To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
=

740 Family

Software Manual
RENESAS MCU

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com ReV200 2006.11

10.

11.

12.

13.

Notes regarding these materials

This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of Renesas or any third party with respect to the information in
this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in
light of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
With the exception of products specified by Renesas as suitable for automobile applications, Renesas
products are not designed, manufactured or tested for applications or otherwise in systems the failure or
malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
especially high quality and reliability such as safety systems, or equipment or systems for transportation and
traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
transmission. If you are considering the use of our products for such purposes, please contact a Renesas
sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(2) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
You should use the products described herein within the range specified by Renesas, especially with respect
to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other applicable measures. Among others, since the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
system manufactured by you.
In case Renesas products listed in this document are detached from the products to which the Renesas
products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
high. You should implement safety measures so that Renesas products may not be easily detached from your
products. Renesas shall have no liability for damages arising out of such detachment.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

REVISION HISTORY 740 Family Software Manual

Rev. Date Description

Page Summary
1.00 |Aug 29, 1997 - First edition issued
2.00 |Nov 14, 2006 - Changed to the RENESAS style.

“Preface” is changed to “Using This Manual”.
4 2.5 Processor Status Register: Description added.

26 3.2 Instruction Set : Description revised.

31 ADC : Note 2 is revised.

53 CMP : Function revised.

60 DIV : Note 3 is added.

65 JMP : Note is added.

72,133, 134| XX instruction cannot be used for any products — XX instruction cannot be used
for some products.

72 MUL : Note 3 is added.

74 ORA : Niswhenbit7..... - N is “1” when bit 7.....

78 PLP : Note is added.

82 RTI : Status flag is revised.

83 RTS : Operation is revised.

84 SBC : Note 2 is revised.

101 WIT : Function is revised.

102 to 104 | 3.4 Instructions Related to Interrupt Processing and Subroutine Processing added.
105 NOTES ON USE : “4.1 Notes on input and output ports” is added.
107 Fig. 4.3.1 is revised.

4.3.2 : Description revised.
108 4.3.3 Distinction of interrupt request bit : Description revised.
Fig. 4.3.2 is revised.
110 Fig. 4.4.4 is revised.
111 “4.4.5 Multiplication and division instruction”, “4.4.6 Ports” and
“4.4.7 Instruction execution time” are added.
112 Valid signal for each product : Table is revised and note is added.
178 Part of instruction table is revised.
184 Part of instruction code is revised.

Table of products which unuse these instructions is eliminated.

Using This Manual

This software manual is written for the 740 Family. It applies to all microcomputers integrating the 740
Family CPU core.

The reader of this manual is assumed to have a basic knowledge of electrical circuits, logic circuits, and
microcomputers.

740 Family Documents

The following documents were prepared for the 740 family.

Document Contents

Data Sheet Hardware overview and electrical characteristics

Hardware specifications (pin assignments, memory maps, peripheral
specifications, electrical characteristics, timing charts).

Software Manual Detailed description of assembly instructions and microcomputer
performance of each instruction
Application Note Usage and application examples of peripheral functions

» Sample programs

Table of contents

Table of contents

CHAPTER 1. OVERVIEW ... e 1
CHAPTER 2. CENTRAL PROCESSING UNIT (CPU) ccoovviiiiiiiiiiiiee e 2
2.1 ACCUMUIBLOT (A) ettt ettt e e et e e s e bbb e e e e e ek b e e e e et be e e e e anbbe e e e e anneee 2
2.2 Index Register X (X), IndeX ReGISTEr Y () ciiiiiiiiiieiieiie ettt a e 2
2.3 STACK POINTEE (S) wiiiiiiiiiiii ittt et e e e et e e e e et e e e e e e 3
2.4 Program COUNTEE (PC) .ttt ettt e e et e e e e e e e e e s s et e e e e e aaeeeeessannnntasrrnareeaaeas 4
2.5 Processor StatuUsS ReEQISTEI (PS) ittt e e e e e e e rreereeeae s 4
CHAPTER 3. INSTRUCTIONS ... 6
3.1 AdAreSSING MO ...t e e e e e e e s e s st e e e eaeee e e s s e s anrbrbaarreaaaaeaaaan 6
A T3 U ol AT o] TS = PR PSR 26
3.2.1 Data transfer iNSTIUCTIONS ... e e e e e e e e e as 26
3.2.2 Operating INSIFUCTIONccoii it e e e e e s s e e e e e e e e e e s e s sabnrrereeeeaaaeaeas 27
3.2.3 Bit Managing iNSITUCTIONSccoiiiiiiiiiiiiii ittt as 28
3.2.4 Flag setting INSTIUCLIONSooiiiiiiieiieee e e s e e e e e e e s e e eereeeaeas 28
3.2.5 Jump, Branch and Return iNStrUCHIONSuuiiiiiiiiiieeee e 28
3.2.6 Interrupt instruction (Break iNSIrUCION)eiiiiiiiiiiieiiiiece e 29
3.2.7 SPECIAl INSTIUCLIONS ..oiiiii i e e e e e e e e e e s e s st a e e reaeaeeas 29
3.2.8 Other INSTIUCTION ...uuiiiiiiiieie e e e e e et e e e e e e e e e e e s nebnbeeeeeeeeeas 29
3.3 DeSCription Of INSTIUCTIONS ..o e e e e e r e e e e e e e 30
3.4 Instructions Related to Interrupt Handling and Subroutine Processing................... 31
3.4.1 Instructions Related to Interrupt Handlingoevveeeiiiiiiiiiiiieec e, 31
3.4.2 Instructions Related to Interrupt CONtrol..........oooiiiiiiiiiiiiie e 31
3.4.3 Instructions Related to Subroutine ProCeSSIiNgcoucuuuiiiiiiiiiiieiiiiiee e 32
CHAPTER 4. NOTES ON USE ...t 105
4.1 Notes on input and OULPUL POTTS ..oiiiiiiiiiiieiiiiiie ettt 105
4.1.1 Notes in StaNdbY STALEc..eeiiiiiiiii e 105
4.1.2 Modifying output data with bit managing inStruction...............ccccoviiiviieeee e, 105
4.2 Termination Of UNUSEA PINS ..o 106
4.2.1 Appropriate termination of UNUSEd PINS ...ooovieiiiiiiiiiieee e 106
4.2.2 Termination reMAIKS ...t e e e e re e e e e e e e e e e e e nnnenes 106
4.3 NOTES ON INTEITUPLES coiiiiiiiiiii i e e e e e e e e s s e e e e ee e e e e e s sa st b et aeereaeeeeesesannnnnnanneeees 107
4.3.1 Setting for interrupt request bit and interrupt enable bit............cccooi i, 107
4.3.2 Switching Of deteCtion €AgEcueeiiiiiiii e 107
4.3.3 Distinction of interrupt request Dit ... 108
4.4 NOTES ON PrOGIrAMIMITNG .oeeeiiiiiiieeiiitieeee ettt e e ate e e e e s atbee e e e s abbe et e e s abbb e e e e aasbeeeeesabbneeeesannnneees 109
4.4.1 Processor StatUS REQISIEI ..occciiiii it e e e e e e e r e e e e e e e s e e annnnes 109
4.4.2 BRK INSTIUCTION .ttt e e e e e e e e e ettt e e e e e e aeeeeeeanannnes 110
4.4.3 Decimal CAlCUIAtIONSoiiiiiii et e e e e e e e e e e e e nnenes 110
N 1V 1 T 0 1= 4 £ U Tod 1o I PRSP 111
4.4.5 Multiplication and diviSion INSTIUCTIONSoiuiiiiiiiiiiiee e 111
I o o £ TP PP PP P PP PP 111
4.4.7 INStruction @XEeCULION TIME ..iiiiii it e e e e e e e e e e e e e e annnnes 111

Table of contents

APPENDIX 1. Instruction Cycles in each Addressing Modecccccceeeeeen. 112
APPENDIX 2. 740 Family Machine Language Instruction Table 178
APPENDIX 3. 740 Family list of Instruction Codescccccvvvvrririiiiciiiiieeeeeenn, 184
<Addressing Mode>
Immediate........ccovvveiiiiiineeee 7 Special Pagecccccoecvveeeenns 21
Accumulatorccccoovvieeennnnnen, 8 Zero Page Bit.....c..cevvveeennnnn 22
Zero Page .ccccoeeeeeeeieiiiiie 9 Accumulator Bit.......cccceveeeeenn. 23
Zero Page X..oooooviiiiiiiiinnnn, 10 Accumulator Bit Relatibe 24
Zero Page Y .o 11 Zero Page Bit Relative 25
ADSOIULE ..o 12
Absolute X ..o, 13
Absolute Y ... 14
Impliedcccoviiieii 15
Relativecccoveeeviiieeiiiis 16
Indirect X ..oocooveviiiiiieiiee 17
INdirect Y ..evvieeiiiiiiiie, 18
Indirect Absolute 19
Zero Page Indirect................. 20
<Instructions>
ADC ... 34 CLI o, 53 LDX oo 72 SEl i, 91
AND 35 CLT o 54 LDY s 73 SET i 92
ASL . 36 CLV e, 55 LSR ..o 74 STA e, 93
BBC....oooiee 37 CMP ., 56 MUL ... 75 STP . 94
BBS ... 38 COM. ., 57 NOP ..o 76 STX i, 95
BCC .. 39 CPX e 58 ORA ..o, 77 STY i 96
BCS...e 40 CPY ., 59 PHA. ..., 78 TAX . 97
BEQ ..o 41 DEC ... 60 PHP ... 79 TAY e 98
BIT s 42 DEX. s 61 PLA s 80 TST i 99
BMI .. 43 (D] =) 62 PLP .o 8l TSX.iiiiiiiii, 100
BNE.....ccooiie 44 DIV s 63 ROL..coveiiiiiis 82 TXA ., 101
BPL ..o 45 EOR ... 64 ROR ... 83 TXS . 102
BRA ... 46 INC ..., 65 RRF ... 84 TYA .. 103
BRK ... 47 INX s 66 RTI s 85 WIT i 104
BVC....oiee 48 INY (s 67 RTS .. 86
BVS ..., 49 IMP..., 68 SBC...iiiiis 87
CLB .o 50 JSR ., 69 SEB..ooiiiiiiiiiiiis 88
CLC .o 51 LDA .. 70 SEC...s 89
CLD .oovirieee 52 LDM oo, 71 SED...ooviriiiiiiins 90

A-2

OVERVIEW

1. OVERVIEW
The distinctive features of the CMOS 8-bit microcomputers 740 Family’s software are described
below:
1) An efficient instruction set and many addressing modes allow the effective use of ROM.
2) The same bit management, test, and branch instructions can be performed on the Accu-
mulator, memory, or I/O area.
3) Multiple interrupts with separate interrupt vectors allow servicing of different non-periodic
events.
4) Byte processing and table referencing can be easily performed using the index addressing
mode.
5) Decimal mode needs no software correction for proper decimal operation.
6) The Accumulator does not need to be used in operations using memory and/or 1/O.

Rev.2.00 Nov 14, 2006 page 1 of 185 RENESAS
REJ09B0322-0200

CENTRAL PROCESSING UNIT
Accumulator (A)
Index Register X (X), Index Register Y (Y)

2. CENTRAL PROCESSING UNIT (CPU)

Six main registers are built into the CPU of the 740 Family.

The Program Counter (PC) is a sixteen-bit register; however, the Accumulator (A), Index

Register X (X), Index Register Y (Y), Stack Pointer (S) and Processor Status Register (PS)

are eight-bit registers.

O Except for the | flag, the contents of these registers are indeterminate after a hardware
reset; therefore, initialization is required with some programs (immediately after reset the |
flag is set to “1").

7 0
[A | Accumulator(A)
7 0
[X | Index Register X(X)
7 0
I Y | Index Register Y(Y)
7 0
| S | Stack Pointer(S)
7 07 0
| PCh | PCL | Program Counter(PC)
7 0 Processor
IN[VITIBIDI 1[Z]C] status Register(PS)
L—— Carry Flag
Zero Flag
Interrupt Disable Flag

Decimal Mode Flag

Break Flag (BRK)

X Modified Operation Mode Flag
Overflow Flag

Negative Flag

Fig.2.1.1 Register Configuration

2.1 Accumulator (A)

The Accumulator, an eight-bit register, is the main register of the microcomputer.

This general-purpose register is used most frequently for arithmetic operations, data transfer,
temporary memory, conditional judgments, etc.

2.2 Index Register X (X), Index Register Y (Y)

The 740 Family has an Index Register X and an Index Register Y, both of which are eight-
bit registers.

When using addressing modes which use these index registers, the address, which is added
the contents of Index Register to the address specified with operand, is accessed. These
modes are extremely effective for referencing subroutine and memory tables.

The index registers also have increment, decrement, compare, and data transfer functions;
therefore, these registers can be used as simple accumulators.

Rev.2.00 Nov 14,2006 page 2 of 185 RENESAS
REJ09B0322-0200

CENTRAL PROCESSING UNIT
Stack Pointer (S)

2.3 Stack Pointer (S)
The Stack Pointer is an eight-bit register used for generating interrupts and calling subroutines.
When an interrupt is received, the following procedure is performed automatically in the
indicated sequence:
(1) The contents of the high-order eight bits of the Program Counter (PCH) are saved to
an address using the Stack Pointer contents for the low-order eight bits of the address.
(2) The Stack Pointer contents are decremented by 1.
(3) The contents of the low-order eight bits of the Program Counter (PCL) are saved to an
address using the Stack Pointer Contents for the low-order eight bits of the address.
(4) The Stack Pointer contents are decremented by 1.
(5) The contents of the Processor Status Register (PS) are saved to an address using the
Stack Pointer contents for the low-order eight bits of the address.
(6) The Stack Pointer contents are decremented by 1.
The Processor Status Register is not saved when calling subroutines (items (5) and (6) above
are not executed). The Processor Status Register is saved by executing the PHP instruction
in software.
To prevent data loss when generating interrupts and calling subroutines, it is necessary to
save other registers as well. This is done by executing the proper instruction in software while
in the interrupt service routine or subroutine.
The high-order eight bits of the address are determined by the Stack Page Selection Bit.

For example, the PHA instruction is executed to save the contents of the Accumulator.
Executing the PHA instruction saves the Accumulator contents to an address using the Stack
Pointer contents as the low-order eight bits of the address.
The RTI instruction is executed to return from an interrupt routine.
When the RTI instruction is executed, the following procedure is performed automatically in
sequence.
(1) The Stack Pointer contents are incremented by 1.
(2) The contents of an address using the Stack Pointer contents as the low-order eight bits
of the address is returned to the Processor Status Register (PS).
(3) The Stack Pointer contents are incremented by 1.
(4) The contents of an address using the Stack Pointer as the low-order eight bits of the
address is returned to the low-order eight bits of the Program Counter (PCL).
(5) The Stack Pointer contents are incremented by 1.
(6) The contents of an address using the Stack Pointer as the low-order eight bits of the
address is returned to the high-order eight bits of the Program Counter (PCH).
Steps (1) and (2) are not performed when returning from a subroutine using the RTS
instruction. The Processor Status Register should be restored before returning from a
subroutine by using the PLP instruction. The Accumulator should be restored before returning
from a subroutine or an interrupt servicing routine by using the PLA instruction.
The PLA and PLP instructions increment the Stack Pointer by 1 and return the contents of an
address stored in the Stack Pointer to the Accumulator or Processor Status Register, respec-
tively.
O Saving data in the stack area gradually fills the RAM area with saved data; therefore,
caution must exercised concerning the depth of interrupt levels and subroutine nesting.

Rev.2.00 Nov 14,2006 page 3 of 185 RENESAS
REJ09B0322-0200

CENTRAL PROCESSING UNIT
Program Counter (PC)

Processor Status Register (PS)

2.4 Program Counter (PC)

The Program Counter is a sixteen-bit counter consisting of PCH and PCL, which are each

eight-bit registers. The contetnts of the Program Counter indicates the address which an

instruction to be executed next is stored.

The 740 Family uses a stored program system; to start a new operation it is necessary to

transfer the instruction and relevant data from memory to the CPU.

Normally the Program Counter is used to indicate the next memory address. After each

instruction is executed, the next instruction required is read. This cycle is repeated until the

program is finished.

O The control of the Program Counter of the 740 Family is almost fully automatic. However,
caution must be exercised to avoid differences between program flow and Program
Counter contents when using the Stack Pointer or directly altering the contents of the
Program Counter.

2.5 Processor Status Register (PS)
The Processor Status Register is an eight-bit register consisting of 5 flags which indicate the
status of arithmetic operations and 3 flags which determine operation. Immediately after a
reset, only the interrupt disable flag is set to “1,” and the other flags are undefined. Therefore,
initialize the flags that effect program execution. Especially, initialize the T and D flags because
of their effect on operation.
Each of these flags is described below. Table 2.5.1 lists the instructions to set/clear each flag.
Refer to the section “Appendix 2 MACHINE LANGUAGE INSTRUCTION TABLE” or “3.3
INSTRUCTIONS” for details on when these flags are altered.
[Carry flag C] Bit O
This flag stores any carry or borrow from the Arithmetic Logic Unit (ALU) after an arithmetic
operation and is also changed by the Shift or Rotate instruction.
This flag is set by the SEC instruction and is cleared by the CLC instruction.
[Zero flag Z] Bit 1
This flag is set when the result of an arithmetic operation or data transfer is “0” and is
cleared by any other result.
[Interrupt disable flag |] Bit 2
This flag disables interrupts when it is set to “1.” This flag immediately becomes “1” when
an interrupt is received.
This flag is set by the SEI instruction and is cleared by the CLI instruction.
[Decimal mode flag D] Bit 3
This flag determines whether addition and subtraction are performed in binary or decimal
notation. Addition and subtraction are performed in binary notation when this flag is set to
“0” and as a 2-digit, 1-word decimal numeral when set to “1.” Decimal notation correction
is performed automatically at this time.
This flag is set by the SED instruction and is cleared by the CLD instruction.
Only the ADC and SBC instructions are used for decimal arithmetic operations.
Note that the flags N, V and Z are invalid when decimal arithmetic operations are per-
formed by these instructions.
[Break flag B] Bit 4
This flag determines whether an interrupt was generated with the BRK instruction. When a
BRK instruction interrupt occurs, the flag B is set to “1” and saved to the stack; for all other
interrupts the flag is set to “0” and saved to the stack.

Rev.2.00 Nov 14,2006 page 4 of 185 RENESAS
REJ09B0322-0200

CENTRAL PROCESSING UNIT

Processor Status Register (PS)

[X modified operation mode flag T] Bit 5

This flag determines whether arithmetic operations are performed via the Accumulator or

directly on a memory location. When the flag is set to “0”, arithmetic operations are

performed between the Accumulator and memory. When “1”, arithmetic operations are
performed directly on a memory location.

This flag is set by the SET instruction and is cleared by the CLT instruction.

(1) When the T flag = 0

A e« A* M2
* . indicates an arithmetic operation
A: accumulator contents
M2: contents of a memory location specified by the addressing mode of the
arithmetic operation
(2) When the T flag = 1
M1l « M1 * M2
* . indicates arithmetic operation
M1: contents of a memory location, designated by the contents of Index
Register X.
M2: contents of a memory location specified by the addressing mode of
arithmetic operation.
[Overflow flag V] Bit 6

This flag is set to “1” when an overflow occurs as a result of a signed arithmetic operation.

An overflow occurs when the result of an addition or subtraction exceeds +127 (7F16) or

—128 (8016) respectively.

The CLV instruction clears the Overflow Flag. There is no set instruction.

The overflow flag is also set during the BIT instruction when bit 6 of the value being tested

is “1.”

O Overflows do not occur when the result of an addition or subtraction is equal to or
smaller than the above numerical values, or for additions involving values with different
signs.

[Negative flag N] Bit 7

This flag is set to match the sign bit (bit 7) of the result of a data or arithmetic operation.

This flag can be used to determine whether the results of arithmetic operations are positive

or negative, and also to perform a simple bit test.

Table 2.5.1 Instructions to set/clear each flag of processor status register

FlagC | FlagZ | Flagl | FlagD | FlagB | FlagT | FlagV | FlagN
Set instruction SEC — SEI SED — SET — —
Clear instruction CLC — CLI CLD — CLT CLv -

Rev.2.00 Nov 14, 2006 page 5 of 185

RENESAS
REJ09B0322-0200

INSTRUCTIONS

Addressing mode

3. INSTRUCTIONS

3.1 Addressing Mode

The 740 Family has 19 addressing modes and a powerful memory access capability. When
extracting data required for arithmetic and logic operations from memory or when storing the
results of such operations in memory, a memory address must be specified. The specification
of the memory address is called addressing. The data required for addressing and the
registers involved are described below. The 740 Family instructions can be classified into three
kinds, by the number of bytes required in program memory for the instruction: 1-byte, 2-byte
and 3-byte instructions. In each case, the first byte is known as the “Op-Code (operation
code)” which forms the basis of the instruction. The second or third byte is called the “oper-
and” which affects the addressing. The contents of index registers X and Y can also effect the
addressing.

1-byte instruction 2-byte instruction 3-byte instruction Index Register
\ \ \ -
O-Cod O -Cod O-Code
Operand | Operand | Y
Operand Il

Fig.3.1.1 Byte Structure of Instructions

Although there are many addressing modes, there is always a particular memory location
specified. What differs is whether the operand, or the index register contents, or a combination
of both should be used to specify the memory or jump destination. Based on these 3 types
of instructions, the range of variation is increased and operation is enhanced by combinations
of the bit operation instructions, jump instruction, and arithmetic instructions.

As for 1-byte instruction, an accumulator or a register is specified, so that the instruction does
not have “operand,” which specify memory.

Rev.2.00 Nov 14,2006 page 6 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS
I mm ed | a-t e Addressing mode

Addressing mode :Immediate
Function :Specifies the Operand as the data for the instruction.

Instructions :ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,

ORA, SBC
Example : Mnemonic Machine code
AADCA#$AS 6916 Ab16

T

This symbol(#) indicates the Immediate addressing mode.

Memory

p-code (6916

(A) « (A) + (C) H{Ab516| -a- | Operand (A516)

.

Rev.2.00 Nov 14, 2006 page 7 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS
Accumulator

Addressing mode

Addressing mode : Accumulator

Function : Specifies the contents of the Accumulator as the data
for the instruction.

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Example : Mnemonic Machine code
AROLAA 2A16
bit bit
Cle*- o [
Carry flag Accumulator

Rev.2.00 Nov 14, 2006 page 8 of 185

RENESAS
REJ09B0322-0200

INSTRUCTIONS
Zero Page

Addressing mode

Addressing mode :Zero Page

Function :Specifies the contents in a Zero Page memory
location as the data for the instruction. The address
in the Zero Page memory location is determined by
using Operand as the low-order byte of the address

and 0016 as the high-order byte.

Instructions :ADC, AND, ASL, BIT, CMP, COM, CPX, CPY, DEC,
EOR, INC, LDA, LDM, LDX, LDY, LSR, ORA, ROL, ROR,

RRF, SBC, STA, STX, STY, TST

Example : Mnemonic Machine code

AADCA$40

Memory

Zero page

(A) « (A) + (C) +|XX16| == Data(XXz16)

: N
Op code(6516

Operand (4016)

0016

4016

FFi6

6516 4016

-

Zero page
designation

Rev.2.00 Nov 14, 2006 page 9 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Zero Page X

Addressing mode

Addressing mode : Zero Page X

Function : Specified the contents in a Zero Page memory
location as the data for the instruction. The address
in the Zero Page memory location is determined by
the following:

(a) Operand and the Index Register X are added. (If as
a result of this addition a carry occurs, it is
ignored.)

(b) The result of the addition is used as the low-order
byte of the address and 0016 as the high-order
byte.

