

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

740 Family
Software Manual

8

U
ser’s M

anual

Rev.2.00 2006.11

RENESAS MCU

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

A - 1

REVISION HISTORY

Rev. Date Description

Page Summary

740 Family Software Manual

1.00 Aug 29, 1997 – First edition issued

2.00 Nov 14, 2006 – Changed to the RENESAS style.

“Preface” is changed to “Using This Manual”.

4 2.5 Processor Status Register: Description added.

26 3.2 Instruction Set : Description revised.

31 ADC : Note 2 is revised.

53 CMP : Function revised.

60 DIV : Note 3 is added.

65 JMP : Note is added.

 72, 133, 134 XX instruction cannot be used for any products → XX instruction cannot be used

for some products.

72 MUL : Note 3 is added.

74 ORA : N is when bit 7..... → N is “1” when bit 7.....

78 PLP : Note is added.

82 RTI : Status flag is revised.

83 RTS : Operation is revised.

84 SBC : Note 2 is revised.

101 WIT : Function is revised.

 102 to 104 3.4 Instructions Related to Interrupt Processing and Subroutine Processing added.

105 NOTES ON USE : “4.1 Notes on input and output ports” is added.

107 Fig. 4.3.1 is revised.

4.3.2 : Description revised.

108 4.3.3 Distinction of interrupt request bit : Description revised.

Fig. 4.3.2 is revised.

110 Fig. 4.4.4 is revised.

111 “4.4.5 Multiplication and division instruction”, “4.4.6 Ports” and

“4.4.7 Instruction execution time” are added.

112 Valid signal for each product : Table is revised and note is added.

178 Part of instruction table is revised.

184 Part of instruction code is revised.

Table of products which unuse these instructions is eliminated.

Hardware overview and electrical characteristics
Hardware specifications (pin assignments, memory maps, peripheral
specifications, electrical characteristics, timing charts).
Detailed description of assembly instructions and microcomputer
performance of each instruction

• Usage and application examples of peripheral functions
• Sample programs

Using This Manual
This software manual is written for the 740 Family. It applies to all microcomputers integrating the 740
Family CPU core.
The reader of this manual is assumed to have a basic knowledge of electrical circuits, logic circuits, and
microcomputers.

740 Family Documents
The following documents were prepared for the 740 family.

Document Contents

Data Sheet

Software Manual

Application Note

A-1

Table of contents
CHAPTER 1. OVERVIEW .. 1

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU) ... 2

2.1 Accumulator (A) .. 2
2.2 Index Register X (X), Index Register Y (Y) .. 2
2.3 Stack Pointer (S) .. 3
2.4 Program Counter (PC) ... 4
2.5 Processor Status Register (PS) .. 4

CHAPTER 3. INSTRUCTIONS .. 6

3.1 Addressing Mode .. 6
3.2 Instruction Set ... 26

3.2.1 Data transfer instructions ... 26
3.2.2 Operating instruction ... 27
3.2.3 Bit managing instructions ... 28
3.2.4 Flag setting instructions ... 28
3.2.5 Jump, Branch and Return instructions ... 28
3.2.6 Interrupt instruction (Break instruction) .. 29
3.2.7 Special instructions ... 29
3.2.8 Other instruction .. 29

3.3 Description of instructions .. 30
3.4 Instructions Related to Interrupt Handling and Subroutine Processing................... 31

3.4.1 Instructions Related to Interrupt Handling ... 31
3.4.2 Instructions Related to Interrupt Control .. 31
3.4.3 Instructions Related to Subroutine Processing ... 32

CHAPTER 4. NOTES ON USE... 105

4.1 Notes on input and output ports ... 105
4.1.1 Notes in standby state ... 105
4.1.2 Modifying output data with bit managing instruction .. 105

4.2 Termination of unused pins... 106
4.2.1 Appropriate termination of unused pins ... 106
4.2.2 Termination remarks ... 106

4.3 Notes on interrupts .. 107
4.3.1 Setting for interrupt request bit and interrupt enable bit ... 107
4.3.2 Switching of detection edge .. 107
4.3.3 Distinction of interrupt request bit .. 108

4.4 Notes on programming ... 109
4.4.1 Processor Status Register ... 109
4.4.2 BRK instruction .. 110
4.4.3 Decimal calculations ... 110
4.4.4 JMP instruction .. 111
4.4.5 Multiplication and division instructions ... 111
4.4.6 Ports .. 111
4.4.7 Instruction execution time .. 111

Table of contents

A-2

Table of contents

APPENDIX 1. Instruction Cycles in each Addressing Mode 112

APPENDIX 2. 740 Family Machine Language Instruction Table 178

APPENDIX 3. 740 Family list of Instruction Codes .. 184

<Addressing Mode>

Immediate.................................. 7
Accumulator 8
Zero Page 9
Zero Page X 10
Zero Page Y 11
Absolute 12
Absolute X 13
Absolute Y 14
Implied 15
Relative 16
Indirect X 17
Indirect Y 18
Indirect Absolute 19
Zero Page Indirect 20

Special Page 21
Zero Page Bit 22
Accumulator Bit 23
Accumulator Bit Relatibe 24
Zero Page Bit Relative 25

<Instructions>

ADC 34
AND 35
ASL 36
BBC........................... 37
BBS 38
BCC 39
BCS........................... 40
BEQ 41
BIT 42
BMI 43
BNE........................... 44
BPL 45
BRA........................... 46
BRK........................... 47
BVC........................... 48
BVS 49
CLB 50
CLC 51
CLD 52

CLI 53
CLT 54
CLV 55
CMP 56
COM.......................... 57
CPX........................... 58
CPY........................... 59
DEC 60
DEX........................... 61
DEY........................... 62
DIV 63
EOR 64
INC 65
INX 66
INY 67
JMP 68
JSR 69
LDA 70
LDM 71

LDX 72
LDY 73
LSR 74
MUL 75
NOP 76
ORA 77
PHA........................... 78
PHP........................... 79
PLA 80
PLP 81
ROL........................... 82
ROR 83
RRF........................... 84
RTI 85
RTS 86
SBC........................... 87
SEB 88
SEC........................... 89
SED........................... 90

SEI 91
SET 92
STA 93
STP 94
STX 95
STY 96
TAX 97
TAY 98
TST 99
TSX 100
TXA 101
TXS 102
TYA 103
WIT 104

Rev.2.00 Nov 14, 2006 page 1 of 185
REJ09B0322-0200

OVERVIEW

1. OVERVIEW
The distinctive features of the CMOS 8-bit microcomputers 740 Family’s software are described
below:

1) An efficient instruction set and many addressing modes allow the effective use of ROM.
2) The same bit management, test, and branch instructions can be performed on the Accu-

mulator, memory, or I/O area.
3) Multiple interrupts with separate interrupt vectors allow servicing of different non-periodic

events.
4) Byte processing and table referencing can be easily performed using the index addressing

mode.
5) Decimal mode needs no software correction for proper decimal operation.
6) The Accumulator does not need to be used in operations using memory and/or I/O.

Rev.2.00 Nov 14, 2006 page 2 of 185
REJ09B0322-0200

CENTRAL PROCESSING UNIT

2. CENTRAL PROCESSING UNIT (CPU)
Six main registers are built into the CPU of the 740 Family.
The Program Counter (PC) is a sixteen-bit register; however, the Accumulator (A), Index
Register X (X), Index Register Y (Y), Stack Pointer (S) and Processor Status Register (PS)
are eight-bit registers.
☞ Except for the I flag, the contents of these registers are indeterminate after a hardware

reset; therefore, initialization is required with some programs (immediately after reset the I
flag is set to “1”).

Fig.2.1.1 Register Configuration

Accumulator (A)
Index Register X (X), Index Register Y (Y)

2.1 Accumulator (A)
The Accumulator, an eight-bit register, is the main register of the microcomputer.
This general-purpose register is used most frequently for arithmetic operations, data transfer,
temporary memory, conditional judgments, etc.

2.2 Index Register X (X), Index Register Y (Y)
The 740 Family has an Index Register X and an Index Register Y, both of which are eight-
bit registers.
When using addressing modes which use these index registers, the address, which is added
the contents of Index Register to the address specified with operand, is accessed. These
modes are extremely effective for referencing subroutine and memory tables.
The index registers also have increment, decrement, compare, and data transfer functions;
therefore, these registers can be used as simple accumulators.

Negative Flag
Overflow Flag
X Modified Operation Mode Flag
Break Flag (BRK)
Decimal Mode Flag
Interrupt Disable Flag
Zero Flag
Carry Flag

Processor
Status Register(PS)

Program Counter(PC)

Stack Pointer(S)

Index Register Y(Y)

Index Register X(X)

Accumulator(A)A

X

Y

S

N V T B D I Z C

0

0

0

0

00

0

7

7

7

7

77

7

H PCLPC

Rev.2.00 Nov 14, 2006 page 3 of 185
REJ09B0322-0200

2.3 Stack Pointer (S)
The Stack Pointer is an eight-bit register used for generating interrupts and calling subroutines.
When an interrupt is received, the following procedure is performed automatically in the
indicated sequence:

(1) The contents of the high-order eight bits of the Program Counter (PCH) are saved to
an address using the Stack Pointer contents for the low-order eight bits of the address.

(2) The Stack Pointer contents are decremented by 1.
(3) The contents of the low-order eight bits of the Program Counter (PCL) are saved to an

address using the Stack Pointer Contents for the low-order eight bits of the address.
(4) The Stack Pointer contents are decremented by 1.
(5) The contents of the Processor Status Register (PS) are saved to an address using the

Stack Pointer contents for the low-order eight bits of the address.
(6) The Stack Pointer contents are decremented by 1.

The Processor Status Register is not saved when calling subroutines (items (5) and (6) above
are not executed). The Processor Status Register is saved by executing the PHP instruction
in software.
To prevent data loss when generating interrupts and calling subroutines, it is necessary to
save other registers as well. This is done by executing the proper instruction in software while
in the interrupt service routine or subroutine.
The high-order eight bits of the address are determined by the Stack Page Selection Bit.

For example, the PHA instruction is executed to save the contents of the Accumulator.
Executing the PHA instruction saves the Accumulator contents to an address using the Stack
Pointer contents as the low-order eight bits of the address.
The RTI instruction is executed to return from an interrupt routine.
When the RTI instruction is executed, the following procedure is performed automatically in
sequence.

(1) The Stack Pointer contents are incremented by 1.
(2) The contents of an address using the Stack Pointer contents as the low-order eight bits

of the address is returned to the Processor Status Register (PS).
(3) The Stack Pointer contents are incremented by 1.
(4) The contents of an address using the Stack Pointer as the low-order eight bits of the

address is returned to the low-order eight bits of the Program Counter (PCL).
(5) The Stack Pointer contents are incremented by 1.
(6) The contents of an address using the Stack Pointer as the low-order eight bits of the

address is returned to the high-order eight bits of the Program Counter (PCH).
Steps (1) and (2) are not performed when returning from a subroutine using the RTS
instruction. The Processor Status Register should be restored before returning from a
subroutine by using the PLP instruction. The Accumulator should be restored before returning
from a subroutine or an interrupt servicing routine by using the PLA instruction.
The PLA and PLP instructions increment the Stack Pointer by 1 and return the contents of an
address stored in the Stack Pointer to the Accumulator or Processor Status Register, respec-
tively.
☞ Saving data in the stack area gradually fills the RAM area with saved data; therefore,

caution must exercised concerning the depth of interrupt levels and subroutine nesting.

CENTRAL PROCESSING UNIT

Stack Pointer (S)

Rev.2.00 Nov 14, 2006 page 4 of 185
REJ09B0322-0200

2.4 Program Counter (PC)
The Program Counter is a sixteen-bit counter consisting of PCH and PCL, which are each
eight-bit registers. The contetnts of the Program Counter indicates the address which an
instruction to be executed next is stored.
The 740 Family uses a stored program system; to start a new operation it is necessary to
transfer the instruction and relevant data from memory to the CPU.
Normally the Program Counter is used to indicate the next memory address. After each
instruction is executed, the next instruction required is read. This cycle is repeated until the
program is finished.
☞ The control of the Program Counter of the 740 Family is almost fully automatic. However,

caution must be exercised to avoid differences between program flow and Program
Counter contents when using the Stack Pointer or directly altering the contents of the
Program Counter.

2.5 Processor Status Register (PS)
The Processor Status Register is an eight-bit register consisting of 5 flags which indicate the
status of arithmetic operations and 3 flags which determine operation. Immediately after a
reset, only the interrupt disable flag is set to “1,” and the other flags are undefined. Therefore,
initialize the flags that effect program execution. Especially, initialize the T and D flags because
of their effect on operation.
Each of these flags is described below. Table 2.5.1 lists the instructions to set/clear each flag.
Refer to the section “Appendix 2 MACHINE LANGUAGE INSTRUCTION TABLE” or “3.3
INSTRUCTIONS” for details on when these flags are altered.
[Carry flag C]-- Bit 0

This flag stores any carry or borrow from the Arithmetic Logic Unit (ALU) after an arithmetic
operation and is also changed by the Shift or Rotate instruction.
This flag is set by the SEC instruction and is cleared by the CLC instruction.

[Zero flag Z] --- Bit 1
This flag is set when the result of an arithmetic operation or data transfer is “0” and is
cleared by any other result.

[Interrupt disable flag I] -- Bit 2
This flag disables interrupts when it is set to “1.” This flag immediately becomes “1” when
an interrupt is received.
This flag is set by the SEI instruction and is cleared by the CLI instruction.

[Decimal mode flag D] --- Bit 3
This flag determines whether addition and subtraction are performed in binary or decimal
notation. Addition and subtraction are performed in binary notation when this flag is set to
“0” and as a 2-digit, 1-word decimal numeral when set to “1.” Decimal notation correction
is performed automatically at this time.
This flag is set by the SED instruction and is cleared by the CLD instruction.
Only the ADC and SBC instructions are used for decimal arithmetic operations.
Note that the flags N, V and Z are invalid when decimal arithmetic operations are per-
formed by these instructions.

[Break flag B] --- Bit 4
This flag determines whether an interrupt was generated with the BRK instruction. When a
BRK instruction interrupt occurs, the flag B is set to “1” and saved to the stack; for all other
interrupts the flag is set to “0” and saved to the stack.

CENTRAL PROCESSING UNIT
Program Counter (PC)

Processor Status Register (PS)

Rev.2.00 Nov 14, 2006 page 5 of 185
REJ09B0322-0200

[X modified operation mode flag T] ----------------------- Bit 5
This flag determines whether arithmetic operations are performed via the Accumulator or
directly on a memory location. When the flag is set to “0”, arithmetic operations are
performed between the Accumulator and memory. When “1”, arithmetic operations are
performed directly on a memory location.
This flag is set by the SET instruction and is cleared by the CLT instruction.
(1) When the T flag = 0

A ← ← ← ← ← A * M2
* : indicates an arithmetic operation
A: accumulator contents
M2: contents of a memory location specified by the addressing mode of the

arithmetic operation
(2) When the T flag = 1

M1 ← ← ← ← ← M1 * M2
* : indicates arithmetic operation
M1: contents of a memory location, designated by the contents of Index

Register X.
M2: contents of a memory location specified by the addressing mode of

arithmetic operation.
[Overflow flag V] --- Bit 6

This flag is set to “1” when an overflow occurs as a result of a signed arithmetic operation.
An overflow occurs when the result of an addition or subtraction exceeds +127 (7F16) or
–128 (8016) respectively.
The CLV instruction clears the Overflow Flag. There is no set instruction.
The overflow flag is also set during the BIT instruction when bit 6 of the value being tested
is “1.”
☞ Overflows do not occur when the result of an addition or subtraction is equal to or

smaller than the above numerical values, or for additions involving values with different
signs.

[Negative flag N] --- Bit 7
This flag is set to match the sign bit (bit 7) of the result of a data or arithmetic operation.
This flag can be used to determine whether the results of arithmetic operations are positive
or negative, and also to perform a simple bit test.

Table 2.5.1 Instructions to set/clear each flag of processor status register

CENTRAL PROCESSING UNIT

Processor Status Register (PS)

Flag N
Set instruction
Clear instruction

Flag C
SEC
CLC

Flag Z Flag I
SEI
CLI

Flag D
SED
CLD

Flag B Flag T
SET
CLT

Flag V

CLV

Rev.2.00 Nov 14, 2006 page 6 of 185
REJ09B0322-0200

Fig.3.1.1 Byte Structure of Instructions

INSTRUCTIONS
Addressing mode

3. INSTRUCTIONS
3.1 Addressing Mode
The 740 Family has 19 addressing modes and a powerful memory access capability. When
extracting data required for arithmetic and logic operations from memory or when storing the
results of such operations in memory, a memory address must be specified. The specification
of the memory address is called addressing. The data required for addressing and the
registers involved are described below. The 740 Family instructions can be classified into three
kinds, by the number of bytes required in program memory for the instruction: 1-byte, 2-byte
and 3-byte instructions. In each case, the first byte is known as the “Op-Code (operation
code)” which forms the basis of the instruction. The second or third byte is called the “oper-
and” which affects the addressing. The contents of index registers X and Y can also effect the
addressing.

Although there are many addressing modes, there is always a particular memory location
specified. What differs is whether the operand, or the index register contents, or a combination
of both should be used to specify the memory or jump destination. Based on these 3 types
of instructions, the range of variation is increased and operation is enhanced by combinations
of the bit operation instructions, jump instruction, and arithmetic instructions.
As for 1-byte instruction, an accumulator or a register is specified, so that the instruction does
not have “operand,” which specify memory.

AAAAA
AAAAA

Op-Code

Operand I

Operand II

3-byte instruction Index Register

AAAAA
AAAAA

Op-Code

1-byte instruction

AAAAA
AAAAA

Op-Code

Operand I

2-byte instruction

X

YY

Rev.2.00 Nov 14, 2006 page 7 of 185
REJ09B0322-0200

INSTRUCTIONS

Immedia te
Addressing mode :

Function :

Instructions :

Example :

Immediate

Specifies the Operand as the data for the instruction.

ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

Mnemonic Machine code
 ∆∆∆∆∆ADC∆∆∆∆∆#$A5 6916 A516

Addressing mode

This symbol(#) indicates the Immediate addressing mode.

Op-code (6916)

Operand (A516)

M

e

m

o

r

y

(A) ← (A) + (C) + A516

Rev.2.00 Nov 14, 2006 page 8 of 185
REJ09B0322-0200

INSTRUCTIONS

Accumulator
Addressing mode :

Function :

Instructions :

Example :

Accumulator

Specifies the contents of the Accumulator as the data
for the instruction.

ASL, DEC, INC, LSR, ROL, ROR

Mnemonic Machine code
 ∆∆∆∆∆ROL∆∆∆∆∆A 2A16

Addressing mode

A

c

c

u

m

u

l

a

t

o

r

C

C

a

r

r

y

f

l

a

g

bit
7

bit
0

Rev.2.00 Nov 14, 2006 page 9 of 185
REJ09B0322-0200

Zero Page
INSTRUCTIONS

Addressing mode :

Function :

Instructions :

Example :

Zero Page

Specifies the contents in a Zero Page memory
location as the data for the instruction. The address
in the Zero Page memory location is determined by
using Operand as the low-order byte of the address
and 0016 as the high-order byte.

ADC, AND, ASL, BIT, CMP, COM, CPX, CPY, DEC,
EOR, INC, LDA, LDM, LDX, LDY, LSR, ORA, ROL, ROR,
RRF, SBC, STA, STX, STY, TST

Mnemonic Machine code
∆∆∆∆∆ADC∆∆∆∆∆$40 6516 4016

Addressing mode

4016

0016

F

F1

6

(A) ← (A) + (C) + XX16

Z

e

r

o

p

a

g

e
d

e

s

i

g

n

a

t

i

o

n

Data(XX16)

Op-code(6516)

O

p

e

r

a

n

d

(

4

01

6)

Zero page

M

e

m

o

r

y

Rev.2.00 Nov 14, 2006 page 10 of 185
REJ09B0322-0200

INSTRUCTIONS

Zero Page X
Addressing mode :

Function :

Instructions :

Example :

Zero Page X

Specified the contents in a Zero Page memory
location as the data for the instruction. The address
in the Zero Page memory location is determined by
the following:
(a) Operand and the Index Register X are added. (If as

a result of this addition a carry occurs, it is
ignored.)

(b) The result of the addition is used as the low-order
byte of the address and 0016 as the high-order
byte.

ADC, AND, ASL, CMP, DEC, DIV, EOR, INC, LDA, LDY,
LSR, MUL, ORA, ROL, ROR, SBC, STA, STY

Mnemonic Machine code
∆∆∆∆∆ADC∆∆∆∆∆$5E,X 7516 5E16

Addressing mode

4

41

6

0

01

6

Z

e

r

o

p

a

g

e

D

a

t

a

(

X

X1

6)

FF16

Op-code (7516)

O

p

e

r

a

n

d

(

5

E1

6)

(A) ← (A) + (C) + XX16

+

E

61

6

=

1 4

41

6

I

g

n

o

r

e

d

Z

e

r

o

p

a

g

e

X
d

e

s

i

g

n

a

t

i

o

n

M

e

m

o

r

y

C

o

n

t

e

n

t

s

o

f

I

n

d

e

x

R

e

g

i

s

t

e

r

X

Rev.2.00 Nov 14, 2006 page 11 of 185
REJ09B0322-0200

Zero Page Y
Addressing mode :

Function :

Instructions :

Example :

INSTRUCTIONS

Zero Page Y

Specifies the contents in a Zero Page memory
location as the data for the instruction. The address
in the Zero Page memory location is determined by
the following:
(a) Operand and the Index Register Y are added (if as

a result of this addition a carry occurs, it is ig-
nored).

(b) The result of the addition is used as the low-order
byte of the address and 0016 as the high-order
byte.

LDX, STX

Mnemonic Machine code
∆∆∆∆∆LDX∆∆∆∆∆$62,Y B616 6216

Addressing mode

6816

0016

Z

e

r

o

p

a

g

e

Data(XX16)

FF16

O

p

-

c

o

d

e

(

B

61

6)

O

p

e

r

a

n

d

(

6

21

6)

(

X

)

 ←

X

X1

6

+

0

61

6

=

6

81

6

Zero page Y
designation

Memory

Contents of Index Register Y

Rev.2.00 Nov 14, 2006 page 12 of 185
REJ09B0322-0200

INSTRUCTIONS

Absolute
Addressing mode :

Function :

Instructions :

Example :

Absolute

Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by using Operand I as the low-
order byte of the address and Operand II as the high-
order byte.

ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC,
JMP, JSR, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC,
STA, STX, STY

Mnemonic Machine code
∆∆∆∆∆ADC∆∆∆∆∆$AD12 6D16 1216 AD16

Addressing mode

AAAAA
AAAAA

Op-code (6D16)

Operand I (1216)

Operand II (AD16)

(A) ← (A) + (C) + XX16 Data (XX16)

Memory

AD1216

Absolute
designation

Rev.2.00 Nov 14, 2006 page 13 of 185
REJ09B0322-0200

INSTRUCTIONS

Absolute X
Addressing mode :

Function :

Instructions :

Example :

Absolute X

Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:
(a) Operand I is used as the low-order byte of an

address, Operand II as the high-order byte.
(b) Index Register X is added to the address above.

The result is the address in the memory location.

ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR,
ORA, ROL, ROR, SBC, STA

Mnemonic Machine code
∆∆∆∆∆ADC∆∆∆∆∆$AD12, X 7D16 1216 AD16

Addressing mode

+

E

E1

6

=

A

E

0

01

6

O

p

-

c

o

d

e

(

7

D1

6)

Operand I (1216)

O

p

e

r

a

n

d

I

I

(

A

D1

6)

(

A

)

 ←

(

A

)

+

(

C

)

+

X

X1

6 D

a

t

a

(

X

X1

6)

Memory

A

E

0

01

6

A

b

s

o

l

u

t

e

X
d

e

s

i

g

n

a

t

i

o

n

C

o

n

t

e

t

n

s

o

f

I

n

d

e

x
R

e

g

i

s

t

e

r

X

Rev.2.00 Nov 14, 2006 page 14 of 185
REJ09B0322-0200

INSTRUCTIONS

Absolute Y
Addressing mode :

Function :

Instructions :

Example :

Absolute Y

Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:
(a) Operand I is used as the low-order byte of an

address, Operand II as the high-order byte.
(b) Index Register Y is added to the address above.

