MITSUBISHI LSIs

M5M28F101AFP, J, VP, RV-85, -10

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

PIN CONFIGURATION (TOP VIEW)

DESCRIPTION

The MITSUBISHI M5M28F101A is high-speed 1048576-bit CMOS Flash Memories. This is suitable for the applications with microprocessor or micro-controller where on-board reprogramming is required. The M5M28F101A is fabricated by N-channel double polysilicon gate for memory and CMOS technology for peripheral circuits, and is available in 32pin plastic molded packages.

FEATURES

• Speed item ······ 85 ns (max.)

100 ns (max.)

OE

A10 CE

D7

• D6

Đ

D₀

- A2

GND

<>► D4

<>► D1

A0

<--A1

- Power supply voltageVcc = 5V±0.5V
 Write and erase voltageVPP = 12V±0.6V
- Byte program and Chip erase
- Auto program and Auto erase
- Program/erase operation controlled by software command
- Program/erase pulse controlled by an embedded timer
- 10000 program/erase cycles
- Tri-state output buffer
- TTL-compatible input and output in read and write mode
- Contained device-identifier code
- Incorporated data-protection
- Available packaging for Surface Mount

APPLICATION

A۹

A8

A13

A14

NC

Vcc

VPP

Å16

A15-

A12

A7 -

A6

A₅

1

8 9

10

≁

M5M28F101AVP

Outline 32pin TSOP type-I (8x20mm)

32P3H-E (normal bend)

Micro-computer system and peripheral equipment

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

FUNCTION

M5M28F101A are set to the Read-only mode or Read-write mode by applying the voltage of VPPL or VPPH, respectively, to VPP pin. In Read-only mode, three operation modes, Read, Out-put disable and Stand-by are accessible. While, in Read-Write mode, four operation modes, Read, Output disable, Stand-by and Write are functional.

Read

Set CE and OE terminals to the read mode (low level). Low level input to CE and OE, and address signals to the address inputs (A₀-A₁₆) make the data contents of the designated address location available at data input/output(D_0 - D_7).

Output Disable

When OE is at high level, output from the devices is disabled. Data input/output are in a high-impedance (High-Z) state.

Stand-by

When CE is at high level, the devices is in the stand-by mode and its power consumption is substantially reduced. Data input/output are in a high-impedance (High-Z) state.

Write

Software command accomplishes program and erase operations via the command latch in the device, when high voltage is supplied to VPP. The contents of the latch serve as input to the internal controller. The controller output dictates the function of device. The command latch is written by bringing WE to low level, while CE is at low level and OE is at high level. Addresses are latched on the falling edge of WE, while data is latched on the rising edge of WE. Standard micro-processor write timings are used.

DATA PROTECTION

- Power Supply Voltage When the power supply voltage (Vcc) is less than 2.5V, the device ignores WE signal.
- 2. Write Inhibit
 - In the cases, as below, write mode is not set.

1) When OE is terminated to the low level.

2) From each mode beginning through finish after 2nd rising edge of WE for program, auto-program, erase, and auto-erase.

3. Over-erase Protection

Just after powering up, if erase command is inputted, erase operation is not executed. Once byte-program is performed or verified data is not FFH in the erase-verify mode, successive command input for erase will be accepted. Because of this, it is applicable to the case of multi-chip erasing simultaneously.

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

SOFTWARE COMMAND

When VPP is low (VPP = VPPL), the contents of the command latch are fixed to 00H, and the device is in read-only mode. When VPP is high (VPP = VPPH), the device enters read/write mode. The device operations are selected by writing specific software command into the command latch.

Read Command

The device is in read mode after writing Read Command (00H) to the command latch. The device continues to be in read mode until the other commands are written. When VPP powers-up to high voltage (VPP = VPPH), the default contents of the command latch is 00H. So it is ensured that the false alteration of memory data does not occur during VPP power transition.