Instructions : ADC, AND, ASL, CMP, DEC, DIV, EOR, INC, LDA, LDY,
LSR, MUL, ORA, ROL, ROR, SBC, STA, STY

Example : Mnemonic Machine code
AADCAS$5E, X 7516 5E16
Memory
0016
Zero page
(A) < (A) + (C) +|XX16 |- Data(XX16) 14416 ~—
FF16
Zero page X
designation
)
Op-code (7516
DN
Operand (5E16) |+|E616|= 1 |4416
Ignored
" Contents of Index Register X

Rev.2.00 Nov 14,2006 page 10 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Zero Page Y

Addressing mode

Addressing mode :Zero Page Y

Function :Specifies the contents in a Zero Page memory
location as the data for the instruction. The address
in the Zero Page memory location is determined by
the following:

(a) Operand and the Index Register Y are added (if as
a result of this addition a carry occurs, it is ig-
nored).

(b) The result of the addition is used as the low-order
byte of the address and 0016 as the high-order
byte.

Instructions :LDX, STX

Example :Mnemonic Machine code
ALDXA$62,Y B616 6216
Memory
0016
Zero page
(X) «|XX16|~ Data(XX16) 6816 ~l—
FFi1e
Zero page Y
designation

Op-code (B616
R,

Operand (6216) |+|0616

6816

¥~ " Contents of Index Register Y

Rev.2.00 Nov 14, 2006 page 11 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Absolute

Addressing mode

Addressing mode : Absolute

Function :Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by using Operand | as the low-
order byte of the address and Operand Il as the high-

order byte.

Instructions :ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC,
JMP, JSR, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC,

STA, STX, STY

Example : Mnemonic Machine code
6D16 1216 AD16

AADCA$AD12

Memory
— T~ A

- R
Op code (6D16 N

Operand | (1216)

Operand Il (ADz16)

(A) <« (A) + (C) +| XX16 | == Data (XX16)

e

Abs
desig

olute
nation

AD1216 --—

Rev.2.00 Nov 14,2006 page 12 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Absolute X A

ddressing mode

Addressing mode :Absolute X

Function :Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:

(a) Operand | is used as the low-order byte of an
address, Operand Il as the high-order byte.

(b) Index Register X is added to the address above.
The result is the address in the memory location.

Instructions :ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR,

ORA, ROL, ROR, SBC, STA

Example : Mnemonic
AADCA$AD12, X

Memory
~— ~—_

Op-code (7D1s)
ey

Operand | (1216)

Operand Il (AD1s6)

(A) « (A) + (C) +| XX16 |- Data(XX16)

L ~

Machine code
7D16 1216 ADais6

Conte

tns of Index

Register X

e

+| EE16 |=

AEO0O16

AEO0016 --w—

Absolute X
designation

Rev.2.00 Nov 14,2006 page 13 of 185

RENESAS
REJ09B0322-0200

INSTRUCTIONS

Absolute Y

Addressing mode :Absolute Y

Addressing mode

Function :Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:

(a) Operand | is used as the low-order byte of an
address, Operand Il as the high-order byte.

(b) Index Register Y is added to the address above.
The result is the address in the memory location.

Instructions :ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA

Example :Mnemonics Machine code
AADCA$AD12, Y 7916 1216 AD16
Memory
~ ~

Contents of Index Register Y

Op-code (7916 /

Operand | (1216)

+|EE16[= [AEOQO16

Operand Il (ADz1s)

Absolute Y
designation

(A) < (A) + (C) +| XX16 | -- Data(XX16) AEOO16 -a——

— ~

Rev.2.00 Nov 14, 2006 page 14 of 185

RENESAS
REJ09B0322-0200

INSTRUCTIONS

Implied

Addressing mode

Addressing mode :Implied

Function :Operates on a given register or the Accumulator, but
the address is always inherent in the instruction.

Instructions :BRK, CLC, CLD, CLI, CLT, CLV, DEX, DEY, INX, INY,
NOP, PHA, PHP, PLA, PLP, RTI, RTS, SEC, SED, SEI,
SET, STP, TAX, TAY, TSX, TXA, TXS, TYA, WIT

Example :Mnemonic Machine code
ACLC 1816

Processor status register

bit 7 bit O
?

Carry flag
Carry flag is cleared to “0.” l

0

Rev.2.00 Nov 14,2006 page 15 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS
R el at Ive Addressing mode

Addressing mode : Relative

Function :Specifies the address in a memory location where the
next Op-Code is located.
When the branch condition is satisfied, Operand and
the Program Counter are added. The result of this
addition is the address in the memory location.
When the branch condition is not satisfied, the next
instruction is executed.

Instructions :BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

Example : Mnemonic Machine code
ABCCA*-12 9016 F216

—l: Decimal

When the carry flag is cleared, When the carry flag is set,

jumps to address *12. goes to address *+2.
Memory Memory

— ~ — ~_ M

Address to be * _12
executed next .

Jump
Op-code (9016)
N

Operand (F21s)

Op-code (9016)3y*
T

Operand (F216)

Address to be
executed next

*+2

Rev.2.00 Nov 14,2006 page 16 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

| ndirect X

Addressing mode :Indirect X

Addressing mode

Function :Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:

(a) A Zero Page memory location is determined by the
adding the Operand and Index Register X (if as a
result of this addition a carry occurs, it is ignored).

(b) The result of the addition is used as the low-order
byte of an address in the Zero Page memory
location and 0016 as the high-order byte.

(c) The contents of the address in the Zero Page
memory location is used as the low-order byte of
the address in the memory location.

(d) The next Zero Page memory location is used as
the high-order byte of the address in the memory
location.

Instructions :ADC, AND, CMP, EOR, LDA, ORA, SBC, STA

Example :Mnemonic Machine code
AADCA($1E,X) 6116 1E16
Memory
0016
Zero page

Data | (0016)~]0416 ~a——

Data Il (1416)~.-{0516

FFie Zero page X
designation

Absolute
designation

- N
Op code (6116)

Operand (1E16) [+|E616| =_1 [0416

\ —— Ignored

(A)<— (A) + (C) +| XX16 | -a— Data(XX16) 140016

Contents of Index
Register X

e

Assuming that “0016” for Data I, and “1416” for Data Il are stored in advance.

Rev.2.00 Nov 14, 2006 page 17 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Indirect Y

Addressing mode :Indirect Y

Addressing mode

Function :Specifies the contents in a memory location as the
data for the instruction. The address in the memory
location is determined by the following:

(a) The Operand is used the low-order byte of an
address in the Zero Page memory location and
0016 of the high-order byte.

(b) The contents of the address in the Zero Page
memory location is used as the low-order byte of
an address. The next Zero Page memory location
is used as the high-order byte.

(c) The Index Register Y is added to the address in
Step b. The result of this addition is the address
in the memory location.

Instructions :ADC, AND, CMP, EOR, LDA, ORA, SBC, STA

Example : Mnemonic Machine code
AADCA($1E),Y 7116 1E16

Memory

0016 Contents of Index Register Y
Zero page *

- Data | (O116) 1E16
Data Il (1216) 1F1e

120116 |+ |E616 |= [12E716

Zero page FF1e
indirect
designation

Absolute Y

N
Op-code (71 6 i i
NP (711 designation

Operand (1Ez1s)

(A) « (A) + (C) +| XX16 |--— Data (XXz16) 12E716 =

- ~

Assuming that “0116” for Data I, and “1216” for Data Il are stored in advance.

Rev.2.00 Nov 14,2006 page 18 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS]
I n dl I eCt A bSOl Ute Addressing mode

Addressing mode :Indirect Absolute

Function :Specifies the address in a memory location as the

jump destination address.

The address in the memory location is determined by

the following:

(a) Operand | is used as the low-order byte of an
address and Operand Il as the high-order byte.

(b) The contents of the address above is used as the
low-order byte and the contents of the next
address as the high-order byte.

(c) The high-order and low-order bytes in step b
together form the address in the memory location.

Instructions : JMP

Example : Mnemonic Machine code
AIMPA($1400) 6C16 0016 1416
Memory
~ ~___ 4
Op;%ode (6C16

Operand | (0016)

—

Operand Il (1416)

Indirect
designation

- Data | (FF1e) 140016

Data Il (1E16) Jump

Absolute
designation

Address to be J
executed next 1EFF16 .

/\/
Assuming that “FF16” for Data |, and “1Ez16” for Data Il are stored in advance.
Note: The page’s last address (address XXFF16) cannot be specified for the

indirect designation address; in other words, JMP ($XXFF) cannot be
executed.

Rev.2.00 Nov 14,2006 page 19 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Zero Page Indirect addressing mode

Addressing mode : Zero Page Indirect Absolute

Function : Specifies the address in a memory location as the

jump destination address. The address in the memory

location is determined by the following:

(a) Operand is used as the low-order byte of an
address in the Zero Page memory location and
0016 as the high-order byte.

(b) The contents of the address in the Zero Page
memory location is used as the low-order byte
and the contents of the next Zero Page memory
location as high-order byte.

(c) The high-order and low-order bytes in step b
together form the address of the memory location.

Instructions : JMP, JSR

Example : Mnemonic Machine code
AIJMPA($45) B216 4516
Memory
0016
Zero page

Data | (FFle)/ 4516}

Data Il (1E16)/ 4616
FFi6
Zero page
indirect
designation
Ab_solut_e
o designation
Op-code 8216
& p ()
Operand (4516)
%k
%
Jump
Address to be . i
executed next 1EFF16 ~——
/\/

Assuming that “FF16” for Data |, and “1E16” for Data Il are stored in advance.

Rev.2.00 Nov 14,2006 page 20 of 185 RENESAS

REJ09B0322-0200

INSTRUCTIONS .
Sp ecl al Page Addressing mode

Addressing mode : Special Page
Function : Specifies the address in a Special Page memory
location as the jump destination address. The address
in the Special Page memory location is determined by
using Operand as the low-order byte of the address
and FFie as the high-order byte.
Instructions : JSR

Example : Mnemonic Machine code
AJSRA\$FFCO 2216 CO16

-|-— This symbol indicates the Special page mode.

Memory

— ~_ M

Op-code (2216

Operand (C016)

Special page
designation

FFOO16 ‘
Jump

Address to be . :
executed next FFC016 ¢——

Special page

FFFF16

Rev.2.00 Nov 14, 2006 page 21 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Zero Page Bit

Addressing mode

Addressing mode : Zero Page Bit

Function : Specifies one bit of the contents in a Zero Page
memory location as the data for the instruction.
Operand is used as the low-order byte of the address
in the Zero Page memory location and 0016 as the
high-order byte. The bit position is designated by the
high-order three bits of the Op-code.

Instructions : CLB, SEB

Example : Mnemonic Machine code
ACLBA5,$44 BFi6 4416
Memory
0016
Zero page
bit 5 7
— | ? 4416
FFie6
Zero page
designation | git gesignation
—N — Op-code(BFuis)
- - R

m m
o b

Operand (4416)

— T~

1

Zero page
bit 5

0 4416

Rev.2.00 Nov 14,2006 page 22 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS _
Accumulator Bit

Addressing mode

Addressing mode :Accumulator Bit

Function :Specifies one bit of the Accumulator as the data for
the instruction. The bit position is designated by the
high-order three bits of the Op-Code.

Instruction:CLB, SEB
Example :Mnemonic Machine code

ACLBAS,A BB16

Accumulator

bit 5
?

Memory
— ~

Bit designation
~M Op-code(BBu1s)
I - ~

m m
[y !

1

Accumulator

bit 5
0

Rev.2.00 Nov 14, 2006 page 23 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Accumulator Bit Relative.
Addressmg mode

Addressing mode :Accumulator Bit Relative

Function :Specifies the address in a memory location where the
next Op-Code is located. The bit position is
designated by the high-order three bits of the Op-Code.
If the branch condition is satisfied, Operand and the
Program Counter are added. The result of this
addition is the address in the memory location.
When the branch condition is not satisfied, the next
instruction is executed.

Instructions :BBC, BBS

Example :Mnemonic Machine code
ABBCA5 A #-12 B316 F216

—l: Decimal

When the bit 5 of the When the bit 5 of the
Accumulator is cleared Accumulator is set
Accumulator Accumulator
bit 5 bit 5
0 1
Memory Memory
— T~
Address to be * _12
executed next -
Bit designation Bit designation
— — Op-code(B316) — — Op-code(B316)
A ’ A
- R Jump - -

Operand (F216) Operand (F216)

Address to be
executed next

= 2 ‘
P o b b

*+2

|

L ~

Rev.2.00 Nov 14, 2006 page 24 of 185

RENESAS
REJ09B0322-0200

INSTRUCTIONS _ _
Zero Page Bit Relative

Addressing mode

Addressing mode :Zero Page Bit Relative

Function :Specifies the address of a memory location where the
next Op-Code is located.
The bit position is desighated by the high-order three
bits of the Op-Code. The address in the Zero Page
memory location is determined by using Operand | as
low-order byte of the address and 0016 as the high-
order byte. If the branch condition is satisfied, Oper-
and Il and the Program Counter are added. The result
of this addition is the address in the memory location.
When the branch condition is not satisfied, the next
instruction is executed.

Instructions :BBC, BBS

Example :Mnemonic Machine language
ABBCAS5,$04,*-12 B716 0416 Fli6

—l: Decimal

When the bit 5 at address 0416 When the bit 5 at address 0416
is cleared, jumps to address *-12. is set, goes to address *+3.
Memory Memory
Zero page 0016 Zéro page. 0016
Ly s
bit 57 bit 5 7
> 0 0416 - 1 0416
FF1e FFie
Address to be
executed next *-12
Zero page k Zero page
designation designation
Bit designation Bit designation
— \Op—co%(Bhe) —* \Op—co%(Bhe)
& 2 Jump 33 3
O 0 * 0 O *
b b b b
Operand | (0416) Operand | (0416)
Operand Il (F1l1e)) Operand Il (F116)
d Address to be
*+3 executed next *+3
/\/ /\/

Rev.2.00 Nov 14, 2006 page 25 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Instruction Set

3.2 Instruction Set
The 740 Family has 71 types of instructions. The detailed explanation of the instructions is
presented in 83.3. Note that some instructions cannot be used for some products.

3.2.1 Data transfer instructions
These instructions transfer the data between registers, register and memory, and memories.
The following are data transfer instructions.

Instruction Function
LDA Load memory value into Accumulator, or memory
where is indicated by Index Register X
Load LDM Load immediate value into memory
LDX Load memory contents into Index Register X
LDY Load memory contents into Index Register Y
STA Store Accumulator into memory
Store STX Store Index Register X into memory
STY Store Index Register Y into memory
TAX Transfer Accumulator to the Index Register X
TXA Transfer Index Register X into the Accumulator
TAY Transfer Accumulator into the Index Register Y
Transfer TYA Transfer Index Register Y into the Accumulator
TSX Transfer Stack Pointer into the Index Register X
TXS Transfer Index Register X into the Stack Pointer
PHA Push Accumulator onto the Stack
Stack PHP Push Processor Status onto the Stack
Operation PLA Pull Accumulator from the Stack
PLP Pull Processor Status from the Stack

Rev.2.00 Nov 14,2006 page 26 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Instruction Set

3.2.2 Operating instruction

The operating instructions include the operations of addition and subtraction, logic,
comparison, rotation, and shift.

The operating instructions are as follows:

Instructions

Contents

ADC Add memory contents and C flag to Accumulator or memory
where is indicated by Index Register X
SBC Subtracts memory contents and C flag’s complement from
Accumulator or memory where is indicated by Index
Addition Register X
& INC Increment Accumulator or memory contents by 1
Subtraction| DEC Decrement Accumulator or memory contents by 1
INX Increment Index Register X by 1
DEX Decrement Index Register X by 1
INY Increment Index Register Y by 1
DEY Decrement Index Register Y by 1
MUL (Note) | Multiply Accumulator with memory specified by Zero Page
Multiplication X addressing mode and store high-order byte of result on
& Stack and low-order byte in Accumulator
Division | DIV(Note) | Quotient is stored in Accumulator and one’s complement of
remainder is pushed onto stack
AND “AND” memory with Accumulator or memory where is
indicated by Index Register X
ORA “OR” memory with Accumulator or memory where is
indicated by Index Register X
Logical EOR “Exclusive-OR” memory with Accumulator or memory where
Operation is indicated by Index Register X
COM Store one’s complement of memory contents to memory
BIT “AND” memory with Accumulator (The result is not stored
into anywhere.)
TST Test whether memory content is “0” or not
CMP Compare memory contents and Accumulator or memory
. where is indicated by Index Register X
Comparison .
CPX Compare memory contents and Index Register X
CPY Compare memory contents and Index Register Y
ASL Shift left one bit (memory contents or Accumulator)
LSR Shift right one bit (memory contents or Accumulator)
Shift ROL Rotate one bit left with carry (memory contents or
& Accumulator)
Rotate ROR Rotate one bit right with carry (memory contents or
Accumulator)
RRF Rotate four bits right witout carry (memory)

Note: For some products, multiplication and division instructions cannot be used.

Rev.2.00 Nov 14, 2006 page 27 of 185

REJ09B0322-0200

RENESAS

INSTRUCTIONS

Instruction Set

3.2.3 Bit managing instructions
The bit managing instructions clear “0” or set “1” designated bits of the Accumulator or

memory.
Instructions Contents
Bit CLB Clear designated bit in the Accumulator or memory
Managing SEB Set designated bit in the Accumulator or memory

3.2.4 Flag setting instructions
The flag setting instructions clear “0” or set “1” C, D, I, T and V flags.

Instructions

Flag
Setting

CLC
SEC
CLD
SED
CLI
SEl
CLT
SET
CLV

Contents
Clear C flag
SetCflag ~ CMag:cCarmyFlag
Clear D flag .
SetDflag © 129 Decimal Mode Flag
Clear | flag flag : Interrupt Disable Flag
Set | flag
Clear T flag T flag : X Modified Operation Mode Flag
Set T flag
Clear Vflag V flag : Overflow Flag

3.2.5 Jump, Branch and Return instructions
The jump, branch and return instructions as following are used to change program flow.

Instructions Contents
IMP Jump to new location
Jump BRA Jump to new location
JSR Jump to new location saving the current address
BBC Branch when the designated bit in the Accumulator or
memory is “0”
BBS Branch when the designated bit in the Accumulator or
memory is “1”
BCC BrancE wEen tEe C F:ag fs ‘0" C flag : Carry Flag
Branch BCS Branch when the C FI ag _|s“ 1
BNE Branch when the Z Flag is “0 Z flag : Zero Flag
BEQ Branch when the Z Flag is “1”
BPL Branch when the N Flag is “0” N flag : Negative Flag
BMI Branch when the N Flag is “1”
BVC Branch when the V Flag is “0” V flag : Overflow Flag
BVS Branch when the V Flag is “1”
RTI Return from interrupt
Return .
RTS Return from subroutine

Rev.2.00 Nov 14, 2006 page 28 of 185

REJ09B0322-0200

RENESAS

INSTRUCTIONS

Instruction Set

3.2.6 Interrupt instruction (Break instruction)
This instruction causes a software interrupt.

Instruction Contents
Interrupt BRK Executes a software interrupt.

3.2.7 Special instructions
These special instructions control the oscillation and the internal clock.

Instructions Contents
WIT Stops the internal clock.
STP Stops the oscillation of oscillator.

Special

3.2.8 Other instruction

Instruction Contents
Other NOP Only advances the program counter.

Rev.2.00 Nov 14,2006 page 29 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Description of instructions

3.3 Description of instructions
This section presents in detail the 740 Family instructions by arranging mnemonics of instruc-
tions alphabetically and dividing each instruction essentially into one page.

The heading of each page is a mnemonic. Operation, explanation and changes of status flags
are indicated for each instruction. In addition, assembler coding format, machine code, byte
number, and list of cycle numbers for each addressing mode are indicated.

The following are symbols used in this manual:

Symbol Description Symbol Description
A Accumulator hh | Address high-order byte data
Ai Bit i of Accumulator in 0 to 255
PC [Program Counter I Address low-order byte data
PCL |Low-order byte of Program in 0 to 255
Counter 2z Zero page address data in 0
PCH [High-order byte of Program to 255
Counter nn Data in 0 to 255
PS |Processor Status Register i Data in 0 to 7
S Stack Pointer O Contents of the Program
X Index Register X Counter
Y Index Register Y A Tab or space
M Memory # Immediate mode
Mi Bit i of memory \ Special page mode
C Carry Flag $ Hexadecimal symbol
Z Zero Flag + Addition
I Interrupt Disable Flag - Subtraction
D Decimal Operation Mode Flag O Multiplication
B Break Flag / Division
T X Modified Operations Mode A Logical AND
Flag v Logical OR
Vv Overflow Flag A Logical exclusive OR
N Negative Flag () Contents of register, memory,
REL |Relative address etc.
BADRS | Break address «— Direction of data transfer
Rev.2.00 Nov 14, 2006 page 30 of 185 RENESAS

REJ09B0322-0200

ADC

ADD WITH CARRY

ADC

Operation :

Function

Status flag:

When (T) = 0, (A) « (A) + (M) + (C)

(T =1, (M(X)) « (M(X)) + (M) + (C)

and stores the results in A and C.
When T = 1, this instruction adds the contents of M(X), M and
C; and stores the results in M(X) and C. When T=1, the
contents of A remain unchanged, but the contents of status

flags are changed.

. When T = 0, this instruction adds the contents M, C, and A;

M(X) represents the contents of memory where is indicated by

X.

N: N is 1 when bit 7 is 1 after the operation; otherwise it is

0

V: V is 1 when the operation result exceeds +127 or|-128;

otherwise it is O.

T: No change
B : No change
I No change
D: No change
Z: Z is 1 when the operation result is 0; otherwise it is 0.
C: Cis 1 when the result of a binary addition exceeds 255 or
when the result of a decimal addition exceeds 99;
otherwise it is 0.
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate AADCA#$nN 6916, NN16 2 2
Zero page AADCA$zz 6516, 2216 2 3
Zero page X |AADCA$zz,X 7516, 2Z16 2 4
Absolute AADCAS$hhII 6D1s, ll16, hhi6 3 4
Absolute X AADCAS$hhIIL X 7D1s, ll16, hhis6 3 5
Absolute Y AADCAS$hhILY 7918, ll16, hhie 3 5
(Indirect X) AADCA($zz,X) 6116, zZ16 2 6
(Indirect Y) AADCA($z2),Y 7116, 2716 2 6

Notes 1: When T=1, add 3 to the cycle number.
2: When ADC instruction is executed in decimal operation mode (D = 1),
execute at least one instruction after the ADC instruction before

executing a SEC, CLC, or CLD instruction.

In decimal operation mode, the N, V, Z flags are invalid.

Rev.2.00 Nov 14, 2006 page 31 of 185

REJ09B0322-0200

RENESAS

AND

AND

LOGICAL AND
Operation : When (T) = 0, (A) <« (A) A (M)
(T) = 1, (M(X)) « (M(X)) A (M)
Function : When T = 0, this instruction transfers the contents of A and M

to the ALU which performs a bit-wise AND operation and stores
the result back in A.

When T = 1, this instruction transfers the contents M(X) and M
to the ALU which performs a bit-wise AND operation and stores
the results back in M(X). When T = 1 the contents of A remain
unchanged, but status flags are changed.

M(X) represents the contents of memory where is indicated by

X.

Status flag: N :

N is 1 when bit 7 is 1 after the operation; otherwise it is

0

V: No change

T: No change

B : No change

I No change

D: No change

Z: Zis 1 when the operation result is 0; otherwise it is O.