The result is the address in the memory location.

ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA

Mnemonics Machine code
∆∆∆∆∆ADC∆∆∆∆∆$AD12, Y 7916 1216 AD16

Addressing mode

+ EE16 = AE0016
AAAAAA
AAAAAAOp-code (7916)

Operand I (1216)

Operand II (AD16)

(A) ← (A) + (C) + XX16 Data(XX16)

Memory

AE0016

Absolute Y
designation

Contents of Index Register Y

Rev.2.00 Nov 14, 2006 page 15 of 185
REJ09B0322-0200

Implied
Addressing mode :

Function :

Instructions :

Example :

Implied

Operates on a given register or the Accumulator, but
the address is always inherent in the instruction.

BRK, CLC, CLD, CLI, CLT, CLV, DEX, DEY, INX, INY,
NOP, PHA, PHP, PLA, PLP, RTI, RTS, SEC, SED, SEI,
SET, STP, TAX, TAY, TSX, TXA, TXS, TYA, WIT

Mnemonic Machine code
∆∆∆∆∆CLC 1816

INSTRUCTIONS

Addressing mode

Processor status register

?

0

Carry flag

bit 7 bit 0

Carry flag is cleared to “0.”

Rev.2.00 Nov 14, 2006 page 16 of 185
REJ09B0322-0200

INSTRUCTIONS

Relat ive
Addressing mode :

Function :

Instructions :

Example :

Addressing mode

Relative

Specifies the address in a memory location where the
next Op-Code is located.
When the branch condition is satisfied, Operand and
the Program Counter are added. The result of this
addition is the address in the memory location.
When the branch condition is not satisfied, the next
instruction is executed.

BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

Mnemonic Machine code
∆∆∆∆∆BCC∆∗∆∗∆∗∆∗∆∗–12 9016 F216

Decimal

*

* +

2

Address to be
executed next

O

p

-

c

o

d

e

(

9

01

6)

Operand (F216)

Jump

Memory

*

* +

2

Op-code (9016)

O

p

e

r

a

n

d

(

F

21

6)

M

e

m

o

r

y

Address to be
executed next

–

1

2*

When the carry flag is cleared,
jumps to address –12.

When the carry flag is set,
goes to address +2.**

Rev.2.00 Nov 14, 2006 page 17 of 185
REJ09B0322-0200

INSTRUCTIONS

Indirect X
Addressing mode :

Function :

Instructions :

Example :

Indirect X

Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:
(a) A Zero Page memory location is determined by the

adding the Operand and Index Register X (if as a
result of this addition a carry occurs, it is ignored).

(b) The result of the addition is used as the low-order
byte of an address in the Zero Page memory
location and 0016 as the high-order byte.

(c) The contents of the address in the Zero Page
memory location is used as the low-order byte of
the address in the memory location.

(d) The next Zero Page memory location is used as
the high-order byte of the address in the memory
location.

ADC, AND, CMP, EOR, LDA, ORA, SBC, STA

Mnemonic Machine code
∆∆∆∆∆ADC∆∆∆∆∆($1E,X) 6116 1E16

Addressing mode

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

(A)← (A) + (C) + XX16 Data(XX16) 140016

Op-code (6116)

Operand (1E16)

0416

0016

FF16

+ E616 = 1 0416

Ignored

Data II (1416)

Data I (0016)

Zero page

Memory

Absolute
designation

Zero page X
designation

0516

Assuming that “0016” for Data I, and “1416” for Data ll are stored in advance.

Contents of Index
Register X

Rev.2.00 Nov 14, 2006 page 18 of 185
REJ09B0322-0200

INSTRUCTIONS

Indirect Y
Addressing mode :

Function :

Instructions :

Example :

Indirect Y

Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:
(a) The Operand is used the low-order byte of an

address in the Zero Page memory location and
0016 of the high-order byte.

(b) The contents of the address in the Zero Page
memory location is used as the low-order byte of
an address. The next Zero Page memory location
is used as the high-order byte.

(c) The Index Register Y is added to the address in
Step b. The result of this addition is the address
in the memory location.

ADC, AND, CMP, EOR, LDA, ORA, SBC, STA

Mnemonic Machine code
∆∆∆∆∆ADC∆∆∆∆∆($1E),Y 7116 1E16

Addressing mode

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA

(A) ← (A) + (C) + XX16 Data (XX16) 12E716

Op-code (7116)

Operand (1E16)

1E16

0016

FF16

120116 + E616 = 12E716

Data II (1216)

Data I (0116)

Zero page

Memory

1F16

Absolute Y
designation

Zero page
indirect

designation

Contents of Index Register Y

Assuming that “0116” for Data I, and “1216” for Data ll are stored in advance.

Rev.2.00 Nov 14, 2006 page 19 of 185
REJ09B0322-0200

INSTRUCTIONS

Indirect Absolute
Addressing mode :

Function :

Instructions :

Example :

Indirect Absolute

Specifies the address in a memory location as the
jump destination address.
The address in the memory location is determined by
the following:
(a) Operand I is used as the low-order byte of an

address and Operand II as the high-order byte.
(b) The contents of the address above is used as the

low-order byte and the contents of the next
address as the high-order byte.

(c) The high-order and low-order bytes in step b
together form the address in the memory location.

JMP

Mnemonic Machine code
∆∆∆∆∆JMP∆∆∆∆∆($1400) 6C16 0016 1416

Addressing mode

Op-code (6C16)

Operand I (0016)

Operand II (1416)

140016

1EFF16

JumpData II (1E16)

Data I (FF16)

Address to be
executed next

Indirect
designation

Memory

Absolute
designation

✽

Assuming that “FF16” for Data I, and “1E16” for Data ll are stored in advance.

Note: The page’s last address (address XXFF16) cannot be specified for the
indirect designation address; in other words, JMP ($XXFF) cannot be
executed.

Rev.2.00 Nov 14, 2006 page 20 of 185
REJ09B0322-0200

INSTRUCTIONS

Addressing mode :

Function :

Instructions :

Example :

Zero Page Indirect Absolute

Specifies the address in a memory location as the
jump destination address. The address in the memory
location is determined by the following:
(a) Operand is used as the low-order byte of an

address in the Zero Page memory location and
0016 as the high-order byte.

(b) The contents of the address in the Zero Page
memory location is used as the low-order byte
and the contents of the next Zero Page memory
location as high-order byte.

(c) The high-order and low-order bytes in step b
together form the address of the memory location.

JMP, JSR

Mnemonic Machine code
∆∆∆∆∆JMP∆∆∆∆∆($45) B216 4516

Addressing modeZero Page Indirect

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

Data II (1E16)

Data I (FF16)

AAAAAA
AAAAAAOp-code (B216)

Operand (4516)

1EFF16
Address to be
executed next

AAA
A
A

A
A
AA
AA
AA

Jump

4516

0016

FF16

4616

Absolute
designation

Zero page

Zero page
indirect

designation

∗

Memory

Assuming that “FF16” for Data I, and “1E16” for Data ll are stored in advance.

Rev.2.00 Nov 14, 2006 page 21 of 185
REJ09B0322-0200

INSTRUCTIONS

 Special Page
Addressing mode :

Function :

Instructions :

Example :

Addressing mode

Special Page

Specifies the address in a Special Page memory
location as the jump destination address. The address
in the Special Page memory location is determined by
using Operand as the low-order byte of the address
and FF16 as the high-order byte.

JSR

Mnemonic Machine code
 ∆∆∆∆∆JSR∆∆∆∆∆\$FFC0 2216 C016

This symbol indicates the Special page mode.

AAAAA
AAAAA
AAAAA

Op-code (2216)

Operand (C016)

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

FF0016

FFFF16

FFC016

Special page

*

AAA
AAA

AAAAA
A
A
A

Jump

Special page
designation

Address to be
executed next

Memory

Rev.2.00 Nov 14, 2006 page 22 of 185
REJ09B0322-0200

INSTRUCTIONS

Zero Page Bit
Addressing mode :

Function :

Instructions :

Example :

Zero Page Bit

Specifies one bit of the contents in a Zero Page
memory location as the data for the instruction.
Operand is used as the low-order byte of the address
in the Zero Page memory location and 0016 as the
high-order byte. The bit position is designated by the
high-order three bits of the Op-code.

CLB, SEB

Mnemonic Machine code
∆∆∆∆∆CLB∆∆∆∆∆5,$44 BF16 4416

Addressing mode

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Memory

Zero page

FF16

0016

4416

Op-code(BF16)

0 1111111

?

bit 5

Bit designation

bit 5

4416

Zero page
designation

AAA

Zero page

Operand (4416)

0

Rev.2.00 Nov 14, 2006 page 23 of 185
REJ09B0322-0200

INSTRUCTIONS

Accumulator Bit
Addressing mode :

Function :

Ins t ruct ion:

Example :

Accumulator Bit

Specifies one bit of the Accumulator as the data for
the instruction. The bit position is designated by the
high-order three bits of the Op-Code.

CLB, SEB

Mnemonic Machine code
∆∆∆∆∆CLB∆∆∆∆∆5,A BB16

Addressing mode

AAAAA
AAAAA

1 1 1 1 1 10

Accumulator

?

bit 5

Memory

Accumulator

0

bit 5

0

Op-code(BB16)
Bit designation

Rev.2.00 Nov 14, 2006 page 24 of 185
REJ09B0322-0200

INSTRUCTIONS

Addressing mode :

Function :

Instructions :

Example :

Addressing mode
Accumulator Bit Relative

Accumulator Bit Relative

Specifies the address in a memory location where the
next Op-Code is located. The bit position is
designated by the high-order three bits of the Op-Code.
If the branch condition is satisfied, Operand and the
Program Counter are added. The result of this
addition is the address in the memory location.
When the branch condition is not satisfied, the next
instruction is executed.

BBC, BBS

Mnemonic Machine code
∆∆∆∆∆BBC∆∆∆∆∆5,A,∗∗∗∗∗–12 B316 F216

Decimal

0

AAAAAA
AAAAAA1 1 1 1 10

Accumulator

bit 5

Memory

0

Operand (F216)

*

*

*

AA
AAA
A
A
AAA

AAAA

Address to be
executed next –12

+2

Jump
0

1

AAAAA
AAAAA1 1 1 1 10

Accumulator

bit 5

Memory

0

Operand (F216)

*

*Address to be
executed next +2

0

When the bit 5 of the
Accumulator is set

When the bit 5 of the
Accumulator is cleared

Op-code(B316)
Bit designation

Op-code(B316)
Bit designation

Rev.2.00 Nov 14, 2006 page 25 of 185
REJ09B0322-0200

INSTRUCTIONS

Zero Page Bit Relative

Specifies the address of a memory location where the
next Op-Code is located.
The bit position is designated by the high-order three
bits of the Op-Code. The address in the Zero Page
memory location is determined by using Operand I as
low-order byte of the address and 0016 as the high-
order byte. If the branch condition is satisfied, Oper-
and Il and the Program Counter are added. The result
of this addition is the address in the memory location.
When the branch condition is not satisfied, the next
instruction is executed.

BBC, BBS

Mnemonic Machine language
∆∆∆∆∆BBC∆∆∆∆∆5,$04,∗∗∗∗∗–12 B716 0416 F116

Addressing mode
Zero Page Bit Relative

Addressing mode :

Function :

Instructions :

Example :

Decimal

Zero page
designation

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

0

AAAAA
AAAAA1 1 1 1 10

bit 5

Memory

1

Operand I (0416)

*

AA
AAA
A
A
A
AAA
AAAA
AA

Address to be
executed next *–12

0

AAAAA
AAAAA1 1 1 1 10 1

Operand I (0416)

*

*+3Address to be
executed next

0

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

1

bit 5

Memory

Operand II (F116) Operand II (F116)

*+3

Jump

0416

0016

FF16

Zero page

0416

0016

FF16

Zero page

Zero page
designation

When the bit 5 at address 0416

is cleared, jumps to address *–12.
When the bit 5 at address 0416

is set, goes to address *+3.

Op-code(B716)
Bit designation

Op-code(B716)
Bit designation

Rev.2.00 Nov 14, 2006 page 26 of 185
REJ09B0322-0200

3.2 Instruction Set
The 740 Family has 71 types of instructions. The detailed explanation of the instructions is
presented in §3.3. Note that some instructions cannot be used for some products.

3.2.1 Data transfer instructions
These instructions transfer the data between registers, register and memory, and memories.
The following are data transfer instructions.

INSTRUCTIONS
Instruction Set

Function
Load memory value into Accumulator, or memory
where is indicated by Index Register X
Load immediate value into memory
Load memory contents into Index Register X
Load memory contents into Index Register Y
Store Accumulator into memory
Store Index Register X into memory
Store Index Register Y into memory
Transfer Accumulator to the Index Register X
Transfer Index Register X into the Accumulator
Transfer Accumulator into the Index Register Y
Transfer Index Register Y into the Accumulator
Transfer Stack Pointer into the Index Register X
Transfer Index Register X into the Stack Pointer
Push Accumulator onto the Stack
Push Processor Status onto the Stack
Pull Accumulator from the Stack
Pull Processor Status from the Stack

Instruction

LDA

LDM
LDX
LDY
STA
STX
STY
TAX
TXA
TAY
TYA
TSX
TXS
PHA
PHP
PLA
PLP

Load

Store

Transfer

Stack
Operation

Rev.2.00 Nov 14, 2006 page 27 of 185
REJ09B0322-0200

3.2.2 Operating instruction
The operating instructions include the operations of addition and subtraction, logic,
comparison, rotation, and shift.
The operating instructions are as follows:

INSTRUCTIONS
Instruction Set

Contents
Add memory contents and C flag to Accumulator or memory
where is indicated by Index Register X
Subtracts memory contents and C flag’s complement from
Accumulator or memory where is indicated by Index
Register X
Increment Accumulator or memory contents by 1
Decrement Accumulator or memory contents by 1
Increment Index Register X by 1
Decrement Index Register X by 1
Increment Index Register Y by 1
Decrement Index Register Y by 1
Multiply Accumulator with memory specified by Zero Page
X addressing mode and store high-order byte of result on
Stack and low-order byte in Accumulator
Quotient is stored in Accumulator and one’s complement of
remainder is pushed onto stack
“AND” memory with Accumulator or memory where is
indicated by Index Register X
“OR” memory with Accumulator or memory where is
 indicated by Index Register X
“Exclusive-OR” memory with Accumulator or memory where
is indicated by Index Register X
Store one’s complement of memory contents to memory
“AND” memory with Accumulator (The result is not stored
into anywhere.)
Test whether memory content is “0” or not
Compare memory contents and Accumulator or memory
where is indicated by Index Register X
Compare memory contents and Index Register X
Compare memory contents and Index Register Y
Shift left one bit (memory contents or Accumulator)
Shift right one bit (memory contents or Accumulator)
Rotate one bit left with carry (memory contents or
Accumulator)
Rotate one bit right with carry (memory contents or
Accumulator)
Rotate four bits right witout carry (memory)

Note: For some products, multiplication and division instructions cannot be used.

Instructions

ADC

SBC

INC
DEC
INX
DEX
INY
DEY

MUL (Note)

DIV (Note)

AND

ORA

EOR

COM
BIT

TST
CMP

CPX
CPY
ASL
LSR
ROL

ROR

RRF

Addition
&

Subtraction

Multiplication

 &

Division

Logical
Operation

Comparison

Shift
 &
 Rotate

Rev.2.00 Nov 14, 2006 page 28 of 185
REJ09B0322-0200

INSTRUCTIONS
Instruction Set

Contents
Clear C flag
Set C flag
Clear D flag
Set D flag
Clear I flag
Set I flag
Clear T flag
Set T flag
Clear V flag

C flag : Carry Flag

D flag : Decimal Mode Flag

I flag : Interrupt Disable Flag

T flag : X Modified Operation Mode Flag

V flag : Overflow Flag

Flag
Setting

3.2.4 Flag setting instructions
The flag setting instructions clear “0” or set “1” C, D, I, T and V flags.

Instructions

CLC
SEC
CLD
SED
CLI
SEI
CLT
SET
CLV

3.2.5 Jump, Branch and Return instructions
The jump, branch and return instructions as following are used to change program flow.

Jump

Branch

Return

3.2.3 Bit managing instructions
The bit managing instructions clear “0” or set “1” designated bits of the Accumulator or
memory.

Instructions
CLB
SEB

Contents
Clear designated bit in the Accumulator or memory
Set designated bit in the Accumulator or memory

Bit
Managing

C flag : Carry Flag

Z flag : Zero Flag

N flag : Negative Flag

V flag : Overflow Flag

Instructions
JMP
BRA
JSR
BBC

BBS

BCC
BCS
BNE
BEQ
BPL
BMI
BVC
BVS
RTI
RTS

Contents
Jump to new location
Jump to new location
Jump to new location saving the current address
Branch when the designated bit in the Accumulator or
memory is “0”
Branch when the designated bit in the Accumulator or
memory is “1”

Branch when the C Flag is “0”
Branch when the C Flag is “1”
Branch when the Z Flag is “0”
Branch when the Z Flag is “1”
Branch when the N Flag is “0”
Branch when the N Flag is “1”

Branch when the V Flag is “0”
Branch when the V Flag is “1”
Return from interrupt
Return from subroutine

Rev.2.00 Nov 14, 2006 page 29 of 185
REJ09B0322-0200

Instructions

WIT
STP

Instruction

BRK
Contents

Executes a software interrupt.

INSTRUCTIONS

Interrupt

Instruction Set

3.2.6 Interrupt instruction (Break instruction)
This instruction causes a software interrupt.

3.2.7 Special instructions
These special instructions control the oscillation and the internal clock.

3.2.8 Other instruction

Special

Contents
Only advances the program counter.

Instruction

NOPOther

Contents
Stops the internal clock.
Stops the oscillation of oscillator.

Rev.2.00 Nov 14, 2006 page 30 of 185
REJ09B0322-0200

INSTRUCTIONS

3.3 Description of instructions
This section presents in detail the 740 Family instructions by arranging mnemonics of instruc-
tions alphabetically and dividing each instruction essentially into one page.
The heading of each page is a mnemonic. Operation, explanation and changes of status flags
are indicated for each instruction. In addition, assembler coding format, machine code, byte
number, and list of cycle numbers for each addressing mode are indicated.
The following are symbols used in this manual:

Description
Address high-order byte data
in 0 to 255
Address low-order byte data
in 0 to 255
Zero page address data in 0
to 255
Data in 0 to 255
Data in 0 to 7
Contents of the Program
Counter
Tab or space
Immediate mode
Special page mode
Hexadecimal symbol
Addition
Subtraction
Multiplication
Division
Logical AND
Logical OR
Logical exclusive OR
Contents of register, memory,
etc.
Direction of data transfer

Description
Accumulator
Bit i of Accumulator
Program Counter
Low-order byte of Program
Counter
High-order byte of Program
Counter
Processor Status Register
Stack Pointer
Index Register X
Index Register Y
Memory
Bit i of memory
Carry Flag
Zero Flag
Interrupt Disable Flag
Decimal Operation Mode Flag
Break Flag
X Modified Operations Mode
Flag
Overflow Flag
Negative Flag
Relative address
Break address

Symbol
A
Ai
PC
PCL

PCH

PS
S
X
Y
M
Mi
C
Z
I
D
B
T

V
N

REL
BADRS

Symbol
hh

ll

zz

nn
i
✽

∆
#
\
$
+
–
✕
/
∧
∨
∀
()

←

Description of instructions

Rev.2.00 Nov 14, 2006 page 31 of 185
REJ09B0322-0200

ADC ADC
ADD WITH CARRY

When (T) = 0, (A) ← (A) + (M) + (C)
(T) = 1, (M(X)) ← (M(X)) + (M) + (C)

When T = 0, this instruction adds the contents M, C, and A;
and stores the results in A and C.
When T = 1, this instruction adds the contents of M(X), M and
C; and stores the results in M(X) and C. When T=1, the
contents of A remain unchanged, but the contents of status
flags are changed.
M(X) represents the contents of memory where is indicated by
X.

N is 1 when bit 7 is 1 after the operation; otherwise it is
0.
V is 1 when the operation result exceeds +127 or –128;
otherwise it is 0.
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise it is 0.
C is 1 when the result of a binary addition exceeds 255 or
when the result of a decimal addition exceeds 99;
otherwise it is 0.

Operation :

Function :

Status flag: N :

V :

T :
B :
I :
D :
Z :
C :

Byte number
2
2
2
3
3
3
2
2

Statement
∆ADC∆#$nn
∆ADC∆$zz
∆ADC∆$zz,X
∆ADC∆$hhll
∆ADC∆$hhll,X
∆ADC∆$hhll,Y
∆ADC∆($zz,X)
∆ADC∆($zz),Y

Machine codes
6916, nn16

6516, zz16

7516, zz16

6D16, ll16, hh16

7D16, ll16, hh16

7916, ll16, hh16

6116, zz16

7116, zz16

Cycle number
2
3
4
4
5
5
6
6

Addressing mode
Immediate
Zero page
Zero page X
Absolute
Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Notes 1: When T=1, add 3 to the cycle number.
2: When ADC instruction is executed in decimal operation mode (D = 1),

execute at least one instruction after the ADC instruction before
executing a SEC, CLC, or CLD instruction.
In decimal operation mode, the N, V, Z flags are invalid.

Rev.2.00 Nov 14, 2006 page 32 of 185
REJ09B0322-0200

AND AND
LOGICAL AND

When (T) = 0, (A) ← (A) ∧ (M)
(T) = 1, (M(X)) ← (M(X)) ∧ (M)

When T = 0, this instruction transfers the contents of A and M
to the ALU which performs a bit-wise AND operation and stores
the result back in A.
When T = 1, this instruction transfers the contents M(X) and M
to the ALU which performs a bit-wise AND operation and stores
the results back in M(X). When T = 1 the contents of A remain
unchanged, but status flags are changed.
M(X) represents the contents of memory where is indicated by
X.

N is 1 when bit 7 is 1 after the operation; otherwise it is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise it is 0.
No change

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Immediate
Zero page
Zero page X
Absolute
Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Statement
∆AND∆#$nn
∆AND∆$zz
∆AND∆$zz,X
∆AND∆$hhll
∆AND∆$hhll,X
∆AND∆$hhll,Y
∆AND∆($zz,X)
∆AND∆($zz),Y

Machine codes
2916, nn16

2516, zz16

3516, zz16

2D16, ll16, hh16

3D16, ll16, hh16

3916, ll16, hh16

2116, zz16

3116, zz16

Byte number
2
2
2
3
3
3
2
2

Cycle number
2
3
4
4
5
5
6
6

Note: When T = 1, add 3 to a cycle number.

Rev.2.00 Nov 14, 2006 page 33 of 185
REJ09B0322-0200

ASL ASL
ARITHMETIC SHIFT LEFT

Operation :

Function :

Status flag:

C ← b7 b0 ← 0

N :

V :
T :
B :
I :
D :
Z :
C :

This instruction shifts the content of A or M by one bit to the
left, with bit 0 always being set to 0 and bit 7 of A or M always
being contained in C.

N is 1 when bit 7 of A or M is 1 after the operation;
otherwise it is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise it is 0.
C is 1 when bit 7 of A or M is 1, before this operation;
otherwise it is 0.

Cycle number
2
5
6
6
7

Byte number
1
2
2
3
3

Machine codes
0A16

0616, zz16

1616, zz16

0E16, ll16, hh16

1E16, ll16, hh16

Addressing mode
Accumulator
Zero page
Zero page X
Absolute
Absolute X

Statement
∆ASL∆A
∆ASL∆$zz
∆ASL∆$zz,X
∆ASL∆$hhll
∆ASL∆$hhll,X

Rev.2.00 Nov 14, 2006 page 34 of 185
REJ09B0322-0200

BBC BBC
BRANCH ON BIT CLEAR

When (Mi) or (Ai) = 0, (PC) ← (PC) + n + REL
(Mi) or (Ai) = 1, (PC) ← (PC) + n

n: If addressing mode is Zero Page Bit Relative, n=3. And if
addressing mode is Accumulator Bit Relative, n=2.

This instruction tests the designated bit i of M or A and takes
a branch if the bit is 0. The branch address is specified by a
relative address. If the bit is 1, next instruction is executed.

