ABS, Y				AND ABS, X	1	
3	2 2"	(IND), Y				ZP, X 2 4	ZP, X 2 6		Implied	3 4				3 4*	3 7	
		2 5*														
	RTI	EOR				EOR	LSR		PHA	EOR	LSR		JMP	EOR	LSR	
4		{IND, X}				ZP	ZP		implied	IMM	Accum		ABS	ABS	ABS	
	16	26				23	25		1 3	22	12		3 3	34	36	
	BVC	EOR		i i		EOR	LSR		CLI	EOR				EOR	LSR	
5	1	(IND), Y				ZP, X	ZP, X		tmphed	ABS, Y				ABS, X	ABS, X	
	2 2**	2 5*				24	26		1 2	3 4*	İ			3 4*	37	
	RTS	ADC				ADC	ROR		PLA	ADC	ROR		JMP	ADC	ROR	
6		(IND, X)				ZP	ZP		Implied	IMM	Accum		Indirect		ABS	
	1 6	26				23	25		14	22	1 2		3 5	34	36	
		ADC				ADC	ROR		SEI	ADC	1	• •		ADC	ROR	
7	BVS Relative				j.	ADC ZP, X	ZP, X		Implied	ABS, Y				ABS, X	ABS, X	
	2 2"	2 5			L (1	2 4	2 6		1 2	3 4				3 4*	37	•
						<u> </u>										
•		STA			STY	STA	STX		DEY		TXA	Ì	STY	STA	STX	
8		(IND, X)	1 1 4 7		ZP	ZP	ZP	1	Implied		Implied		ABS 3 4	ABS 3 4	ABS	
		26			23	2 3	2 3		1 2		1 2	 	3 4		34	
	BCC	STA			STY	STA	STX		TYA	STA	TXS			STA		
9	,	(IND), Y		1	ZP.X	t _	ZP, Y	•		ABS, Y	· · _			ABS, X		
	5 5	26			24	24	24		1 2	35	1 2			3 5		
	LDY	LDA	LDX		LDY	LDA	LDX		TAY	LDA	TAX		LDY	LDA	LDX	
Α	IMM	(IND, X)	IMM		ZP	ZP	ZP		Implied	IMM	Implied		ABS	ABS	ABS	
	22	26	22		23	23	53		1 2	22	12		34	34	34	
	BCS	LDA			LDY	LDA	LDX		CLV	LDA	TSX		LDY	LDA	LDX	
8		(IND), Y	1		ZP, X	ZP, X	ZP, Y	l	Implied	ABS, Y	Implied		ABS, X	ABS. X	ABS, Y	
	2 2**	2 5	7 8 8		2 4	24	24		1 2	3 4*	1 2		3 4'	3 4	3 4	
	CPY	CMP	*	1	CPY	CMP	DEC	1	INY	CMP	DEX		CPY	CNIP	DEC	
С	IMM	(IND, X)			ZP	ZP	ZP	[Implied	IMM	Implied		ABS	ABS	ABS	ĺ
-	22	2 6			2 3	23	2 5		1 2	22	1 2		34	3 4	36	
	••		+	+			- 		- {	CMP		*		CMP	DEC	
D	BNE Relative	CMP (IND), Y			1	ZP. X	DEC ZP, X		CLD Implied	ABS, Y					ABS, X	
	2 2**	2 5*			ł	2 4	2 6		1 2	3 4				3 4'	3 7	
		+	<u> </u>	:			+							+		-
سعر	CPX	SBC			CPX	SBC	INC		INX	SBC	NOP		CPX	SBC		
Ε	IMM	(IND, X)			ZP	ZP	ZP		Implied		Implied		ABS	ABS	ABS	
	2 2	2 6	÷		2 3	23	25	_	1 2	22	1 2		34	3 4	36	Ļ.,
	BEO	SBC				SBC	INC		SED	SBC				SBC	INC	
F	Relative	(IND), Y				ZP, X	ZP, X		Implied	1				1	1	
	2 2	2 5	1	:		24	2 6	•	1 2	3 4*	1	i	į	3 4	37	1

 Add 1 to N if page boundary is crossed.
 Add 1 to N if branch occurs to same page; add 2 to N if branch occurs to different page.