C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate AANDA#$NN 2916, Nn16 2 2
Zero page AANDA$zz 2516, 7716 2 3
Zero page X |AANDA$zz,X 3516, zz16 2 4
Absolute AANDAShhII 2Dz1s, ll16, hhie 3 4
Absolute X AANDAS$hIIL X 3Da1s, ll16, hhie 3 5
Absolute Y AANDAS$hhILY 391s, ll16, hhie 3 5
(Indirect X) AANDA($zz,X) 2116, 2716 2 6
(Indirect Y) AANDA($z2),Y 311s, zz16 2 6

Note: When T = 1, add 3 to

Rev.2.00 Nov 14, 2006 page 32 of 185

REJ09B0322-0200

a cycle number.

RENESAS

ASL

ARITHMETIC SHIFT LEFT

ASL

Operation :

Function :

Status flag:

C |« | b7

bO|« O

This instruction shifts the content of A or M by one bit to the
left, with bit O always being set to 0 and bit 7 of A or M always
being contained in C.

N: N is 1 when bit 7 of A or M is 1 after the operation;
otherwise it is 0.

V' No change
T: No change
B : No change
I No change
D : No change
z

C

otherwise it is O.

. Z is 1 when the operation result is 0; otherwise it is O.
: Cis 1 when bit 7 of A or M is 1, before this operation;

Addressing mode Statement Machine codes Byte number | Cycle number
Accumulator |AASLAA OA16 1 2
Zero page AASLA$zz 0616, 2716 2 5
Zero page X |AASLA$zz,X 1616, zz16 2 6
Absolute AASLAS$hhII OEus, ll1e, hhie 3 6
Absolute X AASLAS$hIIL X 1Euis, ll16, hhie 3 7

Rev.2.00 Nov 14, 2006 page 33 of 185

REJ09B0322-0200

RENESAS

BBC BBC

BRANCH ON BIT CLEAR

Operation : When (Mi) or (Ai) = 0, (PC) « (PC) + n + REL
(Mi) or (Ai) = 1, (PC) « (PC) + n
n: If addressing mode is Zero Page Bit Relative, n=3. And if
addressing mode is Accumulator Bit Relative, n=2.

Function : This instruction tests the designated bit i of M or A and takes
a branch if the bit is 0. The branch address is specified by a
relative address. If the bit is 1, next instruction is executed.

Status flag : No change

Addressing mode Statement Machine codes | Byte number | Cycle number
Accumulator bit) \gp aj A ghhll (20i+13)16, 16 | 2 4
Relative
Zero page bit ABBCAI$zz,$hhll (20i+17)1s, 3 5
Relative 2716, IT16

Notes 1: rrie=$hhll—(0+n). The rri6 is a value in a range of —128 to +127.
2. When a branch is executed, add 2 to the cycle number.
3: When executing the BBC instruction after the contents of the interrupt

request bit is changed, one instruction or more must be passed
before the BBC instruction is executed.

Rev.2.00 Nov 14, 2006 page 34 of 185

RENESAS
REJ09B0322-0200

BBS BBS

BRANCH ON BIT SET

Operation : When (Mi) or (Ai) =1, (PC) « (PC) + n + REL
(Mi) or (Ai) = 0, (PC) « (PC) + n
n : If addressing mode is Zero Page Bit Relative, n=3. And if
addressing mode is Accumulator Bit Relative, n=2.

Function : This instruction tests the designated bit i of the M or A and
takes a branch if the bit is 1. The branch address is specified

by a relative address. If the bit is 0, next instruction is exe-
cuted.

Status flag : No change

Addressing mode Statement [Machine codes Byte number | Cycle number
Accumulator bit| \gpgaj A shhil (20i1+3)16, 1116 5 4
Relative
Zero page bit | \ggAj $77 Shhll (20i+7)1s, 3 5
Relative 7716, IT16

Notes 1: rrie=$hhll—-(C+n). The rrie is a value in a range of —128 to +127.
2:When a branch is executed, add 2 to the cycle number.
3: When executing the BBS instruction after the contents of the interrupt

request bit is changed, one instruction or more must be passed
before the BBS instruction is executed.

Rev.2.00 Nov 14, 2006 page 35 of 185

RENESAS
REJ09B0322-0200

BCC BCC

BRANCH ON CARRY CLEAR

Operation : When (C) = 0, (PC) « (PC) + 2 + REL
(C) =1, (PC) « (PC) + 2

Function : This instruction takes a branch to the appointed address if C is
0. The branch address is specified by a relative address. If C
is 1, the next instruction is executed.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABCCAS$hhII 9018, rri6 2 2

Notes 1: rrie=$hhll-(C+2). The rrie is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 36 of 185

RENESAS
REJ09B0322-0200

BCS BCS

BRANCH ON CARRY SET

Operation : When (C) = 1, (PC) « (PC) + 2 + REL
(C) =0, (PC) « (PC) + 2

Function : This instruction takes a branch to the appointed address if C is
1. The branch address is specified by a relative address. If C
is 0, the next instruction is executed.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABCSA$hhI| BO1s, rri6 2 2

Notes 1: rrie=$hhll—(0+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 37 of 185

RENESAS
REJ09B0322-0200

BEQ

Operation : When (Z) = 1, (PC) « (PC) + 2 + REL
(2) =0, (PC) « (PC) + 2

BEQ

BRANCH ON EQUAL

Function : This instruction takes a branch to the appointed address when

Z is 1. The branch address is specified by a relative address.
If Z is 0, the next instruction is executed.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABEQAS$hhII FOu16,rr16 2 2

Notes 1: rrie=$hhll—(00+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14,2006 page 38 of 185 RENESAS
REJ09B0322-0200

BIT BIT

TEST BIT IN MEMORY WITH ACCUMULATOR

Operation : (A) A (M)

Function : This instruction takes a bit-wise logical AND of A and M
contents; however, the contents of A and M are not modified.
The contents of N, V, Z are changed, but the contents of A, M
remain unchanged.

Status flag: N: N is 1 when bit 7 of M is 1; otherwise it is 0.

V:Vis 1 when bit 6 of M is 1; otherwise it is O.

T: No change

B : No change

I : No change

D : No change

Z: Z is 1 when the result of the operation is 0; otherwise Z is

0.
C : No change
Addressing mode Statement Machine codes Byte number | Cycle number

Zero page |ABITA$zz 2416, 72716 2 3
Absolute |ABITAS$hhII 2Czs, ll16, hhie 3 4

Rev.2.00 Nov 14,2006 page 39 of 185 RENESAS
REJ09B0322-0200

BMI

BRANCH ON RESULT MINUS

BMI

Operation : When (N) = 1, (PC) « (PC) + 2 + REL

(N) =0,

(PC) « (PC) + 2

Function : This instruction takes a branch to the appointed address when

N is 1. The branch address is specified by a relative address.
If N is 0, the next instruction is executed.

Status flag : No change

Addressing mode Statement

Machine codes

Byte number

Cycle number

Relative ABMIAS$hhII

3018, rri6

2

2

Notes 1: rrie=$hhll—(0+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 40 of 185
REJ09B0322-0200

RENESAS

BNE

BRANCH ON NOT EQUAL

BNE

Operation : When (Z2) = 0, (PC) « (PC) + 2 + REL
(2) =1, (PC) « (PC) + 2

Function : This instruction takes a branch to the appointed address if Z is
0. The branch address is specified by a relative address. If Z

is 1, the next instruction is executed.

Status flag : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABNEAS$hhI| DOzs, rrie 2 2

Notes 1: rrie=$hhll—(0+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 41 of 185

REJ09B0322-0200

RENESAS

BPL BPL

BRANCH ON RESULT PLUS

Operation : When (N) = 0, (PC) « (PC) + 2 + REL
(N) =1, (PC) « (PC) + 2

Function : This instruction takes a branch to the appointed address if N is
0. The branch address is specified by a relative address. If N
is 1, the next instruction is executed.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABPLAS$hhII 101s, rri6 2 2

Notes 1: rrie=$hhll—(00+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 42 of 185

RENESAS
REJ09B0322-0200

BRA BRA

BRANCH ALWAYS

Operation : (PC) « (PC) + 2 + REL

Function : This instruction branches to the appointed address. The branch
address is specified by a relative address.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABRAAS$NI| 8018, Ir16 2 4

Note: rri6=$hhll-(00+2). The rrie6 is a value in a range of —128 to +127.

Rev.2.00 Nov 14,2006 page 43 of 185 RENESAS
REJ09B0322-0200

BRK

BRK

FORCE BREAK

Operation :

Function

Status flag:

(B) « 1

(PC) « (PC) + 2

(M(S)) < (PCH)

(S) « (5 -1

(M(S)) « (PCu)

(S) « (5 -1

(M(S)) « (PS)

(S) « (5 -1

N« 1

(PC) « BADRS (Note 1)

. When the BRK instruction is executed, the CPU pushes the

current PC contents onto the stack. The BADRS designated in
the interrupt vector table is stored into the PC.

: No change
: No change
: No change
01

1
: No change
: No change
: No change

OND-—m—H<Z

Addressing mode

Statement Machine codes Byte number | Cycle number

Implied

ABRKA 0016 1 7

Notes 1: “BADRS” means a break address.

2: The value of the PC pushed onto the stack by the execution of the
BRK instruction is the BRK instruction address plus two. Therefore,
the byte following the BRK will not be executed when the value of
the PC is returned from the BRK routine.

3: Both after the BRK instruction is executed and after INT is input, the
program is branched to the address where is specified by the inter-
rupt vector table. By testing the value of the B Flag in the PS
(pushed on the Stack) in the interrupt service routine, the user can
determine if the interrupt was caused by the BRK instruction.

Rev.2.00 Nov 14,2006 page 44 of 185 RENESAS

REJ09B0322-0200

BVC

BRANCH ON OVERFLOW CLEAR

BVC

(V) =1, (PC) « (PC) + 2

: When (V) =0, (PC) « (PC) + 2 + REL

. This instruction takes a branch to the appointed address if V is

0. The branch address is specified by a relative address. If V

is 1, the next instruction is executed.

Operation
Function
Status flag : No change
Addressing mode Statement
Relative ABVCAS$hhII

Machine codes

Byte number

Cycle number

50186, rri6

2

2

Notes 1: rrie=$hhll—-(0+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 45 of 185

REJ09B0322-0200

RENESAS

BVS BVS

BRANCH ON OVERFLOW SET

Operation : When (V) = 1, (PC) « (PC) + 2 + REL
(V) =0, (PC) « (PC) + 2

Function : This instruction takes a branch to the appointed address when
V is 1. The branch address is specified by a relative address.
When V is 0, the next instruction is executed.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Relative ABVSAS$hhII 7016, I116 2 2

Notes 1: rrie=$hhll-(0J+2). The rri6 is a value in a range of —128 to +127.
2: When a branch is executed, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 46 of 185

RENESAS
REJ09B0322-0200

CLB CLB

CLEAR BIT

Operation : (Ai) « 0, or
(Mi) < O

Function : This instruction clears the designated bit i of A or M.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Accumulator bit| ACLBAI,A (20i+1B)16 1 2
Zero page bit |[ACLBAI,$zz (ZZZ(l)é+1F)16, 2 5

Rev.2.00 Nov 14, 2006 page 47 of 185

RENESAS
REJ09B0322-0200

CLC

CLEAR CARRY FLAG

CLC

Operation : (C) « 0
Function : This instruction clears C.
Status flag: N: No change
V : No change
T: No change
B : No change
I : No change
D : No change
Z : No change
C:0
Addressing mode Statement Machine codes Byte number | Cycle number
Implied ACLC 1816 1 2
Rev.2.00 Nov 14, 2006 page 48 of 185 :{ENESAS

REJ09B0322-0200

CLD

CLEAR DECIMAL MODE

CLD

Operation : (D) « O
Function : This instruction clears D.
Status flag: N: No change
V : No change
T: No change
B : No change
I : No change
D: O
Z : No change
C : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied ACLD D816 1 2
Rev.2.00 Nov 14, 2006 page 49 of 185 :{ENESAS

REJ09B0322-0200

CLI

Operation: (1) « 0

CLEAR INTERRUPT DISABLE STATUS

Function : This instruction clears |.

Status flag:

N :
V
T:
B:
I
D
Z
C

0

No
No
No
No

No
No
No

change
change
change
change

change
change
change

CLI

Addressing mode

Statement

Machine codes

Byte number

Cycle number

Implied

ACLI

5816

1

2

Rev.2.00 Nov 14, 2006 page 50 of 185

REJ09B0322-0200

RENESAS

CLT CLT

CLEAR TRANSFER FLAG

Operation : (T) « O

Function : This instruction clears T.

Status flag: : No change

: No change

. 0

: No change
No change

: No change

: No change
: No change

ONO-—W-<Z

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ACLT 1216 1 2

Rev.2.00 Nov 14, 2006 page 51 of 185

RENESAS
REJ09B0322-0200

CLV CLV

CLEAR OVERFLOW FLAG

Operation : (V) « O

Function : This instruction clears V.
Status flag N: No change
V:0

T: No change
B : No change
| : No change
D : No change
Z:
C:

No change
No change

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ACLV B816 1 2

Rev.2.00 Nov 14, 2006 page 52 of 185

RENESAS
REJ09B0322-0200

CMP

COMPARE

CMP

Operation : When (T) = 0, (A) — (M)
(T) = 1, (M(X)) = (M)
Function : When T = 0, this instruction subtracts the contents of M from
the contents of A. The result is not stored and the contents of
A or M are not modified.
When T = 1, the CMP subtracts the contents of M from the
contents of M(X). The result is not stored and the contents of
M(X), M, and A are not modified.
M(X) represents the contents of memory where is indicated by
X.
Status flag: N: N is 1 when bit 7 of the operation result is 1 after the
operation; otherwise N is 0.
V : No change
T: No change
B : No change
| : No change
D : No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: C is 1 when the subtracted result is equal to or greater
than 0; otherwise C is 0.
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate |ACMPA#$nn C916, Nn16 2 2
Zero page |ACMPA$zz Cb516, 2716 2 3
Zero page X |ACMPA$zz, X D516, zz16 2 4
Absolute |[ACMPAS$hhII CDaus, ll1e, hhie 3 4
Absolute X |ACMPAS$hhII, X DDus, ll16, hhie 3 5
Absolute Y |ACMPAS$hhIlY D91s, ll1e, hhie 3 5
(Indirect X) |ACMPA($zz,X) Clie, zz16 2 6
(Indirect Y) |ACMPA($z2),Y D11s, zz16 2 6
Note: When T=1, add 1 to the cycle number.
Rev.2.00 Nov 14, 2006 page 53 of 185 :{ENESAS

REJ09B0322-0200

COM COM

COMPLEMENT

Operation : (M) « (M)

Function : This instruction takes the one’'s complement of the contents of
M and stores the result in M.

Status flag: N: N is 1 when bit 7 of the M is 1 after the operation;
otherwise N is 0.

: No change

: No change

: No change
No change

: No change

: Z is 1 when the operation result is 0; otherwise Z is 0.

: No change

OND—-m A<

Addressing mode Statement Machine codes Byte number | Cycle number
Zero page |ACOMA$zz 4416, 7716 2 5

Rev.2.00 Nov 14, 2006 page 54 of 185

RENESAS
REJ09B0322-0200

CPX

CPX

COMPARE MEMORY AND INDEX REGISTER X

Operation :

Function :

Status flag:

(X) = (M)

This instruction subtracts the contents of M from the contents of
X. The result is not stored and the contents of X and M are not
modified.

N: N is 1 when bit 7 of the operation result is 1 after the
operation; otherwise N is 0.

: No change

: No change

: No change
No change

: No change

. Z is 1 when the operation result is 0; otherwise Z is 0.

: C is 1 when the subtracted result is equal to or greater
than 0O; otherwise C is 0.

ONUTW—|<

Addressing mode Statement Machine codes Byte number | Cycle number
Immediate | ACPXA#3$nn EOQ16, Nn16 2 2
Zero page |ACPXA$zz E41e, zz16 2 3

Absolute ACPXAS$hhII ECais, ll16, hhie 3 4

Rev.2.00 Nov 14,2006 page 55 of 185 RENESAS

REJ09B0322-0200

CPY

CPY

COMPARE MEMORY AND INDEX REGISTER Y

Operation : (Y) — (M)

Function : This instruction subtracts the contents of M from the contents of
Y. The result is not stored and the contents of Y and M are not
modified.

Status flag: N: N is 1 when bit 7 of the operation result is 1 after the
operation; otherwise N is O.
V: No change
T: No change
B : No change
I : No change
D : No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: C is 1 when the subtracted result is equal to or greater
than O; otherwise C is 0.
Addressing mode Statement Machine codes Byte number | Cycle number

Immediate |ACPYA#3$nn C016, Nn16 2 2

Zero page |ACPYA$zz C4ie, zz16 2 3

Absolute |ACPYAS$hhII CCais, ll16, hhis 3 4

Rev.2.00 Nov 14,2006 page 56 of 185 RENESAS

REJ09B0322-0200

DEC

DECREMENT BY ONE

DEC

Operation : (A) « (A) — 1, or
M) « (M) -1
Function : This instruction subtracts 1 from the contents of A or M.
Status flag: N: N is 1 when bit 7 is 1 after the addition; otherwise N is O.
V : No change
T: No change
B : No change
I: No change
D : No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C : No change
Addressing mode Statement Machine codes | Byte number | Cycle number
Accumulator |ADECAA 1A16 1 2
Zero page |ADECA$zz C61s, 2716 2 5
Zero page X |ADECA%$zz,X D616, zz16 2 6
Absolute ADECA$hhII CEdzs, ll16, hhis 3 6
Absolute X |ADECA$hhII,X DEizs, ll16, hhie 3 7

Rev.2.00 Nov 14, 2006 page 57 of 185

REJ09B0322-0200

RENESAS

DEX

DEX

DECREMENT INDEX REGISTER X BY ONE

Operation : (X) « (X) - 1

Function : This instruction subtracts one from the current contents of X.

Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is

0.

V : No change

T: No change

B : No change

I: No change

D : No change

Z: Z is 1 when the operation result is 0; otherwise Z is 0.

C: No change
Addressing mode Statement Machine codes Byte number | Cycle number

Implied ADEX CA16 1 2

Rev.2.00 Nov 14, 2006 page 58 of 185 :{ENESAS

REJ09B0322-0200

DEY

DECREMENT INDEX REGISTER Y BY ONE

DEY

Operation : (Y) « (Y) -1
Function : This instruction subtracts one from the current contents of Y.
Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V: No change
T: No change
B : No change
I : No change
D: No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied ADEY 8816 1 2
Rev.2.00 Nov 14, 2006 page 59 of 185 :{ENESAS

REJ09B0322-0200

DIV

DIVIDE MEMORY BY ACCUMULATOR

DIV

Operation :(A) « (M(zz+(X)+1),M(zz+(X)) / (A)
M(S) « one’s complement of Remainder

() «(5) -1

Function :Divides the 16-bit data in M(zz+(X)) (low-order byte) and
M(zz+(X)+1) (high-order byte) by the contents of A. The
guotient is stored in A and the one’s complement of the
remainder is pushed onto the stack.

dividend low-order M (zz+(X)) - (A) divisior

dividend high-order | M (zz+(X)+1) Il

(A) quotient
Zero page
one's complement of
Remainder M (S)
Status flag :No change

Addressing mode Statement Machine codes Byte number | Cycle number
Zero page X |ADIVA$zz, X E216, 2716 2 16
Notes 1: The quotient’s overflow and zero division can not be detected. Check the

quotient’s overflow and zero division by software before DIV instruction is
executed. This instruction changes the Stack Pointer and the contents of the
Accumulator.

2: The DIV instruction can not be used for some products.

3: The DIV instruction is not affected by T and D flags.

Rev.2.00 Nov 14, 2006 page 60 of 185

REJ09B0322-0200

RENESAS

EOR

EXCLUSIVE OR MEMORY WITH ACCUMULATOR

EOR

Operation : When (T) = 0, (A) « (A) V (M)
(T) = 1, (M(X)) < (M(X)) V (M)
Function : When T = 0, this instruction transfers the contents of the M
and A to the ALU which performs a bit-wise Exclusive OR, and
stores the result in A.
When T = 1, the contents of M(X) and M are transferred to the
ALU, which performs a bit-wise Exclusive OR and stores the
results in M(X). The contents of A remain unchanged, but sta-
tus flags are changed.
M(X) represents the contents of memory where is indicated by
X.
Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V: No change
T: No change
B : No change
I: No change
D: No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate |AEORA#$Nnn 4916, NN16 2 2
Zero page |AEORA$zz 4516, 7716 2 3
Zero page X |AEORA$zz,X 5516, 2216 2 4
Absolute AEORAS$II 4Dz1s, ll16, hhie 3 4
Absolute X |AEORAS$NhII,X 5D1s, ll16, hhis6 3 5
Absolute Y |AEORAS$NhILY 591s, ll16, hhie 3 5
(Indirect X) |[AEORA($zz,X) 4116, zz16 2 6
(Indirect Y) |AEORA($zz),Y 5116, 2Z16 2 6

Note: When T=1, add 3 to the cycle

number.

Rev.2.00 Nov 14, 2006 page 61 of 185

REJ09B0322-0200

RENESAS

INC

INC

INCREMENT BY ONE

Operation : (A) « (A) + 1, or
M) « (M) + 1
Function : This instruction adds one to the contents of A or M.
Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V: No change
T: No change
B : No change
| : No change
D : No change
Z: Zis 1 when the operation result is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Accumulator |AINCAA 3A16 1 2
Zero page |AINCA$zz EG16, zz16 2 5
Zero page X |AINCA$zz,X F616, zz16 2 6
Absolute |AINCAS$hhlI EEus, ll16, hhie 3 6
Absolute X |AINCAS$hhII, X FEus, ll16, hhie 3 7

Rev.2.00 Nov 14, 2006 page 62 of 185

REJ09B0322-0200

RENESAS

| NX

INCREMENT INDEX REGISTER X BY ONE

| NX

Operation : (X) « (X) + 1
Function : This instruction adds one to the contents of X.
Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V: No change
T: No change
B : No change
I: No change
D: No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied AINX E816 1 2
Rev.2.00 Nov 14, 2006 page 63 of 185 :{ENESAS

REJ09B0322-0200

INY

INCREMENT INDEX REGISTER Y BY ONE

INY

Operation :
Function :

Status flag:

(Y) <« (Y) +1

This instruction adds one to the contents of Y.

N: N is 1 when bit 7 is 1 after the operation; otherwise N is

0.

No change
No change
No change
No change
No change

ONUTUJ—|<

No change

Z is 1 when the operation result is 0; otherwise Z is 0.

Addressing mode

Statement

Machine codes

Byte number

Cycle number

Implied

AINY

C8i1s6

1

2

Rev.2.00 Nov 14, 2006 page 64 of 185

REJ09B0322-0200

RENESAS

JMP JMP

JUMP

Operation : When addressing mode is

(a) Absolute, then
(PC) « hhll

(b) Indirect Absolute, then
(PCL) « (hnhlI)
(PCH) « (hhll+1)

(c) Zero page Indirect Absolute, then
(PCL) « (z2)
(PCH) « (zz+1)

Function : This instruction jumps to the address designated by the
following three addressing modes:
Absolute
Indirect Absolute
Zero Page Indirect Absolute

Status flag: No change

Addressing mode Statement Machine codes Byte number | Cycle number
Absolute AJMPAShhII 4Ca1s,ll16,hh16 3 3
Indirect Absolute |AJMPA($hhlIl) 6Czs,ll16,hh16 3 5
Zero Page Indirect |[AJMPA($zz) B216,zz16 2 4

Note: The page’s last address (address XXFFi16) cannot be specified for the
indirect designation address; in other words, JMP ($XXFF) cannot be
executed.