No change

Operation :

Function :

Status flag :

Cycle number

4

5

Byte number

2

3

Addressing mode
Accumulator bit
Relative
Zero page bit
Relative

Statement

∆BBC∆i,A,$hhll

∆BBC∆i,$zz,$hhll

Notes 1: rr16=$hhll–(✽ +n). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.
3: When executing the BBC instruction after the contents of the interrupt

request bit is changed, one instruction or more must be passed
before the BBC instruction is executed.

Machine codes

(20i+13)16, rr16

(20i+17)16,
zz16, rr16

Rev.2.00 Nov 14, 2006 page 35 of 185
REJ09B0322-0200

BBS BBS
BRANCH ON BIT SET

When (Mi) or (Ai) = 1, (PC) ← (PC) + n + REL
(Mi) or (Ai) = 0, (PC) ← (PC) + n

n : If addressing mode is Zero Page Bit Relative, n=3. And if
addressing mode is Accumulator Bit Relative, n=2.

This instruction tests the designated bit i of the M or A and
takes a branch if the bit is 1. The branch address is specified
by a relative address. If the bit is 0, next instruction is exe-
cuted.

No change

Operation :

Function :

Status flag :

Machine codes

(20i+3)16, rr16

(20i+7)16,
zz16, rr16

Cycle number

4

5

Byte number

2

3

Addressing mode
Accumulator bit
Relative
Zero page bit
Relative

Statement

∆BBS∆i,A,$hhll

∆BBS∆i,$zz,$hhll

Notes 1: rr16=$hhll–(✽ +n). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.
3: When executing the BBS instruction after the contents of the interrupt

request bit is changed, one instruction or more must be passed
before the BBS instruction is executed.

Rev.2.00 Nov 14, 2006 page 36 of 185
REJ09B0322-0200

BCC BCC
BRANCH ON CARRY CLEAR

When (C) = 0, (PC) ← (PC) + 2 + REL
(C) = 1, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address if C is
0. The branch address is specified by a relative address. If C
is 1, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Cycle number
2

Byte number
2

Addressing mode
Relative

Machine codes
9016, rr16

Statement
∆BCC∆$hhll

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 37 of 185
REJ09B0322-0200

BCS BCS
BRANCH ON CARRY SET

When (C) = 1, (PC) ← (PC) + 2 + REL
(C) = 0, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address if C is
1. The branch address is specified by a relative address. If C
is 0, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Addressing mode
Relative

Statement
∆BCS∆$hhll

Machine codes
B016, rr16

Byte number
2

Cycle number
2

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 38 of 185
REJ09B0322-0200

BEQ BEQ
BRANCH ON EQUAL

When (Z) = 1, (PC) ← (PC) + 2 + REL
(Z) = 0, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address when
Z is 1. The branch address is specified by a relative address.
If Z is 0, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Addressing mode
Relative

Statement
∆BEQ∆$hhll

Machine codes
F016,rr16

Byte number
2

Cycle number
2

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 39 of 185
REJ09B0322-0200

BIT BIT
TEST BIT IN MEMORY WITH ACCUMULATOR

(A) ∧ (M)

This instruction takes a bit-wise logical AND of A and M
contents; however, the contents of A and M are not modified.
The contents of N, V, Z are changed, but the contents of A, M
remain unchanged.

N is 1 when bit 7 of M is 1; otherwise it is 0.
V is 1 when bit 6 of M is 1; otherwise it is 0.
No change
No change
No change
No change
Z is 1 when the result of the operation is 0; otherwise Z is
0.
No change

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :

C :

Cycle number
3
4

Machine codes
2416, zz16

2C16, ll16, hh16

Statement
∆BIT∆$zz
∆BIT∆$hhll

Byte number
2
3

Addressing mode
Zero page
Absolute

Rev.2.00 Nov 14, 2006 page 40 of 185
REJ09B0322-0200

BMI BMI
BRANCH ON RESULT MINUS

When (N) = 1, (PC) ← (PC) + 2 + REL
(N) = 0, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address when
N is 1. The branch address is specified by a relative address.
If N is 0, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Statement
∆BMI∆$hhll

Addressing mode
Relative

Machine codes
3016, rr16

Byte number
2

Cycle number
2

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 41 of 185
REJ09B0322-0200

BNE BNE
 BRANCH ON NOT EQUAL

When (Z) = 0, (PC) ← (PC) + 2 + REL
(Z) = 1, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address if Z is
0. The branch address is specified by a relative address. If Z
is 1, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Cycle number
2

Byte number
2

Machine codes
D016, rr16

Statement
∆BNE∆$hhll

Addressing mode
Relative

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 42 of 185
REJ09B0322-0200

BPLBPL
BRANCH ON RESULT PLUS

When (N) = 0, (PC) ← (PC) + 2 + REL
(N) = 1, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address if N is
0. The branch address is specified by a relative address. If N
is 1, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Addressing mode
Relative

Statement
∆BPL∆$hhll

Machine codes
1016, rr16

Byte number
2

Cycle number
2

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 43 of 185
REJ09B0322-0200

BRA BRA
BRANCH ALWAYS

(PC) ← (PC) + 2 + REL

This instruction branches to the appointed address. The branch
address is specified by a relative address.

No change

Operation :

Function :

Status flag :

Cycle number
4

Byte number
2

Machine codes
8016, rr16

Statement
∆BRA∆$hhll

Addressing mode
Relative

Note: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.

Rev.2.00 Nov 14, 2006 page 44 of 185
REJ09B0322-0200

BRKBRK
FORCE BREAK

(B) ← 1
(PC) ← (PC) + 2
(M(S)) ← (PCH)
(S) ← (S) – 1
(M(S)) ← (PCL)
(S) ← (S) – 1
(M(S)) ← (PS)
(S) ← (S) – 1
(I) ← 1
(PC) ← BADRS (Note 1)

When the BRK instruction is executed, the CPU pushes the
current PC contents onto the stack. The BADRS designated in
the interrupt vector table is stored into the PC.

No change
No change
No change
1
1
No change
No change
No change

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Implied

Statement
∆BRK∆

Machine codes
0016

Byte number
1

Cycle number
7

Notes 1: “BADRS” means a break address.
2: The value of the PC pushed onto the stack by the execution of the

BRK instruction is the BRK instruction address plus two. Therefore,
the byte following the BRK will not be executed when the value of
the PC is returned from the BRK routine.

3: Both after the BRK instruction is executed and after INT is input, the
program is branched to the address where is specified by the inter-
rupt vector table. By testing the value of the B Flag in the PS
(pushed on the Stack) in the interrupt service routine, the user can
determine if the interrupt was caused by the BRK instruction.

Rev.2.00 Nov 14, 2006 page 45 of 185
REJ09B0322-0200

BVC BVC
BRANCH ON OVERFLOW CLEAR

When (V) = 0, (PC) ← (PC) + 2 + REL
(V) = 1, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address if V is
0. The branch address is specified by a relative address. If V
is 1, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Machine codes
5016, rr16

Cycle number
2

Byte number
2

Addressing mode
Relative

Statement
 ∆BVC∆$hhll

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 46 of 185
REJ09B0322-0200

BVSBVS
BRANCH ON OVERFLOW SET

When (V) = 1, (PC) ← (PC) + 2 + REL
(V) = 0, (PC) ← (PC) + 2

This instruction takes a branch to the appointed address when
V is 1. The branch address is specified by a relative address.
When V is 0, the next instruction is executed.

No change

Operation :

Function :

Status flag :

Cycle number
2

Byte number
2

Machine codes
7016, rr16

Statement
∆BVS∆$hhll

Addressing mode
Relative

Notes 1: rr16=$hhll–(✽ +2). The rr16 is a value in a range of –128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 47 of 185
REJ09B0322-0200

CLB CLB
CLEAR BIT

(Ai) ← 0, or
(Mi) ← 0

This instruction clears the designated bit i of A or M.

No change

Operation :

Function :

Status flag :

Machine codes

(20i+1B)16

(20i+1F)16,
ZZ16

Byte number

1

2

Cycle number

2

5

Statement

∆CLB∆i,A

∆CLB∆i,$zz

Addressing mode

Accumulator bit

Zero page bit

Rev.2.00 Nov 14, 2006 page 48 of 185
REJ09B0322-0200

CLCCLC
CLEAR CARRY FLAG

(C) ← 0

This instruction clears C.

No change
No change
No change
No change
No change
No change
No change
0

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Implied

Statement
∆CLC

Machine codes
1816

Byte number
1

Cycle number
2

Rev.2.00 Nov 14, 2006 page 49 of 185
REJ09B0322-0200

CLD CLD
CLEAR DECIMAL MODE

(D) ← 0

This instruction clears D.

No change
No change
No change
No change
No change
0
No change
No change

Operation :

Function :

Status flag:

Statement
 ∆CLD

Machine codes
D816

Byte number
1

N :
V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Implied

Cycle number
2

Rev.2.00 Nov 14, 2006 page 50 of 185
REJ09B0322-0200

CLICLI
CLEAR INTERRUPT DISABLE STATUS

Addressing mode
Implied

Statement
∆CLI

Machine codes
5816

Byte number
1

Cycle number
2

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

(I) ← 0

This instruction clears I.

No change
No change
No change
No change
0
No change
No change
No change

Rev.2.00 Nov 14, 2006 page 51 of 185
REJ09B0322-0200

CLT CLT
CLEAR TRANSFER FLAG

(T) ← 0

This instruction clears T.

No change
No change
0
No change
No change
No change
No change
No change

Operation :

Function :

Status flag:

Addressing mode
Implied

Machine codes
1216

Byte number
1

Cycle number
2

Statement
∆CLT

N :
V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 52 of 185
REJ09B0322-0200

CLVCLV
CLEAR OVERFLOW FLAG

(V) ← 0

This instruction clears V.

No change
0
No change
No change
No change
No change
No change
No change

Operation :

Function :

Status flag

Addressing mode
Implied

Byte number
1

Machine codes
B816

Statement
∆CLV

N :
V :
T :
B :
I :
D :
Z :
C :

Cycle number
2

Rev.2.00 Nov 14, 2006 page 53 of 185
REJ09B0322-0200

CMP CMP
COMPARE

When (T) = 0, (A) – (M)
(T) = 1, (M(X)) – (M)

When T = 0, this instruction subtracts the contents of M from
the contents of A. The result is not stored and the contents of
A or M are not modified.
When T = 1, the CMP subtracts the contents of M from the
contents of M(X). The result is not stored and the contents of
M(X), M, and A are not modified.
M(X) represents the contents of memory where is indicated by
X.

N is 1 when bit 7 of the operation result is 1 after the
operation; otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when the subtracted result is equal to or greater
than 0; otherwise C is 0.

Operation :

Function :

Status flag:

Cycle number
2
3
4
4
5
5
6
6

Addressing mode
Immediate
Zero page

Zero page X
Absolute

Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Statement
∆CMP∆#$nn
∆CMP∆$zz
∆CMP∆$zz,X
∆CMP∆$hhll
∆CMP∆$hhll,X
∆CMP∆$hhll,Y
∆CMP∆($zz,X)
∆CMP∆($zz),Y

Machine codes
C916, nn16

C516, zz16

D516, zz16

CD16, ll16, hh16

DD16, ll16, hh16

D916, ll16, hh16

C116, zz16

D116, zz16

Byte number
2
2
2
3
3
3
2
2

Note: When T=1, add 1 to the cycle number.

N :

V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 54 of 185
REJ09B0322-0200

COMCOM
COMPLEMENT

(M) ← (M)

This instruction takes the one’s complement of the contents of
M and stores the result in M.

N is 1 when bit 7 of the M is 1 after the operation;
otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag:

Addressing mode
Zero page

Statement
∆COM∆$zz

Machine codes
4416, zz16

Cycle number
5

Byte number
2

N :

V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 55 of 185
REJ09B0322-0200

CPX CPX
COMPARE MEMORY AND INDEX REGISTER X

(X) – (M)

This instruction subtracts the contents of M from the contents of
X. The result is not stored and the contents of X and M are not
modified.

N is 1 when bit 7 of the operation result is 1 after the
operation; otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when the subtracted result is equal to or greater
than 0; otherwise C is 0.

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Immediate
Zero page
Absolute

Statement
∆CPX∆#$nn
∆CPX∆$zz
∆CPX∆$hhll

Machine codes
E016, nn16

E416, zz16

EC16, ll16, hh16

Cycle number
2
3
4

Byte number
2
2
3

Rev.2.00 Nov 14, 2006 page 56 of 185
REJ09B0322-0200

CPYCPY
COMPARE MEMORY AND INDEX REGISTER Y

(Y) – (M)

This instruction subtracts the contents of M from the contents of
Y. The result is not stored and the contents of Y and M are not
modified.

N is 1 when bit 7 of the operation result is 1 after the
operation; otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when the subtracted result is equal to or greater
than 0; otherwise C is 0.

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Immediate
Zero page
Absolute

Machine codes
C016, nn16

C416, zz16

CC16, ll16, hh16

Cycle number
2
3
4

Byte number
2
2
3

Statement
∆CPY∆#$nn
∆CPY∆$zz
∆CPY∆$hhll

Rev.2.00 Nov 14, 2006 page 57 of 185
REJ09B0322-0200

DEC DEC
DECREMENT BY ONE

(A) ← (A) – 1, or
(M) ← (M) – 1

This instruction subtracts 1 from the contents of A or M.

N is 1 when bit 7 is 1 after the addition; otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag:

Addressing mode
Accumulator
Zero page

Zero page X
Absolute

Absolute X

Machine codes
1A16

C616, zz16

D616, zz16

CE16, ll16, hh16

DE16, ll16, hh16

Cycle number
2
5
6
6
7

Byte number
1
2
2
3
3

Statement
∆DEC∆A
∆DEC∆$zz
∆DEC∆$zz,X
∆DEC∆$hhll
∆DEC∆$hhll,X

N :
V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 58 of 185
REJ09B0322-0200

DEXDEX
DECREMENT INDEX REGISTER X BY ONE

(X) ← (X) – 1

This instruction subtracts one from the current contents of X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Implied

Machine codes
CA16

Byte number
1

Cycle number
2

Statement
∆DEX

Rev.2.00 Nov 14, 2006 page 59 of 185
REJ09B0322-0200

DEYDEY
DECREMENT INDEX REGISTER Y BY ONE

(Y) ← (Y) – 1

This instruction subtracts one from the current contents of Y.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Implied

Statement
∆DEY

Machine codes
8816

Cycle number
2

Byte number
1

Rev.2.00 Nov 14, 2006 page 60 of 185
REJ09B0322-0200

(A) ← (M(zz+(X)+1),M(zz+(X)) / (A)
M(S) ← one’s complement of Remainder
(S) ← (S) – 1

Divides the 16-bit data in M(zz+(X)) (low-order byte) and
M(zz+(X)+1) (high-order byte) by the contents of A. The
quotient is stored in A and the one’s complement of the
remainder is pushed onto the stack.

No change

DIV DIV
DIVIDE MEMORY BY ACCUMULATOR

Addressing mode
Zero page X

Statement
∆DIV∆$zz,X

Machine codes
E216, zz16

Byte number
2

Cycle number
16

Notes 1: The quotient’s overflow and zero division can not be detected. Check the
quotient’s overflow and zero division by software before DIV instruction is
executed. This instruction changes the Stack Pointer and the contents of the
Accumulator.

2: The DIV instruction can not be used for some products.
3: The DIV instruction is not affected by T and D flags.

Operation :

Function :

Status flag :

M (zz+(X))

M (zz+(X)+1)

M (S)

Zero page

dividend low-order

dividend high-order

one's complement of
Remainder

divisior

quotient

 (A)

 (A)

Rev.2.00 Nov 14, 2006 page 61 of 185
REJ09B0322-0200

EOREOR
EXCLUSIVE OR MEMORY WITH ACCUMULATOR

Operation :

Function :

Status flag:

When (T) = 0, (A) ← (A) ∀ (M)
(T) = 1, (M(X)) ← (M(X)) ∀ (M)

When T = 0, this instruction transfers the contents of the M
and A to the ALU which performs a bit-wise Exclusive OR, and
stores the result in A.
When T = 1, the contents of M(X) and M are transferred to the
ALU, which performs a bit-wise Exclusive OR and stores the
results in M(X). The contents of A remain unchanged, but sta-
tus flags are changed.
M(X) represents the contents of memory where is indicated by
X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Immediate
Zero page

Zero page X
Absolute

Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Machine codes
4916, nn16

4516, zz16

5516, zz16

4D16, ll16, hh16

5D16, ll16, hh16

5916, ll16, hh16

4116, zz16

5116, zz16

Cycle number
2
3
4
4
5
5
6
6

Byte number
2
2
2
3
3
3
2
2

Note: When T=1, add 3 to the cycle number.

Statement
∆EOR∆#$nn
∆EOR∆$zz
∆EOR∆$zz,X
∆EOR∆$hhll
∆EOR∆$hhll,X
∆EOR∆$hhll,Y
∆EOR∆($zz,X)
∆EOR∆($zz),Y

Rev.2.00 Nov 14, 2006 page 62 of 185
REJ09B0322-0200

INCINC
INCREMENT BY ONE

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Accumulator
Zero page

Zero page X
Absolute

Absolute X

Statement
∆INC∆A
∆INC∆$zz
∆INC∆$zz,X
∆INC∆$hhll
∆INC∆$hhll,X

Machine codes
3A16

E616, zz16

F616, zz16

EE16, ll16, hh16

FE16, ll16, hh16

Cycle number
2
5
6
6
7

Byte number
1
2
2
3
3

(A) ← (A) + 1, or
(M) ← (M) + 1

This instruction adds one to the contents of A or M.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Rev.2.00 Nov 14, 2006 page 63 of 185
REJ09B0322-0200

INXINX
INCREMENT INDEX REGISTER X BY ONE

Operation :

Function :

Status flag:

(X) ← (X) + 1

This instruction adds one to the contents of X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

N :

V :
T :
B :
I :
D :
Z :
C :

Statement
∆INX

Machine codes
E816

Cycle number
2

Byte number
1

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 64 of 185
REJ09B0322-0200

INYINY
INCREMENT INDEX REGISTER Y BY ONE

(Y) ← (Y) + 1

This instruction adds one to the contents of Y.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag:

Addressing mode
Implied

Statement
∆INY

Machine codes
C816

Byte number
1

Cycle number
2

N :

V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 65 of 185
REJ09B0322-0200

JMPJMP
JUMP

Operation :

Function :

Status flag:

When addressing mode is
(a) Absolute, then

(PC) ← hhll
(b) Indirect Absolute, then

(PCL) ← (hhll)
(PCH) ← (hhll+1)

(c) Zero page Indirect Absolute, then
(PCL) ← (zz)
(PCH) ← (zz+1)

This instruction jumps to the address designated by the
following three addressing modes:
Absolute
Indirect Absolute
Zero Page Indirect Absolute

No change

Cycle number
3
5
4

Byte number
3
3
2

Machine codes
4C16,ll16,hh16

6C16,ll16,hh16

B216,zz16

Statement
∆JMP∆$hhll
∆JMP∆($hhll)
∆JMP∆($zz)

 Addressing mode
Absolute

Indirect Absolute
Zero Page Indirect

Note: The page’s last address (address XXFF16) cannot be specified for the
 indirect designation address; in other words, JMP ($XXFF) cannot be
 executed.

Rev.2.00 Nov 14, 2006 page 66 of 185
REJ09B0322-0200

J S RJ S R
JUMP TO SUBROUTINE

(M(S)) ← (PCH)
(S) ← (S) – 1
(M(S)) ← (PCL)
(S) ← (S) – 1
After the above operations, if the addressing mode is
(a) Absolute, then

(PC) ← hhll
(b) Special page, then

(PCL) ← ll
(PCH) ← FF16

(c) Zero page Indirect, then
(PCL) ← (zz)
(PCH) ← (zz+1)

This instruction stores the contents of the PC in the stack, then
jumps to the address designated by the following addressing
modes:
Absolute
Special Page
Zero Page Indirect Absolute

No change

Operation :

Function :

Status flag:

Cycle number
6
5
7

(Note) “\” (5C16 of the ASCII code) denotes special page. hh16 must be FF16

in the special page addressing mode.

Byte number
3
2
2

Machine codes
2016, ll16, hh16

2216, ll16

0216, zz16

Statement
∆JSR∆$hhll
∆JSR∆\$hhll (Note)
∆JSR∆($zz)

Addressing mode
Absolute

Special page
Zero page Indirect

Rev.2.00 Nov 14, 2006 page 67 of 185
REJ09B0322-0200

LDALDA
LOAD ACCUMULATOR WITH MEMORY

Operation :

Function :

Status flag:

When (T) = 0, (A) ← (M)
(T) = 1, (M(X)) ← (M)

When T = 0, this instruction transfers the contents of M to A.
When T = 1, this instruction transfers the contents of M to
(M(X)). The contents of A remain unchanged, but status flags
are changed.
M(X) represents the contents of memory where is indicated by
X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

N :

V :
T :
B :
I :
D :
Z :
C :

Cycle number
2
3
4
4
5
5
6
6

Byte number
2
2
2
3
3
3
2
2

Machine codes
A916, nn16

A516, zz16

B516, zz16

AD16, ll16, hh16

BD16, ll16, hh16

B916, ll16, hh16

A116, zz16

B116, zz16

Statement
∆LDA∆#$nn
∆LDA∆$zz
∆LDA∆$zz,X
∆LDA∆$hhll
∆LDA∆$hhll,X
∆LDA∆$hhll,Y
∆LDA∆($zz,X)
∆LDA∆($zz),Y

Addressing mode
Immediate
Zero page

Zero page X
Absolute

Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Note: When T = 1, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 68 of 185
REJ09B0322-0200

LDMLDM
LOAD IMMEDIATE DATA TO MEMORY

(M) ← nn

This instruction loads the immediate value in M.

No change

Cycle number
4

Byte number
3

Machine codes
3C16, nn16, zz16

Statement
∆LDM∆#$nn,$zz

Addressing mode
Zero page

Operation :

Function :

Status flag :

Rev.2.00 Nov 14, 2006 page 69 of 185
REJ09B0322-0200

LDXLDX
LOAD INDEX REGISTER X FROM MEMORY

(X) ← (M)

This instruction loads the contents of M in X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Cycle number
2
3
4
4
5

Byte number
2
2
2
3
3

Machine codes
A216, nn16

A616, zz16

B616, zz16

AE16, ll16, hh16

BE16, ll16, hh16

Statement
∆LDX∆#$nn
∆LDX∆$zz
∆LDX∆$zz,Y
∆LDX∆$hhll
∆LDX∆$hhll,Y

Addressing mode
Immediate
Zero page

Zero page Y
Absolute

Absolute Y

Rev.2.00 Nov 14, 2006 page 70 of 185
REJ09B0322-0200

LDYLDY
LOAD INDEX REGISTER Y FROM MEMORY

(Y) ← (M)

This instruction loads the contents of M in Y.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Addressing mode
Immediate
Zero page

Zero page X
Absolute

Absolute X

Statement
∆LDY∆#$nn
∆LDY∆$zz
∆LDY∆$zz,X
∆LDY∆$hhll
∆LDY∆$hhll,X

Machine codes
A016, nn16

A416, zz16

B416, zz16

AC16, ll16, hh16

BC16, ll16, hh16

Cycle number
2
3
4
4
5

Byte number
2
2
2
3
3

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 71 of 185
REJ09B0322-0200

LSRLSR
LOGICAL SHIFT RIGHT

This instruction shifts either A or M one bit to the right such
that bit 7 of the result always is set to 0, and the bit 0 is
stored in C.

0
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when the bit 0 of either the A or the M before the
operation is 1; otherwise C is 0.

Operation :

Function :

Status flag:

0 → b7 b0 → C

N :
V :
T :
B :
I :
D :
Z :
C :

Cycle number
2
5
6
6
7

Byte number
1
2
2
3
3

Machine codes
4A16

4616, zz16

5616, zz16

4E16, ll16, hh16

5E16, ll16, hh16

Statement
∆LSR∆A
∆LSR∆$zz
∆LSR∆$zz,X
∆LSR∆$hhll
∆LSR∆$hhll,X

Addressing mode
Accumulator
Zero page

Zero page X
Absolute

Absolute X

Rev.2.00 Nov 14, 2006 page 72 of 185
REJ09B0322-0200

M(S) • (A) ← (A) ✕ M(zz+(X))
(S) ← (S) – 1

Multiplies Accumulator with the memory specified by the Zero
Page X addressing mode and stores the high-order byte of the
result on the Stack and the low-order byte in A.

