

950 Rittenhouse Rd., Norristown, PA 19403 • Tel.: 215/666-7950 • TLX 846-100 MOSTECHGY VAFG

65245 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

DESCRIPTION

The 65245 is an octal bus transceiver designed for asynchronous, bi-directional communication between data busses.

The level of the Direction input (DIR) allows data transmission from bus A to bus B or from bus B to bus A. The Enable input (\overline{E}) can be used to provide isolation between the busses.

The device is fully TTL and CMOS compatible, and is pin-for-pin compatible with the 74LS245.

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	Vcc	-0.3 to +7.0	Vdc
INPUT VOLTAGE	Vin	-0.3 to +7.0	Vdc
OPERATING TEMPERATURE	TA	0 to +70	°C
STORAGE TEMPERATURE	TSTG	-55 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.

ELECTRICAL CHARACTERISTICS (Vcc = 5.0V \pm 5%, Vss = 0, T_A = 0° to + 70°C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage	VIH	2.0			Vdc
Input Low Voltage	VIL			0.8	Vdc
Output High Voltage Vcc=MIN, VIH=2.0V IOH= -3mA	VOH	2.4			Vdc
IOH= -15mA		2.0	-	-	
Output Low Voltage Vcc=MIN, VIL = 0.8V IOL = 12mA IOL = 24mA	VOL	-	_	0.4	Vdc
High-Impedance Output Current $\overline{E} = 2.0V, Vcc = MAX$ $V_{out} = 2.7V$	IOZH	_	_	50	μA
High-Impedance Output Current $\overline{E} = 2.0V, Vcc = MAX$ $V_{out} = 0.4V$	IOZL	-		-50	μA
High-Level Input Current Vcc=MAX, VIH = 2.7V	ШН		20	100	nA
Low-Level Input Current Vcc = MAX, VIL = 0.4V	IIL		20	-100	nA
High-Level Output Current Vcc=NOM, V _{OUt} = 2.4V	ЮН		_	-15	mA
Low-Level Output Current Vcc = NOM, V _{OUt} = 0.4V	IOL	_	_	24	mA
Power Supply Current Outputs High Outputs Low Outputs Hi-Z	ICC	_	47 44 56	46 100 105	mA

AC CHARACTERISTICS (VCC=5.0V, VSS=OV, TA=+25°C)

CHARACTERISTIC	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Propagation Delay Data to Output	TPLH TPHL	SEE BELOW	Ξ		40 40	ns ns
Output Enable Time	TPZH TPZL		=	_	40 40	ns ns
Output Disable Time	TPHZ TPLZ		_	_	40 40	ns ns

MOS TECHNOLOGY, INC. reserves the right to make changes to any products herein to improve reliability, function or design. MOS TECHNOLOGY, INC. does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