Rev.2.00 Nov 14,2006 page 65 of 185 RENESAS
REJ09B0322-0200

JSR

JSR

JUMP TO SUBROUTINE

Operation :

Function

(M(S)) « (PCH)

(S) «(5) -1
(M(S)) « (PCu)
(S) «(5) -1

After the above operations, if the addressing mode is
(a) Absolute, then
(PC) « hhll
(b) Special page, then
(PCL) « |l
(PCH) « FF1e
(c) Zero page Indirect, then
(PCL) « (z2)
(PCH) « (zz+1)

¢ This instruction stores the contents of the PC in the stack, then

jumps to the address designated by the following addressing
modes:

Absolute
Special Page
Zero Page Indirect Absolute
Status flag: No change
Addressing mode Statement Machine codes | Byte number |Cycle number
Absolute AJSRAS$hhII 2018, ll16, hhie 3 6
Special page |AJSRA\$hhll (Note) |221s, ll16 2 5
Zero page Indirect |[AJSRA($zz) 0216, zz16 2 7

(Note) “\” (5C16 of the ASCII code) denotes special page. hhie must be FFie
in the special page addressing mode.

Rev.2.00 Nov 14,2006 page 66 of 185 RENESAS

REJ09B0322-0200

LDA

LDA

LOAD ACCUMULATOR WITH MEMORY

Operation

Function

: When (T) = 0, (A) « (M)

(M =1, (M(X)) « (M)

: When T = 0, this instruction transfers the contents of M to A.

When T = 1, this instruction transfers the contents of M to
(M(X)). The contents of A remain unchanged, but status flags
are changed.

M(X) represents the contents of memory where is indicated by

X.
Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V : No change
T: No change
B : No change
I : No change
D : No change
Z: Zis 1 when the operation result is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate |ALDAA#3$NN A916, NN16 2 2
Zero page |ALDAAS$zz Ab16, 7716 2 3
Zero page X |ALDAA$zz,X B516, zz16 2 4
Absolute ALDAAS$HNII ADzs, ll16, hhie 3 4
Absolute X |ALDAAS$hhIILX BDz1s, ll16, hhie 3 5
Absolute Y |ALDAAS$hhILY B91s, ll16, hhie 3 5
(Indirect X) |ALDAA($zz,X) Alie, zz16 2 6
(Indirect Y) |ALDAA($zz),Y Blis, zz16 2 6

Note: When T = 1, add 2 to the cycle number.

Rev.2.00 Nov 14, 2006 page 67 of 185

REJ09B0322-0200

RENESAS

LDM

LDM

LOAD IMMEDIATE DATA TO MEMORY

Operation : (M) < nn

Function : This instruction loads the immediate value in M.

Status flag : No change

Addressing mode Statement

Machine codes

Byte number

Cycle number

Zero page |ALDMA#$nn,$zz

3Ci1s6, NN16, 2216

3

4

Rev.2.00 Nov 14, 2006 page 68 of 185
REJ09B0322-0200

RENESAS

LDX

LOAD INDEX REGISTER X FROM MEMORY

LDX

Operation
Function

Status flag:

2 (X) « (M)

: This instruction loads the contents of M in X.

N: N is 1 when bit 7 is 1 after the operation; otherwise N is

0.
V: No change
T: No change
B : No change
I : No change
D : No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate |ALDXA#$nn A216, NN16 2 2
Zero page |ALDXA$zz Ab61e6, 2716 2 3
Zero page Y |ALDXA$zz,Y B616, zz16 2 4
Absolute |ALDXAS$hhII AEzs, ll16, hhie 3 4
Absolute Y |ALDXA$hhIlY BEus, ll16, hhie 3 5

Rev.2.00 Nov 14, 2006 page 69 of 185

REJ09B0322-0200

RENESAS

LDY

LOAD INDEX REGISTER Y FROM MEMORY

LDY

Operation :
Function

Status flag:

(Y) « (M)

: This instruction loads the contents of M in Y.

N: N is 1 when bit 7 is 1 after the operation; otherwise N is

0.
V: No change
T: No change
B : No change
I : No change
D : No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes | Byte number | Cycle number
Immediate |ALDYA#3$nn AO16, Nn16 2 2
Zero page |ALDYA$zz Adie, zz16 2 3
Zero page X |ALDYA$zz,X B41s, zz16 2 4
Absolute ALDYAS$hhII ACazs, ll16, hhie 3 4
Absolute X |ALDYAS$hhII,X BCis, ll16, hhie 3 5

Rev.2.00 Nov 14, 2006 page 70 of 185

REJ09B0322-0200

RENESAS

LSR

LOGICAL SHIFT RIGHT

LSR

Operation :

Function

Status flag:

0 — |b7

b0o |- [C

: This instruction shifts either A or M one bit to the right such

that bit 7 of the result always is set to 0, and the bit 0 is

stored in C.
N:O

V : No change
T: No change
B : No change
I : No change
D : No change
Z

C

. Z is 1 when the operation result is 0; otherwise Z is 0.
: Cis 1 when the bit O of either the A or the M before the
operation is 1; otherwise C is 0.

Addressing mode Statement Machine codes | Byte number | Cycle number
Accumulator |[ALSRAA 4A16 1 2
Zero page |ALSRA$zz 4616, 7716 2 S
Zero page X |ALSRA$zz,X 5616, 2Z16 2 6
Absolute |ALSRA$hhII 4E1s, ll16, hhie 3 6
Absolute X |ALSRA$hhII,X 5Ez1s, ll16, hhis 3 7

Rev.2.00 Nov 14, 2006 page 71 of 185

REJ09B0322-0200

RENESAS

MUL MUL

MULTIPLY ACCUMULATOR AND MEMORY

Operation : M(S) * (A) « (A) O M(zz+(X))
(S) «(5)-1

Function : Multiplies Accumulator with the memory specified by the Zero
Page X addressing mode and stores the high-order byte of the
result on the Stack and the low-order byte in A.

multiplicant M(zz+(X)) X (A) multiplier
Il

g — —_— =

product| M(S) (A) |

r— ————]

Zero page high-order low-order
Status flag : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Zero page X |AMULA$zz, X 6216, 2716 2 15

Notes 1: This instruction changes the contents of S and A.
2: The MUL instruction cannot be used for some products.
3: The MUL instruction is not affected by T and D flags.

Rev.2.00 Nov 14,2006 page 72 of 185 RENESAS
REJ09B0322-0200

NOP

NO OPERATION

NOP

Operation :

(PC) « (PC) +1

Function : This instruction adds one to the

operation.

Status flag : No change

PC but does no other

Addressing mode Statement Machine codes Byte number | Cycle Number
Implied ANOP EA16 1 2
Rev.2.00 Nov 14, 2006 page 73 of 185 :{ENESAS

REJ09B0322-0200

ORA

ORA

OR MEMORY WITH ACCUMULATOR

Operation

Function

Status flag:

. When (T) = 0, (A) < (A) v (M)

(M =1, (M(X)) « (M(X)) v (M)

: When T = 0, this instruction transfers the contents of A and M

to the ALU which performs a bit-wise “OR”, and stores the

result in A.

When T = 1, this instruction transfers the contents of M(X) and
the M to the ALU which performs a bit-wise OR, and stores the
result in M(X). The contents of A remain unchanged, but status

flags are changed.

M(X) represents the contents of memory where is indicated by

X.

N: N is “1” when bit 7 is 1 after the operation; otherwise N is

0.
V : No change
T: No change
B : No change
I: No change
D : No change
Z: Z is 1 when the execution result is 0; otherwise Z is 0.
C : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate | AORAA#$NN 0916, Nn16 2 2
Zero page |AORAA$zz 0516, zz16 2 3
Zero page X |AORAA$zz,X 1516, zz16 2 4
Absolute AORAAS$hII 0Daus, ll1e, hhie 3 4
Absolute X |AORAAS$hhII,X 1Das, ll16, hhie 3 5
Absolute Y |AORAAS$hhILY 1916, ll16, hhie 3 5
(Indirect X) |AORAA($zz,X) Ol1e, zz16 2 6
(Indirect Y) |AORAA($zz),Y 1116, zz16 2 6

Note: When T=1, add 3 to the cycle number.

Rev.2.00 Nov 14, 2006 page 74 of 185

REJ09B0322-0200

RENESAS

PHA

PHA

PUSH ACCUMULATOR ON STACK

Operation : (M(S)) « (A)

() «(5) -1

Function : This instruction pushes the contents of A to the memory
location designated by S, and decrements the contents of S by

one.

Status flag : No change

Addressing mode Statement Machine codes Byte number | Cycle number
Implied APHA 4816 1 3
Rev.2.00 Nov 14, 2006 page 75 of 185 :{ENESAS

REJ09B0322-0200

PHP

Operation

Function :

PHP

PUSH PROCESSOR STATUS ON STACK

+ (M(S)) « (PS)

(8) «(5) -1

This instruction pushes the contents of PS to the memory loca-
tion designated by S and decrements the contents of S by one.

Status flag: No change
Addressing mode Statement Machine codes Byte number |Cycle number
Implied APHP 0816 1 3

Rev.2.00 Nov 14, 2006 page 76 of 185

REJ09B0322-0200

RENESAS

PLA

PULL ACCUMULATOR FROM STACK

PLA

Operation

Function

. (S) « (S) + 1

(A) « (M(S))

the memory designated by S in A.

: This instruction increments S by one and stores the contents of

Status flag: N : N is 1 when bit 7 is 1 after the operation ; otherwise N is

0.
: No change
: No change
: No change
No change
: No change

ONUTW—|<

: No change

: Z is 1 when the operation result is 0; otherwise Z is 0.

Addressing mode

Statement

Machine codes

Byte number

Cycle number

Implied

APLA

6816

1

4

Note: A NOP instruction should be executed after every PLP instruction.

Rev.2.00 Nov 14, 2006 page 77 of 185

REJ09B0322-0200

RENESAS

PLP

Operation
Function

Status flag :

PULL PROCESSOR STATUS FROM STACK

“(S) e« (S +1

(PS) « (M(S))

the memory location designated by S in PS.

PLP

* This instruction increments S by one and stores the contents of

Value returns to the original one that was pushed in the stack.

Addressing mode

Statement

Machine codes

Byte number

Cycle number

Implied

APLP

2816

1

4

Note: A NOP instruction should be executed after every PLP instruction.

Rev.2.00 Nov 14, 2006 page 78 of 185

REJ09B0322-0200

RENESAS

ROL

ROTATE ONE BIT LEFT

ROL

Operation :

Function

Status flag:

b7

b0

C

stored in bit O and bit 7 is stored in C.

: This instruction shifts either A or M one bit left through C. C is

N: N is 1 when bit 6 is 1 before the operation; otherwise N is

0.
V: No change
T: No change
B: No change
I: No change
D: No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: Cis 1 when bit 7 is 1 before the operation; otherwise C is
0.
Addressing mode Statement Machine codes Byte number | Cycle number
Accumulator |AROLAA 2A16 1 2
Zero page |AROLA$zz 2616, 2716 2 5
Zero page X |AROLA$zz,X 3616, zz16 2 6
Absolute AROLAS$hNII 2E1s, ll16, hhie 3 6
Absolute X |AROLAS$hhII,X 3Ez1s, ll16, hhie 3 7

Rev.2.00 Nov 14, 2006 page 79 of 185

REJ09B0322-0200

RENESAS

ROR

ROTATE ONE BIT RIGHT

ROR

Operation :

Function

C b7

b0

is stored in bit 7 and bit O is stored in C.

: This instruction shifts either A or M one bit right through C. C

Status flag: N: N is 1 when C is 1 before the operation; otherwise N is 0.
V: No change
T: No change
B: No change
I: No change
D: No change
Z: Z is 1 when the operation result is 0; otherwise Z is 0.
C: Cis 1 when bit 0 is 1 before the operation; otherwise C is
0.
Addressing mode Statement Machine codes Byte number | Cycle number
Accumulator |[ARORAA 6A16 1 2
Zero page |ARORA$zz 6616, 2716 2 5
Zero page X |ARORA$zz,X 7616, 2716 2 6
Absolute |ARORAShhII 6Eus, ll16, hhie 3 6
Absolute X |ARORAShhII, X 7Eus, llz6, hh1e 3 7

Rev.2.00 Nov 14, 2006 page 80 of 185

REJ09B0322-0200

RENESAS

RRF

RRF

ROTATE RIGHT OF FOUR BITS

Operation :
b7 b4| b3 b0
Function : This instruction rotates 4 bits of the M content to the right.
Status flag : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Zero page |ARRFA$zz 8216, 7716 2 8
Rev.2.00 Nov 14, 2006 page 81 of 185 :{ENESAS

REJ09B0322-0200

RTI RTI

RETURN FROM INTERRUPT

Operation : (S) « (S) + 1
(PS) « (M(S))
(S) « (S) +1
(PCL) « (M(S))
(S) « (S) +1
(PCH) « (M(S))

Function : This instruction increments S by one, and stores the contents
of the memory location designated by S in PS. S is again
incremented by one and stores the contents of the memory
location designated by S in PCL. S is again incremented by
one and stores the contents of memory location designated by
S in PCH.

Status flag : Vvalue returns to the original one that was pushed in the stack.

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ARTI 4016 1 6

Rev.2.00 Nov 14,2006 page 82 of 185 RENESAS
REJ09B0322-0200

RTS

RETURN FROM SUBROUTINE

RTS

Operation :

Function

(S) « (S) +1
(PCL) « (M(S))
(S) « (S) +1

(PCH) « (M(S))
(PC) « (PC) + 1

: This instruction increments S by one and stores the contents of

the memory location designated by S in PCL. S is again
incremented by one and the contents of the memory location is
stored in PCH. PC is incremented by 1.

Status flag: No change

Addressing mode

Statement

Machine codes

Byte number

Cycle number

Implied

ARTS

6016

1

6

Rev.2.00 Nov 14, 2006 page 83 of 185

REJ09B0322-0200

RENESAS

SBC

SBC

SUBTRACT WITH CARRY

Operation :

Function :

When (T) = 0, (A) « (A) — (M) — (C)

(M =1, (M(X)) « (M(X)) = (M) - (C)

When T = 0, this instruction subtracts the value of M and the
complement of C from A, and stores the results in A and C.
When T = 1, the instruction subtracts the contents of M and
the complement of C from the contents of M(X), and stores the
results in M(X) and C.

A remain unchanged, but status flag are changed.

M(X) represents the contents of memory where is indicated by

X.
Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0.
V: V is 1 when the operation result exceeds +127 or|-128|
otherwise V is 0.
T: No change
B : No change
I: No change
D: No change
Z: Zis 1 when the operation result is 0; otherwise Z is 0.
C: C is 1 when the subtracted result is equal to or greater
than 0; otherwise C is 0.
Addressing mode Statement Machine codes Byte number | Cycle number
Immediate |ASBCA#$nn E916, Nn16 2 2
Zero page |ASBCA$zz Eb5z1e, zz16 2 3
Zero page X |ASBCA$zz,X F516, zz16 2 4
Absolute | ASBCAS$hhII EDzs, ll16, hhie 3 4
Absolute X |ASBCAS$hhII, X FDas, ll16, hhie 3 5
Absolute Y |ASBCAS$hhIIlY F9z1s, ll16, hhis 3 5
(Indirect X) |ASBCA($zz,X) Elie, zz16 2 6
(Indirect Y) |ASBCA($zz2),Y Flie, zz16 2 6

Notes 1: When T=1, add 3 to the cycle number.
2: When SBC instruction is executed in decimal operation mode

(D = 1), execute at least one instruction after the SBC instruction

before executing a SEC, CLC, or CLD instruction.

In decimal operation mode, the N, V, Z flags are invalid.

Rev.2.00 Nov 14, 2006 page 84 of 185

REJ09B0322-0200

RENESAS

SEB

SET BIT

SEB

Operation : (Ai) « 1, or
(Mi) « 1

Function : This instruction sets the designated bit i of A or M.

Status flag: No change

Addressing mode Statement

Machine codes

Byte number

Cycle number

Accumulator bitf ASEBAI,A
Zero page bit |ASEBAI,$zz

(20i+B)16
(20i+F)16, zz16

1
2

2
5

Rev.2.00 Nov 14, 2006 page 85 of 185
REJ09B0322-0200

RENESAS

SEC

SET CARRY FLAG

SEC

Operation : (C) « 1

Function : This instruction sets C.

: No
: No
: No
: No
No
: No
: No
1

Status flag:

ONO—-—W—H<Z

change
change
change
change
change
change
change

Addressing mode

Statement

Machine code

Byte number

Cycle number

Implied ASEC

3816

1

2

Rev.2.00 Nov 14, 2006 page 86 of 185

REJ09B0322-0200

RENESAS

SED

SET DECIMAL MODE

SED

Operation : (D) « 1
Function : This instruction set D.
Status flag: N: No change
V: No change
T : No change
B : No change
| : No change
D:1
Z: No change
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied ASED F816 1 2
Rev.2.00 Nov 14, 2006 page 87 of 185 :{ENESAS

REJ09B0322-0200

SEI

SET INTERRUPT DISABLE FLAG

SEI

Operation : () « 1
Function : This instruction sets I.
Status flag: N: No change
V : No change
T: No change
B : No change
.1
D : No change
Z : No change
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied ASEI 7816 1 2
Rev.2.00 Nov 14, 2006 page 88 of 185 :{ENESAS

REJ09B0322-0200

SET

SET TRANSFER FLAG

SET

Operation : (T) « 1
Function : This instruction sets T.
Status flag: N: No change
V: No change
T:1
B : No change
I : No change
D : No change
Z: No change
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied ASET 3216 1 2
Rev.2.00 Nov 14, 2006 page 89 of 185 :{ENESAS

REJ09B0322-0200

STA

Operation :

Function :

STORE ACCUMULATOR IN MEMORY

(M) « (A)

This instruction stores the contents of A in M.

The contents of A does not change.

STA

Status flag: No change
Addressing mode Statement Machine codes Byte number | Cycle number

Zero page |ASTAA$zz 8516, 2716 2 4

Zero page X |ASTAA$zz X 9516, 2716 2 5
Absolute |ASTAAS$hhII 8Da1s, ll16, hhie 3 5
Absolute X |ASTAA$hhII, X 9D1s, ll16, hhie 3 6
Absolute Y |ASTAAS$hhIIY 991s, ll16, hhie 3 6

(Indirect X) |ASTAA($zz,X) 8116, 2716 2 7
(Indirect Y) |ASTAA($zz),Y 9l1e, zz16 2 7

Rev.2.00 Nov 14, 2006 page 90 of 185 :{ENESAS

REJ09B0322-0200

STP STP

STOP

Operation : CPU « Stand-by state (Oscillation stopped)

Function : This instruction resets the oscillation control F/F and the oscil-
lation stops. Reset or interrupt input is needed to wake up from
this mode.

Status flag: No change

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ASTP 4216 1 2

Note: If the STP instruction is disabled the cycle number will be 2 (same in
operation as NOP). However, disabling this instruction is an optional
feature; therefore, consult the specifications for the particular chip in
guestion.

Rev.2.00 Nov 14,2006 page 91 of 185 RENESAS
REJ09B0322-0200

STX STX

STORE INDEX REGISTER X IN MEMORY

Operation : (M) « (X)

Function : This instruction stores the contents of X in M. The contents of
X does not change.

Status flag: No change

Addressing mode Statement Machine codes Byte number | Cycle number
Zero page |ASTXA$zz 8616, 2716 2 4

Zero page Y |ASTXA$zz,Y 9616, zz16 2 5
Absolute |ASTXA$hhlI 8Eus, ll16, hhie 3 5

Rev.2.00 Nov 14, 2006 page 92 of 185

RENESAS
REJ09B0322-0200

STY

STY

STORE INDEX REGISTER Y IN MEMORY

Operation : (M) « (Y)

Function : This instruction stores the contents of Y in M.
The contents of Y does not change.

Status flag: No change

Addressing mode Statement Machine codes Byte number | Cycle number
Zero page |ASTYA$zz 8416, 7716 2 4
Zero page X |ASTYA$zz, X 9416, 7716 2 5
Absolute |ASTYAShhII 8Cis, ll16, hhie 3 5

Rev.2.00 Nov 14, 2006 page 93 of 185
REJ09B0322-0200

RENESAS

TAX

TAX

TRANSFER ACCUMULATOR TO INDEX REGISTER X

Operation :

Function :

Status flag:

(X) « (A)

This instruction stores the contents of A in X. The contents of

A does not change.

N: N is 1 when bit 7 is 1 after the operation; otherwise N is

0.
: No change
: No change
: No change
No change
: No change

OND—-mH<Z

: No change

: Z is 1 when the operation result is 0; otherwise Z is 0.

Addressing mode

Statement

Machine codes

Byte number

Cycle number

Implied

ATAX

AA16

1

2

Rev.2.00 Nov 14, 2006 page 94 of 185

REJ09B0322-0200

RENESAS

TAY

TAY

TRANSFER ACCUMULATOR TO INDEX REGISTER Y

Operation :

Function

Status flag:

(Y) < (A)

A does not change.

: This instruction stores the contents of A in Y. The contents of

N: N is 1 when bit 7 is 1 after the operation; otherwise N is

0.

V : No change

T: No change

B : No change

| : No change

D : No change

Z: Z is 1 when the operation result is 0; otherwise Z is 0.

C : No change
Addressing mode Statement Machine codes | Byte number |Cycle number

Implied ATAY A816 1 2

Rev.2.00 Nov 14, 2006 page 95 of 185 :{ENESAS

REJ09B0322-0200

TST

TEST FOR NEGATIVE OR ZERO

TST

Operation :

Function

(M) =0 ?

and modifies the N and Z.

¢ This instruction tests whether the contents of M are “0” or not

Status flag: N: N is 1 when bit 7 of M is 1; otherwise N is 0.
V : No change
T: No change
B : No change
I: No change
D : No change
Z: Zis 1 when the M content is 0; otherwise Z is 0.
C: No change
Addressing mode Statement Machine codes Byte number | Cycle number
Zero page |ATSTA$zz 6416, 2z16 2 3
Rev.2.00 Nov 14, 2006 page 96 of 185 RENESAS

REJ09B0322-0200

TSX TSX

TRANSFER STACK POINTER TO INDEX REGISTER X
Operation : (X) < (S)
Function : This instruction transfers the contents of S in X.

Status flag: N N is 1 when bit 7 is 1 after the operation; otherwise N is
0.

. No change

. No change

: No change
No change

: No change

. Z is 1 when the operation result is 0; otherwise Z is 0.

: No change

ONUTW—|<

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ATSX BA16 1 2

Rev.2.00 Nov 14,2006 page 97 of 185 RENESAS
REJ09B0322-0200

TXA TXA

TRANSFER INDEX REGISTER X TO ACCUMULATOR
Operation : (A) « (X)

Function : This instruction stores the contents of X in A.

Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N is
0

No change
No change
No change
No change
No change

Z is 1 when the operation result is 0; otherwise Z is 0.
No change

ONDO =B A<

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ATXA 8A16 1 2

Rev.2.00 Nov 14, 2006 page 98 of 185

RENESAS
REJ09B0322-0200

TXS

TXS

TRANSFER INDEX REGISTER X TO STACK POINTER

Operation :

Function

(S) « (X)

Status flag No change

: This instruction stores the contents of X in S.

Addressing mode Statement Machine codes Byte number | Cycle number
Implied ATXS 9A16 1 2
Rev.2.00 Nov 14, 2006 page 99 of 185 :{ENESAS

REJ09B0322-0200

TYA

TYA

TRANSFER INDEX REGISTER Y TO ACCUMULATOR

Operation : (A) « (Y)

Function : Thjs instruction stores the contents of Y in A.

Status flag: N: N is 1 when bit 7 is 1 after the operation; otherwise N

is O.

V: No change

T: No change

B: No change

I: No change

D: No change

Z: Z is 1 when the operation result is 0; otherwise Z is 0.