No change

MULMUL
MULTIPLY ACCUMULATOR AND MEMORY

Operation :

Function :

Status flag :

M(zz+(X))

M(S)

Zero page

multiplicant

product

multiplier (A)

 (A)

Statement
∆MUL∆$zz,X

Machine codes
6216, zz16

Cycle number
15

Byte number
2

Addressing mode
Zero page X

Notes 1: This instruction changes the contents of S and A.
2: The MUL instruction cannot be used for some products.
3: The MUL instruction is not affected by T and D flags.

high-order low-order

Rev.2.00 Nov 14, 2006 page 73 of 185
REJ09B0322-0200

NOPNOP
NO OPERATION

Addressing mode
Implied

Statement
∆NOP

(PC) ← (PC) + 1

This instruction adds one to the PC but does no other
operation.

No change

Operation :

Function :

Status flag :

Cycle Number
2

Byte number
1

Machine codes
EA16

Rev.2.00 Nov 14, 2006 page 74 of 185
REJ09B0322-0200

ORAORA
OR MEMORY WITH ACCUMULATOR

Operation :

Function :

Status flag:

When (T) = 0, (A) ← (A) ∨ (M)
(T) = 1, (M(X)) ← (M(X)) ∨ (M)

When T = 0, this instruction transfers the contents of A and M
to the ALU which performs a bit-wise “OR”, and stores the
result in A.
When T = 1, this instruction transfers the contents of M(X) and
the M to the ALU which performs a bit-wise OR, and stores the
result in M(X). The contents of A remain unchanged, but status
flags are changed.
M(X) represents the contents of memory where is indicated by
X.

N is “1” when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the execution result is 0; otherwise Z is 0.
No change

N :

V :
T :
B :
I :
D :
Z :
C :

Cycle number
2
3
4
4
5
5
6
6

Byte number
2
2
2
3
3
3
2
2

Statement
∆ORA∆#$nn
∆ORA∆$zz
∆ORA∆$zz,X
∆ORA∆$hhll
∆ORA∆$hhll,X
∆ORA∆$hhll,Y
∆ORA∆($zz,X)
∆ORA∆($zz),Y

Addressing mode
Immediate
Zero page

Zero page X
Absolute

Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Machine codes
0916, nn16

0516, zz16

1516, zz16

0D16, ll16, hh16

1D16, ll16, hh16

1916, ll16, hh16

0116, zz16

1116, zz16

Note: When T=1, add 3 to the cycle number.

Rev.2.00 Nov 14, 2006 page 75 of 185
REJ09B0322-0200

PHAPHA
PUSH ACCUMULATOR ON STACK

Operation :

Function :

Status flag :

(M(S)) ← (A)
(S) ← (S) – 1

This instruction pushes the contents of A to the memory
location designated by S, and decrements the contents of S by
one.

No change

Machine codes
4816

Statement
∆PHA

Cycle number
3

Byte number
1

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 76 of 185
REJ09B0322-0200

PHPPHP
PUSH PROCESSOR STATUS ON STACK

(M(S)) ← (PS)
(S) ← (S) – 1

This instruction pushes the contents of PS to the memory loca-
tion designated by S and decrements the contents of S by one.

No change

Operation :

Function :

Status flag:

Cycle number
3

Byte number
1

Machine codes
0816

Statement
∆PHP

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 77 of 185
REJ09B0322-0200

PLAPLA
PULL ACCUMULATOR FROM STACK

Operation :

Function :

Status flag:

(S) ← (S) + 1
(A) ← (M(S))

This instruction increments S by one and stores the contents of
the memory designated by S in A.

N is 1 when bit 7 is 1 after the operation ; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

N :

V :
T :
B :
I :
D :
Z :
C :

Cycle number
4

Byte number
1

Machine codes
6816

Statement
∆PLA

Addressing mode
Implied

Note: A NOP instruction should be executed after every PLP instruction.

Rev.2.00 Nov 14, 2006 page 78 of 185
REJ09B0322-0200

PLPPLP
PULL PROCESSOR STATUS FROM STACK

(S) ← (S) + 1
(PS) ← (M(S))

This instruction increments S by one and stores the contents of
the memory location designated by S in PS.

Value returns to the original one that was pushed in the stack.

Operation :

Function :

Status flag :

Cycle number
4

Byte number
1

Machine codes
2816

Statement
∆PLP

Addressing mode
Implied

Note: A NOP instruction should be executed after every PLP instruction.

Rev.2.00 Nov 14, 2006 page 79 of 185
REJ09B0322-0200

ROLROL
ROTATE ONE BIT LEFT

Operation :

Function :

Status flag:

This instruction shifts either A or M one bit left through C. C is
stored in bit 0 and bit 7 is stored in C.

N is 1 when bit 6 is 1 before the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when bit 7 is 1 before the operation; otherwise C is
0.

 b7 b0 C

Cycle number
2
5
6
6
7

Byte number
1
2
2
3
3

Machine codes
2A16

2616, zz16

3616, zz16

2E16, ll16, hh16

3E16, ll16, hh16

Statement
∆ROL∆A
∆ROL∆$zz
∆ROL∆$zz,X
∆ROL∆$hhll
∆ROL∆$hhll,X

Addressing mode
Accumulator
Zero page

Zero page X
Absolute

Absolute X

N :

V:
T:
B:
I:
D:
Z:
C:

Rev.2.00 Nov 14, 2006 page 80 of 185
REJ09B0322-0200

RORROR
ROTATE ONE BIT RIGHT

This instruction shifts either A or M one bit right through C. C
is stored in bit 7 and bit 0 is stored in C.

N is 1 when C is 1 before the operation; otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when bit 0 is 1 before the operation; otherwise C is
0.

Operation :

Function :

Status flag:

C b7 b0

Cycle number
2
5
6
6
7

Byte number
1
2
2
3
3

Machine codes
6A16

6616, zz16

7616, zz16

6E16, ll16, hh16

7E16, ll16, hh16

Statement
∆ROR∆A
∆ROR∆$zz
∆ROR∆$zz,X
∆ROR∆$hhll
∆ROR∆$hhll,X

Addressing mode
Accumulator
Zero page

Zero page X
Absolute

Absolute X

N :
V:
T:
B:
I:
D:
Z:
C:

Rev.2.00 Nov 14, 2006 page 81 of 185
REJ09B0322-0200

RRFRRF
ROTATE RIGHT OF FOUR BITS

Operation :

Function :

Status flag :

 b7 b4 b3 b0

This instruction rotates 4 bits of the M content to the right.

No change

Cycle number
8

Byte number
2

Machine codes
8216, zz16

Statement
∆RRF∆$zz

Addressing mode
Zero page

Rev.2.00 Nov 14, 2006 page 82 of 185
REJ09B0322-0200

RTIRTI
RETURN FROM INTERRUPT

(S) ← (S) + 1
(PS) ← (M(S))
(S) ← (S) + 1
(PCL) ← (M(S))
(S) ← (S) + 1
(PCH) ← (M(S))

This instruction increments S by one, and stores the contents
of the memory location designated by S in PS. S is again
incremented by one and stores the contents of the memory
location designated by S in PCL. S is again incremented by
one and stores the contents of memory location designated by
S in PCH.

Value returns to the original one that was pushed in the stack.

Operation :

Function :

Status flag :

Cycle number
6

Byte number
1

Statement
∆RTI

Addressing mode
Implied

Machine codes
4016

Rev.2.00 Nov 14, 2006 page 83 of 185
REJ09B0322-0200

RTSRTS
RETURN FROM SUBROUTINE

Operation :

Function :

Status flag:

(S) ← (S) + 1
(PCL) ← (M(S))
(S) ← (S) + 1
(PCH) ← (M(S))
(PC) ← (PC) + 1

This instruction increments S by one and stores the contents of
the memory location designated by S in PCL. S is again
incremented by one and the contents of the memory location is
stored in PCH. PC is incremented by 1.

No change

Addressing mode
Implied

Statement
∆RTS

Machine codes
6016

Cycle number
6

Byte number
1

Rev.2.00 Nov 14, 2006 page 84 of 185
REJ09B0322-0200

SBCSBC
SUBTRACT WITH CARRY

When (T) = 0, (A) ← (A) – (M) – (C)
(T) = 1, (M(X)) ← (M(X)) – (M) – (C)

When T = 0, this instruction subtracts the value of M and the
complement of C from A, and stores the results in A and C.
When T = 1, the instruction subtracts the contents of M and
the complement of C from the contents of M(X), and stores the
results in M(X) and C.
A remain unchanged, but status flag are changed.
M(X) represents the contents of memory where is indicated by
X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V is 1 when the operation result exceeds +127 or –128;
otherwise V is 0.
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
C is 1 when the subtracted result is equal to or greater
than 0; otherwise C is 0.

Operation :

Function :

Status flag: N :

V :

T :
B :
I :
D :
Z :
C :

Cycle number
2
3
4
4
5
5
6
6

Byte number
2
2
2
3
3
3
2
2

Machine codes
E916, nn16

E516, zz16

F516, zz16

ED16, ll16, hh16

FD16, ll16, hh16

F916, ll16, hh16

E116, zz16

F116, zz16

Statement
∆SBC∆#$nn
∆SBC∆$zz
∆SBC∆$zz,X
∆SBC∆$hhll
∆SBC∆$hhll,X
∆SBC∆$hhll,Y
∆SBC∆($zz,X)
∆SBC∆($zz),Y

Addressing mode
Immediate
Zero page

Zero page X
Absolute

Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Notes 1: When T=1, add 3 to the cycle number.
2: When SBC instruction is executed in decimal operation mode

(D = 1), execute at least one instruction after the SBC instruction
before executing a SEC, CLC, or CLD instruction.
In decimal operation mode, the N, V, Z flags are invalid.

Rev.2.00 Nov 14, 2006 page 85 of 185
REJ09B0322-0200

SEBSEB
SET BIT

(Ai) ← 1, or
(Mi) ← 1

This instruction sets the designated bit i of A or M.

No change

Operation :

Function :

Status flag:

Cycle number
2
5

Byte number
1
2

Machine codes
(20i+B)16

(20i+F)16, zz16

Statement
∆SEB∆i,A
∆SEB∆i,$zz

Addressing mode
Accumulator bit
Zero page bit

Rev.2.00 Nov 14, 2006 page 86 of 185
REJ09B0322-0200

SECSEC
SET CARRY FLAG

(C) ← 1

This instruction sets C.

No change
No change
No change
No change
No change
No change
No change
1

Operation :

Function :

Status flag:

Cycle number
2

Byte number
1

Machine code
3816

Statement
∆SEC

Addressing mode
Implied

N :
V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 87 of 185
REJ09B0322-0200

SEDSED
SET DECIMAL MODE

(D) ← 1

This instruction set D.

No change
No change
No change
No change
No change
1
No change
No change

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

Machine codes
F816

Byte number
1

Cycle number
2

Statement
∆SED

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 88 of 185
REJ09B0322-0200

(I) ← 1

This instruction sets I.

No change
No change
No change
No change
1
No change
No change
No change

SEISEI
SET INTERRUPT DISABLE FLAG

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

Cycle number
2

Byte number
1

Machine codes
7816

Statement
∆SEI

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 89 of 185
REJ09B0322-0200

SETSET
SET TRANSFER FLAG

(T) ← 1

This instruction sets T.

No change
No change
1
No change
No change
No change
No change
No change

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

Cycle number
2

Byte number
1

Machine codes
3216

Statement
∆SET

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 90 of 185
REJ09B0322-0200

STASTA
STORE ACCUMULATOR IN MEMORY

(M) ← (A)

This instruction stores the contents of A in M.
The contents of A does not change.

No change

Operation :

Function :

Status flag:

Cycle number
4
5
5
6
6
7
7

Byte number
2
2
3
3
3
2
2

Statement
∆STA∆$zz
∆STA∆$zz,X
∆STA∆$hhll
∆STA∆$hhll,X
∆STA∆$hhll,Y
∆STA∆($zz,X)
∆STA∆($zz),Y

Addressing mode
Zero page

Zero page X
Absolute

Absolute X
Absolute Y
(Indirect X)
(Indirect Y)

Machine codes
8516, zz16

9516, zz16

8D16, ll16, hh16

9D16, ll16, hh16

9916, ll16, hh16

8116, zz16

9116, zz16

Rev.2.00 Nov 14, 2006 page 91 of 185
REJ09B0322-0200

STPSTP
STOP

CPU ← Stand-by state (Oscillation stopped)

This instruction resets the oscillation control F/F and the oscil-
lation stops. Reset or interrupt input is needed to wake up from
this mode.

No change

Operation :

Function :

Status flag:

Cycle number
2

Byte number
1

Machine codes
4216

Statement
∆STP

Addressing mode
Implied

Note: If the STP instruction is disabled the cycle number will be 2 (same in
operation as NOP). However, disabling this instruction is an optional
feature; therefore, consult the specifications for the particular chip in
question.

Rev.2.00 Nov 14, 2006 page 92 of 185
REJ09B0322-0200

STXSTX
STORE INDEX REGISTER X IN MEMORY

(M) ← (X)

This instruction stores the contents of X in M. The contents of
X does not change.

No change

Operation :

Function :

Status flag:

Byte number
2
2
3

Cycle number
4
5
5

Machine codes
8616, zz16

9616, zz16

8E16, ll16, hh16

Statement
∆STX∆$zz
∆STX∆$zz,Y
∆STX∆$hhll

Addressing mode

Zero page
Zero page Y

Absolute

Rev.2.00 Nov 14, 2006 page 93 of 185
REJ09B0322-0200

STYSTY
STORE INDEX REGISTER Y IN MEMORY

(M) ← (Y)

This instruction stores the contents of Y in M.
The contents of Y does not change.

No change

Operation :

Function :

Status flag:

Cycle number
4
5
5

Byte number
2
2
3

Machine codes
8416, zz16

9416, zz16

8C16, ll16, hh16

Statement
∆STY∆$zz
∆STY∆$zz,X
∆STY∆$hhll

Addressing mode
Zero page

Zero page X
Absolute

Rev.2.00 Nov 14, 2006 page 94 of 185
REJ09B0322-0200

TAXTAX
TRANSFER ACCUMULATOR TO INDEX REGISTER X

(X) ← (A)

This instruction stores the contents of A in X. The contents of
A does not change.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Cycle number
2

Byte number
1

Machine codes
AA16

Statement
∆TAX

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 95 of 185
REJ09B0322-0200

TAYTAY
TRANSFER ACCUMULATOR TO INDEX REGISTER Y

(Y) ← (A)

This instruction stores the contents of A in Y. The contents of
A does not change.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Cycle number
2

Byte number
1

Machine codes
A816

Statement
∆TAY

Addressing mode
Implied

N :

V :
T :
B :
I :
D :
Z :
C :

Operation :

Function :

Status flag:

Rev.2.00 Nov 14, 2006 page 96 of 185
REJ09B0322-0200

TSTTST
TEST FOR NEGATIVE OR ZERO

(M) = 0 ?

This instruction tests whether the contents of M are “0” or not
and modifies the N and Z.

N is 1 when bit 7 of M is 1; otherwise N is 0.
No change
No change
No change
No change
No change
Z is 1 when the M content is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag: N :
V :
T :
B :
I :
D :
Z :
C :

Addressing mode
Zero page

Statement
∆TST∆$zz

Machine codes
6416, zz16

Byte number
2

Cycle number
3

Rev.2.00 Nov 14, 2006 page 97 of 185
REJ09B0322-0200

TSXTSX
TRANSFER STACK POINTER TO INDEX REGISTER X

(X) ← (S)

This instruction transfers the contents of S in X.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Cycle number
2

Byte number
1

Machine codes
BA16

Statement
∆TSX

Addressing mode
Implied

Operation :

Function :

Status flag: N :

V :
T :
B :
I :
D :
Z :
C :

Rev.2.00 Nov 14, 2006 page 98 of 185
REJ09B0322-0200

TXATXA
TRANSFER INDEX REGISTER X TO ACCUMULATOR

(A) ← (X)

This instruction stores the contents of X in A.

N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag:

Cycle number
2

Byte number
1

Machine codes
8A16

Statement
∆TXA

Addressing mode
Implied

N :

V:
T:
B:
I:
D:
Z:
C:

Rev.2.00 Nov 14, 2006 page 99 of 185
REJ09B0322-0200

TXSTXS
TRANSFER INDEX REGISTER X TO STACK POINTER

(S) ← (X)

This instruction stores the contents of X in S.

No change

Operation :

Function :

Status flag

Cycle number
2

Byte number
1

Machine codes
9A16

Statement
∆TXS

Addressing mode
Implied

Rev.2.00 Nov 14, 2006 page 100 of 185
REJ09B0322-0200

TYATYA
TRANSFER INDEX REGISTER Y TO ACCUMULATOR

(A) ← (Y)

This instruction stores the contents of Y in A.

N is 1 when bit 7 is 1 after the operation; otherwise N
is 0.
No change
No change
No change
No change
No change
Z is 1 when the operation result is 0; otherwise Z is 0.
No change

Operation :

Function :

Status flag:

Cycle number
2

Byte number
1

Machine codes
9816

Statement
∆TYA

Addressing mode
Implied

N :

V:
T:
B:
I:
D:
Z:
C:

Rev.2.00 Nov 14, 2006 page 101 of 185
REJ09B0322-0200

WITWIT
WAIT

Operation :

Function :

Status flag :

CPU ← Wait state

The WIT instruction stops the internal clock but the
oscillation of the oscillation circuit is not stopped. Reset or
interrupt input is needed to wake up from this mode.

No change

Cycle number
2

Byte number
1

Machine codes
C216

Addressing mode
Implied

Statement
∆WIT

Rev.2.00 Nov 14, 2006 page 102 of 185
REJ09B0322-0200

INSTRUCTIONS

3.4 Instructions Related to Interrupt Handling and Subroutine Processing

3.4.1 Instructions Related to Interrupt Handling
When an interrupt is accepted, the contents of the processor status register are pushed onto
the memory location indicated by the stack pointer. There is therefore no need to execute the
PHP instruction.
If it is necessary to save the contents of the accumulator, the PHA instruction should be
executed within an interrupt routine (before any instruction that manipulates the accumulator).
Whenever a stack operation instruction such as PHA is executed within an interrupt routine,
make sure that instructions such as PLA that affect the stack operation instruction are also
executed within the same interrupt routine.
Execute the RTI instruction to return from the interrupt routine.

3.4.2 Instructions Related to Interrupt Control
The factors that control an interrupt are the interrupt disable flag (I) as well as the interrupt
enable bit and request bit corresponding to the interrupt source. (This does not apply to
software interrupts triggered by the BRK instruction.)

(1) Disabling Interrupts
An interrupt may be disabled by setting the interrupt disable flag (I) to “1” using the SEI
instruction or by using an instruction such as LDM or CLB (a variety of other instructions
can be used as well) to clear the interrupt enable bit to “0”.

(2) Enabling Interrupts
An interrupt may be enabled by setting the interrupt enable bit to “1” using an instruction
such as LDM or SEB, and by using the CLI instruction to clear the interrupt disable flag
(I) to “0”.

(3) Clearing Interrupt Requests
When an interrupt is generated, the interrupt request bit corresponding to the interrupt
source is set to “1” automatically. The interrupt request bit is cleared to “0” when the
interrupt is accepted. Therefore, there is no need to clear the interrupt request bit (within
an interrupt routine) by means of a user program.
If interrupt generation occurs while an interrupt is disabled, the interrupt request bit is set
to “1”. If, under this condition, the interrupt is subsequently enabled (the interrupt disable
flag (I) is cleared to “0” and the interrupt enable bit is set to “1”), the interrupt is
accepted. To prevent an interrupt from being accepted in such a case, use an instruction
such as LDM or CLB to clear the interrupt request bit to “0” before enabling the interrupt.
In such cases, the following point should be considered.

● While the interrupt disable flag (I) is “0”, if the interrupt request bit is cleared to “0” and
the interrupt enable bit is cleared to “0” at the same time using an instruction such as
LDM, the interrupt will actually be enabled before the request bit is cleared to “0”, causing
the interrupt to be accepted.
To prevent this, use an instruction such as CLB to clear the request bit to “0” first, then
enable the interrupt.

Instructions Related to Interrupt Processing and Subroutine Processing

Rev.2.00 Nov 14, 2006 page 103 of 185
REJ09B0322-0200

(4) Interrupt Control within Interrupt Routines
After an interrupt is accepted and execution of the interrupt routine begins, the interrupt
disable flag (I) is set to “1” automatically to prevent multiple interrupts. To enable multiple
interrupts, use the CLI instruction within the interrupt routine to clear the interrupt disable
flag (I) to “0”.

3.4.3 Instructions Related to Subroutine Processing
Normally, the JSR instruction is used to jump to a subroutine. When this instruction is
executed, the current program counter values, first PCH then PCL, are pushed onto the stack
automatically and the stack pointer is moved accordingly. However, in contrast to interrupt
handling, the contents of the processor status register are not saved automatically when a
subroutine is called. If it is necessary to save the contents of the processor status register,
execute the PHP instruction. Executing the JSR instruction does not alter the content of the
processor status register. Therefore, saving the contents of the processor status register using
the PHP instruction may be performed either immediately before the JSR instruction or
immediately after it (at the beginning of the subroutine). However, if such a stack operation
instruction is executed within a subroutine, do not fail to perform the opposite operation
before returning from (that is, within) the subroutine.
Execute the RTS instruction to return from a subroutine. When this instruction is executed,
the return address saved by the JSR instruction is returned to the program counter
automatically. Likewise in contrast to interrupt handling, the contents of the processor status
register are not restored. If the PHP or PHA instruction is used within a subroutine to store
the contents of the processor status register or accumulator, do not fail to perform the
opposite stack operation, using the PLP or PLA instruction, before returning from (that is,
within) the subroutine.
Figure 3.4.1 shows pushing and pulling values onto and from the stack during interrupt
handling and subroutine processing. Table 3.4.1 shows instructions for storing and retrieving
values in the accumulator and processor status register.

INSTRUCTIONS

Instructions Related to Interrupt Processing and Subroutine Processing

Rev.2.00 Nov 14, 2006 page 104 of 185
REJ09B0322-0200

Instruction to push onto Stack

PHA

PHP

Accumulator

Processor status register

Instruction to pull from Stack

PLA

PLP

Fig.3.4.1 Pushing and pulling values onto and from the stack

Table 3.4.1 Instructions for storing and retrieving values in the accumulator or processor status register

INSTRUCTIONS

Instructions Related to Interrupt Processing and Subroutine Processing

Interrupt request →

Currently running routine

M(S) ← (PCH)

.....

Execute RTS instruction

Subroutine

Interrupt S. R.

Execute JSR instruction

.....

Execute RTI instruction

(Note)
Push return address
onto stack

Push contents of
processor status register
onto location indicated by
stack pointer

I flag “0” → “1”
Fetch interrupt jump
destination address

Pull contents of processor
status register from location
indicated by stack pointer

Pull return address
from stack

Pull return address
from stack

Push return address
onto stack

Note: Conditions under which interrupt is accepted at this point: Interrupt enable flag set to “1”
 Interrupt disable flag set to “0”

(S) ← (S) – 1

(S) ← (S) – 1

(S) ← (S) – 1

(S) ← (S) – 1
M(S) ← (PCL)

M(S) ← (PCL)

(PCL) ← M(S)

(PCH) ← M(S)

M(S) ← (PS)

(PS) ← M(S)

(S) ← (S) – 1

(S) ← (S) + 1

(S) ← (S) + 1

(S) ← (S) + 1

(S) ← (S) + 1

(PCL) ← M(S)

(S) ← (S) + 1

(PCH) ← M(S)

M(S) ← (PCH)

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 105 of 185
REJ09B0322-0200

4. NOTES ON USE
The information below applies to the entire 740 Family. Please refer to it in conjunction with
the usage notes of each specific product model.