INSTRUCTION SET SUMMARY

	INSTRUCTIONS					ACCU								10). ¥		2 PAGE I							ABS T RELATIV				CT 2 PAGE. Y			PROCESSOR STATUS EDGES							
MNEMONIC	OPERATION	96	*	OP	-	• 00			0P =	#	00		-			<u>.</u> 22	-	- (C)			OP		• 0	;; ;;		٥P	•.	• 0			OP	~ •	<u>7 E X</u> 7 V A	4 3	210		HE
ADC	A + M + C + A - (4-41)	69	2 2	60									6		•		5				T T			- T				+		+					- 2 C		 C
AND	ANM ~ A (1)	29	2 2	20		3 25	3	2					2	1 6	2	31.	-	2 3!		2	30	. 3	ы ж		3								N	· • •	. z .	Į.	_
ASL	C⊡ ::::]- 0			CE	6	2 06	5	2	0A 2	,								- 14	5 6	2	18	;											N	; 	• z c	AS	
BCC	BRANCHONC = 0 (2)															1		1								90	2	2					1	,	• • -	BC.	c
acs	BRANCH DN C = 1 121											;														ÐC	2	2						,		a c	5
BEG	BRANCHONZ = 1 121												T						-	•			1	-		FG	2	2				***		• • •		E E E	5
B · T	AAM		i	2C	•	3 24	; 3	2																									M. M		• z •	Đ :	•
6 M I	BRANCHONN = 1 (2)						1					ĺ			:											30	2 :	2								6 M	•
BNE	88ANCH ON 2 2 0 (2)																1									∞	2	2				1		, 		8 N	E
B P 1.	BRANCHONN = 0 (2)				 																					+0	2	2								8 P	ι
BAX	BREAK	:									00													;								:		• • • •	3 - 1	BA	ĸ
BVC	BRANCH ON V = Q - 12-									í														F		50	2	2						• •	• • • •	8 V	¢
875	BRANCH ON V 2 1 12													ł					1							20	2	2						• • •		8 7	5
CLC	0 - C								1		18	2			!													-				:			• • • 0	CL	¢
CLD	3-6					-	 				D8	2 1		4					4				_		.		·						· · ·	· • 0	· · · ·	Ci	0
C ()	0.40										56 t	2			i																:			•	. C	¢:	3
CLV	0 - ¥										88	2] 1	1																			1		• •	• • •	cı	Υ.
CMP		C9 2	:	1	-	1	;	3		; [; ;		C	.: 6	2	21	5	2 0	5 4	2	DD	4	סן נ	9 4	: 3							ļ	4	• •	· · Z C	CM	P
C P >		EO 2	-	£ 1		1				1	•				•				}			ŀ			i						•	•	N		- z c	CP	*
СРУ		C2 :	-	t-t			-			÷	····			<u> </u>			+				┟──┾		+		÷										• 2 0	+	
	Aγtion Σt → Aγtion State 1 on Y		•	CE	0	3 66	5	3			~	,		:				P	5 6		C€	7	3		İ						:		N			DE	
DEX	> - I - X > - I - Y		•								66	2 1	1																			,	1		• ž •		
EOR		45	; ; ; ;			7 46			:		, 00	• • • •	Ł		,																		ſ		• • 2 •]
	₩ - t - M			1 1		3 86	i	- 1		•	•			· •		3.	5	1		1	FE	!	ł	* •]						:				· · 2 ·	f i	
INX	χ.ι+X		-				é		· · · · · · · · · · · · · · · · · · ·	÷	E8.	2 1	╉	-	÷				-	+			- -	-	+										· · Z ·	- {	
1 1 1	Y . I Y								•		CE											İ										•,				1	
JMP	JUMP TO NEW LOC	1		+C	3	3			•																			5	: 5	3			j.			1	i
	JUMP SUB	Ì	•	20	5	3	}		•			ļ								:				ļ							i	·				{ ·	