C: No change
Addressing mode Statement Machine codes Byte number | Cycle number

Implied ATYA 9816 1 2

Rev.2.00 Nov 14, 2006 page 100 of 185 :{ENESAS

REJ09B0322-0200

WIT

WIT

WAIT

Operation : CPU « Wait state
Function: The WIT instruction stops the internal clock but the
oscillation of the oscillation circuit is not stopped. Reset or
interrupt input is needed to wake up from this mode.
Status flag : No change
Addressing mode Statement Machine codes Byte number | Cycle number
Implied AWIT C216 1 2

Rev.2.00 Nov 14,2006 page 101 of 185

REJ09B0322-0200

RENESAS

INSTRUCTIONS

Instructions Related to Interrupt Processing and Subroutine Processing

3.4 Instructions Related to Interrupt Handling and Subroutine Processing

3.4.1 Instructions Related to Interrupt Handling
When an interrupt is accepted, the contents of the processor status register are pushed onto
the memory location indicated by the stack pointer. There is therefore no need to execute the
PHP _instruction.
If it is necessary to save the contents of the accumulator, the PHA instruction should be
executed within an interrupt routine (before any instruction that manipulates the accumulator).
Whenever a stack operation instruction such as PHA is executed within an interrupt routine,
make sure that instructions such as PLA that affect the stack operation instruction are also
executed within the same interrupt routine.
Execute the RTI instruction to return from the interrupt routine.

3.4.2 Instructions Related to Interrupt Control

The factors that control an interrupt are the interrupt disable flag () as well as the interrupt
enable bit and request bit corresponding to the interrupt source. (This does not apply to
software interrupts triggered by the BRK instruction.)

(1) Disabling Interrupts
An interrupt may be disabled by setting the interrupt disable flag (I) to “1” using the SEI
instruction or by using an instruction such as LDM or CLB (a variety of other instructions
can be used as well) to clear the interrupt enable bit to “0".

(2) Enabling Interrupts
An interrupt may be enabled by setting the interrupt enable bit to “1” using an instruction
such as LDM or SEB, and by using the CLI instruction to clear the interrupt disable flag
() to “0”.

(3) Clearing Interrupt Requests

When an interrupt is generated, the interrupt request bit corresponding to the interrupt
source is set to “1” automatically. The interrupt request bit is cleared to “0” when the
interrupt is accepted. Therefore, there is no need to clear the interrupt request bit (within
an interrupt routine) by means of a user program.

If interrupt generation occurs while an interrupt is disabled, the interrupt request bit is set
to “1”. If, under this condition, the interrupt is subsequently enabled (the interrupt disable
flag (1) is cleared to “0” and the interrupt enable bit is set to “1”), the interrupt is
accepted. To prevent an interrupt from being accepted in such a case, use an instruction
such as LDM or CLB to clear the interrupt request bit to “0” before enabling the interrupt.
In such cases, the following point should be considered.

e While the interrupt disable flag (1) is “0”, if the interrupt request bit is cleared to “0” and
the interrupt enable bit is cleared to “0” at the same time using an instruction such as
LDM, the interrupt will actually be enabled before the request bit is cleared to “0”, causing
the interrupt to be accepted.

To prevent this, use an instruction such as CLB to clear the request bit to “0” first, then
enable the interrupt.

Rev.2.00 Nov 14,2006 page 102 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Instructions Related to Interrupt Processing and Subroutine Processing

(4) Interrupt Control within Interrupt Routines
After an interrupt is accepted and execution of the interrupt routine begins, the interrupt
disable flag () is set to “1" automatically to prevent multiple interrupts. To enable multiple
interrupts, use the CLI instruction within the interrupt routine to clear the interrupt disable
flag (1) to “0".

3.4.3 Instructions Related to Subroutine Processing

Normally, the JSR instruction is used to jump to a subroutine. When this instruction is
executed, the current program counter values, first PCH then PCL, are pushed onto the stack
automatically and the stack pointer is moved accordingly. However, in contrast to interrupt
handling, the contents of the processor status register are not saved automatically when a
subroutine is called. If it is necessary to save the contents of the processor status register,
execute the PHP instruction. Executing the JSR instruction does not alter the content of the
processor status register. Therefore, saving the contents of the processor status register using
the PHP instruction may be performed either immediately before the JSR instruction or
immediately after it (at the beginning of the subroutine). However, if such a stack operation
instruction is executed within a subroutine, do not fail to perform the opposite operation
before returning from (that is, within) the subroutine.

Execute the RTS instruction to return from a subroutine. When this instruction is executed,
the return address saved by the JSR instruction is returned to the program counter
automatically. Likewise in contrast to interrupt handling, the contents of the processor status
register are not restored. If the PHP or PHA instruction is used within a subroutine to store
the contents of the processor status register or accumulator, do not fail to perform the
opposite stack operation, using the PLP or PLA instruction, before returning from (that is,
within) the subroutine.

Figure 3.4.1 shows pushing and pulling values onto and from the stack during interrupt
handling and subroutine processing. Table 3.4.1 shows instructions for storing and retrieving
values in the accumulator and processor status register.

Rev.2.00 Nov 14,2006 page 103 of 185 RENESAS
REJ09B0322-0200

INSTRUCTIONS

Instructions Related to Interrupt Processing and Subroutine Processing

Interrupt request —
(Note)

|| Currently running routine ||

|

| Execute JSR instruction |

Push return address
onto stack

M(S) « (PCH)

M(S) « (PCL)
(S) «<(S)-1

Subroutine

Execute RTS instruction

(S)«<((S)+1
(PCL) « M(S)
(S)«(S)+1

(PCH) « M(S)

Pull return address
from stack

w

Note: Conditions under which interrupt is accepted at this point: Interrupt enable flag set to “1”

M(S) < (PCL)

Execute RTI instruction

Push return address
onto stack

Push contents of
processor status register
onto location indicated by
stack pointer

[flag 0" — “1”
Fetch interrupt jump
destination address

(S)«(S)+1
(PS) « M(S)

Pull contents of processor
status register from location
indicated by stack pointer

(PCL) « M(S)
(S)«<(S)+1
(PCH) « M(S)

Pull return address
from stack

Interrupt disable flag set to “0”

Fig.3.4.1 Pushing and pulling values onto and from the stack

Table 3.4.1 Instructions for storing and retrieving values in the accumulator or processor status register

Instruction to push onto Stack

Instruction to pull from Stack

Accumulator

PHA PLA
Processor status register PHP PLP
Rev.2.00 Nov 14,2006 page 104 of 185 :{ENESAS

REJ09B0322-0200

NOTES ON USE

4. NOTES ON USE
The information below applies to the entire 740 Family. Please refer to it in conjunction with
the usage notes of each specific product model.

4.1 Notes on input and output ports
4.1.1 Notes in standby state
In standby state™, do not make pin levels “undefined” when I/O ports are set to input mode.
In addition, the same note is necessary even when N-channel open-drain 1/O ports are set
to output mode.
Pull-up (connect the port to Vcc) or pull-down (connect the port to Vss) these ports through
a resistor.
When determining a resistance value, note the following points:
» External circuit
» Variation of output levels during the ordinary operation

e Reason
An transistor becomes an OFF state when an I/O port is set as input mode by the direction
register, so that the port enter a high-impedance state. At this time, the potential which
is input to the input buffer in a microcomputer is unstable in the state that input levels are
“undefined”. This may cause power source current. Even when an 1/O port of N-channel
open-drain is set as output mode by the direction register, if the contents of the port latch
is “1", the same phenomenon as that of an input port will occur.

01 standby state: Stop mode by executing STP instruction
Wait mode by executing WIT instruction

4.1.2 Modifying output data with bit managing instruction
When the port latch of an I/O port is modified with the bit managing instruction™, the value
of the unspecified bit may be changed.

e Reason
I/O ports are set to input or output mode in bit units. Reading from a port register or writing
to it involves the following operations.
e Port in input mode
Read: Read the pin level.
Write: Write to the port latch.
e Port in output mode
Read: Read the port latch or read the output from the peripheral function (specifications
differ depending on the port).
Write: Write to the port latch. (The port latch value is output from the pin.)

Since bit managing instructions™ are read-modify-write instructions, “ using such an instruction
on a port register causes a read and write to be performed simultaneously on the bits
other than the one specified by the instruction.

When an unspecified bit is in input mode, its pin level is read and that value is written to
the port latch. If the previous value of the port latch differs from the pin level, the port latch
value is changed.

If an unspecified bit is in output mode, the port latch is generally read. However, for some
ports the peripheral function output is read, and the value is written to the port latch. In
this case, if the previous value of the port latch differs from the peripheral function output,
the port latch value is changed.

01. Bit managing instructions: SEB and CLB instructions
2. Read-modify-write instructions: Instructions that read memory in byte units, modify the
value, and then write the result to the same location in memory in byte units

Rev.2.00 Nov 14,2006 page 105 of 185 RENESAS
REJ09B0322-0200

NOTES ON USE

4.2 Termination of unused pins

At the termination of unused pins, perform wiring at the shortest possible distance (20 mm
or less) from microcomputer pins. With regard to an effects on the system, thoroughly perform
system evaluation on the user side.

4.2.1 Appropriate termination of unused pins
O Output-only pins:

Open.
O Input-only pins:

Connect each pin via a 1 kQ to 10 kQ resistor (reference value) to Vcc or Vss. If the port

allows selection of an on-chip pull-up or pull-down resistor, the on-chip pull-up or pull-

down resistor may be used.

In addition, pins (CNVss and INT pins, etc.) for which the operating mode is affected by

the voltage level, select Vcc or Vss after checking the mode.

O 1/0 ports:

Set the 1/0O ports for the input mode and connect them to Vcc or Vss through each resistor

of 1 kQ to 10 kQ (reference value).

Ports that permit the selecting of a built-in pull-up/pull-down resistor can also use this

resistor. Set the I/O ports for the output mode and open them at “L” or “H".

« When opening them in the output mode, the input mode of the initial status remains until
the mode of the ports is switched over to the output mode by the program after reset.
Thus, the potential at these pins is undefined and the power source current may increase
in the input mode. With regard to an effects on the system, thoroughly perform system
evaluation on the user side.

« Since the direction register setup may be changed because of a program runaway or
noise, set direction registers by program periodically to increase the reliability of program.

O The AVss pin when not using the A/D converter:

When not using the A/D converter, handle a power source pin for the A/D converter, AVss

and AVcc pins as follows:

* AVss: Connect to the Vss pin.

e AVcc: Connect to the Vcc pin.

4.2.2 Termination remarks
0 1/0 ports:
Do not open in the input mode.
e Reason
» The power source current may increase depending on the first-stage circuit.
« An effect due to noise may be easily produced as compared with proper termination 0
and shown on the above.

0 1/0 ports:
When setting for the input mode, do not connect to Vcc or Vss directly.

e Reason
If the direction register setup changes for the output mode because of a program runaway
or noise, a short circuit may occur between a port and Vcc (or Vss).

0 1/0 ports:
When setting for the input mode, do not connect multiple ports in a lump to Vcc or Vss
through a resistor.

e Reason
If the direction register setup changes for the output mode because of a program runaway
or noise, a short circuit may occur between ports.

Rev.2.00 Nov 14,2006 page 106 of 185 RENESAS
REJ09B0322-0200

NOTES ON USE

4.3 Notes on interrupts

4.3.1 Setting for interrupt request bit and interrupt enable bit

To set an interrupt request bit and an interrupt enable bit for interrupts, execute as the
following sequence:

O Clear an interrupt request bit to “0” (no interrupt request issued).

0 Set an interrupt enable bit to “1” (interrupts enabled).

e Reason
If the above setting are performed simultaneously with one instruction, an unnecessary
interrupt processing routine is executed. Because an interrupt enable bit is set to “1”
(interrupts enabled) before an interrupt request bit is cleared to “0.”

4.3.2 Switching of detection edge

If it is not necessary to generate interrupts synchronized with certain settings, such as
setting the active edge for external interrupts or switching the interrupt source for a vector
in cases where multiple interrupt sources are assigned to the same interrupt vector, use
the following procedure to make the settings.

Clear an interrupt enable bit to “0” (interrupt disabled)

!

Set the interrupt edge selection bit (active edge switch
bit) or the interrupt (source) selection bit

{

NOP instruction (one or more instructions)

'

Clear an interrupt request bit to “0” (no interrupt request
issued)

Set the interrupt enable bit to “1” (interrupt enabled)

Fig. 4.3.1 Switching sequence of detection edge

e Reason

The interrupt request bit may be set to “1” in the following cases:

* When switching the active edge for external interrupts.

* When switching the interrupt source for a vector in cases where multiple interrupt sources
are assigned to the same interrupt vector.

Rev.2.00 Nov 14,2006 page 107 of 185 RENESAS
REJ09B0322-0200

NOTES ON USE

4.3.3 Distinction of interrupt request bit

When executing the BBC or BBS instruction to an interrupt request (request distinguish) bit
of an interrupt request register (interrupt request distinguish register) immediately after this
bit is set to “0”, execute one or more instructions before executing the BBC or BBS instruction.

Clear an interrupt request (request distinguish) bit to “0”
(no interrupt request issued)

{

NOP instruction (one or more instructions)

Y

Execute the BBC or BBS instruction

Fig. 4.3.2 Distinction sequence of interrupt request hit

e Reason

If the BBC or BBS instruction is executed immediately after an interrupt request (request
distinguish) bit of an interrupt request register (interrupt request distinguish register) is
cleared to “0,” the value of the interrupt request (request distinguish) bit before being cleared
to “0” is read.

Rev.2.00 Nov 14,2006 page 108 of 185 RENESAS
REJ09B0322-0200

NOTES ON USE

4.4 Notes on programming
4.4.1 Processor Status Register
(1) Initialization of Processor Status Register
Flags which affect program execution must be initialized after a reset. In particular, it is essential
to initialize the T and D flags because they have an important effect on calculations.

e Reason
After a reset, the contents of processor status register (PS) are undefined except for the | flag
which is “1.”

(Reset)
Y

Flags initializing

Y
Main program

Fig. 4.4.1 Initialization of flags in Processor Status Register

(2) How to reference Processor Status Register
To reference the contents of the processor status register (PS), execute the PHP instruction
once then read the contents of (S + 1). If necessary, execute the PLP instruction to
return the PS to its original status.
A NOP instruction should be executed after every PLP instruction.

/__/
C PLP instruction >
7 (S)
| NOP instruction | (S)+1 Saved PS

Fig. 4.4.2 PLP instruction execution sequence

Fig. 4.4.3 Stack memory contents after PHP
instruction execution

Rev.2.00 Nov 14,2006 page 109 of 185 RENESAS
REJ09B0322-0200

NOTES ON USE

4.4.2 BRK instruction
(1) Method detecting interrupt source
It can be detected that the BRK instruction interrupt event or the least priority interrupt

event by referring the stored B flag state. Refer the stored B flag state in the interrupt
routine, in this case.

) |7 4 0

S)+1 1 =B flag PS

(S)+2 PCL (program counter low-order)

(S) + 3 | PcH (program counter high-order)

Fig. 4.4.4 Contents of stack memory in interrupt processing routine

(2) Interrupt priority level
At the following status,
O the interrupt request bit has set to “1.”
O the interrupt enable bit has set to “1.”
O the interrupt disable flag (I) has set to “1.”
If the BRK instruction is executed, the interrupt disable state is cancelled and it becomes
in the interrupt enable state. So that the requested interrupts (the interrupts that corresponding
to their request bits have set to “1”) are accepted.

4.4.3 Decimal calculations

(1) Execution of Decimal calculations
The ADC and SBC are the only instructions which will yield proper decimal results in
decimal mode. To calculate in decimal notation, set the decimal mode flag (D) to “1” with
the SED instruction. After executing the ADC or SBC instruction, execute another instruction
before executing the SEC, CLC, or CLD instruction.

Rev.2.00 Nov 14, 2006 page 110 of 185

RENESAS
REJ09B0322-0200

NOTES ON USE

(2) Status flags in decimal mode
When decimal mode is selected (D = 1), the values of three of the flags in the status
register (the flags N, V, and Z) are invalid after a ADC or SBC instruction is executed.
The carry flag (C) is set to “1” if a carry is generated as a result of the calculation, or
is cleared to “0” if a borrow is generated. To determine whether a calculation has
generated a carry, the C flag must be initialized to “0” before each calculation. To check
for a borrow, the C flag must be initialized to “1” before each calculation.

(Set D flag to “1”)

'

ADC or SBC instruction

v

NOP instruction

v

SEC, CLC, or CLD instruction

Fig. 4.4.5 Status flags in decimal mode

4.4.4 JMP instruction
When using the JMP instruction in indirect addressing mode, do not specify the last address
on a page as an indirect address.

4.4.5 Multiplication and division instructions

The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
The execution of these instructions does not change the contents of the processor status
register.

4.4.6 Ports

The contents of the port direction registers cannot be read.

The following cannot be used:

e The data transfer instruction (LDA, etc.)

* The operation instruction when the index X mode flag (T) is “1”

e The addressing mode which uses the value of a direction register as an index

* The bit-test instruction (BBC or BBS, etc.) to a direction register

¢ The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register
Use instructions such as LDM and STA, etc., to set the port direction registers.

4.4.7 Instruction execution time

The instruction execution time is obtained by multiplying the frequency of the internal clock
¢ by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction is shown in the list of machine
instructions.

Rev.2.00 Nov 14,2006 page 111 of 185 RENESAS
REJ09B0322-0200

APPENDIX 1

Instruction Cycles in each Addressing Mode

APPENDIX 1. Instruction Cycles in each Addressing Mode

Clock ¢ controls the system timing of 740 Family. The SYNC signal and the value of PC
(Program Counter) are output in every instruction fetch cycle. The Op-Code is fetched during
the next half-period of ¢. The instruction decoder of CPU decodes this Op-Code and
determines the following how to execute the instruction. The instruction timings of all address-
ing modes are described on the following pages.

The ¢, SYNC, R/W (RD, WR), ADDR (ADDRL, ADDRH), and DATA signals in these figures
indicate the status of the internal bus. These signals cannot be seen directly in single-chip
mode, but they can be checked on products that support use of microprocessor mode.

The combination of these signals differs according to the microcomputer’s type. The following
table lists the valid signal for each product.

Valid signal for each product

Type 9 |SYNC| R/W | RD WR | ADDR | DATA |[ADDRH|ADDRL/DATA
M507XX
M509XX
M374XX O O o o ©
(Except M37451)
M38XXX
M375XX O
M372XX O O O © ©
M371XX
M37451 O O O O O O O

(Note) | (Note)

M50734 O O O O O O

Note: Only 80-pin version.

Rev.2.00 Nov 14,2006 page 112 of 185 RENESAS
REJ09B0322-0200

IMPLIED

Instructions : ACLC ASEC
ACLD ASED
ACLI ASEI
ACLT ASET
ACLV ATAX
ADEX ATAY
ADEY ATSX
AINX ATXA
AINY ATXS
ANOP ATYA
Byte length 01
Cycle number 12
Timing
¢
SYNC
RIW
RD |_
WR

aobr e X pow)
DATA X 0p-code X nvalid X

aoorr { pon X PCH)
Toara (Pehal KoK Ko X)

Rev.2.00 Nov 14,2006 page 113 of 185 RENESAS
REJ09B0322-0200

IMPLIED

Instruction :ABRK
Byte length 'l
Cycle number 7
Timing
o
SYNC
RIW
RO |
WR
S,00 S-1,00 S-2,00 FFF4 FFF5 ADL
ADDR < PC X PC+1 X (Note 1) (Note 1) (Note 1) (Note 2) X (Note 2) ADH >

DATA X ngé X InvalidX PCH X PCL X PS X ADL X ADH X
ADDRH < PCH X PCH X 01 >/ FF oCH
/?[I)DE'IRAL (PCL Ogé)éXPCHlXVIQJ}dX S XPCHX S-lXPCLXS-ZX PSX F4 XADLX F5 XADHXADLX)

Notes 1 : Some products are “01” or content of SPS flag.
2 : Some products differ the address.

Rev.2.00 Nov 14,2006 page 114 of 185 RENESAS
REJ09B0322-0200

IMPLIED

Instructions :ASTP
AWIT
Byte length 01

Timing

SYNC

RIW

ADDR< PC X - X

pATA X Op-code X vaid X

ADDRH < PCH X ech X
A

'?SE%'\- (PCL ggéxpcmxv'gj}d X PCL+1 X

Retum from standby
state is excuted by ex-
temal interupt.

Retum from wait state is
excuted by intemal or
extemal interrupt.