4.1 Notes on input and output ports
4.1.1 Notes in standby state
In standby state✽ 1, do not make pin levels “undefined” when I/O ports are set to input mode.
In addition, the same note is necessary even when N-channel open-drain I/O ports are set
to output mode.
Pull-up (connect the port to VCC) or pull-down (connect the port to VSS) these ports through
a resistor.
When determining a resistance value, note the following points:
• External circuit
• Variation of output levels during the ordinary operation

● Reason
An transistor becomes an OFF state when an I/O port is set as input mode by the direction
register, so that the port enter a high-impedance state. At this time, the potential which
is input to the input buffer in a microcomputer is unstable in the state that input levels are
“undefined”. This may cause power source current. Even when an I/O port of N-channel
open-drain is set as output mode by the direction register, if the contents of the port latch
is “1”, the same phenomenon as that of an input port will occur.

✽ 1 standby state: Stop mode by executing STP instruction
Wait mode by executing WIT instruction

4.1.2 Modifying output data with bit managing instruction
When the port latch of an I/O port is modified with the bit managing instruction✽ 2, the value
of the unspecified bit may be changed.

● Reason
I/O ports are set to input or output mode in bit units. Reading from a port register or writing
to it involves the following operations.
• Port in input mode

Read: Read the pin level.
Write: Write to the port latch.

• Port in output mode
Read: Read the port latch or read the output from the peripheral function (specifications
differ depending on the port).
Write: Write to the port latch. (The port latch value is output from the pin.)

Since bit managing instructions✽ 1 are read-modify-write instructions, ✽ 2 using such an instruction
on a port register causes a read and write to be performed simultaneously on the bits
other than the one specified by the instruction.
When an unspecified bit is in input mode, its pin level is read and that value is written to
the port latch. If the previous value of the port latch differs from the pin level, the port latch
value is changed.
If an unspecified bit is in output mode, the port latch is generally read. However, for some
ports the peripheral function output is read, and the value is written to the port latch. In
this case, if the previous value of the port latch differs from the peripheral function output,
the port latch value is changed.

✽ 1. Bit managing instructions: SEB and CLB instructions
✽ 2. Read-modify-write instructions: Instructions that read memory in byte units, modify the

value, and then write the result to the same location in memory in byte units

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 106 of 185
REJ09B0322-0200

4.2 Termination of unused pins
At the termination of unused pins, perform wiring at the shortest possible distance (20 mm
or less) from microcomputer pins. With regard to an effects on the system, thoroughly perform
system evaluation on the user side.

4.2.1 Appropriate termination of unused pins
➀ Output-only pins:

Open.
➁ Input-only pins:

Connect each pin via a 1 kΩ to 10 kΩ resistor (reference value) to VCC or VSS. If the port
allows selection of an on-chip pull-up or pull-down resistor, the on-chip pull-up or pull-
down resistor may be used.
In addition, pins (CNVSS and INT pins, etc.) for which the operating mode is affected by
the voltage level, select VCC or VSS after checking the mode.

➂ I/O ports:
Set the I/O ports for the input mode and connect them to VCC or VSS through each resistor
of 1 kΩ to 10 kΩ (reference value).
Ports that permit the selecting of a built-in pull-up/pull-down resistor can also use this
resistor. Set the I/O ports for the output mode and open them at “L” or “H”.
• When opening them in the output mode, the input mode of the initial status remains until

the mode of the ports is switched over to the output mode by the program after reset.
Thus, the potential at these pins is undefined and the power source current may increase
in the input mode. With regard to an effects on the system, thoroughly perform system
evaluation on the user side.

• Since the direction register setup may be changed because of a program runaway or
noise, set direction registers by program periodically to increase the reliability of program.

➃ The AVss pin when not using the A/D converter:
When not using the A/D converter, handle a power source pin for the A/D converter, AVSS

and AVCC pins as follows:
• AVSS: Connect to the VSS pin.
• AVCC: Connect to the VCC pin.

4.2.2 Termination remarks
➀ I/O ports:

Do not open in the input mode.
● Reason

• The power source current may increase depending on the first-stage circuit.
• An effect due to noise may be easily produced as compared with proper termination ➀

and shown on the above.

➁ I/O ports:
When setting for the input mode, do not connect to VCC or VSS directly.

● Reason
If the direction register setup changes for the output mode because of a program runaway
or noise, a short circuit may occur between a port and VCC (or VSS).

➂ I/O ports:
When setting for the input mode, do not connect multiple ports in a lump to VCC or VSS

through a resistor.
● Reason

If the direction register setup changes for the output mode because of a program runaway
or noise, a short circuit may occur between ports.

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 107 of 185
REJ09B0322-0200

4.3 Notes on interrupts

4.3.1 Setting for interrupt request bit and interrupt enable bit
To set an interrupt request bit and an interrupt enable bit for interrupts, execute as the
following sequence:
➀ Clear an interrupt request bit to “0” (no interrupt request issued).
➁ Set an interrupt enable bit to “1” (interrupts enabled).

● Reason
If the above setting are performed simultaneously with one instruction, an unnecessary
interrupt processing routine is executed. Because an interrupt enable bit is set to “1”
(interrupts enabled) before an interrupt request bit is cleared to “0.”

4.3.2 Switching of detection edge
If it is not necessary to generate interrupts synchronized with certain settings, such as
setting the active edge for external interrupts or switching the interrupt source for a vector
in cases where multiple interrupt sources are assigned to the same interrupt vector, use
the following procedure to make the settings.

Fig. 4.3.1 Switching sequence of detection edge

● Reason
The interrupt request bit may be set to “1” in the following cases:
• When switching the active edge for external interrupts.
• When switching the interrupt source for a vector in cases where multiple interrupt sources

are assigned to the same interrupt vector.

C

l

e

a

r

a

n

i

n

t

e

r

r

u

p

t

e

n

a

b

l

e

b

i

t

t

o

“

0

”

(

i

n

t

e

r

r

u

p

t

d

i

s

a

b

l

e

d

)

NOP instruction (one or more instructions)

Set the interrupt edge selection bit (active edge switch
bit) or the interrupt (source) selection bit

C

l

e

a

r

a

n

i

n

t

e

r

r

u

p

t

r

e

q

u

e

s

t

b

i

t

t

o

“

0

”

(

n

o

i

n

t

e

r

r

u

p

t

r

e

q

u

e

s

t

i

s

s

u

e

d

)

S

e

t

t

h

e

i

n

t

e

r

r

u

p

t

e

n

a

b

l

e

b

i

t

t

o

“

1

”

(

i

n

t

e

r

r

u

p

t

e

n

a

b

l

e

d

)

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 108 of 185
REJ09B0322-0200

4.3.3 Distinction of interrupt request bit
When executing the BBC or BBS instruction to an interrupt request (request distinguish) bit
of an interrupt request register (interrupt request distinguish register) immediately after this
bit is set to “0”, execute one or more instructions before executing the BBC or BBS instruction.

Fig. 4.3.2 Distinction sequence of interrupt request bit

● Reason
If the BBC or BBS instruction is executed immediately after an interrupt request (request
distinguish) bit of an interrupt request register (interrupt request distinguish register) is
cleared to “0,” the value of the interrupt request (request distinguish) bit before being cleared
to “0” is read.

Clear an interrupt request (request distinguish) bit to “0”
(no interrupt request issued)

NOP instruction (one or more instructions)

Execute the BBC or BBS instruction

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 109 of 185
REJ09B0322-0200

4.4 Notes on programming
4.4.1 Processor Status Register
(1) Initialization of Processor Status Register

Flags which affect program execution must be initialized after a reset. In particular, it is essential
to initialize the T and D flags because they have an important effect on calculations.

● Reason
After a reset, the contents of processor status register (PS) are undefined except for the I flag
which is “1.”

Fig. 4.4.1 Initialization of flags in Processor Status Register

(2) How to reference Processor Status Register
To reference the contents of the processor status register (PS), execute the PHP instruction
once then read the contents of (S + 1). If necessary, execute the PLP instruction to
return the PS to its original status.
A NOP instruction should be executed after every PLP instruction.

Reset

Flags initializing

Main program

Fig. 4.4.2 PLP instruction execution sequence

PLP instruction

NOP instruction

Fig. 4.4.3 Stack memory contents after PHP
instruction execution

(S)

(S) + 1 Saved PS

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 110 of 185
REJ09B0322-0200

4.4.2 BRK instruction
(1) Method detecting interrupt source

It can be detected that the BRK instruction interrupt event or the least priority interrupt
event by referring the stored B flag state. Refer the stored B flag state in the interrupt
routine, in this case.

Fig. 4.4.4 Contents of stack memory in interrupt processing routine

(2) Interrupt priority level
At the following status,
➀ the interrupt request bit has set to “1.”
➁ the interrupt enable bit has set to “1.”
➂ the interrupt disable flag (I) has set to “1.”
If the BRK instruction is executed, the interrupt disable state is cancelled and it becomes
in the interrupt enable state. So that the requested interrupts (the interrupts that corresponding
to their request bits have set to “1”) are accepted.

4.4.3 Decimal calculations
(1) Execution of Decimal calculations

The ADC and SBC are the only instructions which will yield proper decimal results in
decimal mode. To calculate in decimal notation, set the decimal mode flag (D) to “1” with
the SED instruction. After executing the ADC or SBC instruction, execute another instruction
before executing the SEC, CLC, or CLD instruction.

PCL (program counter low-order)

1 = B flag PS

7 4 0

PCH (program counter high-order)(S) + 3

(S) + 2

(S)

(S) + 1

NOTES ON USE

Rev.2.00 Nov 14, 2006 page 111 of 185
REJ09B0322-0200

(2) Status flags in decimal mode
When decimal mode is selected (D = 1), the values of three of the flags in the status
register (the flags N, V, and Z) are invalid after a ADC or SBC instruction is executed.
The carry flag (C) is set to “1” if a carry is generated as a result of the calculation, or
is cleared to “0” if a borrow is generated. To determine whether a calculation has
generated a carry, the C flag must be initialized to “0” before each calculation. To check
for a borrow, the C flag must be initialized to “1” before each calculation.

Fig. 4.4.5 Status flags in decimal mode

4.4.4 JMP instruction
When using the JMP instruction in indirect addressing mode, do not specify the last address
on a page as an indirect address.

4.4.5 Multiplication and division instructions
The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
The execution of these instructions does not change the contents of the processor status
register.

4.4.6 Ports
The contents of the port direction registers cannot be read.
The following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction register as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register
Use instructions such as LDM and STA, etc., to set the port direction registers.

4.4.7 Instruction execution time
The instruction execution time is obtained by multiplying the frequency of the internal clock
φ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction is shown in the list of machine
instructions.

NOP instruction

ADC or SBC instruction

SEC, CLC, or CLD instruction

Set D flag to “1”

Rev.2.00 Nov 14, 2006 page 112 of 185
REJ09B0322-0200

APPENDIX 1. Instruction Cycles in each Addressing Mode
Clock φ controls the system timing of 740 Family. The SYNC signal and the value of PC
(Program Counter) are output in every instruction fetch cycle. The Op-Code is fetched during
the next half-period of φ. The instruction decoder of CPU decodes this Op-Code and
determines the following how to execute the instruction. The instruction timings of all address-
ing modes are described on the following pages.
The φ, SYNC, R/W (RD, WR), ADDR (ADDRL, ADDRH), and DATA signals in these figures
indicate the status of the internal bus. These signals cannot be seen directly in single-chip
mode, but they can be checked on products that support use of microprocessor mode.
The combination of these signals differs according to the microcomputer’s type. The following
table lists the valid signal for each product.

Valid signal for each product

APPENDIX 1
Instruction Cycles in each Addressing Mode

Type
M507XX
M509XX
M374XX
(Except M37451)
M38XXX
M375XX
M372XX
M371XX
M37451

M50734

φ SYNC R/W RD WR ADDR DATA ADDRH ADDRL/DATA

(Note) (Note)

Note: Only 80-pin version.

IMPLIED

Rev.2.00 Nov 14, 2006 page 113 of 185
REJ09B0322-0200

Instructions :

Byte length :
Cycle number :

Timing :

∆CLC
∆CLD
∆CLI
∆CLT
∆CLV
∆DEX
∆DEY
∆INX
∆INY
∆NOP

∆SEC
∆SED
∆SEI
∆SET
∆TAX
∆TAY
∆TSX
∆TXA
∆TXS
∆TYA

1
2

φ

PCH

PCL+1

 Op-code

PC PC+1

PCH

PCL PCL+1

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

Invalid

 In-
valid

 Op -
code

IMPLIED

Rev.2.00 Nov 14, 2006 page 114 of 185
REJ09B0322-0200

Instruction :
Byte length :
Cycle number :

Timing :

∆BRK
1
7

PCH

PCH PCL

PCL+1

PC PC+1 S,00
(Note 1)

 S-1,00
 (Note 1)

 S-2,00
 (Note 1)

 FFF4
(Note 2)

 FFF5
(Note 2)

ADL
ADH

AA
AAPS ADL ADH

01PCH PCH

PCL S PCH S-1 PCL S-2
AA
AAPS F4 ADL F5 ADH ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

FF

 φ

 Op-
code

Invalid

 Op -
code

Notes 1 : Some products are “01” or content of SPS flag.
2 : Some products differ the address.

 In-
valid

IMPLIED

Rev.2.00 Nov 14, 2006 page 115 of 185
REJ09B0322-0200

∆STP
∆WIT

Instructions :

Byte length :

Timing :

1

PCL PCL+1 PCL+1

PCH

PC PC+1

PCH

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

φ

 Op-code Invalid

 In-
valid

 Op -
code

Return from standby
state is excuted by ex-
ternal interrupt.
Return from wait state is
excuted by internal or
external interrupt.

IMPLIED

Rev.2.00 Nov 14, 2006 page 116 of 185
REJ09B0322-0200

∆RTIInstruction :
Byte length :
Cycle number :

Timing :

1
6

PC PC+1

P

CH P

CH

PCL PCL+1

S,00
(Note)

S

+

1

,

0

0

(

N

o

t

e

)
S

+

2

,

0

0

(

N

o

t

e

)
S

+

3

,

0

0

(

N

o

t

e

)
PCL
PCH

00 (Note)

S S

+

1 S

+

2 P

CL S+3 PCH P

CLP

S

PCH

PCL
(Stack)

PS
(Stack)

PCH
(Stack)

S

Y

N

C

R

/

W

RD

A

D

D

R

D

A

T

A

ADDRH

ADDRL
 /DATA

 WR

φφφφ

 Op-code Invalid

O

p

-

c

o

d

e

N

o

t

e

:

S

o

m

e

p

r

o

d

u

c

t

s

a

r

e

“

0

1

”

o

r

c

o

n

t

e

n

t

o

f

S

P

S

f

l

a

g

.

I

n

-

v

a

l

i

d

Invalid

IMPLIED

Rev.2.00 Nov 14, 2006 page 117 of 185
REJ09B0322-0200

Instruction :
Byte length :
Cycle number :

Timing :

∆RTS
1
6

PCL P

CL+

1 S S+1 S+2 PCLPCH

PCH PCH 00 (Note) PCH PCH

PCL
(Stack)

PCH
(Stack)

P

C PC+1 S

,

0

0
(

N

o

t

e

)
S+1,00
(Note)

S+2,00
(Note)

P

CL
P

CH
P

CL

+

1

P

CH

PCL+1PCL

S

Y

N

C

R

/

W

R

D

A

D

D

R

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

 WR

φφφφ

O

p

-

c

o

d

e I

n

v

a

l

i

d

In-
valid

O

p

-
c

o

d

e

I

n

v

a

l

i

d I

n

v

a

l

i

d

Note: Some products are “01” or content of SPS flag.

IMPLIED

Rev.2.00 Nov 14, 2006 page 118 of 185
REJ09B0322-0200

∆PHA
∆PHP

Instructions :

Byte length :
Cycle number :

Timing :

1
3

PC PC+1

PCH PCH

PCL PCL+1 S Aor
 PS

00 (Note)

A or PS

 S,00
 (Note)

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 In-
valid

 Op -
code

Note: Some products are “01” or content of SPS flag.

IMPLIED

Rev.2.00 Nov 14, 2006 page 119 of 185
REJ09B0322-0200

Instructions :

Byte length :
Cycle number :

Timing :

∆PLA
∆PLP
1
4

P

CL P

CL+

1

PCH PCH 0

0

(

N

o

t

e

)

P

C P

C

+

1 S

+

1

,

0

0

(

N

o

t

e

)

DATA

00

(PC+1)L,00

(PC+1) L S+1

S

Y

N

C

R/W

RD

 ADDR

DATA

A

D

D

RH

A

D

D

RL

/

D

A

T

A

W

R

D

A

T

A

φφφφ

O

p

-

c

o

d

e Invalid

I

n

-

v

a

l

i

d
Op-

code

Invalid

Note: Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14, 2006 page 120 of 185
REJ09B0322-0200

[T=0] IMMEDIATE

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC∆#$nn (T=0)
∆AND∆#$nn (T=0)
∆CMP∆#$nn (T=0)
∆CPX∆#$nn
∆CPY∆#$nn
∆EOR∆#$nn (T=0)
∆LDA∆#$nn (T=0)
∆LDX∆#$nn
∆LDY∆#$nn
∆ORA∆#$nn (T=0)
∆SBC∆#$nn (T=0)
2
2

P

CL PCL+1

P

CH P

CH

P

C PC+1

SYNC

R/W

R

D

A

D

D

R

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

W

R

D

A

T

A

D

A

T

A

φφφφ

O

p

-

c

o

d

e

 Op-
code

Rev.2.00 Nov 14, 2006 page 121 of 185
REJ09B0322-0200

ACCUMULATOR

Instructions :

Byte length :
Cycle number :

Timing :

∆ASL ∆A
∆DEC ∆A
∆INC ∆A
∆LSR ∆A
∆ROL ∆A
∆ROR ∆A
1
2

PC PC+1

PCH PCH

PCL PCL+1 PCL+1

PCH

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

 In-
valid

Rev.2.00 Nov 14, 2006 page 122 of 185
REJ09B0322-0200

ACCUMULATOR BIT RELATIVE

Instructions :

Byte length :

(1) With no branch
Cycle number :

Timing :

∆BBC∆i,A,$hhll
∆BBS∆i,A,$hhll
2

4

PC PC+1

PCH PCH

PCL PCL+1 PCL+1 PCL+1

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 In-
valid

 Op -
code

 In-
valid

 In-
valid

Rev.2.00 Nov 14, 2006 page 123 of 185
REJ09B0322-0200

ACCUMULATOR BIT RELATIVE

Instructions :

Byte length :

(2) With branch
Cycle number :

Timing :

2

6

∆BBC∆i,A,$hhll
∆BBS∆i,A,$hhll

((PC+2) RR)L
(PC+2) HP

C

P

CH P

CH

P

CL P

CL+

1 PCL+1 P

CL+

1

(

P

C

+

2

)H (PC+2)H

RR *

2*

1

PC+1 (PC+2)L
(PC+1)H

S

Y

N

C

R

/

W

RD

A

D

D

R

DATA

A

D

D

RH

ADDRL
/DATA

 WR

R

R

:

O

f

f

s

e

t

a

d

d

r

e

s

s
*

1

:

(

P

C

+

1

)L
*

2

:

(

(

P

C

+

2

)

R

R

)L

 φφφφ

 Op-code I

n

v

a

l

i

d

In-
valid

 Op-
code

I

n

-

v

a

l

i

d

Invalid InvaRR+−

+−

+−

+−

Rev.2.00 Nov 14, 2006 page 124 of 185
REJ09B0322-0200

ACCUMULATOR BIT

Instructions :

Byte length :
Cycle number :

Timing :

∆CLB∆i,A
∆SEB∆i,A
1
2

PC PC+1

PCH PCH

PCL PCL+1

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 In-
valid

 Op-
code

Rev.2.00 Nov 14, 2006 page 125 of 185
REJ09B0322-0200

BIT RELATIVE

Instructions :

Byte length :

(1) With no branch
Cycle number :

Timing :

∆BBC∆i,$zz,$hhll
∆BBS∆i,$zz,$hhll
3

5

PC PC+1

PCH PCH

PCL PCL+1 PCL+2ADL ADL PCL+2

ADL

PCH00

ADL,00 PC+2

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

φ

 Op-code Invalid

 In-
valid

 Op -
code

 In-
valid

DATA

DATA

Rev.2.00 Nov 14, 2006 page 126 of 185
REJ09B0322-0200

BIT RELATIVE

Instructions :

Byte length :

(2) With branch
Cycle number :

Timing :

∆BBC∆i,$zz,$hhll
∆BBS∆i,$zz,$hhll
3

7

P

C

PCH P

CH

PCL P

CL+

1 PCL+2

(PC+2)H (PC+3)H

*2 *2*1RR

P

C

+

1 (PC+3)L
(PC+2)H

A

DL A

DL PCL+2

00 PCH

ADL,00 PC+2

ADL

S

Y

N

C

R

/

W

R

D

 ADDR

DATA

ADDRH

A

D

D

RL

/

D

A

T

A

 WR

R

R

:

O

f

f

s

e

t

a

d

d

r

e

s

s
*

1

:

(

P

C

+

3

)L
*

2

:

(

(

P

C

+

3

)

R

R

)L

φφφφ

O

p

-

c

o

d

e Invalid

In-
valid

O

p

-

c

o

d

e

Invalid InvalidD

A

T

A

D

A

T

A

+−

+−

(

(

P

C

+

3

)

R

R

)H+−

R

R+−

(

P

C

+

3

)

R

R+−
((PC+3) RR)L
(PC+3) H

+−

Rev.2.00 Nov 14, 2006 page 127 of 185
REJ09B0322-0200

ZERO PAGE BIT

Instructions :

Byte length :
Cycle number :

Timing :

∆CLB∆i,$zz
∆SEB∆i,$zz
2
5

PC

PCL PCL+1

PC+1

ADL ADL

00

ADL,00

ADL ADL

ADL

PCH PCH

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

DATA

DATA

NEW
DATA

NEW
DATA

Rev.2.00 Nov 14, 2006 page 128 of 185
REJ09B0322-0200

ZERO PAGE[T=0]

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC ∆$zz (T=0)
∆AND ∆$zz (T=0)
∆BIT ∆$zz
∆CMP ∆$zz (T=0)
∆CPX ∆$zz
∆CPY ∆$zz
∆EOR ∆$zz (T=0)
∆LDA ∆$zz (T=0)
∆LDX ∆$zz
∆LDY ∆$zz
∆ORA ∆$zz (T=0)
∆SBC ∆$zz (T=0)
∆TST ∆$zz
2
3

PC PC+1

PCHPCH

PCL PCL+1

00

ADL

ADL,00

ADL ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA

DATA

 φ

 Op-code

 Op-
code

Rev.2.00 Nov 14, 2006 page 129 of 185
REJ09B0322-0200

ZERO PAGE

Instructions :

Byte length :
Cycle number :

Timing :

2
5

∆ASL ∆$zz
∆COM ∆$zz
∆DEC ∆$zz
∆INC ∆$zz
∆LSR ∆$zz
∆ROL ∆$zz
∆ROR ∆$zz

PC PC+1

PCHPCH

PCL PCL+1

00

ADL

ADL,00

ADL ADL ADL ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

DATA

DATA

NEW
DATA

NEW
DATA

Rev.2.00 Nov 14, 2006 page 130 of 185
REJ09B0322-0200

ZERO PAGE

Instruction :
Byte length :
Cycle number :

Timing :

∆RRF∆$zz
2
8

PC PC+1

PCHPCH

PCL PCL+1

00

ADL

ADL,00

ADL ADL ADL ADL ADL ADL ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

DATA

DATA

NEW
DATA

NEW
DATA

Rev.2.00 Nov 14, 2006 page 131 of 185
REJ09B0322-0200

ZERO PAGE

Instruction :
Byte length :
Cycle number :

Timing :

∆LDM∆#$nn,$zz
3
4

PC PC+1

PCHPCH

PCL PCL+1

00

ADL

ADL,00

ADL ADL

PC+2

PCH

PCL+2

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code

 Op -
code

DATA

DATA

DATA

DATA

Rev.2.00 Nov 14, 2006 page 132 of 185
REJ09B0322-0200

ZERO PAGE

Instructions :

Byte length :
Cycle number :

Timing :

2
4

∆STA∆$zz
∆STX∆$zz
∆STY∆$zz

PC PC+1

PCH

PCL PCL+1

00

ADL

ADL,00

ADL ADL

PCH

ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

DATA

DATA

Rev.2.00 Nov 14, 2006 page 133 of 185
REJ09B0322-0200

Zero Page X

∆MUL∆$zz,X (Note)Instruction :
Byte length :
Cycle number :

Timing :

2
15

P

C P

C

+

1

A

DL

A

DL+

X

,

0

0 S

,

S

P

S

S

Y

N

C

R

/

W

R

D

A

D

D

R

D

A

T

A

W

R

φφφφ

Invalid

O

p

-
c

o

d

e D

A

T

A NEW
DATA

I

n

-

v

a

l

i

d

I

n

-

v

a

l

i

d

SPS: A selected page by stack page selection bit of the CPU mode register.

