

950 Rittenhouse Rd., Norristown, PA 19403 · Tel.: 215/666-7950 · TLX 846-100 MOSTECHGY VAFG

MCS6520 PERIPHERAL ADAPTER

DESCRIPTION

The MCS6520 Peripheral Adapter is designed to solve a broad range of peripheral control problems in the implementation of microcomputer systems. This device allows a very effective trade-off between software and hardware by providing significant capability and flexibility in a low cost chip. When coupled with the power and speed of the MCS6500 family of microprocessors, the MCS6520 allows implementation of very complex systems at a minimum overall cost.

Control of peripheral devices is handled primarily through two 8-bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. In addition, four peripheral control/interrupt input lines are provided. These lines can be used to interrupt the processor or for "hand-shaking" data between the processor and a peripheral device.

- High performance replacement for Motorola/AMI/MOSTEK/Hitachi peripheral adapter.
- N channel, depletion load technology, single +5V supply.
- · Completely Static and TTL compatible.
- · CMOS compatible peripheral control lines.
- Fully automatic "hand-shake" allows very positive control of data transfers between processor and peripheral devices.

V _{SS} C	1	40	CA1
PAØ 🗖	2	39	CA2
PA1	3	38	IRQA
PA2	4	37	IRQB
PA3	5 6	36 35	RSØ RS1
PA4 C PA5 C	7	33	REST
PAS C PA6 C	8	33	DØ
PA7 C	9	32	D1
PBØ C	10	31	D2
PB1 C	11	30	D3
PB2	12	29	D4
РВЗ 🗖	13	28	D5
PB4 🗲	14	27	D6
PB5 C	15	26	D 7
PB6 🗲	16	25	02
РВ7 🗲	17	24	CS1
CB1	18	23	CS2
CB2	19	22	CSØ D/W
V _{CC} C	20	21	R/W

SUMMARY OF MCS6520 OPERATION

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of MCS6520 operation.

CD 4			CA1/CBI CONTROL
<u>CRA</u> Bit 1	(CRB) Bit 0	Active Transition of Input Signal*	IRQA (IRQB) Interrupt Outputs
0	0	negative	Disableremain high
0	1	negative	Enablegoes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)
1	0	positive	Disableremain high
1	1	positive	Enableas explained above

signal. This is independent of the state of Bit 0 in CRA (CRB).

CRA (CRB)		<u>,</u>		IDOA (IDOD)
Bit S	Bit 4	Bit 3	Active Transition of Input Signal*	IRQA (IRQB) Interrupt Output
0	0	0	negative	Disableremains high
0	0	1	negative	Enablegoes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	1	0	positive	Disableremains high
0	1	1	positive	Enableas explained above

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2) signal. This is independent of the state of Bit 3 in CRA (CRB).

<u>.</u>		CRA		CA	2 OUTPUT MODES
	Bit 5	Bit 4	Bit 3	Mode	Description
5	1	0	0	"Handshake" on Read	CA2 is set high on an active transition of the CA1 interrupt input signal and set low by a microprocessor "Read A Data" operation. This allows positive control of data transfers from the peripheral device to the microprocessor.
	1	0	1	Pulse Output	CA2 goes low for one cycle after a "Read A Data" operation. This pulse can be used to signal the peripheral device that data was taken.
	1	1	0	Manual Output	CA2 set low
	1	1	1	Manual Output	CA2 set high

CB2 OUTPUT MODES

	CRB			
Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	"Handshake" on Write	CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
1	0	1	Pulse Output	CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
1	1	0	Manual Output	CB2 set low
1	1	1	Manual Output	CB2 set high

MAXIMUM RATINGS				
Rating	Symbol	Value	Unit	
Supply Voltage	V _{CC}	-0.3 to +7.0	V _{dc}	This device contains circuitry to protect the inputs against
Input Voltage	Vin	-0.3 to +7.0	V _{dc}	damage due to high static voltages, however, it is
Operating Temperature Range	T _A	0 to +70	°C	advised that normal precautions be taken to avoid application
Storage Temperature Range	Tstg	-55 to +150	°C	of any voltage higher than maximum rated voltages to this circuit.