Program Command

Program Command is the command for byte-program, and program is initiated by twice of write cycles. Program Command (40H) is written to the command latch in first write cycle, and the address and data to be programmed are latched in second write cycle. Then the address and data are latched on the falling edge and the rising edge of WE pulse, respectively. The byte- program operation is initiated at the rising edge of WE in second write cycle, and terminates in 10 μ s, controlled by the internal timer.

Program Verify Command

Following byte program, the programmed byte must be verified. The program-verify is initiated by writing Program Verify Command (C0H) to the command latch. After writing Program Verify Command, programmed data is verified in read mode. Then the address information is not needed.

Auto Program Command

Auto Program Command is the command for automated program and program-verify of one byte, and Auto Program is initiated by twice of write cycles.

Auto Program Command (10H or 50H) is written to the command latch in first write cycle, and the address and data to be programmed are latched in second write cycle. Then the address and data are latched on the falling edge and the rising edge of WE pulse, respectively. The program operation is initiated at the rising edge of WE in second write cycle, and program-verify begin automatically. So it is not necessary to program-verify mode after this. And the complete of Auto Program can be indicated by data polling.

Data polling is the indication of the complete of Auto Program. During the Auto Program, on WE=VIH and CE=OE=VIL, the data of D0-D7 are the inverse of written datum. When Auto Program is completed, the written datum will be output. It is necessary to fix the address of written byte during data polling.

Erase Command

Erase Command is the command for chip-erase, and chip-erase is initiated by writing twice of the Erase Command (20H) consecutively to the command latch. The erase operation is initiated with the rising edge of the WE pulse and terminates in 9.5ms, controlled by the internal timer. This two-step sequence for chip-erase prevents from erasing accidentally.

Erase Verify Command

Following each erase, all bytes must be verified. The erase verify is initiated by writing Erase Verify Command (A0H) to the command latch, while the address to be verified is latched on the falling edge of the WE pulse. The erase verify command must be written to the command latch and each address is latched before each byte is verified. The operation continues for each byte until a byte is not erased, or the last address is accessed.

Auto Erase Command

Auto Erase Command is the command for automated erase and erase-verify of all bytes, and Auto Erase is initiated by twice of the Erase Command (30H) consecutively to the command latch. First, the preprogram operation is initiated at the rising edge of WE in second write cycle, and so all byte become zero data. Second, erase and erase-verify begin, automatically. So it is not necessary to preprogram and erase-verify mode. And the complete of Auto Erase can be indicated by status polling.

Status polling is the indication of the complete of Auto Erase. During the Auto Erase, on WE=VIH and CE=OE=VIL , the data of D7 is "0". When Auto Erase is completed, the data of D7 is "1". (D0-D7 are "FFH".)

Reset Command

Reset Command is the command to safely abort the erase or program sequences. Following erase or program command in first write cycle, the operation is aborted safely by writing the two consecutive Reset Commands (FFH). Then the device enters read mode without altering memory contents.

Read Device Identifier Code

Device Identifier operation is initiated by writing 80H into the command latch. Following the command write, the manufacturer code (1CH) and the device code (D9H) can be read from address-00000H and 00001H, respectively.

The M5M28F101A is supported with the Common Device Identifier Code of MITSUBISHI 1M Flash memory (x8) family. Common Device Identifier operation is initiated by writing 90H into the command latch. Under this case, following the command write, the manufacturer code (1CH) and the device code (D0H) can be read from address-00000H and 00001H, respectively. Additionally, Common Device Identifier operation is initiated by rising A9 to high voltage for PROM programmers.

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

MODE SELECTION

Mode	Pins	CE	OE	WE	Vpp	Data I/O
	Read	VIL	VIL	Viн	Vppl	Data out
Read-Only	Output disable	VIL	Vін	Vін	Vppl	Hi-Z
	Stand by	Viн	Х	Х	Vppl	Hi-Z
	Read	VIL	VIL	Vін	Vpph	Data out
Read/Write	Output disable	VIL	Viн	Vін	Vpph	Hi-Z
Reau/ White	Stand by	Viн	Х	Х	Vpph	Hi-Z
	Write	VIL	Vін	VIL	Vpph	Data out