LUA	Kt = A 231	A9 :	2 2	AD	•	3 45	3	2						1 6	2	B١	5	2 8	•	2	80		3 8	9 4							•		i		• z •		- 1
rox	₩ - X (\$-	A2 2	2 2	At	4) Añ		2			:		T										B	ε	13						86	• ;	N • •		- 2 -	LO	,
LDY	₩ - ¥ (1)	A0: 2	2 2	AC	4	5 🗛	3	2				;			!		1	8	• •	2	ac	4	3	-		ł							N / -	· • •	- 2 -	10	,
LSF	6 - C			4E	e	3 C E	15	2	4A 🔰			ţ						5	6	2	34	:	3			· .	;	ļ			·		- u	• •	• z c	1.5	9
NOP	NOOPERATION										EA:	2 1			i													i			•	;		• • •		N 0	P
ARC	AVM~A	09 ;	2 2 2	9D	4	3 05	3	~				_	0	1 3	2		5	2 .			<u>ک</u>	4	3 10	4 4	,						·		N · · ·	• •	• Z •	0 9	*
PHA	≜ + 4/a S - L + S										48	311						Í						;	Ì									,	· •	P 14	•
PHP	P-Ms S-L-S						•	Í			08 <u> </u>	3							i					;								i i		,		РНЧ	P
PLA	S+1+S MS+A									i i	58	4							l												•		N · ·	• •	• • 2 •	PL	•
	S+1+5 445+P				Í		:				28	≜												i							:	•	, Д	ESTOP	PE D-	Ρι	P
HOL BOR		┟╌┊╴		{ − +		3 76	+	⊢	24 2	÷			+		 			-+	-+	+ (3E				÷	Ļ			- '						· 2 C	· • · · · · · · · · · · · · · · · · · ·	
R OR R T L	RTRNINT			6E	5	3 66	÷.		6A 2			ال		;		!		21	5 0	2	7E	7	3	ŀ			1						-{		• 2 0		
815	ATAN SUB		L ·							: 1	40) KO	İ		5																	•	:		E5706	- •	1 1 1	
580		E9 7	2.2	ED		3 = 4				i	60	" "		1	÷ -,			, .				<u>*</u>	$\frac{1}{1}$,						•				-	RTS	-
SEC	1-0		- • 6		-					1	36	21.					· ·	• [*]					° '	* *	3										· · 2 ·3		
SED	1 - 0					1	:		1	; ;	Fa													ł								:			· · · ·		
S E I	1 ~ :			<u></u>		-	÷		-		78 -		+-					+	+	<u>.</u>	<u></u> ╡}		-+	+		 			+		-	•					
STA	A - N			80		o les	3	: 2			-	-	5	1 6	2	91	ŧ	2 9		2	90	5	3 4	9 5	3			1				ļ					
574	X - M			1 1		3 86	•										-							Ĩ	ĺ			1			96	4 . 7					
578	Y - 34		;	1 i		J 84					:							9		2																	
1 4 3	A - X							{ 1				2							1) 	:	1	-	<u>z</u> -	£	1
Ϋ́ΑΥ	A - Y					1				÷	40				+			-	-	†	† †			-	1										· · Z ·	- f	
15.6	5 ->							;		:	8×	1	•						1	İ		İ									Í				<u>.</u> .	ł	
1 × 4	X ~ A										84	2	,]						ļ								1				ł	İ					
7 * 5	x - S										94	2	:						Ì					İ				ł									1
TYA	¥ • K										ė8	2																					3			1 4	
	to ADU the																×		INDE	. L . A										ADD			A	·····	MEMORY		
	07:100A -5. ADU:210									PACI	:						¥		INDE												THAC	51			MEMORY	_	
	S CARRY N				- • •	U - 1 U	20		~ 7 '	-00	•						A				JLAT:							•	4	an D			•		NO CYCL		
	A IN DEC									-							N N				Y P <u>f</u> f V P(c						Ś	V		35			•	• •	NO BYTE	5	
l	ACCUMU		- MUS	. 61	C -18		. * ()f	- 24								<u> </u>	···		•••• C **		y Pf.s	· · ·		- UTN 	· • • •			• 		⊆×Çı		VE O					