STATIC D.C. CHARACTERISTICS (V_{CC} = 5.0 V \pm 5%, V_{SS} = 0, T_A = 25°C unless otherwise noted)

Characteri	Symbol	Min	Тур	Max	Unit	
Input High Voltage (Normal Operating	V _{IH}	+2.0	_	VCC	Vdc	
Input Low Voltage (Normal Operating Levels)			-0.3	-	+.8	Vdc
Input Threshold Voltage	V_{IL} V_{IT}	0.8		2.0	Vdc	
Input Leakage Current		IIN				µAdc
$V_{in} = 0$ to 5.0 Vdc		IN	_	+1.0	+2.5	
R/W, Reset, RSØ, RS1, CSØ, C	S1, CS2, CA1, CB1, \$2			_	-	
Three-State (Off State Input Current		ITSI				
$(V_{in} = 0.4 \text{ to } 2.4 \text{ Vdc}, V_{CC} = \text{max})$		151	-	+2.0	+10	µAdc
Input High Current		I _{IH}		_	-	
$(V_{\rm IH} = 2.4 \rm Vdc)$	PAØ-PA7.CA2	In	-100	-250	_	µAdc
Input Low Current		IIL				
$(V_{1L} = 0.4 \text{ Vdc})$	PAØ-PA7,CA2	I L	-	-1.0	-1.6	mAdc
Output High Voltage		VOH				
$(V_{CC} = \min, 1_{Load} = -100 \mu Adc)$		011	2.4	1997 <u>-</u> 1997	_	Vdc
Output Low Voltage		VOL				
$(V_{CC} = \min, 1_{Load} = 1.6 \text{ mAdc})$		OL	_	_	+0.4	Vdc
Output High Current (Sourcing)		I _{OH}				
$(V_{OH} = 2.4 \text{ Vdc})$		UH	-100	-1000	_	uAdc
$(V_0 = 1.5 \text{ Vdc}, \text{ the current for dri})$	ving other than			-2.5	_	mAdc
TTL, e.g., Darlington Base)						
Output Low Current (Sinking)		IOL				
$(V_{OL} = 0.4 \text{ Vdc})$		-OL	1.6	_	1.1	mAdc
	IRQA, IRQB	Ioff	_	1.0	10	uAdc
Power Dissipation		PD	_	200	500	mW
Input Capacitance		Cin		200	000	pF
$(V_{in} - 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$		om				P.
DØ-D7, PAØ-PA7, PBØ-	PB7 CA2 CB2		_	_	10	
R/W, Reset, RSØ, RS1, C			_	_	7.0	
CA1,CB1, 42	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	_	20	
Output Capacitance		Cout			20	
$(V_{in} - 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$		Cout		_	10	pF
(111 0, 1A = 200, 1 = 1.0 M12)					10	P

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.

A.C. CHARACTERISTICS

Read Timing Characteristics (Figure 1, Loading 130 pF and one TTL load)

Characteristics	Symbol	Min	Тур	Max	Unit	
Delay Time, Address valid to Enable positive transition	TAEW	180	_	_	ns	
Delay Time, Enable positive transition to Data valid on bus	TEDR	-	-	395	ns	
Peripheral Data Setup Time	TPDSU	300	-	-	ns	
Data Bus Hold Time	T _{HR}	10		-	ns	
Delay Time, Enable negative transition to CA2 negative transition	T _{CA2}	-	-	1.0	us	
Delay Time, Enable negative transition to CA2 positive transition	T _{RS1}	-	-	1.0	us	
Rise and Fall Time for CA1 and CA2 input signals	tr,tf	-	-	1.0	us	
Delay Time from CA1 active transition to CA2 positive transition	T _{RS2}	-	-	2.0	us	
Rise and Fall Time for Enable input	trE,tfE	-	-	25	us	

Write Timing Characteristics (Figure 2)

Characteristics	Symbol	Min	Тур	Max	Unit	
Enable Pulse Width	TE	0.470	_	25	μs	
Delay Time, Address valid to Enable positive transition	TAEW	180	-	-	ns	
Delay Time, Data valid to Enable negative transition	TDSU	300	-		ns	
Delay Time, Read/Write negative transition to Enable positive transition	TWE	130	-	-	ns	
Data Bus Hold Time	T _{HW}	10	-	-	ns	
Delay Time, Enable negative transition to Peripheral Data valid	TPDW	-	-	1.0	us	
Delay Time, Enable negative transition to Peripheral Data Valid, CMOS (V _{CC} - 30%) PAØ-PA7, CA2	TCMOS	-	-	2.0	μs	
Delay Time, Enable positive transition to CB2 negative transition	T _{CB2}	_	-	1.0	us	
Delay Time, Peripheral Data valid to CB2 negative transition	TDC	0	-	1.5	us	
Delay Time, Enable positive transition to CB2 positive transition		-	-	1.0	us	
Rise and Fall Time for CB1 and CB2 input signals	tr,tf	_	-	1.0	uS	
Delay Time, CB1 active transition to CB2 positive transition	T _{RS2}	-	-	2.0	μs	