Note 1 : X can be VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
VI1	All input or output voltage except VPP/A9		-0.6~7	V
VI2	VPP supply voltage	With respect to Ground	-0.6~14.0	V
Vis	A9 supply voltage		-0.6~13.5	V
Topr	Operating temperature		-10~80	°C
Tstg	Storage temperature		-65~125	°C

SOFTWARE COMMAND DEFINITION

		First bus cycle		Second bus cycle			
Command	Mode	Address	Data I/O	Mode	Address	Data I/O	
Read	Write	Х	00H				
Program (Byte Program)	Write	x	40H	Write	Program Address	Program Data	
Program verify	Write	Х	C0H	Read	Х	Verify Data	
Auto Program	Write	x	10H or 50H	Write	Program Address	Program Data	
Erase (Chip Erase)	Write	Х	20H	Write	Х	20H	
Erase verify	Write	Verify address	A0H	Read	Х	Verify Data	
Auto Erase	Write	Х	30H	Write	Х	30H	
Reset	Write	Х	FFH	Write	Х	FFH	
Read device identifier code	Write	Х	80H	Read	ADI	DDI1	
Read common device identifier code	Write	X	90H	Read	ADI	DDI2	

Note 2 : Write and read mode are defined in mode selection table. ADI = Address of Device Identifier : 00000H for manufacturer code, 00001H for device code. DDI1 = Data of Device Identifier : 1CH for manufacturer code, D9H for device code. DDI2 = Data of Common Device Identifier : 1CH for manufacturer code, D0H for device code.

COMMON DEVICE IDENTIFIER CODE (not use the software command)

Code Pins	Ao	D7	D6	D5	D4	D3	D2	D1	Do	Hex. Data
Manufacturer Code	Vi∟	0	0	0	1	1	1	0	0	1CH
Device Code	Vін	1	1	0	1	0	0	0	0	D0H

Note 3 : A9 = 11.5V~13.0V

A1~A8, A10~A16, CE, OE = VIL, WE = VIH $VCC = VPP = 5V \pm 0.5V$

CAPACITANCE

Question	Deremeter	Test see ditions				
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
CIN	Input capacitance (Address, CE, OE, WE)	$T_{0} = 25^{\circ}C_{0}f = 1MH_{7}V_{0} = V_{0} = 0V_{0}$			8	pF
Соит	Output capacitance	$Ta = 25^{\circ}C, f = 1MHz, Vin = Vout = 0V$			12	pF

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

Cumhal	Devenuetor	—		Limits			
Symbol	Parameter Test conditions		Min	Тур	Max	Unit	
Iu	Input leakage current	0V≤VIN≤Vcc			10	μA	
Ilo	Output leakage current	0V≤Vout≤Vcc			10	μA	
ISB1	Vcc stand-by current	Vcc = 5.5V, CE = VIH			1	mA	
ISB2		$Vcc = 5.5V, CE = Vcc \pm 0.2V$			100	μA	
ICC1	Vcc active read current	VCC = 5.5V, CE = VIL, f = 11.8MHz, IOUT = 0mA			30	mA	
ICC2	Vcc program current	VPP = VPPH			30	mA	
Іссз	Vcc erase current	Vpp = Vpph			30	mA	
IPP1		0V≤Vpp≤Vcc			10		
	VPP read current	Vcc <vpp≤6.5v< td=""><td></td><td></td><td>100</td><td>μA</td></vpp≤6.5v<>			100	μA	
		VPP = VPPH			100		
IPP2	VPP program current	VPP = VPPH			30	mA	
Іррз	VPP erase current	VPP = VPPH			30	mA	
VIL	Input low voltage		- 0.5		0.8	V	
Vih	Input high voltage		2.0		Vcc+0.5	V	
Vol	Output low voltage	IOL = 5.8mA			0.45	V	
Vон1	Output high voltage	Iон = -2.5mA	2.4			V	
Voh2		Іон = -100µА	Vcc-0.4			- V	
Vppl	VPP voltage during read-only mode		0		6.5	V	
Vpph	VPP voltage during read/write mode		11.4	12.0	12.6	V	