R6500 Microprocessors (CPU)

R651X CLOCK TIMING

R65XX READ WRITE TIMING

R6500 Microprocessors (CPU)

AC CHARACTERISTICS

Characteristic	Symbol	R65XX (1 MHz)		R65XXA (2 MHz)		R65XXB (3 MHz)		
		Min	Max	Min	Max	Min	Max	Unit
R650X CLOCK TIMING				<u> </u>	.	L	,	<u>.</u>
Clock Cycle Time	T _{CYC}	1.0	10	0,5	10	0.33	10	μs
Ø0 (IN) Low Pulse Width	T _{L⊅0}	480		240		160		ns
Ø0 (IN) High Pulse Width	THEO	460		240		160		ns
Ø0 (IN) Rise and Fall Time ^{1, 2}	T _{RD} , T _{FO}		10		10		10	ns
Ø1 (OUT) High Pulse Width	T _{PWH®1}	460		235		155		ns
Ø2 (OUT) High Pulse Width	T _{PWHØ2}	460		240		160		ns
Delay Between Ø1 (OUT) and Ø2 (OUT)	T _D	0		0		0		ns
Ø1 (OUT), Ø2 (OUT) Rise and Fall Time ^{1, 2}	T _P , T _F		25		25		15	ns

R651X CLOCK TIMING

Clock Cycle Time	TCYC	1.0	10	0.5	10	0.33	10	μs
Ø1 (IN) High Pulse Width	T _{PWH\$1}	430		215		150		ns
#2 (IN) High Pulse Width	T _{PWHØ2}	470		235		160		ns
Delay Between Ø1 and Ø2	Τ _D	0		0		0		ns
Ø1 (IN), Ø2 (IN) Rise and Fall Time ^{1, 3}	$T_{\rm FI}, T_{\rm F}$		25		20		15	ns

R65XX READ/WRITE TIMING

R/W Setup Time	Taws		225		140		110	ns
R/W Hold Time	THRW	30		30		15		RS
Address Setup Time	T _{ADS}		225		140		110	ns
Address Hold Time	T _{HA}	30		30		15		ns
Read Access Time	TACC		650		310		170	ns
Read Data Setup Time	T _{DSU}	100		50		50	—	пs
Read Data Hold Time	THR	10		10		10		лs
Write Data Setup Time	TMOS		175	—	100		85	ns
Write Data Hold Time	THW	30		30		15		กร
SYNC Hold Time	T _{SYH}	30		30		15		ns
RDY Setup Time	TROY	100		50		35		ns
SO Setup Time	Tso	100		50	-	35		กร
SYNC Setup Time	TSYN		225		140		110	ns

Notes:

- 1. Loads: All output except clocks = 1 TTL + 130 pF. Clock outputs = 1 TTL + 30 pF.
- 2. Measured between 0.8 and 2.0 points on waveform load.

3. Measured between 10% and 90% points on waveforms.

4. "RDY must never switch states within R_{RDY} to end of Ø2.

R6500 Microprocessors (CPU)

EXAMPLE OF TIME BASE GENERATION FOR R6502

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 10 +7.0	Vdc
Input Voltage	V _{IN}	-0.3 to +7.0	Vdc
Operating Temperature Range Commercial Industrial	TA	~40 to +85	°C
Storage Temperature	T _{STG}	- 55 to + 150	°C

*NOTE: Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the other sections of this document is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CONDITIONS

Parameter	Symbol	Value		
Supply Voltage	V _{cc}	5V ±5%		
Temperature Range Commercial Industrial	TA	0°C to +70°C -40°C to +85°C		