Rev.2.00 Nov 14,2006 page 115 of 185 RENESAS
REJ09B0322-0200

IMPLIED

Instruction :ARTI
Byte length 01
Cycle number 6
Timing
o | L L L L L1 L |
SYNC |
RIW
w |
WR

X +1, +2, +3, PCL
ADDR < PC X PC+1 X (Ne) X oty X Woio) X oie) X PCH >
DATA XOp-code X Invalid X Invalid X (Sfasck) X (Splchk) X (sptggk) X
ADDRH < PCH X PCH X 00 (Note) X PCH >
'A/‘DDETRA% (PCLXC‘ggé chmxv'gl-i dX S)——-(S+1XPS Xs+2 XPCL Xs+3 XPCHXPCLX)

Note: Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14,2006 page 116 of 185 RENESAS
REJ09B0322-0200

IMPLIED

Instruction :ARTS
Byte length 1
Cycle number 6

Timing

, 1, +2, PC PC
aoor (Pe X et X X X Taw X e X Fer)
H H PCL PCH H
DATA XOp-codeX Invalid X Invalid X (Stack) X (Stack) X Invalid X
ADDRH < PCH X PCH X 00 (Note) X PCH X PCH >
A/[?ETRAL (PCLXC?)S;EXPCLHXV';'-MX s)——-(S+1XPCLXS+2XPCHXPCL)___(PCL+1X)

Note: Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14, 2006 page 117 of 185

RENESAS
REJ09B0322-0200

IMPLIED

Instructions : APHA

APHP
Byte length 01
Cycle number 3
Timing

abbr { pc X pcer X 3%

DATA X op-code X invalid X A orPs)
appri { pcn X pcn X 00 (Note) X
oata S Kete Xk vmoh S AEX_)

Note: Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14,2006 page 118 of 185 RENESAS
REJ09B0322-0200

IMPLIED

Instructions : APLA
APLP
Byte length 01
Cycle number 14
Timing
¢
SYNC
RIW
R [
WR

poon. (X XXX
DATA X op-code X invalid X Invalid X pata X
apDRH { pon X pon N 00 Koo (Note) X
oara (P Keahe oot Ktia Noo = s Jorrk K

Note: Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14, 2006 page 119 of 185

RENESAS
REJ09B0322-0200

[T=0] IMMEDIATE
Instructions : AADCA#$nn (T=0)
AANDA#$nn (T=0)
ACMPA#$Nn (T=0)
ACPXA#$nn
ACPYA#$nn
AEORA#$nn (T=0)
ALDAA#$nn (T=0)
ALDXA#$nn
ALDYA#$nn
AORAA#$NNn (T=0)
ASBCA#$nn (T=0)
Byte length 12
Cycle number 12
Timing
o
SYNC
RIW
RD |
WR
ADDR < PC X PC+1 X X
DATA XOp-codeX DATA X >
ADDRH < PCH X PCH X X
ADDRL Op- +
oara P Kaome foe=rforrk X X)

Rev.2.00 Nov 14,2006 page 120 of 185 RENESAS

REJ09B0322-0200

ACCUMULATOR

Instructions :AASL AA
ADEC AA
AINC AA
ALSR AA
AROL AA
AROR AA

Byte length 01

Cycle number 12

Timing

ADDR < PC X PC+1 X
DATA XOp-codeX Invalid X >
ADDRH < PCH X PCH X PCH X
A/\SE_IRA- (PCL Cgé)e_XPCHlXVIQJ-i | XPCL+1X X)

Rev.2.00 Nov 14,2006 page 121 of 185 RENESAS
REJ09B0322-0200

ACCUMULATOR BIT RELATIVE

Instructions : ABBCAI,A,$hhll
ABBSAI,A,$hhll
Byte length 12
(1) With no branch
Cycle number 4
Timing
¢
SYNC
RIW
RD
WR

appr { pc X PC+1 X X
DATA X Op-code X invalid X

appry { Pern X PCH X X
oara (Pockde oo R i ko R oo Kma K XK

Rev.2.00 Nov 14,2006 page 122 of 185 RENESAS
REJ09B0322-0200

ACCUMULATOR BIT RELATIVE

Instructions : ABBCAI,A,$hhll
ABBSAI,A,$hhll
Byte length 2
(2) With branch
Cycle number 16
Timing
¢
SYNC
RIW
RO |
WR

ADDR < PC X pc+1 X (orin XESam RR)%

DATA XOD-COde X Invalid X *RR X Invalid X Inve
ADDRH < PCH X PCH X(PC+2)H X(PC+2)H ><
oara (PRt Noo Ko Nt Koo Koo RERRK 2 =<2 =
RR : Offset address

*1: (PC+1)L
*2: ((PC+2)£RR)L

Rev.2.00 Nov 14,2006 page 123 of 185 RENESAS
REJ09B0322-0200

ACCUMULATOR BIT

Instructions : ACLBAIA
ASEBAIA

Byte length 1

Cycle number 12

Timing

ADDR

DATA

ADDRH

ADDRL
IDATA

Cre Xren X

X op-code X Invalid X
{pen X pen X
CHERCE E A

Rev.2.00 Nov 14,2006 page 124 of 185 RENESAS

REJ09B0322-0200

BIT RELATIVE

Instructions : ABBCAI,$zz,$hhll
ABBSAI,$zz,$hhll
Byte length '3

(1) Wwith no branch
Cycle number :5

Timing

w [

ADDR < PC X PC+1 XADL,OO X PC+2 X

DATA XOp-codeX ADL X DATA X Invalid X
ADDRH < PCH X PCH >\ 00 /< PCH X
oo Y EEEEEEEEEO0

Rev.2.00 Nov 14,2006 page 125 of 185 RENESAS
REJ09B0322-0200

BIT RELATIVE

Instructions : ABBCAI,$zz,$hhll
ABBSAI,$zz,$hhll
Byte length]
(2) With branch
Cycle number 17
Timing
¢
SYNC |
RIW
RO |
WR

ADDR < PC X PC+1 X ADL,00 X PC+2 X s ngg)ﬁm” LA >

DATA XOp-codeX ADL X DATA X Invalid X *RR X Invalid X Invalid X
ADDRH < PCH X PCH >\ 00 /< PCH X(Pc+2)H X(pc+3),.| X(PC+3)¢RR)+>
Porial o)) ()) o) G) G0 o D S €)
RR : Offset address

*1: (PC+3)L
*2: (PC+3)£RR)L

Rev.2.00 Nov 14,2006 page 126 of 185 RENESAS
REJ09B0322-0200

ZERO PAGE BIT

Instructions : ACLBAI,$zz
ASEBAIi,$zz
Byte length)
Cycle number ‘5
Timing
¢

SYNC —|
X

ADDR < PC X PC+1 X ADL.00
_ H NEW
DATA XOp codeX ADL X DATA X Invath NEW X
ADDRH < PCH X PCH >\ 00 £
ADDRL T
2 EEOEEEE--EEO0

Rev.2.00 Nov 14,2006 page 127 of 185 RENESAS
REJ09B0322-0200

[T=0] ZERO PAGE

Instructions :AADC A$zz (T=0)
AAND A$zz (T=0)
ABIT A$zz
ACMP A$zz (T=0)
ACPX A$zz
ACPY A$zz

AEOR A%$zz (T=0)
ALDA A$zz (T=0)
ALDX A$zz
ALDY A$zz
AORA A$zz (T=0)
ASBC A$zz (T=0)
ATST A$zz

Byte length 12

Cycle number]

Timing

SYNC

WR

ADDR < PC X PC+1 XADL,OOX

DATA XOp—oodeX ADL X DATA X

ADDRH < PCH X PCH >\ 00 /<

'A/‘SE_&L (pc LX(S(E‘;XPCH]X ADL X ADL XDATAK

Rev.2.00 Nov 14,2006 page 128 of 185 RENESAS
REJ09B0322-0200

ZERO PAGE

Instructions D AASL A$zz
ACOM A$zz
ADEC A$zz
AINC A$zz
ALSR A$zz
AROL A$zz
AROR A$zz

Byte length 12

Cycle number '5

Timing

= _—

aoor {rc X rerr X ADL00 X
DATA X op-code X ap X oatA X invalid X ber X
IR €D N 00 Yo

ADDRL - (pci X o8 Xrewaf Ao Y ao. YoaraX a0 }- — (a0 Xew Y ¥

Rev.2.00 Nov 14,2006 page 129 of 185 RENESAS
REJ09B0322-0200

ZERO PAGE

Instruction : ARRFA$zz
Byte length 12
Cycle number 8

Timing

appr{ pc X pcr1 X ADL,00 X
pATA X op-ode X ape X pata X Invalid X e,
SRR €N 00 yeh

ADDRL (oY oV N o Yoo YorY o) — (o - = o Y- = (- — (o Y

Rev.2.00 Nov 14, 2006 page 130 of 185 = nS
REJ09B0322-0200 :{ NES

ZERO PAGE

Instruction
Byte length
Cycle number

Timing

ADDR

DATA

ADDRH

ADDRL
/DATA

: ALDMA#$nn,$zz

< PC X PC+1 X PC+2 XADL,OOX X
XOp-codeX DATA X ADL X DATA X X

<PCHXPCHXPCH>\OO/< X

(PCLXOgge'XPCulXDATAXPCuzXADLXADLXDATAX X X X

Rev.2.00 Nov 14,2006 page 131 of 185 RENESAS

REJ09B0322-0200

ZERO PAGE

Instructions tASTAASzz
ASTXAS$zz
ASTYAS$zz
Byte length 12
Cycle number 14
Timing
o
SYNC
RIW
" | |
WR

abbrR { pc Y pcer X oAb X)
DATA XOp—codeX ADL X InvalidX DATA X

oo (T X TN o AT
8 EEEEE-{E00

Rev.2.00 Nov 14,2006 page 132 of 185 RENESAS
REJ09B0322-0200

Zero Pagex

Instruction : AMULAS$zz, X (Note)
Byte length 12

Cycle number 115

Timing

Uy uydyyy
swe [] B

= U U

WR |_|
appr (P) pca Y ADL+X,00 X sses X:
DATA :XC?JS;XADLXJQ[MXDATAX Invalid X o) i)

SPS: A selected page by stack page selection bit of the CPU mode register.

Note: This instruction cannot be used for some products.

Rev.2.00 Nov 14,2006 page 133 of 185 RENESAS
REJ09B0322-0200

Zero Pagex

Instruction : ADIVA$zz,X (Note)
Byte length 12

Cycle number 116

Timing

SYNC | |—

RIW

™ i

ADDR (PCX PC+1 X&%BX ADL+X+1,00 X S,SPS X:
Low-order DATA High-order DATA

oata X Xeo XX XX invalid VoY i)

SPS: A selected page by stack page selection bit of the CPU mode register.

Note: This instruction cannot be used for some products.

Rev.2.00 Nov 14, 2006 page 134 of 185

RENESAS
REJ09B0322-0200

Zero Page X

Instructions : AASL A$zz, X
ADEC A$zz,X
AINC A$zz,X
ALSR A$zz,X
AROL A$zz,X
ARORA$zz,X
Byte length 12
Cycle number)
Timing
o
SYNC
RIW
= | |
WR

ADDR < PC X PC+1 X (PC+1). X ADL+X,00 X
DATA XOp-oodeX ADL X Invalid X DATA X Invalid X S/EYFVA
ADDRH < PCH X PCH >\ 00 £
ADDRL Op- N . _ N NEW
S 63 @ () 0 S (0 (0 S e) @)

Rev.2.00 Nov 14,2006 page 135 of 185 RENESAS
REJ09B0322-0200

[T=0] ZERO PAGE X, ZERO PAGE Y

Instructions :AADCAS$zz, X (T=0)
AAND A$zz,X (T=0)
ACMPA$zz,X (T=0)
AEORA$zz,X (T=0)
ALDA A$zz,X (T=0)
ALDX A$zz,Y
ALDY A$zz,X
AORAA$zz,X (T=0)
ASBC A$zz,X (T=0)
Byte length)
Cycle number 14
Timing
¢
SYNC
RIW
RD |
WR

ADDR < PC X PC+1

(PC+1) L XADL+X (orY) ><
00 .00

DATA X Op-codeX ADL X Invalid X DATA X

ADDRH < PCH X PCH >\

00 /<7

ADDRL oo Vo
IDATA (_)PCL (_)code (PCL y ADLX

(PC — ={ ADL+X
1))' '((oer XDATAX X

Rev.2.00 Nov 14, 2006 page 136 of 185

REJ09B0322-0200

RENESAS

ZERO PAGE X, ZERO PAGE Y

Instructions :ASTAA$zz,X
ASTXA$zz,Y
ASTYA$zz,X

Byte length 12

Cycle number 5

Timing

woor (R X o XX PR X
DATA X Op-code X apL X invalid X Invalid X paTA X
apore { Pon X peH W 00 L

ADDRL (re YT Yoo Xro X7 - - () - {En)orX X

Rev.2.00 Nov 14,2006 page 137 of 185 RENESAS
REJ09B0322-0200

[T=0] ABSOLUTE

Instructions : AADC A$hhil (T=0)
AAND A$hhll (T=0)
ABIT A$hhll
ACMP A$hhll (T=0)
ACPX A$hhll
ACPY A$hhll

AEOR A$hhll (T=0)
ALDA AS$hhll (T=0)
ALDX A$hhll
ALDY A$hhll
AORA A$hhll (T=0)
ASBC A$hhll (T=0)

Byte length 13
Cycle number 14
Timing
o
SYNC

RIW

RD |

WR

ADDR < PC X PC+1 X PC+2 X ADL X X

DATA XOp—codeX ADL X ADH X DATA X X

ADDRH <PCH X PCH X PCH X ADH X X

'?DDA[\)EAI_ (PCL XC?)S;, XPCL+1 ADL XPCL+2XADH XADL XDATAX X X X

Rev.2.00 Nov 14,2006 page 138 of 185 RENESAS
REJ09B0322-0200

ABSOLUTE

Instructions : AASL A$hhll
ADEC A$hhll
AINC A$hhll
ALSR A$hhll
AROL A$hhll
ARORAS$hhII

Byte length '3

Cycle number 6

Timing

ADDR < PC X PC+1 X PC+2 X ADL ADH X
DATA XOp-oodeX ADL X ADH X DATA X InvalidX gﬂ\;
ADDRH < PCH X PCH X PCH X ADH X

A/‘DDAD.EAI\‘ (PCL cgégXPCHl ADLXPCL+2 ADHXADLXDATA ADL)———(ADL gﬂ‘i\x)

Rev.2.00 Nov 14,2006 page 139 of 185 RENESAS
REJ09B0322-0200

ABSOLUTE

Instruction : AJMPAS$hhII
Byte length 03
Cycle number 03
Timing
o
SYNC
RIW
RD |
WR

aoor {re Y rer X e YreraX D
oata Y orwaX rer X rer X X
aoors (ron X ron X ror X rer XD

ADDRL (VoY N e Y Y Yrer Y Y Y

Rev.2.00 Nov 14, 2006 page 140 of 185

RENESAS
REJ09B0322-0200

ABSOLUTE

Instruction : AJSRAS$hhII
Byte length '3
Cycle number 6
Timing
o
SYNC
RIW
RD |
WR

PRED €D ST 6 €D &5
DATA X op-code X ane X tnvalid X peeam X peszn X aon X
aoore { ren X ron X o o NEED D)
PN oY 6 O (=9 B 2R 6 () B9 6 &2 O N D)

Note: Some products are “01” or content of SPS flaa.

Rev.2.00 Nov 14,2006 page 141 of 185 RENESAS
REJ09B0322-0200

ABSOLUTE

Instructions : ASTAAShhII
ASTXAS$hhII
ASTYAS$hhII
Byte length '3
Cycle number 5
Timing
o
SYNC
RIW
RD |
WR

ADDR < PC X PC+1 X PC+2 X 28; X
DATA Xop-codeX ADL X ADH X Invalid X DATA X
roomn Cron X oo X XX
’A/\SEE: (PCLXc?)z;eXPC”l ADLXPCL+2 ADHX/—\DL)-——(ADLXDATAX X

Rev.2.00 Nov 14,2006 page 142 of 185 RENESAS
REJ09B0322-0200

[T=0]

ABSOLUTE X,ABSOLUTE Y

Instructions : AADC AShhll,XorY (T=0)
AAND A$hhll, X or Y (T=0)
ACMP A$hhll,XorY (T=0)
AEOR A$hhll,XorY (T=0)
ALDA A$hhll,XorY (T=0)
ALDX A$hhll,Y
ALDY A$hhll, X
AORA A$hhll,XorY (T=0)
ASBC A$hhllXorY (T=0)
Byte length 3
Cycle number :5
Timing
o
SYNC |
RIW
RD |
‘WR
ADDR < PC X PC+1 X PC+2 Y AD LX) NAD LiX(or) >
Op-cod i DATA
DATA X p-co eX ADL X ADH X InvalldX X
ADDRH < PCH X PCH X PCH X ADH XADH+C><
ADDRL Op- L+ L+
pYS N Gl) G G) ah0) s) i G ¢

C : Carry of ADL+X or Y

Rev.2.00 Nov 14,2006 page 143 of 185 RENESAS

REJ09B0322-0200

ABSOLUTE X

Instructions : AASL A$hhll X
ADEC A$hhll, X
AINC A$hhll,X
ALSR A$hhll, X
AROL A$hhll, X
AROR A$hhll, X
Byte length 3
Cycle number 7
Timing
o
SYNC
RIW
RD |
‘WR

ADL+X ADL+X
woor (Cre Wron X ro X e Xtk X
j : ; NEW
DATA XOp oodeX ADL X ADH X Invalid X DATA X Invalid X DATA
ADDRH < PCH X PCH X PCH X ADH X ADH+C X
A/‘SE_FA‘ (PCLXCE))C?E_XPCHI ADLXPCL+2 ADHXADHX)——-(ADL+>XDATAXADL+)>———(ADL+>X&FTWAX

C :Cany of ADL+X

Rev.2.00 Nov 14,2006 page 144 of 185 RENESAS
REJ09B0322-0200

ABSOLUTE X,ABSOLUTE Y

Instruction : ASTAA$hhIlL X or Y
Byte length '3
Cycle number 16

Timing

ADDR { pc X peer X pera YAOLXONCAprxor A
DATA XOD-OodeX ADL X ADH X Invalid X Invalid X DATA >
ADDRH < PCH X PCH X PCH X ADH X ADH +C X
'A/‘g E'II':{AL (PCLXOSC?E_XPCHI ADLXPCL+2 ADHX’*&*Y))(——(A(?;%()———(A(%t%(XDATAX

C :Cany of ADL+X orY

Rev.2.00 Nov 14,2006 page 145 of 185 RENESAS
REJ09B0322-0200

INDIRECT

Instruction :AJMPA($hhII)
Byte length]
Cycle number 5

Timing

appR " pc X pen X pez X o X X AR)
DATA X opcode W BaL X Ban X Ao X Abn X
appre - { pon X pen X pen X Ban X Ban X ADn)
fomrn (Por (3 YeeuiYBar YoourzY(man Yoau Yaoe YonsrXnon Yan Y

BA : Basic address

Rev.2.00 Nov 14,2006 page 146 of 185 RENESAS
REJ09B0322-0200

ZERO PAGE INDIRECT

Instruction : AJMPA($zz)
Byte length 12
Cycle number 4
Timing
¢
SYNC
RIW
RO
WR

ADL
abbR { pc X peet X Bavoo XBArLoo X AD,)
o XEEX XXX

aDDRH { Pen X PoH X\ 00 ADH
o DO EEEEY

BA : Basic address

Rev.2.00 Nov 14, 2006 page 147 of 185

RENESAS
REJ09B0322-0200

ZERO PAGE INDIRECT

Instruction : AJSRA($z22)
Byte length 12
Cycle number 07

Timing

SYNC

RIW

R G GRS €D G & €
DATA XOp-codeX BAL Xlnvalid X(PC+1)H X(Pc+1)LX ADL X ADH X
ADDRH < PCH X PCH X 01 >\ 00 ADH
2 EEEE - EEOEEEEE0)

BA : Basic address

Note: Some kind types are “01” or content of SPS flag.

Rev.2.00 Nov 14,2006 page 148 of 185 RENESAS
REJ09B0322-0200

[T=0] INDIRECT X

Instructions : AADC A($zz,X) (T=0)
AAND A($zz,X) (T=0)
ACMP A($zz,X) (T=0)
AEOR A($zz,X) (T=0)
ALDA A($zz,X) (T=0)
AORA A($zz,X) (T=0)
ASBC A($zz,X) (T=0)

Byte length 12

Cycle number 6

Timing

SYNC

R/W

ORI € DO E T
paTA X opcode X Ba. X invalid X ape X apu X DATA
appr { o X Pon N\ 00 A v X
vl G2 5 30 2 G SR O (5), () 00 D)

BA : Basic address

Rev.2.00 Nov 14,2006 page 149 of 185 RENESAS
REJ09B0322-0200

INDIRECT X

Instruction : ASTAA($22,X)
Byte length)
Cycle number D7

Timing

ADDR < PC X PC+1 X (PC’(’;&)L X B%SX BAB—SX+1 X ﬁgh X

DATA X opcode X Ba X invalid X Abt X Ak X Invalid X pata X
ADDRH < PCH X PCH >\ 00 /< o X
A/\[?AI?'IRAI: (PCLXcooS;aXPC“l BAL ﬁi)' - ‘(BA“X ADL Xgﬁﬂ XADH XADL)— - -(ADL XDATAX X

BA : Basic address

Rev.2.00 Nov 14,2006 page 150 of 185 RENESAS
REJ09B0322-0200

[T=0] INDIRECT Y

Instructions : AADCA($z2),Y (T=0)
AANDA($z2),Y (T=0)
ACMPA($zz),Y (T=0)
AEORA($z2),Y (T=0)
ALDA A($zz),Y (T=0)
AORAA($zz),Y (T=0)
ASBC A($zz),Y (T=0)

Byte length 12

Cycle number 16

Timing

woor e X XX T X XX
DATA Wop-ode X Bar X Aot X aow X ivalid X pata X
appr { pcn X PoH W 00 A aon X aprec X)
ADPRL (oo Y S Yrer W ea Y mas Yan Yoru Y aoufiaeh — faeoarf Y)

BA : Basic address

C :Cany of ADL+Y

Rev.2.00 Nov 14,2006 page 151 of 185 RENESAS
REJ09B0322-0200

INDIRECT Y

Instruction :ASTAA($z2),Y
Byte length 12
Cycle number 7

Timing

ADDR < PC X PC+1 X BAL,OOX BALL ADLHY X ADLHY X

DATA XOp-codeX BAL X ADL X ADH X |nva|id>< InvaIidX DATA X
ADDRH < PCH X PCH >\ 00 /< ADH X ADH+C X
'?DDAI?.FA‘ (PCLX£§éXPCL+l BALXBALXADLXBAL+1 ADHX\DLH)————(ADLHXDATAX X

BA : Basic address

C :Cany of ADL+Y

Rev.2.00 Nov 14, 2006 page 152 of 185

RENESAS
REJ09B0322-0200

Instructions

Byte length

(2)With no branch
Cycle number

Timing

: ABCC A$hhll

ABCS A$hhll
ABEQ A$hhll
ABMI AS$hhll
ABNE A$hhll
ABPL A$hhll
ABVC A$hhll
ABVS A$hhll

12

12

RELATIVE

ADDR

DATA

ADDRH

ADDRL
/IDATA

Rev.2.00 Nov 14, 2006 page 153 of 185

REJ09B0322-0200

< PC X PC+1 X

X Op-code X Invalid X

<PCH X PCH X

(Pe X SoXeer i X X

RENESAS

RELATIVE

Instructions : ABCC A$hhll
ABCS A$hhll
ABEQ A$hhll
ABMI AS$hhll
ABNE A$hhll
ABPL A$hhll
ABVC A$hhll
ABVS A$hhll

Byte length 12

(2)With branch
Cycle number 14

Timing

LD & € S i) G
DATA XOp-codeX *RR X Invalid Xlnvalid X
ADDRH < PCH X PCH X(PC+1)HX(PC+2)HX(PC+2)¢RR)1—>

PN D 6 ()) e e

RR : Offset value

Rev.2.00 Nov 14,2006 page 154 of 185 RENESAS
REJ09B0322-0200

RELATIVE

Instruction : ABRAAS$hhII
Byte length 12
Cycle number 14
Timing
o
SYNC
R/W
RD |
WR

PC+2) L PC+2)*RR
ADDR < PC X PC+1 X EPC+1;H X(PC++2)|)4 * (PC+2)iRRX

DATA XOp-codeX +RR X Invalid X Invalid X X

ADDRH < PCH X PCH X(PC+1)H X(PC+2)H ><<pmz>¢my><

DATA (P X ook KrorkzrrX G b = Gl — {E X X X

RR : Offset value

Rev.2.00 Nov 14, 2006 page 155 of 185

RENESAS
REJ09B0322-0200

SPECIAL PAGE

Instruction : AJSRA\$hhI
Byte length 12
Cycle number 05
Timing
0
SYNC

RIW

RD |

WR

abpbr { pc X pcr1 X soomowe) X ey X BALFF)
patA Xopwde X BaL X imvaiid X ecrnn X eerne X
aoori {ren X ron X 00 (ot X)
oata (Pofede Nreear ks = s XT XS Keak

BA : Basic address

Note : Some products are “01” or content of SPS flag.