Note: This instruction cannot be used for some products.

Rev.2.00 Nov 14, 2006 page 134 of 185
REJ09B0322-0200

Zero Page X

Instruction :
Byte length :
Cycle number :

Timing :

∆DIV∆$zz,X (Note)
2
16

P

C P

C

+

1

A

DL

ADL+X+1,00 S,SPS

A

DL

+

X

,

0

0

S

Y

N

C

R

/

W

R

D

A

D

D

R

D

A

T

A

W

R

S

P

S

:

A

s

e

l

e

c

t

e

d

p

a

g

e

b

y

s

t

a

c

k

p

a

g

e

s

e

l

e

c

t

i

o

n

b

i

t

o

f

t

h

e

C

P

U

m

o

d

e

r

e

g

i

s

t

e

r

.

N

o

t

e

:

T

h

i

s

i

n

s

t

r

u

c

t

i

o

n

c

a

n

n

o

t

b

e

u

s

e

d

f

o

r

some

p

r

o

d

u

c

t

s

.

φφφφ

I

n

v

a

l

i

d

O

p

-
c

o

d

e

L

o

w

-

o

r

d

e

r

D

A

T

A

N

E

W
D

A

T

A

I

n

-

v

a

l

i

d

I

n

-

v

a

l

i

d

H

i

g

h

-

o

r

d

e

r

D

A

T

A

Rev.2.00 Nov 14, 2006 page 135 of 185
REJ09B0322-0200

Zero Page X

Instructions :

Byte length :
Cycle number :

Timing :

∆ASL ∆$zz,X
∆DEC ∆$zz,X
∆INC ∆$zz,X
∆LSR ∆$zz,X
∆ROL ∆$zz,X
∆ROR∆$zz,X
2
6

PC PC+1

PCH

PCL PCL+1

PCH

ADL

(PC+1)L
 ,00

ADL (PC+1)L

00

ADL+X ADL+X

ADL+X,00

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

DATA

DATA

NEW
DATA

NEW
DATA

Invalid

ADL+X

Rev.2.00 Nov 14, 2006 page 136 of 185
REJ09B0322-0200

ZERO PAGE X, ZERO PAGE Y[T=0]

∆ADC ∆$zz,X (T=0)
∆AND ∆$zz,X (T=0)
∆CMP∆$zz,X (T=0)
∆EOR ∆$zz,X (T=0)
∆LDA ∆$zz,X (T=0)
∆LDX ∆$zz,Y
∆LDY ∆$zz,X
∆ORA∆$zz,X (T=0)
∆SBC ∆$zz,X (T=0)
2
4

Instructions :

Byte length :
Cycle number :

Timing :

PC PC+1

PCH

PCL PCL+1

PCH

ADL+X (orY)
 ,00

ADL+X
 (or Y)

ADL

(PC+1) L
 ,00

ADL (PC
+1)L

00

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op-
code

DATA

DATA

Rev.2.00 Nov 14, 2006 page 137 of 185
REJ09B0322-0200

ZERO PAGE X, ZERO PAGE Y

Instructions :

Byte length :
Cycle number :

Timing :

∆STA∆$zz,X
∆STX∆$zz,Y
∆STY∆$zz,X
2
5

P

C PC+1

P

CH

P

CL P

CL+

1

PCH

A

DL+

X

(

o

r

Y

)

,

0

0

A

DL+

X

(

o

r

Y

)

ADL

(PC+1) L
 ,00

ADL
(

P

C

+

1

)

L

0

0

ADL+X
 (or Y)

S

Y

N

C

R/W

R

D

 ADDR

DATA

A

D

D

RH

ADDRL
 /DATA

 WR

φφφφ

Op-code Invalid

O

p

-

c

o

d

e

DATA

D

A

T

A

Invalid

Rev.2.00 Nov 14, 2006 page 138 of 185
REJ09B0322-0200

ABSOLUTE[T=0]

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC ∆$hhll (T=0)
∆AND ∆$hhll (T=0)
∆BIT ∆$hhll
∆CMP ∆$hhll (T=0)
∆CPX ∆$hhll
∆CPY ∆$hhll
∆EOR ∆$hhll (T=0)
∆LDA ∆$hhll (T=0)
∆LDX ∆$hhll
∆LDY ∆$hhll
∆ORA ∆$hhll (T=0)
∆SBC ∆$hhll (T=0)
3
4

PCH

PCL+1

P

C P

C

+

1

A

DL

PCH

P

CL A

DL

P

C

+

2

ADH

PCH ADH

A

DLA

DHPCL+2

ADL
ADH

S

Y

N

C

R

/

W

RD

 ADDR

DATA

A

D

D

RH

ADDRL
 /DATA

W

R

φφφφ

O

p

-

c

o

d

e D

A

T

A

O

p

-
c

o

d

e
DATA

Rev.2.00 Nov 14, 2006 page 139 of 185
REJ09B0322-0200

ABSOLUTE

∆ASL ∆$hhll
∆DEC ∆$hhll
∆INC ∆$hhll
∆LSR ∆$hhll
∆ROL ∆$hhll
∆ROR∆$hhll

Instructions :

Byte length :
Cycle number :

Timing :

3
6

PCH

PCL+1

PC PC+1

ADL

PCH

PCL ADL

PC+2

ADHPCH

ADH ADLADLPCL+2

ADL ADH

ADL,ADH

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

DATA

DATA

NEW
DATA

NEW
DATA

Rev.2.00 Nov 14, 2006 page 140 of 185
REJ09B0322-0200

ABSOLUTE

Instruction :
Byte length :
Cycle number :

Timing :

∆JMP∆$hhll
3
3

PCH

PCL+1

PC PC+1

PCH

PCL

PC+2

PCHPCL+2 PCLPCL

PCH PCH

PCHPCL

PCL,PCH

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

φ

 Op-code

 Op -
code

Rev.2.00 Nov 14, 2006 page 141 of 185
REJ09B0322-0200

ABSOLUTE

Instruction :
Byte length :
Cycle number :

Timing :

∆JSR∆$hhll
3
6

PC PC+1

PCH PCH

PCL PCL+1

 S,00 (Note)
S-1,00
(Note)

00 (Note)

S S-1S

PC+2

PCH ADH

ADH ADLPCL+2 (PC
+2)HADL

ADL (PC+2)H (PC+2)L ADH

ADL
ADH

 (PC
+2)L

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op-
code

Note: Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14, 2006 page 142 of 185
REJ09B0322-0200

ABSOLUTE

Instructions :

Byte length :
Cycle number :

Timing :

∆STA∆$hhll
∆STX∆$hhll
∆STY∆$hhll
3
5

PC PC+1

PCH PCH

PCL PCL+1

PCH ADH

ADH ADLPCL+2ADL ADL

ADL
ADH

PC+2

ADHADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA

DATA

 φ

 Op-code Invalid

 Op-
code

Rev.2.00 Nov 14, 2006 page 143 of 185
REJ09B0322-0200

ABSOLUTE X, ABSOLUTE Y[T=0]

∆ADC ∆$hhll,X or Y (T=0)
∆AND ∆$hhll,X or Y (T=0)
∆CMP ∆$hhll,X or Y (T=0)
∆EOR ∆$hhll,X or Y (T=0)
∆LDA ∆$hhll,X or Y (T=0)
∆LDX ∆$hhll,Y
∆LDY ∆$hhll,X
∆ORA ∆$hhll,X or Y (T=0)
∆SBC ∆$hhll,X or Y (T=0)

Instructions :

Byte length :
Cycle number :

Timing :

3
5

P

C PC+1

PCH

PCL PCL+1

PCH

AD L+X(or Y)
 AD H

A

DL+

X

(

o

r

Y

)

ADL

ADL P

CL+

2 A

DH
ADL+X
 (or Y)

PCH ADH ADH +C

A

DH

PC+2 AD L+X(or Y)
 AD H+C

C

:

C

a

r

r

y

o

f

A

DL+

X

o

r

Y

S

Y

N

C

R/W

RD

 ADDR

DATA

ADDRH

A

D

D

RL

/

D

A

T

A

 WR

DATA

DATA

φφφφ

O

p

-

c

o

d

e I

n

v

a

l

i

d

 Op-
code

Rev.2.00 Nov 14, 2006 page 144 of 185
REJ09B0322-0200

ABSOLUTE X

Instructions :

Byte length :
Cycle number :

Timing :

∆ASL ∆$hhll,X
∆DEC ∆$hhll,X
∆INC ∆$hhll,X
∆LSR ∆$hhll,X
∆ROL ∆$hhll,X
∆ROR ∆$hhll,X
3
7

PC PC+1

PCH PCH

PCL PCL+1

PCH ADH

ADHPCL+2ADL

PC+2

ADH+C

ADL ADH

ADL+X
ADH+C

ADL+X
 ADH

AD L+X AD L+X AD L+X AD L+X

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

C : Carry of ADL+X

DATA

DATA

 φ

 Op-code Invalid

 Op -
code

Invalid NEW
DATA

NEW
DATA

Rev.2.00 Nov 14, 2006 page 145 of 185
REJ09B0322-0200

ABSOLUTE X, ABSOLUTE Y

Instruction :
Byte length :
Cycle number :

Timing :

3
6

∆STA∆$hhll,X or Y

PC PC+1

PCH

PCL PCL+1

PCH

AD L+X(or Y)
 AD H

ADL+X
 (or Y)

ADL

ADL PCL+2 ADH
ADL+X
 (or Y)

PCH

ADH

ADH +CADH

PC+2 AD L+X(or Y)
 AD H+C

ADL+X
 (or Y)

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

C : Carry of ADL+X or Y

DATA

DATA

 φ

 Op-code Invalid

 Op -
code

Invalid

Rev.2.00 Nov 14, 2006 page 146 of 185
REJ09B0322-0200

INDIRECT

Instruction :
Byte length :
Cycle number :

Timing :

3
5

∆JMP∆($hhll)

PC PC+1

PCH PCH

P

CL P

CL+

1

PCH

BAH

ADH

PCL+2BAL

P

C

+

2

A

DL

ADH

B

AL+

1

B

AH

BAL+1BAL

ADL
ADH

BAL
BAH

BAL B

AH A

DL

BAHB

AH

A

DH A

DL

S

Y

N

C

R

/

W

R

D

A

D

D

R

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

W

R

 Op-code

O

p

-

c

o

d

e

φφφφ

B

A

:

B

a

s

i

c

a

d

d

r

e

s

s

Rev.2.00 Nov 14, 2006 page 147 of 185
REJ09B0322-0200

ZERO PAGE INDIRECT

Instruction :
Byte length :
Cycle number :

Timing :

2
4

∆JMP∆($zz)

P

C PC+1

P

CH

PCL P

CL+

1

PCH

BAL ADL

A

DH

BAL,00
ADL
ADH

BAL

ADH A

DL

A

DL ADH

BAL+1,00

0

0

B

AL+

1BAL

S

Y

N

C

R

/

W

RD

A

D

D

R

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

W

R

O

p

-

c

o

d

e

O

p

-

c

o

d

e

 φφφφ

B

A

:

B

a

s

i

c

a

d

d

r

e

s

s

Rev.2.00 Nov 14, 2006 page 148 of 185
REJ09B0322-0200

ZERO PAGE INDIRECT

Instruction :
Byte length :
Cycle number :

Timing :

∆JSR∆($zz)
2
7

PC P

C

+

1

PCH

PCL P

CL+

1 BAL ADL ADH

B

AL,

0

0 ADL
ADH

BAL

ADH

ADL

ADL ADH

BAL+1
 ,00

B

AL+

1

BAL

S S S-1
 (PC
 +1)L

PCH 0001

(PC+1)H (

P

C

+

1

)L

S,00 (Note) S-1,00
(Note)

 (PC
 +1)H

S

Y

N

C

R

/

W

R

D

A

D

D

R

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

 WR

φφφφ

O

p

-

c

o

d

e Invalid

O

p

-
c

o

d

e

N

o

t

e

:

S

o

m

e

k

i

n

d

t

y

p

e

s

a

r

e

“

0

1

”

o

r

c

o

n

t

e

n

t

o

f

S

P

S

f

l

a

g

.

B

A

:

B

a

s

i

c

a

d

d

r

e

s

s

Rev.2.00 Nov 14, 2006 page 149 of 185
REJ09B0322-0200

INDIRECT X[T=0]

2
6

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC ∆($zz,X) (T=0)
∆AND ∆($zz,X) (T=0)
∆CMP ∆($zz,X) (T=0)
∆EOR ∆($zz,X) (T=0)
∆LDA ∆($zz,X) (T=0)
∆ORA ∆($zz,X) (T=0)
∆SBC ∆($zz,X) (T=0)

PC PC+1

PCH

PCL PCL+1 BAL

ADL

BAL+X,00

ADH

BAL+X+1
 ,00

BAL

 (PC
 +1)L

PCH 00

ADH

ADL ADH ADLBAL+X BAL

 +X+1

(PC+1) L,00 ADL

ADH

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA

 φ

 Op-code Invalid

 Op-
code

DATA

BA : Basic address

Rev.2.00 Nov 14, 2006 page 150 of 185
REJ09B0322-0200

INDIRECT X

Instruction :
Byte length :
Cycle number :

Timing :

2
7

∆STA∆($zz,X)

PC+1

P

CH

PCL P

CL+

1 B

AL

A

DL

ADL
ADH

ADH

ADLADL

A

DH

BAL+X+1
 ,00

B

AL

B

AL

+

X

+

1

(

P

C

 +

1

)L

P

CH 00

P

C BAL+X
 ,00

(PC +1) L
 ,00

A

DH A

DLBAL+X

 SYNC

R

/

W

R

D

A

D

D

R

D

A

T

A

A

D

D

RH

ADDRL
 /DATA

W

R

DATA

φφφφ

O

p

-

c

o

d

e Invalid

Op-
code DATA

BA : Basic address

Invalid

Rev.2.00 Nov 14, 2006 page 151 of 185
REJ09B0322-0200

INDIRECT Y[T=0]

∆ADC ∆($zz),Y (T=0)
∆AND ∆($zz),Y (T=0)
∆CMP∆($zz),Y (T=0)
∆EOR ∆($zz),Y (T=0)
∆LDA ∆($zz),Y (T=0)
∆ORA∆($zz),Y (T=0)
∆SBC ∆($zz),Y (T=0)

Instructions :

Byte length :
Cycle number :

Timing :

2
6

PC PC+1

PCH

PCL PCL+1

PCH

ADH

ADHADL

ADH+C

ADL

ADH

ADL+Y
ADH+C

ADL+Y
 ADH

BAL+1 ADL+YBALBAL

00

BAL

BAL,00 BAL+1
 ,00

ADL+Y

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

C : Carry of ADL+Y

DATA

DATA

 φ

 Op-code Invalid

 Op -
code

BA : Basic address

Rev.2.00 Nov 14, 2006 page 152 of 185
REJ09B0322-0200

INDIRECT Y

Instruction :
Byte length :
Cycle number :

Timing :

2
7

∆STA∆($zz),Y

PC PC+1

PCH

PCL PCL+1

PCH

ADH

ADHADL

ADH+C

ADL

ADH

ADL+Y
ADH+C

ADL+Y
 ADH

BAL+1 AD L+YBALBAL

00

BAL

BAL,00 BAL+1
 ,00

AD L+Y AD L+Y

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

C : Carry of ADL+Y

DATA

DATA

 φ

 Op-code Invalid

 Op -
code

BA : Basic address

Invalid

Rev.2.00 Nov 14, 2006 page 153 of 185
REJ09B0322-0200

RELATIVE

∆BCC ∆$hhll
∆BCS ∆$hhll
∆BEQ ∆$hhll
∆BMI ∆$hhll
∆BNE ∆$hhll
∆BPL ∆$hhll
∆BVC ∆$hhll
∆BVS ∆$hhll

Instructions :

Byte length :

(1)With no branch
Cycle number :

Timing :

2

2

PC PC+1

PCH PCH

PCL PCL+1

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 In-
valid

 Op -
code

Rev.2.00 Nov 14, 2006 page 154 of 185
REJ09B0322-0200

RELATIVE

∆BCC ∆$hhll
∆BCS ∆$hhll
∆BEQ ∆$hhll
∆BMI ∆$hhll
∆BNE ∆$hhll
∆BPL ∆$hhll
∆BVC ∆$hhll
∆BVS ∆$hhll

Instructions :

Byte length :

(2)With branch
Cycle number :

Timing :

2

4

PC

PCH

P

CH

PCL+1

(

P

C

+

1

)H (PC+2)H

R

R

R

R

P

C

+

1 (PC+2)L
(PC+1)H

((PC+2) RR)L
 (PC+2) H

(

P

C

+

2

)

R

R

PCH

(PC+2)L

(

(

P

C

+

2

)

R

R

)H

RR : Offset value

(

(

P

C

+

2

)

R

R

)L

((PC+2)
 RR)L

S

Y

N

C

R/W

RD

A

D

D

R

D

A

T

A

A

D

D

RH

ADDRL
 /DATA

 WR

φφφφ

O

p

-

c

o

d

e Invalid

O

p

-

c

o

d

e

Invalid

−+ −+

−+

−+−+

−+

Rev.2.00 Nov 14, 2006 page 155 of 185
REJ09B0322-0200

RELATIVE

Instruction :
Byte length :
Cycle number :

Timing :

2
4

∆BRA∆$hhll

φφφφ

P

C

PCL

PCH

PCL+1

(PC+1)H (PC+2)H

RR

R

R

PC+1 (PC+2) L
(PC+1) H

(

(

P

C

+

2

)

R

R

)L

(

P

C

+

2

)H
(PC+2) RR

((PC+2) RR)H P

CH

(PC
+2)L

(

(

P

C

+

2

)

R

R

)L

(

(

P

C

+

2

)

R

R

)L

S

Y

N

C

R

/

W

R

D

 ADDR

DATA

A

D

D

RH

A

D

D

RL

/

D

A

T

A

 WR

RR : Offset value

Op-code Invalid

O

p

-
c

o

d

e

I

n

v

a

l

i

d−+

−+−+

−+

−+ −+ −+

Rev.2.00 Nov 14, 2006 page 156 of 185
REJ09B0322-0200

SPECIAL PAGE

Instruction :
Byte length :
Cycle number :

Timing :

∆JSR∆\$hhll
2
5

PC PC+1

PCH

PCL PCL+1

 S,00 (Note)
S-1,00
(Note)

00 (Note)

S S-1S

PCH

 (PC
+1)L

 (PC
+1)HBAL

BAL,FF

(PC+1)H (PC+1)L

BAL

BAL

FF

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

Note : Some products are “01” or content of SPS flag.

BA : Basic address

Rev.2.00 Nov 14, 2006 page 157 of 185
REJ09B0322-0200

IMMEDIATE[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

2
5

∆ADC∆#$nn (T=1)
∆AND∆#$nn (T=1)
∆EOR∆#$nn (T=1)
∆ORA∆#$nn (T=1)
∆SBC∆#$nn (T=1)

PCL PCL+1

PCH PCH

PC PC+1

DATA
 2

00

DATA
 1 X X X

X,00

DATA
 1

DATA
 2

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

 φ

 Op-code Invalid

 Op -
code

NEW
DATA

NEW
DATA

Rev.2.00 Nov 14, 2006 page 158 of 185
REJ09B0322-0200

IMMEDIATE[T=1]

∆CMP∆#$nn (T=1)Instruction :
Byte length :
Cycle number :

Timing :

2
3

PC PC+1

PCH PCH

PCL PCL+1

 X,00

00

X

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

DATA
 2

 φ

 Op-code

 Op -
code

Rev.2.00 Nov 14, 2006 page 159 of 185
REJ09B0322-0200

IMMEDIATE[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆LDA∆#$nn (T=1)
2
4

PC PC+1

PCH PCH

PCL PCL+1

00

X X

 X,00

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA

DATA

 φ

 Op-code

 Op -
code

Invalid DATA

DATA

Rev.2.00 Nov 14, 2006 page 160 of 185
REJ09B0322-0200

ZERO PAGE[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

2
6

∆ADC∆$zz (T=1)
∆AND∆$zz (T=1)
∆EOR∆$zz (T=1)
∆ORA∆$zz (T=1)
∆SBC∆$zz (T=1)

PC PC+1

PCH PCH

PCL PCL+1

 X,00

00

X XXADL ADL

ADL,00

ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

 φ

 Op-code Invalid

 Op -
code

NEW
DATA

NEW
DATA

DATA
 2

Rev.2.00 Nov 14, 2006 page 161 of 185
REJ09B0322-0200

∆CMP∆$zz (T=1)

ZERO PAGE[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

2
4

PC PC+1

PCH PCH

PCL PCL+1

 X,00

00

XADL ADL

ADL,00

ADL

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

 φ

 Op-code

 Op -
code

DATA
 2

Rev.2.00 Nov 14, 2006 page 162 of 185
REJ09B0322-0200

ZERO PAGE[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

2
5

∆LDA∆$zz (T=1)

PC PC+1

PCH PCH

PCL PCL+1

 X,00

00

XADL ADL

ADL,00

ADL

X

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA

DATA

φ

 Op-code Invalid

 Op -
code

DATA

DATA

Rev.2.00 Nov 14, 2006 page 163 of 185
REJ09B0322-0200

ZERO PAGE X[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC∆$zz,X (T=1)
∆AND∆$zz,X (T=1)
∆EOR∆$zz,X (T=1)
∆ORA∆$zz,X (T=1)
∆SBC∆$zz,X (T=1)
2
7

PC PC+1

PCH PCH

PCL PCL+1

 X,00

00

XADL
ADL

 +X

ADL+X
 ,00

ADL

X X

(PC+1) L
 ,00

(PC
 +1)L

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

φ

 Op-code Invalid

 Op-
code

NEW
DATA

NEW
DATA

DATA
 2

Invalid

Rev.2.00 Nov 14, 2006 page 164 of 185
REJ09B0322-0200

ZERO PAGE X[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆CMP∆$zz,X (T=1)
2
5

PC+1

PCH PCH

PCL PCL+1

 X,00

00

XADL AD L+X

ADL+X
 ,00

ADL

(PC+1) L
 ,00

 (PC

 +1) L

PC

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

 φ

 Op-code Invalid

 Op-
code

DATA
 2

Rev.2.00 Nov 14, 2006 page 165 of 185
REJ09B0322-0200

∆LDA∆$zz,X (T=1)

ZERO PAGE X[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

2
6

PC+1

PCH PCH

PCL PCL+1

X,00

00

XADL
ADL
 +X

A

DL+

X

,

0

0

ADL

(

P

C

+

1

)

 L

,

0

0

 (PC
 +1) L

PC

X

SYNC

R

/

W

R

D

 ADDR

DATA

A

D

D

RH

A

D

D

RL

/

D

A

T

A

W

R

D

A

T

A

DATA

φφφφ

Op-code Invalid

O

p

-

c

o

d

e

Invalid DATA

D

A

T

A

Rev.2.00 Nov 14, 2006 page 166 of 185
REJ09B0322-0200

ABSOLUTE[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC∆$hhll (T=1)
∆AND∆$hhll (T=1)
∆EOR∆$hhll (T=1)
∆ORA∆$hhll (T=1)
∆SBC∆$hhll (T=1)
3
7

PCH

P

CL+

1

P

C P

C

+

1

ADL

PCH

PCL ADL

PC+2

ADHP

CH

ADH ADLP

CL+

2

A

DL
A

DH

X X X

ADH

X

,

0

0

00

S

Y

N

C

R

/

W

R

D

 ADDR

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

 WR

DATA
 2

DATA
 1

DATA
 1

φφφφ

O

p

-

c

o

d

e

O

p

-

c

o

d

e
N

E

W
D

A

T

A

NEW
DATA

D

A

T

A

2

Invalid

Rev.2.00 Nov 14, 2006 page 167 of 185
REJ09B0322-0200

ABSOLUTE[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆CMP∆$hhll (T=1)
3
5