DC CHARACTERISTICS

 $(V_{CC} = 5.0V \pm 5\%, V_{SS} = 0; T_A = T_L to T_H, unless otherwise noted)$

Parameter	Symbol	Min.	Typ.5	Max.	Unit ¹	Test Conditions
Input High Voltage Logic Ø0 (IN) Ø1 (IN), Ø2 (IN)	V _{IH}	2.0 2.4 V _{CC} ~ 0.3		V_{CC} V_{CC} V_{CC} + 0.25	V	
Input Low Voltage Logic Ø0 (IN), Ø1 (IN), Ø2 (IN)	V _{IL}	- 0.3 - 0.3		0.8 0.4	V	
Input Leakage Current Logic (Excl. RDY, SO) Ø1 (IN), Ø2 (IN) Ø0 (IN)	IN			2.5 100 10	μA	$V_{IN} = 0V \text{ to } 5.25V$ $V_C = 0V$
Input Leakage Current for Three State Off D0–D7	I _{TS} ;			10	μA	$V_{IN} = 0.4V \text{ to } 2.4V$ $V_{CC} = 5.25V$
Output High Voltage SYNC, D0-D7, A0-A15, R/W, Ø1 (OUT), Ø2 (OUT)	Voh	+ 2.4			V	$I_{LOAD} = -100 \ \mu A$ $V_{CC} = 4.75V$
Output Low Voltage SYNC, D0-D7, A0-A15, R/W, Ø1 (OUT), Ø2 (OUT)	V _{OL}			+0.4	V	$l_{LOAD} = 1.6 ma$ $V_{CC} = 4.75V$
Power Dissipation 1 and 2 MHz 3 MHz	PD		450 500	700 800	mW	
Capacitance Logic D0-D7 A0-A15, R/W, SYNC Ø0 (IN)				10 15 12 15	pF	$V_{CC} = 5.0V$ $V_{IN} = 0V$ f = 1 MHz $T_A = 25^{\circ}\text{C}$
Ø1 (IN) Ø2 (IN)	CØ1 CØ2		30 50	50 80		

Notes:

1. All units are direct current (dc) except for capacitance.

2. Negative sign indicates outward current flow, positive indicates inward flow.

- 3. IRQ and NMI require 3K pull-up resistor.
- 4, Ø1 (IN) and Ø2 (IN) apply to R6512, 13, 14, and 15; Ø0 (IN) applies to R6502, 03, 04, 05, 06 and 07.
- 5. Typical values shown for $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

WORLDWIDE HEADQUARTERS

Rockwell Semiconductor Systems 4311 Jamborce Road, P.O. Box C Newport Beach, CA 92658-8902 Phone: (714) 221-4600 Fax: (714) 221-6375

AMERICAS

US Northwest/Pacific Northwest Rockwell Semiconductor Systems US Northwest Office 3600 Pruneridge Avenue Suite 100 Santa Clara, CA 95051 Phone: (408) 249-9696 Fax: (408) 249-7113

US Los Angeles

Rockwell Semiconductor Systems

US Mid-Atlantic

Rockwell Semiconductor Systems Princeton Pike Corporate Center 993 Lenox Drive, Suite 200 Lawrenceville, NJ 08648 Phone: (609) 219-7462 Fax: (609) 895-2666

EUROPE

European Headquarters Rockwell Semiconductor Systems S.A.S. Les Taissounieres B1 1680 Route des Dolines BP 283 06905 Sophia Antipolis Cedex France Phone: (33) 4 93 00 33 35 Fax: (33) 4 93 00 33 03

Europe Central

Australia Rockwell Australia Pty Limited Suite 603, 51 Rawson Street Epping, NSW 2121 Australia Phone: (61-2) 9869 4088 Fax: (61-2) 9869 4077

China

Rockwell Semiconductor Systems Worldwide. Inc. Shanghai Representative Office

LT Square Building, Suite 3002 500 Chengdu North Road Shanghai 200003 P.R.C. Phone: 86-21-6361-2515 Fax: 86-21-6361-2516