Rev.2.00 Nov 14,2006 page 156 of 185 RENESAS
REJ09B0322-0200

[T=1] IMMEDIATE

Instructions : AADCA#$nn (T=1)
AANDA#$NN (T=1)
AEORA#$NN (T=1)
AORAA#$NN (T=1)
ASBCA#$nn (T=1)

Byte length 12

Cycle number :5

Timing

ADDR < PC X PC+1 X X,00 X >
DATA JEED ED ED LD EED
ADDRH < PCH X PCH >\ 00 £ >

e Gy G e 0 €3 @ £ 28 €3 G) ¢

Rev.2.00 Nov 14,2006 page 157 of 185 RENESAS
REJ09B0322-0200

[T=1] IMMEDIATE

Instruction :ACMPA#$nn (T=1)
Byte length 12
Cycle number '3

Timing

aoor (e Y e X o X
oata ~ Yopwae X o7 X o X
R &N aD
e € o @0 £ G0 I O

Rev.2.00 Nov 14,2006 page 158 of 185 RENESAS
REJ09B0322-0200

[T=1] IMMEDIATE

Instruction :ALDAA#$Nn (T=1)
Byte length 12
Cycle number 14
Timing
o

SYNC

RIW

RO |

WR

aoor (e Xren X w X X
oata YorweX onmn X X o X
oot (P X TN o A X
Toata (e et Kok o =X XX

Rev.2.00 Nov 14,2006 page 159 of 185 RENESAS
REJ09B0322-0200

[T=1] ZERO PAGE
Instructions : AADCA$zz (T=1)
AANDA$zz (T=1)
AEORA$zz (T=1)
AORAA$zz (T=1)
ASBCA$zz (T=1)
Byte length 12
Cycle number ' 6
Timing
o
SYNC
RIW
® |
‘WR
ADDR < PC X PC+1 XADL,OOX X,00 X >
DATA XOp-codeX ADL X pATA X DATA XInvaIidX e X
ADDRH < PCH X PCH >\ 00 A)
AR (e (S YooY mo Yo Yo Yo Yo Y x - Y Y)

Rev.2.00 Nov 14, 2006 page 160 of 185

REJ09B0322-0200

RENESAS

[T=1] ZERO PAGE

Instruction :ACMPA$zz (T=1)
Byte length 12
Cycle number 14

Timing

aoor (7o Y rori Yoo X xw X

oata ~ YopwaeX aor X O X oA Y
woorn (T X7 N o A
oara (Fethete feerifao KooK x XXX

Rev.2.00 Nov 14,2006 page 161 of 185 RENESAS
REJ09B0322-0200

[T=1] ZERO PAGE

Instruction :ALDAA$zz (T=1)
Byte length 12
Cycle number 5

Timing

appR { pc X pPc+r X abLoo X X,00 X

DATA X op-code X ap. X pata X invalid X pata X
appRH { pcn X PCH X\ 00 L
oata (Pt mbefreKaofaoform) x }— L x Yok X

Rev.2.00 Nov 14,2006 page 162 of 185 RENESAS
REJ09B0322-0200

[T=1] ZERO PAGE X

Instructions : AADCA$zz,X (T=1)
AANDA$zz X (T=1)
AEORA$zz,X (T=1)
AORAA$zz X (T=1)
ASBCA$zz X (T=1)

Byte length 12
Cycle number 07
Timing
o | L L L L1 L4 L1 LI |
SYNC | |

aDR { pc X porn X TG X Ao X,00 X >
DATA X op-code X ap. X invalid X PATA W PATA N invalig X NEW X
ADDRH < PCH X PCH >\ 00 /< >

ADDRL PCLF’CL+1 (PC — {70 YoaraY o YoataY o) _ x Y NEW
/DATA code ADLA “on) x N\ 1 2 DATA

Rev.2.00 Nov 14,2006 page 163 of 185 RENESAS
REJ09B0322-0200

[T=1] ZERO PAGE X

Instruction : ACMPA$zz, X (T=1)
Byte length 12
Cycle number :5
Timing
¢
SYNC |

RIW

RD |

WR

oo (e X e XX Y X
onn Ko X o XXX X
ADDRH < PCH X PCH >\ 00 /<
ADDRL Op- X(PC)_ — _(+XDATAX XDATAX X
DATA \PCL Acode APC-AADE A vy, CA L A XA

Rev.2.00 Nov 14,2006 page 164 of 185 RENESAS
REJ09B0322-0200

[T=1] ZERO PAGE X

Instruction : ALDAAS$zz, X (T=1)
Byte length 12
Cycle number 6

Timing

SYNC

RIW

ADDR < PC X PC+1 X(Pﬁglﬂ X ADLIX o0 X

DATA XOp-codeX ADL X Invalid X DATA X Invalid X DATA X
ADDRH < PCH X PCH >\ o0 /<7
'?IS)AE\)JI?AE (PCLXcOofJ)EeXPCL+1 ADL Xf;?)— —-(AB(L XDATAX X)__ _(X XDATAX X)

Rev.2.00 Nov 14,2006 page 165 of 185 RENESAS
REJ09B0322-0200

Instructions : AADCAS$hhIl (T=1)
AANDAS$hhIl (T=1)
AEORAS$hhII (T=1)
AORAAS$hhIl (T=1)
ASBCA$hhIl (T=1)
Byte length '3
Cycle number 7
Timing
¢
SYNC
RIW
RD |
WR

ADDR < PC X PC+1 X PC+2 X AD X X,00 X

DATA DATA : NEW
DATA XOp-codeX ADL X ADH X) X) XlnvalldX NEW X

ADDRH <PCH X PCH X PCH X ADH >\ 00 <

B EEEEEEEEOEmC--OE00

Rev.2.00 Nov 14, 2006 page 166 of 185

REJ09B0322-0200

RENESAS

[T=1] ABSOLUTE

Instruction : ACMPAS$hhIl (T=1)
Byte length '3
Cycle number 5
Timing
¢
SYNC |
RIW
RD |
WR

noor (e XCren X e X8 X0 X
oata Yopeore X 20 X on X XY
ADDRH < PCH X PCH X bon X — >\ 0 /<7

ADDRL (b Y\ 35, YrerY{aoe Yrer-Y(eor Yao YorrY % YorrY ™ X

Rev.2.00 Nov 14,2006 page 167 of 185 RENESAS
REJ09B0322-0200

[T=1] ABSOLUTE

Instruction :ALDAAShhIl (T=1)
Byte length '3
Cycle number 6
Timing
o
SYNC
RIW
RD |
WR

aoor { pc X pen X ez X X X,00 X)
DATA X opcode X aDL X aon X pata X Invalid X" pata X

aporn {pon X pen X pon WD)\ 00 L
ADDRL (per {35, Yo mor YreaYaon Yaoe YorraY x \- =« x YourX™ X)

Rev.2.00 Nov 14,2006 page 168 of 185 RENESAS
REJ09B0322-0200

[T=1]

ABSOLUTE X,ABSOLUTE Y

Instructions :AADCAS$hhIlL, X orY (T=1)
AANDAS$hhII X or Y (T=1)
AEORAS$hhII, X orY (T=1)
AORAAS$hhIL X orY (T=1)
ASBCAS$hhIl, X orY (T=1)
Byte length 13
Cycle number 8
Timing
o
SYNC
RIW
RD |
WR

ADDR< PC X PC+1 X PC+2 X

ADL+X(orY)

ADH

DATA XOp-codeX ADL X ADH X Invalid X DATA X DATA X Invalid X

ADDRH< PCH X PCH X PCH X ADH XADH+C>\

ADDRL (PCL OS&'XPCLM ADLXPCL+2 ADH

/IDATA

ADL+X
(ory)

»-

C :Cany of ADL+X orY

Rev.2.00 Nov 14, 2006 page 169 of 185

REJ09B0322-0200

RENESAS

X X

500 0 & G

[T=1] ABSOLUTE X, ABSOLUTEY

Instruction : ACMPAS$hhIIL, X or Y (T=1)
Byte length '3
Cycle number ‘6

Timing

SYNC |

aoor {pe X rort X rors Xoeme ooy xoe X)
DATA XOp-codeX ADL X ADH Xlnvalid X DATA X 5ATA X

apori { pon X pen X pen X aon Yaowew o0 £)
2 EEEEEEE -EEEEO0

C :Cany of ADL+X orY

Rev.2.00 Nov 14,2006 page 170 of 185 RENESAS
REJ09B0322-0200

[T=1] ABSOLUTE X, ABSOLUTEY

Instruction :ALDAAShhIL X or Y (T=1)
Byte length 3
Cycle number 17

Timing

ADDR < PC X PC+1 X PC+2 XAE‘;;;S”Y)XA'}*DTS’C’Y) X,00 X

DATA XOp—codeX ADL X ADH X Invalid X DATA Xlnvalid X DATA
ADDRH < PCH X PCH X PCH X ADH XADH+C>\ 00 A

'?SE_IEX‘ (PCL cgc?éXPCL*l ADLXF’CL+2 ADHXQ(';;))——-(QW)XDATAX X)——-(X XDATAX

C :Cany of ADL+X orY

Rev.2.00 Nov 14,2006 page 171 of 185 RENESAS
REJ09B0322-0200

[T=1] INDIRECT X
Instructions :AADCA($zz,X) (T=1)
AANDA($zz,X) (T=1)
AEORA($zz,X) (T=1)
AORAA($zz,X) (T=1)
ASBCA($zz,X) (T=1)
Byte length 12
Cycle number :9
Timing
¢
SYNC
RIW
RO |
WR

ADDR (PC XPC+1 X<P§33)LX BAr \f BALX X ADL X X,00 X

DATA X

Op- . DATA DATA : NEW
codeX BAL XnvalldX ADL XADH X 1 X 5 XlnvalldX DATA

ADDRH PCH

PCH

00 ADH 00 A

ADDRL Op-
IDATA

BA : Basic address

BAL B D DATA

Rev.2.00 Nov 14,2006 page 172 of 185 RENESAS

REJ09B0322-0200

[T=1] INDIRECT X

Instruction : ACMPA($zz,X) (T=1)
Byte length 12
Cycle number 07

Timing

WR

SRR D D 6D & D §D €D ¢

DATA XOp-codeX BAL X InvalidX ADL X ADH X DATA X BATA X
ARDRY < i X PeH >\ 00 ADH 00 /<7
Sonra (Pe Y ZYPS Yeon Yo f- = {55 Yoo Yo Yoo Yoo o Yo orr X Y0)

BA : Basic address

Rev.2.00 Nov 14,2006 page 173 of 185 RENESAS
REJ09B0322-0200

[T=1] INDIRECT X

Instruction i ALDAA($zz,X) (T=1)
Byte length 12
Cycle number 8

Timing

ADDR (PC XPC+1 X(P%;”L BALX B’fgg“lX Aor X X,00 X

DATA :X op X BAL XInvaIidX ADL X ADH XDATA XInvaIidX DATA
ADDRH (PCH X PCH >\ 00 < ADH > 00 A
oara (R - e e oA - LT

BA : Basic address

Rev.2.00 Nov 14,2006 page 174 of 185 RENESAS
REJ09B0322-0200

[T=1]

NDIRECT Y

Instructions :AADCA($z2),Y (T=1)
AANDA($z2),Y (T=1)
AEORA($z2),Y (T=1)
AORAA($zz),Y (T=1)
ASBCA($zz),Y (T=1)
Byte length 12
Cycle number ' 9
Timing
¢
SYNC
RIW
RD |
WR
ADDR (Pc Xpert X% X ¥t X Mo Xamee X x,00 X

DATA :>(O|0-00de BAL X ADL X ADH XlnvalidX DATA X DATA XlnvalidX gﬂ’A

ADDRH PCH

PCH

00

ADH ADH+C 00

—

ADDRL pc Y Or-YPCL¥ea Viea Yao Y BA Yap nYAD Y _ _JaD L YoatAY VYoata¥ « V. _
/IDATA codefp +1 +1 +Y +Y 1 2

BA : Basic address

C : Carry of ADL+Y

NEW
.

Rev.2.00 Nov 14,2006 page 175 of 185 RENESAS

REJ09B0322-0200

[T=1] INDIRECT Y

Instruction :ACMPA($zz),Y (T=1)
Byte length 12
Cycle number 7

Timing

LRI €SS ED ED EDHEEHED)
DATA Xopcode X" B X apt X apn X Invalid X PATA N DATA AL
ADDRH < PCH X PCH >\ 00 /< ADH XADH+C >\ 00 /<_>
% OEEEEEEDE--EmOE00

BA : Basic address

C : Carry of ADL+Y

Rev.2.00 Nov 14,2006 page 176 of 185 RENESAS
REJ09B0322-0200

[T=1] INDIRECT Y

Instruction : ALDAA($zz),Y (T=1)
Byte length 12
Cycle number : 8

Timing

SYNC

RIW

aopR { pc Xpew X 5 XMoot X e Xaowe X x00 X
DATA :X Or X ac X a0 Y aon Xinvalid Y pata Yinvaiid} ata)C
poore (o Xror N w0 Lo XN w A
oara (e e e e oo X k- BN - LN

BA : Basic address

C : Carry of ADL+Y

Rev.2.00 Nov 14,2006 page 177 of 185 RENESAS
REJ09B0322-0200

APPENDIX 2

740 Family Machine Language Instruction Table

APPENDIX 2. 740 Family Machine Language Instruction Table

Parameter FLAG INSTRUCTION CODE BYTE | CYCLE
—— | SYMBOL FUNCTION e nore
Classification NVTBDI ZC D7DeDsDs D3D2D1Do HEX [NUMBER
LDA #$nn (A)enn Oomm 0O 1010 1001 A9 2 2 2
<B2>
LDA $zz (A)—(M) where M=(zz) Ouomo 0O 1010 0101 A5 2 3 2
<B2>
LDA $2zz,X (A)—(M) where M=(zz+(X)) Qoo 0O 1011 0101 B5 2 4 2
<B2>
LDA $hhil (A)—(M) where M=(hhll) Qoo 00O 1010 1101 AD 3 4 2
<B2>
<B3>
LDA $hhll, X (A)—(M) where M=(hhll+(X)) Oomo 0O 1011 1101 BD 3 5 2
<B2>
<B3>
LDA $hhll, Y (A)—(M) where M=(hhll+(Y)) Oomo o O 1011 1001 B9 3 5 2
<B2>
<B3>
LDA ($2z, X) (A)—(M) where M=((zz+(X)+1)(zz+(X))) Oamm o O 1010 0001 Al 2 6 2
<B2>
LDA ($2z),Y (A)—(M) where M=((zz+1)(z2)+(Y)) Oomo o O 1011 0001 B1 2 6 2
<B2>
- LDX #$nn (X)¢-nn Qoo o O 1010 0010 A2 2 2
© <B2>
3 LDX $zz (X)(M) where M=(zz) Oomo oo 1010 0110 A6 2 3
<B2>
LDX $zz, Y (X)=(M) where M=(zz+(Y)) Oomao o O 1011 0110 B6 2 4
<B2>
LDX $ hhil (X)(M) where M=(hhll) Oomm o O 1010 1110 AE 3 4
<B2>
<B3>
LDX $hhll, Y (X)—(M) where M=(hhll+(Y)) oo o O 1011 1110 BE 3 5
<B2>
<B3>
LDY #$nn (Y)=nn Ooomo o O 1010 0000 AO 2 2
<B2>
LDY $zz (Y)e=(M) where M=(zz) Oomoo o O 1010 0100 A4 2 3
<B2>
LDY $2zz, X (Y)<(M) where M=(zz+(X)) OO o O 1011 0100 B4 2 4
<B2>
] LDY $ hhll (Y)(M) where M=(hhll) OoOom 0O 1010 1100 AC 3 4
- <B2>
c <B3>
a LDY $ hhil, X (Y)(M) where M=(hhil+(X)) oo o O 1011 1100 BC 3 5
- <B2>
[<B3>
T LDM #$nn, $zz (M)e=nn where M=(zz) [EREEEENEE] 0011 1100 3C 3 4
o <B2>
<B3>
STA $1zz (M)«—(A) where M=(zz) [RRERENEE] 1000 0101 85 2 4
<B2>
STA $2zz, X (M)«(A) where M=(zz+(X)) [ENEEEENN] 1001 0101 95 2 5
<B2>
STA $ hhil (M)«(A) where M=(hhll) [0 1000 1101 8D 3 5
<B2>
<B3>
STA $hhll, X (M)«(A) where M=(hhll+(X)) [0 1001 1101 9D 3 6
<B2>
<B3>
STA $hhil, Y (M)«(A) where M=(hhil+(Y)) ERERnnnE) 1001 1001 99 3 6
<B2>
<B3>
STA ($2z,X) (M)«<—(A) where M=((zz+(X)+1)(zz+(X))) [EREEEENE] 1000 0001 81 2 7
<B2>
[STA ($22),Y (M)«<—(A) where M=((zz+1)(zz)+(Y)) [EEEEEENE] 1001 0001 91 2 7
—_ <B2>
@]
b STX $zz (Me(X) where M=(zz) [Eaannnnn) 1000 0110 86 2 4
<B2>
STX $1zz,Y (M)«(X) where M=(zz+(Y)) AmnnnnnE] 1001 0110 % 2 5
- <B2>
STX $hhil (M)«—(X) where M=(hhll) RRSSEiIE 1000 1110 8E 3 5
<B2>
<B3>
STY $1zz (M)«—(Y) where M=(zz) [ENEEEENE] 1000 0100 84 2 4
<B2>
STY $zz, X (M)«(Y) where M=(zz+(X)) [EREREEEE} 1001 0100 94 2 5
<B2>
STY $hhll (M)—(Y) where M=(hhll) mununnnsl 1000 1100 8C 3 6
<B2>
<B3>
o TAX (X)<(A) oo o O 1010 1010 AA 1 2
“G_) TXA (A)—(X) oooo o O 1000 1010 8A 1 2
2 TAY (N)—=(A) oun o0 QO 1010 1000 A8 1 2
I TYA (A)<(Y) ommo o O 1001 1000 98 1 2
S
= TSX (X)(S) oord 0o O 1011 1010 BA 1 2
TXS (S)(X) [T 1001 1010 9A 1 2
5 PHA (M(S))«=(A), (S)=(S)—1 [REREREEN 0100 1000 48 1 3
-é'g PHP (M(S))<=(PS), (S)«—(S)—1 EEEEEEES) 0000 1000 08 1 3
ng PLA (S)(S)+1, (A)«=(M(S)) oo o O 0110 1000 68 1 4
(@) PLP (S)«=(S)+1, (PS)«(M(S)) Previousstatusinstack 0010 1000 28 1 4

Rev.2.00 Nov 14, 2006 page 178 of 185

REJ09B0322-0200

RENESAS

740 Family Machine Language Instruction Table

Parameter SYMBOL FUNCTION FLAG INSTRUCTION CODE BYTE | CYCLE NOTE
Classification NVTBDI zC D7DeDsD4 D3sD2D1Do HEX [NUMBER|NUMBER
ADC #$nn (A)«—(A)+nn+(C) oomm OO0 0110 1001 69 2 2 1
<B2>
ADC $zz (A)(A)+(M)+(C) where M=(zz) oO0mm OO0 0110 0101 65 2 3 1
<B2>
ADC $2zz, X (A)=(A)+(M)+(C) where M=(zz+(X)) ook OO 0111 0101 75 2 4 1
<B2>
ADC $ hhll (A)—(A)+(M)+(C) where M=(hhll) OO oo [@]®) 0110 1101 6D 3 4 1
<B2>
<B3>
ADC $ hhll, X (A)«—(A)+(M)+(C) where M=(hhll+(X)) OO ma OO 0111 1101 7D 3 5 1
<B2>
<B3>
ADC $ hhil, Y (A)(A)+(M)+(C) where M=(hhIl+(Y)) oomm OO0 0111 1001 79 3 5 1
<B2>
<B3>
ADC ($zz, X) (A)—(A)+(M)+(C) where M=((zz+(X)+1)(zz+(X))) QO oo OO 0110 0001 61 2 6 1
<B2>
ADC ($2zz),Y (A)—(A)+(M)+(C) where M=((zz+1)(zz)+(Y)) OO Oooo OO 0111 0001 71 2 6 1
<B2>
SBC #$nn (A)—(A)-nn—(C) OO oo [@]0)] 1110 1001 E9 2 2 1
<B2>
SBC $zz (A)—(A)-(M)~(C) where M=(zz) OO oo [@]®) 1110 0101 E5 2 3 1
<B2>
SBC $2zz, X (A)—(A)-(M)-(C) where M=(zz+(X)) OO oo [@]e) 1111 0101 F5 2 4 1
<B2>
SBC $ hhll (A)—(A)-(M)—~(C) where M=(hhll) OO oma [@]@) 1110 1101 ED 3 4 1
<B2>
- <B3>
3 SBC $ hhll, X (A)e—(A)-(M)—~(C) where M=(hhll+(X)) oomm OO0 1111 1101 FD 3 5 1
= <B2>
@ - <B3>
% SBC $hhll, Y (A)—(A)—(M)—(C) where M=(hhll+(Y)) OO oo QO 1111 1001 F9 3 5 1
<B2>
e _ <B3>
g g SBC ($ 2z, X) (A)—(A)—(M)—(C) where M=((zz+(X)+1)(zz+(X))) OO oo OO 111 2828 001 E1 2 6 1
E ke SBC ($z2),Y (A)—(A)-(M)—-(C) where M=((zz+1)(zz)+(Y)) OOooo [@]O) 1111 0001 F1 2 6 1
) ° <B2>
o | <
o INC A (A)e—(A)+1 Oommo o O 0011 1010 3A 1 2
INC $2zz (M)e=(M)+1 where M=(zz) Oomo o O 1110 0110 E6 2 5
<B2>
INC $2zz, X (M)e=(M)+1 where M=(zz+(X)) Ooman o QO 1111 0110 F6 2 6
<B2>
INC $ hhll (M)e=(M)+1 where M=(hhll) Oamo g O 1110 1110 EE 3 6
<B2>
<B3>
INC $ hhil, X (M)e=(M)+1 where M=(hhll+(X)) Oomao o O 1111 1110 FE 3 7
<B2>
<B3>
DEC A (A)e—(A)-1 ouamo o o 0001 1010 1A 1 2
DEC $zz (M)e=(M)-1 where M=(zz) oumd 0O 1100 0110 c6 2 5
<B2>
DEC $zz, X (M)e—(M)-1 where M=(zz+(X)) Oomo 0 O 1101 0110 D6 2 6
<B2>
DEC $ hhll (M)e—(M)-1 where M=(hhll) oomo o O 1100 1110 CE 3 6
<B2>
<B3>
DEC $ hhll, X (M)e—(M)-1 where M=(hhll+(X)) oo o O 1101 1110 DE 3 7
<B2>
<B3>
INX (X)e—(X)+1 oooo 00O 1110 1000 E8 1 2
DEX (X)e=(X)-1 oo o O 1100 1010 CA 1 2
INY (V)e=(Y)+1 oo oo 1100 1000 cs 1 2
DEY (Y)e(Y)-1 Oomo o O 1000 1000 88 1 2
- MUL $zz, X M(S), (A)«(A)OM(zz+(X)) [EEREEERE 0110 0010 62 2 15
238 (S)(S)-1
S&[ov szx (A)—(M(zZ+(X)+1), M(z2+(X))*(A) FELITT 1110 0010 | B2 | 2 | 16
> M(S)«One’s complement of remainder
(S)(8)-1

Rev.2.00 Nov 14, 2006 page 179 of 185 RENESAS
REJ09B0322-0200

740 Family Machine Language Instruction Table

Parameter SYMBOL FUNCTION FLAG INSTRUCTION CODE BYTE | CYCLE |\ore
Classification NVTBDI D7D6DsDa D3D2D1Do HEX |NUMBER|NUMBER

N
O

AND #$nn (A)=(A)nn Qoo O 0010 1001 29 2 2 1
<B2>
0010 0101 25 2 3 1
<B2>
0011 0101 35 2 4 1
<B2>
0010 1101 2D 3 4 1
<B2>
<B3>
0011 1101 3D 3 5 1
<B2>
<B3>
0011 1001 39 3 5 1
<B2>
<B3>
0010 0001 21 2 6 1
<B2>
0011 0001 31 2 6 1
<B2>

0000 1001 09 2 2 1
<B2>
0000 0101 05 2 3
<B2>
0001 0101 15 2 4 1
4

AND $zz (A)—(A)A (M) where M=(zz) O OI1o
AND $zz, X (A)—(A)A (M) where M=(zz+(X)) QO [

o o o

AND $ hhll (A)—(A)A (M) where M=(hhil) Q I
AND $ hhll, X (A)—(A)A(M) where M=(hhll+(X)) Qoo o
AND $hhll, Y (A)—(A)A(M) where M=(hhll+(Y)) QU O

AND ($zz, X) (A)—(A)A(M) where M=((zz+(X)+1)(zz+(X))) O oo O

AND ($zz2),Y (A)—(A)A (M) where M=((zz+1)(zz)+(Y)) O oo

]

ORA #$nn (A)—(A)vnn O
ORA $1zz (A)—(A)v(M) where M=(zz) O 1o

ORA $12z, X (A)—(A)v(M) where M=(zz+(X)) O oITo
<B2>
0000 1101 oD 3
<B2>
<B3>
0001 1101 1D 3 5 1
<B2>
<B3>
0001 1001 19 3 5 1
<B2>
<B3>
0000 0001 01 2 6 1
<B2>
0001 0001 11 2 6 1
<B2>