DC ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, Vcc = $5V \pm 0.5V$, unless otherwise noted)

AC ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, Vcc = $5V \pm 0.5V$, unless otherwise noted) Read-Only Mode

				Li	mits			
Syr	nbol	Parameter	M5M28	M5M28F101A-85 M5M28F		101A-10	Unit	
			Min	Max	Min	Max		
tRC	tavav	Read cycle time	85		100		ns	
ta (AD)	tavqv	Address access time		85		100	ns	
ta (CE)	t ELQV	Chip enable access time		85		100	ns	
ta (OE)	t GLQV	Output enable access time		45		50	ns	
tcLz	t ELQX	Chip enable to output in low Z	0		0		ns	
tolz	t GLQX	Output enable to output in low Z	0		0		ns	
tDF	tGHQZ	Output enable high to output in low Z		25		25	ns	
tон	tон	Output hold from CE, OE, addresses	0		0		ns	
twrr	twhgl	Write recovery time before read	6		6		μs	

Note 4 : VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP. Timing measurements are made under AC WAVEFORMS FOR READ OPERATIONS.

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

Read/Write Mode

Symbol		Deremeter		Lin	nits		11.2
Syr	ndoi	Parameter	M5M28F	101A-85	M5M28F	101A-10	Unit
			Min	Max	Min	Max	
twc	t avav	Write cycle time	85		100		ns
tas	t AVWL	Address set-up time	0		0		ns
tан	tWLAX	Address hold time	60		60		ns
tDS	td∨wн	Data set-up time	50		50		ns
t DH	twhdx	Data hold time	10		10		ns
twrr	tWHGL	Write recovery time before read	6		6		μs
trrw	t GHWL	Read recovery time before write	0		0		ns
tcs	t ELWL	Chip enable set-up time	20		20		ns
tсн	twhen	Chip enable hold time	0		0		ns
twp	t WLWH	Write pulse width	60		60		ns
twph	twнw∟	Write pulse width high	20		20		ns
tDP	tWHWL1	Duration of program operation	10		10		μs
t DE	tWHWL2	Duration of erase operation	9.5		9.5		ms
t OEH		Output enable hold time before status / data polling	100		100		ns
t DAEC		Duration of auto erase operation	1.7	12.5	1.7	12.5	S
t DAP		Duration of auto program operation	12	400	12	400	μs
tvsc	t VPEH	VPP set-up time to chip enable low	1		1		μs
towp		Write pulse width (optional write)	70		70		ns
tows		Write enable set-up time (optional write)	0		0		ns
town		Write enable hold time (optional write)	0		0		ns
toas		Address set-up time (optional write)	0		0		ns
t OAH		Address hold time (optional write)	55		55		ns
tops		Data set-up time (optional write)	45		45		ns
todh		Data hold time (optional write)	20		20		ns

Note 5 : a. Read timing parameters during read/write mode are the same as during read-only mode. b. VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.

AC WAVEFORMS FOR READ OPERATIONS

TEST CONDITIONS FOR AC CHARACTERISTICS

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

AC WAVEFORMS FOR PROGRAM OPERATIONS

AC WAVEFORMS FOR ERASE OPERATIONS

ADDRESSES	VIH VIL WC ERASE ERASE ERASE ERASE VERIFY
CE	
OE	VIH VIL tRRW tWPH tDE tWRR
WE	
DATA	VIH VIL COMMAND SET COMMAND SET COMMAND SET DATA TO BE VERIFIED
Vcc	5.0V 0.0V / tvsc
Vpp	VPPH

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

AC WAVEFORMS FOR AUTO PROGRAM OPERATION

AC WAVEFORMS FOR AUTO CHIP ERASE OPERATION

(Erase Complete)

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

PROGRAMMING AND ERASE ALGORITHM FLOW CHART

PROGRAM :

ERASE :

1048576-BIT (131072-WORD BY 8-BIT) CMOS FLASH MEMORY

AUTO PROGRAM AND AUTO ERASE OPERATION

AUTO PROGRAM :

AUTO ERASE :