Hong Kong

1000 Business Center Circle Suite 215 Thousand Oaks, CA 91320 Phone: (805) 376-0559 Fax: (805) 376-8180

US Southwest

Rockwell Semiconductor Systems 5000 Birch Street Suite 400 Newport Beach, CA 92660 Phone: (714) 222-9119 Fax: (714) 222-0620

US North Central Rockwell Semiconductor Systems Two Pierce Place Chancellory Park Suite 810 Itasca, IL 60143 Phone: (630) 773-3454 Fax: (630) 773-3907 Rockwell Int'l GmbH, Rockwell Semiconductor Systems Branch Paul-Gerhardt-Allee 50 a 81245 München Germany Phone: (49-89) 829-1320 Fax: (49-89) 834-2734

Europe Mediterranean Rockwell Semiconductor Systems c/o Rockwell Automation S.r.l. Via G. Di Vittorio, 1 20017 Mazzo Di Rho (MI) Italy Phone: (39.2) 93179911 Fax (39.2) 93179913

Europe North Rockwell Semiconductor Systems, Ltd. Berkshire Court Western Road Bracknell Berkshire RG12 1RE Rockwell Int'l (Asia Pacific) Ltd.
13th Floor, Suites 8-10,
Harbour Centre
25 Harbour Road
Wanchai,
Hong Kong
Phone: (852) 2 827-0181
Fax: (852) 2 827-6488

India

Rockwell Int'l Overseas Corporation Regional Office - South Asia Capital Trust House 47 Community Centre Friends Colony New Delhi - 110 065 India Phone: (91-11) 692-4780 Fax: (91-11) 692-4712

Korea Rockwell Collins Int'l, Inc. Room No. 1508 Korea Textile Centre Building 944-31, Daechi-3dong Kangnam P.O. Box 2037 Kangnam-ku Scoul Korea Phone: (82-2) 565-2880 Fax: (82-2) 565-1440

US South Central Rockwell Semiconductor Systems 2001 North Collins Blvd Suite 103 Richardson, TX 75080 Phone: (972) 479-9310 Fax: (972) 479-9317

US Northeast

Rockwell Semiconductor Systems 239 Littleton Road Suite 4A Westford, MA 01886 Phone: (508) 692-7660 Fax: (508) 692-8185

US Southeast

Rockwell Semiconductor Systems 3500 Parkway Lane, Suite 415 Norcross, GA 30092 Phone: (770) 246-8283 Fax: (770) 246-0018

England Phone: 44 (0) 1344 486444 Fax: 44 (0) 1344 486555

Europe North (Satellite) Rockwell Semiconductor Systems Israel, Ltd. (RSSI) 11 Galgaley Haplada Street P.O. Box 12660 Herzlia 46733 Israel Phone: (972) 9 9524000 Fax: (972) 9 9573732

Europe South Rockwell Semiconductor Systems S.A.S. Tour GAN Cedex 13 92082 Paris La Défense 2 France Phone: (33) 1 49 06 39 80 Fax: (33) 1 49 06 39 90

TAIWAN

Taiwan Headquarters Rockwell Int'l Taiwan Company, Ltd. Room 2808 International Trade Bldg. 333, Keelung Road, Section I Taipei, Taiwan 10548 ROC Phone: (886-2) 2-720-0282 Fax: (886-2) 2-757-6760

JAPAN

US Florida/South America Rockwell Semiconductor Systems One Prestige Place 2600 McCormick Drive Suite 350 Dearwater, FL 33759 Phone: (813) 799-8406 Fax: (813) 799-8306

APAC Headquarters Rockwell Int'l Manufacturing Ptc Ltd 1 Kim Seng Promenade #09-01 East Tower Great World City Singapore 237994 Phone: (65) 737-7355 Fax: (65) 737-9077 Japan Headquarters Rockwell Int'l Japan Co., Ltd. Shimomoto Bldg I-46-3 Hatsudai, Shibuya-ku Tokyo, 151 Japan Phone: (81-3) 5371 1520 Fax: (81-3) 5371 1501