0100 1001 49 2 2 1
<B2>
0100 0101 45 2 3 1
<B2>
0101 0101 55 2 4 1
<B2>
0100 1101 4D 3 4 1
<B2>
<B3>
0101 1101 5D 3 5 1
<B2>
<B3>
0101 1001 59 3 5 1
<B2>
<B3>
0100 0001 41 2 6 1
<B2>
0101 0001 51 2 6 1
<B2>

0100 0100 44 2 5
<B2>

BIT $zz (A) A (M) where M=(zz) M7M6II0 0O 0010 0100 24 2 3
<B2>
BIT $hhll (A)A (M) where M=(hhil) M7MeIID 0O 0010 1100 2C 3 4
<B2>
<B3>

TST $zz (M)=0? where M=(zz) Oomo o O 0110 0100 64 2 3
<B2>

CMP #$nn (A)-nn [@)=nnns 00 1100 1001 c9 2 2 3
<B2>
CMP $zz (A)—(M) where M=(zz) O orm OO0 1100 0101 C5 2 3 3
<B2>
where M=(zz+(X)) O oI [e)e) 1101 0101 D5 2 4 3

<B2>
where M=(hhir) O LIm [e]e) 1100 1101 cb 3 4 3

<B2>
<B3>
where M=(hhlI+(X)) O oo 00 1101 1101 DD 3 5 3
<B2>
<B3>
where M=(hhlI+(Y)) O o 00 1101 1001 D9 3 5 3
<B2>
<B3>
CMP ($ zz, X) (A)=(M) where M=((zz+(X)+1)(zz+(X))) O 0T 00 1100 0001 C1 2 6 3
<B2>
CMP ($22),Y | (A)-(M) - where M=((zz+1)(zz)+(Y)) [@)annnn 00 1101 0001 D1 2 6 3
<B2>

Ommm OOQ| 1110 0000 EO 2 2
<B2>
where M=(zz) Omm OOQO| 1110 0100 E4 2 3
<B2>
where M=(hhlI) O [@]®) 1110 1100 EC 3 4
J <B2>
<B3>

Oommm OO| 1100 0000 Co 2 2
<B2>
where M=(zz) Omm OO| 1100 0100 C4 2 3
<B2>
where M=(hhll) O omm OO| 1100 1100 cc 3 4
] <B2>

<B3>

o o o o

OO0 O O OO0OO0O0l0OO0 o O O0O0OO0OO0O OO0 O O O0O0OO0O0

ORA $ hhll (A)«—(A)v(M) where M=(hhil) O oo

ORA $ hhil, X (A)—(A)v(M) where M=(hhll+(X)) Oomo o

ORA $hhil, Y (A)—(A)v(M) where M=(hhil+(Y)) O oo o

ORA ($2z, X) (A)—(A)v(M) where M=((zz+(X)+1)(zz+(X))) Qoo o

Logic Operation

ORA ($22),Y (A)—(A)v(M) where M=((zz+1)(zz)+(Y)) Qoo o

EOR #$nn (A)<—(A)Vnn Qoo o
EOR $2zz (A)—(A)Y(M) where M=(zz) O oo o
EOR $2zz, X (A)—(A)Y(M) where M=(zz+(X)) O oo o
EOR $ hhll (A)—(A)V(M) where M=(hhiI) O omo o

EOR $hhil, X (A)(A)V(M) where M=(hhll+(X)) Qo o

EOR $hhil, Y (A)—(A)V(M) where M=(hhlI+(Y)) Ouamoo o

Operation

EOR ($2zz, X) (A)(A)V(M) where M=((zz+(X)+1)(zz+(X))) Qoo 0

EOR ($2z2),Y (A)—(A)Y(M) where M=((zz+1)(zz)+(Y)) Qoo o

COM $zz (M)—(M) where M=(zz) O oo

o
O

CMP $ 2z, X (A)-(M)
CMP $ hhil (A)-(M)

CMP $hhil, X | (A)-(M)

CMP $hhil, Y | (A)—(M)

Comparisoh in size

Comparison

CPX #$nn (X)-nn

CPX $2z (X)-(M)

In size

CPX $ hhil (X)-(V)

Comparison

CPY #$nn (Y)-nn
CPY $2zz (V)—-(M)

Comparison
in size

CPY $hhll (Y)—(M)

Rev.2.00 Nov 14,2006 page 180 of 185 RENESAS
REJ09B0322-0200

740 Family Machine Language Instruction Table

Parame[er SYMBOL FUNCTION FLAG INSTRUCT'ON CODE BYTE CYCLE NOTE
Classification NVTBDI zC D7DéDsDs DsD2D1Do| HEX |NUMBER| NUMBER
ASL A | Left shift O [A7AE —AtAd 0 Oomm OO| 0000 1010 OA 1 2
ASL $2zz where M=(zz) O oo OO 0000 0110 06 2 5
<B2>
ASL $zz, X where M=(zz+(X)) O ooooo OOl 0001 0110 16 2 6
Left Shift <B2>
ASL $hhll [Cl«[M7M6 MiMol« 0 where M=(hhll) O DOooo OOl o000 1110 OE 3 6
<B2>
<B3>
ASL $hhil, X] where M=(hhi1+(X)) O oo O0O| 0001 1110 1E 3 7
<B2>
<B3>
LSR A 1 Right Shift 0 >[A7A6 ___ A1A0—[C] 0 0000 OOl o100 1010 4A 1 2
LSR $zz where M=(zz) 0 0o00d [0]®) 0100 0110 46 2 5
<B2>
LSR $zz, X where M=(zz+(X)) 0 00000 OOl o101 0110 56 2 6
Right Shift 0 —[M7Me __M1iMo]-[C] <B2>
LSR $hhll where M=(hhlI) 0 00000 OOl o100 1110 4E 3 6
<B2>
<B3>
LSR $ hhil, X where M=(hhll+(X)) 0 00000 OO | 0101 1110 5E 3 7
J <B2>
= <B2>
N q
= ROL A Left ShiftﬁA7A6 ATAQ ee‘ O oo OO |0010 1010 2A 1 2
2] T where M=
S o | ROL $zz where M=(z2) O oo o0l o001 0<BZ>O 110 26 2 5
= c
© | © | ROL $2z, X) where M(zz+(X)) O oo o0l 0011 0110 36 2 6
) o Left Shmt M7Mé M1Moee‘ <B2>
o =
O | 8 | roL $hhi where M(hhii) Ommm OO 0010 1110 2E 3 6
[e] <B2>
@ <B3> 3 3 .
ROL $ hhil, X where M(hhl1+(X)) 0011 1110
J O oo [0]0)] <B2>
<B3>
ROR A 1 Right Shift)—[C]—[A7Ae A1A0T> O oo OO 0110 1010 6A 1 2
ROR $ 2z where M=(zz) Oomom QO|0110 B2 0110 66 2 5
<| >
ROR $1zz, X where M=(zz+(X)) O oo 000111 0110 76 2 6
Right Shift|—[C]—[M7Mé__M1Mo i <B2>
ROR $ hhll where M=(hhll) O oo oolo0110 1110 6E 3 6
<B2>
<B3>
ROR $ hhll, X where M=(hhll+(X)) O ooooo OO |0111 1110 7E 3 7
J <B2>
<B2>
J
RRF $zz @E where M=(zz) aaREREE 1000 0010 82 2 8
<B2>
% CLB i, A (Ai) <0 where i=0—7 EEREEENN Qi1 1011 (1+ii)Bmo 1 2
IS CLB i,$zz (Mi)« 0 where i=0—7, M=(zz) oOood i 1111 |[|@2)010 2 5
5% <B2> +F
g SEB i, A (A) <1 where i=0—7 EEERERNE] iiio 1011 2i0J10 1 2
+B
g SEB i, $2z (Mi) 1 where i=0—7, M=(zz) 00000000 iiio 1111 2i010 2 5
<B2> +F
CLC (C)«0 0000000 0 |0001 1000 18 1 2
SEC C)«1 [EEEEENE] 1 /0011 1000 38 1 2
o CLD (D)«0 oo 0 00 1101 1000 D8 1 2
E SED (D)«1 0ood 1003 1111 1000 F8 1 2
=]
)
»n CLI (1) <0 oooon 0o 0101 1000 58 1 2
]
© SEI (1) <1 oooon 100 0111 1000 78 1 2
(TR
CLT (T) <0 00 0 Doooo 0001 0010 12 1 2
SET (Me1 00 1 00000 0011 0010 32 1 2
CcLv (V) <0 0 0 0oooon 1011 1000 B8 1 2

Rev.2.00 Nov 14, 2006 page 181 of 185 RENESAS
REJ09B0322-0200

740 Family Machine Language Instruction Table

Parameter FLAG INSTRUCTION CODE BYTE | CYCLE NOTE
Classification SYMBOL FUNCTION NVTBDI ZC D7DsDsD4 D3D2D1Do HEX [NUMBER| NUMBER
BRA $hhil (PC) « (PC)+2+Rel 0ooooo0o 1000 0000 80 2 4 4
<B2>
JMP $ hhll (PC) « hhll 00000000 0100 1100 4c 3 3
<B2>
<B3>
IJMP ($ hhil) (PCL) « (hhll), (PCH) « (hhlI+1) 00000000 0110 1100 6C 3 5
<B2>
Q. <B3>
E | P ($22) (PCL) «(z2), (PCH) « (zz+1) 00000000 1011 0010 B2 2 4
> <B2>
™ | JSR $hhil (M(8))<=(PCH), (S)«=(S) -1, (M(S)) « (PCL), Oooooo0d 0010 0000 20 3 6
(S)«(S) -1, and (PC)«hhll <B2>
<B3>
JSR ($22) (M(8))<=(PCH), (S)«=(S) -1, (M(S))«—(PCL), 00000000 0000 0010 02 2 7
(S)«—(S) -1, (PCL)«(zz), and (PCH)«(zz+1) <B2>
JSR \$hhil (M(S))«—(PCH), (S)«(S) -1, (M(S))«(PCL), ER RN] 0010 0010 22 2 5
(S)«~(S)-1, (PCL)«II, and (PCH)«FF <B2>
BBC i, A, $ hhll When (Ai)=0 (PC) «(PC)+2+Rel Where i=0—7 00000000 iiil 0011 (1+2i)x10 2 4 4
When (Ai)=1 (PC) « (PC)+2 <B2> +3
BBC i, $2z $hhil| When(Mi)=0 (PC)« (PC)+3+Rel Where i=0—7 I iiil 0111 (1+2i)x10 3 5 4
When (Mi)=1 (PC) « (PC)+3 <B2> +7
E <B3>
=] BBS i, A, $hhil When (Ai)=1 (PC) « (PC)+2+Rel Where i=0—7 | COOOOOOO iiio 0011 2ix10 2 4 4
"q“) When (Ai)=0 (PC) « (PC)+2 <B2> +3
x BBS i, $zz $hhil| When (Mi)=1 (PC)« (PC)+3+Rel Where i=0—7 o iiio 0111 2ix10 3 5 4
© When (Mi)=0 (PC) « (PC)+3 <B2> +7
c <B3>
©
- BCC $hhll When (C)=0 (PC) « (PC)+2+Rel 00000000 1001 0000 90 2 2 4
O When (C)=1 (PC) « (PC)+2 <B2>
c
@© BCS $ hhil When (C)=1 (PC) « (PC)+2+Rel 0O00oo0o 1011 0000 BO 2 2 4
‘5 When (C)=0 (PC) « (PC)+2 <B2>
— | BNE Shhil When (2)=0 (PC) « (PC)+2+Rel 00000000 1101 0000 DO 2 2 4
O When (Z2)=1 (PC) « (PC)+2 <B2>
c
@ | BEQ $hhil When (2)=1 (PC) «(PC)+2+Rel 0ooooo0o 1111 0000 FO 2 2 4
= When (Z)=0 (PC) « (PC)+2 <B2>
m
BPL $ hhil When (N)=0 (PC) « (PC)+2+Rel 00000000 0001 0000 10 2 2 4
When (N)=1 (PC) « (PC)+2 <B2>
BMI $ hhll When (N)=1 (PC) « (PC)+2+Rel 00000000 0011 0000 30 2 2 4
When (N)=0 (PC) « (PC)+2 <B2>
BVC $ hhll When (V)=0 (PC) « (PC)+2+Rel 00000000 0101 0000 50 2 2 4
When (V)=1 (PC) « (PC)+2 <B2>
BVS $ hhll When (V)=1 (PC) « (PC)+2+Rel 00000000 0111 0000 70 2 2 4
When (V)=0 (PC) « (PC)+2 <B2>
= | RTI (S)=(S)+1, (PS)«=(M(S)), (S)«(S)+1, (PCL)(M(S)), Previous status in 0100 0000 40 1 6
5 (S)«=(S)+1, and (PCH)«(M(S)) stack
=
& RTS (S)¢=(8)+1, (PCL)(M(S)), (S)=(S)+1, (PCH)«(M(S)), 0o00000o 0110 0000 60 1 6
and (PC)«(PC)+1
Interrupt BRK (B)«—1, (PC)«—(PC)+2, (M(S))<—(PCH), (S)«—(S)-1, (M(S))«—(PCL),| OO0 10100 0000 0000 00 1 7
(S)=(S)-1, (M(S))«(PS), (S)«(S)-1, (I)«1, (PC)<—BADRS
Other | Nop (PC) « (PC)+1 00000000 1110 1010 EA 1 2
Special | wIT Internal clock source is stopped. 0ooooo0o 1100 0010 c2 1 2
STP Oscillation is stopped. Oo0000o0 0100 0010 42 1 2 5

Rev.2.00 Nov 14,2006 page 182 of 185 RENESAS
REJ09B0322-0200

740 Family Machine Language Instruction Table

Symbol Means Symbol Means
A Accumulator hh High-order byte of address (0—255)
Ai Bit i of accumulator 1] Low-order byte of address (0—255)
X Index register X zz Zero page address (0—255)

Y Index register Y nn Date at (0—255)
M Memory i Data at (0—7)
Mi Bit i of memory iii Data at (0—7)
PS Processor status register <B2> Second byte of instruction
S Stack Pointer <B3> Third byte of instruction
PC Program counter Rel Relative address
PCL Low-order byte of program counter BADRS Break address
PCH High-order byte of program counter «— Direction of data transfer
N Negative flag () Contents of register of memory
\Y Overflow flag + Add
T X modified operation mode flag - Subtract
B Break flag * Multiplication
D Decimal mode flag + Division
| Interrupt disable flag v Logical OR
z Zero flag A Logical AND
C Carry flag A4 Logical Exclusive OR
Immediate mode - Negative
$ Hexadecimal a Stable flag after execution
\ Special page mode O Variable flag after execution

Notes 1: Listed function is when (T) = 0.
When (T) = 1, (M(X)) is entered instead of (A) and the cycle number is increased by 3.
2: Ditto. The cycle number is increased by 2.
3: Ditto. The cycle number is increased by 1.
4: The cycle number is increased by 2 when a branch is occurred.
5: If the STP instruction is disabled the cycle number will be 2 (same in operation as two NOPs).

Rev.2.00 Nov 14, 2006 page 183 of 185 RENESAS
REJ09B0322-0200

APPENDIX 3

740 Family list of Instruction Codes

APPENDIX 3. 740 Family list of Instruction Codes

D3—-Do | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 2000 | 1001 | 1010 | 1011 [1100 | 1201 | 1110 | 1211
H imal

D7 Da exagggtioi 0 1 2 3 4 | s 6 7 8 9 | A | B | c | Db | E|F
ORA | JSR | BBS ORA | AsL | BBS ORA | AsL | sEB ORA | ASL | SEB
0000 O | BRK o, x|ze,mo| oA | T | zp | zp |ozp [P*P [mm | A | oa | T |aBs | aBs |0 zp
ORA BBC ORA | AsL | BBC ORA | DEC | cLB ORA | AsL | cLB
0001 LB ooy | YT oA | T |zex|zex|oze | ©C |aes.Y| A | 0. | T |aBs. x|aBs, x| 0, zp
0010 , | 3R | AND | usR | BBS | BIT | AND | ROL | BBS [, | AND | ROL | SEB | BIT | AND | ROL | SEB
ABS |[IND,X| sP | 1L,A | zp | zp | zp |1,zP MM | A | 1,A | ABS | ABS | ABS |1,zP
AND BBC AND | ROL | BBC AND | INC | cLB | DM | AND | ROL | cLB
0011 3 | BMU Dy | SET | Ao | = |zex|zrx|1.zp [SBC |mBs.v| A | 1.a | zp |aBs, x|aBs, x| 1,zP
6100 4 | rri | EOR | sTP | BBS |COM | EOR | LSR | BBS [)\ [EOR | LSR | SEB [JMP | EOR | LSR | SEB
IND,X |(Note) | 2,4 | zp | zp | zP |2.2P MM | A | 2,A | ABS | ABS | ABS |2,zP
EOR BBC EOR | LSR | BBC EOR CcLB EOR | LSR | cLB
0101 S |BC oy T |2a| T |zex|zex|2ze | Y ass.y| T | 2.a | T |aBs. x|aBs, x| 2 zp
0110 s | rrs | ADC MU | BBS | TST | ADC | ROR | BBS | , , | ADC | ROR | SEB | JMP | ADC | ROR | SEB
ND.x| o5 A |z | zp | zp |azp MM | A | 3A | IND | ABS | ABS |3,zP
Abc | _ | BBC ADC | ROR | BBC ADC CcLB ADC | ROR | CLB
0111 7 | BYS I\\p vy 3, A x| zp.x |3,z | 5" |aBs,y| — | 3 | T |[aBs x|aBs, x| 3 zp
STA | RRF | BBS | STY | STA | sTx | BBS SEB | sTY | sTA | sTx | SEB
1000 8 |®*A Inox| zp |aa|zp | zp | zp |azp [PF'| = | A | 4 A | ABS | ABS | ABS |4,7P
STA BBC | sTY | sTA | sTx | BBC STA CLB STA cLB
1001 9 [BCC Iinp, v a A |zex|zeox |zey [aze | T2 |aes,y| ™5 | 4 a | T |aBs,x| T [4zp
LDY | LDA | DX | BBS | LDY | LDA | LDX | BBS LDA SEB | LDY | LDA | LDX | SEB
1010 A v [nox| v | sa [zp | zp | zp |szp | TAY | imm | ™ | 5 A | ABS | ABS | ABS |5.zP
LbA | avP | BBC | LDY | LDA | LDX | BBC LDA clB | Loy | LpA | LDX | cLB
1011 B | BSS I\np,v [zp.ND| 5,4 |zP,x | zP,x | zP. Y | 5,2p | €V |aBS,v| X | 5, A [aBs, x|aBS, x|ABS, Y| 5. ZP
CPY | cmpP BBS | cPY | cMP | DEC | BBS cMP SEB | cpy | cMP | DEC | SEB

wIT
1100 € | mm |IND, X 6A | zp | zp | zp |6,z | ™ | mm [PFX | 6,a | ABS | ABS | ABS |6, 2P
cMP BBC CMP | DEC | BBC cMP CcLB cMP | DEC | cLB
1101 D | BNE I\\p, v 6A| = |zpx|zpx |6z | P |aBs,y| T |6 | T |aBs x|aBS x| 6 2P
1110 e | cPx | sec | BBS | cPx | sBc | INC | BBS [| | SBC | oo | SEB | CPX | SBC | INC | SEB
MM [IND, X | (o0 7 A [ze | ze |z | 7,2P IMM 7,A | ABS | ABS | ABS | 7,zP
sec | _ | BBC SBC | INC | BBC SBC CcLB sec | INC | cLB
111 F [BEQ |\np v 7,A zp.x | zp.x | 7.z | SEP |aBs,y| — | 7.a | T |aBs, x|aBs, x| 7,zP

Note: Some products unuse these instructions.
D 3-byte instruction

D 2-byte instruction

|:| 1-byte instruction

Refer to the related section

because the clock control instruction and
multiplication and division instruction
depend on products.

Rev.2.00 Nov 14, 2006 page 184 of 185 ENE
REJ09B0322-0200 e SAS

740 Family list of Instruction Codes

MEMORANDUM

Rev.2.00 Nov 14, 2006 page 185 of 185 RENESAS
REJ09B0322-0200

740 Family Software Manual

Publication Data : Rev.1.00 Aug 29, 1997
Rev.2.00 Nov 14, 2006

Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

740 Family
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ09B0322-0200

	REVISION HISTORY
	Using This Manual
	Table of contents
	1. OVERVIEW
	2. CENTRAL PROCESSING UNIT (CPU)
	2.1 Accumulator (A)
	2.2 Index Register X (X), Index Register Y (Y)
	2.3 Stack Pointer (S)
	2.4 Program Counter (PC)
	2.5 Processor Status Register (PS)

	3. INSTRUCTIONS
	3.1 Addressing Mode
	3.2 Instruction Set
	3.2.1 Data transfer instructions
	3.2.2 Operating instruction
	3.2.3 Bit managing instructions
	3.2.4 Flag setting instructions
	3.2.5 Jump, Branch and Return instructions
	3.2.6 Interrupt instruction (Break instruction)
	3.2.7 Special instructions
	3.2.8 Other instruction

	3.3 Description of instructions
	3.4 Instructions Related to Interrupt Handling and Subroutine Processing
	3.4.1 Instructions Related to Interrupt Handling
	3.4.2 Instructions Related to Interrupt Control
	3.4.3 Instructions Related to Subroutine Processing

	4. NOTES ON USE
	4.1 Notes on input and output ports
	4.1.1 Notes in standby state
	4.1.2 Modifying output data with bit managing instruction

	4.2 Termination of unused pins
	4.2.1 Appropriate termination of unused pins
	4.2.2 Termination remarks

	4.3 Notes on interrupts
	4.3.1 Setting for interrupt request bit and interrupt enable bit
	4.3.2 Switching of detection edge
	4.3.3 Distinction of interrupt request bit

	4.4 Notes on programming
	4.4.1 Processor Status Register
	4.4.2 BRK instruction
	4.4.3 Decimal calculations
	4.4.4 JMP instruction
	4.4.5 Multiplication and division instructions
	4.4.6 Ports
	4.4.7 Instruction execution time

	APPENDIX 1. Instruction Cycles in each Addressing Mode
	APPENDIX 2. 740 Family Machine Language Instruction Table
	APPENDIX 3. 740 Family Iist of Instruction Codes
	Addressing mode
	Immediate
	Accumulator
	Zero Page
	Zero Page X
	Zero Page Y
	Absolute
	Absolute X
	Absolute Y
	Implied
	Relative
	Indirect X
	Indirect Y
	Indirect Absolute
	Zero Page Indirect Absolute
	Special Page
	Zero Page Bit
	Accumulator Bit
	Accumulator Bit Relative
	Zero Page Bit Relative

	instructions
	ADC
	AND
	ASL
	BBC
	BBS
	BCC
	BCS
	BEQ
	BIT
	BMI
	BNE
	BPL
	BRA
	BRK
	BVC
	BVS
	CLB
	CLC
	CLD
	CLI
	CLT
	CLV
	CMP
	COM
	CPX
	CPY
	DEC
	DEX
	DEY
	DIV
	EOR
	INC
	INX
	INY
	JMP
	JSR
	LDA
	LDM
	LDX
	LDY
	LSR
	MUL
	NOP
	ORA
	PHA
	PHP
	PLA
	PLP
	ROL
	ROR
	RRF
	RTI
	RTS
	SBC
	SEB
	SEC
	SED
	SEI
	SET
	STA
	STP
	STX
	STY
	TAX
	TAY
	TST
	TSX
	TXA
	TXS
	TYA
	WIT