P

CH

PCL+1

PC P

C

+

1

ADL

P

CH

PCL A

DL

P

C

+

2

A

DHP

CH

A

DH ADLP

CL+

2

ADL
ADH

X

ADH

X

,

0

0

00

S

Y

N

C

R

/

W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

W

R

DATA
 2

D

A

T

A

1

D

A

T

A

1

φφφφ

O

p

-

c

o

d

e

Op-
code

D

A

T

A

2

Rev.2.00 Nov 14, 2006 page 168 of 185
REJ09B0322-0200

ABSOLUTE[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆LDA∆$hhll (T=1)
3
6

P

CH

P

CL+

1

P

C P

C

+

1

ADL

PCH

PCL ADL

PC+2

A

DHPCH

ADH ADLP

CL+

2

ADL
ADH

X

ADH

X

,

0

0

00

X

S

Y

N

C

R

/

W

R

D

 ADDR

D

A

T

A

ADDRH

A

D

D

RL

/

D

A

T

A

W

R

DATA

DATA

φφφφ

 Op-code I

n

v

a

l

i

d

O

p

-
c

o

d

e

DATA

DATA

Rev.2.00 Nov 14, 2006 page 169 of 185
REJ09B0322-0200

∆ADC∆$hhll,X or Y (T=1)
∆AND∆$hhll,X or Y (T=1)
∆EOR∆$hhll,X or Y (T=1)
∆ORA∆$hhll,X or Y (T=1)
∆SBC∆$hhll,X or Y (T=1)

ABSOLUTE X, ABSOLUTE Y[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

3
8

PCH

PCL+1

PC PC+1

ADL

PCH

PCL ADL

PC+2

ADHPCH

ADHPCL+2 X

ADH

X,00

00

X

ADH+C

X

AD L+X(or Y)
 AD H

ADL+X
 (or Y)

ADL+X
 (or Y)

AD L+X(or Y)
 AD H+C

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

 φ

 Op-code

 Op -
code

NEW
DATA

NEW
DATA

DATA
 2

Invalid Invalid

C : Carry of ADL+X or Y

Rev.2.00 Nov 14, 2006 page 170 of 185
REJ09B0322-0200

ABSOLUTE X, ABSOLUTE Y[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆CMP∆$hhll,X or Y (T=1)
3
6

PCH

PCL+1

PC PC+1

ADL

PCH

PCL ADL

PC+2

ADHPCH

ADHPCL+2 X

ADH

X,00

00ADH+C

ADL+X(or Y)
 ADH

ADL+X
 (or Y)

ADL+X
 (or Y)

ADL+X(or Y)
 ADH+C

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA
 2

DATA
 1

DATA
 1

 φ

 Op-code

 Op -
code

DATA
 2

Invalid

C : Carry of ADL+X or Y

Rev.2.00 Nov 14, 2006 page 171 of 185
REJ09B0322-0200

ABSOLUTE X, ABSOLUTE Y[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆LDA∆$hhll,X or Y (T=1)
3
7

PCH

PCL+1

PC PC+1

ADL

PCH

PCL ADL

PC+2

ADHPCH

ADHPCL+2 X

ADH

X,00

00ADH+C

ADL+X(or Y)
 ADH

 ADL+
 X(orY)

ADL+X(or Y)
 ADH+C

X ADL+
 X(orY)

 SYNC

R/W

RD

 ADDR

DATA

ADDRH

ADDRL
 /DATA

 WR

DATA

DATA

 φ

 Op-code

 Op -
code

Invalid

C : Carry of ADL+X or Y

Invalid DATA

DATA

Rev.2.00 Nov 14, 2006 page 172 of 185
REJ09B0322-0200

INDIRECT X[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC∆($zz,X) (T=1)
∆AND∆($zz,X) (T=1)
∆EOR∆($zz,X) (T=1)
∆ORA∆($zz,X) (T=1)
∆SBC∆($zz,X) (T=1)
2
9

P

CH

P

CL

 +

1

PC PC+1

B

AL

P

CH

PCL AD L

ADH

ADH

X

ADL

X,00

0

0

B

AL

+

X

0

0

 (PC
 +1)L

AD H AD L X XB

AL BAL+
X+1

(

P

C

+

1

)

 L

,

0

0
BAL+X
 ,00

BAL+X
 +1,00

ADL
ADH

S

Y

N

C

R/W

R

D

 ADDR

DATA

A

D

D

RH

ADDRL
 /DATA

 WR

DATA
 1

φφφφ

Op-
code

O

p

-

c

o

d

e
D

A

T

A

1

B

A

:

B

a

s

i

c

a

d

d

r

e

s

s

Invalid DATA
 2 Invalid NEW

DATA

DATA
 2

N

E

W
D

A

T

A

Rev.2.00 Nov 14, 2006 page 173 of 185
REJ09B0322-0200

INDIRECT X[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

2
7

∆CMP∆($zz,X) (T=1)

PCH

P

CL

 +

1

P

C PC+1

B

AL

PCH

PCL

ADH

ADH

X

A

DL

X,00

00

BAL
+X

00

 (PC
+1)LB

AL

(PC+1) L
 ,00

B

AL+

X

,

0

0

B

AL+

X

+

1

A

DL
A

DH

ADL A

DH ADL

BAL+X+1
 ,00

S

Y

N

C

R

/

W

RD

A

D

D

R

D

A

T

A

ADDRH

A

D

D

RL

/

D

A

T

A

W

R

D

A

T

A

1

φφφφ

O

p

-

c

o

d

e

 Op-
code

DATA
 1

BA : Basic address

Invalid DATA
 2

DATA
 2

Rev.2.00 Nov 14, 2006 page 174 of 185
REJ09B0322-0200

∆LDA∆($zz,X) (T=1)

INDIRECT X[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

2
8

PCH

PCL
 +1

PC PC+1

BAL

PCH

P

CL A

D

 L

ADH

ADH

X

A

DL

X,00

00

BAL
 +X

0

0

 (PC
 +1)L A

D

 H A

D

 L XBAL BAL+

X+1

(PC+1) L
 ,00

B

AL+

X

,

0

0
BAL+X +1
 ,00

ADL
ADH

S

Y

N

C

R

/

W

R

D

 ADDR

DATA

ADDRH

A

D

D

RL

/

D

A

T

A

 WR

D

A

T

A

φφφφ

O

p

-

c

o

d

e

 Op-
code DATA

B

A

:

B

a

s

i

c

a

d

d

r

e

s

s

Invalid DATAInvalid

DATA

Rev.2.00 Nov 14, 2006 page 175 of 185
REJ09B0322-0200

INDIRECT Y[T=1]

Instructions :

Byte length :
Cycle number :

Timing :

∆ADC∆($zz),Y (T=1)
∆AND∆($zz),Y (T=1)
∆EOR∆($zz),Y (T=1)
∆ORA∆($zz),Y (T=1)
∆SBC∆($zz),Y (T=1)
2
9

P

CH

P

CL

 +

1

P

C P

C

+

1

B

AL

P

CH

P

CL AD L

A

DH ADH+C

X

A

DL

00 0

0

AD H XB

AL

ADL+Y
ADH+C

B

AL B

A

 L
 +

1
A

D

 L

+

Y
A

D

 L

+

Y
X

ADH

B

AL

,

0

0
B

AL+

1

,

0

0 X

,

0

0A

DL+

Y

A

DH

S

Y

N

C

R

/

W

R

D

A

D

D

R

D

A

T

A

A

D

D

RH

A

D

D

RL

/

D

A

T

A

WR

D

A

T

A

2
D

A

T

A

1

D

A

T

A

1
D

A

T

A

2

 φφφφ

O

p

-

c

o

d

e Invalid

O

p

-
c

o

d

e
N

E

W
D

A

T

A

N

E

W
D

A

T

A
Invalid

C : Carry of ADL+Y

BA : Basic address

Rev.2.00 Nov 14, 2006 page 176 of 185
REJ09B0322-0200

INDIRECT Y[T=1]

Instruction :
Byte length :
Cycle number :

Timing :

∆CMP∆($zz),Y (T=1)
2
7

PCH

PCL
 +1

PC P

C

+

1

B

AL

P

CH

PCL AD L

A

DH A

DH+

C

ADL

0

0 00

AD H XBAL

ADL+Y
ADH+C

BAL
B

AL

+

1
A

D

 L

+

Y
AD L
 +Y

A

DH

BAL
 ,00

BAL+1
 ,00 X

,

0

0ADL+Y

 ADH

S

Y

N

C

R

/

W

R

D

ADDR

DATA

A

D

D

RH

ADDRL
 /DATA

W

R

DATA
 2

DATA
 1

DATA
 1

DATA
 2

φφφφ

 Op-code Invalid

 Op-
code

C : Carry of ADL+Y

BA : Basic address

Rev.2.00 Nov 14, 2006 page 177 of 185
REJ09B0322-0200

INDIRECT Y[T=1]

∆LDA∆($zz),Y (T=1)Instruction :
Byte length :
Cycle number :

Timing :

2
8

P

CH

P

CL

 +

1

P

C PC+1

BAL

P

CH

PCL A

D

 L

A

DH A

DH+

C

ADL

00 0

0

A

D

 H XB

AL

ADL+Y
ADH+C

BAL BA L
 +1

A

D

 L

+

Y
AD L
+Y

ADH

BAL
,00

BAL+1
 ,00 X

,

0

0ADL+Y

 ADH

X

S

Y

N

C

R

/

W

RD

A

D

D

R

D

A

T

A

ADDRH

A

D

D

RL

/

D

A

T

A

W

R

D

A

T

AD

A

T

A

DATA

 φφφφ

 Op-
 code I

n

v

a

l

i

d

O

p

-

c

o

d

e

C

:

C

a

r

r

y

o

f

A

DL+

Y

B

A

:

B

a

s

i

c

a

d

d

r

e

s

s

D

A

T

AI

n

v

a

l

i

d

Rev.2.00 Nov 14, 2006 page 178 of 185
REJ09B0322-0200

APPENDIX 2
740 Family Machine Language Instruction Table

APPENDIX 2. 740 Family Machine Language Instruction Table

2

3

4

4

5

5

6

6

2

3

4

4

5

2

3

4

4

5

4

4

5

5

6

6

7

7

4

5

5

4

5

6

2
2

2
2

2
2

3
3

4
4

2

2

2

3

3

3

2

2

2

2

2

3

3

2

2

2

3

3

3

2

2

3

3

3

2

2

2

2

3

2

2

3

1
1

1
1

1
1

1
1

1
1

A9

A5

B5

AD

BD

B9

A1

B1

A2

A6

B6

AE

BE

A0

A4

B4

AC

BC

3C

85

95

8D

9D

99

81

91

86

96

8E

84

94

8C

AA
8A

A8
98

BA
9A

48
08

68
28

2

2

2

2

2

2

2

2

HEX

INSTRUCTION CODEFLAG
N V T B D I Z C

(A)←nn

(A)←(M) where M=(zz)

(A)←(M) where M=(zz+(X))

(A)←(M) where M=(hhII)

(A)←(M) where M=(hhII+(X))

(A)←(M) where M=(hhII+(Y))

(A)←(M) where M=((zz+(X)+1)(zz+(X)))

(A)←(M) where M=((zz+1)(zz)+(Y))

(X)←nn

(X)←(M) where M=(zz)

(X)←(M) where M=(zz+(Y))

(X)←(M) where M=(hhII)

(X)←(M) where M=(hhII+(Y))

(Y)←nn

(Y)←(M) where M=(zz)

(Y)←(M) where M=(zz+(X))

(Y)←(M) where M=(hhII)

(Y)←(M) where M=(hhII+(X))

(M)←nn where M=(zz)

(M)←(A) where M=(zz)

(M)←(A) where M=(zz+(X))

(M)←(A) where M=(hhll)

(M)←(A) where M=(hhII+(X))

(M)←(A) where M=(hhII+(Y))

(M)←(A) where M=((zz+(X)+1)(zz+(X)))

(M)←(A) where M=((zz+1)(zz)+(Y))

(M)←(X) where M=(zz)

(M)←(X) where M=(zz+(Y))

(M)←(X) where M=(hhII)

(M)←(Y) where M=(zz)

(M)←(Y) where M=(zz+(X))

(M)←(Y) where M=(hhII)

(X)←(A)
(A)←(X)

(Y)←(A)
(A)←(Y)

(X)←(S)
(S)←(X)

(M(S))←(A), (S)←(S)—1
(M(S))←(PS), (S)←(S)—1

(S)←(S)+1, (A)←(M(S))
(S)←(S)+1, (PS)←(M(S))

LDA # $ nn

LDA $ zz

LDA $ zz, X

LDA $ hhII

LDA $ hhII, X

LDA $ hhII, Y

LDA ($ zz, X)

LDA ($ zz), Y

LDX # $ nn

LDX $ zz

LDX $ zz, Y

LDX $ hhII

LDX $ hhII, Y

LDY # $ nn

LDY $ zz

LDY $ zz, X

LDY $ hhII

LDY $ hhII, X

LDM # $ nn, $ zz

STA $ zz

STA $ zz, X

STA $ hhII

STA $ hhII, X

STA $ hhII, Y

STA ($ zz, X)

STA ($ zz), Y

STX $ zz

STX $ zz, Y

STX $ hhII

STY $ zz

STY $ zz, X

STY $ hhII

TAX
TXA

TAY
TYA

TSX
TXS

PHA
PHP

PLA
PLP

Parameter CYCLE

NUMBER

Lo
ad

S
to

re
T

ra
ns

fe
r

D
at

a
T

ra
ns

fe
r

Classification
FUNCTIONSYMBOL

1 0 1 0 1 0 0 1
<B2>

1 0 1 0 0 1 0 1
<B2>

1 0 1 1 0 1 0 1
<B2>

1 0 1 0 1 1 0 1
<B2>
<B3>

1 0 1 1 1 1 0 1
<B2>
<B3>

1 0 1 1 1 0 0 1
<B2>
<B3>

1 0 1 0 0 0 0 1
<B2>

1 0 1 1 0 0 0 1
<B2>

1 0 1 0 0 0 1 0
<B2>

1 0 1 0 0 1 1 0
<B2>

1 0 1 1 0 1 1 0
<B2>

1 0 1 0 1 1 1 0
<B2>
<B3>

1 0 1 1 1 1 1 0
<B2>
<B3>

1 0 1 0 0 0 0 0
<B2>

1 0 1 0 0 1 0 0
<B2>

1 0 1 1 0 1 0 0
<B2>

1 0 1 0 1 1 0 0
<B2>
<B3>

1 0 1 1 1 1 0 0
<B2>
<B3>

0 0 1 1 1 1 0 0
<B2>
<B3>

1 0 0 0 0 1 0 1
<B2>

1 0 0 1 0 1 0 1
<B2>

1 0 0 0 1 1 0 1
<B2>
<B3>

1 0 0 1 1 1 0 1
<B2>
<B3>

1 0 0 1 1 0 0 1
<B2>
<B3>

1 0 0 0 0 0 0 1
<B2>

1 0 0 1 0 0 0 1
<B2>

1 0 0 0 0 1 1 0
<B2>

1 0 0 1 0 1 1 0
<B2>

1 0 0 0 1 1 1 0
<B2>
<B3>

1 0 0 0 0 1 0 0
<B2>

1 0 0 1 0 1 0 0
<B2>

1 0 0 0 1 1 0 0
<B2>
<B3>

1 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0

1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 0

1 0 1 1 1 0 1 0
1 0 0 1 1 0 1 0

0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0

0 1 1 0 1 0 0 0
0 0 1 0 1 0 0 0

✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕
 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕
 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕
 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕
Previous status in stack

S
ta

ck
O

pe
ra

tio
n

D7D6D5D4 D3D2D1D0

BYTE

NUMBER
NOTE

Rev.2.00 Nov 14, 2006 page 179 of 185
REJ09B0322-0200

2

2

2

3

3

3

2

2

2

2

2

3

3

3

2

2

1

2

2

3

3

1

2

2

3

3

1

1

1

1

2

2

69

65

75

6D

7D

79

61

71

E9

E5

F5

ED

FD

F9

E1

F1

3A

E6

F6

EE

FE

1A

C6

D6

CE

DE

E8

CA

C8

88

62

E2

0 1 1 0 1 0 0 1
<B2>

0 1 1 0 0 1 0 1
<B2>

0 1 1 1 0 1 0 1
<B2>

0 1 1 0 1 1 0 1
<B2>
<B3>

0 1 1 1 1 1 0 1
<B2>
<B3>

0 1 1 1 1 0 0 1
<B2>
<B3>

0 1 1 0 0 0 0 1
<B2>

0 1 1 1 0 0 0 1
<B2>

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

INSTRUCTION CODE

D7D6D5D4 D3D2D1D0

FLAG
N V T B D I Z C

Parameter
NOTE

BYTE

NUMBER

CYCLE

NUMBER

A
d

d
 a

n
d

 S
a

b
st

ru
ct

O
p

e
ra

tio
n

HEX

ADC # $ nn

ADC $ zz

ADC $ zz, X

ADC $ hhII

ADC $ hhII, X

ADC $ hhII, Y

ADC ($ zz, X)

ADC ($ zz), Y

SBC # $ nn

SBC $ zz

SBC $ zz, X

SBC $ hhII

SBC $ hhII, X

SBC $ hhII, Y

SBC ($ zz, X)

SBC ($ zz), Y

INC A

INC $ zz

INC $ zz, X

INC $ hhII

INC $ hhII, X

DEC A

DEC $ zz

DEC $ zz, X

DEC $ hhII

DEC $ hhII, X

INX

DEX

INY

DEY

MUL $ zz, X

DIV $ zz, X

2

3

4

4

5

5

6

6

2

3

4

4

5

5

6

6

2

5

6

6

7

2

5

6

6

7

2

2

2

2

15

16

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

✕ ✕ ✕ ✕

1 1 1 0 1 0 0 1
<B2>

1 1 1 0 0 1 0 1
<B2>

1 1 1 1 0 1 0 1
<B2>

1 1 1 0 1 1 0 1
<B2>
<B3>

1 1 1 1 1 1 0 1
<B2>
<B3>

1 1 1 1 1 0 0 1
<B2>
<B3>

1 1 1 0 0 0 0 1
<B2>

1 1 1 1 0 0 0 1
<B2>

0 0 1 1 1 0 1 0

1 1 1 0 0 1 1 0
<B2>

1 1 1 1 0 1 1 0
<B2>

1 1 1 0 1 1 1 0
<B2>
<B3>

1 1 1 1 1 1 1 0
<B2>
<B3>

Classification
SYMBOL FUNCTION

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

(A)←(A)+nn+(C)

(A)←(A)+(M)+(C) where M=(zz)

(A)←(A)+(M)+(C) where M=(zz+(X))

(A)←(A)+(M)+(C) where M=(hhII)

(A)←(A)+(M)+(C) where M=(hhII+(X))

(A)←(A)+(M)+(C) where M=(hhII+(Y))

(A)←(A)+(M)+(C) where M=((zz+(X)+1)(zz+(X)))

(A)←(A)+(M)+(C) where M=((zz+1)(zz)+(Y))

(A)←(A)–nn–(C)

(A)←(A)–(M)–(C) where M=(zz)

(A)←(A)–(M)–(C) where M=(zz+(X))

(A)←(A)–(M)–(C) where M=(hhII)

(A)←(A)–(M)–(C) where M=(hhII+(X))

(A)←(A)–(M)–(C) where M=(hhII+(Y))

(A)←(A)–(M)–(C) where M=((zz+(X)+1)(zz+(X)))

(A)←(A)–(M)–(C) where M=((zz+1)(zz)+(Y))

(A)←(A)+1

(M)←(M)+1 where M=(zz)

(M)←(M)+1 where M=(zz+(X))

(M)←(M)+1 where M=(hhll)

(M)←(M)+1 where M=(hhII+(X))

(A)←(A)–1

(M)←(M)–1 where M=(zz)

(M)←(M)–1 where M=(zz+(X))

(M)←(M)–1 where M=(hhII)

(M)←(M)–1 where M=(hhII+(X))

(X)←(X)+1

(X)←(X)–1

(Y)←(Y)+1

(Y)←(Y)–1

M(S), (A)←(A)✕ M(zz+(X))
(S)←(S)–1

(A)←(M(zz+(X)+1), M(zz+(X))÷(A)
M(S)←One’s complement of remainder
(S)←(S)–1

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

0 0 0 1 1 0 1 0

1 1 0 0 0 1 1 0
<B2>

1 1 0 1 0 1 1 0
<B2>

1 1 0 0 1 1 1 0
<B2>
<B3>

1 1 0 1 1 1 1 0
<B2>
<B3>

1 1 1 0 1 0 0 0

1 1 0 0 1 0 1 0

1 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 1 1 0 0 0 1 0

1 1 1 0 0 0 1 0

M
ul

tip
ly

/ D
iv

id
e

740 Family Machine Language Instruction Table

Rev.2.00 Nov 14, 2006 page 180 of 185
REJ09B0322-0200

AND # $ nn

AND $ zz

AND $ zz, X

AND $ hhII

AND $ hhII, X

AND $ hhII, Y

AND ($ zz, X)

AND ($ zz), Y

ORA # $ nn

ORA $ zz

ORA $ zz, X

ORA $ hhII

ORA $ hhII, X

ORA $ hhII, Y

ORA ($ zz, X)

ORA ($ zz), Y

EOR # $ nn

EOR $ zz

EOR $ zz, X

EOR $ hhII

EOR $ hhII, X

EOR $ hhII, Y

EOR ($ zz, X)

EOR ($ zz), Y

COM $ zz

BIT $ zz

BIT $ hhll

TST $ zz

CMP # $ nn

CMP $ zz

CMP $ zz, X

CMP $ hhII

CMP $ hhII, X

CMP $ hhII, Y

CMP ($ zz, X)

CMP ($ zz), Y

CPX # $ nn

CPX $ zz

CPX $ hhII

CPY # $ nn

CPY $ zz

CPY $ hhII

D7D6D5D4 D3D2D1D0

FLAG
N V T B D I Z C

INSTRUCTION CODESYMBOL
Classification

Parameter

L
o

g
ic

 O
p

e
ra

tio
n

O
pe

ra
tio

n

C
o

m
p

a
ri

so
n

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕

M7M6✕ ✕ ✕ ✕ ✕

M7M6✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

NOTE

∨

∨

 ∨

29

25

35

2D

3D

39

21

31

09

05

15

0D

1D

19

01

11

49

45

55

4D

5D

59

41

51

44

24

2C

64

C9

C5

D5

CD

DD

D9

C1

D1

E0

E4

EC

C0

C4

CC

HEX

2

3

4

4

5

5

6

6

2

3

4

4

5

5

6

6

2

3

4

4

5

5

6

6

5

3

4

3

2

3

4

4

5

5

6

6

2

3

4

2

3

4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

(A)←(A) nn

(A)←(A) (M) where M=(zz)

(A)←(A) (M) where M=(zz+(X))

(A)←(A) (M) where M=(hhII)

(A)←(A) (M) where M=(hhII+(X))

(A)←(A) (M) where M=(hhII+(Y))

(A)←(A) (M) where M=((zz+(X)+1)(zz+(X)))

(A)←(A) (M) where M=((zz+1)(zz)+(Y))

(A)←(A)∨nn

(A)←(A)∨(M) where M=(zz)

(A)←(A)∨(M) where M=(zz+(X))

(A)←(A)∨(M) where M=(hhII)

(A)←(A)∨(M) where M=(hhII+(X))

(A)←(A)∨(M) where M=(hhII+(Y))

(A)←(A)∨(M) where M=((zz+(X)+1)(zz+(X)))

(A)←(A)∨(M) where M=((zz+1)(zz)+(Y))

(A)←(A)∀nn

(A)←(A)∀(M) where M=(zz)

(A)←(A)∀(M) where M=(zz+(X))

(A)←(A)∀(M) where M=(hhII)

(A)←(A)∀(M) where M=(hhII+(X))

(A)←(A)∀(M) where M=(hhII+(Y))

(A)←(A)∀(M) where M=((zz+(X)+1)(zz+(X)))

(A)←(A)∀(M) where M=((zz+1)(zz)+(Y))

(M)←(M) where M=(zz)

(A) (M) where M=(zz)

(A) (M) where M=(hhII)

(M)=0? where M=(zz)

(A)–nn

(A)–(M) where M=(zz)

(A)–(M) where M=(zz+(X))

(A)–(M) where M=(hhII)

(A)–(M) where M=(hhII+(X))

(A)–(M) where M=(hhII+(Y))

(A)–(M) where M=((zz+(X)+1)(zz+(X)))

(A)–(M) where M=((zz+1)(zz)+(Y))

(X)–nn

(X)–(M) where M=(zz)

(X)–(M) where M=(hhII)

(Y)–nn

(Y)–(M) where M=(zz)

(Y)–(M) where M=(hhII)

 ∨

 ∨

 ∨

 ∨

FUNCTION

 ∨

0 0 1 0 1 0 0 1
<B2>

0 0 1 0 0 1 0 1
<B2>

0 0 1 1 0 1 0 1
<B2>

0 0 1 0 1 1 0 1
<B2>
<B3>

0 0 1 1 1 1 0 1
<B2>
<B3>

0 0 1 1 1 0 0 1
<B2>
<B3>

0 0 1 0 0 0 0 1
<B2>

0 0 1 1 0 0 0 1
<B2>

0 0 0 0 1 0 0 1
<B2>

0 0 0 0 0 1 0 1
<B<B2>2>

0 0 0 1 0 1 0 1
<B2>

0 0 0 0 1 1 0 1
<B2>
<B3>

0 0 0 1 1 1 0 1
<B2>
<B3>

0 0 0 1 1 0 0 1
<B2>
<B3>

0 0 0 0 0 0 0 1
<B2>

 0 0 0 1 0 0 0 1
<B2>

0 1 0 0 1 0 0 1
<B2>

 0 1 0 0 0 1 0 1
<B2>

 0 1 0 1 0 1 0 1
<B2>

 0 1 0 0 1 1 0 1
<B2>
<B3>

 0 1 0 1 1 1 0 1
<B2>
<B3>

 0 1 0 1 1 0 0 1
<B2>
<B3>

0 1 0 0 0 0 0 1
<B2>

0 1 0 1 0 0 0 1
<B2>

0 1 0 0 0 1 0 0
<B2>

0 0 1 0 0 1 0 0
<B2>

0 0 1 0 1 1 0 0
<B2>
<B3>

0 1 1 0 0 1 0 0
<B2>

1 1 0 0 1 0 0 1
<B2>

1 1 0 0 0 1 0 1
<B2>

1 1 0 1 0 1 0 1
<B2>

1 1 0 0 1 1 0 1
<B2>
<B3>

1 1 0 1 1 1 0 1
<B2>
<B3>

1 1 0 1 1 0 0 1
<B2>
<B3>

1 1 0 0 0 0 0 1
<B2>

1 1 0 1 0 0 0 1
<B2>

1 1 1 0 0 0 0 0
<B2>

1 1 1 0 0 1 0 0
<B2>

1 1 1 0 1 1 0 0
<B2>
<B3>

1 1 0 0 0 0 0 0
<B2>

1 1 0 0 0 1 0 0
<B2>

1 1 0 0 1 1 0 0
<B2>
<B3>

 ∨

 ∨

















C
o

m
p

a
ri

so
n

 in
 s

iz
e

2

2

2

3

3

3

2

2

2

2

2

3

3

3

2

2

2

2

2

3

3

3

2

2

2

2

3

2

2

2

2

3

3

3

2

2

2

2

3

2

2

3





 C

o
m

p
a

ri
so

n
 in

 s
iz

e
C

o
m

p
a

ri
so

n
 in

 s
iz

e





CYCLE

NUMBER

BYTE

NUMBER

740 Family Machine Language Instruction Table

Rev.2.00 Nov 14, 2006 page 181 of 185
REJ09B0322-0200

2
5

6

6

7

2
5

6

6

7

2

5

6

6

7

2

5

6

6

7

8

2

5

2

5

1
2

2

3

3

1
2

2

3

3

1

2

2

3

3

1

2

2

3

3

2

1

2

1

2

0A
06

16

0E

1E

4A
46

56

4E

5E

2A

26

36

2E

3E

6A

66

76

6E

7E

82

(1+2i)✕ 10
+B

(1+2i)✕ 10

+F

2i✕ 10
+B

2i✕ 10
+F

INSTRUCTION CODE

D7D6D5D4 D3D2D1D0

FLAG

N V T B D I Z C

↑

↑

CYCLE

NUMBER

BYTE

NUMBERFUNCTION HEXSYMBOL

O
pe

ra
tio

n

Parameter

R
o

ta
te

 a
n

d
 S

h
ift

✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0

<B2>
0 0 0 1 0 1 1 0

<B2>
0 0 0 0 1 1 1 0

<B2>
<B3>

0 0 0 1 1 1 1 0
<B2>
<B3>

0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0

<B2>
0 1 0 1 0 1 1 0

<B2>
0 1 0 0 1 1 1 0

<B2>
<B3>

0 1 0 1 1 1 1 0
<B2>
<B2>

i i i 0 1 0 1 1

i i i 0 1 1 1 1
<B2>

i i i 1 1 0 1 1

i i i 1 1 1 1 1
<B2>

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 1 0 0 0 0 0 1 0
<B2>

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ 0

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ 1

 ✕ ✕ ✕ ✕ 0 ✕ ✕ ✕

 ✕ ✕ ✕ ✕ 1 ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ 0 ✕ ✕

 ✕ ✕ ✕ ✕ ✕ 1 ✕ ✕

 ✕ ✕ 0 ✕ ✕ ✕ ✕ ✕

 ✕ ✕ 1 ✕ ✕ ✕ ✕ ✕

 ✕ 0 ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

NOTE
Classification

18

38

D8

F8

58

78

12

32

B8

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

0 0 0 1 1 0 0 0

0 0 1 1 1 0 0 0

1 1 0 1 1 0 0 0

1 1 1 1 1 0 0 0

0 1 0 1 1 0 0 0

0 1 1 1 1 0 0 0

0 0 0 1 0 0 1 0

0 0 1 1 0 0 1 0

1 0 1 1 1 0 0 0

0 1 1 0 1 0 1 0

0 1 1 0 0 1 1 0
<B2>

0 1 1 1 0 1 1 0
<B2>

0 1 1 0 1 1 1 0
<B2>
<B3>

0 1 1 1 1 1 1 0
<B2>
<B2>

0 0 1 0 1 0 1 0

0 0 1 0 0 1 1 0
<B2>

0 0 1 1 0 1 1 0
<B2>

0 0 1 0 1 1 1 0
<B2>
<B3>

0 0 1 1 1 1 1 0
<B2>
<B3>

0 ✕ ✕ ✕ ✕ ✕
0 ✕ ✕ ✕ ✕ ✕

0 ✕ ✕ ✕ ✕ ✕

0 ✕ ✕ ✕ ✕ ✕

0 ✕ ✕ ✕ ✕ ✕

ASL A
ASL $ zz

ASL $ zz, X

ASL $ hhII

ASL $ hhII, X

LSR A
LSR $ zz

LSR $ zz, X

LSR $ hhII

LSR $ hhII, X

ROL A

ROL $ zz

ROL $ zz, X

ROL $ hhII

ROL $ hhII, X

ROR A

ROR $ zz

ROR $ zz, X

ROR $ hhII

ROR $ hhII, X

RRF $ zz

CLB i, A

CLB i, $ zz

SEB i, A

SEB i, $ zz

CLC

SEC

CLD

SED

CLI

SEI

CLT

SET

CLV










B
it

M
an

ag
em

en
t

F
la

g
se

tti
ng

740 Family Machine Language Instruction Table
























Left Shift C ←A7A6 A1A0 ← 0
where M=(zz)

where M=(zz+(X))
Left Shift

C ← M7M6 M1M0 ← 0 where M=(hhII)

where M=(hhII+(X))

Right Shift 0 → A7A6 A1A0 → C
where M=(zz)

where M=(zz+(X))
Right Shift 0 → M7M6 M1M0 → C

where M=(hhII)

where M=(hhII+(X))

Left Shift ← A7A6 A1A0 ← C ←

where M=(zz)

where M(zz+(X))
Left Shift ← M7M6 M1M0 ← C ←

where M(hhII)

where M(hhII+(X))

Right Shift → C → A7A6 A1A0 →

where M=(zz)

where M=(zz+(X))
Right Shift → C → M7M6 M1M0 →

where M=(hhII)

where M=(hhll+(X))

 M7 M4 M3 M0 where M=(zz)

(Ai) ← 0 where i=0—7

(Mi) ← 0 where i=0—7, M=(zz)

(Ai) ←1 where i=0—7

(Mi) ← 1 where i=0—7, M=(zz)

(C) ← 0

(C) ← 1

(D) ← 0

(D) ← 1

(I) ← 0

(I) ← 1

(T) ← 0

(T) ← 1

(V) ← 0

Rev.2.00 Nov 14, 2006 page 182 of 185
REJ09B0322-0200

4

3

5

4

6

7

5

4

5

4

5

2

2

2

2

2

2

2

2

6

6

7

2

2

2

2

3

3

2

3

2

2

2

3

2

3

2

2

2

2

2

2

2

2

1

1

1

1

1

1

80

4C

6C

B2

20

02

22

(1+2i)x10

+3

(1+2i)x10

+7

2ix10
+3

2ix10

+7

90

B0

D0

F0

10

30

50

70

40

60

00

EA

C2

42

1 0 0 0 0 0 0 0
<B2>

0 1 0 0 1 1 0 0
<B2>
<B3>

0 1 1 0 1 1 0 0
<B2>
<B3>

1 0 1 1 0 0 1 0
<B2>

0 0 1 0 0 0 0 0
<B2>
<B3>

0 0 0 0 0 0 1 0
<B2>

0 0 1 0 0 0 1 0
<B2>

i i i 1 0 0 1 1
<B2>

i i i 1 0 1 1 1
<B2>
<B3>

i i i 0 0 0 1 1
<B2>

i i i 0 0 1 1 1

INSTRUCTION CODEFLAG

N V T B D I Z C

4

4

4

4

4

4

4

4

4

4

4

4

4

5

NOTE
BYTE

NUMBERHEXFUNCTION

B
ra

nc
h

an
d

R
et

ur
n

Ju
m

p
B

ra
nc

h

Parameter

Classification SYMBOL
CYCLE

NUMBER

<B2>
<B3>

1 0 0 1 0 0 0 0
<B2>

1 0 1 1 0 0 0 0
<B2>

1 1 0 1 0 0 0 0
<B2>

1 1 1 1 0 0 0 0
<B2>

0 0 0 1 0 0 0 0
<B2>

0 0 1 1 0 0 0 0
<B2>

0 1 0 1 0 0 0 0
<B2>

0 1 1 1 0 0 0 0
<B2>

0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 0

1 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0

D7D6D5D4 D3D2D1D0

BRA $ hhII

JMP $ hhII

JMP ($ hhII)

JMP ($ zz)

JSR $ hhII

JSR ($ zz)

JSR \ $ hhII

BBC i, A, $ hhII

BBC i, $ zz, $ hhII

BBS i, A, $ hhII

BBS i, $ zz, $ hhII

BCC $ hhII

BCS $ hhII

BNE $ hhII

BEQ $ hhII

BPL $ hhII

BMI $ hhII

BVC $ hhII

BVS $ hhII

RTI

RTS

BRK

NOP

WIT

STP

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Previous status in
stack

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ 1 ✕ 1 ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

(PC) ← (PC)+2+Rel

(PC) ← hhII

(PCL) ← (hhII), (PCH) ← (hhII+1)

(PCL) ←(zz), (PCH) ← (zz+1)

(M(S))←(PCH), (S)←(S) –1, (M(S)) ← (PCL),
(S)←(S) –1, and (PC)←hhII

(M(S))←(PCH), (S)←(S) –1, (M(S))←(PCL),
(S)←(S) –1, (PCL)←(zz), and (PCH)←(zz+1)

(M(S))←(PCH), (S)←(S) –1, (M(S))←(PCL),
(S)←(S)–1, (PCL)←II, and (PCH)←FF

When (Ai)=0 (PC) ←(PC)+2+Rel Where i=0—7
When (Ai)=1 (PC) ← (PC)+2

When (Mi)=0 (PC) ← (PC)+3+Rel Where i=0—7
When (Mi)=1 (PC) ← (PC)+3

When (Ai)=1 (PC) ← (PC)+2+Rel Where i=0—7
When (Ai)=0 (PC) ← (PC)+2

When (Mi)=1 (PC) ← (PC)+3+Rel Where i=0—7
When (Mi)=0 (PC) ← (PC)+3

When (C)=0 (PC) ← (PC)+2+Rel
When (C)=1 (PC) ← (PC)+2

When (C)=1 (PC) ← (PC)+2+Rel
When (C)=0 (PC) ← (PC)+2

When (Z)=0 (PC) ← (PC)+2+Rel
When (Z)=1 (PC) ← (PC)+2

When (Z)=1 (PC) ←(PC)+2+Rel
When (Z)=0 (PC) ← (PC)+2

When (N)=0 (PC) ← (PC)+2+Rel
When (N)=1 (PC) ← (PC)+2

When (N)=1 (PC) ← (PC)+2+Rel
When (N)=0 (PC) ← (PC)+2

When (V)=0 (PC) ← (PC)+2+Rel
When (V)=1 (PC) ← (PC)+2

When (V)=1 (PC) ← (PC)+2+Rel
When (V)=0 (PC) ← (PC)+2

(S)←(S)+1, (PS)←(M(S)), (S)←(S)+1, (PCL)←(M(S)),
(S)←(S)+1, and (PCH)←(M(S))

(S)←(S)+1, (PCL)←(M(S)), (S)←(S)+1, (PCH)←(M(S)),
and (PC)←(PC)+1

(B)←1, (PC)←(PC)+2, (M(S))←(PCH), (S)←(S)–1, (M(S))←(PCL),
(S)←(S)–1, (M(S))←(PS), (S)←(S)–1, (I)←1, (PC)←BADRS

(PC) ← (PC)+1

Internal clock source is stopped.

Oscillation is stopped.

R
et

ur
n

Interrupt

Other

Special

740 Family Machine Language Instruction Table

Rev.2.00 Nov 14, 2006 page 183 of 185
REJ09B0322-0200

Symbol

A
Ai
X
Y
M
Mi
PS
S

PC
PCL

PCH

N
V
T
B
D
I
Z
C
#
$

Means

Accumulator
Bit i of accumulator
Index register X
Index register Y
Memory
Bit i of memory
Processor status register
Stack Pointer
Program counter
Low-order byte of program counter
High-order byte of program counter
Negative flag
Overflow flag
X modified operation mode flag
Break flag
Decimal mode flag
Interrupt disable flag
Zero flag
Carry flag
Immediate mode
Hexadecimal
Special page mode

Symbol

hh
II
zz
nn
i

i i i
<B2>
<B3>
Rel

BADRS
←
()
+

*
÷
∨

∀

✕

Means

High-order byte of address (0—255)
Low-order byte of address (0—255)
Zero page address (0—255)
Date at (0—255)
Data at (0—7)
Data at (0—7)
Second byte of instruction
Third byte of instruction
Relative address
Break address
Direction of data transfer
Contents of register of memory
Add
Subtract
Multiplication
Division
Logical OR
Logical AND
Logical Exclusive OR
Negative
Stable flag after execution
Variable flag after execution

Notes 1: Listed function is when (T) = 0.
When (T) = 1, (M(X)) is entered instead of (A) and the cycle number is increased by 3.

2: Ditto. The cycle number is increased by 2.
3: Ditto. The cycle number is increased by 1.
4: The cycle number is increased by 2 when a branch is occurred.
5: If the STP instruction is disabled the cycle number will be 2 (same in operation as two NOPs).

∨

740 Family Machine Language Instruction Table

Rev.2.00 Nov 14, 2006 page 184 of 185
REJ09B0322-0200

D7 – D4

D3 – D0

Hexadecimal
notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000

0

BRK

BPL

JSR
ABS

BMI

RTI

BVC

RTS

BVS

BRA

BCC

LDY
IMM

BCS

CPY
IMM

BNE

CPX
IMM

BEQ

0001

1

ORA
IND, X

ORA
IND, Y

AND
IND, X

AND
IND, Y

EOR
IND, X

EOR
IND, Y

ADC
IND, X

ADC
IND, Y

STA
IND, X

STA
IND, Y

LDA
IND, X

LDA
IND, Y

CMP
IND, X

CMP
IND, Y

SBC
IND, X

SBC
IND, Y

0010

2

JSR
ZP, IND

CLT

JSR
SP

SET

STP
(Note)

—

MUL
ZP, X

(Note)

—

RRF
ZP

—

LDX
IMM

JMP
ZP, IND

WIT

—

DIV
ZP, X
(Note)

—

0101

5

ORA
ZP

ORA
ZP, X

AND
ZP

AND
ZP, X

EOR
ZP

EOR
ZP, X

ADC
ZP

ADC
ZP, X

STA
ZP

STA
ZP, X

LDA
ZP

LDA
ZP, X

CMP
ZP

CMP
ZP, X

SBC
ZP

SBC
ZP, X

0110

6

ASL
ZP

ASL
ZP, X

ROL
ZP

ROL
ZP, X

LSR
ZP

LSR
ZP, X

ROR
ZP

ROR
ZP, X

STX
ZP

STX
ZP, Y

LDX
ZP

LDX
ZP, Y

DEC
ZP

DEC
ZP, X

INC
ZP

INC
ZP, X

0111

7

BBS
0, ZP

BBC
0, ZP

BBS
1, ZP

BBC
1, ZP

BBS
2, ZP

BBC
2, ZP

BBS
3, ZP

BBC
3, ZP

BBS
4, ZP

BBC
4, ZP

BBS
5, ZP

BBC
5, ZP

BBS
6, ZP

BBC
6, ZP

BBS
7, ZP

BBC
7, ZP

1000

8

PHP

CLC

PLP

SEC

PHA

CLI

PLA

SEI

DEY

TYA

TAY

CLV

INY

CLD

INX

SED

1001

9

ORA
IMM

ORA
ABS, Y

AND
IMM

AND
ABS, Y

EOR
IMM

EOR
ABS, Y

ADC
IMM

ADC
ABS, Y

—

STA
ABS, Y

LDA
IMM

LDA
ABS, Y

CMP
IMM

CMP
ABS, Y

SBC
IMM

SBC
ABS, Y

1010

A

ASL
A

DEC
A

ROL
A

INC
A

LSR
A

—

ROR
A

—

TXA

TXS

TAX

TSX

DEX

—

NOP

—

1011

B

SEB
0, A

CLB
0, A

SEB
1, A

CLB
1, A

SEB
2, A

CLB
2, A

SEB
3, A

CLB
3, A

SEB
4, A

CLB
4, A

SEB
5, A

CLB
5, A

SEB
6, A

CLB
6, A

SEB
7, A

CLB
7, A

1101

D

ORA
ABS

ORA
ABS, X

AND
ABS

AND
ABS, X

EOR
ABS

EOR
ABS, X

ADC
ABS

ADC
ABS, X

STA
ABS

STA
ABS, X

LDA
ABS

LDA
ABS, X

CMP
ABS

CMP
ABS, X

SBC
ABS

SBC
ABS, X

3-byte instruction

2-byte instruction

1-byte instruction

Note: Some products unuse these instructions.

1110

E

ASL
ABS

ASL
ABS, X

ROL
ABS

ROL
ABS, X

LSR
ABS

LSR
ABS, X

ROR
ABS

ROR
ABS, X

STX
ABS

—

LDX
ABS

LDX
ABS, Y

DEC
ABS

DEC
ABS, X

INC
ABS

INC
ABS, X

1111

F

SEB
0, ZP

CLB
0, ZP

SEB
1, ZP

CLB
1, ZP

SEB
2, ZP

CLB
2, ZP

SEB
3, ZP

CLB
3, ZP

SEB
4, ZP

CLB
4, ZP

SEB
5, ZP

CLB
5, ZP

SEB
6, ZP

CLB
6, ZP

SEB
7, ZP

CLB
7, ZP

1100

C

—

—

BIT
ABS

LDM
ZP

JMP
ABS

—

JMP
IND

—

STY
ABS

—

LDY
ABS

LDY
ABS, X

CPY
ABS

—

CPX
ABS

—

Refer to the related section
because the clock control instruction and
multiplication and division instruction
depend on products.

APPENDIX 3
740 Family Iist of Instruction Codes

0011

3

BBS
0, A

BBC
0, A

BBS
1, A

BBC
1, A

BBS
2, A

BBC
2, A

BBS
3, A

BBC
3, A

BBS
4, A

BBC
4, A

BBS
5, A

BBC
5, A

BBS
6, A

BBC
6, A

BBS
7, A

BBC
7, A

0100

4

—

—

BIT
ZP

—

COM
ZP

—

TST
ZP

—

STY
ZP

STY
ZP, X

LDY
ZP

LDY
ZP, X

CPY
ZP

—

CPX
ZP

—

APPENDIX 3. 740 Family Iist of Instruction Codes

Rev.2.00 Nov 14, 2006 page 185 of 185
REJ09B0322-0200

MEMORANDUM

740 Family Iist of Instruction Codes

740 Family Software Manual

Publication Data : Rev.1.00 Aug 29, 1997
Rev.2.00 Nov 14, 2006

Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

740 Family

REJ09B0322-0200

Software Manual

	REVISION HISTORY
	Using This Manual
	Table of contents
	1. OVERVIEW
	2. CENTRAL PROCESSING UNIT (CPU)
	2.1 Accumulator (A)
	2.2 Index Register X (X), Index Register Y (Y)
	2.3 Stack Pointer (S)
	2.4 Program Counter (PC)
	2.5 Processor Status Register (PS)

	3. INSTRUCTIONS
	3.1 Addressing Mode
	3.2 Instruction Set
	3.2.1 Data transfer instructions
	3.2.2 Operating instruction
	3.2.3 Bit managing instructions
	3.2.4 Flag setting instructions
	3.2.5 Jump, Branch and Return instructions
	3.2.6 Interrupt instruction (Break instruction)
	3.2.7 Special instructions
	3.2.8 Other instruction

	3.3 Description of instructions
	3.4 Instructions Related to Interrupt Handling and Subroutine Processing
	3.4.1 Instructions Related to Interrupt Handling
	3.4.2 Instructions Related to Interrupt Control
	3.4.3 Instructions Related to Subroutine Processing

	4. NOTES ON USE
	4.1 Notes on input and output ports
	4.1.1 Notes in standby state
	4.1.2 Modifying output data with bit managing instruction

	4.2 Termination of unused pins
	4.2.1 Appropriate termination of unused pins
	4.2.2 Termination remarks

	4.3 Notes on interrupts
	4.3.1 Setting for interrupt request bit and interrupt enable bit
	4.3.2 Switching of detection edge
	4.3.3 Distinction of interrupt request bit

	4.4 Notes on programming
	4.4.1 Processor Status Register
	4.4.2 BRK instruction
	4.4.3 Decimal calculations
	4.4.4 JMP instruction
	4.4.5 Multiplication and division instructions
	4.4.6 Ports
	4.4.7 Instruction execution time

	APPENDIX 1. Instruction Cycles in each Addressing Mode
	APPENDIX 2. 740 Family Machine Language Instruction Table
	APPENDIX 3. 740 Family Iist of Instruction Codes
	Addressing mode
	Immediate
	Accumulator
	Zero Page
	Zero Page X
	Zero Page Y
	Absolute
	Absolute X
	Absolute Y
	Implied
	Relative
	Indirect X
	Indirect Y
	Indirect Absolute
	Zero Page Indirect Absolute
	Special Page
	Zero Page Bit
	Accumulator Bit
	Accumulator Bit Relative
	Zero Page Bit Relative

	instructions
	ADC
	AND
	ASL
	BBC
	BBS
	BCC
	BCS
	BEQ
	BIT
	BMI
	BNE
	BPL
	BRA
	BRK
	BVC
	BVS
	CLB
	CLC
	CLD
	CLI
	CLT
	CLV
	CMP
	COM
	CPX
	CPY
	DEC
	DEX
	DEY
	DIV
	EOR
	INC
	INX
	INY
	JMP
	JSR
	LDA
	LDM
	LDX
	LDY
	LSR
	MUL
	NOP
	ORA
	PHA
	PHP
	PLA
	PLP
	ROL
	ROR
	RRF
	RTI
	RTS
	SBC
	SEB
	SEC
	SED
	SEI
	SET
	STA
	STP
	STX
	STY
	TAX
	TAY
	TST
	TSX
	TXA
	TXS
	TYA
	WIT

